JP2022037742A - 故障検出システム - Google Patents

故障検出システム Download PDF

Info

Publication number
JP2022037742A
JP2022037742A JP2020142027A JP2020142027A JP2022037742A JP 2022037742 A JP2022037742 A JP 2022037742A JP 2020142027 A JP2020142027 A JP 2020142027A JP 2020142027 A JP2020142027 A JP 2020142027A JP 2022037742 A JP2022037742 A JP 2022037742A
Authority
JP
Japan
Prior art keywords
strain
detection sensor
resistance line
resistance
output value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020142027A
Other languages
English (en)
Inventor
大輔 ▲高▼木
Daisuke Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Shimpo Corp
Original Assignee
Nidec Shimpo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Shimpo Corp filed Critical Nidec Shimpo Corp
Priority to JP2020142027A priority Critical patent/JP2022037742A/ja
Priority to CN202110979507.6A priority patent/CN114111558A/zh
Publication of JP2022037742A publication Critical patent/JP2022037742A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • G01B7/20Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance formed by printed-circuit technique

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Retarders (AREA)

Abstract

【課題】歪みに基づいて計測値を取得する歪み検出センサを備えたシステムにおいて、同じ歪みがかかる箇所に複数の歪み検出センサを配置することなく、歪み検出センサの故障を検出できる技術を提供する。【解決手段】故障検出システムは、歪みを検出する歪み検出センサと、歪み検出センサの故障を検出する故障検出部と、を備える。歪み検出センサは、基板と、基板に搭載された抵抗線パターンと、抵抗線パターンを有するブリッジ回路と、を備える。故障検出部は、ブリッジ回路の第1中間点および第2中間点から、それぞれ第1出力値と、第2出力値とを、同時に取得する。故障検出部は、第1出力値と第2出力値との関係が、所定の正常範囲内であるか否かに基づいて、歪み検出センサの故障を検出する。【選択図】図13

Description

本発明は、故障検出システムに関する。
近年、ロボットの関節などに搭載される減速機の需要が急速に高まっている。減速機のギアに歪み検出センサを搭載することにより、ギアの歪みを検出できる。それにより、ギアにかかるトルク等を検出することができる。従来の歪み検出センサについては、例えば、特開2018-132313号公報に記載されている。この公報では、被計測体に連結される第1構造体と、第2構造体と、第1構造体と第2構造体との間に伝達される力を検出する複数の歪センサを含む第1ブリッジ回路と、第1構造体と第2構造体との間に伝達される力を検出する複数の歪センサを含む第2ブリッジ回路と、第1ブリッジ回路の第1出力電圧と第2 ブリッジ回路の第2出力電圧との差が第1閾値電圧を超えた場合、異常検出信号を出力するコントローラと、を具備することを特徴とするトルクセンサが開示されている。これにより、トルクセンサ自体の異常を検出することができる。
特開2018-132313号公報
しかしながら、同じ歪みがかかる箇所に複数の歪み検出センサを配置して、歪み検出センサの異常を検出する場合、複数の歪み検出センサの特性を揃える必要がある。また、構造的に歪み検出センサを複数配置すること自体が難しい場合がある。
本発明の目的は、歪みに基づいて計測値を取得する歪み検出センサを備えたシステムにおいて、同じ歪みがかかる箇所に複数の歪み検出センサを配置することなく、歪み検出センサの故障を検出できる技術を提供することである。
本開示の例示的な第1発明は、歪みを検出する歪み検出センサと、前記歪み検出センサの故障を検出する故障検出部と、を備えた故障検出システムであって、前記歪み検出センサは、基板と、前記基板に搭載された抵抗線パターンと、前記抵抗線パターンを有するブリッジ回路と、を備え、前記故障検出部は、前記ブリッジ回路の第1中間点および第2中間点から、それぞれ第1出力値と、第2出力値とを、同時に取得し、前記第1出力値と前記第2出力値との関係が、所定の正常範囲内であるか否かに基づいて、前記歪み検出センサの故障を検出する、故障検出システムである。
本願発明によれば、ブリッジ回路を有する歪み検出センサについて、同じ歪みがかかる箇所に複数の歪み検出センサを配置することなく、歪み検出センサの故障を検出できる。
図1は、動力伝達装置の縦断面図である。 図2は、動力伝達装置の横断面図である。 図3は、ダイヤフラム部およびセンサ基板の部分断面図である。 図4は、センサ基板裏面を示した図である。 図5は、センサ基板表面を示した図である。 図6は、第1ブリッジ回路の回路図である。 図7は、第2ブリッジ回路の回路図である。 図8は、第1電圧計の計測値および第2電圧計の計測値を示したグラフである。 図9は、第3ブリッジ回路の回路図である。 図10は、第2計測値の補正処理を概念的に示した図である。 図11は、温度センサの検出回路の回路図である。 図12は、本件の故障検出システムのシステム構成図である。 図13は、故障検出処理の流れを示したフローチャートである。
以下、本願の例示的な実施形態について、図面を参照しながら説明する。なお、本願で
は、動力伝達装置の中心軸と平行な方向を「軸方向」、動力伝達装置の中心軸に直交する方向を「半径方向」、動力伝達装置の中心軸を中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。ただし、上記の「平行な方向」は、略平行な方向も含む。また、上記の「直交する方向」は、略直交する方向も含む。
<1.動力伝達装置の構成>
図1は、第1実施形態に係る動力伝達装置1の縦断面図である。図2は、図1のA-A位置から見た動力伝達装置1の横断面図である。この動力伝達装置1は、モータから得られる第1回転数の回転運動を、第1回転数よりも低い第2回転数に減速させつつ後段へ伝達する装置である。動力伝達装置1は、例えば、ロボットの関節に、モータとともに組み込まれて使用される。ただし、本発明の動力伝達装置は、アシストスーツ、無人搬送台車などの他の装置に用いられるものであってもよい。
図1および図2に示すように、本実施形態の動力伝達装置1は、インタナルギア10、フレックスギア20、波動発生器30、センサ基板40、および故障検出部60を備えた波動歯車減速機である。
インタナルギア10は、内周面に複数の内歯11を有する円環状のギアである。インタナルギア10は、動力伝達装置1が搭載される装置の枠体に、例えばねじ止めで固定される。インタナルギア10は、中心軸9と同軸に配置される。また、インタナルギア10は、フレックスギア20の後述する筒状部21の半径方向外側に位置する。インタナルギア10の剛性は、フレックスギア20の筒状部21の剛性よりも、はるかに高い。このため、インタナルギア10は、実質的に剛体とみなすことができる。インタナルギア10は、円筒状の内周面を有する。複数の内歯11は、当該内周面において、周方向に一定のピッチで配列されている。各内歯11は、半径方向内側へ向けて突出する。
フレックスギア20は、可撓性を有する円環状のギアである。フレックスギア20は、中心軸9を中心として回転可能に支持される。フレックスギア20は、本発明における「起歪体」の一例である。起歪体とは、外力を受けると変形する物である。
本実施形態のフレックスギア20は、筒状部21と平板部22とを有する。筒状部21は、中心軸9の周囲において、軸方向に筒状に延びる。筒状部21の軸方向の先端は、波動発生器30の半径方向外側、かつ、インタナルギア10の半径方向内側に位置する。筒状部21は、可撓性を有するため、半径方向に変形可能である。特に、インタナルギア10の半径方向内側に位置する筒状部21の先端部は、自由端であるため、他の部分よりも大きく半径方向に変位可能である。
フレックスギア20は、複数の外歯23を有する。複数の外歯23は、筒状部21の軸方向の先端部付近の外周面において、周方向に一定のピッチで配列されている。各外歯23は、半径方向外側へ向けて突出する。上述したインタナルギア10が有する内歯11の数と、フレックスギア20が有する外歯23の数とは、僅かに相違する。
平板部22は、ダイヤフラム部221と肉厚部222とを有する。ダイヤフラム部221は、筒状部21の軸方向の基端部から、半径方向外側へ向けて平板状に広がり、かつ、中心軸9を中心として円環状に広がる。ダイヤフラム部221は、軸方向に僅かに撓み変形可能である。肉厚部222は、ダイヤフラム部221の半径方向外側に位置する、円環状の部分である。肉厚部222の軸方向の厚みは、ダイヤフラム部221の軸方向の厚みよりも厚い。肉厚部222は、動力伝達装置1が搭載される装置の、駆動対象となる部品に、例えばねじ止めで固定される。
波動発生器30は、フレックスギア20の筒状部21に、周期的な撓み変形を発生させる機構である。波動発生器30は、カム31と可撓性軸受32とを有する。カム31は、中心軸9を中心として回転可能に支持される。カム31は、軸方向に視たときに楕円形の外周面を有する。可撓性軸受32は、カム31の外周面と、フレックスギア20の筒状部21の内周面との間に介在する。したがって、カム31と筒状部21とは、異なる回転数で回転できる。
可撓性軸受32の内輪は、カム31の外周面に接触する。可撓性軸受32の外輪は、フレックスギア20の内周面に接触する。このため、フレックスギア20の筒状部21は、カム31の外周面に沿った楕円形状に変形する。その結果、当該楕円の長軸の両端に相当する2箇所において、フレックスギア20の外歯23と、インタナルギア10の内歯11とが噛み合う。周方向の他の位置においては、外歯23と内歯11とが噛み合わない。
カム31は、直接または他の動力伝達機構を介して、モータに接続される。モータを駆動させると、カム31は、中心軸9を中心として第1回転数で回転する。これにより、フレックスギア20の上述した楕円の長軸も、第1回転数で回転する。そうすると、外歯23と内歯11との噛み合い位置も、周方向に第1回転数で変化する。また、上述の通り、インタナルギア10の内歯11の数と、フレックスギア20の外歯23の数とは、僅かに相違する。この歯数の差によって、カム31の1回転ごとに、外歯23と内歯11との噛み合い位置が、周方向に僅かに変化する。その結果、インタナルギア10に対してフレックスギア20が、中心軸9を中心として、第1回転数よりも低い第2回転数で回転する。したがって、フレックスギア20から、減速された第2回転数の回転運動を取り出すことができる。
<2.センサ基板について>
<2-1.センサ基板の構成>
センサ基板40は、フレックスギア20にかかるトルクを検出するためのセンサが搭載された基板である。図1に示すように、本実施形態では、円環状のダイヤフラム部221の円形の表面に、センサ基板40が固定されている。
図3は、ダイヤフラム部221およびセンサ基板40の部分断面図である。 図4は、センサ基板40の表裏面のうち、ダイヤフラム部221に対向する裏面を示した図である。図5は、センサ基板40の表裏面のうち、ダイヤフラム部221に対向しない表面を示した図である。
本実施形態のセンサ基板40は、柔軟に変形可能なフレキシブルプリント基板(FPC)である。図4および図5に示すように、センサ基板40は、中心軸9を中心とする円環状の本体部41と、本体部41から半径方向外側へ向けて突出したフラップ部42とを有する。また、図3に示すように、センサ基板40は、絶縁層43と、導体層44とを有する。絶縁層43は、絶縁体である樹脂からなる。導体層44は、導体である金属からなる。導体層44の材料には、例えば、銅または銅を含む合金が用いられる。本実施形態のセンサ基板40は、絶縁層43の表面と裏面との両方に、導体層44を有する。また、本実施形態のセンサ基板40は、表面の導体層44と、裏面の導体層44との軸方向の間に、図示しない中間導体層を有する。
また、図3に示すように、センサ基板40は、両面接着テープ45により、フレックスギア20のダイヤフラム部221に固定される。具体的には、ダイヤフラム部221の表面と、センサ基板40の裏面とが、両面接着テープ45を介して固定される。両面接着テープ45は、接着力を有する材料がテープ状に成形されて、形状を維持できる程度に硬化されたものである。このような両面接着テープ45を用いれば、流動性を有する接着剤を用いる場合よりも、ダイヤフラム部221に対するセンサ基板40の固定作業が容易となる。また、作業者による固定作業のばらつきを低減できる。
センサ基板40には、回転角度検出センサS1、トルク検出センサS2、および温度センサS3と、信号処理回路46とが搭載されている。回転角度検出センサS1は、本体部41の表裏面のうち、ダイヤフラム部221に対向する裏面に形成された抵抗線パターンを有する。すなわち、裏面側の導体層44が、回転角度検出センサS1の抵抗線パターンを含む。トルク検出センサS2は、本体部41の表裏面のうち、ダイヤフラム部221に対向しない表面、および中間導体層に形成された抵抗線パターンを有する。すなわち、表面側の導体層44および中間導体層が、トルク検出センサS2の抵抗線パターンを含む。温度センサS3は、本体部41の表裏面のうち、ダイヤフラム部221に対向しない表面に形成された抵抗線パターンを有する。すなわち、表面側の導体層44が、温度センサS3の抵抗線パターンを含む。なお、温度センサS3は、表面に形成された抵抗線パターンに加え、中間導体層に形成された抵抗線パターンを有していてもよい。
信号処理回路46は、フラップ部42に配置されている。
<2-2.回転角度検出センサについて>
回転角度検出センサS1は、ダイヤフラム部221の歪みに基づいて、フレックスギア20に入力される回転運動の回転角度を検出するセンサである。図4に示すように、回転角度検出センサS1は、4つの第1抵抗線パターンR1と、4つの第2抵抗線パターンR2とを含む。
4つの第1抵抗線パターンR1は、中心軸9の周囲において、周方向に等間隔に配列されている。第1抵抗線パターンR1は、それぞれ、1本の導体がジグザグに曲折しながら周方向に延びる、全体として円弧状のパターンである。本実施形態では、中心軸9の周囲の約45°の角度範囲に、1つの第1抵抗線パターンR1が広がっている。また、第1抵抗線パターンR1は、複数の第1抵抗線r1を含む。複数の第1抵抗線r1は、周方向に微小な間隔をあけて配列される。各第1抵抗線r1は、フレックスギア20の半径方向に沿って、直線状に延びる。周方向に隣り合う第1抵抗線r1の端部同士は、半径方向の内側または外側で交互に接続される。これにより、複数の第1抵抗線r1が、全体として直列に接続される。
4つの第2抵抗線パターンR2は、中心軸9の周囲において、周方向に等間隔に配列されている。第2抵抗線パターンR2は、それぞれ、1本の導体がジグザグに曲折しながら周方向に延びる、全体として円弧状のパターンである。本実施形態では、中心軸9の周囲の約45°の角度範囲に、1つの第2抵抗線パターンR2が広がっている。また、第2抵抗線パターンR2は、複数の第2抵抗線r2を含む。複数の第2抵抗線r2は、周方向に微小な間隔をあけて配列される。各第2抵抗線r2は、フレックスギア20の半径方向に沿って、直線状に延びる。周方向に隣り合う第2抵抗線r2の端部同士は、半径方向の内側または外側で交互に接続される。これにより、複数の第2抵抗線r2が、全体として直列に接続される。
4つの第2抵抗線パターンR2は、4つの第1抵抗線パターンR1と同心円状に、かつ、周方向において第1抵抗線パターンR1が配置されない領域に、配置される。本実施形態では、第1抵抗線パターンR1と、第2抵抗線パターンR2とが、周方向に交互に配列される。そして、4つの第1抵抗線パターンR1と、4つの第2抵抗線パターンR2とが、全体として、中心軸9を中心とする円環状に広がっている。
図6は、4つの第1抵抗線パターンR1を含む第1ブリッジ回路C1の回路図である。図6の例では、4つの第1抵抗線パターンR1を、Ra,Rb,Rc,Rdとして区別して示している。第1抵抗線パターンRa,Rb,Rc,Rdは、図4においてRaを1つ目として反時計回りにこの順に配列されている。
図6に示すように、4つの第1抵抗線パターンRa,Rb,Rc,Rdは、第1ブリッジ回路C1に組み込まれている。第1抵抗線パターンRaと第1抵抗線パターンRbとは、この順に直列に接続される。第1抵抗線パターンRdと第1抵抗線パターンRcとは、この順に直列に接続される。そして、電源電圧の+極と-極との間において、2つの第1抵抗線パターンRa,Rbの列と、2つの第1抵抗線パターンRd,Rcの列とが、並列に接続される。また、第1抵抗線パターンRaおよび第1抵抗線パターンRbの中間点M11と、第1抵抗線パターンRdおよび第1抵抗線パターンRcの中間点M12とが、第1電圧計V1に接続される。
図7は、4つの第2抵抗線パターンR2を含む第2ブリッジ回路C2の回路図である。図7の例では、4つの第2抵抗線パターンR2を、Re,Rf,Rg,Rhとして区別して示している。第2抵抗線パターンReは、図4において、第1抵抗線パターンRaと第1抵抗線パターンRdとの間に位置する。また、第2抵抗線パターンRe,Rf,Rg,Rhは、図4においてReを1つ目として時計回りにこの順に配列されている。
図7に示すように、4つの第2抵抗線パターンRe、Rf、Rg、Rhは、第2ブリッジ回路C2に組み込まれている。第2抵抗線パターンReと第2抵抗線パターンRfとは、この順に直列に接続される。第2抵抗線パターンRhと第2抵抗線パターンRgとは、この順に直列に接続される。そして、電源電圧の+極と-極との間において、2つの第2抵抗線パターンRe,Rfの列と、2つの第2抵抗線パターンRh,Rgの列とが、並列に接続される。また、第2抵抗線パターンReおよび第2抵抗線パターンRfの中間点M21と、第2抵抗線パターンRhおよび第2抵抗線パターンRgの中間点M22とが、第2電圧計V2に接続される。
動力伝達装置1の駆動時には、ダイヤフラム部221に、半径方向に伸長する部分(以下「伸長部」と称する)と、半径方向に収縮する部分(以下「収縮部」と称する)とが、発生する。具体的には、2つの伸長部と2つの収縮部とが、周方向に交互に発生する。すなわち、伸長部と収縮部とは、周方向に90°間隔で交互に発生する。そして、これらの伸長部および収縮部の発生する箇所が、上述した第1回転数で回転する。
センサ基板40の裏面に設けられた第1抵抗線パターンRa,Rb,Rc,Rdおよび第2抵抗線パターンRe、Rf、Rg、Rhの各抵抗値は、ダイヤフラム部221の半径方向の歪みに応じて変化する。例えば、上述した伸長部が、ある抵抗線パターンと重なるときには、その抵抗線パターンの抵抗値が増加する。また、上述した収縮部が、ある抵抗線パターンと重なるときには、その抵抗線パターンの抵抗値が低下する。
図4の例では、収縮部が第1抵抗線パターンRa,Rcと重なるときには、伸長部が第1抵抗線パターンRb,Rdと重なる。また、伸長部が第1抵抗線パターンRa,Rcと重なるときには、収縮部が第1抵抗線パターンRb,Rdと重なる。したがって、第1ブリッジ回路C1では、第1抵抗線パターンRa,Rcと、第1抵抗線パターンRb,Rdとが、逆向きの抵抗値変化を示す。
また、図4の例では、収縮部が第2抵抗線パターンRe,Rgと重なるときには、伸長部が第2抵抗線パターンRf,Rhと重なる。また、伸長部が第2抵抗線パターンRe,Rgと重なるときには、収縮部が第2抵抗線パターンRf,Rhと重なる。したがって、第2ブリッジ回路C2では、第2抵抗線パターンRe,Rgと、第2抵抗線パターンRf,Rhとが、逆向きの抵抗値変化を示す。
図8は、第1ブリッジ回路C1の第1電圧計V1の計測値v1と、第2ブリッジ回路C2の第2電圧計V2の計測値v2とを、示したグラフである。図8のように、第1電圧計V1および第2電圧計V2からは、それぞれ、周期的に変化する正弦波状の計測値v1,v2が出力される。この計測値の周期Tは、上述した第1回転数の周期の1/2倍に相当する。また、第1電圧計V1の計測値の位相に対して、第2電圧計V2の計測値の位相が、第1回転数の1/8周期分(計測値v1,v2の1/4周期分)進んでいるか、それとも第1回転数の1/8周期分(計測値v1,v2の1/4周期分)遅れているかにより、入力される回転運動の向きを判断できる。
したがって、これらの2つの電圧計V1,V2の計測値v1,v2に基づいて、フレックスギア20に入力される回転運動の回転角度の計測値(第1計測値)が得られる。具体的には、例えば、第1電圧計V1および第2電圧計V2の各計測値v1,v2の組み合わせと、第1計測値とを対応づけた関数テーブルを予め用意し、その関数テーブルに計測値v1,v2を入力することにより、第1計測値を出力すればよい。
<2-3.トルク検出センサについて>
トルク検出センサS2は、ダイヤフラム部221の歪みに基づいて、フレックスギア20にかかるトルクを検出するセンサである。図5に示すように、トルク検出センサS2は、第3抵抗線パターンR3、第4抵抗線パターンR4とを含む。また、トルク検出センサS2は、図示しない中間導体層に、第5抵抗線パターンR5、および第6抵抗線パターンR6とを含む。
第3抵抗線パターンR3は、1本の導体がジグザグに曲折しながら周方向に延びる、全体として円弧状または円環状のパターンである。本実施形態では、中心軸9の周囲の約360°の範囲に、第3抵抗線パターンR3が設けられている。また、第3抵抗線パターンR3は、複数の第3抵抗線r3を含む。複数の第3抵抗線r3は、互いに略平行な姿勢で、周方向に配列される。各第3抵抗線r3は、フレックスギア20の半径方向に対して、周方向一方側に傾斜している。半径方向に対する第3抵抗線r3の傾斜角度は、例えば45°とされる。周方向に隣り合う第3抵抗線r3の端部同士は、半径方向の内側または外側で交互に接続される。これにより、複数の第3抵抗線r3が、全体として直列に接続される。
第4抵抗線パターンR4は、1本の導体がジグザグに曲折しながら周方向に延びる、全体として円弧状または円環状のパターンである。第4抵抗線パターンR4は、第3抵抗線パターンR3よりも、半径方向内側に位置する。本実施形態では、中心軸9の周囲の約360°の範囲に、第4抵抗線パターンR4が設けられている。また、第3抵抗線パターンR4は、複数の第4抵抗線r4を含む。複数の第4抵抗線r4は、互いに略平行な姿勢で、周方向に配列される。各第4抵抗線r4は、フレックスギア20の半径方向に対して、周方向他方側に傾斜している。半径方向に対する第4抵抗線r4の傾斜角度は、例えば-45°とされる。周方向に隣り合う第4抵抗線r4の端部同士は、半径方向の内側または外側で交互に接続される。これにより、複数の第4抵抗線r4が、全体として直列に接続される。
第5抵抗線パターンR5は、1本の導体がジグザグに曲折しながら周方向に延びる、全体として円弧状または円環状のパターンである。本実施形態では、中心軸9の周囲の約360°の範囲に、第5抵抗線パターンR5が設けられている。また、第5抵抗線パターンR5は、複数の第5抵抗線r5を含む。複数の第5抵抗線r5は、互いに略平行な姿勢で、周方向に配列される。各第5抵抗線r5は、フレックスギア20の半径方向に対して、周方向他方側に傾斜している。半径方向に対する第5抵抗線r5の傾斜角度は、例えば-45°とされる。周方向に隣り合う第5抵抗線r5の端部同士は、半径方向の内側または外側で交互に接続される。これにより、複数の第5抵抗線r5が、全体として直列に接続される。
第6抵抗線パターンR6は、1本の導体がジグザグに曲折しながら周方向に延びる、全体として円弧状または円環状のパターンである。第6抵抗線パターンR6は、第5抵抗線パターンR5よりも、半径方向内側に位置する。本実施形態では、中心軸9の周囲の約360°の範囲に、第6抵抗線パターンR6が設けられている。また、第6抵抗線パターンR6は、複数の第6抵抗線r6を含む。複数の第6抵抗線r6は、互いに略平行な姿勢で、周方向に配列される。各第6抵抗線r6は、フレックスギア20の半径方向に対して、周方向一方側に傾斜している。半径方向に対する第6抵抗線r6の傾斜角度は、例えば45°とされる。周方向に隣り合う第6抵抗線r6の端部同士は、半径方向の内側または外側で交互に接続される。これにより、複数の第6抵抗線r6が、全体として直列に接続される。
図9は、第3抵抗線パターンR3、第4抵抗線パターンR4、第5抵抗線パターンR5および第6抵抗線パターンR6を含む第3ブリッジ回路C3の回路図である。第3抵抗線パターンR3と第4抵抗線パターンR4とは、直列に接続される。第5抵抗線パターンR5と第6抵抗線パターンR6とは、直列に接続される。そして、電源電圧の+極と-極との間において、2つの抵抗線パターンR3,R4の列と、2つの抵抗線パターンR5,R6の列とが、並列に接続される。また、第3抵抗線パターンR3および第4抵抗線パターンR4の中間点M31と、第5抵抗線パターンR5および第6抵抗線パターンR6の中間点M32とが、第3電圧計V3に接続される。
抵抗線パターンR3,R4,R5,およびR6の各抵抗値は、フレックスギア20にかかるトルクに応じて変化する。例えば、フレックスギア20に、中心軸9を中心として、周方向の一方側へ向かうトルクがかかると、抵抗線パターンR3およびR6の抵抗値が低下し、抵抗線パターンR4およびR5の抵抗値が増加する。一方、フレックスギア20に、中心軸9を中心として、周方向の他方側へ向かうトルクがかかると、抵抗線パターンR3およびR6の抵抗値が増加し、抵抗線パターンR4およびR5の抵抗値が低下する。このように、抵抗線パターンR3およびR6と、抵抗線パターンR4およびR5とは、トルクに対して互いに逆向きの抵抗値変化を示す。
そして、抵抗線パターンR3,R4,R5,およびR6の各抵抗値が変化すると、抵抗線パターンR3およびR4の中間点M31と、抵抗線パターンR5およびR6の中間点M32との間の電位差が変化するので、第3電圧計V3の計測値v3が変化する。したがって、この第3電圧計V3の計測値v3に基づいて、フレックスギア20にかかるトルクの向きおよび大きさを検出することができる。すなわち、フレックスギア20にかかるトルクの計測値(第2計測値)を得ることができる。
<2-4.リップル補正について>
動力伝達装置1の駆動時には、フレックスギア20に、周期的な撓み変形が生じる。したがって、上述したトルク検出センサS2の計測値には、本来計測したいトルクを反映した成分と、フレックスギア20の周期的な撓み変形に起因する誤差成分(リップル)とが含まれる。当該誤差成分は、フレックスギア20に入力される回転運動の回転角度に応じて変化する。
そこで、信号処理回路46は、トルク検出センサS2の計測値から、上記の誤差成分をキャンセルするための補正処理を行う。図10は、信号処理回路46の当該補正処理を、概念的に示した図である。
信号処理回路46は、回転角度検出センサS1から、フレックスギア20に入力される回転運動の回転角度の計測値(第1計測値)を取得するとともに、トルク検出センサS2から、フレックスギア20にかかるトルクの計測値(第2計測値)を取得する。信号処理回路46は、取得した第1計測値に応じて、上述した誤差成分を推定する。そして、推定された誤差成分を用いて、第2計測値を補正する。具体的には、第2計測値を、誤差成分をキャンセルする方向に増加または減少させる。これにより、フレックスギア20にかかるトルクをより精度よく反映した第2計測値を出力することができる。
トルク検出センサS2の計測値の誤差成分について詳しく記す。フレックスギア20に入力される回転運動の回転角度に応じて、トルク検出センサS2の計測値の誤差成分は変化する。動力伝達装置1につき、組み立て誤差や抵抗線パターンの異方性等が無い状態であれば、ダイヤフラム部221の伸長部および収縮部の発生する箇所の回転角度によらず、抵抗線パターンの抵抗値の合計値は一定となる。そのため、計測値v3の振幅は0となって正弦波状にはならない。しかし、実際には組み立て誤差や抵抗線パターンの異方性等により、回転角度によって、抵抗線パターンの抵抗値の合計値が変わる。動力伝達装置1の駆動時には、ダイヤフラム部221の伸長部および収縮部の発生する箇所は第1回転数で回転する。こうして、故障が無いときであっても、フレックスギア20の周期的な撓み変形に起因する誤差成分(リップル)が計測値v3に含まれる。
そのため、誤差成分の推定にあたっては、動力伝達装置1を駆動させながらトルクと回転角度を測定すること等により、回転角度に応じた誤差成分のデータを事前に取得しておけばよい。第2計測値の補正にあたっては、回転角度検出センサS1により求めた回転角度(第1計測値)に対応した、誤差成分(リップル)をキャンセルする方向に第2計測値を増加または減少させればよい。また、第3電圧計V3の計測値v3について、同様の方法により、第1計測値に対応した誤差成分をキャンセルする方向にv3の電圧を増加または減少させてから、補正後のv3に基づいて、第2計測値を取得してもよい。
なお、信号処理回路46は、上述した回転角度を演算することなく、第1計測値に所定の係数をかけて、第2計測値に合成してもよい。このようにすれば、回転角度の演算にかかる処理負担が削減されるため、信号処理回路46の演算速度を向上させることができる。
<2-5.温度補正について>
上述の通り、導体層44の材料に、銅または銅を含む合金を用いると、センサ基板40の材料費を抑えることができる。ただし、他の高価な材料と比べて、銅の抵抗値は、環境温度により変化しやすい。そこで、本実施形態のセンサ基板40は、温度の影響を補正するために、温度センサS3を備えている。図5に示すように、温度センサS3は、フレックスギア20の周方向に沿って、円弧状または円環状に延びる第7抵抗線パターンR7を有する。
図11は、第7抵抗線パターンR7を含む検出回路C4の回路図である。図11に示すように、第7抵抗線パターンR7の一端は、定電流源47の+極に接続されている。また、第7抵抗線パターンR7の他端は、定電流源47の-極に接続されている。また、温度センサS3は、第4電圧計V4を有する。図11に示すように、第4電圧計V4は、第7抵抗線パターンR7に対して並列に接続されている。したがって、第4電圧計V4は、第7抵抗線パターンR7の抵抗値に応じた電圧値を計測する。具体的には、定電流源47から供給される電流値をIoとすると、第4電圧計V4の計測値v4は、v4=Io×R7
となる。
第7抵抗線パターンR7は、円弧状または円環状であるため、第7抵抗線パターンR7の抵抗値は、フレックスギア20にかかるトルクの影響を受けにくく、温度による変化が支配的となる。したがって、第4電圧計V4の計測値v4は、動力伝達装置1の温度に応じて変動する。すなわち、第4電圧計V4の計測値v4に基づいて、動力伝達装置1の温度を示す計測値(第3計測値)を得ることができる。
図10に示すように、信号処理回路46は、トルク検出センサS2から得られるトルクの計測値(第2計測値)を、回転角度検出センサS1の計測値(第1計測値)だけではなく、温度センサS3の計測値(第3計測値)も考慮して、補正する。具体的には、第2計測値を、温度による変化をキャンセルする方向に増加または減少させる。このようにすれば、安価な銅または銅合金を使用しつつ、温度変化の影響を抑制して、フレックスギア20にかかるトルクを、より精度よく検出できる。
<3.故障検出部について>
続いて、上述した回転角度検出センサS1またはトルク検出センサS2において、抵抗線パターンの断線や剥がれや短絡等の故障が発生したときに、その故障を検出する、故障検出システムの機能について、説明する。図1、図4、および図5に示すように、本実施形態の動力伝達装置1は、故障検出部60を有する。センサ基板40の信号処理回路46は、故障検出部60と電気的に接続されている。故障検出部60は、アンプおよびCPUを有する。
図12は、故障検出システムのシステム構成図である。図12にて、ブリッジ回路C5は抵抗Za,Zb、Zc、Zd、第1中間点Ma、第2中間点Mbを有する。第1中間点Ma、第2中間点Mbから得られる電圧信号を、それぞれOut-、Out+とする。抵抗Za,Zb、Zc、Zdは、それぞれ第1ブリッジ回路C1での第1抵抗線パターンRa,Rb,Rc,Rdに相当する。また、抵抗Za,Zb、Zc、Zdは、それぞれ第2ブリッジ回路C2での第2抵抗線パターンRe,Rf,Rg,Rhに相当する。また、抵抗Za,Zb、Zc、Zdは、それぞれ第3ブリッジ回路C3での第3抵抗線パターンR3、第4抵抗線パターンR4、第6抵抗線パターンR6、第5抵抗線パターンR5に相当する。
図12に示すように、4つの抵抗Za,Zb、Zc、Zdは、ブリッジ回路C5に組み込まれている。抵抗Zaと抵抗Zbとは、この順に直列に接続される。抵抗Zdと抵抗Zcとは、この順に直列に接続される。そして、電源電圧のVin+とVin-との間において、2つの抵抗Za,Zbの列と、2つの抵抗Zd,Zcの列とが、並列に接続される。また、ブリッジ回路C5は、抵抗Zaおよび抵抗Zbの第1中間点Maと、抵抗Zdおよび抵抗Zcの第2中間点Mbとを有する。ブリッジ回路C5と同様の構成である、第1ブリッジ回路C1、第2ブリッジ回路C2、第3ブリッジ回路C3に対し、下記に説明する故障検出処理を行う事ができる。
ブリッジ回路C5の第1中間点Ma、第2中間点Mbから、それぞれ故障検出部60のアンプに、Out-、Out+が同時に入力される。Vin+とVin-との差分の電圧をΔVinとすると、アンプは、アンプに入力されたOut-、Out+を、ΔVin/2と同電位の電圧とでそれぞれ差動増幅し、その出力をCPUに入力する。アンプがOut-、Out+を増幅することにより、CPUはOut-、Out+を処理しやすくなる。ΔVin/2を得るために、電源電圧の+極であるVin+から、電源電圧の-極であるVin-に、抵抗値が同一である2つの抵抗を含んだ分圧回路を、ブリッジ回路C5と並列して接続し、その分圧回路の中間点の電圧を、ΔVin/2としてアンプに入力すればよい。なお、Vin+とVin-との差分をΔVinとして取得し、ΔVinの半分の電圧を、ΔVin/2としてアンプに入力してもよい。また、Out-、Out+を差動増幅するための電圧は、ΔVin/2ではなくても、アンプの出力レンジを超えない任意の値であっても良い。
CPUは、CPUに入力されたOut-、Out+を、AD変換する。CPUは、AD変換したOut-、Out+について、Out-、Out+のそれぞれをセンサ信号として出力する。AD変換したOut-、Out+は、Out-、Out+を比較しての故障検出のために使用する。AD変換したOut-、Out+のうち、いずれか1つを元に、フレックスギア20に入力される回転運動の回転角度の計測値、またはフレックスギア20にかかるトルクの計測値を取得してもよい。これにより、Out-、Out+のうち、いずれか1つに異常が発生しても、異常が発生していないもう1つの信号を元に、フレックスギア20に入力される回転運動の回転角度の計測値、またはフレックスギア20にかかるトルクの計測値を取得できる。また、CPUは、AD変換したOut-、Out+の差分であるΔOutを、センサ信号として出力する。また、CPUは、AD変換したOut-、Out+を比較して故障検出を行う。
図13は、CPUが行う故障検出処理の流れを示したフローチャートである。CPUは、CPUに入力されたOut-、Out+を、AD変換することで第1出力値と、第2出力値を取得する。このとき、第1出力値と、第2出力値を同時に取得することで、第1出力値と第2出力値の時間軸を容易に合わせることができ、波形の経時的変化を元に故障検出処理をしやすくなる。そして、第1出力値と、第2出力値とを比較し、第1出力値と第2出力値の関係が、所定の正常範囲内かを判定する。所定の正常範囲内である場合には、ブリッジ回路C5に、断線や剥がれや短絡等の故障は発生していないと判定する。一方、第1出力値と第2出力値の関係が、所定の正常範囲から外れた場合には、ブリッジ回路C5に、断線や剥がれや短絡等の故障が発生したと判定する。
なお、上述した判定処理に用いられる「第1出力値と第2出力値の関係」は、例えば、
第1出力値と第2出力値の差分、または、第1出力値と第2出力値の比率とすればよい。
すなわち、故障検出部60は、これらの差分または比率が、所定の正常範囲から外れた場
合に、回転角度検出センサS1またはトルク検出センサS2に故障が発生したと判定すればよい。比較を行う数値は、例えば電圧の大きさや、電圧波形の位相とすればよい。また、第1出力値と、第2出力値とが、故障無しの場合は電圧の正負が反転した関係にある場合は、第1出力値または第2出力値のいずれかの電圧の正負を反転させてから、比較をすればよい。波形の振幅または位相の比較による検出の場合は、波形の経時的変化を元に故障検出処理をしやすくなる。動力伝達装置1の駆動中に故障が発生しても、すぐに故障検出を行うことができる。
その後、故障検出部60は、故障の有無に関する検出結果を出力する。具体的には、故障検出部60から外部のコントローラへ、検出結果を示す信号を出力する。検出結果は、故障検出部60またはコントローラが有する表示部に表示されてもよい。
第1出力値と第2出力値との比較を行うタイミングについて、例えば常時比較を行い続ければよい。これにより、故障が発生しても、すぐに故障を検出することができる。
第1出力値と第2出力値との比較について、Out-、Out+、およびΔOutの関係から、抵抗Za,Zbの列と、抵抗Zd,Zcの列とのどちらに故障が発生したかを特定してもよい。その結果を示す信号を故障検出部60が出力してもよい。
第1出力値と第2出力値との関係が、「所定の正常範囲内」であるか否かの検出方法について、例えば1出力値と第2出力値との差分から得られる波形の、振幅または位相がしきい値以上になると、故障検出信号を出力するようにしてもよい。これにより、波形の経時的変化を監視し続け、故障が発生したときの信号変化を検出することが出来る。
以上のように、この動力伝達装置1では、故障検出部60が、ブリッジ回路の第1中間点および第2中間点から、それぞれ第1出力値と第2出力値を取得する。そして、第1出力値と第2出力値の関係が、所定の正常範囲内であるか否かに基づいて、回転角度検出センサS1またはトルク検出センサS2の故障を検出する。
このようにすれば、回転角度検出センサS1またはトルク検出センサS2の故障検出のために、同一のフレックスギア20に対して2つ以上の回転角度検出センサS1または2つ以上のトルク検出センサS2を設ける必要がない。
<4.変形例>
以上、本発明の一実施形態について説明したが、本発明は、上記の実施形態には限定されない。
上記の実施形態では、信号処理回路46が、センサ基板40に搭載されていた。しかしながら、信号処理回路46は、センサ基板40の外部に設けられていてもよい。例えば、故障検出部60を構成するコンピュータまたは電気回路基板に、信号処理回路46が組み込まれていてもよい。
また、上記の実施形態では、各抵抗線パターンの材料に、銅または銅を含む合金が使用されていた。しかしながら、抵抗線パターンの材料に、SUS、アルミニウム等の他の金属を用いてもよい。また、抵抗線パターンの材料に、セラミックスや樹脂などの非金属材を用いてもよい。また、抵抗線パターンの材料に、導電性インクを用いてもよい。導電性インクを用いる場合には、センサ基板40の表面に、導電性インクで各抵抗線パターンをプリントすればよい。
また、上記の実施形態のフレックスギア20では、ダイヤフラム部221が、筒状部21の基端部から半径方向外側へ向けて広がっていた。しかしながら、ダイヤフラム部221は、筒状部21の基端部から半径方向内側へ向けて広がるものであってもよい。
また、上記の実施形態では、センサ基板40が、動力伝達装置1のフレックスギア20に固定されていた。しかしながら、センサ基板40は、フレックスギア20以外のギアに固定されるものであってもよい。
また、上記の実施形態では、動力伝達装置1が、故障検出部60を備えていた。すなわち、動力伝達装置1自体が、故障検出システムとしての機能を有していた。しかしながら、故障検出部60は、動力伝達装置1とは別に設けられていてもよい。そして、動力伝達装置1と故障検出部60とで、故障検出システムが構成されていてもよい。
その他、故障検出システムの細部の構成については、本発明の趣旨を逸脱しない範囲で、適宜に変更してもよい。また、上記の各実施形態および各変形例に登場した要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。
本願は、故障検出システムに利用できる。
1 動力伝達装置(故障検出システム)
9 中心軸
10 インタナルギア
11 内歯
20 フレックスギア
21 筒状部
22 平板部
23 外歯
30 波動発生器
31 カム
32 可撓性軸受
40 センサ基板
41 本体部
42 フラップ部
43 絶縁層
44 導体層
45 両面接着テープ
46 信号処理回路
47 定電流源
60 故障検出部
221 ダイヤフラム部
C1 第1ブリッジ回路
C2 第2ブリッジ回路
C3 第3ブリッジ回路
C4 検出回路
C5 ブリッジ回路
R1,Ra~Rd 第1抵抗線パターン
R2,Re~Rh 第2抵抗線パターン
R3~R7 第3抵抗線パターン~第7抵抗線パターン
S1 回転角度検出センサ
S2 トルク検出センサ
S3 温度センサ
V1 第1電圧計
V2 第2電圧計
V3 第3電圧計
V4 第4電圧計

Claims (5)

  1. 歪みを検出する歪み検出センサと、
    前記歪み検出センサの故障を検出する故障検出部と、
    を備えた故障検出システムであって、
    前記歪み検出センサは、
    基板と、
    前記基板に搭載された抵抗線パターンと、
    前記抵抗線パターンを有するブリッジ回路と、
    を備え、
    前記故障検出部は、
    前記ブリッジ回路の第1中間点および第2中間点から、それぞれ第1出力値と、第2出力値とを、同時に取得し、
    前記第1出力値と前記第2出力値との関係が、所定の正常範囲内であるか否かに基づいて、前記歪み検出センサの故障を検出する、故障検出システム。
  2. 請求項1に記載の故障検出システムであって、
    前記歪み検出センサは、
    歪みに基づいて、トルクを検出するトルク検出センサと、
    歪みに基づいて、回転運動の回転角度を検出する回転角度検出センサと、
    の少なくともいずれか1つを含み、
    前記第1出力値および第2出力値は、歪み検出センサに含まれる、前記回転角度検出センサおよび前記トルク検出センサのうちの少なくともいずれか1つの出力である、故障検出システム。
  3. 請求項1または請求項2に記載の故障検出システムであって、
    前記第1出力値および前記第2出力値との差分から得られる波形の、振幅または位相がしきい値以上になると、故障検出信号を出力する、故障検出システム。
  4. 請求項1から請求項3までのいずれか一項に記載の故障検出システムであって、
    前記故障検出システムは、起歪体をさらに有し、
    前記歪み検出センサは、前記起歪体の歪みを検出し、
    前記基板は、前記起歪体に搭載される、故障検出システム。
  5. 請求項4に記載の故障検出システムであって、
    前記起歪体は、
    波動歯車減速機のフレックスギアである、故障検出システム。
JP2020142027A 2020-08-25 2020-08-25 故障検出システム Pending JP2022037742A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020142027A JP2022037742A (ja) 2020-08-25 2020-08-25 故障検出システム
CN202110979507.6A CN114111558A (zh) 2020-08-25 2021-08-25 故障检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020142027A JP2022037742A (ja) 2020-08-25 2020-08-25 故障検出システム

Publications (1)

Publication Number Publication Date
JP2022037742A true JP2022037742A (ja) 2022-03-09

Family

ID=80441008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020142027A Pending JP2022037742A (ja) 2020-08-25 2020-08-25 故障検出システム

Country Status (2)

Country Link
JP (1) JP2022037742A (ja)
CN (1) CN114111558A (ja)

Also Published As

Publication number Publication date
CN114111558A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
JP7114804B2 (ja) ストレイン・ウェーブ・ギア及びそれのための弾性伝達要素、ロボットアーム並びにひずみゲージの配置方法
JP7487904B2 (ja) トルク検出センサ、動力伝達装置、及び、ロボット
JP7343101B2 (ja) 回転角度検出センサ、トルク検出センサ、および動力伝達装置
US20230037745A1 (en) Method for checking an assembly of at least three strain gauges and strain wave gearing
WO2021193244A1 (ja) 撓み噛合い式歯車装置
JP2022037742A (ja) 故障検出システム
JP2021143987A (ja) 故障検出システム
US20230071143A1 (en) Annular body, wave reducer, robot, and torque detection device
CN112503159A (zh) 波动齿轮装置
US20230036638A1 (en) Sensor device
CN115507881A (zh) 传感器和动力传递装置
JP2022037741A (ja) 剥がれ検出システム
CN115614452A (zh) 外齿齿轮、波动减速器以及机器人
JP2021139891A (ja) センサシステムおよび動力伝達装置
JP7380981B2 (ja) トルク検出センサおよび動力伝達装置
JP7396588B2 (ja) 歪み検出センサおよび動力伝達装置
JP7352877B2 (ja) トルク検出センサおよび動力伝達装置
JP2021143986A (ja) 故障検出システム
CN112050979B (zh) 扭矩检测传感器、动力传递装置及机器人
CN113324028A (zh) 动力传递装置以及故障检测系统
JP7338936B2 (ja) トルク検出センサおよび動力伝達装置
US20230258257A1 (en) Annular body, wave reducer, and robot
CN115366131A (zh) 应变传感器、动力传递装置以及机器人
JP2021004829A (ja) トルク検出センサおよび動力伝達装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507