WO2018135574A1 - N-(α-ヒドロキシエチル)ホルムアミドの製造方法およびN-ビニルホルムアミドの製造方法 - Google Patents

N-(α-ヒドロキシエチル)ホルムアミドの製造方法およびN-ビニルホルムアミドの製造方法 Download PDF

Info

Publication number
WO2018135574A1
WO2018135574A1 PCT/JP2018/001367 JP2018001367W WO2018135574A1 WO 2018135574 A1 WO2018135574 A1 WO 2018135574A1 JP 2018001367 W JP2018001367 W JP 2018001367W WO 2018135574 A1 WO2018135574 A1 WO 2018135574A1
Authority
WO
WIPO (PCT)
Prior art keywords
formamide
hydroxyethyl
reaction
crystals
producing
Prior art date
Application number
PCT/JP2018/001367
Other languages
English (en)
French (fr)
Inventor
雄市 染矢
田中 彰
康治 森
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to EP18741885.0A priority Critical patent/EP3572397B1/en
Priority to JP2018562428A priority patent/JPWO2018135574A1/ja
Publication of WO2018135574A1 publication Critical patent/WO2018135574A1/ja
Priority to US16/454,139 priority patent/US20190315678A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/17Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/18Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/08Preparation of carboxylic acid amides from amides by reaction at nitrogen atoms of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/22Separation; Purification; Stabilisation; Use of additives
    • C07C231/24Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a method for producing N- ( ⁇ -hydroxyethyl) formamide and a method for producing N-vinylformamide.
  • N- ( ⁇ -hydroxyethyl) formamide is an important substance as an intermediate raw material for N-vinylformamide.
  • N- ( ⁇ -hydroxyethyl) formamide is obtained by, for example, reacting formamide with acetaldehyde (hydroxylation reaction) in the presence of a basic catalyst such as potassium hydrogen carbonate, and filtering the slurry reaction product. (See Patent Document 1).
  • N- ( ⁇ -hydroxyethyl) formamide is also generated in the reaction solution, but this reaction is an equilibrium reaction. Therefore, in the reaction solution, the hydroxylation reaction is not completed unless there is an equilibrium shift due to precipitation of N- ( ⁇ -hydroxyethyl) formamide. Therefore, in order to increase the reaction yield of the hydroxylation reaction, it is necessary to sufficiently increase the reaction rate of the hydroxylation reaction.
  • the crystals of N- ( ⁇ -hydroxyethyl) formamide are too large, the crystals may adhere to the reactor and piping used for the reaction, causing clogging. In addition, it may be difficult to feed the slurry with a slurry pump during filtration. Furthermore, the raw material remains in the coarse crystal and the conversion rate does not increase.
  • N- ( ⁇ -hydroxyethyl) formamide excellent in handleability such as filterability and liquid feeding property while suppressing clogging of the reactor and piping
  • conditions for precipitating N- ( ⁇ -hydroxyethyl) formamide to an appropriate size are not known.
  • the present invention has been made in view of the above circumstances, and a method for producing N- ( ⁇ -hydroxyethyl) formamide capable of producing N- ( ⁇ -hydroxyethyl) formamide in a high yield, and a method for producing N-vinylformamide The purpose is to provide.
  • the present invention has the following aspects.
  • the n + 1-th reaction is carried out, wherein N is a ( ⁇ -hydroxyethyl) formamide (wherein n is a natural number).
  • N is a ( ⁇ -hydroxyethyl) formamide (wherein n is a natural number).
  • the N- ( ⁇ -hydroxyethyl) formamide is produced a plurality of times in the same reaction vessel, at least one of the crystals of the N- ( ⁇ -hydroxyethyl) formamide obtained by the n-th reaction is obtained.
  • the N- ( ⁇ -hydroxyethyl) formamide crystals obtained by the n-th reaction are The method for producing N- ( ⁇ -hydroxyethyl) formamide according to [1] or [2], wherein the reaction is carried out n + 1 times in a state where 10 g or more and 200 kg or less are present per 1 m 3 of the internal volume of the reaction tank (however, n is a natural number).
  • a step of producing N- ( ⁇ -hydroxyethyl) formamide by the method for producing N- ( ⁇ -hydroxyethyl) formamide according to any one of claims 1 to 6, Reacting the obtained N- ( ⁇ -hydroxyethyl) formamide with an alcohol in the presence of an acid catalyst to produce N- ( ⁇ -alkoxyethyl) formamide; N- ( ⁇ -alkoxyethyl) formamide obtained is thermally decomposed to produce N-vinylformamide, and a method for producing N-vinylformamide.
  • N- ( ⁇ -hydroxyethyl) formamide can be produced in a high yield.
  • equipment costs and labor costs for putting seed crystals can be reduced.
  • N-vinylformamide can be produced in high yield.
  • equipment costs and labor costs for putting seed crystals can be reduced.
  • FIG. 2 is a schematic configuration diagram showing an apparatus for producing N- ( ⁇ -hydroxyethyl) formamide used in Examples and Comparative Examples.
  • N- ( ⁇ -hydroxyethyl) formamide In the method for producing N- ( ⁇ -hydroxyethyl) formamide of the present invention, formamide and acetaldehyde are reacted in a solvent in the presence of a basic catalyst in a reaction vessel.
  • This is a method for producing N- ( ⁇ -hydroxyethyl) formamide, in which ethyl) formamide is precipitated as crystals in a reaction vessel and the precipitated crystals of N- ( ⁇ -hydroxyethyl) formamide are recovered from the reaction vessel.
  • the amount of crystals present in the reaction tank during the (n + 1) th reaction is preferably 10 g to 200 kg, more preferably 50 g to 150 kg, further preferably 100 g to 100 kg, and particularly preferably 200 g to 50 kg per 1 m 3 of the internal volume of the reaction tank. .
  • the amount of crystals present in the reaction vessel is not less than the above lower limit, the crystallization rate does not become too slow and the crystals are easily dispersed in the liquid. If the amount of crystals present in the reaction vessel is less than or equal to the above upper limit value, the amount of seed crystals in the reaction vessel is not too large, and a decrease in production per batch can be suppressed.
  • the method for producing N- ( ⁇ -hydroxyethyl) formamide of the present invention has the following hydroxylation reaction step.
  • N- ( ⁇ -hydroxyethyl) formamide is obtained by reacting (hydroxylation) formamide with acetaldehyde in a solvent insoluble in water in the presence of a basic catalyst.
  • the molar ratio of formamide to acetaldehyde is preferably 1: 1 to 1:10, more preferably 1: 1 to 1: 5.
  • the conversion of formamide can be increased. It should be noted that if unreacted formamide is excessively present in the reaction system, the produced N- ( ⁇ -hydroxyethyl) formamide crystals dissolve, which is not preferable.
  • the reaction temperature in the hydroxylation reaction can be measured by a thermometer that is usually used industrially, such as a thermocouple thermometer.
  • the reaction temperature is usually about ⁇ 10 to 100 ° C. However, in order to prevent a decrease in catalyst activity and side reactions, the temperature during the reaction is preferably as low as possible.
  • the yield of the hydroxylation reaction from formamide to N- ( ⁇ -hydroxyethyl) formamide, and N- ( From the viewpoint of crystallizing ( ⁇ -hydroxyethyl) formamide, 0 to 40 ° C. is more preferable.
  • the method for adjusting the reaction temperature is not particularly limited. For example, the reaction temperature is adjusted while a reactor is equipped with a jacket and cooling water is circulated through the jacket.
  • Total heat generation Temperature difference before and after entering / exiting x Flow rate of cooling water x Specific heat of cooling water (I)
  • a water-insoluble solvent As a solvent used in the hydroxylation reaction, a water-insoluble solvent is used. More specifically, the solvent has a mass of water of 1 g or less that can be dissolved in 100 g of the solvent at 25 ° C.
  • solvents include aliphatic hydrocarbons such as hexane, heptane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; and halogenated hydrocarbons such as methylene chloride and chloroform. This is preferable in that ( ⁇ -hydroxyethyl) formamide is crystallized.
  • the amount of the solvent used is preferably 0.2 to 10 times by mass with respect to formamide.
  • the basic catalyst used in the hydroxylation reaction is not particularly limited as long as it is a general basic compound, but is preferably a weak basic salt composed of a strong base and a weak acid having a pKa value of 4 to 15.
  • Examples thereof include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, lithium carbonate, lithium hydrogen carbonate, potassium phosphate, potassium monohydrogen phosphate, sodium pyrophosphate and the like.
  • potassium hydrogen carbonate is preferable from the viewpoint of reducing by-products (for example, aldol condensate of acetaldehyde) generated during the reaction between formamide and acetaldehyde.
  • the amount of the basic catalyst used is preferably from 0.01 to 10 mol%, more preferably from 0.1 to 2 mol%, based on formamide.
  • N- ( ⁇ -hydroxyethyl) formamide crystals By precipitating N- ( ⁇ -hydroxyethyl) formamide crystals, most of the solvent can be separated and recovered simply by removing the crystals by a method such as filtration.
  • the method for filtering the slurry is not particularly defined, but even gravity filtration may be performed by supplying the slurry to the filter with a slurry pump while controlling the amount of the slurry with the supply control valve. Any method such as centrifugal filtration may be used.
  • the reaction mixture includes unreacted formamide and acetaldehyde, an aldol condensate of acetaldehyde, which is a byproduct of the hydroxylation reaction, basic Catalysts, reaction solvents and the like are included.
  • a specific method for carrying out the hydroxylation reaction is to prepare N- ( ⁇ -hydroxyethyl) formamide again without washing the reaction tank in which N- ( ⁇ -hydroxyethyl) formamide was produced or only a part of it. There is a way to do it.
  • N- ( ⁇ -hydroxyethyl) formamide crystals are added to a reaction vessel in advance, and formamide in which a basic catalyst is dissolved is added dropwise thereto. There are ways to initiate the hydroxylation reaction.
  • Pre-existing N- ( ⁇ -hydroxyethyl) formamide crystals act as seed crystals from the beginning of the hydroxylation reaction, and the precipitation of N- ( ⁇ -hydroxyethyl) formamide proceeds smoothly. It is important to initiate the hydroxylation reaction in the presence.
  • the production method of N- ( ⁇ -hydroxyethyl) formamide of the present invention may be a batch method in which a hydroxylation reaction is discontinuously performed, or a semi-batch method in which a part is extracted and raw materials are added. Good.
  • the reaction raw materials (formamide, acetaldehyde, basic catalyst and reaction solvent) are charged all at once into the reaction tank, or a part of the reaction raw material is charged into the reaction tank in advance, and the remaining materials are continuously or intermittently left.
  • the reaction raw material is supplied to perform a hydroxylation reaction. When the hydroxylation reaction is completed, the reaction solution is discharged from the reaction vessel.
  • the hydroxylation reaction is continuously carried out while intermittently supplying the reaction raw materials to the reaction tank and intermittently discharging the reaction solution from the reaction tank.
  • an aging tank for sufficiently reacting unreacted raw materials in the extracted reaction solution is required.
  • the reaction vessel from which the reaction solution has been discharged is charged with a solvent insoluble in water and an acetaldehyde solution, and then dropwise addition of formamide with a basic catalyst dissolved therein is started.
  • the reaction may be restarted, or a mixed solution of a solvent insoluble in water and acetaldehyde and formamide in which a basic catalyst is dissolved may be simultaneously supplied to the reaction tank to restart the reaction.
  • the crystal containing N- ( ⁇ -hydroxyethyl) formamide produced by the hydroxylation reaction before stopping acts as a seed crystal from the time of resuming the hydroxylation reaction, and even in the resumed hydroxylation reaction, N- ( ⁇
  • N- ( ⁇ -hydroxyethyl) formamide dissolves in acetaldehyde
  • crystals must remain when a mixed solution of acetaldehyde and a water-insoluble solvent is supplied in order to function as a seed crystal. For this purpose, it is necessary that crystals remain in a portion that is not immersed in the liquid, or crystals remain in the liquid exceeding its solubility. Although the latter method may be used in a half-batch reaction, the reaction kettle size increases accordingly.
  • the basic solvent used in the hydroxylation reaction is occluded by the crystals along with the precipitation of N- ( ⁇ -hydroxyethyl) formamide. Therefore, when precipitation of N- ( ⁇ -hydroxyethyl) formamide starts from the time when the hydroxylation reaction is restarted, separation of the basic catalyst from the reaction solution phase also begins, and side reactions such as aldehyde polymerization are suppressed. Is preferable.
  • the hydroxylation reaction is carried out while stirring the reaction solution under the condition that the stirring power per unit volume of the reactant is within the range of 0.1 to 10.0 kW / m 3 . Since the crystals adhering to the wall are peeled off by the stirring and fall into the reaction solution, the crystals are dispersed in the reaction solution and become seed crystals for the next reaction, and a clean slurry can be formed even if no new seed crystals are added.
  • Stirring power is preferably 0.4 ⁇ 6.0kW / m 3, more preferably 1.0 ⁇ 3.0kW / m 3.
  • the stirring power is 0.1 kW / m 3 or more
  • the seed crystals are dispersed in the reaction solution, so that the crystals can be easily taken out without solidifying in the lower part of the reaction tank.
  • the crystals of N- ( ⁇ -hydroxyethyl) formamide precipitated from the solvent do not become too large, and the reaction slurry can be easily fed with a slurry pump. Further, it is difficult for N- ( ⁇ -hydroxyethyl) formamide crystals to adhere to the reactor and piping, and the reactor and piping can be prevented from being blocked.
  • the hydroxylation reaction is preferably performed with a stirring power of 0.1 to 10.0 kW / m 3 for 2/3 or more of the total reaction time, and all of the hydroxylation reaction is 0.1 to 10.0 kW / m 3. More preferably, it is carried out with a stirring power of.
  • stirring power means power consumed by an electric machine (motor) for stirring rotation.
  • the stirring power can be obtained by subtracting the bearing load (power consumption when there is no reactant) from the power consumption during operation and dividing by the volume (m 3 ) of the reactant.
  • the stirrer may be equipped with a stirring dynamometer, a torque meter, or the like, and the torque difference between the reaction and empty (when there is no reactant) may be directly measured.
  • the average particle size of N- ( ⁇ -hydroxyethyl) formamide crystals is preferably 0.3 to 2.0 mm, more preferably 0.5 to 2.0 mm, still more preferably 0.8 to 1.2 mm, and 0 .9 to 1.1 mm is particularly preferable. If the average particle size of N- ( ⁇ -hydroxyethyl) formamide crystals is 0.3 mm or more, the filterability when filtering the reaction slurry is improved. On the other hand, if the average particle size of N- ( ⁇ -hydroxyethyl) formamide crystals is 2.0 mm or less, the reaction slurry can be easily fed with a slurry pump.
  • the average particle size of the crystal of N- ( ⁇ -hydroxyethyl) formamide may be measured by a particle size distribution using a sieve, a measurement by microscopic observation, a sedimentation method, or the like. Considering the above, observation with a microscope is simple. In the measurement by microscopic observation, an image processed image may be measured, or an image may be directly measured.
  • the crystal has an equivalent circle equivalent diameter (that is, the projected area of the crystal in plan view).
  • the average value of the diameters of the circles having the same area as the average particle diameter of the crystals of N- ( ⁇ -hydroxyethyl) formamide is considered.
  • the average value of the long diameter and the short diameter may be obtained, and this may be used as the average particle diameter of N- ( ⁇ -hydroxyethyl) formamide crystals.
  • reaction tank that is resistant to corrosion inside the reaction tank due to the reaction solution.
  • examples of such a reaction vessel include, but are not limited to, a stainless steel reaction vessel.
  • the reaction tank in this invention is not limited to this.
  • N- ( ⁇ -hydroxyethyl) formamide of the present invention there is no problem in quality even if the reaction product remains in the reaction system, and the crystal left in the reactor is not contained in the reaction solution. Dispersed to form seed crystals, and the product of the next reaction precipitates without adding new seed crystals. Therefore, it is possible to reduce the labor cost for washing the kettle, the treatment cost of washing waste water, the equipment cost for putting seed crystals, and the labor cost.
  • N- ( ⁇ -hydroxyethyl) formamide can be produced with high yield.
  • N- ( ⁇ -hydroxyethyl) formamide obtained by the present invention can be used for the production of N- ( ⁇ -alkoxyethyl) formamide by reacting with alcohol in the presence of an acid catalyst. Can be used as a raw material.
  • the method for producing N-vinylformamide of the present invention comprises the steps of producing N- ( ⁇ -hydroxyethyl) formamide (hydroxylation reaction step) by the method for producing N- ( ⁇ -hydroxyethyl) formamide of the present invention, A step of producing N- ( ⁇ -alkoxyethyl) formamide by reacting the obtained N- ( ⁇ -hydroxyethyl) formamide with an alcohol in the presence of an acid catalyst (alkoxylation reaction step); ( ⁇ -alkoxyethyl) formamide is thermally decomposed to produce N-vinylformamide (thermal decomposition reaction step).
  • N- ( ⁇ -hydroxyethyl) formamide obtained in the hydroxylation reaction step is reacted with an alcohol in the presence of an acid catalyst (alkoxylation reaction) to give N- ( ⁇ -alkoxyethyl) formamide. It is a process to obtain.
  • alkoxylation reaction a reaction mixture obtained by the above-mentioned hydroxylation reaction may be used, or N- ( ⁇ -hydroxyethyl) formamide may be isolated from the reaction mixture.
  • alcohol used in the alkoxylation reaction a primary or secondary alcohol is used. From the viewpoints of reactivity and handling of N- ( ⁇ -hydroxyethyl) formamide, alcohols having 1 to 8 carbon atoms are preferable, and alcohols having 1 to 4 carbon atoms are more preferable.
  • alcohols include methanol, ethanol, n-propanol, n-butanol, isobutyl alcohol, n-pentanol, n-hexanol, n-heptanol, n-octanol, benzyl alcohol, 2-methoxyethanol, 2-ethoxy
  • examples include ethanol, 2-propoxyethanol, 2-butoxyethanol, diethylene glycol monomethyl ether, ethylene glycol, propylene glycol, 1,4-butanediol, and diethylene glycol.
  • primary alcohols are preferable, and methanol having a low boiling point of raw materials and products is particularly preferable.
  • an excessive amount of alcohol specifically, a 1.1 to 50-fold molar amount relative to N- ( ⁇ -hydroxyethyl) formamide is preferable, A molar amount of 2.0 to 30 times is more preferable.
  • Examples of the acid catalyst used for the alkoxylation reaction include mineral acids, organic acids, weak acid or strongly acidic ion exchange resins, solid acid catalysts, and the like.
  • strongly acidic catalysts are preferable, and specific examples include sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, methanesulfonic acid, and crosslinked polystyrenesulfonic acid.
  • the amount of the acid catalyst used is required to be the total amount required to neutralize the carbonate catalyst contained in N- ( ⁇ -hydroxyethyl) formamide and the amount necessary to proceed with the alkoxylation reaction. Become.
  • the amount of the acid catalyst used as the total amount is preferably from 0.001 to 10 mol%, more preferably from 0.1 to 5 mol%, based on N- ( ⁇ -hydroxyethyl) formamide.
  • the specific embodiment of the alkoxylation reaction is not particularly limited, but can be easily achieved, for example, by adding or contacting an acid catalyst to a mixture of N- ( ⁇ -hydroxyethyl) formamide and alcohol.
  • a method in which an acid catalyst is dissolved in alcohol in advance to prepare a catalyst solution, and the catalyst solution is added to N- ( ⁇ -hydroxyethyl) formamide may be used.
  • the reaction temperature is preferably from ⁇ 10 to 60 ° C., more preferably from 0 to 40 ° C., and even more preferably from 5 to 30 ° C. from the viewpoint of the reactivity of the alkoxylation reaction and the stability of N- ( ⁇ -hydroxyethyl) formamide. .
  • the acid catalyst After completion of the alkoxylation reaction, the acid catalyst is usually neutralized with an alkali compound, or when the acid catalyst is in a solid state such as an ion exchange resin, it is separated by filtration.
  • the neutralization process itself is not an essential operation, but the product N- ( ⁇ -alkoxyethyl) formamide is more stable under neutral conditions, so that the decomposition in the purification and recovery process is minimized. It is preferable to implement from the viewpoint.
  • the basic catalyst in N- ( ⁇ -hydroxyethyl) formamide obtained in the hydroxylation reaction step is, for example, when sulfuric acid is used as the acid catalyst in the alkoxylation reaction, the sulfuric acid reacts with the basic catalyst. As a result, sulfates such as sodium sulfate and potassium sulfate are formed. Since this sulfate is hardly dissolved in the reaction mixture after completion of the alkoxylation reaction, it can be separated from N- ( ⁇ -alkoxyethyl) formamide using a filter or the like.
  • the N- ( ⁇ -alkoxyethyl) formamide obtained in the alkoxylation reaction step is preferably neutralized or removed in the case of a solid acid and then purified by distillation to remove impurities and the like.
  • N- ( ⁇ -alkoxyethyl) formamide obtained in the alkoxylation reaction step is thermally decomposed to obtain N-vinylformamide.
  • N- ( ⁇ -alkoxyethyl) formamide is evaporated with an evaporator or the like to form a raw material gas, and this raw material gas is subjected to gas phase thermal decomposition with a thermal decomposition reactor.
  • the pyrolysis gas obtained by gas phase pyrolysis is condensed in a condenser to obtain N-vinylformamide.
  • the temperature at which N- ( ⁇ -alkoxyethyl) formamide is evaporated is preferably 80 to 380 ° C.
  • the evaporation of N- ( ⁇ -alkoxyethyl) formamide is preferably carried out under reduced pressure, and the pressure at that time is preferably 0.4 to 80 kPa.
  • the temperature during the gas phase pyrolysis reaction is preferably 300 to 600 ° C.
  • the temperature at the time of condensation of the pyrolysis gas is preferably 300 ° C. or more, more preferably 350 ° C. or more until just before the condensation. Moreover, it is preferable that it is a 80 degrees C or less liquid after condensation, and it is more preferable that it is a 50 degrees C or less liquid.
  • the manufacturing apparatus 1 shown in FIG. 1 catalyzes a catalyst storage tank 10 that stores a basic catalyst, a catalyst dissolution tank 20 provided downstream of the catalyst storage tank 10, and a basic catalyst stored in the catalyst storage tank 10.
  • the feeder 30 is configured to include a feeder 30 supplied to the dissolution tank 20 and a hydroxylation reaction tank 40 provided downstream of the catalyst dissolution tank 20.
  • an air type knocker 11 that strikes and vibrates the catalyst storage tank 10 is attached.
  • the feeder 30 and the catalyst dissolution tank 20 are connected by a first supply pipe 31.
  • the catalyst dissolution tank 20 and the hydroxylation reaction tank 40 are connected by a second supply pipe 21.
  • potassium hydrogen carbonate was stored as a basic catalyst, and 95.2 kg of formamide was charged in the catalyst dissolution tank 20.
  • Potassium hydrogen carbonate stored in the catalyst storage tank 10 is dropped onto the feeder 30 while hammering (striking) the lower part of the catalyst storage tank 10 with an air knocker (model SK-30 manufactured by Seishin Co., Ltd.) 11. Then, 1.69 kg of potassium hydrogen carbonate was supplied to the catalyst dissolution tank 20 through the feeder 30 over 30 minutes to prepare a formamide solution of potassium hydrogen carbonate.
  • the stirrer is adjusted so that the stirring power of the reaction tank becomes 2.3 KW / m 3 , and 20% of the formamide solution of potassium hydrogen carbonate in the catalyst dissolution tank 20 is added to the acetaldehyde toluene solution in the hydroxylation reaction tank 40. Added over 15 minutes. Reaction heat generation amount in the hydroxylation reaction at this time from the inlet temperature 19.0 ° C of the cooling water of the hydroxylation reaction tank 40 immediately after the addition of 20% of the formamide solution, the outlet temperature 20.0 ° C and the cooling water flow rate 4231L was calculated, and the calorific value of the reaction was calculated to be approximately 10 kcal / mol.
  • Example 2 After the completion of the reaction in Example 1, N- ( ⁇ -hydroxyethyl) formamide crystals adhered to the inside of the hydroxylation reaction tank 40 in the same manner as at the start of Example 1. The amount of adhesion was visually the same as that at the start of Example 1. The hydroxylation reaction was performed in the same manner as in Example 1 except that the inside of the hydroxylation reaction tank 40 was not washed and the stirring power was adjusted to 1 KW / m 3 . The results are shown in Table 1.
  • Example 1 The reaction was carried out in the same manner as in Example 2 except that the tank 40 was washed with water and dried before the reaction was started, and the reaction was started with no wall, shaft, lid or the like attached. 20% of the formamide solution of potassium hydrogen carbonate in the catalyst dissolution tank 20 was added to the toluene solution of acetaldehyde in the hydroxylation reaction tank 40 over 15 minutes, but the calorific value was 60% compared to Examples 1 and 2. There was only a degree, and crystallization was not confirmed visually. When the liquid was sampled and analyzed, the conversion of formamide was 66.8%. When 1 kg of seed crystals was added, heat was rapidly generated and crystallization occurred. When formamide solution dropping was resumed as it was, 97% FAM conversion was finally obtained.
  • N- ( ⁇ -hydroxyethyl) formamide can be produced in a high yield.
  • equipment costs and labor costs for putting seed crystals can be reduced.
  • N-vinylformamide can be produced in high yield.
  • equipment costs and labor costs for putting seed crystals can be reduced.

Abstract

反応槽内で、ホルムアミドとアセトアルデヒドとを、溶媒中、塩基性触媒の存在下で反応させ、得られたN-(α-ヒドロキシエチル)ホルムアミドを反応槽中に析出させ、前記反応槽から、析出した前記N-(α-ヒドロキシエチル)ホルムアミドを回収する、N-(α-ヒドロキシエチル)ホルムアミドの製造方法であって、前記N-(α-ヒドロキシエチル)ホルムアミドの製造を、同一の反応槽で複数回行うにあたり、n回目の反応により得られた前記N-(α-ヒドロキシエチル)ホルムアミドの結晶が反応槽内に存在する状態で、n+1回目の反応を行う、N-(α-ヒドロキシエチル)ホルムアミドの製造方法。(上記nは自然数である)

Description

N-(α-ヒドロキシエチル)ホルムアミドの製造方法およびN-ビニルホルムアミドの製造方法
 本発明は、N-(α-ヒドロキシエチル)ホルムアミドの製造方法およびN-ビニルホルムアミドの製造方法に関する。
 本願は、2017年1月18日に、日本に出願された特願2017-006763号に基づき優先権を主張し、その内容をここに援用する。
 N-(α-ヒドロキシエチル)ホルムアミドは、N-ビニルホルムアミドの中間原料として重要な物質である。
 N-(α-ヒドロキシエチル)ホルムアミドは、例えば、炭酸水素カリウムなどの塩基性触媒の存在下で、ホルムアミドとアセトアルデヒドとを反応(ヒドロキシ化反応)させて、スラリー状の反応生成物をろ過することによって得られる(特許文献1参照)。
特開平6-298713号公報
 しかしながら、従来のN-(α-ヒドロキシエチル)ホルムアミドの製造方法では、スラリーを安定に形成しつつ反応させる条件は分かっておらず、必ずしもN-(α-ヒドロキシエチル)ホルムアミドの収率(ヒドロキシ化反応収率)を満足できるものではなかった。
 ヒドロキシ化反応において、N-(α-ヒドロキシエチル)ホルムアミドは反応溶液中においても生成するが、この反応は平衡反応である。よって反応溶液において、N-(α-ヒドロキシエチル)ホルムアミドの析出による平衡の移動がないと、ヒドロキシ化反応は完結しない。したがって、ヒドロキシ化反応の反応収率を上げるためには、ヒドロキシ化反応の反応速度を十分速くすることが必要である。
 ヒドロキシ化反応の反応速度を速くするための手段として、触媒の使用量を増やしてヒドロキシ化反応を行う方法が考えられるが、過剰量の触媒は、アルデヒドを縮合させる副反応の原因となり、さらには、ホルムアミドとも反応することにより、継時的に変質し活性が低下するため、触媒は必要最低限の量を短時間で使用することが好ましい。
 さらに、N-(α-ヒドロキシエチル)ホルムアミドを析出できても、N-(α-ヒドロキシエチル)ホルムアミドの結晶が小さすぎると、次工程で濾過する場合は濾過に時間を要するなどの濾過不良を起こすことがある。一方、N-(α-ヒドロキシエチル)ホルムアミドの結晶が大きすぎると、反応に用いる反応器や配管に結晶が付着することがあり、閉塞の原因となる。加えて、濾過の際にスラリーポンプでのスラリーの送液が困難となることもある。さらに粗大結晶内部に原料が残り転化率が上がらない。
 よって、反応器や配管の閉塞を抑制しつつ、濾過性や送液性等の取り扱い性に優れるN-(α-ヒドロキシエチル)ホルムアミドのスラリーを得るためには、適度な大きさでN-(α-ヒドロキシエチル)ホルムアミドを溶媒から析出させる必要がある。
 しかしながら、従来のN-(α-ヒドロキシエチル)ホルムアミドの製造方法では、N-(α-ヒドロキシエチル)ホルムアミドを適度な大きさに析出させる条件は分かっていない。
 本発明は前記事情に鑑みてなされたもので、高収率でN-(α-ヒドロキシエチル)ホルムアミドを製造できるN-(α-ヒドロキシエチル)ホルムアミドの製造方法、及びN-ビニルホルムアミドの製造方法を提供することを目的とする。
 本発明は以下の態様を有する。
[1] 反応槽内で、ホルムアミドとアセトアルデヒドとを、溶媒中、塩基性触媒の存在下で反応させ、得られたN-(α-ヒドロキシエチル)ホルムアミドを反応槽中に結晶として析出させ、前記反応槽から、析出した前記N-(α-ヒドロキシエチル)ホルムアミドの結晶を回収する、N-(α-ヒドロキシエチル)ホルムアミドの製造方法であって、
 前記N-(α-ヒドロキシエチル)ホルムアミドの製造を、同一の反応槽で複数回行うにあたり、n回目の反応により得られた前記N-(α-ヒドロキシエチル)ホルムアミドの結晶が反応槽内に存在する状態で、n+1回目の反応を行う、N-(α-ヒドロキシエチル)ホルムアミドの製造方法(ただし、前記nは自然数である)。
[2] 前記N-(α-ヒドロキシエチル)ホルムアミドの製造を、同一の反応槽で複数回行うにあたり、n回目の反応により得られた前記N-(α-ヒドロキシエチル)ホルムアミドの結晶の少なくとも一部を前記反応槽内に残した状態で、n+1回目の反応を行う、[1]に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法(ただし、前記nは自然数である)。
[3] 前記N-(α-ヒドロキシエチル)ホルムアミドの製造を、同一の反応槽で複数回行うにあたり、n回目の反応により得られた前記N-(α-ヒドロキシエチル)ホルムアミドの結晶が、前記反応槽の内容積1mあたり10g以上200kg以下存在する状態で、n+1回目の反応を行う、[1]または[2]に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法(ただし、前記nは自然数である)。
[4] 0.1~10.0kW/mの撹拌動力で前記反応槽中の前記反応液を撹拌しながら、n+1回目の反応を行う[1]または[2]に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法。
[5] 前記撹拌動力が0.4~6.0kW/mである、[3]に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法。
[6] 前記溶媒が、脂肪族炭化水素および芳香族炭化水素からなる群より選ばれる少なくとも1種である、[1]~[4]のいずれか一項に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法。
[7] 前記N-(α-ヒドロキシエチル)ホルムアミドの結晶の平均粒子径が0.3~2.0mmである、[1]~[5]のいずれか一項に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法。
[8] 請求項1~6のいずれか一項に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法によりN-(α-ヒドロキシエチル)ホルムアミドを製造する工程と、
 得られたN-(α-ヒドロキシエチル)ホルムアミドとアルコールとを酸触媒の存在下で反応させてN-(α-アルコキシエチル)ホルムアミドを製造する工程と、
 得られたN-(α-アルコキシエチル)ホルムアミドを熱分解してN-ビニルホルムアミドを製造する工程と、を有する、N-ビニルホルムアミドの製造方法。
 本発明のN-(α-ヒドロキシエチル)ホルムアミドの製造方法によれば、高収率でN-(α-ヒドロキシエチル)ホルムアミドを製造することができる。しかも、洗浄のための人件費や洗浄廃水の処理にかかるコストを削減できる。また、種晶を入れるための設備費や人件費を削減できる。
 本発明のN-ビニルホルムアミドの製造方法によれば、高収率でN-ビニルホルムアミドを製造することができる。しかも、洗浄のための人件費や洗浄廃水の処理にかかるコストを削減できる。また、種晶を入れるための設備費や人件費を削減できる。
実施例および比較例で用いたN-(α-ヒドロキシエチル)ホルムアミドの製造装置を示す概略構成図である。
≪N-(α-ヒドロキシエチル)ホルムアミドの製造方法≫
 本発明のN-(α-ヒドロキシエチル)ホルムアミドの製造方法は、反応槽内で、ホルムアミドとアセトアルデヒドとを、溶媒中、塩基性触媒の存在下で反応させ、得られたN-(α-ヒドロキシエチル)ホルムアミドを反応槽中に結晶として析出させ、前記反応槽から、析出した前記N-(α-ヒドロキシエチル)ホルムアミドの結晶を回収する、N-(α-ヒドロキシエチル)ホルムアミドの製造方法であって、前記N-(α-ヒドロキシエチル)ホルムアミドの製造を、同一の反応槽で複数回行うにあたり、n回目の反応により得られた前記N-(α-ヒドロキシエチル)ホルムアミドの結晶が反応槽内に存在する状態で、n+1回目の反応を行うことを特徴とする(ただし、前記nは自然数である)。
 n+1回目の反応時に反応槽内に存在する結晶の量は、反応槽の内容積1mあたり10g~200kgが好ましく、50g~150kgがより好ましく、100g~100kgがさらに好ましく、200g~50kgが特に好ましい。
 反応槽内に存在する結晶の量が上記下限値以上であると、結晶化速度が遅くなりすぎず、また、結晶が液中に分散されやすい。
 反応槽内に存在する結晶の量が上記上限値以下であると、反応槽に占める種晶の量が多すぎず、1バッチ当たりの生産量の減少が抑えらえる。
 本発明のN-(α-ヒドロキシエチル)ホルムアミドの製造方法は、下記のヒドロキシ化反応工程を有する。
[ヒドロキシ化反応工程]
 この工程は、水に不溶性の溶媒中、塩基性触媒の存在下で、ホルムアミドとアセトアルデヒドとを反応(ヒドロキシ化反応)させて、N-(α-ヒドロキシエチル)ホルムアミドを得る工程である。
 ホルムアミドとアセトアルデヒドとのモル比(ホルムアミド:アセトアルデヒド)は、1:1~1:10が好ましく、1:1~1:5がより好ましい。アセトアルデヒドのモル比を過剰にすることで、ホルムアミドの転化率を上げることができる。なお、未反応のホルムアミドが反応系内に過剰に存在すると、生成したN-(α-ヒドロキシエチル)ホルムアミドの結晶が溶解するため、好ましくない。
 ヒドロキシ化反応における反応温度の測定は熱電対温度計などの通常工業的に使用される温度計によって測定することができる。前記反応温度は、通常は-10~100℃程度である。ただし触媒の活性低下、および副反応を防止するために、反応時の温度は極力低くすることが好ましく、ホルムアミドからN-(α-ヒドロキシエチル)ホルムアミドまでのヒドロキシ化反応収率、およびN-(α-ヒドロキシエチル)ホルムアミドを結晶化させる観点から0~40℃がより好ましい。なお、反応温度の調節方法は、特に限定されないが、例えば、反応器にジャケットを装備しジャケットに冷却水を循環しながら反応温度を調節する方法である。
 ホルムアミドとアセトアルデヒドとが反応してN-(α-ヒドロキシエチル)ホルムアミドを生成するヒドロキシ化反応と、生成したN-(α-ヒドロキシエチル)ホルムアミドを結晶化する析出反応は、ともに発熱反応であり、これらの反応が十分進行しているかを確認するために、反応発熱量を検知することが必要である。
 これらの反応の合計発熱量は、例えば、特に限定しないが、以下のようにして検知することができる。
 反応器のジャケットに供給する冷却水の流入前の温度と流出するときの温度と実際に流入した冷却水の流量を測定し、これらの値を用いて下式(I)により算出することで検知する
 合計発熱量=入出前後の温度差×冷却水の流量×冷却水の比熱・・・(I)
 ヒドロキシ化反応に用いる溶媒としては、水に不溶性の溶媒を使用する。より具体的には、25℃において、溶媒100gに溶解できる水の質量が1g以下の溶媒である。このような溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;塩化メチレン、クロロホルムなどのハロゲン化炭化水素などが、生成したN-(α-ヒドロキシエチル)ホルムアミドを結晶化させる点で好ましい。
 溶媒の使用量は、ホルムアミドに対して0.2~10質量倍が好ましい。
 ヒドロキシ化反応に用いる塩基性触媒としては、一般的な塩基性化合物であれば特に制限はないが、好ましくは強塩基とpKa値が4~15の弱酸からなる弱塩基性塩であり、具体的には、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸リチウム、炭酸水素リチウム、リン酸カリウム、リン酸一水素カリウム、ピロリン酸ナトリウムなどが挙げられる。これらの中でも、ホルムアミドとアセトアルデヒドとの反応の際に生じる副生成物(例えば、アセトアルデヒドのアルドール縮合物など)を低減できる観点から、炭酸水素カリウムが好ましい。
 塩基性触媒の使用量は、ホルムアミドに対して0.01~10モル%が好ましく、0.1~2モル%がより好ましい。
 N-(α-ヒドロキシエチル)ホルムアミドの結晶を析出させることで、結晶を濾過などの方法で取り出すだけで、大部分の溶媒を分離、回収することができる。
 スラリーの濾過方法は特に規定しないが、重力濾過であっても、供給コントロールバルブでスラリーの液量を制御しながらスラリーポンプでスラリーを濾過器に供給して行ってもよく、濾過器もフィルター濾過、遠心濾過等方法はいずれであってもよい。
 反応混合物には、ホルムアミドとアセトアルデヒドとの反応物であるN-(α-ヒドロキシエチル)ホルムアミドの他、未反応のホルムアミドやアセトアルデヒド、ヒドロキシ化反応の副生成物であるアセトアルデヒドのアルドール縮合物、塩基性触媒、反応溶媒などが含まれる。
 ヒドロキシ化反応を行う具体的な方法に、N-(α―ヒドロキシエチル)ホルムアミドを製造した反応槽を洗わずあるいは一部のみを洗浄して、再度N-(α-ヒドロキシエチル)ホルムアミドの製造を行う方法がある。別の方法としては、あらかじめ反応槽に、水に不溶性の溶媒とアセトアルデヒドの他、N-(α-ヒドロキシエチル)ホルムアミドの結晶を添加し、そこに塩基性触媒を溶解したホルムアミドを滴下して、ヒドロキシ化反応を開始する方法がある。また、もう一つの方法として、あらかじめ反応槽に、N-(α-ヒドロキシエチル)ホルムアミドの結晶のみを添加しておき、水に不溶性の溶媒とアセトアルデヒドの混合液と、塩基性触媒を溶解したホルムアミドとを、同時に前記反応槽に供給して、ヒドロキシ化反応を開始することができる。
 あらかじめ存在したN-(α-ヒドロキシエチル)ホルムアミドの結晶は、ヒドロキシ化反応の開始の時点から、種晶として働き、N-(α-ヒドロキシエチル)ホルムアミドの析出を円滑に進めるため、前記結晶の存在下で、ヒドロキシ化反応を開始することは重要である。
 このようにして、ヒドロキシ化反応を開始する時点からN-(α-ヒドロキシエチル)ホルムアミドの結晶が反応溶液中に存在すると、ヒドロキシ化反応の開始とともにN-(α-ヒドロキシエチル)ホルムアミドの析出が始まり、ヒドロキシ化反応の反応速度を速くすることができる。
 また、析出によりヒドロキシ化反応の平衡がN-(α-ヒドロキシエチル)ホルムアミドの生成反応の方向に移動するため、ヒドロキシ化反応の最中にN-(α-ヒドロキシエチル)ホルムアミドの析出があると、大きな反応発熱が検知される。この反応発熱を検知することによって、ヒドロキシ化反応が十分に進んでいるかどうかを確認することができる。
 さらに、N-(α-ヒドロキシエチル)ホルムアミドの析出とともに、ヒドロキシ化反応に用いた塩基性溶媒は、前記結晶に吸蔵される。よってヒドロキシ化反応を開始する時点からN-(α-ヒドロキシエチル)ホルムアミドの析出が始まると、反応溶液相からの塩基性触媒の分離も始まり、アルデヒドの重合反応のような副反応を抑制することができるため、好ましい。
 本発明のN-(α-ヒドロキシエチル)ホルムアミドの製造方法は、非連続的にヒドロキシ化反応を行うバッチ式であってもよく、一部を抜出し、原料を継ぎ足す半回分方式であってもよい。
 バッチ式の場合、反応原料(ホルムアミド、アセトアルデヒド、塩基性触媒および反応溶媒)を反応槽に一度に全量仕込んで、またはあらかじめ反応原料の一部を反応槽に仕込み、連続的または間歇的に残りの反応原料を供給して、ヒドロキシ化反応を行い、ヒドロキシ化反応が終了したら、反応溶液を反応槽から排出する。
 半回分連続式の場合、反応槽への反応原料の間歇的な供給と、反応槽からの反応溶液の間歇的な排出を行いながら、連続的にヒドロキシ化反応を行う。連続的な供給であってもよいがその場合は抜き出した反応液中の未反応原料を十分反応させるための熟成槽が必要となる。
 以下、本発明において、ヒドロキシ化反応をバッチ式により行う場合について説明するが、これに限定されるものではない。
 バッチ式の場合、ヒドロキシ化反応を停止した後、反応槽から反応溶液を排出すると、前記反応を行った反応槽の内部には、N-(α-ヒドロキシエチル)ホルムアミドの結晶が残存する。この場合、停止する前のヒドロキシ化反応で生成されたN-(α-ヒドロキシエチル)ホルムアミドの結晶の存在下で、ヒドロキシ化反応を再開する。すなわち、ヒドロキシ化反応を停止した後の反応溶液を排出し、その反応槽の内部を洗浄することなく、再度ヒドロキシ化反応槽として用いることで、残存したN-(α-ヒドロキシエチル)ホルムアミドの結晶を再利用する。
 結晶が残ったまま反応を行うことは特別なことである。一般的には結晶が残ったまま反応すると結晶が成長してしまう。しかし本反応ではそれが適切な撹拌下では成長せずに反応液に分散し、種晶となる。
 本発明において、ヒドロキシ化反応を停止した後、反応溶液を排出した反応槽に、水に不溶性の溶媒とアセトアルデヒド敷液し、そこに塩基性触媒を溶解したホルムアミドの滴下を開始することによって、ヒドロキシ化反応を再開してもよく、水に不溶性の溶媒とアセトアルデヒドの混合液と、塩基性触媒を溶解したホルムアミドとを、前記反応槽にそれぞれ同時に供給して反応を再開してもよい。
 停止する前のヒドロキシ化反応で生成されたN-(α-ヒドロキシエチル)ホルムアミドを含む結晶は、ヒドロキシ化反応の再開の時点から、種晶として働き、再開したヒドロキシ化反応においてもN-(α-ヒドロキシエチル)ホルムアミドの析出を円滑に進めるため、前記結晶の存在下で、ヒドロキシ化反応を再開することは重要である。
 アセトアルデヒドにはN-(α-ヒドロキシエチル)ホルムアミドが溶解するため、種晶として働くためにはアセトアルデヒドと水不溶性溶媒の混合液を供給した際に結晶が残っている必要がある。そのためには液に浸らない部分に結晶が残るか、もしくはその溶解度を超えて液中に結晶が残っている必要がある。半回分反応で後者の方法をとっても良いが、その分反応釜サイズが大きくなる。
 このようにして、ヒドロキシ化反応を再開する時点からN-(α-ヒドロキシエチル)ホルムアミドの結晶が反応溶液中に存在すると、ヒドロキシ化反応の開始とともにN-(α-ヒドロキシエチル)ホルムアミドの析出が始まり、再開するヒドロキシ化反応の反応速度を速くすることができる。
 また、析出により前記ヒドロキシ化反応の平衡がN-(α-ヒドロキシエチル)ホルムアミドの生成反応の方向に移動するため、ヒドロキシ化反応の最中にN-(α-ヒドロキシエチル)ホルムアミドの析出があると、大きな反応発熱が検知される。
 ヒドロキシ化反応に用いた塩基性溶媒は、N-(α-ヒドロキシエチル)ホルムアミドの析出とともに前記結晶に吸蔵される。よってヒドロキシ化反応を再開する時点からN-(α-ヒドロキシエチル)ホルムアミドの析出が始まると、反応溶液相からの塩基性触媒の分離も始まり、アルデヒドの重合反応のような副反応を抑制することができるため、好ましい。
 ヒドロキシ化反応は、反応物の単位体積あたりの撹拌動力が0.1~10.0kW/mの範囲内となる条件で反応溶液を撹拌しながら行う。撹拌によって壁にくっついている結晶がはがれ反応液中に落ちるため、結晶は反応液中に分散し、次の反応の種晶となり、わざわざ新たに種晶をいれなくとも、きれいなスラリーができる。
 撹拌動力は、0.4~6.0kW/mが好ましく、1.0~3.0kW/mがより好ましい。撹拌動力が0.1kW/m以上であれば、反応液中に種晶がきれに分散するため、結晶が反応槽下部に固まることなく容易に取り出すことができる。加えて、溶媒から析出するN-(α-ヒドロキシエチル)ホルムアミドの結晶が大きくなりすぎず、スラリーポンプで反応スラリーを容易に送液できる。また、反応器や配管にN-(α-ヒドロキシエチル)ホルムアミドの結晶が付着しにくく、反応器や配管が閉塞するのを抑制できる。
 一方、撹拌動力が10.0kW/m以下であれば、N-(α-ヒドロキシエチル)ホルムアミドの結晶破壊や、結晶の成長不良が起こりにくく、N-(α-ヒドロキシエチル)ホルムアミドの結晶が小さくなりすぎない。よって、濾過性が良好な反応スラリーが得られ、短時間で反応スラリーを濾過できる。
 ヒドロキシ化反応は、全反応時間の2/3以上が0.1~10.0kW/mの撹拌動力で行われることが好ましく、ヒドロキシ化反応の全てが0.1~10.0kW/mの撹拌動力で行われることがより好ましい。
 ここで、「撹拌動力」とは、撹拌回転用の電動機械(モーター)が消費した電力を意味する。撹拌動力は運転時の消費電力から、軸受けの負荷(反応物がない場合の消費電力)を差し引き、反応物の体積(m)で除して求めることができる。また、撹拌機に撹拌動力計や、トルク計等を装備し、反応時と空の際(反応物がない場合)とのトルク差を直接測定してもよい。
 N-(α-ヒドロキシエチル)ホルムアミドの結晶の平均粒子径は、0.3~2.0mmが好ましく、0.5~2.0mmがより好ましく、0.8~1.2mmがさらに好ましく、0.9~1.1mmが特に好ましい。N-(α-ヒドロキシエチル)ホルムアミドの結晶の平均粒子径が0.3mm以上であれば、反応スラリーを濾過する際の濾過性が向上する。一方、N-(α-ヒドロキシエチル)ホルムアミドの結晶の平均粒子径が2.0mm以下であれば、スラリーポンプで反応スラリーを容易に送液できる。また、反応器や配管にN-(α-ヒドロキシエチル)ホルムアミドの結晶が付着しにくく、反応器や配管が閉塞するのを抑制できる。
 N-(α-ヒドロキシエチル)ホルムアミドの結晶の平均粒子径の測定は、篩による粒径分布の測定もしくは顕微鏡観察による測定、沈降法等のいずれでもよいが、実際の粒径や粒子の安定性等を考慮すると顕微鏡観察が簡便である。
 顕微鏡観察による測定では、画像処理したものを測定してもよく、画像を直接計測してもよい。例えば、任意に採取した10~20粒程度のN-(α-ヒドロキシエチル)ホルムアミドの結晶を光学顕微鏡により平面視したときの結晶の等面積円相当径(すなわち、平面視での結晶の投影面積と同じ面積を持つ円の直径)の平均値をN-(α-ヒドロキシエチル)ホルムアミドの結晶の平均粒子径とみなす。粒子が球形に近い場合は長径と短径の平均値を求め、これをN-(α-ヒドロキシエチル)ホルムアミドの結晶の平均粒子径としてもよい。
 本発明において反応槽は、保守点検上の観点から、反応溶液による反応槽内部の腐食が起こりにくいものを用いるのが好ましい。このような反応槽として、ステンレス製の反応槽が挙げられるが、これに限定されない。
 また、本発明における反応槽は、ヒドロキシ化反応のみを行う専用の反応槽を用いることが好ましいが、これに限定されない
[作用効果]
 本発明のN-(α-ヒドロキシエチル)ホルムアミドの製造方法であれば、反応系に反応生成物が残されていても品質上の問題がなく、反応器に残された結晶が反応液中に分散して種晶となり、新たに種晶を入れなくても次の反応の生成物が析出する。従って、釜を洗うための人件費や洗浄廃水の処理コスト、種晶を入れるための設備費や人件費を削減できる。また、高収率でN-(α-ヒドロキシエチル)ホルムアミドを製造することができる。
 本発明により得られるN-(α-ヒドロキシエチル)ホルムアミドは、酸触媒の存在下でアルコールと反応させ、N-(α-アルコキシエチル)ホルムアミドの製造に用いることができ、N-ビニルホルムアミドの中間原料として使用することができる。
≪N-ビニルホルムアミドの製造方法≫
 本発明のN-ビニルホルムアミドの製造方法は、本発明のN-(α-ヒドロキシエチル)ホルムアミドの製造方法によりN-(α-ヒドロキシエチル)ホルムアミドを製造する工程(ヒドロキシ化反応工程)と、得られたN-(α-ヒドロキシエチル)ホルムアミドとアルコールとを酸触媒の存在下で反応させてN-(α-アルコキシエチル)ホルムアミドを製造する工程(アルコキシ化反応工程)と、得られたN-(α-アルコキシエチル)ホルムアミドを熱分解してN-ビニルホルムアミドを製造する工程(熱分解反応工程)と、を有する。
[ヒドロキシ化反応工程]
 工程(1)は、上述した[ヒドロキシ化反応工程]と同様のものを採用できる。
[アルコキシ化反応工程]
 この工程は、ヒドロキシ化反応工程で得られたN-(α-ヒドロキシエチル)ホルムアミドとアルコールとを酸触媒の存在下で反応(アルコキシ化反応)させて、N-(α-アルコキシエチル)ホルムアミドを得る工程である。
 アルコキシ化反応では、上述したヒドロキシ化反応により得られる反応混合物を用いてもよいし、前記反応混合物からN-(α-ヒドロキシエチル)ホルムアミドを単離して用いてもよい。
 アルコキシ化反応に用いられるアルコールとしては、第1級または第2級のアルコールが用いられる。反応性およびN-(α-ヒドロキシエチル)ホルムアミドの取り扱い性の観点から、炭素数1~8のアルコールが好ましく、炭素数1~4のアルコールがより好ましい。アルコールの具体例としては、メタノール、エタノール、n-プロパノール、n-ブタノール、イソブチルアルコール、n-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、ベンジルアルコール、2-メトキシエタノール、2-エトキシエタノール、2-プロポキシエタノール、2-ブトキシエタノール、ジエチレングリコールモノメチルエーテル、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコールなどが挙げられる。これらの中でも、第1級アルコールが好ましく、原料および生成物の沸点が低いメタノールが特に好ましい。
 生成物の収率を高めるために、過剰量のアルコールを使用することが好ましく、具体的には、N-(α-ヒドロキシエチル)ホルムアミドに対して、1.1~50倍モル量が好ましく、2.0~30倍モル量がより好ましい。
 アルコキシ化反応に用いられる酸触媒としては、例えば、鉱酸、有機酸、弱酸または強酸性を示すイオン交換樹脂、固体酸触媒などが挙げられる。これらの中でも、強酸性の触媒が好ましく、具体的には、硫酸、塩酸、硝酸、スルファミン酸、メタンスルホン酸、架橋ポリスチレンスルホン酸などが挙げられる。
 酸触媒の使用量は、N-(α-ヒドロキシエチル)ホルムアミドに含まれている炭酸塩触媒を中和するのに必要な量とアルコキシ化反応を進めるのに必要な量の合計量が必要となる。前記合計量としての酸触媒の使用量はN-(α-ヒドロキシエチル)ホルムアミドに対し、0.001~10モル%が好ましく、0.1~5モル%がより好ましい。
 アルコキシ化反応の具体的な態様については特に制限はないが、例えば、N-(α-ヒドロキシエチル)ホルムアミドとアルコールとの混合物に酸触媒を添加するか、接触させることにより容易に達成される。また、予め酸触媒をアルコールに溶解させて触媒溶液を調製しておき、前記触媒溶液をN-(α-ヒドロキシエチル)ホルムアミドに添加する方法でもよい。
 反応温度は、アルコキシ化反応の反応性とN-(α-ヒドロキシエチル)ホルムアミドの安定性の観点から、-10~60℃が好ましく、0~40℃がより好ましく、5~30℃がさらに好ましい。
 アルコキシ化反応の終了後は、通常、酸触媒をアルカリ化合物で中和するか、あるいは酸触媒がイオン交換樹脂などのような固体状である場合にはろ過分離する。なお、中和処理そのものは必須の操作ではないが、生成物であるN-(α-アルコキシエチル)ホルムアミドは中性条件の方が安定であるので、精製回収工程における分解を最小限にするという観点から実施することが好ましい。
 なお、ヒドロキシ化反応工程で得られたN-(α-ヒドロキシエチル)ホルムアミド中の塩基性触媒は、例えば、アルコキシ化反応にて酸触媒として硫酸を用いる場合は、硫酸と塩基性触媒とが反応して硫酸ナトリウムや硫酸カリウムなどの硫酸塩が生成する。この硫酸塩はアルコキシ化反応終了後の反応混合物に溶けにくいため、濾過器などを用いてN-(α-アルコキシエチル)ホルムアミドから分離することができる。
 アルコキシ化反応工程で得られたN-(α-アルコキシエチル)ホルムアミドは酸触媒を中和もしくは固体酸の場合は除去後、蒸留精製して不純物などを除去することが好ましい。
[熱分解反応工程]
 この工程は、アルコキシ化反応工程で得られたN-(α-アルコキシエチル)ホルムアミドを熱分解して、N-ビニルホルムアミドを得る工程である。
 熱分解反応では、N-(α-アルコキシエチル)ホルムアミドを蒸発器等で蒸発させて原料ガスとし、この原料ガスを熱分解反応器で気相熱分解する。次いで、気相熱分解により得られた熱分解ガスを凝縮器で凝縮し、N-ビニルホルムアミドを得る。
 N-(α-アルコキシエチル)ホルムアミドを蒸発させる際の温度は80~380℃が好ましい。
 また、N-(α-アルコキシエチル)ホルムアミドの蒸発は減圧下で行うことが好ましく、その際の圧力は0.4~80kPaが好ましい。
 気相熱分解反応ではアルコールの分子内脱離が起こり、N-ビニルホルムアミドが生成される。
 気相熱分解反応時の温度は300~600℃が好ましい。
 熱分解ガスの凝縮時の温度は、凝縮直前までは300℃以上が好ましく、350℃以上がより好ましい。また、凝縮後は80℃以下の液体であることが好ましく、50℃以下の液体であることがより好ましい。
[作用効果]
 本発明のN-ビニルホルムアミドの製造方法であれば、反応系に反応生成物が残されていても品質上の問題がなく、反応器に残された結晶が反応液中に分散して種晶となり、新たに種晶を入れなくても次の反応の生成物が析出する。従って、釜を洗うための人件費や洗浄廃水の処理コスト、種晶を入れるための設備費や人件費を削減できる。また、高収率でN-ビニルホルムアミドを製造することができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、特段の断りがない限り、「%」は、「質量%」を表すものとする。
[実施例1]
 図1に示す製造装置を用いて、以下のようにしてN-(α-ヒドロキシエチル)ホルムアミドを製造した。
 図1に示す製造装置1は、塩基性触媒を貯蔵する触媒貯蔵槽10と、触媒貯蔵槽10の下流に設けられた触媒溶解槽20と、触媒貯蔵槽10に貯蔵された塩基性触媒を触媒溶解槽20に供給するフィーダ30と、触媒溶解槽20の下流に設けられたヒドロキシ化反応槽40とを具備して構成されている。
 触媒貯蔵槽10の底部には、触媒貯蔵槽10を槌打ちして振動を与えるエアー式ノッカー11が取り付けられている。
 フィーダ30と触媒溶解槽20とは、第一の供給配管31によって接続されている。
 触媒溶解槽20とヒドロキシ化反応槽40とは、第二の供給配管21によって接続されている。
 図1に示す触媒貯蔵槽10に塩基性触媒として炭酸水素カリウムを貯蔵し、触媒溶解槽20にホルムアミド95.2kgを仕込んだ。
 触媒貯蔵槽10の下部をエアー式ノッカー(株式会社セイシン社製、型式SK-30)11でハンマリング(槌打ち)しながら、触媒貯蔵槽10に貯蔵された炭酸水素カリウムをフィーダ30に落下させて供給し、前記フィーダ30を介して炭酸水素カリウム1.69kgを触媒溶解槽20に30分かけて供給し、炭酸水素カリウムのホルムアミド溶液を調製した。
 別途、撹拌機42および温度調節器(図示略)を備えたステンレスのヒドロキシ化反応槽40に工業用トルエン384kgを仕込み、窒素ガスで脱気した後、アセトアルデヒド107kgを加え、20℃に温度を調節した。
 反応槽40は前バッチ反応終了後洗浄しておらず、界面より上の反応器上部壁面および撹拌翼軸上部にN-(α-ヒドロキシエチル)ホルムアミドの結晶が付着していた。
 反応槽の撹拌動力を2.3KW/mになるよう攪拌機を調節し、ヒドロキシ化反応槽40内のアセトアルデヒドのトルエン溶液に、触媒溶解槽20内の炭酸水素カリウムのホルムアミド溶液の20%量を15分かけて加えた。
 ホルムアミド溶液の20%量を加えた直後のヒドロキシ化反応槽40の冷却水の入口温度19.0℃、出口温度20.0℃と冷却水流量4231Lから、この時のヒドロキシ化反応における反応発熱量を算出したところ、反応発熱量はほぼ10kcal/molと計算された。
 その後、炭酸水素カリウムのホルムアミド溶液の残量を3時間かけてさらに添加し、1時間熟成を行い(ヒドロキシ化反応)、反応スラリーを得た。
 得られた反応スラリーを、濾過して溶媒のトルエンを分離した。重力濾過時間は20分であった。またN-(α-ヒドロキシエチル)ホルムアミドの平均粒径は顕微鏡による観察でほぼ1.0mmであった。
 濾別された固体成分(反応混合物)の一部を採取し、液体クロマトグラフィーにより下記条件にて分析したところ、N-(α-ヒドロキシエチル)ホルムアミド64.3%、ホルムアミド0.7%、アセトアルデヒド1.4%、アセトアルデヒドのアルドール縮合物0.2%が含まれていた。この時のホルムアミドの転化率(表1中、「FAM転化率」と略す。)は、97.9%であった。これらの結果を表1に示す。
(液体クロマトグラフィー分析条件)
・カラム:MCI-GEL-ODS 1HU(4.6mmφ×250mm)。
・流量:1mL/min。
・溶離液:0.01M-NaHPO・2HO。
・サンプル注入量:溶離液で1000倍希釈したサンプル20μL。
[実施例2]
 実施例1の反応終了後のヒドロキシ化反応槽40の内部には、N-(α-ヒドロキシエチル)ホルムアミドの結晶が実施例1開始時と同様に付着していた。目視で付着量は実施例1開始時とほぼ同程度の量であった。ヒドロキシ化反応槽40の内部を洗浄せず、撹拌動力を1KW/mに調節した以外は実施例1と同様の操作によりヒドロキシ化反応を行った。結果を表1に示す
[比較例1]
 反応開始前に槽40を水洗後乾燥し、壁、軸、蓋部等の付着がない状態で反応開始した以外は実施例2と同様に反応を行った。ヒドロキシ化反応槽40内のアセトアルデヒドのトルエン溶液に、触媒溶解槽20内の炭酸水素カリウムのホルムアミド溶液の20%量を15分かけて加えたが発熱量は実施例1、2に比較し6割程度しかなく、目視にて結晶化も確認されなかった。液をサンプリングし、分析するとホルムアミド転化率は66.8%であった。種晶1kgを投入すると急激に発熱し、結晶化した。そのままホルムアミド溶液滴下を再開すると最終的には97%のFAM転化率を得た。
Figure JPOXMLDOC01-appb-T000001
 表1中の略号は以下の通りである。
・FAM:ホルムアミド
・OH体:N-(α-ヒドロキシエチル)ホルムアミド
 表1の結果から明らかなように、各実施例におけるFAM転化率は、97.9%であった。反応槽を洗浄し、槽内にN-(α-ヒドロキシエチル)ホルムアミドの結晶が残っていない状態で反応を開始した比較例は、途中で種晶を加えることでFAM転化率が97.0%となった。
 本発明のN-(α-ヒドロキシエチル)ホルムアミドの製造方法によれば、高収率でN-(α-ヒドロキシエチル)ホルムアミドを製造することができる。しかも、洗浄のための人件費や洗浄廃水の処理にかかるコストを削減できる。また、種晶を入れるための設備費や人件費を削減できる。
 本発明のN-ビニルホルムアミドの製造方法によれば、高収率でN-ビニルホルムアミドを製造することができる。しかも、洗浄のための人件費や洗浄廃水の処理にかかるコストを削減できる。また、種晶を入れるための設備費や人件費を削減できる。
 1  製造装置
 10 触媒貯蔵槽
 11 エアー式ノッカー
 20 触媒溶解槽
 21 第二の供給配管
 30 フィーダ
 31 第一の供給配管
 40 ヒドロキシ化反応槽
 42 撹拌機

Claims (8)

  1.  反応槽内で、ホルムアミドとアセトアルデヒドとを、溶媒中、塩基性触媒の存在下で反応させ、得られたN-(α-ヒドロキシエチル)ホルムアミドを反応槽中に結晶として析出させ、前記反応槽から、析出した前記N-(α-ヒドロキシエチル)ホルムアミドの結晶を回収する、N-(α-ヒドロキシエチル)ホルムアミドの製造方法であって、
     前記N-(α-ヒドロキシエチル)ホルムアミドの製造を、同一の反応槽で複数回行うにあたり、n回目の反応により得られた前記N-(α-ヒドロキシエチル)ホルムアミドの結晶が反応槽内に存在する状態で、n+1回目の反応を行う、N-(α-ヒドロキシエチル)ホルムアミドの製造方法(ただし、前記nは自然数である)。
  2.  前記N-(α-ヒドロキシエチル)ホルムアミドの製造を、同一の反応槽で複数回行うにあたり、n回目の反応により得られた前記N-(α-ヒドロキシエチル)ホルムアミドの結晶の少なくとも一部を前記反応槽内に残した状態で、n+1回目の反応を行う、請求項1に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法(ただし、前記nは自然数である)。
  3.  前記N-(α-ヒドロキシエチル)ホルムアミドの製造を、同一の反応槽で複数回行うにあたり、n回目の反応により得られた前記N-(α-ヒドロキシエチル)ホルムアミドの結晶が、前記反応槽の内容積1mあたり10g以上200kg以下存在する状態で、n+1回目の反応を行う、請求項1または2に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法(ただし、前記nは自然数である)。
  4.  0.1~10.0kW/mの撹拌動力で前記反応槽中の前記反応液を撹拌しながら、n+1回目の反応を行う請求項1または2に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法。
  5.  前記撹拌動力が0.4~6.0kW/mである、請求項3に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法。
  6.  前記溶媒が、脂肪族炭化水素および芳香族炭化水素からなる群より選ばれる少なくとも1種である、請求項1~4のいずれか一項に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法。
  7.  前記N-(α-ヒドロキシエチル)ホルムアミドの結晶の平均粒子径が0.3~2.0mmである、請求項1~5のいずれか一項に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法。
  8.  請求項1~6のいずれか一項に記載のN-(α-ヒドロキシエチル)ホルムアミドの製造方法によりN-(α-ヒドロキシエチル)ホルムアミドを製造する工程と、
     得られたN-(α-ヒドロキシエチル)ホルムアミドとアルコールとを酸触媒の存在下で反応させてN-(α-アルコキシエチル)ホルムアミドを製造する工程と、
     得られたN-(α-アルコキシエチル)ホルムアミドを熱分解してN-ビニルホルムアミドを製造する工程と、を有する、N-ビニルホルムアミドの製造方法。
PCT/JP2018/001367 2017-01-18 2018-01-18 N-(α-ヒドロキシエチル)ホルムアミドの製造方法およびN-ビニルホルムアミドの製造方法 WO2018135574A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18741885.0A EP3572397B1 (en) 2017-01-18 2018-01-18 Method for producing n-(alpha-hydroxyethyl)formamide and method for producing n-vinylformamide
JP2018562428A JPWO2018135574A1 (ja) 2017-01-18 2018-01-18 N−(α−ヒドロキシエチル)ホルムアミドの製造方法およびN−ビニルホルムアミドの製造方法
US16/454,139 US20190315678A1 (en) 2017-01-18 2019-06-27 Method for producing n-(alpha-hydroxyethyl)formamide and method for producing n-vinylformamide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-006763 2017-01-18
JP2017006763 2017-01-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/454,139 Continuation US20190315678A1 (en) 2017-01-18 2019-06-27 Method for producing n-(alpha-hydroxyethyl)formamide and method for producing n-vinylformamide

Publications (1)

Publication Number Publication Date
WO2018135574A1 true WO2018135574A1 (ja) 2018-07-26

Family

ID=62907994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001367 WO2018135574A1 (ja) 2017-01-18 2018-01-18 N-(α-ヒドロキシエチル)ホルムアミドの製造方法およびN-ビニルホルムアミドの製造方法

Country Status (4)

Country Link
US (1) US20190315678A1 (ja)
EP (1) EP3572397B1 (ja)
JP (1) JPWO2018135574A1 (ja)
WO (1) WO2018135574A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553046A4 (en) * 2016-12-08 2019-11-20 Mitsubishi Chemical Corporation PREPARATION FOR N (HYDROXYETHYL) FORMAMIDE, PRODUCTION PROCESS FOR N (ALKOXYETHYL) FORMAMIDE, MANUFACTURING DEVICE FOR N (HYDROXYETHYL) FORMAMIDE AND MANUFACTURING DEVICE FOR N (ALKOXYETHYL) FORMAMID

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112047854B (zh) * 2020-10-20 2021-07-02 中国科学院长春应用化学研究所 一种n-乙烯基烷基酰胺的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149551A (ja) * 1984-01-14 1985-08-07 Mitsubishi Chem Ind Ltd Ν−(α−ヒドロキシエチル)ホルムアミドの製造方法
JPS60193953A (ja) * 1984-03-13 1985-10-02 Mitsubishi Chem Ind Ltd Ν−(α−アルコキシエチル)ホルムアミドの製造方法
JPS61286356A (ja) * 1985-06-11 1986-12-16 Mitsubishi Chem Ind Ltd N−(α−ヒドロキシエチル)ホルムアミドの製法
JPS6259248A (ja) * 1985-09-10 1987-03-14 Mitsubishi Chem Ind Ltd N−ビニルホルムアミドの製法
JPS62195352A (ja) * 1986-02-21 1987-08-28 Mitsubishi Chem Ind Ltd N−ビニルホルムアミドの回収法
JPS6314761A (ja) * 1986-07-01 1988-01-21 バスフ アクチェン ゲゼルシャフト N−置換ホルムアミドの製法
JPH06184071A (ja) * 1992-12-18 1994-07-05 Mitsubishi Kasei Corp N−(α−アルコキシエチル)ホルムアミドの製造方法
JPH06298713A (ja) 1993-04-13 1994-10-25 Mitsubishi Kasei Corp N−(α−ヒドロキシエチル)ホルムアミド及びN−(α−アルコキシエチル)ホルムアミドの製造方法
JP2000191625A (ja) * 1998-12-23 2000-07-11 Basf Ag グアニジン誘導体の製造方法
JP2006089419A (ja) * 2004-09-24 2006-04-06 Electric Power Dev Co Ltd クラスレート水和物の製造方法および製造装置
JP2007023284A (ja) * 2005-07-19 2007-02-01 Lanxess Deutschland Gmbh ポンプ循環を用いてアゾ化合物の金属化合物を調製する方法
WO2008120769A1 (ja) * 2007-03-30 2008-10-09 Mitsui Engineering & Shipbuilding Co., Ltd. 天然ガスハイドレートの製造方法及びその装置
JP2017006763A (ja) 2016-10-18 2017-01-12 株式会社大一商会 遊技機

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149551A (ja) * 1984-01-14 1985-08-07 Mitsubishi Chem Ind Ltd Ν−(α−ヒドロキシエチル)ホルムアミドの製造方法
JPS60193953A (ja) * 1984-03-13 1985-10-02 Mitsubishi Chem Ind Ltd Ν−(α−アルコキシエチル)ホルムアミドの製造方法
JPS61286356A (ja) * 1985-06-11 1986-12-16 Mitsubishi Chem Ind Ltd N−(α−ヒドロキシエチル)ホルムアミドの製法
JPS6259248A (ja) * 1985-09-10 1987-03-14 Mitsubishi Chem Ind Ltd N−ビニルホルムアミドの製法
JPS62195352A (ja) * 1986-02-21 1987-08-28 Mitsubishi Chem Ind Ltd N−ビニルホルムアミドの回収法
JPS6314761A (ja) * 1986-07-01 1988-01-21 バスフ アクチェン ゲゼルシャフト N−置換ホルムアミドの製法
JPH06184071A (ja) * 1992-12-18 1994-07-05 Mitsubishi Kasei Corp N−(α−アルコキシエチル)ホルムアミドの製造方法
JPH06298713A (ja) 1993-04-13 1994-10-25 Mitsubishi Kasei Corp N−(α−ヒドロキシエチル)ホルムアミド及びN−(α−アルコキシエチル)ホルムアミドの製造方法
JP2000191625A (ja) * 1998-12-23 2000-07-11 Basf Ag グアニジン誘導体の製造方法
JP2006089419A (ja) * 2004-09-24 2006-04-06 Electric Power Dev Co Ltd クラスレート水和物の製造方法および製造装置
JP2007023284A (ja) * 2005-07-19 2007-02-01 Lanxess Deutschland Gmbh ポンプ循環を用いてアゾ化合物の金属化合物を調製する方法
WO2008120769A1 (ja) * 2007-03-30 2008-10-09 Mitsui Engineering & Shipbuilding Co., Ltd. 天然ガスハイドレートの製造方法及びその装置
JP2017006763A (ja) 2016-10-18 2017-01-12 株式会社大一商会 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572397A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553046A4 (en) * 2016-12-08 2019-11-20 Mitsubishi Chemical Corporation PREPARATION FOR N (HYDROXYETHYL) FORMAMIDE, PRODUCTION PROCESS FOR N (ALKOXYETHYL) FORMAMIDE, MANUFACTURING DEVICE FOR N (HYDROXYETHYL) FORMAMIDE AND MANUFACTURING DEVICE FOR N (ALKOXYETHYL) FORMAMID

Also Published As

Publication number Publication date
JPWO2018135574A1 (ja) 2019-11-07
EP3572397A1 (en) 2019-11-27
EP3572397A4 (en) 2020-01-22
US20190315678A1 (en) 2019-10-17
EP3572397B1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
JP6742923B2 (ja) ジフェニルメタン系ジアミンおよびポリアミンの製造方法
KR102364274B1 (ko) 2-메틸알릴 알코올의 연속 제조 방법
US20140256980A1 (en) Process for manufacturing hmb and salts thereof
JP2021119177A (ja) アセスルファムカリウム組成物及びその製造方法
JP6655559B2 (ja) ジフェニルメタン系ジアミンおよびポリアミンの製造方法
WO2018135574A1 (ja) N-(α-ヒドロキシエチル)ホルムアミドの製造方法およびN-ビニルホルムアミドの製造方法
JPWO2007018221A1 (ja) 2−ヒドロキシエステル化合物の製造方法
JP5817730B2 (ja) ジトリメチロールプロパンの製造方法
JP2004149421A (ja) ジメチルアミド化合物とカルボン酸を蒸留分離する方法及びその装置
JP2004002280A (ja) 金属ギ酸塩/ギ酸混合物の製造方法
JP4782436B2 (ja) 2−ヒドロキシエステル類の製造方法
JP2004137193A (ja) ビスフェノールaの造粒方法
EP3553047B1 (en) Method for purifying n-(alpha-alkoxyethyl)formamide, method for producing high-purity n-(alpha-alkoxyethyl)formamide, and device for purifying n-(alpha-alkoxyethyl)formamide
TW201323400A (zh) 製造甲基丙烯酸的方法
US10442747B2 (en) Method for purifying methacrylic acid and method for producing methacrylic acid
WO2007088689A1 (ja) ビスフェノールaの回収方法および回収設備
EP4349442A1 (en) Tank used in refining device
CN115676784B (zh) 一种双氟磺酰亚胺的除杂提纯系统和除杂提纯方法
EP4353708A1 (en) Method for producing easily polymerizable compound
US10899701B2 (en) Method for producing N-(alpha-alkoxyethyl)formamide
JP4590188B2 (ja) ビスフェノールaのプリルの製造方法
JPWO2007086226A1 (ja) 高品質粒状ビスフェノールaの製造方法
JP3882859B2 (ja) 水加ヒドラジンの製造方法
JPH0664908A (ja) アジ化ナトリウムの連続的製造方法
CN1218810A (zh) 对氨基苯胂酸的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018562428

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018741885

Country of ref document: EP

Effective date: 20190819