WO2018135486A1 - 半導体結晶及び発電方法 - Google Patents
半導体結晶及び発電方法 Download PDFInfo
- Publication number
- WO2018135486A1 WO2018135486A1 PCT/JP2018/001015 JP2018001015W WO2018135486A1 WO 2018135486 A1 WO2018135486 A1 WO 2018135486A1 JP 2018001015 W JP2018001015 W JP 2018001015W WO 2018135486 A1 WO2018135486 A1 WO 2018135486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor crystal
- semiconductor
- group
- type semiconductor
- element selected
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 214
- 239000013078 crystal Substances 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims description 25
- 238000010248 power generation Methods 0.000 title claims description 15
- 150000001875 compounds Chemical class 0.000 claims abstract description 70
- 229910052796 boron Inorganic materials 0.000 claims abstract description 21
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 21
- 229910052738 indium Inorganic materials 0.000 claims abstract description 21
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 16
- 229910052718 tin Inorganic materials 0.000 claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 description 22
- 239000000843 powder Substances 0.000 description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000005678 Seebeck effect Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000002490 spark plasma sintering Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000003331 infrared imaging Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052752 metalloid Inorganic materials 0.000 description 3
- 150000002738 metalloids Chemical class 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011863 silicon-based powder Substances 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/857—Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/13—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/81—Structural details of the junction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/855—Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/8556—Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/06—Metal silicides
Definitions
- the present invention relates to a semiconductor crystal and a power generation method using the same.
- thermoelectric conversion element using the Seebeck effect makes it possible to convert heat energy into electric energy. Utilizing this property, exhaust heat exhausted from industrial processes and mobile objects can be converted into effective power, and various thermoelectric conversion elements using the Seebeck effect have been studied.
- thermoelectric conversion element using the Seebeck effect converts thermal energy into electrical energy using an electromotive force based on a temperature difference.
- various methods for improving the performance of the thermoelectric material exhibiting the Seebeck effect using the temperature difference have been studied.
- the temperature difference may be reduced due to heat conduction or the like, and the amount of power generation may be reduced.
- a cooling device or the like for maintaining the temperature difference is required, and as a result, the module becomes complicated.
- Patent Document 1 has a limited composition of clathrate compounds that can generate power, and its electromotive force is also small.
- thermoelectric element a novel semiconductor crystal that functions as a thermoelectric conversion element (hereinafter simply referred to as “thermoelectric element”) even when there is no temperature difference, and a power generation method using the semiconductor crystal
- thermoelectric element a novel semiconductor crystal that functions as a thermoelectric conversion element
- a x D y E 46-y (I) (In the formula (I), A represents at least one element selected from the group consisting of Ba, Na, Sr and K, and D represents at least one element selected from the group consisting of B, Ga and In) E represents at least one element selected from the group consisting of Si, Ge and Sn.
- X is 7 to 8, and y is 14 to 20.
- the one end is a p-type semiconductor portion, the other end is an n-type semiconductor portion, and the p-type semiconductor portion and the n-type semiconductor portion are joined to each other.
- [3] The semiconductor crystal according to [1] or [2], wherein the clathrate compound includes a compound represented by the following formula (II).
- a x D y E 1 46- y-z Si z (II) (In the formula (II), A represents at least one element selected from the group consisting of Ba, Na, Sr and K, and D represents at least one element selected from the group consisting of B, Ga and In.
- E 1 represents at least one element selected from the group consisting of Ge and Sn.
- X is 7 to 8, y is 14 to 20, and z is 0 to 23.
- the one end portion is a p-type semiconductor portion including a crater compound represented by the following formula (III), and the other end portion includes a crater compound represented by the following formula (IV).
- a x D y E 2 46-yz1 Si z1 (III) In the formula (III), A represents at least one element selected from the group consisting of Ba, Na, Sr and K, and D represents at least one element selected from the group consisting of B, Ga and In.
- E 2 represents at least one element selected from the group consisting of Ge and Sn.
- X is 7 to 8
- y is 14 to 20, and
- z1 is 0 or more and less than 4.
- a x D y E 1 46- y-z2 Si z2 (IV) (In the formula (IV), A represents at least one element selected from the group consisting of Ba, Na, Sr and K, and D represents at least one element selected from the group consisting of B, Ga and In.
- E 1 represents at least one element selected from the group consisting of Ge and Sn, x is 7 to 8, y is 14 to 20, and z2 is 3 to 23, provided that z2 is larger than z1 in the formula (III).)
- [6] The semiconductor crystal according to any one of [1] to [5], wherein in the formula (I), A is Ba.
- A is Ba.
- D is Ga.
- thermoelectric element it is possible to provide a novel semiconductor crystal that functions as a thermoelectric element even if there is no temperature difference in each part by a clathrate compound having a wide composition and a power generation method using the semiconductor crystal.
- the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail with reference to the drawings as necessary.
- the present invention is limited to the following embodiment. It is not a thing.
- the present invention can be variously modified without departing from the gist thereof.
- the same elements are denoted by the same reference numerals, and redundant description is omitted.
- the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified.
- the dimensional ratios in the drawings are not limited to the illustrated ratios.
- the semiconductor crystal of the present embodiment is a semiconductor crystal containing a clathrate compound represented by the following formula (I), and has a concentration of at least one element between one end and the other end. There is a difference.
- A represents at least one element selected from the group consisting of Ba, Na, Sr and K
- D represents at least one selected from the group consisting of B, Ga and In
- E represents at least one element selected from the group consisting of Si, Ge and Sn.
- x is 7 to 8, and y is 14 to 20.
- the difference between the value of y at one end and the value of y at the other end is preferably 0.01 or more from the viewpoint of more effectively and reliably achieving the effects of the present invention. More preferably, it is more preferably 0.1 or more.
- the difference between the values of y is preferably 4.0 or less, more preferably 2.0 or less, and 1.0 or less. More preferably.
- the difference between the y values is preferably 0.01 to 4.0, more preferably 0.02 to 2.0, and still more preferably 0.1 to 1.0.
- FIG. 1 is a diagram schematically showing a configuration of an example of a semiconductor crystal of the present embodiment.
- the shape of the semiconductor crystal is not particularly limited, and may be, for example, a plate shape, a rectangular parallelepiped, or a columnar shape such as a cylinder.
- the semiconductor crystal 10 when the semiconductor crystal 10 is plate-shaped or columnar, it has a p-type semiconductor portion 14 on the lower side (one end) side of the semiconductor crystal 10 and on the upper side (the other end) side.
- a configuration having the n-type semiconductor portion 12 may be adopted.
- a pn junction portion 16 is formed by directly joining an n-type semiconductor portion 12 and a p-type semiconductor portion 14.
- Such a semiconductor crystal 10 has a difference in the concentration of at least one element between the n-type semiconductor portion 12 and the p-type semiconductor portion 14. Further, it is considered that such a difference in element concentration contributes to the band gap distribution of the semiconductor crystal 10 as will be described below, and as a result, it is possible to generate power even if there is no temperature difference.
- the factors are not limited to the following. That is, there is a region having a band gap smaller than the band gap in the n-type semiconductor portion 12 and the p-type semiconductor portion 14 in the junction portion (pn junction portion 16) between the n-type semiconductor portion 12 and the p-type semiconductor portion 14 or the like. I think that.
- the n-type semiconductor portion 12 is negatively charged and the p-type semiconductor portion 14 is positively charged, so that an electromotive force is generated.
- the semiconductor crystal 10 can generate power even if there is no temperature difference between the n-type semiconductor portion 12 and the p-type semiconductor portion 14.
- Such an electromotive force generation mechanism is different from the Seebeck effect that generates an electromotive force based on a temperature difference.
- the semiconductor crystal 10 of the present embodiment can generate power even if there is no temperature difference, equipment for temperature control such as cooling or heating can be eliminated or simplified even when modularized. Therefore, the semiconductor crystal 10 can be suitably used as a power generation material for thermoelectric conversion or exhaust heat recovery.
- the semiconductor crystal 10 can be provided in a power generation module, and the power generation module can be installed in a transport device such as an automobile or an aircraft having an internal combustion engine, an apparatus, a plant, or the like.
- the semiconductor crystal 10 preferably includes a clathrate compound represented by the above formula (I) having A, D, and E as constituent elements (hereinafter, A, D, and E as elements are “A element”, Also referred to as “D element” or “E element”).
- a element functions as a monovalent or divalent donor
- the D element functions as a trivalent or monovalent acceptor.
- y indicating the molar ratio of the D element in the clathrate compound is preferably different between the p-type semiconductor portion 14 and the n-type semiconductor portion 12. In other words, it is preferable that there is a difference in the concentration of the D element between the p-type semiconductor portion 14 and the n-type semiconductor portion 12.
- x indicating the molar ratio of the A element may be distributed substantially uniformly in the semiconductor crystal 10, or may be different between the p-type semiconductor portion 14 and the n-type semiconductor portion 12.
- the lower portion has a higher molar ratio (y / x) of the D element to the A element than the upper portion.
- the upper portion becomes the n-type semiconductor portion 12 and the lower portion becomes the p-type semiconductor portion 14.
- the clathrate compound is composed of a cage structure composed of D element and E element and an A element included therein.
- a normal clathrate compound one in which a cage structure is constituted only by an E element is known (for example, Ba 8 Si 46 ).
- the production of such clathrate compounds requires very high pressure.
- a structure in which the 6c site of the E element is substituted with the D element can be synthesized by an arc melting method at normal pressure.
- the A element is preferably Ba.
- the element D is preferably at least one element selected from the group consisting of B, Ga and In, and more preferably Ga.
- the E element is preferably at least one element selected from the group consisting of Ge and Si.
- y is preferably 0 to 20, and more preferably 14 to 20.
- the clathrate compound preferably includes a compound represented by the following formula (II) as the compound represented by the above formula (I).
- a x D y E 1 46- y-z Si z (II) A represents at least one element selected from the group consisting of Ba, Na, Sr and K, and D represents at least one selected from the group consisting of B, Ga and In.
- E 1 represents at least one element selected from the group consisting of Ge and Sn.
- x is 7 to 8
- y is 14 to 20, and z is 0 to 23.
- the element A is preferably Ba.
- the D element is preferably at least one element selected from the group consisting of B, Ga and In
- E 1 is preferably Ge.
- y is preferably 14 to 18, and z is preferably 0 to 15.
- the semiconductor crystal can more effectively and reliably exhibit the effects of the present invention.
- the clathrate compound preferably includes a compound represented by the following formula (V) as the compound represented by the above formula (I), and more preferably includes a compound represented by the following formula (VI). .
- V formula
- VI formula (VI)
- D represents at least one element selected from the group consisting of B, Ga and In, and at least one element selected from the group consisting of B, Ga and In An element is preferable.
- x is 7 to 8
- y is 14 to 20
- z is 0 to 23.
- y is preferably 14 to 18, z is preferably 0 to 15, and the lower limit of z may be 0.
- the semiconductor crystal can more effectively and reliably exhibit the effects of the present invention.
- one end is a p-type semiconductor portion and the other end is an n-type semiconductor portion.
- z in the above formulas (I), (II), (V) and (VI) is larger in the n-type semiconductor portion than in the p-type semiconductor portion.
- one end portion is a p-type semiconductor portion containing a crater compound represented by the following formula (III), and the other end portion is a crater compound represented by the following formula (IV). It is more preferable that it is an n-type semiconductor part.
- A represents at least one element selected from the group consisting of Ba, Na, Sr and K, and is preferably Ba
- D is a group consisting of B, Ga and In.
- x is 7 to 8
- y is 14 to 20
- z1 is 0 or more and less than 4.
- A represents at least one element selected from the group consisting of Ba, Na, Sr, and K, and is preferably Ba
- D is a group consisting of B, Ga, and In.
- x is 7 to 8
- y is 14 to 20
- z2 is 3 to 23.
- the composition in the p-type semiconductor part and the composition in the n-type semiconductor part are different from each other, and z2 in the above formula (IV) is larger than z1 in the above formula (III).
- the semiconductor crystal can more effectively and reliably exhibit the effects of the present invention.
- the clathrate compound to be the n-type semiconductor Ba x Ga y Ge 46-yz Si z , Ba x Ga y Sn 46-yz Si z , Ba x Ga y Si 46-y -Z Sn z , Ba x Ga y Ge 46-yz Sn z and Ba x Ga y Si 46-yz Ge z .
- x is 7 to 8
- y is 14 to 20
- z is 3 to 23.
- a clathrate compound to be a p-type semiconductor more specifically, Ba x Ga y Ge 46-yz Si z , Ba x Ga y Sn 46-yz Si z , Ba x Ga y Si 46 -y-z Sn z, Ba x Ga y Ge 46-y-z Sn z , and Ba x Ga y Si 46-y -z Ge z and the like.
- x is 7 to 8
- y is 14 to 20
- z is 0 or more and less than 4.
- the semiconductor crystal 10 has a pn junction portion 16 by joining an n-type semiconductor portion 12 and a p-type semiconductor portion 14. At this time, there is a difference in the concentration of at least one element between the n-type semiconductor portion 12 and the p-type semiconductor portion 14 of the semiconductor crystal 10.
- the semiconductor crystal 10 of this embodiment having such a structure can generate power in a predetermined temperature range even if there is no temperature difference between the p-type semiconductor portion 14 and the n-type semiconductor portion 12.
- the semiconductor crystal 10 may be polycrystalline or single crystal. However, from the viewpoint of easily obtaining the desired semiconductor crystal 10, the semiconductor crystal 10 is preferably polycrystalline. On the other hand, from the viewpoint of obtaining a crystal having high electrical conductivity, the semiconductor crystal 10 is preferably a single crystal.
- the power generation method of the present embodiment is a method of generating power using a power generation module including the semiconductor crystal 10 and a pair of electrodes connected to the n-type semiconductor unit 12 and the p-type semiconductor unit 14 respectively.
- a known configuration can be used.
- the semiconductor crystal 10 can generate power efficiently by heating to, for example, 50 to 700 ° C., preferably 200 to 500 ° C.
- the absolute value of the potential difference between both ends at 500 ° C. can be 0.5 mV or more, and can be 0.5 to 20 mV (for example, 0.5 to 4 mV). Is possible.
- a metal or a semimetal corresponding to the constituent element of the clathrate compound is prepared.
- a predetermined amount of the prepared metal or metalloid is weighed according to the composition of the final object.
- the prepared metal or metalloid is weighed in a glove box substituted with argon gas as necessary.
- the weighed metal and metalloid are put in a copper mold and melted by an arc melting method or the like.
- the temperature of the molten metal during arc melting is, for example, about 2000 ° C. to 3000 ° C.
- two kinds of powdery clathrate compounds having different concentrations of at least one kind of element are filled in a graphite die having a shape such that a molded body having a desired shape is obtained, divided into a lower layer and an upper layer.
- the filled graphite die is placed at a predetermined position in the chamber of the spark plasma sintering apparatus, and the inside of the chamber is evacuated.
- the clathrate compound in the graphite die is sintered by, for example, heating to 700 to 900 ° C. while pressurizing the inside of the graphite die to 40 to 60 MPa, for example, and maintaining the conditions for 2 to 10 minutes, for example. .
- a semiconductor in which two clathrate compounds are joined is obtained.
- the semiconductor is accommodated in a vacuum furnace, heated to, for example, 700 to 1100 ° C. under a high vacuum, and annealed for, for example, 5 to 14 hours to obtain a semiconductor polycrystal.
- FIG. 2 is a diagram schematically showing a configuration of another example of the semiconductor crystal of the present embodiment.
- the semiconductor crystal 20 has p-type semiconductor portions 14a and 14b on the lower side (one end portion) side of the semiconductor crystal 20, and has n-type semiconductor portions 12a and 12b on the upper side (the other end portion) side.
- the p-type semiconductor portions 14a and 14b may have any composition different from each other and include the above-described clathrate compound that functions as a p-type semiconductor.
- the n-type semiconductor portions 12a and 12b may have any composition as long as they contain the above-described clathrate compound that functions as an n-type semiconductor.
- the pn junction portion 16 is formed by directly joining the n-type semiconductor portion 12b and the p-type semiconductor portion 14b.
- the semiconductor crystal of the present embodiment may include two or more p-type semiconductor portions, or may include two or more n-type semiconductor portions. Even such a semiconductor crystal 20 can generate power even if there is no temperature difference between the n-type semiconductor portions 12a and 12b and the p-type semiconductor portions 14a and 14b due to the same factors as described above.
- FIG. 3 is a diagram schematically showing a configuration of another example of the semiconductor crystal of the present embodiment.
- the semiconductor crystal 30 has a p-type semiconductor portion 14 on the lower side (one end) side of the semiconductor crystal 30 and an n-type semiconductor portion 12 on the upper side (the other end) side, and is intrinsic between them.
- the semiconductor unit 18 is included.
- z in the above formulas (I), (II), (V), (VI), (III) and (IV) z1 in the above formula (III) and in the above formula (IV).
- z2 is higher in the order of the n-type semiconductor portion 12, the intrinsic semiconductor portion 18, and the p-type semiconductor portion 14.
- Specific examples of the clathrate compound that becomes an intrinsic semiconductor in the intrinsic semiconductor portion 18 include Ba x Ga y Ge 46-yz Si z . However, x is 7 to 8, y is 14 to 20, and z is 3 to 4.
- the semiconductor crystal of this embodiment is particularly suitable as a thermoelectric element, but an infrared detector and an infrared imaging device including the semiconductor crystal are also one aspect of this embodiment. If the infrared detector and infrared imaging device of this embodiment are provided with the said semiconductor crystal, the specific kind and structure of an apparatus will not be specifically limited. As long as these devices include the semiconductor crystal as a base substrate and / or a crystal layer, other configurations may be known.
- an infrared detector and an infrared imaging device for example, an intrinsic semiconductor infrared detector, an impurity semiconductor infrared detector, an internal photoelectric effect infrared detector, a bolometer, and a quantum well including the semiconductor crystal of the present embodiment Type infrared detector (QWIP) and quantum dot type infrared detector (QDIP).
- QWIP Type infrared detector
- QDIP quantum dot type infrared detector
- the present invention is not limited to the above-described embodiment.
- a plate-shaped semiconductor crystal is shown.
- the shape of the semiconductor crystal of the present invention is not limited to a plate shape, and various shapes can be used depending on applications.
- the manufacturing method of a semiconductor crystal is not limited to the above-mentioned method, The manufacturing method of various polycrystals and a single crystal is applicable.
- the semiconductor crystal of the present invention is polycrystalline, it can also be produced by a casting method (casting method).
- the semiconductor crystal of the present invention when the semiconductor crystal of the present invention is a single crystal, after implanting ions such as dopants into one of the two types of single crystals, the semiconductor crystal is annealed by a method of annealing them as described above. It may be manufactured.
- the semiconductor crystal of the present invention when the semiconductor crystal of the present invention is a single crystal, by implanting ions such as different dopants into each of the two or more types of single crystals, the semiconductor is annealed as described above. Crystals may be produced.
- two types of polycrystalline samples having different concentrations of predetermined elements are prepared in advance, and each sample is melted by irradiation with laser light, and then cooled gradually to grow a single crystal.
- the semiconductor crystal of this embodiment may be manufactured by (floating zone method).
- the semiconductor crystal of this embodiment may be manufactured by the Czochralski method instead of the FZ method.
- thermoelectric element capable of generating power by heating without providing a temperature difference in each part even when a clathrate compound having a wide composition is used.
- Example 1 Preparation of clathrate compound by arc melting method>
- Each weighed powder was placed in a Cu mold and placed in a chamber. After replacing the inside of the chamber with argon gas, it was heated to about 2000 ° C. by the arc melting method to melt the powder in the Cu mold. Thereafter, the obtained melt was cooled. In this way, an ingot of the clathrate compound (Ba 8 Ga 18 Ge 20 Si 8 ) was obtained.
- the end side which is the composition of Ba 8 Ga 18 Ge 28 as a whole is the lower layer, and the composition is Ba 8 Ga 18 Ge 20 Si 8 as a whole.
- elemental analysis was performed using an electron beam microanalyzer (model name “EPMA-1200, WDX type, manufactured by Shimadzu Corporation”). At this time, the filament voltage was set to 15 kV, and the filament current was set to 10 nA, and the measured value of elemental analysis was converted to the composition ratio of the clathrate compound.
- the Si concentration was higher in the upper layer than in the lower layer. Moreover, the junction showed an intermediate Si concentration between the upper layer and the lower layer.
- the Seebeck coefficient was measured for these two samples. Specifically, by connecting a lead wire to both ends in the longitudinal direction of each sample, measuring the potential difference by raising the temperature while maintaining the temperature difference between both ends at 20 ° C., and dividing the potential difference by the temperature difference The Seebeck coefficient S ( ⁇ V / K) at each temperature was calculated. Based on the calculated Seebeck coefficient, the temperature dependence of the Seebeck coefficient was examined. FIG. 5 shows the change in the Seebeck coefficient S until the average temperature on the low temperature side and the high temperature side reaches 500 ° C. for each sample.
- the Seebeck coefficient S of the sample having the composition of Ba 8 Ga 18 Ge 28 as a whole is a positive value
- the Seebeck coefficient S of the sample as a whole of the composition of Ba 8 Ga 18 Ge 20 Si 8 is a negative value.
- the former sample was a p-type semiconductor and the latter sample was an n-type semiconductor.
- a semiconductor in which the two kinds of clathrate compounds were joined was obtained by the spark plasma sintering method in the same manner as in Example 1. Next, the obtained semiconductor was annealed in the same manner as in Example 1 to obtain a semiconductor polycrystal.
- the voltage change accompanying the temperature change of the semiconductor polycrystal was measured in the same manner as in Example 1.
- the measurement results are shown in FIG. As shown in FIG. 6, it was confirmed that a potential difference was generated by heating to a predetermined temperature or higher even though there was no temperature difference between both ends of the semiconductor polycrystal.
- Example 2 elemental analysis was performed in the same manner as in Example 1, and the measured value was converted into the composition ratio of the clathrate compound. The result of the composition ratio is shown in Table 2.
- the Si concentration was higher in the upper layer than in the lower layer. Moreover, the junction showed an intermediate Si concentration between the upper layer and the lower layer.
- a semiconductor in which the two kinds of clathrate compounds were joined was obtained by the spark plasma sintering method in the same manner as in Example 1.
- the obtained semiconductor was annealed in the same manner as in Example 1 to obtain a semiconductor polycrystal.
- the voltage change accompanying the temperature change of the semiconductor polycrystal was measured in the same manner as in Example 1. The measurement results are shown in FIG. As shown in FIG. 7, it was confirmed that a potential difference was generated by heating to a predetermined temperature or higher even though there was no temperature difference between both ends of the semiconductor polycrystal.
- the Si concentration was higher in the upper layer than in the lower layer. Moreover, the junction showed an intermediate Si concentration between the upper layer and the lower layer.
- thermoelectric element capable of generating power by heating without providing a temperature difference even when clathrate compounds having a wide composition are used. Therefore, the semiconductor crystal of the present invention has industrial applicability particularly in the field where thermoelectric elements are used.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Silicon Compounds (AREA)
Abstract
Description
[1]下記式(I)で表されるクラスレート化合物を含む半導体結晶であって、一方の端部と他方の端部との間で、少なくとも1種の元素の濃度に差がある、半導体結晶。
AxDyE46-y (I)
(式(I)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Si、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7~8であり、yは14~20である。)
[2]前記一方の端部がp型半導体部であり、前記他方の端部がn型半導体部であり、前記p型半導体部及び前記n型半導体部が接合している、[1]に記載の半導体結晶。
[3]前記クラスレート化合物が、下記式(II)で表される化合物を含む、[1]又は[2]に記載の半導体結晶。
AxDyE1 46-y-zSiz (II)
(式(II)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、E1は、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7~8であり、yは14~20であり、zは0~23である。)
[4]前記一方の端部が下記式(III)で表されるクラストレート化合物を含むp型半導体部であり、前記他方の端部が下記式(IV)で表されるクラストレート化合物を含むn型半導体部である、[1]に記載の半導体結晶。
AxDyE2 46-y-z1Siz1 (III)
(式(III)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、E2は、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7~8であり、yは14~20であり、z1は0以上4未満である。)
AxDyE1 46-y-z2Siz2 (IV)
(式(IV)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、E1は、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7~8であり、yは14~20であり、z2は3~23である。ただし、z2は前記式(III)におけるz1よりも大きい。)
[5]前記一方の端部における前記yの値と、前記他方の端部における前記yの値との差が、0.01~4.0である、[1]~[4]のいずれか1つに記載の半導体結晶。
[6]前記式(I)において、AはBaである、[1]~[5]のいずれか1つに記載の半導体結晶。
[7]前記式(I)において、DはGaである、[1]~[6]のいずれか1つに記載の半導体結晶。
[8]前記式(I)において、EはGe及びSiからなる群より選ばれる少なくとも1種の元素である、[1]~[7]のいずれか1つに記載の半導体結晶。
[9]単結晶及び多結晶のいずれかである、[1]~[8]のいずれか1つに記載の半導体結晶。
[10]下記式(V)で表されるクラスレート化合物を含む、[1]~[9]のいずれか1つに記載の半導体結晶。
BaxDyGe46-y-zSiz (V)
(式(V)中、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、xは7~8であり、yは14~20であり、zは0~23である。)
[11]下記式(VI)で表されるクラスレート化合物を含む、[1]~[10]のいずれか1つに記載の半導体結晶。
BaxGayGe46-y-zSiz (VI)
(式(VI)中、xは7~8であり、yは14~20であり、zは0~23である。)
[12][1]~[11]のいずれか1つに記載の半導体結晶を加熱して発電する発電方法。
[13][1]~[11]のいずれか1つに記載の半導体結晶を備える赤外線検出器。
AxDyE46-y (I)
ここで、式(I)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Si、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7~8であり、yは14~20である。一方の端部におけるyの値と、他方の端部におけるyの値との差は、本発明の作用効果をより有効かつ確実に奏する観点から、0.01以上であると好ましく、0.02以上であるとより好ましく、0.1以上であると更に好ましい。同様に、本発明の作用効果をより有効かつ確実に奏する観点から、それらのyの値の差は4.0以下であると好ましく、2.0以下であるとより好ましく、1.0以下であると更に好ましい。それらのyの値の差は、0.01~4.0であると好ましく、0.02~2.0であるとより好ましく、0.1~1.0であると更に好ましい。
AxDyE1 46-y-zSiz (II)
ここで、式(II)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、E1は、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7~8であり、yは14~20であり、zは0~23である。A元素はBaであると好ましい。また、D元素は、B、Ga及びInからなる群より選ばれる少なくとも1種の元素であると好ましく、E1は、Geであると好ましい。yは、14~18であると好ましく、zは0~15であると好ましい。これらにより、半導体結晶は、本発明による作用効果をより有効かつ確実に奏することができる。
BaxDyGe46-y-zSiz (V)
BaxGayGe46-y-zSiz (VI)
ここで、式(V)及び(VI)中、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、B、Ga及びInからなる群より選ばれる少なくとも1種の元素であると好ましい。xは7~8であり、yは14~20であり、zは0~23である。yは、14~18であると好ましく、zは0~15であると好ましく、zの下限は0であってもよい。これらにより、半導体結晶は、本発明による作用効果をより有効かつ確実に奏することができる。
AxDyE2 46-y-z1Siz1 (III)
ここで、式(III)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Baであると好ましく、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、B、Ga及びInからなる群より選ばれる少なくとも1種の元素であると好ましく、Gaであるとより好ましく、E2は、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示し、Geであると好ましい。xは7~8であり、yは14~20であり、z1は0以上4未満である。
AxDyE1 46-y-z2Siz2 (IV)
ここで、式(IV)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Baであると好ましく、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、B、Ga及びInからなる群より選ばれる少なくとも1種の元素であると好ましく、Gaであるとより好ましく、E1は、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示し、Geであると好ましい。xは7~8であり、yは14~20であり、z2は3~23である。ただし、p型半導体部における組成とn型半導体部における組成とは、互いに異なるものであり、上記式(IV)におけるz2は、上記式(III)におけるz1よりも大きい。これらにより、半導体結晶は、本発明による作用効果をより有効かつ確実に奏することができる。
<アーク溶融法によるクラスレート化合物の調製>
市販のBa粉末、Ga粉末、Ge粉末、及びSi粉末(いずれも高純度品)を準備した。これらの粉末を、Ba:Ga:Ge:Si=8:18:20:8(モル比)となるように秤量した。秤量した各粉末をCuモールドに収容して、チャンバー内に載置した。チャンバー内をアルゴンガスで置換した後、アーク溶融法によって約2000℃に加熱し、Cuモールド内の粉末を溶融させた。その後、得られた融液を冷却した。このようにして、クラスレート化合物(Ba8Ga18Ge20Si8)のインゴットを得た。また、上記と同様にして、原料の粉末をBa:Ga:Ge=8:18:28(モル比)となるように秤量した後、上記と同様にして、クラスレート化合物(Ba8Ga18Ge28)のインゴットを得た。
得られた2種の上記クラスレート化合物のインゴットをそれぞれ粉砕して粉状にした。それらを円柱状の成形体が得られるような形状を有するグラファイトダイに、下層と上層に分けて充填した。充填後のグラファイトダイをスパークプラズマ焼結装置のチャンバー内の所定位置に設置し、チャンバー内を高真空(2Pa)にした。次いで、グラファイトダイ内を50MPaに加圧しながら750℃に加熱し、その条件で5分間維持することによって、グラファイトダイ内のクラスレート化合物を焼結した。こうして、2種の上記クラスレート化合物が接合した円柱状の半導体(直径20mm、高さ20mm)を得た。
次いで、得られた半導体を真空炉内に収容し、高真空下(10-3~10-2Pa)で900℃に加熱し、その半導体に対して10時間アニールを施した。こうして、半導体多結晶を得た。
半導体多結晶における互いに異なるクラスレート化合物からなる両端部に、それぞれ導線を接続し、加熱してその両端部の電位差を測定した。このとき、両端部に温度差が生じないように調整しながら加熱した。半導体多結晶の温度変化に伴う電圧変化の測定結果を図4に示す。図4に示すとおり、半導体多結晶の両端部の間に温度差がないにもかかわらず、所定の温度以上に加熱することによって、電位差が生じることが確認された。
市販のBa粉末、Ga粉末、Ge粉末、及びSi粉末(いずれも高純度品)を準備した。これらの粉末を、Ba:Ga:Ge:Si=8:18:23:5(モル比)となるように秤量した。秤量した各粉末を実施例1と同様にして、アーク溶融法で溶融させ、得られた融液を冷却した。このようにして、クラスレート化合物(Ba8Ga18Ge23Si5)のインゴットを得た。また、上記と同様にして、原料の粉末をBa:Ga:Ge=8:18:28(モル比)となるように秤量した後、上記と同様にして、クラスレート化合物(Ba8Ga18Ge28)のインゴットを得た。
市販のBa粉末、Ga粉末、Ge粉末、及びSi粉末(いずれも高純度品)を準備した。これらの粉末を、Ba:Ga:Ge:Si=8:18:17:11(モル比)となるように秤量した。秤量した各粉末を実施例1と同様にして、アーク溶融法で溶融させ、得られた融液を冷却した。このようにして、クラスレート化合物(Ba8Ga18Ge17Si11)のインゴットを得た。また、上記と同様にして、原料の粉末をBa:Ga:Ge=8:18:28(モル比)となるように秤量した後、上記と同様にして、クラスレート化合物(Ba8Ga18Ge28)のインゴットを得た。
Claims (13)
- 下記式(I)で表されるクラスレート化合物を含む半導体結晶であって、
一方の端部と他方の端部との間で、少なくとも1種の元素の濃度に差がある、半導体結晶。
AxDyE46-y (I)
(式(I)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、Eは、Si、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7~8であり、yは14~20である。) - 前記一方の端部がp型半導体部であり、前記他方の端部がn型半導体部であり、前記p型半導体部及び前記n型半導体部が接合している、請求項1に記載の半導体結晶。
- 前記クラスレート化合物が、下記式(II)で表される化合物を含む、請求項1又は2に記載の半導体結晶。
AxDyE1 46-y-zSiz (II)
(式(II)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、E1は、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7~8であり、yは14~20であり、zは0~23である。) - 前記一方の端部が下記式(III)で表されるクラストレート化合物を含むp型半導体部であり、前記他方の端部が下記式(IV)で表されるクラストレート化合物を含むn型半導体部である、請求項1に記載の半導体結晶。
AxDyE2 46-y-z1Siz1 (III)
(式(III)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、E2は、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7~8であり、yは14~20であり、z1は0以上4未満である。)
AxDyE1 46-y-z2Siz2 (IV)
(式(IV)中、Aは、Ba、Na、Sr及びKからなる群より選ばれる少なくとも1種の元素を示し、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、E1は、Ge及びSnからなる群より選ばれる少なくとも1種の元素を示す。xは7~8であり、yは14~20であり、z2は3~23である。ただし、z2は前記式(III)におけるz1よりも大きい。) - 前記一方の端部における前記yの値と、前記他方の端部における前記yの値との差が、0.01~4.0である、請求項1~4のいずれか1項に記載の半導体結晶。
- 前記式(I)において、AはBaである、請求項1~5のいずれか1項に記載の半導体結晶。
- 前記式(I)において、DはGaである、請求項1~6のいずれか1項に記載の半導体結晶。
- 前記式(I)において、EはGe及びSiからなる群より選ばれる少なくとも1種の元素である、請求項1~7のいずれか1項に記載の半導体結晶。
- 単結晶及び多結晶のいずれかである、請求項1~8のいずれか1項に記載の半導体結晶。
- 下記式(V)で表されるクラスレート化合物を含む、請求項1~9のいずれか1項に記載の半導体結晶。
BaxDyGe46-y-zSiz (V)
(式(V)中、Dは、B、Ga及びInからなる群より選ばれる少なくとも1種の元素を示し、xは7~8であり、yは14~20であり、zは0~23である。) - 下記式(VI)で表されるクラスレート化合物を含む、請求項1~10のいずれか1項に記載の半導体結晶。
BaxGayGe46-y-zSiz (VI)
(式(VI)中、xは7~8であり、yは14~20であり、zは0~23である。) - 請求項1~11のいずれか1項に記載の半導体結晶を加熱して発電する発電方法。
- 請求項1~11のいずれか1項に記載の半導体結晶を備える赤外線検出器。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/478,752 US10811584B2 (en) | 2017-01-19 | 2018-01-16 | Semiconductor crystal and power generation method |
EP18741631.8A EP3573116B1 (en) | 2017-01-19 | 2018-01-16 | Semiconductor crystal and power generation method |
CN201880005841.8A CN110168758B (zh) | 2017-01-19 | 2018-01-16 | 半导体晶体和发电方法 |
KR1020197012949A KR102421839B1 (ko) | 2017-01-19 | 2018-01-16 | 반도체 결정 및 발전 방법 |
JP2018563335A JP6963755B2 (ja) | 2017-01-19 | 2018-01-16 | 半導体結晶及び発電方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-007728 | 2017-01-19 | ||
JP2017007728 | 2017-01-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018135486A1 true WO2018135486A1 (ja) | 2018-07-26 |
Family
ID=62909115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/001015 WO2018135486A1 (ja) | 2017-01-19 | 2018-01-16 | 半導体結晶及び発電方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10811584B2 (ja) |
EP (1) | EP3573116B1 (ja) |
JP (1) | JP6963755B2 (ja) |
KR (1) | KR102421839B1 (ja) |
CN (1) | CN110168758B (ja) |
WO (1) | WO2018135486A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6188011B1 (en) * | 1998-01-20 | 2001-02-13 | Marlow Industries, Inc. | Thermoelectric materials fabricated from clathrate compounds and other materials which form an inclusion complex and method for optimizing selected thermoelectric properties |
JP2007051345A (ja) * | 2005-08-18 | 2007-03-01 | Yamaguchi Univ | クラスレート化合物及びそれを用いた熱電変換素子 |
JP2007103580A (ja) * | 2005-10-03 | 2007-04-19 | Toyota Motor Corp | 熱電変換素子及びその製造方法 |
JP2015038984A (ja) * | 2013-07-18 | 2015-02-26 | 株式会社デンソー | 熱電変換材料及びその製造方法 |
WO2015039161A1 (de) * | 2013-09-20 | 2015-03-26 | Technische Universität Wien | Intermetallische clathratverbindungen |
WO2015125823A1 (ja) | 2014-02-18 | 2015-08-27 | 国立大学法人九州大学 | 半導体単結晶、及びこれを用いた発電方法 |
JP2017007728A (ja) | 2015-06-25 | 2017-01-12 | 大阪シーリング印刷株式会社 | 包装箱 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2228823B (en) * | 1988-11-16 | 1992-04-22 | George Lawrence Jones | Thermo-electric generators and heat pumps |
US6103403A (en) * | 1997-05-15 | 2000-08-15 | University Of Kentucky Research Foundation Intellectual Property Development | Clathrate structure for electronic and electro-optic applications |
WO1999022410A1 (en) * | 1997-10-24 | 1999-05-06 | Sumitomo Special Metals Co., Ltd. | Thermoelectric transducing material and method of producing the same |
US6169245B1 (en) * | 1998-05-05 | 2001-01-02 | Marlow Industries, Inc. | Thermoelectric materials ternary penta telluride and selenide compounds |
WO2000017104A1 (en) * | 1998-09-24 | 2000-03-30 | Arizona Board Of Regents | Method of making silicon clathrates |
EP1074512B1 (en) * | 1999-08-03 | 2017-02-15 | IHI Corporation | Clathrate compounds, manufacture thereof, and thermoelectric materials, thermoelectric modules, semiconductor materials and hard materials based thereon |
JP2005217310A (ja) * | 2004-01-30 | 2005-08-11 | Toyota Motor Corp | クラスレート化合物、熱電変換素子及びその製造方法 |
EP2662466A3 (en) * | 2004-04-21 | 2014-08-06 | Showa Denko K.K. | Process for producing thermoelectric semiconductor alloy, thermoelectric conversion module, thermoelectric power generating device, rare earth alloy, producing process thereof, thermoelectric conversion material, and thermoelectric conversion system using filled skutterudite based alloy |
JP2006253291A (ja) * | 2005-03-09 | 2006-09-21 | Toyota Motor Corp | 熱電材料 |
AT10749U1 (de) * | 2008-05-21 | 2009-09-15 | Univ Wien Tech | Verfahren zur herstellung von clathratverbindungen |
CN101393959B (zh) * | 2008-11-07 | 2012-04-11 | 中国科学院上海硅酸盐研究所 | 一种笼型化合物 |
US8097802B2 (en) * | 2009-05-01 | 2012-01-17 | GM Global Technology Operations LLC | Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure |
JP4976566B2 (ja) * | 2010-07-08 | 2012-07-18 | 古河電気工業株式会社 | クラスレート化合物および熱電変換材料ならびに熱電変換材料の製造方法 |
JP2015039161A (ja) | 2013-07-19 | 2015-02-26 | 株式会社Jvcケンウッド | スピーカ用磁気回路 |
CN105308766B (zh) * | 2013-10-04 | 2017-12-05 | 株式会社Lg化学 | 新化合物半导体及其用途 |
-
2018
- 2018-01-16 WO PCT/JP2018/001015 patent/WO2018135486A1/ja unknown
- 2018-01-16 KR KR1020197012949A patent/KR102421839B1/ko active IP Right Grant
- 2018-01-16 EP EP18741631.8A patent/EP3573116B1/en active Active
- 2018-01-16 JP JP2018563335A patent/JP6963755B2/ja active Active
- 2018-01-16 US US16/478,752 patent/US10811584B2/en active Active
- 2018-01-16 CN CN201880005841.8A patent/CN110168758B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6188011B1 (en) * | 1998-01-20 | 2001-02-13 | Marlow Industries, Inc. | Thermoelectric materials fabricated from clathrate compounds and other materials which form an inclusion complex and method for optimizing selected thermoelectric properties |
JP2007051345A (ja) * | 2005-08-18 | 2007-03-01 | Yamaguchi Univ | クラスレート化合物及びそれを用いた熱電変換素子 |
JP2007103580A (ja) * | 2005-10-03 | 2007-04-19 | Toyota Motor Corp | 熱電変換素子及びその製造方法 |
JP2015038984A (ja) * | 2013-07-18 | 2015-02-26 | 株式会社デンソー | 熱電変換材料及びその製造方法 |
WO2015039161A1 (de) * | 2013-09-20 | 2015-03-26 | Technische Universität Wien | Intermetallische clathratverbindungen |
WO2015125823A1 (ja) | 2014-02-18 | 2015-08-27 | 国立大学法人九州大学 | 半導体単結晶、及びこれを用いた発電方法 |
JP2017007728A (ja) | 2015-06-25 | 2017-01-12 | 大阪シーリング印刷株式会社 | 包装箱 |
Non-Patent Citations (2)
Title |
---|
OKAMOTO, L. NORIHIKO ET AL.: "Crystal structure and thermoelectric properties of type-I clathrate compounds in the Ba-Ga-Ge system", JOURNAL OF APPLIED PHYSICS, vol. 100, no. 7, 3 October 2006 (2006-10-03), pages 73504 - 073504-10, XP012090146 * |
See also references of EP3573116A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3573116A1 (en) | 2019-11-27 |
CN110168758B (zh) | 2022-09-30 |
US10811584B2 (en) | 2020-10-20 |
CN110168758A (zh) | 2019-08-23 |
KR102421839B1 (ko) | 2022-07-15 |
JPWO2018135486A1 (ja) | 2019-11-07 |
EP3573116A4 (en) | 2019-12-25 |
EP3573116B1 (en) | 2020-11-04 |
US20190341539A1 (en) | 2019-11-07 |
JP6963755B2 (ja) | 2021-11-10 |
KR20190103144A (ko) | 2019-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10468577B2 (en) | Method for manufacturing magnesium-based thermoelectric conversion material, method for manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric conversion device | |
KR101616109B1 (ko) | 열전재료 및 칼코게나이드 화합물 | |
JP2005072391A (ja) | N型熱電材料及びその製造方法並びにn型熱電素子 | |
WO2015125823A1 (ja) | 半導体単結晶、及びこれを用いた発電方法 | |
KR100910158B1 (ko) | Sn 충진 및 Te 도핑된 스커테루다이트계 열전재료 및그 제조방법 | |
KR20110016113A (ko) | In-Co-Ni-Sb 계 스커테루다이트 열전재료 및 그 제조방법 | |
EP2662331A2 (en) | Thermoelectric material, and thermoelectric module and thermoelectric apparatus including the thermoelectric material | |
KR20110016115A (ko) | In-Co-Fe-Sb 계 스커테루다이트 열전재료 및 그 제조방법 | |
JP2009277735A (ja) | 熱電材料の製造方法 | |
JP2013016685A (ja) | 熱電変換材料、熱電変換素子およびその作製方法 | |
CN108886080B (zh) | 化合物、热电转换材料及化合物的制造方法 | |
An et al. | Enhancement of p-type thermoelectric properties in an Mg 2 Sn system | |
US20030168094A1 (en) | Thermoelectric material and process for manufacturing the same | |
KR20170055413A (ko) | P형 스커테루다이트 열전재료, 이의 제조 방법 및 이를 포함하는 열전 소자 | |
KR20140065721A (ko) | 열전재료, 이를 포함하는 열전소자 및 열전장치, 및 이의 제조방법 | |
CN112397634B (zh) | 一种提升Bi-Sb-Te基热电材料性能的方法 | |
KR101959448B1 (ko) | 열전재료, 상기 열전재료를 이용한 열전소자 및 그 제조방법 | |
KR102409289B1 (ko) | 마그네슘계 열전 변환 재료, 마그네슘계 열전 변환 소자, 및 마그네슘계 열전 변환 재료의 제조 방법 | |
WO2018135486A1 (ja) | 半導体結晶及び発電方法 | |
Bagieva et al. | Influence of structural defects on the thermal conductivity of polycrystalline and single-crystal PbTe | |
US20200381606A1 (en) | Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module | |
JP2003031860A (ja) | 熱電材料および熱電変換モジュール | |
KR101322779B1 (ko) | 비스무스가 도핑된 규화마그네슘 열전재료용 조성물 및 그 제조방법 | |
KR20160137848A (ko) | 열전재료, 이를 포함하는 열전모듈 및 열전장치 | |
KR20170082982A (ko) | P형 스커테루다이트 열전재료 및 이를 포함하는 열전 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18741631 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197012949 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018563335 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018741631 Country of ref document: EP Effective date: 20190819 |