WO2018131603A1 - ロータリージョイント及び遠心分離装置 - Google Patents

ロータリージョイント及び遠心分離装置 Download PDF

Info

Publication number
WO2018131603A1
WO2018131603A1 PCT/JP2018/000329 JP2018000329W WO2018131603A1 WO 2018131603 A1 WO2018131603 A1 WO 2018131603A1 JP 2018000329 W JP2018000329 W JP 2018000329W WO 2018131603 A1 WO2018131603 A1 WO 2018131603A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
flow path
liquid
shaft
shaft body
Prior art date
Application number
PCT/JP2018/000329
Other languages
English (en)
French (fr)
Inventor
伸彦 加藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020197019843A priority Critical patent/KR20190094210A/ko
Priority to CN201880006437.2A priority patent/CN110192059A/zh
Priority to EP18739380.6A priority patent/EP3569913B1/en
Priority to JP2018561386A priority patent/JP6706692B2/ja
Publication of WO2018131603A1 publication Critical patent/WO2018131603A1/ja
Priority to US16/505,941 priority patent/US11135600B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/02Continuous feeding or discharging; Control arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/02Centrifuges consisting of a plurality of separate bowls rotating round an axis situated between the bowls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/08Adjustable joints, Joints allowing movement allowing adjustment or movement only about the axis of one pipe
    • F16L27/087Joints with radial fluid passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L39/00Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
    • F16L39/06Joints or fittings for double-walled or multi-channel pipes or pipe assemblies of the multiline swivel type, e.g. comprising a plurality of axially mounted modules

Definitions

  • the present invention relates to a rotary joint and a centrifugal separator that discharge and discharge liquid to and from a container that is swung around a rotation axis.
  • the rotary joint includes a shaft body and a cylindrical body through which the shaft body is inserted so as to be rotatable relative to the shaft body.
  • the shaft body is provided with a flow path extending in the axial direction inside the shaft body. Is provided with a flow path penetrating the cylindrical body from the inner peripheral surface to the outer peripheral surface of the cylindrical body, and an annular flow path is provided between the outer peripheral surface of the shaft body and the inner peripheral surface of the cylindrical body. Yes.
  • the flow path of the shaft body and the flow path of the cylindrical body are kept in communication with each other via an annular flow path between the shaft body and the cylindrical body, regardless of relative rotation between the shaft body and the cylindrical body. It is.
  • the cylinder is fixedly mounted, for example, by being fixed to a gantry of a centrifugal separator, and the shaft is rotated integrally with the container (see, for example, Patent Document 1).
  • the shaft body may be installed immovably and the cylinder body may be rotated integrally with the container (see, for example, Patent Document 2).
  • the flow path of the shaft body of the rotary joint extends in the axial direction inside the shaft body, and when the shaft body is rotated, centrifugal force due to the rotation of the shaft body acts on the liquid flowing through the flow path of the shaft body.
  • the dispersoid contained in the liquid may remain in the flow path of the shaft body.
  • the stay of the dispersoid in the flow path of the shaft body is alleviated.
  • the flow path of the cylindrical body extends through the cylindrical body from the inner peripheral surface to the outer peripheral surface of the cylindrical body, that is, extends in the direction of the centrifugal force, the dispersion in the flow path of the cylindrical body Quality retention can also be suppressed.
  • the peripheral speed of the cylindrical body is larger than the peripheral speed of the shaft body, and flows into the flow path of the cylindrical body from the annular flow path between the shaft body and the cylindrical body, or from the flow path of the cylindrical body to the shaft body and the cylindrical body. There is a risk that a relatively large shear may act on the liquid flowing into the annular flow path between the body and the body. For this reason, we are anxious about the damage of the dispersoid contained in a liquid.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a rotary joint and a centrifugal separator that can suppress retention and damage of dispersoids contained in a liquid.
  • the rotary joint of one embodiment of the present invention is a rotary joint that discharges and discharges liquid to and from a container that is swung around a rotation axis, and the shaft body that is fixedly installed, the shaft body is inserted, and the shaft A cylindrical body that rotates together with the container around the body, and is provided inside the shaft body.
  • the shaft-side supply channel having an opening on the outer peripheral surface of the shaft body, and the shaft body.
  • a shaft-side discharge passage having openings at different positions spaced apart in the axial direction of the shaft body on the outer peripheral surface of the shaft body, and an inner peripheral surface of the cylindrical body.
  • a cylinder-side supply channel that is provided so as to penetrate the cylindrical body from the outer periphery to the opening of the shaft-side supply channel and overlaps the axial direction of the shaft. It is provided through the cylinder from the inner circumference to the outer circumference of the cylinder.
  • a supply communication flow path for communicating the shaft side supply flow path and the cylinder side supply flow path, an outer peripheral surface of the shaft body, and an inner peripheral surface of the cylindrical body
  • a cylinder-side supply flow path including a discharge communication flow path that communicates the shaft-side discharge flow path and the cylinder-side discharge flow path.
  • the discharge flow path is a rotation of the cylindrical body with respect to a radial direction extending from the shaft body through a connection portion between the cylinder side discharge flow path and the discharge communication flow path.
  • the centrifugal separator includes the rotary joint, the liquid supply / discharge portion to be processed connected to the shaft-side supply channel and the shaft-side discharge channel of the rotary joint, and the rotary joint.
  • a centrifuge container connected to the cylinder side supply channel and the cylinder side discharge channel, the cylinder of the rotary joint, and the centrifuge container are held, and the cylinder is rotated around the shaft body of the rotary joint.
  • a drive unit that rotates and rotates the centrifuge container around the shaft body, and supplies and discharges the liquid to be processed between the liquid to be processed and the centrifuge container through the rotary joint. To do.
  • FIG. 1 shows an example of a centrifuge for explaining an embodiment of the present invention.
  • the centrifuge 1 includes a centrifuge container 2, a drive unit 3 that rotates the centrifuge container 2 about the rotation axis X, and a liquid to be processed that supplies and discharges the liquid to be processed to the centrifuge centrifuge 2.
  • the driving unit 3 includes a gantry 10, a rotary table 11 supported by the gantry 10 so as to be rotatable around the rotation axis X, and a motor 12 that rotates the rotary table 11.
  • the centrifuge container 2 is installed on the rotary table 11 at a location separated from the rotary axis X, and is rotated around the rotary axis X when the rotary table 11 is rotated by the motor 12.
  • the number and location of the centrifuge containers 2 are not particularly limited, but typically, a plurality of centrifuge containers 2 (two centrifuge containers 2 in the illustrated example) are rotating shafts as in the illustrated example. Installed at equal intervals in the circumferential direction centered on X.
  • the liquid supply / discharge section 4 to be processed and the rotary joint 5 are connected by a liquid supply pipe 6A and a liquid supply pipe 6B, and the rotary joint 5 and each centrifugal container 2 are connected by a liquid supply pipe 7A and a liquid supply pipe 7B.
  • a liquid to be processed including the dispersoid is supplied from the liquid supply / discharge section 4 to the centrifuge container 2 through the rotary joint 5.
  • the dispersoid contained in the liquid to be treated supplied to the centrifuge container 2 is separated under the action of the centrifugal force caused by the rotation of the centrifuge container 2.
  • the remaining liquid to be processed from which the dispersoid has been removed is discharged from the centrifuge container 2 to the liquid to be processed supply / discharge section 4 via the rotary joint 5.
  • FIG. 2 shows the structure of the rotary joint 5.
  • the rotary joint 5 includes a shaft body 20 disposed on the rotation axis X and a cylindrical body 21 through which the shaft body 20 is inserted so as to be rotatable relative to the shaft body 20.
  • the shaft body 20 is fixedly mounted by being fixed to the gantry 10 (see FIG. 1).
  • the cylindrical body 21 is fixed to the rotary table 11 (see FIG. 1), and is rotated integrally with the centrifuge container 2 installed on the rotary table 11.
  • a plurality of bearings 22 are arranged at different positions in the axial direction between the stationary shaft body 20 and the rotating cylinder body 21, and the cylinder body 21 is rotatably supported by these bearings 22.
  • the two bearings 22 are disposed between the upper end portion of the cylindrical body 21 and the shaft body 20 and between the lower end portion of the cylindrical body 21 and the shaft body 20.
  • the arrangement location is not particularly limited.
  • the bearing 22 may be a rolling bearing, a sliding bearing, a sliding bearing that requires oil or grease when it is a sliding bearing, or an oil-free bearing. Although it may be a bearing, it is preferably an oil-free bearing.
  • autoclave high pressure steam sterilization
  • autoclave high pressure steam sterilization
  • the shaft body 20 is provided with a shaft-side supply passage 30 and a shaft-side discharge passage 31 that extend in the axial direction inside the shaft body 20.
  • An opening 30 a on one end side of the shaft-side supply flow path 30 is formed on the outer surface of the shaft body 20 exposed outside the cylindrical body 21, and the opening 30 b on the other end side is located between the two bearings 22. It is formed on the outer peripheral surface of the shaft body 20.
  • An opening 31 a on one end side of the shaft-side discharge channel 31 is formed on the upper end surface of the shaft body 20, and the opening 31 b on the other end side is formed on the outer peripheral surface of the shaft body 20 located between the two bearings 22.
  • the shaft body 20 is formed at a different position on the outer peripheral surface of the shaft body 20 and spaced apart from the opening 30b of the shaft-side supply flow path 30 in the axial direction.
  • a liquid supply pipe 6 ⁇ / b> A communicating with the liquid supply / discharge section 4 to be processed is connected to the opening 30 a of the shaft-side supply flow path 30 formed on the upper end surface of the shaft body 20, and the opening 31 a of the shaft-side discharge flow path 31 is connected to the opening 31 a. Is connected to a liquid supply pipe 6B leading to the liquid supply / discharge section 4 to be processed.
  • the cylinder body 21 is provided with a cylinder-side supply channel 32 and a cylinder-side discharge channel 33 that penetrate the cylinder body 21 from the inner peripheral surface to the outer peripheral surface of the cylinder body 21.
  • the cylinder-side supply flow path 32 is disposed at a position overlapping the opening 30b of the shaft-side supply flow path 30 in the axial direction, and the cylinder-side discharge flow path 33 is aligned with the opening 31b of the shaft-side discharge flow path 31 in the axial direction. It is arranged at the overlapping position.
  • a liquid feed pipe 7A communicating with the centrifuge container 2 is connected to the opening 32a of the cylinder side supply channel 32 formed on the outer peripheral surface of the cylinder 21, and a centrifuge is connected to the opening 33a of the cylinder side discharge channel 33.
  • a liquid feeding pipe 7B leading to the separation container 2 is connected.
  • a supply communication channel 34 is provided between the outer peripheral surface of the shaft body 20 and the inner peripheral surface of the cylinder body 21 at a position overlapping the opening 30b of the shaft side supply channel 30 and the cylinder side supply channel 32 in the axial direction. It has been.
  • the supply communication flow path 34 is provided in an annular shape centering on the shaft body 20, and the shaft side supply flow path 30 and the cylinder side supply flow path 32 are supplied communication flow paths regardless of the rotation of the cylinder body 21. 34 are maintained in communication with each other.
  • the discharge communication flow path 35 is located at a position overlapping the opening 31 b of the shaft side discharge flow path 31 and the cylinder side discharge flow path 33 in the axial direction between the outer peripheral surface of the shaft body 20 and the inner peripheral surface of the cylinder body 21. Is provided.
  • the discharge communication channel 35 is provided in an annular shape centering on the shaft body 20, and the shaft side discharge channel 31 and the cylinder side discharge channel 33 are the discharge communication channel regardless of the rotation of the cylinder body 21. The state of being in communication with each other via 35 is maintained.
  • the supply communication channel 34 and the discharge communication channel 35 are formed by annular recesses provided on the inner peripheral surface of the cylinder 21.
  • a plurality of seal members 23 are provided between the shaft body 20 and the cylinder body 21, and a supply communication flow path 34, a discharge communication flow path 35 provided between the shaft body 20 and the cylinder body 21, and The two bearings 22 are isolated from each other by these seal members 23.
  • the seal member 23 may be, for example, a so-called mechanical seal configured by a sliding contact ring being fixed to each of the shaft body 20 and the cylindrical body 21 and the two sliding contact rings being in sliding contact with each other.
  • a so-called lip seal may be used in which the annular lip is in sliding contact with the outer peripheral surface of the shaft body 20.
  • the liquid to be processed supplied from the liquid supply / discharge section 4 (see FIG. 1) first flows into the shaft-side supply flow path 30 through the opening 30a of the shaft-side supply flow path 30, and then passes through the supply communication flow path 34. Then, it flows into the cylinder side supply flow path 32 and is sent out from the cylinder side supply flow path 32 to the centrifuge container 2. Further, the liquid to be treated discharged from the centrifuge container 2 first flows into the cylinder-side discharge channel 33 through the opening 33a of the cylinder-side discharge channel 33, and then passes through the discharge communication channel 35 to the shaft-side discharge channel. 31 and flows out from the shaft-side discharge flow path 31 to the liquid supply / discharge section 4 to be processed. While the liquid to be processed is supplied to and discharged from the centrifuge container 2 via the rotary joint 5, the cylindrical body 21 is rotated integrally with the centrifuge container 2 in a certain direction.
  • the centrifugal force does not act on the liquid to be processed flowing through the shaft-side supply passage 30 and the shaft-side discharge passage 31 of the shaft body 20.
  • retention of the dispersoid contained in the liquid to be processed in the shaft-side supply flow path 30 is suppressed.
  • the liquid to be processed flowing in the shaft-side discharge channel 31 is the remaining liquid to be processed from which the dispersoid has been removed by the centrifuge container 2, but for example, a dispersion liquid in which the separated dispersoid is dispersed is used.
  • the cylinder-side supply channel 32 and the cylinder-side discharge channel 33 of the rotating cylinder 21 extend through the cylinder 21 from the inner peripheral surface to the outer peripheral surface of the cylinder 21, that is, centrifugal Since it extends in the direction in which the force acts, retention of the dispersoid in the cylinder-side supply flow path 32 and the cylinder-side discharge flow path 33 is also suppressed.
  • the centrifugal force does not act on the liquid to be processed flowing through the shaft-side supply flow path 30 and the shaft-side discharge flow path 31 of the shaft body 20, the load acting on the shaft body 20 is reduced, and the small diameter of the shaft body 20 is reduced.
  • the seal member 23 is a lip seal, the relative peripheral speed of the lip that is in sliding contact with the outer peripheral surface of the shaft body 20 is reduced by reducing the diameter of the shaft body 20, thereby enabling faster rotation. Can also be supported.
  • FIG. 3 shows the configuration of the shaft-side supply channel 30, the cylinder-side supply channel 32, and the supply communication channel 34.
  • the cylinder-side supply flow path 32 for sending the liquid to be processed toward the centrifuge container 2 is a radial direction centering on the shaft body 20, and is a connection portion between the cylinder-side supply flow path 32 and the supply communication flow path 34. Inclined in the P1 direction opposite to the rotational direction Y of the cylindrical body 21 with respect to the radial direction R1 passing through the center O1, ie, the center O1 of the opening 32b of the cylindrical side supply flow path 32 formed on the inner peripheral surface of the cylindrical body 21 Has been.
  • FIG. 4 and 5 schematically show the behavior of the liquid to be processed flowing from the supply communication flow path 34 into the cylinder side supply flow path 32.
  • FIG. 4 shows that the cylinder side supply flow path 32 is in the radial direction R1.
  • 5 shows the behavior of the liquid to be processed when it is assumed that the cylinder side supply flow path 32 is inclined in the direction opposite to the rotation direction Y of the cylinder body 21 with respect to the radial direction R1. Shows the behavior of the liquid to be treated.
  • the flow direction of the liquid to be processed flowing into the cylinder-side supply flow path 32 through the opening 32b from the supply communication flow path 34 is approximately 90 °. For this reason, relatively strong shearing acts on the liquid to be processed in the vicinity of the opening 32b.
  • the liquid to be processed is supplied to the cylinder side supply channel 32 according to the rotation of the cylinder 21. Flows smoothly. Thereby, the shear which acts on a to-be-processed liquid in the vicinity of the opening 32b is relieved, and the damage of the dispersoid contained in a to-be-processed liquid is suppressed.
  • the cylinder-side supply flow path 32 has the outer end E1 of the circle C1 passing through the outer end E1 with the shaft body 20 as the center. It is preferable to extend along the tangent line T1.
  • the liquid to be treated flows into the supply communication channel 34 from the shaft side supply channel 30 through the opening 30b, and the opening 30b is preferably directed toward the supply communication channel 34 as shown in FIGS. It is formed in a taper shape with a gradually increasing cross-sectional area. As a result, the liquid to be processed smoothly flows from the shaft-side supply channel 30 into the annular supply communication channel 34.
  • FIG. 6 shows the configuration of the shaft side discharge channel 31, the cylinder side discharge channel 33, and the discharge communication channel 35.
  • the cylinder side discharge flow path 33 into which the liquid to be treated discharged from the centrifuge container 2 flows is a radial direction centering on the shaft body 20, and is a connection portion between the cylinder side discharge flow path 33 and the discharge communication flow path 35.
  • R2 passing through the center O2 of the opening 33b of the cylinder-side discharge passage 33 formed on the inner peripheral surface of the cylinder 21, and in the same P2 direction as the rotation direction Y of the cylinder 21. ing.
  • FIG. 7 and 8 schematically show the behavior of the liquid to be treated flowing from the cylinder-side discharge channel 33 into the discharge communication channel 35.
  • the cylinder-side discharge channel 33 is assumed to be in the radial direction R2.
  • 5 shows the behavior of the liquid to be processed when it is extended to FIG. 5.
  • FIG. 5 shows the liquid to be processed when the cylinder-side discharge channel 33 is inclined in the rotation direction Y of the cylinder 21 with respect to the radial direction R2. Shows the behavior.
  • the moving direction of the opening 33 b of the cylinder-side discharge flow path 33 moved according to the rotation of the cylinder body 21.
  • the flow direction of the liquid to be processed flowing into the discharge communication flow path 35 from the cylinder side discharge flow path 33 through the opening 33b is approximately 90 °. For this reason, relatively strong shearing acts on the liquid to be treated in the vicinity of the opening 33b. Then, the liquid to be processed that has flowed into the discharge communication channel 35 collides from the front with a portion of the outer peripheral surface of the shaft body 20 that faces the opening 33b.
  • the liquid to be processed is smoothly sent out from the cylinder-side discharge channel 33 according to the rotation of the cylinder 21. It is. Thereby, the shear which acts on a to-be-processed liquid in the vicinity of the opening 33b is relieve
  • the liquid to be processed flowing into the cylinder side discharge channel 33 is the remaining liquid to be processed from which the dispersoid has been removed by the centrifuge container 2.
  • a dispersion liquid in which the separated dispersoid is dispersed is used. When flowing through the cylinder-side discharge flow path 33, damage to the dispersoid contained in the dispersion is suppressed.
  • the cylinder-side discharge flow path 33 has the outer end E2 of the circle C2 passing through the outer end E2 with the shaft body 20 as the center. It is preferable to extend along the tangent line T2.
  • the liquid to be treated flows from the discharge communication channel 35 into the shaft side discharge channel 31 through the opening 31b, and the opening 31b is preferably disconnected toward the discharge communication channel 35 as shown in FIGS. It is formed in a taper shape whose area gradually increases. As a result, the liquid to be treated smoothly flows from the annular discharge communication channel 35 into the shaft side discharge channel 31.
  • FIG. 9 shows the configuration of the centrifuge container 2.
  • the centrifuge container 2 includes a separation unit 40 for separating the dispersoid contained in the liquid to be processed supplied to the centrifuge container 2, a collection unit 41 for collecting the separated dispersoid, and a separation unit 40. And a communication passage 42 that communicates with the recovery unit 41.
  • the separation part 40 is formed in a cylindrical shape in the illustrated example, and the centrifuge container 2 is installed on the turntable 11 (see FIG. 1) in a state where the central axis Z of the separation part 40 is substantially orthogonal to the rotation axis X. Is done.
  • the shape of the separation unit 40 is not limited to a cylindrical shape, and may be, for example, a rectangular tube shape.
  • the installation state of the centrifuge container 2 is not limited to the state in which the central axis Z of the separation unit 40 is substantially orthogonal to the rotation axis X.
  • the centrifuge container 2 may be installed on the rotary table 11 in a state where the central axis Z of the separation unit 40 is inclined in the axial direction of the rotation axis X with respect to a state substantially orthogonal to the rotation axis X.
  • the centrifuge container 2 may be installed on the rotary table 11 in a state where the central axis Z of the separation unit 40 is offset with respect to the rotation axis X without intersecting the rotation axis X.
  • the center axis Z of the separation unit 40 is offset with respect to the rotation axis X, so that the rotary joint 5 disposed on the rotation axis X is avoided, and the separation unit 40 is extended without increasing the size of the centrifugal separator 1.
  • handling of the liquid feeding pipe 7A and the liquid feeding pipe 7B connecting the centrifuge container 2 and the rotary joint 5 is facilitated.
  • the separation unit 40 is provided with a treatment liquid supply port 50 and a treatment liquid discharge port 51.
  • a liquid feed pipe 7 ⁇ / b> A communicating with the cylinder side supply flow path 32 (see FIG. 2) of the rotary joint 5 is connected to the liquid supply port 50 to be processed, while the rotary joint 5 is connected to the liquid discharge port 51 to be processed.
  • a liquid supply pipe 7B that leads to the cylinder side discharge channel 33 (see FIG. 2) is connected.
  • the liquid supply port 50 to be processed is formed in the peripheral wall of the cylindrical separation unit 40, and the separation unit 40 is located farther than the liquid supply port 50 to be processed with respect to the rotation axis X. And a proximal region 53 that is adjacent to the distal region 52 in the axial direction of the separating portion 40 and is located closer to the processing liquid supply port 50 in the axial direction. Further, the liquid outlet 51 to be processed is provided in the proximal region 53.
  • the liquid to be processed supplied to the centrifuge container 2 flows into the separation unit 40 through the liquid supply port 50 to be processed.
  • the dispersoid contained in the liquid to be treated in the separation unit 40 is separated and separated under the action of the centrifugal force caused by the rotation of the centrifuge container 2.
  • the dispersoid is settled in the distal region 52 of the separator 40.
  • the remaining liquid to be treated from which the dispersoid has been removed is collected in the proximal region 53 of the separation unit 40.
  • the remaining liquid to be processed collected in the proximal region 53 is discharged from the separation unit 40 through the liquid discharge outlet 51 as the liquid to be processed further flows into the separation unit 40.
  • the separation unit 40 is provided with a filter 54 for filtering the remaining liquid to be processed flowing into the liquid discharge port 51 to be processed.
  • a filter 54 for filtering the remaining liquid to be processed flowing into the liquid discharge port 51 to be processed.
  • the filter 54 may be omitted when the sedimentation rate of the dispersoid and the flow rate of the liquid to be treated are appropriately adjusted, or when the dispersoid remains in the liquid to be treated.
  • the sedimentation speed of the dispersoid can be adjusted as appropriate depending on, for example, the turning radius of the centrifuge container 2, the turning angular speed of the centrifuge container 2, the viscosity of the liquid to be treated, and the like.
  • the filter 54 is provided in the proximal region 53 of the separation unit 40.
  • the dispersoid that is moved to the proximal region 53 under the action of the centrifugal force is mainly relatively fine particles, and the fine particles are less likely to clog the filter 54 relative to the openings of the filter 54.
  • the flow rate of the liquid to be treated, the sedimentation rate of the dispersoid, and the aperture of the filter 54 are appropriately set so that the dispersoid moved to the proximal region 53 becomes finer particles than the aperture of the filter 54. Is done. Thereby, clogging of the filter 54 is further suppressed.
  • the dispersoid removed from the liquid to be treated by the filter 54 is still subjected to centrifugal force that causes the dispersoid to settle in the distal region 52, and the filter 54 is disposed in the proximal region 53.
  • the dispersoid removed from the liquid to be treated is prevented from adhering to the filter 54, and clogging of the filter 54 is suppressed.
  • the recovery part 41 for recovering the separated dispersoid is arranged on the distal side of the distal region 52 of the separation part 40 where the dispersoid is settled, and the distal region 52 is connected via the communication path 42. Is connected to the distal end 52a. And the collection
  • the dispersoid settled in the distal region 52 of the separation unit 40 is moved through the communication path 42 to the collection unit 41 disposed further to the distal side than the distal region 52 under the action of centrifugal force. Dispersed in the recovery liquid in the recovery unit 41.
  • the communication path 42 is configured to allow the flow of the dispersoid under the action of centrifugal force and to suppress the flow of the liquid to be processed in the separation unit 40 and the recovery liquid in the recovery unit 41.
  • the cross section perpendicular to the longitudinal direction at least the cross-sectional area of the communication path 42 is made smaller than the cross-sectional area of the connection portion between the distal region 52 of the separation part 40 and the communication path 42 of the recovery part 41.
  • the diameter of the communication path 42 is, for example, 1 mm to 2 mm, although it depends on the particle size of the dispersoid.
  • the distal region 52 of the separation part 40 gradually decreases in cross-section toward the communication path 42. It is formed in a tapered shape.
  • the recovered liquid is not particularly limited as long as the dispersoid is dispersible.
  • the recovered liquid may be the same liquid as the mother liquid of the liquid to be treated, or may be a different liquid.
  • the flow of water is not disturbed by the interaction caused by the centrifugal force and the specific gravity of the liquid, that is, the concentration of the collected dispersoid does not cause a rise that affects the recovery of the dispersoid by turbulent flow, and the centrifugal flow What is necessary is just to select suitably according to the rotation speed of a separator, and the density
  • FIG. 10 shows the behavior of the liquid to be processed that is processed by the centrifuge 1.
  • the liquid to be processed is the separation part of the centrifuge container 2.
  • the separation unit 40 is filled with the liquid to be processed.
  • the centrifuge container 2 is installed on the rotary table 11 in a state where the central axis Z of the separation unit 40 is inclined in the axial direction of the rotation axis X with respect to the state substantially orthogonal to the rotation axis X. In addition, it is easy to remove air from the separation unit 40.
  • the centrifuge container 2 is turned around the rotation axis X, and the centrifugal separation of the dispersoid contained in the liquid to be processed is started.
  • the liquid to be processed is supplied to the separation unit 40 continuously or intermittently.
  • the dispersoid is protected by the separation unit 40 being filled with the liquid to be processed before the centrifugal separation is started.
  • the centrifugation is started, the dispersoid contained in the liquid to be processed supplied to the separation unit 40 is settled in the distal region 52 of the separation unit 40.
  • the to-be-processed liquid supply port 50 is formed in the surrounding wall of the cylindrical separation part 40, and at least of the joint part 55 of the to-be-processed liquid supply port 50 to which the liquid feeding pipe 7A is connected and the liquid feeding pipe 7A.
  • a connection portion with the joint portion 55 extends in a direction intersecting with the radial direction about the rotation axis X. For this reason, as shown in FIG. 10, a centrifugal force acts on the liquid to be treated flowing through the joint portion 55 and the connecting portion of the liquid feeding pipe 7A, and the dispersoid contained in the liquid to be treated is treated by this centrifugal force.
  • the liquid supply port 50 to be treated is disposed on the distal side of the center in the central axis direction of the separation portion 40. Is preferred. Thereby, the centrifugal force which acts on the to-be-processed liquid which distribute
  • the dispersoid settled in the distal region 52 is sequentially moved from the distal region 52 through the communication path 42 to the collection unit 41 under the action of centrifugal force.
  • a flow of the liquid to be processed is generated in the separation unit 40. If the dispersoid settled in the distal region 52 continues to be stored in the distal region 52, the dispersoid once settled in the distal region 52 is wound up by the flow of the generated liquid to be treated, If the filter 54 is moved to the proximal region 53 side and is captured by the filter 54 or the filter 54 is omitted, the filter 54 may be discharged through the liquid outlet 51 to be processed.
  • the dispersoid settled in the distal region 52 is sequentially moved to the collection unit 41, so that the dispersoid is prevented from being rolled up by the flow of the liquid to be processed generated in the separation unit 40. Thereby, the separation efficiency of a dispersoid is improved.
  • the dispersoid moved to the recovery unit 41 is stored in the recovery unit 41 in a state of being concentrated in the recovery liquid in the recovery unit 41, and has reached the upper limit amount of the dispersoid that can be stored in the recovery unit 41, for example. By the way, it is recovered together with the recovered liquid. In other words, the centrifugation process can be continued until the upper limit amount is reached.
  • the upper limit amount of the dispersoid that can be stored in the collection unit 41 is related to the volume of the collection unit 41, and the volume (shape) of the collection unit 41 is particularly limited as long as the collection unit 41 is arranged distal to the separation unit 40. Not limited.
  • the recovery unit 41 having an appropriate volume, and work efficiency is improved.
  • the dispersoid and the collected liquid are sucked out of the collecting unit 41 by, for example, a syringe after the centrifuge 2 is stopped and the centrifuge 2 is removed from the rotary table 11 (see FIG. 1) of the centrifuge 1. And recovered.
  • recovery part 41 may be comprised so that attachment or detachment is possible with respect to the isolation
  • 11 and 12 show a modified example of the centrifuge container 2.
  • the dispersoid is also effective to quickly decrease the flow rate of the liquid to be processed flowing into the separation unit 40 and the moving speed of the dispersoid contained in the liquid to be processed. If the liquid to be processed and the dispersoid remain at a speed, the dispersoid may be moved to the proximal region 53 side along the flow of the liquid to be processed.
  • the rectifier 56 is provided in the separation unit 40 in order to quickly reduce the speed of the liquid to be treated and the dispersoid.
  • the rectifier 56 is accommodated across the distal region 52 and the proximal region 53 of the separation unit 40 and is disposed so as to cover the liquid supply port 50 to be processed. And the rectification body 56 is provided along the inner peripheral surface with a gap between the inner peripheral surface of the separating portion 40. As described above, since the distal region 52 is formed in a tapered shape, the rectifying body 56 is also formed in a tapered shape.
  • the liquid to be processed and the dispersoid that have flowed into the separation unit 40 are circulated in the gap between the inner peripheral surface of the separation unit 40 and the outer peripheral surface of the rectifier 56.
  • the flow velocity of the liquid to be processed that flows in the vicinity of the inner peripheral surface of the separation unit 40 and the outer peripheral surface of the rectifier 56 decreases as the surface approaches the surface, and becomes substantially zero on the surface.
  • the flow rate of the liquid to be processed is reduced, and the dispersion contained in the liquid to be processed The quality transfer rate is also reduced and the dispersoid is stably settled in the distal region 52. Thereby, the separation efficiency of a dispersoid is improved.
  • the gap between the inner peripheral surface of the separation part 40 and the outer peripheral surface of the rectifying body 56 is, for example, 1 mm to 5 mm, although it depends on the particle size of the dispersoid.
  • the joint portion 55 of the liquid supply port 50 to be processed covered by the rectifier 56 preferably passes from the central axis Z of the separation unit 40 through the center O3 of the liquid supply port 50 to be processed.
  • the liquid supply port 50 to be processed out of both ends of the liquid supply port 50 to be processed, which is more preferably inclined in the circumferential direction of the separation portion 40 with respect to the extending radial direction R3.
  • One end located on the opposite side to the central axis Z side of the separating portion 40 across the central axis of the joint portion 55 is defined as the outer end E3, and the tangent at the outer end E3 of the circle C3 passing through the outer end E3 with the central axis Z as the center. It is extended along T3.
  • the liquid to be processed flowing into the separation unit 40 through the liquid supply port 50 to be processed is smoothly introduced into the gap between the inner peripheral surface of the separation unit 40 and the outer peripheral surface of the rectifier 56 and flows along both peripheral surfaces.
  • the speed of the liquid to be treated and the dispersoid are reduced more effectively.
  • the centrifuge container 2 In the centrifuge container 2 described above, when the dispersoid stored in the recovery unit 41 is recovered, the rotation of the centrifuge container 2 is stopped, and the centrifuge processing of the liquid to be processed is also stopped.
  • the recovery liquid supply port 57 and the recovery liquid discharge port 58 are provided in the recovery unit 41, and the centrifugal separator 101 is connected to the recovery unit 41.
  • a recovery liquid supply / discharge unit 108 for supplying and discharging the recovery liquid is further provided, and the dispersoid stored in the recovery unit 41 can be recovered in a state in which the centrifugal container 102 continues to rotate.
  • the liquid to be processed is supplied to the separation unit 40 of the centrifuge container 102 from the liquid supply / discharge unit 4 to be processed via the rotary joint 105 and discharged from the separation unit 40 to the liquid supply / discharge unit 4 to be processed via the rotary joint 105. Is done.
  • the recovered liquid is also supplied from the recovered liquid supply / discharge section 108 to the recovery section 41 of the centrifuge container 102 via the rotary joint 105 and discharged from the recovery section 41 to the recovered liquid supply / discharge section 108 via the rotary joint 105. Is done.
  • the rotary joint 105 includes a shaft-side supply channel 30 and a shaft-side discharge channel 31 provided in the shaft body 20, and a cylinder-side supply channel 32 and a cylinder-side discharge channel provided in the cylinder body 21. 33, and a supply communication path 34 and a discharge communication path 35 (both see FIG. 2) provided between the outer peripheral surface of the shaft body 20 and the inner peripheral surface of the cylindrical body 21 as a set of supply / discharge flow paths, A supply / discharge flow path for the liquid to be processed and a supply / discharge flow path for the recovered liquid are provided.
  • the recovery liquid supplied to the recovery unit 41 flows into the recovery unit 41 through the recovery liquid supply port 57. Then, the collected liquid originally stored in the collecting unit 41 is discharged from the collecting unit 41 through the collected liquid discharge port 58 as the collected liquid flows into the collecting unit 41. At this time, the dispersoid stored in the recovery unit 41 is also discharged from the recovery unit 41 together with the recovery liquid. The dispersoid discharged from the recovery unit 41 is recovered by the recovery liquid supply / discharge unit 108.
  • the dispersoid stored in the collection unit 41 is settled to the distal end portion 41 a of the collection unit 41 under the action of centrifugal force.
  • the recovery liquid supply port 57 and the recovery liquid discharge port 58 are provided at the distal end portion 41a where the dispersoid is settled, and are provided to face each other.
  • the recovery liquid supply port 57 and the recovery liquid discharge port 58 are provided in the distal end portion 41a, the dispersoid settled in the distal end portion 41a is recovered from the recovery liquid supply port 57 to the recovery liquid discharge port. It is placed under the action of the flow of the recovered liquid toward 58 and efficiently flows into the recovered liquid discharge port 58. Thereby, the recovery efficiency of a dispersoid is improved.
  • the distal end portion 41a of the recovery portion 41 is preferably formed in a tapered shape whose cross-sectional area gradually decreases toward the distal side.
  • the dispersoid is concentrated under the action of the flow of the recovered liquid from the recovered liquid supply port 57 to the recovered liquid discharge port 58, and the recovery efficiency of the dispersoid is further enhanced.
  • the separation unit 40 is filled with the liquid to be processed and the recovery unit 41 is filled with the liquid to be recovered. Centrifugation of the dispersoid is started. After the centrifugation is started, the liquid to be processed is supplied to the separation unit 40 continuously or intermittently. When the centrifugation is started, the dispersoid contained in the liquid to be processed supplied to the separation unit 40 is settled in the distal region 52 of the separation unit 40.
  • the dispersoid settled in the distal region 52 is sequentially moved from the distal region 52 through the communication path 42 to the collection unit 41 under the action of centrifugal force.
  • the dispersoid moved to the recovery unit 41 is stored in the recovery unit 41 in a state of being dispersed in the recovery liquid in the recovery unit 41.
  • the collection unit 41 collects continuously or intermittently at an appropriate timing (for example, when the dispersoid stored in the collection unit 41 reaches the upper limit amount of the dispersoid that can be stored in the collection unit 41).
  • the liquid is supplied, and the dispersoid stored in the recovery unit 41 is discharged from the recovery unit 41.
  • the centrifuge container 102 Since the collection liquid is supplied to and discharged from the collection unit 41 via the rotary joint 105, the centrifuge container 102 continues to rotate during the collection liquid supply and discharge period. However, the turning angular velocity of the centrifuge container 102 may be decreased during the supply / discharge period of the recovered liquid.
  • the dispersoid stored in the collection unit 41 is pressed against the inner surface of the collection unit 41 under the action of centrifugal force, but the centrifugal force is weakened by reducing the turning angular velocity of the centrifuge container 102, Disperse discharge is promoted.
  • the recovery unit 41 When the dispersoid stored in the recovery unit 41 is discharged from the recovery unit 41 by supplying and discharging the recovered liquid to and from the recovery unit 41, the recovery unit 41 can store the dispersoid again, and the centrifugal separation process is continued. . As a result, even a very large amount of liquid to be processed can be subjected to centrifugal separation at a time, and the working efficiency is further improved. Further, since the dispersoid stored in the recovery unit 41 is discharged and recovered from the recovery unit 41 simply by supplying the recovery liquid to the recovery unit 41, the recovery operation is extremely easy and the work efficiency is further improved. .
  • the rotary joint disclosed in the present specification is a rotary joint that discharges and discharges liquid to and from a container that is swung around a rotation axis, and the shaft body that is stationary and the shaft body described above
  • a shaft-side discharge passage having openings at different positions spaced apart from each other in the axial direction of the shaft body on the outer peripheral surface of the shaft body, and the cylindrical body.
  • the cylinder-side supply flow is provided so as to penetrate the cylinder from the inner peripheral surface to the outer peripheral surface, and is disposed at a position overlapping the opening of the shaft-side supply flow channel in the axial direction of the shaft. Through the cylinder and from the inner peripheral surface of the cylinder to the outer peripheral surface.
  • a cylinder-side discharge channel disposed at a position overlapping the opening of the shaft-side discharge channel and the axial direction of the shaft body, an outer peripheral surface of the shaft body, and an inner peripheral surface of the cylinder body Between the shaft side supply channel and the cylinder side supply channel, an outer peripheral surface of the shaft body and the cylinder An annular communication channel that communicates with the shaft-side discharge channel and the cylinder-side discharge channel.
  • the cylinder-side supply channel is inclined in a direction opposite to the rotation direction of the cylinder with respect to a radial direction extending from the shaft body through the center of the connection portion between the cylinder-side supply channel and the supply communication channel.
  • the cylinder-side discharge flow path is a radiation extending from the shaft through the center of the connecting portion between the cylinder-side discharge flow path and the discharge communication flow path. To direction, it is inclined in the same direction as the rotational direction of the cylinder.
  • the cylinder-side supply flow path is formed at both ends of the connection portion between the cylinder-side supply flow path and the supply communication flow path, which appears in a cross section perpendicular to the shaft body.
  • One end located on the opposite side to the shaft body side across the central axis of the cylinder side supply channel is an outer end, and extends along a tangent line at the outer end of a circle passing through the outer end with the shaft body as a center.
  • the cylinder-side discharge flow path sandwiches the central axis of the cylinder-side discharge flow path at both ends of the connecting portion between the cylinder-side discharge flow path and the discharge communication flow path that appear in a cross section perpendicular to the shaft body.
  • one end located on the side opposite to the shaft body side is defined as an outer end and extends along a tangent line at the outer end of a circle passing through the outer end with the shaft body as a center.
  • the supply communication channel and the discharge communication channel are formed by an annular recess provided on the inner peripheral surface of the cylindrical body.
  • the rotary joint disclosed in the present specification is disposed at a position different in the axial direction of the shaft body between the shaft body and the cylinder body, and at least two that rotatably support the cylinder body. And a plurality of seal members disposed between the shaft body and the cylindrical body and isolating the supply communication channel, the discharge communication channel, and the bearing from each other.
  • the centrifugal separator disclosed in the present specification includes a liquid supply / discharge unit to be processed connected to the shaft-side supply channel and the shaft-side discharge channel of the rotary joint, and the cylinder side of the rotary joint.
  • a centrifuge container connected to the supply channel and the cylinder side discharge channel, the cylinder of the rotary joint, and the centrifuge container are held, and the cylinder is rotated around the shaft body of the rotary joint.
  • the centrifuge container disclosed in the present specification is a centrifuge container that is swung around a rotation axis, and is disposed distally with respect to the processing liquid supply port with respect to the rotation axis.
  • a separation portion including a region and a proximal region disposed proximally of the processing liquid supply port, and having a processing liquid discharge port provided in the proximal region; and distal to the distal region
  • a recovery portion that is disposed on the side and communicates with the distal end portion of the distal region via the communication path, and that is filled with a recovery liquid that disperses the dispersoid that is spun down in the liquid to be treated.
  • the recovery unit has a recovery liquid supply port and a recovery liquid discharge port.
  • the distal region is formed in a tapered shape in which a cross-sectional area gradually decreases toward the communication path.
  • the separation part is formed in a cylindrical shape
  • the liquid to be processed supply port is formed in the peripheral wall of the separation part, and the distal region and the proximal region are adjacent to each other in the axial direction of the separation part.
  • the centrifuge container disclosed in the present specification is such that the liquid supply port of the separation unit has a radial direction in which the liquid supply port extends from the central axis of the separation unit through the center of the liquid supply port. It is inclined in the circumferential direction.
  • the centrifuge container disclosed in the present specification is such that the liquid supply port to be processed is the liquid supply port to be processed among both ends of the liquid supply port to be processed which appears in a cross section perpendicular to the central axis of the separation unit.
  • the centrifuge container disclosed in the present specification is such that the liquid supply port to be processed is the liquid supply port to be processed among both ends of the liquid supply port to be processed which appears in a cross section perpendicular to the central axis of the separation unit.
  • the centrifuge container disclosed in the present specification is such that the liquid supply port to be processed is the liquid supply port to be processed among both ends of the liquid supply port to be processed which appears in a cross section perpendicular to the central axis of the separation unit.
  • centrifuge container disclosed in the present specification is accommodated across the distal region and the proximal region of the separation unit, and a gap is formed between the separation container and the inner peripheral surface of the separation unit. Further, a rectifier provided along the inner peripheral surface is further provided.
  • the centrifuge container disclosed in the present specification is accommodated in the proximal region of the separation unit, and further includes a filter for filtering the liquid to be processed flowing into the liquid outlet for the liquid to be processed.
  • the centrifuge disclosed in the present specification is installed on the centrifuge container, a drive unit that holds the centrifuge container and rotates the centrifuge container around a rotation axis, and the rotation axis. Connected to the processing liquid supply port and the processing liquid discharge port provided in the separation part of the centrifuge container via a rotary joint, and supplies and discharges the processing liquid to the centrifuge container. And a liquid supply / discharge section to be processed.
  • the centrifuge disclosed in the present specification is installed on the centrifuge container, a drive unit that holds the centrifuge container and rotates the centrifuge container around a rotation axis, and the rotation axis.
  • the liquid to be processed is supplied to and discharged from the separation liquid supply port and the liquid to be processed discharge port provided in the separation unit of the centrifuge container through a rotary joint.
  • a recovery liquid supply / discharge unit that supplies / discharges the recovery liquid to / from the recovery unit.
  • the present invention can be used, for example, for the production of pharmaceuticals and chemicals.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Centrifugal Separators (AREA)
  • Joints Allowing Movement (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)

Abstract

遠心分離装置(1)のロータリージョイント(5)は、不動に設置される軸体(20)と、回転される筒体(21)とを備え、軸体内部に設けられている軸側供給流路(30)及び軸側排出流路(31)と、筒体(21)の内周面から外周面に亘って筒体(21)を貫通して設けられている筒側供給流路(32)及び筒側排出流路(33)と、軸体(20)の外周面と筒体(21)の内周面との間に設けられている環状の供給連通流路(34)及び排出連通流路(35)と、を含み、筒側供給流路(32)は、軸体(20)から筒側供給流路(32)と供給連通流路(34)との接続部(32b)を通って延びる放射方向(R1)に対し、筒体(21)の回転方向とは反対方向に傾斜しており、筒側排出流路(33)は、軸体(20)から筒側排出流路(33)と排出連通流路(35)との接続部(33b)を通って延びる放射方向(R2)に対し、筒体(21)の回転方向と同方向に傾斜している。

Description

ロータリージョイント及び遠心分離装置
 本発明は、回転軸まわりに旋回される容器に対して液を供排するロータリージョイント及び遠心分離装置に関する。
 遠心分離装置では、回転軸まわりに旋回される遠心分離容器に対し、回転軸上に配置されたロータリージョイントを介して液が給排される。ロータリージョイントは、軸体と、軸体に対して相対回転可能に軸体が挿通される筒体とを備え、軸体には、軸体内部を軸方向に延びる流路が設けられ、筒体には筒体の内周面から外周面に亘って筒体を貫通する流路が設けられ、軸体の外周面と筒体の内周面との間には環状の流路が設けられている。軸体の流路と筒体の流路とは、軸体と筒体との相対回転にかかわらず、軸体と筒体との間の環状の流路を介して互いに連通した状態に保たれる。
 この種のロータリージョイントでは、典型的には、筒体が例えば遠心分離装置の架台に固定されることによって不動に設置され、軸体が容器と一体に回動される(例えば、特許文献1参照)が、逆に、軸体が不動に設置され、筒体が容器と一体に回動される場合もある(例えば、特許文献2参照)。
日本国特開2012-96154号公報 日本国特開2011-106593号公報
 ロータリージョイントの軸体の流路は軸体内部を軸方向に延びており、軸体が回動される場合に、軸体の流路を流れる液に軸体の回転に起因する遠心力が作用し、液に含まれる分散質が軸体の流路に滞留する虞がある。
 一方、筒体が回動される場合には、軸体の流路における分散質の滞留が緩和される。さらに、筒体の流路は筒体の内周面から外周面に亘って筒体を貫通して延びており、すなわち遠心力の作用方向に延びていることから、筒体の流路における分散質の滞留も抑制可能である。しかし、筒体の周速度は軸体の周速度より大きく、軸体と筒体との間の環状の流路から筒体の流路に流入し、又は筒体の流路から軸体と筒体との間の環状の流路に流入する液に比較的大きなせん断が作用する虞がある。このため、液に含まれる分散質の損壊が懸念される。
 本発明は、上述した事情に鑑みなされたものであり、液に含まれる分散質の滞留及び損壊を抑制可能なロータリージョイント及び遠心分離装置を提供することを目的とする。
 本発明の一態様のロータリージョイントは、回転軸まわりに旋回される容器に対して液を供排するロータリージョイントであって、不動に設置される軸体と、上記軸体が挿通され且つ上記軸体まわりに容器と共に回転される筒体と、を備え、上記軸体の内部に設けられており、上記軸体の外周面に開口を有する軸側供給流路と、上記軸体の内部に設けられており、上記軸体の外周面において上記軸側供給流路の開口とは上記軸体の軸方向に離間した異なる位置に開口を有する軸側排出流路と、上記筒体の内周面から外周面に亘って上記筒体を貫通して設けられており、上記軸側供給流路の上記開口と上記軸体の軸方向に重なる位置に配置されている筒側供給流路と、上記筒体の内周面から外周面に亘って上記筒体を貫通して設けられており、上記軸側排出流路の上記開口と上記軸体の軸方向に重なる位置に配置されている筒側排出流路と、上記軸体の外周面と上記筒体の内周面との間で上記軸体を中心とする環状に設けられており、上記軸側供給流路と上記筒側供給流路とを連通させる供給連通流路と、上記軸体の外周面と上記筒体の内周面との間で上記軸体を中心とする環状に設けられており、上記軸側排出流路と上記筒側排出流路とを連通させる排出連通流路と、を含み、上記筒側供給流路は、上記軸体から上記筒側供給流路と上記供給連通流路との接続部を通って延びる放射方向に対し、上記筒体の回転方向とは反対方向に傾斜しており、上記筒側排出流路は、上記軸体から上記筒側排出流路と上記排出連通流路との接続部を通って延びる放射方向に対し、上記筒体の回転方向と同方向に傾斜している。
 本発明の一態様の遠心分離装置は、上記ロータリージョイントと、上記ロータリージョイントの上記軸側供給流路及び上記軸側排出流路に接続される被処理液給排部と、上記ロータリージョイントの上記筒側供給流路及び上記筒側排出流路に接続される遠心分離容器と、上記ロータリージョイントの上記筒体及び上記遠心分離容器を保持し、上記筒体を上記ロータリージョイントの上記軸体まわりに回転させ且つ上記遠心分離容器を上記軸体まわりに旋回させる駆動部と、を備え、上記ロータリージョイントを介して上記被処理液給排部と上記遠心分離容器との間で被処理液を給排する。
 本発明によれば、液に含まれる分散質の滞留及び損壊を抑制可能なロータリージョイント及び遠心分離装置を提供することができる。
本発明の実施形態を説明するための、遠心分離装置の一例の模式図である。 本発明の実施形態を説明するための、ロータリージョイントの一例の縦断面の模式図である。 図2のロータリージョイントの軸側供給流路及び筒側供給流路並びに供給連通流路を含む横断面の模式図である。 ロータリージョイントの供給連通流路から回転軸から放射方向に延びる筒側供給流路に流入する被処理液の挙動を示す模式図である。 ロータリージョイントの供給連通流路から回転軸の放射方向に対して傾斜した筒側供給流路に流入する被処理液の挙動を示す模式図である。 図2のロータリージョイントの軸側排出流路及び筒側排出流路並びに排出連通流路を含む横断面の模式図である。 ロータリージョイントの回転軸から放射方向に延びる筒側排出流路から排出連通流路に流入する被処理液の挙動を示す模式図である。 ロータリージョイントの回転軸の放射方向に対して傾斜した筒側排出流路から排出連通流路に流入する被処理液の挙動を示す模式図である。 本発明の実施形態を説明するための、遠心分離容器の一例の縦断面の模式図である。 図1の遠心分離装置によって処理される被処理液の挙動を示す模式図である。 図9の遠心分離容器の変形例の縦断面の模式図である。 図11の横断面の模式図である。 本発明の実施形態を説明するための、遠心分離装置及び遠心分離容器の他の例の模式図である。 図13の遠心分離容器の縦断面の模式図である。 図13の遠心分離容器の横断面の模式図である。
 図1は、本発明の実施形態を説明するための、遠心分離装置の一例を示す。
 遠心分離装置1は、遠心分離容器2と、遠心分離容器2を回転軸Xまわりに旋回させる駆動部3と、旋回される遠心分離容器2に対して被処理液を給排する被処理液給排部4及びロータリージョイント5と、を備える。
 駆動部3は、架台10と、回転軸Xまわりに回転可能となるように架台10によって支持されている回転テーブル11と、回転テーブル11を回転させるモータ12とを有する。遠心分離容器2は、回転テーブル11上において回転軸Xから離間した箇所に設置されており、回転テーブル11がモータ12によって回転されることにより、回転軸Xまわりに旋回される。なお、遠心分離容器2の設置数及び設置箇所は特に限定されないが、典型的には、図示の例のように複数の遠心分離容器2(図示の例では2つの遠心分離容器2)が回転軸Xを中心とする円周方向に等しい間隔をあけて設置される。
 被処理液給排部4とロータリージョイント5とは送液管6A及び送液管6Bによって接続されており、ロータリージョイント5と各遠心分離容器2とは送液管7A及び送液管7Bによって接続されている。分散質を含む被処理液が被処理液給排部4からロータリージョイント5を介して遠心分離容器2に供給される。遠心分離容器2に供給された被処理液に含まれる分散質は、遠心分離容器2の旋回に起因する遠心力の作用下で分離される。そして、本例では、分散質が除かれた残余の被処理液が、遠心分離容器2からロータリージョイント5を介して被処理液給排部4に排出される。
 図2はロータリージョイント5の構成を示す。
 ロータリージョイント5は、回転軸X上に配置される軸体20と、軸体20に対して相対回転可能に軸体20が挿通される筒体21とを備える。軸体20は、架台10(図1参照)に固定されることによって不動に設置されている。一方、筒体21は、回転テーブル11(図1参照)に固定されており、回転テーブル11上に設置されている遠心分離容器2と一体に回動される。
 不動に設置される軸体20と回転される筒体21との間には、複数のベアリング22が軸方向に異なる位置に配置されており、筒体21はこれらのベアリング22によって回転可能に支持されている。図示の例では、二つのベアリング22が筒体21の上端部と軸体20との間及び筒体21の下端部と軸体20との間に配置されているが、ベアリング22の配置数及び配置箇所は特に限定されない。ベアリング22は、転がり軸受であってもよいし、すべり軸受であってもよく、すべり軸受である場合に、オイル又はグリースを必要とする給油式の軸受であってもよいし、無給油式の軸受であってもよいが、好ましくは無給油式の軸受である。ロータリージョイント5に流通される被処理液によってはオートクレーブ(高圧蒸気滅菌処理)がロータリージョイント5に施される場合があり、無給油式の軸受であれば、高温に晒された場合のオイル又はグリースの漏出がなくなり、オートクレーブが可能となる。
 軸体20には、軸体20の内部を軸方向に延びる軸側供給流路30及び軸側排出流路31が設けられている。軸側供給流路30の一端側の開口30aは、筒体21の外に露呈する軸体20の外面に形成されており、他端側の開口30bは、二つのベアリング22の間に位置する軸体20の外周面に形成されている。軸側排出流路31の一端側の開口31aは、軸体20の上端面に形成されており、他端側の開口31bは、二つのベアリング22の間に位置する軸体20の外周面に形成され、且つ軸体20の外周面において軸側供給流路30の開口30bとは軸方向に離間した異なる位置に形成されている。軸体20の上端面に形成されている軸側供給流路30の開口30aには、被処理液給排部4に通じる送液管6Aが接続され、軸側排出流路31の開口31aには、被処理液給排部4に通じる送液管6Bが接続されている。
 筒体21には、筒体21の内周面から外周面に亘って筒体21を貫通する筒側供給流路32及び筒側排出流路33が設けられている。筒側供給流路32は、軸側供給流路30の開口30bと軸方向に重なる位置に配置されており、筒側排出流路33は、軸側排出流路31の開口31bと軸方向に重なる位置に配置されている。筒体21の外周面に形成されている筒側供給流路32の開口32aには、遠心分離容器2に通じる送液管7Aが接続され、筒側排出流路33の開口33aには、遠心分離容器2に通じる送液管7Bが接続されている。
 軸体20の外周面と筒体21の内周面との間で軸側供給流路30の開口30b及び筒側供給流路32と軸方向に重なる位置には、供給連通流路34が設けられている。供給連通流路34は、軸体20を中心とする環状に設けられており、軸側供給流路30と筒側供給流路32とは、筒体21の回転にかかわらず、供給連通流路34を介して互いに連通した状態に保たれる。
 また、軸体20の外周面と筒体21の内周面との間で軸側排出流路31の開口31b及び筒側排出流路33と軸方向に重なる位置には、排出連通流路35が設けられている。排出連通流路35は、軸体20を中心とする環状に設けられており、軸側排出流路31と筒側排出流路33とは、筒体21の回転にかかわらず、排出連通流路35を介して互いに連通した状態に保たれる。
 供給連通流路34及び排出連通流路35は、筒体21の内周面に設けられた環状の凹部によって形成されている。
 軸体20と筒体21との間には複数のシール部材23が設けられており、軸体20と筒体21との間に設けられている供給連通流路34及び排出連通流路35並びに二つのベアリング22は、これらのシール部材23によって互いに隔絶されている。シール部材23は、例えば軸体20及び筒体21それぞれに摺接環が固定され、二つの摺接環が互いに摺接することによって構成される、いわゆるメカニカルシールであってもよいし、エラストマー等からなる環状のリップを軸体20の外周面に摺接させる、いわゆるリップシールであってもよい。これらのシール部材23は、ロータリージョイント5の条件、要求仕様、寸法等に応じて適宜選択可能である。
 被処理液給排部4(図1参照)から供給される被処理液は、まず、軸側供給流路30の開口30aを通して軸側供給流路30に流れ込み、続いて供給連通流路34を経て筒側供給流路32に流入し、筒側供給流路32から遠心分離容器2に送り出される。また、遠心分離容器2から排出された被処理液は、まず、筒側排出流路33の開口33aを通して筒側排出流路33に流れ込み、続いて排出連通流路35を経て軸側排出流路31に流入し、軸側排出流路31から被処理液給排部4に送り出される。ロータリージョイント5を介して遠心分離容器2に対して被処理液が給排される間、筒体21は遠心分離容器2と一体に一定方向に回動される。
 筒体21が回動され、軸体20が不動に設置されることにより、軸体20の軸側供給流路30及び軸側排出流路31を流れる被処理液には遠心力が作用せず、被処理液に含まれる分散質の軸側供給流路30における滞留が抑制される。本例では、軸側排出流路31に流れる被処理液は遠心分離容器2によって分散質が除かれた残余の被処理液であるが、例えば分離された分散質が分散されてなる分散液が軸側排出流路31に流される場合には、軸側供給流路30と同様に、被処理液に含まれる分散質の軸側排出流路31における滞留も抑制される。一方、回動される筒体21の筒側供給流路32及び筒側排出流路33は筒体21の内周面から外周面に亘って筒体21を貫通して延びており、すなわち遠心力の作用方向に延びていることから、分散質の筒側供給流路32及び筒側排出流路33における滞留もまた抑制される。
 さらに、軸体20の軸側供給流路30及び軸側排出流路31を流れる被処理液に遠心力が作用しないことから、軸体20に作用する負荷が軽減され、軸体20の細径化が可能となる。そして、シール部材23がリップシールである場合に、軸体20が細径化されることによって、軸体20の外周面に摺接するリップの相対的な周速度は低下し、より高速な回転にも対応可能となる。
 図3は、軸側供給流路30及び筒側供給流路32並びに供給連通流路34の構成を示す。
 被処理液を遠心分離容器2に向けて送り出す筒側供給流路32は、軸体20を中心とする放射方向であって、筒側供給流路32と供給連通流路34との接続部の中心、すなわち筒体21の内周面に形成されている筒側供給流路32の開口32bの中心O1を通る放射方向R1に対し、筒体21の回転方向Yとは反対のP1方向に傾斜されている。
 図4及び図5は、供給連通流路34から筒側供給流路32に流入する被処理液の挙動を模式的に示し、特に、図4は、仮に筒側供給流路32が放射方向R1に延びているとした場合の被処理液の挙動を示し、図5は、筒側供給流路32が放射方向R1に対して筒体21の回転方向Yとは反対方向に傾斜されている場合の被処理液の挙動を示す。
 図4に示すとおり、仮に筒側供給流路32が放射方向R1に延びているとした場合に、筒体21の回動に応じて移動される筒側供給流路32の開口32bの移動方向と供給連通流路34から開口32bを通して筒側供給流路32に流入する被処理液の流れ方向とのなす角度θ1は略90°となる。このため、被処理液には、開口32bの近傍にて比較的強いせん断が作用することになる。
 一方、図5に示すとおり、筒側供給流路32が放射方向R1に対して筒体21の回転方向Yとは反対方向に傾斜されている場合には、筒体21の回動に応じて移動される筒側供給流路32の開口32bの移動方向と供給連通流路34から開口32bを通して筒側供給流路32に流入する被処理液の流れ方向とのなす角度θ2が90°より大きくなる。換言すれば、開口32bの移動方向と被処理液の流れ方向とが図4に示した場合よりも平行に近づく。さらに、筒側供給流路32の放射方向R1に対する傾斜が筒体21の回転方向Yとは反対方向であることにより、筒体21の回動に応じて被処理液が筒側供給流路32に円滑に流れ込む。これにより、開口32bの近傍にて被処理液に作用するせん断が緩和され、被処理液に含まれる分散質の損壊が抑制される。
 軸体20に垂直な断面に表れる開口32b(筒側供給流路32と供給連通流路34との接続部)の両端のうち筒側供給流路32の中心軸を挟んで軸体20側とは反対側に位置する一端を外側端E1として、処理液に作用するせん断を抑制する観点から、筒側供給流路32は、軸体20を中心として外側端E1を通る円C1の外側端E1における接線T1に沿って延びていることが好ましい。
 なお、被処理液は軸側供給流路30から開口30bを通して供給連通流路34に流入し、開口30bは、好ましくは図2及び図3に示すように、供給連通流路34側に向けて断面積が漸増するテーパ状に形成される。これにより、被処理液が軸側供給流路30から環状の供給連通流路34に円滑に流入する。
 図6は、軸側排出流路31及び筒側排出流路33並びに排出連通流路35の構成を示す。
 遠心分離容器2から排出された被処理液が流れ込む筒側排出流路33は、軸体20を中心とする放射方向であって、筒側排出流路33と排出連通流路35との接続部の中心、すなわち筒体21の内周面に形成されている筒側排出流路33の開口33bの中心O2を通る放射方向R2に対し、筒体21の回転方向Yと同じP2方向に傾斜されている。
 図7及び図8は、筒側排出流路33から排出連通流路35に流入する被処理液の挙動を模式的に示し、特に、図7は、仮に筒側排出流路33が放射方向R2に延びているとした場合の被処理液の挙動を示し、図5は、筒側排出流路33が放射方向R2に対して筒体21の回転方向Yに傾斜されている場合の被処理液の挙動を示す。
 図7に示すとおり、仮に筒側排出流路33が放射方向R2に延びているとした場合に、筒体21の回動に応じて移動される筒側排出流路33の開口33bの移動方向と筒側排出流路33から開口33bを通して排出連通流路35に流入する被処理液の流れ方向とのなす角度θ3は略90°となる。このため、被処理液には、開口33bの近傍にて比較的強いせん断が作用することになる。そして、排出連通流路35に流入した被処理液は、軸体20の外周面において開口33bに相対する部位に正面から衝突することになる。
 一方、図8に示すとおり、筒側排出流路33が放射方向R2に対して筒体21の回転方向Yに傾斜されている場合には、筒体21の回動に応じて移動される筒側排出流路33の開口33bの移動方向と筒側排出流路33から開口33bを通して排出連通流路35に流入する被処理液の流れ方向とのなす角度θ4が90°より大きくなる。換言すれば、開口33bの移動方向と被処理液の流れ方向とが図7に示した場合よりも平行に近づく。さらに、筒側排出流路33の放射方向R2に対する傾斜が筒体21の回転方向Yであることにより、筒体21の回動に応じて被処理液が筒側排出流路33から円滑に送り出される。これにより、開口33bの近傍にて被処理液に作用するせん断が緩和され、排出連通流路35に流入した被処理液の軸体20の外周面との衝突も緩和される。本例では、筒側排出流路33に流れる被処理液は遠心分離容器2によって分散質が除かれた残余の被処理液であるが、例えば分離された分散質が分散されてなる分散液が筒側排出流路33に流される場合には、この分散液に含まれる分散質の損壊が抑制される。
 軸体20に垂直な断面に表れる開口33b(筒側排出流路33と排出連通流路35との接続部)の両端のうち筒側排出流路33の中心軸を挟んで軸体20側とは反対側に位置する一端を外側端E2として、処理液に作用するせん断を抑制する観点から、筒側排出流路33は、軸体20を中心として外側端E2を通る円C2の外側端E2における接線T2に沿って延びていることが好ましい。
 なお、被処理液は排出連通流路35から開口31bを通して軸側排出流路31に流入し、開口31bは、好ましくは図2及び図6に示すように、排出連通流路35に向けて断面積が漸増するテーパ状に形成される。これにより、被処理液が環状の排出連通流路35から軸側排出流路31に円滑に流入する。
 次に、遠心分離容器2について説明する。図9は、遠心分離容器2の構成を示す。
 遠心分離容器2は、遠心分離容器2に供給される被処理液に含まれる分散質を分離するための分離部40と、分離された分散質を回収するための回収部41と、分離部40と回収部41とを連通させる連通路42とを備える。
 分離部40は、図示の例では円筒状に形成されており、分離部40の中心軸Zが回転軸Xと略直交した状態で遠心分離容器2は回転テーブル11(図1参照)上に設置される。なお、分離部40の形状は、円筒状に限られるものではなく、例えば角筒状であってもよい。また、遠心分離容器2の設置状態は、分離部40の中心軸Zが回転軸Xと略直交した状態に限られるものではない。例えば、分離部40の中心軸Zが回転軸Xと略直交する状態に対して回転軸Xの軸方向に傾斜された状態で遠心分離容器2は回転テーブル11上に設置されてもよく、さらには分離部40の中心軸Zが回転軸Xと交差せずに回転軸Xに対してオフセットされた状態で遠心分離容器2は回転テーブル11上に設置されてもよい。分離部40の中心軸Zが回転軸Xに対してオフセットされることにより、回転軸X上に配置されるロータリージョイント5を避け、遠心分離装置1を大型化させることなく分離部40を延長することができ、また、遠心分離容器2とロータリージョイント5とを接続する送液管7A及び送液管7Bの取り回しも容易となる。
 分離部40には、被処理液供給口50と、被処理液排出口51とが設けられている。被処理液供給口50には、ロータリージョイント5の筒側供給流路32(図2参照)に通じる送液管7Aが接続されており、一方、被処理液排出口51には、ロータリージョイント5の筒側排出流路33(図2参照)に通じる送液管7Bが接続されている。
 被処理液供給口50は円筒状の分離部40の周壁に形成されており、分離部40には、回転軸Xを基準として、被処理液供給口50よりも遠位側に配置される遠位領域52と、分離部40の軸方向に遠位領域52と隣り合い且つ被処理液供給口50よりも近位側に配置される近位領域53とが設けられている。そして、被処理液排出口51は近位領域53に設けられている。
 遠心分離容器2に供給される被処理液は、被処理液供給口50を通じて分離部40に流れ込む。遠心分離容器2が回転軸Xまわりに旋回されることにより、分離部40内の被処理液に含まれる分散質は遠心分離容器2の旋回に起因する遠心力の作用下で分離され、分離された分散質は分離部40の遠位領域52に沈降される。一方、分散質が除かれた残余の被処理液は分離部40の近位領域53に収集される。近位領域53に収集された残余の被処理液は、被処理液が分離部40に追加で流れ込むのに応じて、被処理液排出口51を通じて分離部40から排出される。
 本例では、被処理液排出口51に流れ込む残余の被処理液を濾過するフィルタ54が分離部40に設けられている。例えば被処理液排出口51に流れ込む残余の被処理液の流速が分散質の沈降速度との関係で過大である場合などに分散質が被処理液に僅かに残留する可能性もあるが、残留した分散質はフィルタ54によって被処理液から除去される。なお、分散質の沈降速度と被処理液の流速とが適切に調節され、又は被処理液に分散質が残留していても支障がない場合には、フィルタ54は省略されてもよい。分散質の沈降速度は、例えば遠心分離容器2の旋回半径、遠心分離容器2の旋回角速度、被処理液の粘度等によって適宜調節可能である。
 フィルタ54の目詰まりを抑制する観点から、フィルタ54は分離部40の近位領域53に設けられている。遠心力の作用下で近位領域53に移動される分散質は主として比較的微細な粒子であり、フィルタ54の目開きに対して微細な粒子はフィルタ54の目詰まりを生じさせ難くい。好ましくは、近位領域53に移動される分散質がフィルタ54の目開きよりも微細な粒子となるよう、被処理液の流速及び分散質の沈降速度と、フィルタ54の目開きとが適宜設定される。これにより、フィルタ54の目詰まりが一層抑制される。さらに、フィルタ54によって被処理液から除去された分散質には、分散質を遠位領域52に沈降させる遠心力が依然として作用しており、フィルタ54が近位領域53に配置されていることによって、被処理液から除去された分散質のフィルタ54への付着が抑制され、フィルタ54の目詰まりが抑制される。
 分離された分散質を回収するための回収部41は、分散質が沈降される分離部40の遠位領域52よりも遠位側に配置されており、連通路42を介して遠位領域52の遠位端部52aに連通されている。そして、回収部41は、分散質が分散可能な回収液によって満たされている。分離部40の遠位領域52に沈降された分散質は、遠心力の作用下で、遠位領域52よりも遠位側に配置されている回収部41に連通路42を通って移動され、回収部41内の回収液に分散される。
 連通路42は、遠心力の作用下での分散質の流通を許容し、且つ分離部40内の被処理液及び回収部41内の回収液の流通を抑制可能に構成され、連通路42の長手方向に垂直な断面において、少なくとも連通路42の断面積は、分離部40の遠位領域52及び回収部41それぞれの連通路42との接続部分の断面積よりも小さくされる。連通路42が円管である場合に、連通路42の直径は、分散質の粒子径等にもよるが、例えば1mm~2mmが適当である。
 分離部40の遠位領域52に沈降された分散質を連通路42に円滑に移動させる観点から、好ましくは、分離部40の遠位領域52は、連通路42に向けて断面積が漸減するテーパ状に形成される。
 回収液は、分散質が分散可能であれば特に限定されず、被処理液の母液と同一の液であってもよいし、異なる液であってもよいが、回収液の比重は、回収液の流れが遠心力と液の比重でうける相互作用により乱されない、すなわち、集められた分散質が乱流により分散質の回収に影響を及ぼす程度の舞いあがりが発生しない程度の濃度であって、遠心分離装置の回転数や非処理液の濃度に応じて適宜選択すればよく、非処理液と回収液の比重は略同等であることがより好ましい。
 図10は、遠心分離装置1によって処理される被処理液の挙動を示す。
 遠心分離容器2を備える遠心分離装置1を用いた遠心分離処理では、まず、遠心分離容器2の回収部41が回収液によって満たされている状態で、被処理液が遠心分離容器2の分離部40に供給され、分離部40が被処理液によって満たされる。このとき、分離部40の中心軸Zが回転軸Xと略直交する状態に対して回転軸Xの軸方向に傾斜された状態で遠心分離容器2が回転テーブル11上に設置されていることにより、分離部40のエア抜きが容易となる。そして、分離部40が被処理液によって満たされた後に、遠心分離容器2が回転軸Xまわりに旋回され、被処理液に含まれる分散質の遠心分離が開始される。遠心分離が開始された後は、被処理液は、連続的に又は間欠的に分離部40に供給される。空の状態で旋回されている分離部40に処理液が供給された場合には、空の分離部40に流れ込んだ被処理液に含まれる分散質と分離部40の内周面との衝突が緩衝されず、分散質が損壊する懸念があるが、遠心分離が開始される以前に分離部40が被処理液によって満たされていることにより、分散質の保護が図られる。そして、遠心分離が開始されると、分離部40に供給された被処理液に含まれる分散質は分離部40の遠位領域52に沈降される。
 本例では、被処理液供給口50が円筒状の分離部40の周壁に形成されており、送液管7Aが接続される被処理液供給口50の継手部分55及び送液管7Aの少なくとも継手部分55との接続部分は回転軸Xを中心とする放射方向と交差する方向に延びる。このため、図10に示すように、継手部分55及び送液管7Aの接続部分を流通する被処理液には遠心力が作用し、被処理液に含まれる分散質は、この遠心力の作用下で継手部分55及び送液管7Aの接続部分の遠位側に寄せられており、分散質の分離が促進される。継手部分55及び送液管7Aの接続部分での分散質の分離を促進する観点から、被処理液供給口50は、分離部40の中心軸方向中央よりも遠位側に配置されていることが好ましい。これにより、被処理液供給口50の継手部分55及び送液管7Aの接続部分を流通する被処理液に作用する遠心力が強められ、分散質の分離が一層促進される。
 遠位領域52に沈降された分散質は、遠心力の作用下で、遠位領域52から連通路42を通って回収部41に逐次移動される。ここで、被処理液が分離部40に追加で供給されることによって分離部40内に被処理液の流れが発生する。仮に、遠位領域52に沈降される分散質が引き続き遠位領域52に貯留されるとすると、一旦は遠位領域52に沈降された分散質が、発生した被処理液の流れによって巻き上げられ、近位領域53側に移動されてフィルタ54に捕捉されるか、又はフィルタ54が省略される場合に被処理液排出口51を通して排出されてしまう虞がある。これに対し、遠位領域52に沈降された分散質が回収部41に逐次移動されることにより、分離部40内に発生した被処理液の流れによって分散質が巻き上げられることが抑制される。これにより、分散質の分離効率が高められる。
 そして、回収部41に移動された分散質は、回収部41内の回収液中に濃縮された状態で回収部41に貯留され、例えば回収部41に貯留可能な分散質の上限量に達したところで回収液と共に回収される。換言すれば、上限量に達するまで遠心分離処理を継続することが可能である。回収部41に貯留可能な分散質の上限量は回収部41の容積に関連し、回収部41の容積(形状)は、回収部41が分離部40よりも遠位に配置される限りにおいて特に制限されない。そこで、比較的多量の被処理液であっても相応の容積を有する回収部41が用いられることによって一度に遠心分離処理することが可能となり、作業効率が高められる。分散質及び回収液は、遠心分離容器2の旋回が停止されて遠心分離容器2が遠心分離装置1の回転テーブル11(図1参照)から取り外された後、例えばシリンジによって回収部41から吸い出されて回収される。なお、回収部41が分離部40に対して着脱可能に構成されてもよく、この場合に分散質及び回収液の回収作業が容易となり、作業効率がさらに高められる。
 図11及び図12は、遠心分離容器2の変形例を示す。
 分散質の分離効率を高める観点では、分離部40に流れ込んだ被処理液の流速及び被処理液に含まれる分散質の移動速度を速やかに低下させることも有効である。被処理液及び分散質が速度を保ったままであると、分散質が被処理液の流れに乗って近位領域53側に移動される虞がある。被処理液及び分散質の速度を速やかに低下させるため、本例では、整流体56が分離部40に設けられている。
 整流体56は、分離部40の遠位領域52及び近位領域53に跨って収容され、被処理液供給口50を覆って配置されている。そして、整流体56は、分離部40の内周面との間に隙間をあけて且つ内周面に沿って設けられている。上記のとおり、遠位領域52がテーパ状に形成されていることから、整流体56もまたテーパ状に形成されている。
 分離部40に流れ込んだ被処理液及び分散質は、分離部40の内周面と整流体56の外周面との隙間に流通される。分離部40の内周面及び整流体56の外周面の表面近傍を流れる被処理液の流速は、表面に近づくほどに低下され、表面では実質的にゼロとなる。分離部40の内周面と整流体56の外周面との隙間が分散質の流通に支障がない範囲で適宜狭められることにより、被処理液の流速が低下され、被処理液に含まれる分散質の移動速度もまた低下され、分散質が遠位領域52に安定して沈降される。これにより、分散質の分離効率が高められる。分離部40の内周面と整流体56の外周面との隙間は、分散質の粒子径等にもよるが、例えば1mm~5mmが適当である。
 ここで、図12に示すように、整流体56によって覆われる被処理液供給口50の継手部分55は、好ましくは、分離部40の中心軸Zから被処理液供給口50の中心O3を通って延びる放射方向R3に対し、分離部40の周方向に傾斜しており、さらに好ましくは、中心軸Zに垂直な断面に表れる被処理液供給口50の両端のうち被処理液供給口50の継手部分55の中心軸を挟んで分離部40の中心軸Z側とは反対側に位置する一端を外側端E3として、中心軸Zを中心として外側端E3を通る円C3の外側端E3における接線T3に沿って延ばされる。これにより、被処理液供給口50を通して分離部40に流れ込む被処理液が、分離部40の内周面と整流体56の外周面との隙間に円滑に導入され且つ両周面に沿って流通され、被処理液及び分散質の速度が一層効果的に低下される。
 図13から図15は、本発明の実施形態を説明するための、遠心分離装置及び遠心分離容器の他の例を示す。なお、上述した遠心分離装置1及び遠心分離容器2と共通する要素には共通する符号を付して説明を省略又は簡略する。
 上述した遠心分離容器2では、回収部41に貯留された分散質が回収される際には、遠心分離容器2の旋回が停止され、被処理液の遠心分離処理もまた停止される。これに対し、図13から図15に示す遠心分離容器102では、回収液供給口57及び回収液排出口58が回収部41に設けられており、遠心分離装置101は、回収部41に対して回収液を給排する回収液給排部108をさらに備え、遠心分離容器102の旋回が継続された状態で、回収部41に貯留された分散質の回収が可能に構成されている。
 被処理液は、ロータリージョイント105を介して被処理液給排部4から遠心分離容器102の分離部40に供給され、ロータリージョイント105を介して分離部40から被処理液給排部4に排出される。回収液もまた同様に、ロータリージョイント105を介して回収液給排部108から遠心分離容器102の回収部41に供給され、ロータリージョイント105を介して回収部41から回収液給排部108に排出される。図示は省略するが、ロータリージョイント105は、軸体20に設けられる軸側供給流路30及び軸側排出流路31と、筒体21に設けられる筒側供給流路32及び筒側排出流路33と、軸体20の外周面と筒体21の内周面との間に設けられる供給連通路34及び排出連通路35と(いずれも図2参照)を一組の給排流路として、被処理液用の給排流路と、回収液用の給排流路とを備える。
 回収部41に供給される回収液は、回収液供給口57を通じて回収部41に流れ込む。そして、回収部41に元々収容されている回収液は、回収液が回収部41に流れ込むのに応じ、回収液排出口58を通じて回収部41から排出される。このとき、回収部41に貯留されている分散質もまた、回収液と共に回収部41から排出される。回収部41から排出された分散質は回収液給排部108にて回収される。
 図14及び図15に示すように、回収部41に貯留されている分散質は、遠心力の作用下で、回収部41の遠位端部41aに沈降される。回収液供給口57及び回収液排出口58は、分散質が沈降される遠位端部41aに設けられており、且つ互いに対向して設けられている。回収液供給口57及び回収液排出口58が互いに対向して設けられていることにより、回収部41内で回収液の余計な流れが発生することが抑制され、遠位端部41aに沈降された分散質の散逸が抑制される。そして、回収液供給口57及び回収液排出口58が遠位端部41aに設けられていることにより、遠位端部41aに沈降された分散質は、回収液供給口57から回収液排出口58に向かう回収液の流れの作用下に置かれ、回収液排出口58に効率よく流れ込む。これにより、分散質の回収効率が高められる。
 分散質の回収効率を高める観点から、回収部41の遠位端部41aは、遠位側に向けて断面積が漸減するテーパ状に形成されていることが好ましい。これにより、回収液供給口57から回収液排出口58に向かう回収液の流れの作用下に分散質が密集され、分散質の回収効率がさらに高められる。
 遠心分離容器102を備える遠心分離装置101を用いた遠心分離処理では、まず、分離部40が被処理液によって満たされ、回収部41が回収液によって満たされている状態で、被処理液に含まれる分散質の遠心分離が開始される。遠心分離が開始された後は、被処理液は、連続的に又は間欠的に分離部40に供給される。遠心分離が開始されると、分離部40に供給された被処理液に含まれる分散質は分離部40の遠位領域52に沈降される。
 遠位領域52に沈降された分散質は、遠心力の作用下で、遠位領域52から連通路42を通って回収部41に逐次移動される。回収部41に移動された分散質は、回収部41内の回収液に分散された状態で回収部41に貯留される。回収部41には、連続的に又はそして、適宜なタイミング(例えば、回収部41に貯留された分散質が回収部41に貯留可能な分散質の上限量に達したタイミング)で間欠的に回収液が供給され、回収部41に貯留されていた分散質が回収部41から排出される。
 回収部41に対する回収液の給排がロータリージョイント105を介して行われることから、回収液の給排期間も遠心分離容器102の旋回は継続される。ただし、遠心分離容器102の旋回角速度は回収液の給排期間において低下されてもよい。回収部41に貯留されている分散質は、遠心力の作用下で、回収部41の内側表面に押し付けられているが、遠心分離容器102の旋回角速度が低下されることによって遠心力が弱まり、分散質の排出が促進される。
 回収部41に対する回収液の給排によって回収部41に貯留されていた分散質が回収部41から排出されることにより、回収部41は再び分散質を貯留可能となり、遠心分離処理が継続される。これにより、極めて多量の被処理液であっても一度に遠心分離処理することが可能となり、作業効率が一層高められる。また、回収部41に回収液が供給されるだけで回収部41に貯留された分散質が回収部41から排出され且つ回収されるので、回収作業が極めて容易であり、作業効率がさらに高められる。
 以上説明したとおり、本明細書に開示されたロータリージョイントは、回転軸まわりに旋回される容器に対して液を供排するロータリージョイントであって、不動に設置される軸体と、上記軸体が挿通され且つ上記軸体まわりに回転される筒体と、を備え、上記軸体の内部に設けられており、上記軸体の外周面に開口を有する軸側供給流路と、上記軸体の内部に設けられており、上記軸体の外周面において上記軸側供給流路の開口とは上記軸体の軸方向に離間した異なる位置に開口を有する軸側排出流路と、上記筒体の内周面から外周面に亘って上記筒体を貫通して設けられており、上記軸側供給流路の上記開口と上記軸体の軸方向に重なる位置に配置されている筒側供給流路と、上記筒体の内周面から外周面に亘って上記筒体を貫通して設けられており、上記軸側排出流路の上記開口と上記軸体の軸方向に重なる位置に配置されている筒側排出流路と、上記軸体の外周面と上記筒体の内周面との間で上記軸体を中心とする環状に設けられており、上記軸側供給流路と上記筒側供給流路とを連通させる供給連通流路と、上記軸体の外周面と上記筒体の内周面との間で上記軸体を中心とする環状に設けられており、上記軸側排出流路と上記筒側排出流路とを連通させる排出連通流路と、を含み、上記筒側供給流路は、上記軸体から上記筒側供給流路と上記供給連通流路との接続部の中心を通って延びる放射方向に対し、上記筒体の回転方向とは反対方向に傾斜しており、上記筒側排出流路は、上記軸体から上記筒側排出流路と上記排出連通流路との接続部の中心を通って延びる放射方向に対し、上記筒体の回転方向と同方向に傾斜している。
 また、本明細書に開示されたロータリージョイントは、上記筒側供給流路が、上記軸体に垂直な断面に表れる上記筒側供給流路と上記供給連通流路との接続部の両端のうち上記筒側供給流路の中心軸を挟んで上記軸体側とは反対側に位置する一端を外側端として、上記軸体を中心として外側端を通る円のこの外側端における接線に沿って延びており、上記筒側排出流路は、上記軸体に垂直な断面に表れる上記筒側排出流路と上記排出連通流路との接続部の両端のうち上記筒側排出流路の中心軸を挟んで上記軸体側とは反対側に位置する一端を外側端として、上記軸体を中心として外側端を通る円のこの外側端における接線に沿って延びている。
 また、本明細書に開示されたロータリージョイントは、上記供給連通流路及び上記排出連通流路が、上記筒体の内周面に設けられた環状の凹部によって形成されている。
 また、本明細書に開示されたロータリージョイントは、上記軸体と上記筒体との間で上記軸体の軸方向に異なる位置に配置されており、上記筒体を回転可能に支持する少なくとも二つのベアリングと、上記軸体と上記筒体との間に配置されており、上記供給連通流路及び上記排出連通流路並びに上記ベアリングを互いに隔絶する複数のシール部材と、をさらに備える。
 また、本明細書に開示された遠心分離装置は、上記ロータリージョイントの上記軸側供給流路及び上記軸側排出流路に接続される被処理液給排部と、上記ロータリージョイントの上記筒側供給流路及び上記筒側排出流路に接続される遠心分離容器と、上記ロータリージョイントの上記筒体及び上記遠心分離容器を保持し、上記筒体を上記ロータリージョイントの上記軸体まわりに回転させ且つ上記遠心分離容器を上記軸体まわりに旋回させる駆動部と、を備え、上記ロータリージョイントを介して上記被処理液給排部と上記遠心分離容器との間で被処理液を給排する。
 また、本明細書に開示された遠心分離容器は、回転軸まわりに旋回される遠心分離容器であって、上記回転軸を基準として被処理液供給口よりも遠位側に配置される遠位領域及び上記被処理液供給口よりも近位側に配置される近位領域を含み、上記近位領域に被処理液排出口が設けられている分離部と、上記遠位領域よりも遠位側に配置され且つ連通路を介して上記遠位領域の遠位端部に連通されており、被処理液中の遠沈される分散質を分散させる回収液によって満たされる回収部と、を備える。
 また、本明細書に開示された遠心分離容器は、上記回収部が、回収液供給口及び回収液排出口を有する。
 また、本明細書に開示された遠心分離容器は、上記遠位領域が、上記連通路に向けて断面積が漸減するテーパ状に形成されている。
 また、本明細書に開示された遠心分離容器は、上記分離部が、筒状に形成されており、
 上記被処理液供給口は、上記分離部の周壁に形成されており、上記遠位領域及び上記近位領域は、上記分離部の軸方向に隣設されている。
 また、本明細書に開示された遠心分離容器は、上記被処理液供給口が、上記分離部の中心軸から上記被処理液供給口の中心を通って延びる放射方向に対し、上記分離部の周方向に傾斜している。
 また、本明細書に開示された遠心分離容器は、上記被処理液供給口が、上記分離部の中心軸に垂直な断面に表れる上記被処理液供給口の両端のうち上記被処理液供給口の中心軸を挟んで上記分離部の中心軸側とは反対側に位置する一端を外側端として、上記分離部の中心軸を中心として上記外側端を通る円の上記外側端における接線に沿って延びている。
 また、本明細書に開示された遠心分離容器は、上記分離部の上記遠位領域及び上記近位領域に跨って収容されており、上記分離部の内周面との間に隙間をあけて且つ内周面に沿って設けられている整流体をさらに備える。
 また、本明細書に開示された遠心分離容器は、上記分離部の上記近位領域に収容されており、上記被処理液排出口に流れ込む上記被処理液を濾過するフィルタをさらに備える。
 また、本明細書に開示された遠心分離装置は、上記遠心分離容器と、上記遠心分離容器を保持し且つ回転軸まわりに上記遠心分離容器を旋回させる駆動部と、上記回転軸上に設置されるロータリージョイントを介して上記遠心分離容器の上記分離部に設けられている上記被処理液供給口及び上記被処理液排出口に接続され、上記遠心分離容器に対して上記被処理液を給排する被処理液給排部と、を備える。
 また、本明細書に開示された遠心分離装置は、上記遠心分離容器と、上記遠心分離容器を保持し且つ回転軸まわりに上記遠心分離容器を旋回させる駆動部と、上記回転軸上に設置されるロータリージョイントを介して上記遠心分離容器の上記分離部に設けられている上記被処理液供給口及び上記被処理液排出口に接続され、上記分離部に対して上記被処理液を給排する被処理液給排部と、上記回転軸上に設置されるロータリージョイントを介して上記遠心分離容器の上記回収部に設けられている上記回収液供給口及び上記回収液排出口に接続され、上記回収部に対して上記回収液を給排する回収液給排部と、を備える。
 本発明は、例えば医薬品、化学品の製造等に用いることができる。
 以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。本出願は、2017年1月10日出願の日本特許出願(特願2017-002147)に基づくものであり、その内容はここに参照として取り込まれる。
1 遠心分離装置
2 遠心分離容器
3 駆動部
4 被処理液給排部
5 ロータリージョイント
6A,6B 送液管
7A,7B 送液管
10 架台
11 回転テーブル
12 モータ
20 軸体
21 筒体
22 ベアリング
23 シール部材
30 軸側供給流路
30a,30b 開口
31 軸側排出流路
31a,31b 開口
32 筒側供給流路
32a,32b 開口
33 筒側排出流路
33a,33b 開口
34 供給連通流路
35 排出連通流路
40 分離部
41 回収部
41a 遠位端部
42 連通路
50 被処理液供給口
51 被処理液排出口
52 遠位領域
52a 遠位端部
53 近位領域
54 フィルタ
55 継手部分
56 整流体
57 回収液供給口
58 回収液排出口
101 遠心分離装置
102 遠心分離容器
105 ロータリージョイント
108 回収液給排部
C1,C2,C3 円周
E1,E2,E3 外側端
O1,O2,O3 中心
R1,R2,R3 放射方向
T1,T2,T3 接線
X 回転軸
Y 回転方向
Z 中心軸
θ1,θ2,θ3,θ4 角度
P1 筒側供給流路の傾斜方向
P2 筒側排出流路の傾斜方向

Claims (5)

  1.  回転軸まわりに旋回される容器に対して液を供排するロータリージョイントであって、
     不動に設置される軸体と、
     前記軸体が挿通され且つ前記軸体まわりに回転される筒体と
     を備え、
     前記軸体の内部に設けられており、前記軸体の外周面に開口を有する軸側供給流路と、
     前記軸体の内部に設けられており、前記軸体の外周面において前記軸側供給流路の開口とは前記軸体の軸方向に離間した異なる位置に開口を有する軸側排出流路と、
     前記筒体の内周面から外周面に亘って前記筒体を貫通して設けられており、前記軸側供給流路の前記開口と前記軸体の軸方向に重なる位置に配置されている筒側供給流路と、
     前記筒体の内周面から外周面に亘って前記筒体を貫通して設けられており、前記軸側排出流路の前記開口と前記軸体の軸方向に重なる位置に配置されている筒側排出流路と、
     前記軸体の外周面と前記筒体の内周面との間で前記軸体を中心とする環状に設けられており、前記軸側供給流路と前記筒側供給流路とを連通させる供給連通流路と、
     前記軸体の外周面と前記筒体の内周面との間で前記軸体を中心とする環状に設けられており、前記軸側排出流路と前記筒側排出流路とを連通させる排出連通流路と、
     を含み、
     前記筒側供給流路は、前記軸体から前記筒側供給流路と前記供給連通流路との接続部の中心を通って延びる放射方向に対し、前記筒体の回転方向とは反対方向に傾斜しており、
     前記筒側排出流路は、前記軸体から前記筒側排出流路と前記排出連通流路との接続部の中心を通って延びる放射方向に対し、前記筒体の回転方向と同方向に傾斜しているロータリージョイント。
  2.  請求項1記載のロータリージョイントであって、
     前記筒側供給流路は、前記軸体に垂直な断面に表れる前記筒側供給流路と前記供給連通流路との接続部の両端のうち前記筒側供給流路の中心軸を挟んで前記軸体側とは反対側に位置する一端を外側端として、前記軸体を中心として当該外側端を通る円の当該外側端における接線に沿って延びており、
     前記筒側排出流路は、前記軸体に垂直な断面に表れる前記筒側排出流路と前記排出連通流路との接続部の両端のうち前記筒側排出流路の中心軸を挟んで前記軸体側とは反対側に位置する一端を外側端として、前記軸体を中心として当該外側端を通る円の当該外側端における接線に沿って延びているロータリージョイント。
  3.  請求項1又は2記載のロータリージョイントであって、
     前記供給連通流路及び前記排出連通流路は、前記筒体の内周面に設けられた環状の凹部によって形成されているロータリージョイント。
  4.  請求項1から3のいずれか一項記載のロータリージョイントであって、
     前記軸体と前記筒体との間で前記軸体の軸方向に異なる位置に配置されており、前記筒体を回転可能に支持する少なくとも二つのベアリングと、
     前記軸体と前記筒体との間に配置されており、前記供給連通流路及び前記排出連通流路並びに前記ベアリングを互いに隔絶する複数のシール部材と、
     をさらに備えるロータリージョイント。
  5.  請求項1から4のいずれか一項記載のロータリージョイントと、
     前記ロータリージョイントの前記軸側供給流路及び前記軸側排出流路に接続される被処理液給排部と、
     前記ロータリージョイントの前記筒側供給流路及び前記筒側排出流路に接続される遠心分離容器と、
     前記ロータリージョイントの前記筒体及び前記遠心分離容器を保持し、前記筒体を前記ロータリージョイントの前記軸体まわりに回転させ且つ前記遠心分離容器を前記軸体まわりに旋回させる駆動部と、
     を備え、
     前記ロータリージョイントを介して前記被処理液給排部と前記遠心分離容器との間で被処理液を給排する遠心分離装置。
     
PCT/JP2018/000329 2017-01-10 2018-01-10 ロータリージョイント及び遠心分離装置 WO2018131603A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197019843A KR20190094210A (ko) 2017-01-10 2018-01-10 로터리 조인트 및 원심 분리 장치
CN201880006437.2A CN110192059A (zh) 2017-01-10 2018-01-10 回转接头及离心分离装置
EP18739380.6A EP3569913B1 (en) 2017-01-10 2018-01-10 Rotary joint and centrifugal separator
JP2018561386A JP6706692B2 (ja) 2017-01-10 2018-01-10 ロータリージョイント及び遠心分離装置
US16/505,941 US11135600B2 (en) 2017-01-10 2019-07-09 Rotary joint and centrifugal separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017002147 2017-01-10
JP2017-002147 2017-01-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/505,941 Continuation US11135600B2 (en) 2017-01-10 2019-07-09 Rotary joint and centrifugal separator

Publications (1)

Publication Number Publication Date
WO2018131603A1 true WO2018131603A1 (ja) 2018-07-19

Family

ID=62840408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000329 WO2018131603A1 (ja) 2017-01-10 2018-01-10 ロータリージョイント及び遠心分離装置

Country Status (6)

Country Link
US (1) US11135600B2 (ja)
EP (1) EP3569913B1 (ja)
JP (1) JP6706692B2 (ja)
KR (1) KR20190094210A (ja)
CN (1) CN110192059A (ja)
WO (1) WO2018131603A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110842784A (zh) * 2019-12-26 2020-02-28 湖南安冠智能科技有限公司 一种抛光设备及其液路切换装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131603A1 (ja) * 2017-01-10 2018-07-19 富士フイルム株式会社 ロータリージョイント及び遠心分離装置
CN110822069A (zh) * 2019-11-15 2020-02-21 浙江湾区机器人技术有限公司 一种通气液回转传动机构
CN114562681B (zh) * 2022-01-25 2023-06-16 浙江大学 臂式离心机高离心力环境高压液体输送系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112481A (en) * 1978-12-22 1980-08-30 Single Buoy Moorings Turn table for one or more than two conduit tube
JPS58108688U (ja) * 1982-01-19 1983-07-23 日立建機株式会社 ロ−タリ−ジヨイント
JPS58170585A (ja) * 1982-03-30 1983-10-07 アムテル・インコ−ポレ−テツド 管孔掃除具を通され得る流体スイベル装置
JPS62204090A (ja) * 1986-03-03 1987-09-08 石油公団 流体用スイベル継手装置
JP2011106593A (ja) 2009-11-18 2011-06-02 Mitsubishi Heavy Industries Food & Packaging Machinery Co Ltd ロータリージョイントの軸受結露防止装置
JP2012096154A (ja) 2010-11-01 2012-05-24 Olympus Corp 遠心分離ユニットおよび遠心分離装置
JP2014234836A (ja) * 2013-05-31 2014-12-15 株式会社日立製作所 スイベルジョイント及びそれを備えた風力発電設備
JP2017002147A (ja) 2015-06-08 2017-01-05 ユニチカ株式会社 ポリエステル樹脂組成物及びそれからなる成形体

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547106A (en) * 1947-03-03 1951-04-03 Separator Ab Swivel joint
US3347454A (en) * 1964-05-13 1967-10-17 Baxter Laboratories Inc Method and apparatus for the centrifugal washing of particles in a closed system
US3561672A (en) * 1968-03-18 1971-02-09 Baxter Laboratories Inc Washing process and centrifuge assembly
US4098455A (en) * 1977-03-29 1978-07-04 Baxter Travenol Laboratories, Inc. Rotary seal distributor member for a centrifuge
US4098456A (en) * 1977-03-29 1978-07-04 Baxter Travenol Laboratories, Inc. Centrifuge system having collapsible centrifuge bags
LU82161A1 (fr) * 1980-02-12 1981-09-10 Syglo Int Sa Structure de joint rotatif
US4391298A (en) * 1980-12-31 1983-07-05 Exxon Production Research Co. Multiline piggable fluid swivel
JPS58108638U (ja) * 1982-01-18 1983-07-23 株式会社ナブコ ブレ−キシリンダ
JPS6121492A (ja) * 1984-07-09 1986-01-30 三菱重工業株式会社 スイベル継手装置
US5372945A (en) * 1985-06-06 1994-12-13 Alchas; Paul G. Device and method for collecting and processing fat tissue and procuring microvessel endothelial cells to produce endothelial cell product
DE69839047T2 (de) * 1997-05-20 2009-01-15 Zymequest, Inc., Beverly Flüssigkeitsüberwachungssystem
JP2001041618A (ja) * 1999-07-29 2001-02-16 Hoshizaki Electric Co Ltd 製氷機における回転軸の軸受け構造
CA2612891A1 (en) 2005-06-22 2007-01-04 Gambro Bct, Inc. Apparatus and method for separating discrete volumes of a composite liquid
US20100210441A1 (en) 2005-06-22 2010-08-19 Caridianbct, Inc. Apparatus And Method For Separating Discrete Volumes Of A Composite Liquid
CN101352747A (zh) * 2008-09-04 2009-01-28 天津市大港区顺力汽车零部件厂 用于倾斜角度的主管支管间接口马鞍成型工艺及焊接方法
CN103104772A (zh) * 2011-11-13 2013-05-15 江苏海达管件集团有限公司 一种万向三通管接头
CN203036174U (zh) * 2012-11-30 2013-07-03 北新集团建材股份有限公司 一种消音三通
JP6511905B2 (ja) * 2015-03-26 2019-05-15 株式会社タダノ スイベルジョイント
CN110167675B (zh) * 2017-01-10 2022-09-06 富士胶片株式会社 离心分离容器及离心分离装置
WO2018131603A1 (ja) * 2017-01-10 2018-07-19 富士フイルム株式会社 ロータリージョイント及び遠心分離装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112481A (en) * 1978-12-22 1980-08-30 Single Buoy Moorings Turn table for one or more than two conduit tube
JPS58108688U (ja) * 1982-01-19 1983-07-23 日立建機株式会社 ロ−タリ−ジヨイント
JPS58170585A (ja) * 1982-03-30 1983-10-07 アムテル・インコ−ポレ−テツド 管孔掃除具を通され得る流体スイベル装置
JPS62204090A (ja) * 1986-03-03 1987-09-08 石油公団 流体用スイベル継手装置
JP2011106593A (ja) 2009-11-18 2011-06-02 Mitsubishi Heavy Industries Food & Packaging Machinery Co Ltd ロータリージョイントの軸受結露防止装置
JP2012096154A (ja) 2010-11-01 2012-05-24 Olympus Corp 遠心分離ユニットおよび遠心分離装置
JP2014234836A (ja) * 2013-05-31 2014-12-15 株式会社日立製作所 スイベルジョイント及びそれを備えた風力発電設備
JP2017002147A (ja) 2015-06-08 2017-01-05 ユニチカ株式会社 ポリエステル樹脂組成物及びそれからなる成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110842784A (zh) * 2019-12-26 2020-02-28 湖南安冠智能科技有限公司 一种抛光设备及其液路切换装置

Also Published As

Publication number Publication date
EP3569913A4 (en) 2019-12-25
EP3569913A1 (en) 2019-11-20
US11135600B2 (en) 2021-10-05
EP3569913C0 (en) 2023-07-26
KR20190094210A (ko) 2019-08-12
JP6706692B2 (ja) 2020-06-10
JPWO2018131603A1 (ja) 2019-11-07
EP3569913B1 (en) 2023-07-26
CN110192059A (zh) 2019-08-30
US20190329272A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
WO2018131603A1 (ja) ロータリージョイント及び遠心分離装置
JP7284848B2 (ja) 遠心分離容器、遠心分離装置、及び遠心分離方法
CN103118792B (zh) 具有受保护的轴承的离心分离器
JP5928892B2 (ja) 泡除去装置及び泡除去方法
KR102323606B1 (ko) 디캔터형 원심분리기 및 디캔터형 원심분리기의 운전방법
CN108906343B (zh) 一种离心分离转鼓机
WO2019142401A1 (ja) 押出型遠心分離機およびその運転方法
JP2011104464A (ja) 立型デカンタ式遠心分離機
US10464002B2 (en) Centrifugal abatement separator
KR102100434B1 (ko) 원심 분리형 절삭유 여과 장치
JP4775913B2 (ja) サイクロン式濾過装置
JP2009172453A (ja) 浮上物除去装置
KR102551108B1 (ko) 연마성 슬러지 분리장치
JP5890883B2 (ja) 遠心分離機
EP4205855A1 (en) Bead mill
US20240165630A1 (en) Agitator mill comprising basket with thickening
JP7227038B2 (ja) 遠心分離装置
JP2009195819A (ja) 液体濾過方法及び設備
JP2002045729A (ja) インライン型の遠心分離方法とインライン型遠心分離機
JP7421286B2 (ja) 遠心分離装置
JP2002011381A (ja) 遠心分離機
KR20240072947A (ko) 슬롯들을 갖는 바스켓을 구비한 교반기 밀
BR102016005412A2 (pt) Separador centrífugo
CN107096649A (zh) 具有排放槽的离心分离器
JP2015054257A (ja) 洗浄方法およびスクリュウデカンタ型遠心分離装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561386

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197019843

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018739380

Country of ref document: EP

Effective date: 20190812