WO2018146917A1 - トルクセンサ - Google Patents
トルクセンサ Download PDFInfo
- Publication number
- WO2018146917A1 WO2018146917A1 PCT/JP2017/042906 JP2017042906W WO2018146917A1 WO 2018146917 A1 WO2018146917 A1 WO 2018146917A1 JP 2017042906 W JP2017042906 W JP 2017042906W WO 2018146917 A1 WO2018146917 A1 WO 2018146917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bridge circuit
- strain sensor
- output voltage
- circuit
- torque sensor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L25/00—Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
- G01L25/003—Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency for measuring torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
- B25J13/085—Force or torque sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency, in general
- G01L3/02—Rotary-transmission dynamometers
- G01L3/04—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
- G01L3/10—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency, in general
- G01L3/02—Rotary-transmission dynamometers
- G01L3/04—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
- G01L3/10—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
- G01L3/108—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving resistance strain gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0028—Force sensors associated with force applying means
- G01L5/0042—Force sensors associated with force applying means applying a torque
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0061—Force sensors associated with industrial machines or actuators
- G01L5/0071—Specific indicating arrangements, e.g. of overload
Definitions
- a plurality of robot arms are installed, and these robot arms cooperate to assemble products.
- Torque sensors are provided at the joints of these robot arms (see, for example, Patent Documents 1, 2, and 3).
- Embodiment of this invention provides the torque sensor which can detect abnormality of torque sensor itself and has a fail safe function.
- the torque sensor of the present embodiment includes a plurality of first structures, a second structure, and a plurality of forces that are detected between the first structure and the second structure, which are coupled to the measurement target.
- a first bridge circuit including a first strain sensor, a second bridge circuit including a plurality of second strain sensors for detecting a force transmitted between the first structure and the second structure,
- a controller that outputs a signal indicating an abnormality when the difference between the first output voltage of the first bridge circuit and the second output voltage of the second bridge circuit is greater than a first threshold voltage.
- the embodiment of the present invention can detect an abnormality of the torque sensor itself and can provide a torque sensor having a fail-safe function.
- the lineblock diagram showing an example of the torque sensor concerning a 1st embodiment The flowchart shown in order to demonstrate the operation
- movement following FIG. The block diagram which shows an example of the torque sensor which concerns on 2nd Embodiment.
- a torque sensor 10 includes, for example, a first structure 11, a second structure 12, a plurality of third structures 13 as beam portions, a first bridge circuit B1, and a second bridge circuit B2. Yes.
- the first structure 11 and the second structure 12 are, for example, annular, and the second structure 12 and the first structure 11 constitute concentric circles.
- the multiple third structures 13 a, 13 b, 13 c, and 13 d connect the first structure 11 and the second structure 12.
- the third structures 13a, 13b, 13c, and 13d function as a strain generating section, for example.
- the first structure 11 is attached to one of the joints of a robot arm (not shown) as an object to be measured, for example.
- the first structure 11 is attached to, for example, a reduction gear (not shown), and the reduction gear is connected to a motor (not shown).
- the second structure 12 is attached to the other joint of a robot arm (not shown).
- the third structures 13a, 13b, 13c, and 13d transmit force (torque) between the first structure 11 and the second structure 12.
- the first structure 11, the second structure 12, and the third structures 13a, 13b, 13c, and 13d are made of metal, for example. However, if sufficient mechanical strength can be obtained with respect to the applied torque, the first structure 11, the second structure 12, and the third structures 13a, 13b, 13c, and 13d are formed of a material other than metal. It is also possible to do.
- the first bridge circuit B1 and the second bridge circuit B2 are provided in the third structures 13a and 13c arranged at positions separated by 180 °.
- the first bridge circuit B1 is composed of first strain sensors (strain gauges) G1 to fourth strain sensor G4, and the second bridge circuit B2 is composed of fifth strain sensor G5 to eighth strain sensor G8.
- the first strain sensor G1 and the second strain sensor G2 of the first bridge circuit B1 and the fifth strain sensor G5 and the sixth strain sensor G6 of the second bridge circuit B2 are provided in the third structure 13a, and the first bridge The third strain sensor G3 and the fourth strain sensor G4 of the circuit B1, and the seventh strain sensor G7 and the eighth strain sensor G8 of the second bridge circuit B2 are provided in the third structure 13c.
- the first strain sensor G1 to the eighth strain sensor G8 are constituted by, for example, a thin film resistor provided on an unillustrated metal plate via an insulating film, for example.
- the configuration of the first strain sensor G1 to the eighth strain sensor G8 is not limited to this.
- the metal plates of the first strain sensor G1 to the eighth strain sensor G8 are fixed to the surface of the third structure 13a or the third structure 13c using means such as adhesion, screws or welding.
- the first strain sensor G1, the second strain sensor G2, the fifth strain sensor G5, and the sixth strain sensor G6 are provided in the third structure 13a, and the third strain sensor G3, the fourth strain sensor G4, and the seventh strain are provided.
- the sensor G7 and the eighth strain sensor G8 are provided in the third structure 13c, the present invention is not limited to this.
- a metal plate provided in the first strain sensor G1 to the eighth strain sensor G8 may be used as the strain generating body.
- the metal plates of the first strain sensor G1, the second strain sensor G2, the fifth strain sensor G5, and the sixth strain sensor G6 are placed in places other than the third structures 13a, 13b, 13c, and 13d.
- the metal plates of the third strain sensor G3, the fourth strain sensor G4, the seventh strain sensor G7, and the eighth strain sensor G8 are provided between the structure 11 and the second structure 12, and the first structure 11 You may provide between the 2nd structures 12. What is necessary is just to fix the metal plate of each strain sensor to the 1st structure 11 and the 2nd structure 12 using means, such as adhesion
- the first strain sensor G1 and the third strain sensor G3 are connected in series, and the second strain sensor G2 and the fourth strain sensor G4 are connected in series.
- the first strain sensor G1 and the third strain sensor G3 connected in series are connected in parallel to the second strain sensor G2 and the fourth strain sensor G4 connected in series.
- a power supply Vo for example, 5 V is supplied to a connection node between the second strain sensor G2 and the fourth strain sensor G4, and a connection node between the first strain sensor G1 and the third strain sensor G3 is grounded.
- the fifth strain sensor G5 and the seventh strain sensor G7 are connected in series, and the sixth strain sensor G6 and the eighth strain sensor G8 are connected in series.
- the fifth strain sensor G5 and the seventh strain sensor G7 connected in series are connected in parallel to the sixth strain sensor G6 and the eighth strain sensor G8 connected in series.
- a power supply Vo for example, 5 V is supplied to a connection node between the sixth strain sensor G6 and the eighth strain sensor G8, and a connection node between the fifth strain sensor G5 and the seventh strain sensor G7 is grounded.
- connection node between the first strain sensor G1 and the second strain sensor G2 is connected to the first input terminal of the first voltage detection circuit 15, and the third strain sensor G3, the fourth strain sensor G4, Is connected to the second input terminal of the first voltage detection circuit 15.
- connection node between the fifth strain sensor G5 and the sixth strain sensor G6 is connected to the first input terminal of the second voltage detection circuit 16, and the seventh strain sensor G7, the eighth strain sensor G8, Is connected to the second input terminal of the second voltage detection circuit 16.
- the first voltage detection circuit 15 detects the output voltage of the first bridge circuit B1
- the second voltage detection circuit 16 detects the output voltage of the second bridge circuit B2.
- the first voltage detection circuit 15 and the second voltage detection circuit 16 are constituted by, for example, a voltage dividing resistor and an operational amplifier. However, it is not limited to this.
- the first strain sensor G1 and the second strain are detected in the first bridge circuit B1.
- the output voltage Vout + is output from the connection point of the sensor G2
- the output voltage Vout ⁇ is output from the connection point of the third strain sensor G3 and the fourth strain sensor G4. From the output voltage Vout + and the output voltage Vout ⁇ , the output voltage Vout1 of the first bridge circuit B1 represented by the equation (1) is obtained.
- a force other than torque such as thrust force (force in the left-right direction (X direction) or force in the up-down direction (Y direction) with respect to the first structure 11 and the second structure 12 shown in FIG. )
- thrust force force in the left-right direction (X direction) or force in the up-down direction (Y direction) with respect to the first structure 11 and the second structure 12 shown in FIG.
- R4 R + ⁇ R, where ⁇ R is a value of change in resistance value), and the output voltage Vout1 of the first bridge circuit B1 becomes 0V.
- the operation principle of the second voltage detection circuit 16 corresponding to the second bridge circuit B2 is the same as that of the first voltage detection circuit 15.
- the output voltage Vout2 of the second voltage detection circuit 16 is also obtained in the same manner as the first voltage detection circuit 15.
- the output voltage Vout1 of the first voltage detection circuit 15 is supplied to the analog-digital (AD) conversion circuit 17 and converted into a digital signal, and the output voltage Vout2 of the second voltage detection circuit 16 is supplied to the AD conversion circuit 18 and digitally converted. Converted to a signal.
- Output signals of the AD conversion circuit 17 and the AD conversion circuit 18 (hereinafter also referred to as output signals of the first bridge circuit B1 and the second bridge circuit B2) are supplied to the controller 19 on a regular basis, for example.
- the controller 19 supplies one or both of the output signals of the AD conversion circuit 17 and the AD conversion circuit 18 to an external device as an output signal of the torque sensor 10, or detects an abnormality of the torque sensor 10 described later.
- the controller 19 includes a storage unit 20 capable of storing output signals of the AD conversion circuit 17 and the AD conversion circuit 18 for a certain period of time, for example.
- the output signals of the AD conversion circuit 17 and the AD conversion circuit 18 stored in the storage unit 20 are updated at regular intervals, for example.
- a display device 21 is connected to the controller 19.
- the display device 21 displays a detection output signal of the torque sensor 10, a signal indicating that an abnormality of the torque sensor 10 is detected, and the like.
- the torque sensor 10 normally has both the first bridge circuit B1 and the second bridge circuit B2 operating simultaneously, and the output voltages of the first bridge circuit B1 and the second bridge circuit B2 are compared. That is, the controller 19 is supplied from the first voltage detection circuit 15 via the AD conversion circuit 17 and from the first bridge circuit B1 and from the second voltage detection circuit 16 via the AD conversion circuit 18. The absolute value of the difference from the output voltage Vout2 of the second bridge circuit B2 is obtained, and the absolute value of this difference is compared with the first threshold voltage (S1). The absolute value is not necessarily required, and the difference between the two output voltages may be obtained.
- the controller 19 determines whether or not the predetermined operation of the torque sensor 10 has ended based on, for example, one output voltage of the first bridge circuit B1 and the second bridge circuit B2 (S2).
- the predetermined operation is, for example, an operation of supplying an output signal of the torque sensor 10 to an external device or detecting an abnormality of the torque sensor 10. If the result of this determination is that the predetermined operation has not ended (S2, NO), the control is shifted to S1. If the predetermined operation has been completed (S2, YES), the control is terminated.
- FIG. 3 shows an example of the abnormality processing routine S3.
- the controller 19 obtains the absolute value of the difference between the output voltage Vout1 of the first bridge circuit B1 and the previous output voltage Vout11 of the first bridge circuit B1 stored in the storage unit 20, and this absolute value is the second threshold value. It is determined whether or not the voltage is higher than the voltage (S31).
- the second threshold voltage may be equal to or less than the first threshold voltage.
- the first bridge circuit B1 is determined to be abnormal, and for example, the power supply to the first bridge circuit B1 is stopped. At the same time, a signal indicating abnormality is supplied to the display device 21, and the display device 21 displays that the first bridge circuit B1 is abnormal (S32). Thereafter, the control is shifted to S2, for example, and a predetermined operation is executed using the normal second bridge circuit B2.
- the first bridge circuit B1 is determined to be normal (S31, NO), and the controller 19 is stored in the output voltage Vout2 of the second bridge circuit B2 and the storage unit 20.
- the absolute value of the difference from the previous output voltage Vout21 of the second bridge circuit B2 is obtained, and it is determined whether the absolute value of this difference is higher than the second threshold voltage (S33).
- the determination if the absolute value of the difference is larger than the second threshold voltage (S33, YES), it is determined that the second bridge circuit B2 is abnormal, and for example, power supply to the second bridge circuit B2 is stopped. At the same time, a signal indicating abnormality is supplied to the display device 21, and the display device 21 displays that the second bridge circuit B2 is abnormal (S34). Thereafter, the control is shifted to S2, for example, and a predetermined operation is executed using the normal first bridge circuit B1.
- the torque sensor 10 includes the first bridge circuit B1 and the second bridge circuit B2, and the difference between the output voltage of the first bridge circuit B1 and the output voltage of the second bridge circuit B2 ( Is greater than the first threshold voltage, it is determined that an abnormality has occurred in one of the first bridge circuit B1 and the second bridge circuit B2. For this reason, it is possible to detect an abnormality in the torque sensor 10 before both the first bridge circuit B1 and the second bridge circuit B2 fail. Therefore, the torque sensor 10 has a fail-safe function, and can prevent a collision of a robot arm to which the torque sensor 10 is mounted in advance.
- the torque sensor 10 can be continuously operated using a normal bridge circuit, and control such as stopping the robot arm after moving it to a safe position, for example, can be performed.
- the first bridge circuit B1 and the second bridge circuit B2 are both provided in the first structures 13a and 13c. That is, the first bridge circuit B1 and the second bridge circuit B2 are arranged in parallel.
- the first bridge circuit B and the second bridge circuit B2 are arranged so as to cross each other.
- FIG. 4 shows an example of the second embodiment.
- the first strain sensor G1 and the second strain sensor G2 of the first bridge circuit B1 are arranged in the third structure 13a, and the third strain sensor G3 and the fourth strain of the first bridge circuit B1.
- the sensor G4 is disposed on the third structure 13c.
- the fifth strain sensor G5 and the sixth strain sensor G6 of the second bridge circuit B2 are arranged in the third structure 13b, and the seventh strain sensor G7 and the eighth strain sensor G8 of the second bridge circuit B2 are The three structures 13d are arranged.
- circuit configuration and operation are the same as those in the first embodiment.
- the first bridge circuit B1 and the second bridge circuit B2 are arranged so as to cross each other, and the first strain sensor G1 to the fourth strain sensor G4 of the first bridge circuit B1 have the third structure.
- the fifth strain sensors G5 to G8 of the second bridge circuit B2 are arranged in the third structures 13b and 13d different from the third structures 13a and 13c. For this reason, it is possible to reduce the probability that the first bridge circuit B1 and the second bridge circuit B2 will fail simultaneously.
- the abnormality of the first bridge circuit B1 and the second bridge circuit B2 is detected based on the digital signal.
- the present invention is not limited to this, and it is also possible to detect an abnormality in the first bridge circuit B1 and the second bridge circuit B2 based on analog signals.
- FIG. 5 shows an example of the third embodiment.
- the arrangement of the first bridge circuit B1 and the second bridge circuit B2 is arranged in parallel as in the first embodiment, but crosses like the second embodiment. You may arrange.
- the output voltages Vout + and Vout ⁇ of the first bridge circuit B1 are supplied to the first voltage detection circuit 15, and the output voltages Vout + and Vout ⁇ of the second bridge circuit B2 are supplied to the second voltage detection circuit 16.
- the output voltage Vout1 of the first voltage detection circuit 15 and the output voltage Vout2 of the second voltage detection circuit 16 are supplied to the subtraction circuit 22.
- the subtraction circuit 22 outputs a voltage difference between the output voltage Vout1 of the first voltage detection circuit 15 and the output voltage Vout2 of the second voltage detection circuit 16.
- the output voltage of the subtraction circuit 22 and the first threshold voltage 24 are supplied to the comparison circuit 23.
- the comparison circuit 23 compares the output voltage of the subtraction circuit 22 with the first threshold voltage 24.
- the comparison result of the comparison circuit 23 is supplied to the controller 19.
- the controller 19 stops the power supply to the first bridge circuit B1 and the second bridge circuit B2, for example, and stops the operation of the robot arm, for example.
- the controller 19 may be configured to detect one of the first bridge circuit B1 and the second bridge circuit B2 that has an abnormality as in the first embodiment.
- the processing speed can be increased by processing based on the analog signal.
- the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
- various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
- the torque sensor according to the embodiment of the present invention can be applied to a joint of a robot arm, for example.
- SYMBOLS 10 ... Torque sensor, 11 ... 1st structure, 12 ... 2nd structure, 13a, 13b, 13c, 13d ... 3rd structure, B1 ... 1st bridge circuit, B2 ... 2nd bridge circuit, G1-G8 ... 1st strain sensor-8th strain sensor, 15 ... 1st voltage detection circuit, 16 ... 2nd voltage detection circuit, 19 ... Controller, 20 ... Memory
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Human Computer Interaction (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
トルクセンサ自体の異常や、ロボットアームの異常を検出することができ、フェイルセーフ機能を有するトルクセンサを提供する。第1構造体11は、被計測体に連結される。複数の歪センサを含む第1ブリッジ回路B1は、第1構造体11と第2構造体12との間に伝達される力を検出する。複数の歪センサを含む第2ブリッジ回路B2は、第1構造体11と第2構造体12との間に伝達される力を検出する。コントローラ19は、第1ブリッジ回路B1の第1出力電圧と第2ブリッジ回路B2の第2出力電圧との差が第1閾値電圧より大きい場合、異常を示す信号を出力する。
Description
本発明の実施形態は、例えばロボットアームの関節に設けられるトルクセンサに関する。
例えば製造ラインには、複数のロボットアームが設置され、これらロボットアームが協働して製品が組み立てられている。これらロボットアームの関節には、トルクセンサが設けられている(例えば特許文献1、2、3参照)。
従来、ロボットアームに装着されるトルクセンサは、トルクセンサ自体の異常や、アームの異常を検出することが困難であった。このため、例えば複数のロボットアームが協働する協働ロボットにおいて、何らかの原因によりトルクセンサ自体の異常や、アームの異常が発生した場合においても、ロボットアーム同士の衝突などを回避することが困難であった。したがって、トルクセンサ自体の異常を事前に検知することが可能な所謂フェイルセーフ機能を有するトルクセンサが要望されている。
本発明の実施形態は、トルクセンサ自体の異常を検出することができ、フェイルセーフ機能を有するトルクセンサを提供する。
本実施形態のトルクセンサは、被計測体に連結される第1構造体と、第2構造体と、前記第1構造体と前記第2構造体との間に伝達される力を検出する複数の第1歪センサを含む第1ブリッジ回路と、前記第1構造体と前記第2構造体との間に伝達される力を検出する複数の第2歪センサを含む第2ブリッジ回路と、前記第1ブリッジ回路の第1出力電圧と前記第2ブリッジ回路の第2出力電圧との差が第1閾値電圧より大きい場合、異常を示す信号を出力するコントローラと、を具備する。
本発明の実施形態は、トルクセンサ自体の異常を検出することができ、フェイルセーフ機能を有するトルクセンサを提供できる。
以下、実施の形態について、図面を参照して説明する。図面において、同一部分には同一符号を付している。
(第1の実施形態)
図1において、トルクセンサ10は、例えば第1構造体11、第2構造体12、梁部としての複数の第3構造体13、第1ブリッジ回路B1、及び第2ブリッジ回路B2を具備している。
図1において、トルクセンサ10は、例えば第1構造体11、第2構造体12、梁部としての複数の第3構造体13、第1ブリッジ回路B1、及び第2ブリッジ回路B2を具備している。
第1構造体11及び第2構造体12は、例えば環状であり、第2構造体12と第1構造体11は、同心円を構成する。複数の第3構造体13a、13b、13c、13dは、第1構造体11と第2構造体12を連結する。第1の実施形態において、第3構造体13a、13b、13c、13dは、例えば起歪部として機能する。
第1構造体11は、被計測体としての例えば図示せぬロボットアームの関節の一方に取着される。具体的には、第1構造体11は、例えば図示せぬ減速機に取着され、減速機は図示せぬモータに連結される。第2構造体12は、例えば図示せぬロボットアームの関節の他方に取着される。
第3構造体13a、13b、13c、13dは、第1構造体11と第2構造体12との間において、力(トルク)を伝達する。
第1構造体11、第2構造体12、第3構造体13a、13b、13c、13dは、例えば金属により構成されている。しかし、印加されるトルクに対して十分な機械的強度を得ることができれば、金属以外の材料により第1構造体11、第2構造体12、第3構造体13a、13b、13c、13dを構成することも可能である。
第3構造体13a、13b、13c、13dのうち、例えば180°離れた位置に配置された第3構造体13a、13cには、第1ブリッジ回路B1と、第2ブリッジ回路B2が設けられる。
第1ブリッジ回路B1は、第1歪センサ(歪ゲージ)G1~第4歪センサG4により構成され、第2ブリッジ回路B2は、第5歪センサG5~第8歪センサG8により構成されている。
第1ブリッジ回路B1の第1歪センサG1、第2歪センサG2、及び第2ブリッジ回路B2の第5歪センサG5、第6歪センサG6は、第3構造体13aに設けられ、第1ブリッジ回路B1の第3歪センサG3、第4歪センサG4、及び第2ブリッジ回路B2の第7歪センサG7、第8歪センサG8は、第3構造体13cに設けられている。
第1歪センサG1~第8歪センサG8は、例えば図示せぬ金属板上に絶縁膜を介して設けられた例えば薄膜抵抗体により構成されている。しかし、第1歪センサG1~第8歪センサG8の構成は、これに限定されるものではない。
第1歪センサG1~第8歪センサG8の金属板は、例えば接着、ネジ又は溶接などの手段を用いて第3構造体13a又は第3構造体13cの表面に固定される。
また、第1歪センサG1、第2歪センサG2、第5歪センサG5、第6歪センサG6を、第3構造体13aに設け、第3歪センサG3、第4歪センサG4、第7歪センサG7、第8歪センサG8を、第3構造体13cに設けたが、これに限定されるものではない。
例えば、第1歪センサG1~第8歪センサG8に設けられた金属板を起歪体として用いてもよい。この場合、第3構造体13a、13b、13c、13d以外の場所で、第1歪センサG1、第2歪センサG2、第5歪センサG5、及び第6歪センサG6の金属板を、第1構造体11と第2構造体12との間に設け、第3歪センサG3、第4歪センサG4、第7歪センサG7、及び第8歪センサG8の金属板を、第1構造体11と第2構造体12との間に設けてもよい。各歪センサの金属板は、例えば接着、ネジ又は溶接などの手段を用いて第1構造体11と第2構造体12に固定すればよい。
第1ブリッジ回路B1において、第1歪センサG1と第3歪センサG3は直列接続され、第2歪センサG2と第4歪センサG4は、直列接続されている。直列接続された第1歪センサG1と第3歪センサG3は、直列接続された第2歪センサG2と第4歪センサG4に並列接続されている。
第2歪センサG2と第4歪センサG4との接続ノードに電源Vo、例えば5Vが供給され、第1歪センサG1と第3歪センサG3との接続ノードは、接地されている。
第2ブリッジ回路B2において、第5歪センサG5と第7歪センサG7は直列接続され、第6歪センサG6と第8歪センサG8は、直列接続されている。直列接続された第5歪センサG5と第7歪センサG7は、直列接続された第6歪センサG6と第8歪センサG8に並列接続されている。
第6歪センサG6と第8歪センサG8との接続ノードに電源Vo、例えば5Vが供給され、第5歪センサG5と第7歪センサG7との接続ノードは、接地されている。
第1ブリッジ回路B1において、第1歪センサG1と第2歪センサG2との接続ノードは第1電圧検出回路15の第1入力端に接続され、第3歪センサG3と第4歪センサG4との接続ノードは第1電圧検出回路15の第2入力端に接続されている。
第2ブリッジ回路B2において、第5歪センサG5と第6歪センサG6との接続ノードは第2電圧検出回路16の第1入力端に接続され、第7歪センサG7と第8歪センサG8との接続ノードは第2電圧検出回路16の第2入力端に接続されている。
第1電圧検出回路15は、第1ブリッジ回路B1の出力電圧を検出し、第2電圧検出回路16は、第2ブリッジ回路B2の出力電圧を検出する。第1電圧検出回路15及び第2電圧検出回路16は、例えば分圧抵抗と演算増幅器により構成される。しかし、これに限定されるものではない。
第1電圧検出回路15の動作原理は、次の通りである。
例えばトルクセンサ10にトルク(第1構造体11、第2構造体12の時計回り方向又は反時計回り方向)が印加された場合、第1ブリッジ回路B1において、第1歪センサG1と第2歪センサG2の接続点から出力電圧Vout+が出力され、第3歪センサG3と第4歪センサG4の接続点から出力電圧Vout-が出力される。出力電圧Vout+及び出力電圧Vout-から式(1)で示す第1ブリッジ回路B1の出力電圧Vout1が得られる。
Vout1=(Vout+-Vout-)
=(R1/(R1+R2)-R3/(R3+R4))・Vo …(1)
ここで、
R1は、第1歪センサG1の抵抗値
R2は、第2歪センサG2の抵抗値
R3は、第3歪センサG3の抵抗値
R4は、第4歪センサG4の抵抗値
であり、トルクセンサ10にトルクが印加されていない状態において、R1=R2=R3=R4=Rである。
=(R1/(R1+R2)-R3/(R3+R4))・Vo …(1)
ここで、
R1は、第1歪センサG1の抵抗値
R2は、第2歪センサG2の抵抗値
R3は、第3歪センサG3の抵抗値
R4は、第4歪センサG4の抵抗値
であり、トルクセンサ10にトルクが印加されていない状態において、R1=R2=R3=R4=Rである。
一方、トルクセンサ10にトルク以外の力、例えばスラスト力(図1に示す第1構造体11、第2構造体12に対する左右方向(X方向)の力、又は、上下方向(Y方向)の力)が加わった場合、第1歪センサG1、第2歪センサG2、第3歪センサG3及び第4歪センサG4の抵抗値の変化(R1=R-ΔR、R2=R+ΔR、R3=R-ΔR、R4=R+ΔR、ここで、ΔRは、抵抗値の変化の値)が相殺され、第1ブリッジ回路B1の出力電圧Vout1は、0Vとなる。
第2ブリッジ回路B2に対応する第2電圧検出回路16の動作原理も第1電圧検出回路15と同様である。第2電圧検出回路16の出力電圧Vout2も第1電圧検出回路15と同様にして得られる。
第1電圧検出回路15の出力電圧Vout1は、アナログデジタル(AD)変換回路17に供給されてデジタル信号に変換され、第2電圧検出回路16出力電圧Vout2は、AD変換回路18に供給されてデジタル信号に変換される。AD変換回路17及びAD変換回路18の出力信号(以下、第1ブリッジ回路B1及び第2ブリッジ回路B2の出力信号とも言う)は、例えば定期的にコントローラ19に供給される。コントローラ19は、AD変換回路17及びAD変換回路18の出力信号の一方又は両方を、トルクセンサ10の出力信号として外部の装置に供給したり、後述するトルクセンサ10の異常を検知したりする。
また、コントローラ19は、AD変換回路17及びAD変換回路18の出力信号を例えば一定期間記憶することが可能な記憶部20を具備している。記憶部20に記憶されたAD変換回路17及びAD変換回路18の出力信号は、例えば一定期間毎に更新される。
さらに、コントローラ19には、例えば表示装置21が接続されている。表示装置21は、トルクセンサ10の検出出力信号やトルクセンサ10の異常が検出されたことを示す信号などを表示する。
(動作)
図2、図3は、コントローラ19の動作を説明するためのフローチャートである。
図2、図3は、コントローラ19の動作を説明するためのフローチャートである。
トルクセンサ10は、通常時、第1ブリッジ回路B1と第2ブリッジ回路B2との両方が同時に動作しており、第1ブリッジ回路B1と第2ブリッジ回路B2の出力電圧が比較されている。すなわち、コントローラ19は、第1電圧検出回路15からAD変換回路17を介して供給される第1ブリッジ回路B1の出力電圧Vout1と、第2電圧検出回路16からAD変換回路18を介して供給される第2ブリッジ回路B2の出力電圧Vout2との差の絶対値を求め、この差の絶対値と第1閾値電圧とを比較する(S1)。尚、絶対値は必ずしも必要なく、両出力電圧の差が求められればよい。
上記比較の結果、差の絶対値が第1閾値電圧より小さい場合(S1、NO)、第1ブリッジ回路B1と第2ブリッジ回路B2の両方は、正常に動作していると判断される。コントローラ19は、第1ブリッジ回路B1と第2ブリッジ回路B2の例えば一方の出力電圧に基づきトルクセンサ10の所定の動作が終了したかどうかを判断する(S2)。所定の動作とは、前述したように、例えばトルクセンサ10の出力信号を外部の装置に供給したり、トルクセンサ10の異常を検知したりするなどの動作である。この判断の結果、所定の動作が終了していない場合(S2、NO)、制御がS1に移行される。また、所定の動作が終了している場合(S2、YES)、制御が終了される。
一方、S1において、差の絶対値が第1閾値電圧より大きいと判断された場合(S1、YES)、制御が異常処理ルーチンS3に移行される。すなわち、差の絶対値が第1閾値電圧より大きいということは、第1ブリッジ回路B1と第2ブリッジ回路B2のいずれかに異常が発生したことを意味している。このため、異常処理ルーチンS3において、第1ブリッジ回路B1と第2ブリッジ回路B2のどちらに異常が発生しているかが判別される。
図3は、異常処理ルーチンS3の一例を示している。
先ず、コントローラ19は、第1ブリッジ回路B1の出力電圧Vout1と記憶部20に記憶された第1ブリッジ回路B1の前回の出力電圧Vout11との差の絶対値を求め、この絶対値が第2閾値電圧より高いかどうかを判断する(S31)。第2閾値電圧は、第1閾値電圧と同等又は第1閾値電圧以下であってもよい。
この判別の結果、差の絶対値が第2閾値電圧より大きい場合(S31、YES)、第1ブリッジ回路B1は異常と判断され、例えば第1ブリッジ回路B1への電源供給が停止される。これとともに、表示装置21に異常を示す信号が供給され、第1ブリッジ回路B1が異常であることが表示装置21に表示される(S32)。この後、制御が例えばS2に移行され、正常な第2ブリッジ回路B2を用いて所定の動作が実行される。
一方、絶対値が第2閾値電圧以下である場合、第1ブリッジ回路B1は正常と判断され(S31、NO)、コントローラ19は、第2ブリッジ回路B2の出力電圧Vout2と記憶部20に記憶された第2ブリッジ回路B2の前回の出力電圧Vout21との差の絶対値を求め、この差の絶対値が第2閾値電圧より高いかどうかを判断する(S33)。
この判別の結果、差の絶対値が第2閾値電圧より大きい場合(S33、YES)、第2ブリッジ回路B2は異常と判断され、例えば第2ブリッジ回路B2への電源供給が停止される。これとともに、表示装置21に異常を示す信号が供給され、第2ブリッジ回路B2が異常であることが表示装置21に表示される(S34)。この後、制御が例えばS2に移行され、正常な第1ブリッジ回路B1を用いて所定の動作が実行される。
また、S33において、差の絶対値が第2閾値電圧以下と判断された場合(S33、NO)、今回の判断において、第1ブリッジ回路B1と第2ブリッジ回路B2のいずれにも異常が検出されなかったと判断される。このような結果が出る場合は、トルクセンサ10以外に異常が発生しているなどの原因が考えられる。このため、S33において、絶対値が第2閾値電圧以下と判断された場合(S33、NO)、例えば表示装置21に異常が発生したことが表示される(S35)。この後、制御がS2に移行される。
このように、異常処理ルーチンS3において、第1ブリッジ回路B1と第2ブリッジ回路B2との一方に異常が検出された場合、第1ブリッジ回路B1及び第2ブリッジ回路B2のうち異常が検出された一方が停止され、第1ブリッジ回路B1及び第2ブリッジ回路B2のうち正常な他方を用いてトルクセンサ10の動作が継続される。
しかし、異常処理ルーチンは、これに限定されるものではなく、S1において、異常が検出された場合、直ちに第1ブリッジ回路B1及び第2ブリッジ回路B2の両方を停止させ、表示装置21にトルクセンサ10に異常が発生したことを表示させてもよい。
上記第1の実施形態によれば、トルクセンサ10は、第1ブリッジ回路B1と第2ブリッジ回路B2を具備し、第1ブリッジ回路B1の出力電圧と第2ブリッジ回路B2の出力電圧の差(の絶対値)が第1閾値電圧より大きい場合、第1ブリッジ回路B1と第2ブリッジ回路B2の一方に異常が発生したものと判断している。このため、第1ブリッジ回路B1と第2ブリッジ回路B2の両方が故障する以前にトルクセンサ10の異常を検出することが可能である。したがった、トルクセンサ10は、フェイルセーフ機能を有し、トルクセンサ10が装着されるロボットアームの衝突等を未然に防止することが可能である。
また、第1ブリッジ回路B1又は第2ブリッジ回路B2に異常が発生した場合、異常が発生したブリッジ回路を特定して停止させ、正常なブリッジ回路を用いて動作を継続することが可能である。このため、正常なブリッジ回路を用いてトルクセンサ10を継続して動作させることができ、ロボットアームを例えば安全な位置に移動させた後に停止させるなどの制御を行うことが可能である。
(第2の実施形態)
第1の実施形態において、第1ブリッジ回路B1と第2ブリッジ回路B2は、共に第1構造体13aと13cに設けた。すなわち、第1ブリッジ回路B1と第2ブリッジ回路B2は、並行に配置されていた。
第1の実施形態において、第1ブリッジ回路B1と第2ブリッジ回路B2は、共に第1構造体13aと13cに設けた。すなわち、第1ブリッジ回路B1と第2ブリッジ回路B2は、並行に配置されていた。
これに対して、第2の実施形態において、第1ブリッジ回路Bと第2ブリッジ回路B2は、交差して配置される。
図4は、第2の実施形態の一例を示している。
図4に示すように、第1ブリッジ回路B1の第1歪センサG1と第2歪センサG2は、第3構造体13aに配置され、第1ブリッジ回路B1の第3歪センサG3と第4歪センサG4は、第3構造体13cに配置される。
また、第2ブリッジ回路B2の第5歪センサG5と第6歪センサG6は、第3構造体13bに配置され、第2ブリッジ回路B2の第7歪センサG7と第8歪センサG8は、第3構造体13dに配置される。
第2の実施形態において、回路構成及び動作は、第1の実施形態と同様である。
第2の実施形態によっても第1の実施形態と同様の効果を得ることが可能である。
しかも、第2の実施形態によれば、第1ブリッジ回路B1と第2ブリッジ回路B2を交差して配置し、第1ブリッジ回路B1の第1歪センサG1~第4歪センサG4を第3構造体13a、13cに配置し、第2ブリッジ回路B2の第5歪センサG5~第8歪センサG8を第3構造体13a、13cとは別の第3構造体13b、13dに配置している。このため、第1ブリッジ回路B1と第2ブリッジ回路B2が同時に故障する確率を低減させることが可能である。
(第3の実施形態)
第1、第2の実施形態において、第1ブリッジ回路B1及び第2ブリッジ回路B2の異常は、デジタル信号に基づき検出された。しかし、これに限らず、アナログ信号に基づき第1ブリッジ回路B1及び第2ブリッジ回路B2の異常を検出することも可能である。
第1、第2の実施形態において、第1ブリッジ回路B1及び第2ブリッジ回路B2の異常は、デジタル信号に基づき検出された。しかし、これに限らず、アナログ信号に基づき第1ブリッジ回路B1及び第2ブリッジ回路B2の異常を検出することも可能である。
図5は、第3の実施形態の一例を示している。
第3の実施形態において、第1ブリッジ回路B1と第2ブリッジ回路B2の配置は、第1の実施形態と同様に平行に配置されているが、第2の実施形態のように、交差して配置してもよい。
第1ブリッジ回路B1の出力電圧Vout+、Vout-は、第1電圧検出回路15に供給され、第2ブリッジ回路B2の出力電圧Vout+、Vout-は、第2電圧検出回路16に供給される。第1電圧検出回路15の出力電圧Vout1と、第2電圧検出回路16の出力電圧Vout2は、減算回路22に供給される。減算回路22は、第1電圧検出回路15の出力電圧Vout1と、第2電圧検出回路16の出力電圧Vout2との差の電圧を出力する。減算回路22の出力電圧と第1閾値電圧24は、比較回路23に供給される。比較回路23は、減算回路22の出力電圧と第1閾値電圧24とを比較する。比較回路23の比較結果はコントローラ19に供給される。コントローラ19は、比較回路23の比較結果が異常を示す場合、例えば第1ブリッジ回路B1及び第2ブリッジ回路B2への電源供給を停止させ、例えばロボットアームの動作を停止させる。或いは、コントローラ19は、第1の実施形態のように、第1ブリッジ回路B1と第2ブリッジ回路B2のうち異常を有する一方を検出するように構成されてもよい。
第3の実施形態によっても第1、第2の実施形態と同様の効果を得ることが可能である。しかも、アナログ信号に基づき処理することにより、処理速度を高速化することが可能である。
その他、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
本発明の実施形態に係るトルクセンサは、例えばロボットアームの関節などに適用することが可能である。
10…トルクセンサ、11…第1構造体、12…第2構造体、13a、13b、13c、13d…第3構造体、B1…第1ブリッジ回路、B2…第2ブリッジ回路、G1~G8…第1歪センサ~第8歪センサ、15…第1電圧検出回路、16…第2電圧検出回路、19…コントローラ、20…記憶部、21…表示装置。
Claims (7)
- 被計測体に連結される第1構造体と、
第2構造体と、
前記第1構造体と前記第2構造体との間に伝達される力を検出する複数の第1歪センサを含む第1ブリッジ回路と、
前記第1構造体と前記第2構造体との間に伝達される力を検出する複数の第2歪センサを含む第2ブリッジ回路と、
前記第1ブリッジ回路の第1出力電圧と前記第2ブリッジ回路の第2出力電圧との差が第1閾値電圧より大きい場合、異常を示す信号を出力するコントローラと、
を具備することを特徴とするトルクセンサ。 - 前記コントローラは、前記信号を出力した後、前記第1ブリッジ回路の前記第1出力電圧と、前記第2ブリッジ回路の前記第2出力電圧とのうち、第2閾値電圧より小さい出力電圧を選択することを特徴とする請求項1記載のトルクセンサ。
- 前記第1ブリッジ回路に含まれる前記第1歪センサと前記第2ブリッジ回路に含まれる前記第2歪センサは、並行に配置されることを特徴とする請求項1記載のトルクセンサ。
- 前記第1ブリッジ回路に含まれる前記第1歪センサと前記第2ブリッジ回路に含まれる前記第2歪センサは、直行する方向に配置されることを特徴とすることを特徴とする請求項1記載のトルクセンサ。
- 前記第1ブリッジ回路の前記第1出力電圧を検出する第1検出回路と、
前記第2ブリッジ回路の前記第2出力電圧を検出する第2検出回路と、
をさらに具備することを特徴とする請求項1記載のトルクセンサ。 - 前記第1出力電圧及び前記第2出力電圧を格納するメモリ
をさらに具備することを特徴とする請求項5記載のトルクセンサ。 - 前記コントローラは、前記第1検出回路から供給される前記第1出力電圧と前記メモリに格納された前記第1出力電圧との差が第2閾値電圧より大きい場合、前記第1ブリッジ回路を停止させ、前記第2検出回路から供給される前記第2出力電圧と前記メモリに格納された前記第2出力電圧との差が前記第2閾値電圧より大きい場合、前記第2ブリッジ回路を停止させることを特徴とする請求項6記載のトルクセンサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780080958.8A CN110121638A (zh) | 2017-02-13 | 2017-11-29 | 扭矩传感器 |
EP17895539.9A EP3581908B1 (en) | 2017-02-13 | 2017-11-29 | Torque sensor |
US16/451,839 US10955309B2 (en) | 2017-02-13 | 2019-06-25 | Torque sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-023885 | 2017-02-13 | ||
JP2017023885A JP6692762B2 (ja) | 2017-02-13 | 2017-02-13 | トルクセンサ |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/451,839 Continuation US10955309B2 (en) | 2017-02-13 | 2019-06-25 | Torque sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018146917A1 true WO2018146917A1 (ja) | 2018-08-16 |
Family
ID=63108002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/042906 WO2018146917A1 (ja) | 2017-02-13 | 2017-11-29 | トルクセンサ |
Country Status (5)
Country | Link |
---|---|
US (1) | US10955309B2 (ja) |
EP (1) | EP3581908B1 (ja) |
JP (1) | JP6692762B2 (ja) |
CN (1) | CN110121638A (ja) |
WO (1) | WO2018146917A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210325267A1 (en) * | 2020-04-16 | 2021-10-21 | MEAS France | Torque Sensor Device |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6976892B2 (ja) * | 2018-03-29 | 2021-12-08 | 日本電産コパル電子株式会社 | トルクセンサ |
JP2020012660A (ja) * | 2018-07-13 | 2020-01-23 | 日本電産コパル電子株式会社 | トルクセンサ |
US20220291059A1 (en) * | 2019-07-24 | 2022-09-15 | Semitec Corporation | Contact force sensor and device provided with contact force sensor |
DE102020101424B3 (de) * | 2020-01-22 | 2021-04-15 | Schaeffler Technologies AG & Co. KG | Verfahren zur Überprüfung einer Anordnung von mindestens drei Dehnungsmessstreifen sowie Spannungswellengetriebe |
CN111347446A (zh) * | 2020-04-17 | 2020-06-30 | 成都卡诺普自动化控制技术有限公司 | 一种中空型协作机器人机械臂关节 |
CN111579133B (zh) * | 2020-05-27 | 2021-10-01 | 安徽大学 | 一种力分辨率连续可调的变构型力传感器 |
CN112665765A (zh) * | 2020-12-01 | 2021-04-16 | 哈尔滨工业大学 | 一种基于并联分载原理的机器人高刚度关节力矩传感器 |
TWI805978B (zh) * | 2020-12-22 | 2023-06-21 | 達明機器人股份有限公司 | 雙迴路力矩感知系統及其感知方法 |
CN115790926B (zh) * | 2022-12-01 | 2023-07-04 | 华中科技大学 | 一种电动机组的转矩测量方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5640905B2 (ja) | 1973-10-31 | 1981-09-24 | ||
JP3444952B2 (ja) * | 1994-02-28 | 2003-09-08 | 大和製衡株式会社 | ロードセルの故障検出装置及び故障復帰装置 |
JP2013096735A (ja) | 2011-10-28 | 2013-05-20 | Toyota Motor Corp | 起歪体及びトルクセンサ |
JP2015049209A (ja) | 2013-09-04 | 2015-03-16 | トヨタ自動車株式会社 | トルクセンサ |
JP5947494B2 (ja) * | 2011-06-30 | 2016-07-06 | トヨタ自動車株式会社 | トルク計測装置の製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3915015A (en) * | 1974-03-18 | 1975-10-28 | Stanford Research Inst | Strain gauge transducer system |
JPS5947494B2 (ja) | 1977-01-28 | 1984-11-19 | 株式会社日立製作所 | 弾性表面波フイルタ |
JP4026247B2 (ja) * | 1998-10-01 | 2007-12-26 | 日本精工株式会社 | トルクセンサ |
US20080204266A1 (en) * | 2004-02-03 | 2008-08-28 | Jussi Malmberg | Method and Device For Implementing Vibration Output Commands in Mobile Terminal Devices |
JP4764619B2 (ja) * | 2004-08-23 | 2011-09-07 | 株式会社エー・アンド・デイ | 回転型分力計測装置 |
CN101365609A (zh) * | 2005-12-13 | 2009-02-11 | Tk电子控股公司 | 信号处理系统和方法 |
JP2007255953A (ja) * | 2006-03-22 | 2007-10-04 | Hitachi Ltd | 力学量測定装置 |
EP2184576B1 (en) * | 2007-08-27 | 2019-05-15 | Hitachi, Ltd. | Semiconductor strain sensor |
DE102009053043A1 (de) * | 2009-11-16 | 2011-05-19 | Baumer Innotec Ag | Kraftmesszelle zur Messung der Einspritzkraft beim Spritzgießen |
WO2011069515A2 (en) * | 2009-12-08 | 2011-06-16 | Abb Ag | Multiaxial force-torque sensors |
JP5640905B2 (ja) * | 2011-06-14 | 2014-12-17 | トヨタ自動車株式会社 | 起歪体及びこれを含む装置 |
CN103430000B (zh) * | 2011-07-27 | 2015-06-24 | 三角力量管理株式会社 | 力传感器 |
CN203164326U (zh) * | 2013-03-11 | 2013-08-28 | 唐山钢铁集团微尔自动化有限公司 | 一种电阻应变传感器的数显式检测装置 |
US10422707B2 (en) * | 2016-01-19 | 2019-09-24 | Ati Industrial Automation, Inc. | Compact robotic force/torque sensor including strain gages |
JP6214072B1 (ja) * | 2016-08-09 | 2017-10-18 | 株式会社トライフォース・マネジメント | 力覚センサ |
-
2017
- 2017-02-13 JP JP2017023885A patent/JP6692762B2/ja active Active
- 2017-11-29 EP EP17895539.9A patent/EP3581908B1/en active Active
- 2017-11-29 WO PCT/JP2017/042906 patent/WO2018146917A1/ja active Application Filing
- 2017-11-29 CN CN201780080958.8A patent/CN110121638A/zh active Pending
-
2019
- 2019-06-25 US US16/451,839 patent/US10955309B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5640905B2 (ja) | 1973-10-31 | 1981-09-24 | ||
JP3444952B2 (ja) * | 1994-02-28 | 2003-09-08 | 大和製衡株式会社 | ロードセルの故障検出装置及び故障復帰装置 |
JP5947494B2 (ja) * | 2011-06-30 | 2016-07-06 | トヨタ自動車株式会社 | トルク計測装置の製造方法 |
JP2013096735A (ja) | 2011-10-28 | 2013-05-20 | Toyota Motor Corp | 起歪体及びトルクセンサ |
JP2015049209A (ja) | 2013-09-04 | 2015-03-16 | トヨタ自動車株式会社 | トルクセンサ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3581908A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210325267A1 (en) * | 2020-04-16 | 2021-10-21 | MEAS France | Torque Sensor Device |
US12000745B2 (en) * | 2020-04-16 | 2024-06-04 | MEAS France | Torque sensor device |
Also Published As
Publication number | Publication date |
---|---|
US20190346329A1 (en) | 2019-11-14 |
EP3581908B1 (en) | 2023-06-28 |
EP3581908A1 (en) | 2019-12-18 |
JP6692762B2 (ja) | 2020-05-13 |
JP2018132313A (ja) | 2018-08-23 |
CN110121638A (zh) | 2019-08-13 |
EP3581908A4 (en) | 2020-12-30 |
US10955309B2 (en) | 2021-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018146917A1 (ja) | トルクセンサ | |
US10935396B2 (en) | Rotation detecting device | |
JP6515989B2 (ja) | 電動パワーステアリング装置 | |
WO2015040961A1 (ja) | パワーステアリング装置および車両搭載機器の制御装置 | |
JP6512268B2 (ja) | 車両用舵角検出装置及びそれを搭載した電動パワーステアリング装置 | |
JP4386143B1 (ja) | センサ装置 | |
US10444098B2 (en) | Torque sensor and robot | |
JP6237453B2 (ja) | 物理量検出装置 | |
JP2016133962A (ja) | センサ装置及びセンサシステム | |
JP6549812B2 (ja) | トルクセンサおよびロボット | |
JP6671682B2 (ja) | 絶対角度検出システムおよび絶対角度検出方法 | |
US20120262163A1 (en) | Hall sensor for canceling offset | |
US20150377676A1 (en) | Fluid Measurement Device | |
JP2022037742A (ja) | 故障検出システム | |
JP2018009855A (ja) | センサ装置 | |
JP4345207B2 (ja) | 力学量検出センサ | |
JP5016538B2 (ja) | A/d変換装置及び方法 | |
WO2021187342A1 (ja) | トルクセンサおよびロボット関節構造 | |
KR102612239B1 (ko) | 모터 제어 장치 및 방법 | |
JP2007263642A (ja) | 歪検出装置 | |
JP2010160099A (ja) | 多軸センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17895539 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017895539 Country of ref document: EP |