WO2018131157A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2018131157A1
WO2018131157A1 PCT/JP2017/001224 JP2017001224W WO2018131157A1 WO 2018131157 A1 WO2018131157 A1 WO 2018131157A1 JP 2017001224 W JP2017001224 W JP 2017001224W WO 2018131157 A1 WO2018131157 A1 WO 2018131157A1
Authority
WO
WIPO (PCT)
Prior art keywords
room
cold air
refrigerator
heat insulating
cooler
Prior art date
Application number
PCT/JP2017/001224
Other languages
English (en)
French (fr)
Inventor
由花子 林
誠 岡部
前田 剛
中津 哲史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to AU2017392604A priority Critical patent/AU2017392604B2/en
Priority to SG11201903277WA priority patent/SG11201903277WA/en
Priority to JP2018561769A priority patent/JP6689415B2/ja
Priority to PCT/JP2017/001224 priority patent/WO2018131157A1/ja
Priority to TW106133108A priority patent/TWI675173B/zh
Priority to CN201711035441.5A priority patent/CN108317797B/zh
Priority to CN201721417186.6U priority patent/CN208170823U/zh
Publication of WO2018131157A1 publication Critical patent/WO2018131157A1/ja
Priority to HK18115996.2A priority patent/HK1256990A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/064Walls defining a cabinet formed by moulding, e.g. moulding in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Definitions

  • the refrigerator compartment, ice making compartment, freezer compartment, and vegetable compartment are laid out in this order from the top.
  • the vegetable room is arranged at the lowest position of the refrigerator. For this reason, in order to take out vegetables from a vegetable room, the user had to fold down a knee and bend down or bend a waist.
  • FIG. 29 (a) shows the blowing air path of the cold air to a temperature switching room
  • FIG. 29B is an explanatory diagram showing the return air path in the left and right vertical cross section
  • FIG. 29B is an explanatory diagram showing the cool air return air path from the temperature switching chamber in the front and rear vertical section.
  • FIG.30 (a) is the air blowing air path and return air of the cold air to the freezer room It is explanatory drawing which shows a path
  • FIG. 1 is an external perspective view showing a refrigerator 1 according to Embodiment 1 of the present invention.
  • the refrigerator 1 is laid out in order of a refrigerator compartment 2, a left ice making room 3, a right temperature switching room 4 next to the ice making room 3, a vegetable room 5, and a freezer room 6. Yes.
  • the refrigerator compartment 2, the ice making compartment 3, the temperature switching compartment 4, the vegetable compartment 5, and the freezer compartment 6 are partitioned by a partition (not shown).
  • the refrigerator 1 is provided with a box 19 that is configured by a vertically long rectangular parallelepiped.
  • FIG. 2 is a diagram showing the refrigerant circuit 7 of the refrigerator 1 according to Embodiment 1 of the present invention.
  • the refrigerant discharged from the compressor 8 is supplied to an air-cooled condenser 9 installed in a machine room (not shown).
  • the heat insulating material 23 mainly uses a urethane foam material in addition to the vacuum heat insulating material 24.
  • the heat insulating material 23 arranges various internal members such as a reinforcing member that corrects distortion of the refrigerator 1, the above-described refrigerant circuit component, and electrical wiring component in a space that encloses the urethane foam material. It is fixed with urethane foam.
  • FIG. 5 is an explanatory diagram showing a partial cross section of the wall portion 20 of the left side surface portion of the box body 19 of the refrigerator 1 according to Embodiment 1 of the present invention.
  • the heat insulating material 23 of the wall portion 20 on the left side surface portion of the box 19 of the refrigerator 1 is a drawer-type storage chamber in addition to the above-described internal member in a space that encloses the urethane foam material.
  • the support 25 of the rail structure which receives the frame structure which comprises the door of this is also arrange
  • this heat insulating material 23 is formed in the fixed shape of the rail structure which receives the frame structure which comprises the door of a drawer-type storage chamber.
  • FIG. 6 is an explanatory diagram illustrating another example of a partial cross section of the wall portion 20 of the box 19 of the refrigerator 1 according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram illustrating another example of a partial cross section of the wall portion 20 of the box 19 of the refrigerator 1 according to the first embodiment of the present invention.
  • the vacuum heat insulating material 24 disposed on the heat insulating material 23 may be disposed using a spacer 26 at an intermediate position between the outer sheet metal 21 and the inner box 22 depending on the installation location.
  • the vacuum heat insulating material 24 disposed on the heat insulating material 23 may be attached to the wall surface of the inner box 22 depending on the installation location.
  • the vacuum heat insulating material 24 disposed on the heat insulating material 23 may be disposed by any of the methods shown in FIGS. 4, 6, and 7.
  • the vacuum heat insulating material 24 is installed so as not to interfere with the internal member described above.
  • the covering area of the vacuum heat insulating material 24 arranged on the heat insulating material 23 of the box 19 of the refrigerator 1 ensures 40% or more of the entire outer surface area including the door surface area of each storage chamber. Moreover, the foaming density of the urethane foam enclosed around these vacuum heat insulating materials 24 ensures 60 kg / cm ⁇ 3 > or more. And the bending elastic modulus of a urethane foam material ensures 15.0 Mpa or more. Thereby, the intensity
  • the vacuum heat insulating material 24 is disposed on the heat insulating material 23 of the box 19 of the refrigerator 1, whereby the distance that is the heat insulating thickness between the outer shell of the refrigerator 1 and the inner wall of the inner box 22 is reduced. Thereby, the internal volume of the refrigerator 1 can be increased.
  • the refrigerator 1 includes a refrigerator compartment 2, an ice making compartment 3, a temperature switching compartment 4, a vegetable compartment 5, and a freezer compartment 6 with easy access to the storage compartments, and an internal volume balance of each compartment.
  • the distance L from the floor surface to the refrigerator compartment floor surface is set between 954 mm and 994 mm.
  • the cooler 14 is accommodated in a cooler chamber 27 formed on the back surface of the ice making chamber 3, the temperature switching chamber 4, and the vegetable chamber 5.
  • the lower end of the cooler 14 is located below the floor F of the vegetable compartment 5 in the cooler compartment 27. Since the lower end of the cooler 14 is located below the floor F of the vegetable compartment 5, a larger space can be secured above the cooler 14. Thereby, the freedom degree of the size of the air blower 15 which arrange
  • FIG. 8 is a view showing a longitudinal longitudinal section around the lower part of the refrigerator 1 according to Embodiment 1 of the present invention.
  • FIG. 9 is a view showing a left and right longitudinal section around the lower part of the refrigerator 1 according to Embodiment 1 of the present invention.
  • a return air passage 28 for circulating air from the refrigerator compartment 2 is formed on the right side surface of the cooler 14.
  • a return air passage 29 of the temperature switching chamber 4 and a blow-off air passage 30 to the vegetable compartment 5 are formed in front of the return air passage 28 of the air circulation from the refrigerator compartment 2.
  • a back wall portion 31 that is a heat insulating wall with the space in the vegetable compartment 5 is formed in front of the cooler 14 and the above-described air paths 29 and 30.
  • FIG. 10 is a view showing a left and right vertical cross section around the vegetable compartment 5 of the refrigerator 1 according to Embodiment 1 of the present invention.
  • the ceiling wall portion 32 of the vegetable room 5 is a partition between the ice making room 3 and the temperature switching room 4.
  • the ceiling wall part 32 is a heat insulating wall, and heat transfer is suppressed.
  • the ceiling wall portion 32 has an outer shape made of an injection molding material, and the inside is constituted by a vacuum heat insulating material 33 and a urethane foam material 34.
  • the vacuum heat insulating material 33 is installed on the ice making chamber 3 and the temperature switching chamber 4 side which are set at a lower temperature than the vegetable chamber 5.
  • the vacuum heat insulating material 33 is a single rectangular plate.
  • the thickness of the urethane foam 34 is ensured to be 7 mm or more in consideration of fluidity and manufacturing variation during manufacturing.
  • the bottom wall portion 35 of the vegetable compartment 5 is a partition between the freezer compartment 6.
  • the bottom wall portion 35 is a heat insulating wall, and heat transfer is suppressed.
  • the bottom wall portion 35 is configured by an injection molding material, and the inside is configured by a vacuum heat insulating material 36 and a urethane foam material 37.
  • the vacuum heat insulating material 36 is installed on the freezer compartment 6 side that is set at a lower temperature than the vegetable compartment 5.
  • the vacuum heat insulating material 36 is a single rectangular plate.
  • the urethane foam material 37 has a thickness of 7 mm or more in consideration of fluidity and manufacturing variation during manufacturing.
  • the vacuum heat insulating materials 33 and 36 disposed on the ceiling wall portion 32 and the bottom wall portion 35 of the vegetable room 5 are vacuum-filled by wrapping with the urethane foam materials 34 and 37 in the urethane injection step during the manufacturing process of the refrigerator 1. Suppression of deterioration of the heat insulating materials 33 and 36 is achieved.
  • FIG. 11 is an explanatory view showing a longitudinal section of another example of the ceiling wall portion 32 in the vegetable compartment 5 of the refrigerator 1 according to Embodiment 1 of the present invention.
  • the ceiling wall portion 32 is provided with a vacuum heat insulating material 33 in the middle of the partition outer wall surface by securing the viscosity of the urethane foam material 34 and the flow path width. The whole may be wrapped and further deterioration suppression of the vacuum heat insulating material 33 may be achieved.
  • FIG. 12 is an explanatory view showing a longitudinal section of another example of the ceiling wall portion 32 in the vegetable compartment 5 of the refrigerator 1 according to Embodiment 1 of the present invention.
  • the ceiling wall part 32 may arrange
  • the vacuum heat insulating material 33 can increase the coverage with respect to the inner wall surface of the vegetable compartment 5, and can suppress the heat penetration
  • a back wall portion 31 that separates the vegetable compartment 5 and the cooler compartment 27 is formed on the back of the vegetable compartment 5.
  • the back wall portion 31 is a heat insulating wall, and its internal configuration is configured using a heat insulating wall outline 38, a vacuum heat insulating material 39, and a foam heat insulating material 40 installed so as to wrap the vacuum heat insulating material 39.
  • the back wall portion 31 of the vegetable compartment 5 is provided with a single rectangular plate-like vacuum heat insulating material 39 between the inner wall of the vegetable compartment 5 and the cooler 14.
  • the thickness of the foam heat insulating material 40 on the back wall 31 is based on the limit thickness that can be molded, and if necessary, an additional heat insulating thickness is provided.
  • PS-FO is used as the material of the foam heat insulating material 40
  • the thickness is set to be at least about 5 mm.
  • the foam heat insulating material 40 of the back wall portion 31 is provided with an air passage 41 for blowing air to the freezer compartment 6.
  • the front and rear arrangement of the air passage 41 is, from the rear, the cooler 14, the heat insulating wall shell 42, the foam heat insulating material 40 having the configuration of the air passage 41, the vacuum heat insulating material 39, the foam heat insulating material 40, and the inner wall of the vegetable compartment 5.
  • the above-mentioned air path 41 to the freezer compartment 6 is arrange
  • the rear wall portion 31 of the vegetable compartment 5 separates the air passage 41 to the cooler 14 and the freezer compartment 6 from the vegetable compartment 5 by the vacuum heat insulating material 39 over a wider range than the front projection surface of the cooler 14 and the air passage 41. ing.
  • FIG. 13 is a view showing another example of the left and right vertical cross sections around the vegetable compartment 5 of the refrigerator 1 according to Embodiment 1 of the present invention.
  • the vacuum heat insulating material 39 of the back wall portion 31 of the vegetable compartment 5 is attached to the inner wall of the heat insulating wall shell 42 on the cooler 14 side in order to further secure the effect of the vacuum heat insulating material 39.
  • the vacuum heat insulating material 39 of the back wall part 31 of the vegetable compartment 5 is provided on the cooler 14 side in the back wall part 31.
  • the dimension in the height direction of the vacuum heat insulating material 39 is slightly reduced in response to the restriction of the position of the outlet of the cold air discharged from the blower 15 or the size of the outlet.
  • the vacuum heat insulating material 39 is not covered with the foam heat insulating material 40, there is a concern that the deterioration of the vacuum heat insulating material 39 may be promoted.
  • FIG. 15 is a front view which shows the back wall part 31 seen from the vegetable compartment 5 of the refrigerator which concerns on Embodiment 1 of this invention.
  • the back wall portion 31 of the vegetable compartment 5 is provided with one rectangular plate-like vacuum heat insulating material 39 between the inner wall of the vegetable compartment 5 and the cooler 14.
  • the size of the flat surface portion of the vacuum heat insulating material 39 is larger than the front projected area of the cooler 14.
  • the air passage 41 to the freezer compartment 6 is disposed on the front projection surface of the cooler 14.
  • the rear wall 31 of the vegetable compartment 5 has a vacuum insulation of the air passage 41 to the cooler 14 and the freezer compartment 6 over a wider range than the front projection surface of the cooler 14 and the air passage 41. It is separated from the vegetable compartment 5 by a material 39. Thereby, the one-dimensional heat transfer amount which passes the back wall part 31 of the vegetable compartment 5 toward the inside of the vegetable compartment 5 is suppressed to the maximum extent.
  • the cold air outlet 44 into the vegetable compartment 5 is formed in the upper right portion of the inner wall of the back wall portion 31 of the vegetable compartment 5.
  • the cold air outlet 44 is located on the outside of the front projection surface of the rectangular plate-like vacuum heat insulating material 39 disposed on the back wall 31 of the vegetable compartment 5 and does not overlap the front projection surface.
  • the cold air outlet 44 is an air volume for the vegetable room in which the cold air generated by the cooler 14 is held in the foam insulation 40 above the cooler room 27 by the blower 15 disposed above the cooler 14. Supply via the adjusting device 18c.
  • the cold air outlet 44 may be formed on the inner wall of the wall portion other than the back wall portion 31 of the vegetable chamber 5.
  • the cold air return port 45 from the vegetable compartment 5 is formed on the lower left side diagonally with respect to the cold air outlet 44 in the inner wall of the back wall portion 31 of the vegetable compartment 5.
  • the cold air return port 45 is located on the outside of the front projection surface of the rectangular plate-like vacuum heat insulating material 39 disposed on the back wall 31 of the vegetable compartment 5 and does not overlap the front projection surface. Yes.
  • the cold air blown out from the cold air outlet 44 is discharged from the cold air return port 45 located at the diagonal corner of the inner wall of the vegetable compartment 5 with respect to the cold air outlet 44, led to the cooler 14, and cooled again. It circulates through the vessel 14 so as to be cooled.
  • the cold air return port 45 may be formed on the inner wall of the wall portion other than the back wall portion 31 of the vegetable chamber 5.
  • one rectangular and plate-shaped vacuum heat insulating material 39 arranged on the back wall portion 31 of the vegetable compartment 5 avoids the vertical projection areas of the cold air outlet 44 and the cold air return port 45 in the vertical and horizontal directions. Are arranged so that their sides are substantially parallel to the vertical and horizontal directions.
  • one rectangular and plate-shaped vacuum heat insulating material 39 arranged on the back wall portion 31 of the vegetable compartment 5 is a horizontal projection region of the cold air outlet 44 and the cold air return port 45.
  • the vertical and horizontal sides may be installed so as to be substantially parallel to the vertical and horizontal directions.
  • the rectangular and plate-shaped vacuum heat insulating material 39 arranged on the back wall portion 31 of the vegetable room 5 is arranged so as not to block the cold air outlet 44 and the cold air return port 45, it is vertically and horizontally You may install so that a side may become diagonal with respect to a perpendicular direction and a horizontal direction.
  • FIG. 16 is a front view showing another example of the back wall portion 31 viewed from the vegetable compartment 5 of the refrigerator 1 according to Embodiment 1 of the present invention.
  • FIG. 17 is a front view showing another example of the back wall portion 31 viewed from the vegetable compartment 5 of the refrigerator 1 according to Embodiment 1 of the present invention.
  • the cold air outlet 44 may be formed on the upper right side of the inner wall of the back wall 31 of the vegetable compartment 5.
  • the cold air return port 45 is formed in the lower right portion of the inner wall of the back wall portion 31 of the vegetable compartment 5.
  • the cold air outlet 44 may be formed on the upper left side of the inner wall of the back wall 31 of the vegetable compartment 5.
  • FIG. 18 is a schematic diagram showing the vacuum heat insulating materials 24, 33, 36, and 39 in the partial wall portion 20 that partitions the vegetable compartment 5 of the refrigerator 1 according to Embodiment 1 of the present invention.
  • FIG. 19 is a schematic diagram showing the vacuum heat insulating materials 24, 33, 36, and 39 in the partial wall portion 20 that partitions the vegetable compartment 5 of the refrigerator 1 according to Embodiment 1 of the present invention when viewed from the back.
  • the refrigerator 1 includes a vegetable compartment 5 that is set to a temperature higher than that of the upper ice making chamber 3, the temperature switching chamber 4, and the lower freezing compartment 6, and stores stored items that are foods such as vegetables. As shown in FIGS.
  • the vegetable room 5 includes the right wall part, the left side surface part, the ceiling wall part 32, the bottom wall part 35, the back wall part 31, and the door wall part that define the vegetable room 5.
  • One rectangular vacuum heat insulating material 24, 33, 36, 39 is arranged on each 20.
  • the right side wall portion of the vegetable room 5 has a rectangular plate-like shape over the right side wall part 20 of the entire box 19 of the refrigerator 1 including other storage rooms above and below the vegetable room 5.
  • a vacuum heat insulating material 24 is arranged.
  • the left wall part of the vegetable room 5 is a rectangular plate-like vacuum heat insulating material over the left wall part 20 of the entire box 19 of the refrigerator 1 including other storage rooms above and below the vegetable room 5. 24 is arranged.
  • the ceiling wall part 32 of the vegetable compartment 5 is provided with a single rectangular plate-like vacuum heat insulating material 33.
  • the bottom wall portion 35 of the vegetable compartment 5 is provided with a single rectangular plate-like vacuum heat insulating material 36.
  • the back wall 31 of the vegetable compartment 5 is provided with a single rectangular plate-like vacuum heat insulating material 39 so as to separate the cooler compartment 27.
  • the door wall of the vegetable compartment 5 is provided with a single plate-like vacuum heat insulating material 24 in a rectangular shape.
  • FIG. 20 is a schematic diagram showing a heat retaining heater 46 installed in the vegetable compartment 5 of the refrigerator 1 according to Embodiment 1 of the present invention. If it comprises as shown in above-mentioned FIG. 18, FIG. 19, it will become the tendency for the average temperature of the vegetable compartment 5 to fall. For this reason, as shown in FIG. 20, in the vegetable compartment 5, in order to maintain the room temperature of the vegetable compartment 5 when needed, the heat retention heater 46 using an electrical resistance may be installed.
  • the warming heater 46 of the vegetable room 5 has an arbitrary capacity of about 3 W or more and 10 W or less at an arbitrary position on the bottom surface, back surface or both left and right side surfaces of the vegetable room 5, particularly at a point where the room temperature of the vegetable room 5 is relatively low. Installed at.
  • the heat retaining heater 46 is energized at a time-based energization rate (energization time / reference time) according to the outside air temperature and the room temperature of the vegetable room 5.
  • FIG. 21 is a schematic diagram showing a heat radiating pipe 47 installed in the vegetable compartment 5 of the refrigerator 1 according to Embodiment 1 of the present invention.
  • a heat radiating pipe 47 is installed inside the urethane foam heat insulating material in the left and right side wall portions of the box 19 for the purpose of maintaining the temperature of the vegetable compartment 5. May be.
  • a heat radiating pipe 47 may be installed on the heat insulating material side inside the outer wall of the partition of the bottom wall portion 35 for the purpose of maintaining the temperature of the vegetable compartment 5.
  • the heat radiating pipe 47 circulates the refrigerant used for the cooler 14 and radiates heat into the vegetable compartment 5.
  • the amount of heat radiated from the heat radiating pipe 47 into the vegetable compartment 5 is as follows. It is good to secure about 5W. According to this, in the vegetable room 5 having an internal volume of about 90 L, a temperature increase effect of about 2 ° C. or more and 3 ° C. or less is obtained as the temperature. In addition, when the capacity
  • the remaining other outlet pipe 50 is connected to the heat radiating pipe 47 to the vegetable compartment 5 described above. If comprised in this way, since the heat radiating pipe 47 will radiate the heat
  • the other outlet pipe 49 not connected to the heat radiating pipe 47 to the vegetable compartment 5 on the downstream side of the flow path switching three-way valve 48 performs pseudo electronic control on the flow rate of the discharged refrigerant. It should be adjustable in multiple stages as an expansion valve. As a result, the power consumption can be further reduced.
  • FIG. 24 is an explanatory diagram showing the configuration of the flow path switching three-way valve 48 of the refrigerator 1 according to Embodiment 1 of the present invention.
  • the flow path switching three-way valve 48 is largely divided into two parts by a low voltage four-phase stepping motor 52 and a valve body 53.
  • the interior of the valve body 53 includes a magnetized rotor 54, a center gear 55, a rotating gear 56, a rotating pad 57, a valve seat 58, an outer case 59, and a floor plate 60 as main components.
  • the flow path switching three-way valve 48 rotates the magnetized rotor 54 by unipolar driving the four-phase stepping motor 52 by 1-2 phase excitation.
  • the magnetized rotor 54 is directly connected to the center gear 55. When the magnetized rotor 54 rotates, the center gear 55 rotates by the same amount in the same direction as the magnetized rotor 54.
  • FIG. 25 is a diagram collectively showing a flow path formation state with respect to STEP of the rotary gear 56 in the flow path switching three-way valve 48 of the refrigerator 1 according to Embodiment 1 of the present invention.
  • FIG. 25B is a diagram showing a case where the flow path is closed in the 4 STEP state of the rotating gear 56
  • FIG. 25C is a diagram showing the aperture A in the 36 STEP state of the rotating gear 56.
  • 25 (d) is a diagram showing a case where the aperture B is set in the 73 STEP state of the rotating gear 56
  • FIG. 25 (e) is a diagram where the aperture C is set in the 110 STEP state of the rotating gear 56.
  • FIG. 25 (f) is a diagram showing a case where the flow path is opened in the 177 STEP state of the rotating gear 56
  • FIG. 25 (g) is a case where the rotation gear 56 is in the 200 STEP state. In the figure shown That.
  • FIG. 26 is an explanatory diagram showing the rotary pad 57 and the valve seat 58 in the flow path switching three-way valve 48 of the refrigerator 1 according to Embodiment 1 of the present invention, taken along section AA in FIG. 25 (c).
  • the peripheral shape of the orifice 61 formed in the rotary pad 57 is deeply formed stepwise.
  • the orifices 61, 62, 63 formed in the rotating pad 57 are very small and are difficult to mold. For this reason, the peripheral shape of the orifices 61, 62, 63 requires that the depth of the orifices 61, 62, 63 be shallow, and the reverse driving (CCW) of the stepping motor 52 caused by backlash of the connecting gear.
  • CCW reverse driving
  • FIG. 27 is a diagram collectively showing the blow-out air passage 65 and the return air passage 28 for the cold air to the refrigerator compartment 2 of the refrigerator 1 according to Embodiment 1 of the present invention
  • FIG. FIG. 27B is an explanatory view showing the cold air blowing air passage 65 and the return air passage 28 in left and right vertical sections
  • FIG. 27B is an explanatory view showing the cold air blowing air path 65 to the refrigerator compartment 2 in the front and rear longitudinal sections
  • FIG. 27 (c) is an explanatory view showing the return air passage 28 for the cold air from the refrigerator compartment 2 in a longitudinal section.
  • the cold air blowing air path 65 to the refrigerator compartment 2 is the vegetable room 5 after the cold air is discharged from the blower 15 installed above the cooler 14.
  • the air path in the foam heat insulating material in the partition partitioning the temperature switching chamber 4 and the air path molded with the foam heat insulating material installed on the back side of the refrigerator compartment 2 are connected to each other.
  • the air volume adjusting device 18 a that adjusts the amount of cold air supplied to the refrigerating chamber 2 adjusts the amount of cold air supplied to the refrigerating chamber 2 in the middle of the air flow path 65 of the cold air to the refrigerating chamber 2.
  • the air volume adjusting device 18a may be installed in any of the above-described air paths.
  • at least one cold air outlet in the refrigerator compartment 2 is formed on each storage storage shelf in the refrigerator compartment 2 so that the cold air distribution in the shelf and the cold air distribution between the shelves are within 2 ° C. The amount of blowout is adjusted.
  • the return air passage 28 for the cold air from the refrigerator compartment 2 is installed on the right side of the cooler 14 so as to be able to perform necessary heat insulation using a foam heat insulating material.
  • the outlet of the cool air return air passage 28 from the refrigerating chamber 2 is connected to a drip tray 66 that receives molten water at the time of defrosting from the lower right side of the cooler 14 in the cooler chamber 27.
  • a heater for avoiding blockage of the return air passage 28 due to frost in the air passage when necessary heat insulation is not ensured in the return air passage 28 from the refrigerator compartment 2.
  • 67 is preferably provided.
  • the heater 67 is installed at an arbitrary position in the return air passage 28 in the longitudinal direction of the air passage within the range of the vertical projection size of the cooler 14 and generates heat when necessary.
  • the heater 67 may be provided so as to follow the flow direction of the return cold air within a range of 100 mm above and below around the joint between the return air passage 28 and the drip tray 66.
  • FIG. 28 is a diagram collectively showing a cold air blowing air path 68 and a return air path 69 to the ice making chamber 3 of the refrigerator 1 according to Embodiment 1 of the present invention
  • FIG. FIG. 28B is an explanatory view showing the cold air blowing air passage 68 and the return air passage 69 in left and right vertical sections
  • FIG. 28B is a perspective view showing the cold air blowing state in the ice making chamber 3.
  • the cold air blowing air path 68 to the ice making chamber 3 is a foam heat insulating material above the cooler chamber 27 after the cold air is discharged from the blower 15 installed above the cooler 14.
  • the air path toward the ice making chamber 3 inside is connected to the air path molded by the foam heat insulating material installed on the back side of the ice making chamber 3.
  • an air volume adjustment device (not shown) that adjusts the amount of cold air supplied to the ice making chamber 3 adjusts the amount of cold air supplied to the ice making chamber 3 in the middle of the cold air blowing air path 68 to the ice making chamber 3.
  • the air volume adjusting device may be installed in any of the above-described air paths.
  • the cold air blown out from the cold air outlet 70 at an arbitrary position on the back surface of the ice making chamber 3 flows into the ice making mechanism 71.
  • the return air passage 69 from the ice making chamber 3 is projected from the front surface of the cooler 14 to the ice making chamber 3 side from the center of the refrigerator 1 within the full width of the cooler 14 and the rear projection of the ice making chamber 3. Installed within the width.
  • the return air passage 69 from the ice making chamber 3 is a foam return adjacent to the cold air return port 72 arbitrarily installed in the back wall portion of the ice making chamber 3, the back side of the outer surface of the ice making chamber surface, and the outer surface of the ice making chamber 3 surface.
  • the discharge port of the return air passage 69 from the ice making chamber 3 joins in the vicinity of the cold air return port from the freezing chamber 6.
  • the cold air return port from the freezing chamber 6 in the vicinity of the cold air discharge port from the ice making chamber 3 has a range equal to or larger than the horizontal width dimension of the return air passage 69 from the ice making chamber 3. is doing. Note that the return air passage 69 from the ice making chamber 3 may be directly returned into the cooler chamber 27 at a position above the cold air return port from the freezing chamber 6.
  • FIG. 29 is a diagram collectively showing a cold air blowing air path 73 and a return air path 29 to the temperature switching chamber 4 of the refrigerator 1 according to Embodiment 1 of the present invention
  • FIG. 29 (a) is a temperature switching chamber
  • FIG. 29 is an explanatory view showing the cold air blowing air path 73 and the return air path 29 to the left and right vertical sections
  • FIG. 29B is an explanatory view showing the cold air return air path 29 from the temperature switching chamber 4 in the front and rear longitudinal sections.
  • the cold air blowing path 73 to the temperature switching chamber 4 is foamed above the cooler chamber 27 after the cool air is discharged from the blower 15 installed above the cooler 14.
  • An air path toward the temperature switching chamber 4 in the heat insulating material and an air path molded with a foam heat insulating material installed on the back side of the temperature switching chamber 4 are connected.
  • the air volume adjusting device 18 b that adjusts the amount of cool air supplied to the temperature switching chamber 4 adjusts the amount of cool air supplied to the temperature switching chamber 4 in the middle of the cool air blowing air path 73 to the temperature switching chamber 4.
  • the air volume adjusting device 18b may be installed in any of the above-described air paths.
  • the return air passage 29 from the temperature switching chamber 4 includes a cold air return port arbitrarily installed in the back wall portion of the temperature switching chamber 4, and a temperature switching chamber. 4 on the outer surface of the outer surface of the surface 4 and part of the foam insulation adjacent to the outer surface of the temperature switching chamber 4, and the outlet of the return air passage 29 from the temperature switching chamber 4 is connected to the freezer chamber 6. Installed on the right side of the return air channel.
  • FIG. 30 is a diagram collectively showing the blowout air flow path 41 and the return air flow path 74 of the cold air to the freezer compartment 6 of the refrigerator according to Embodiment 1 of the present invention, and FIG. It is explanatory drawing which shows the blowing air path 41 and the return air path 74 of cold air with a right-and-left vertical cross section, and FIG.30 (b) shows the blowing air path 41 and the return air path 74 of the cold air to the freezer compartment 6 with a longitudinal longitudinal cross section. It is explanatory drawing.
  • the cold air blowing air path 41 to the freezing room 6 is the vegetable room 5 after the cold air is discharged from the blower 15 installed above the cooler 14.
  • the cold air that has passed through the air flow path 41 of the cold air to the freezer compartment 6 is guided into a storage case that is stacked in a plurality of stages in the freezer compartment 6 by a guide portion provided on the back ceiling of the freezer compartment 6.
  • the stored item in the freezer compartment 6 is cooled.
  • the return air path 74 from the freezer compartment 6 exhausts cold air from the inside of the freezer compartment 6 by a guide portion provided on the back ceiling of the freezer compartment 6. It is comprised by the air path formed in the range within the width
  • the outlet of the return air passage 74 from the freezer compartment 6 is a drip tray that receives the molten water at the time of defrosting from the lower right side of the cooler 14 in the cooler compartment 27 in the same manner as the return air passage 28 from the refrigerator compartment 2. 66.
  • a guide portion (not shown) provided on the back ceiling of the freezer compartment 6 serves as both a blowout guide into the freezer compartment 6 and a return guide from the freezer compartment 6 and faces the refrigerator 1 from the front. It is arranged back and forth. Specifically, a blow-out guide into the freezer compartment 6 is arranged on the front side of the refrigerator 1. A return-side guide from the inside of the freezer compartment 6 is disposed on the back side of the refrigerator 1.
  • the refrigerator 1 includes a vegetable room 5 that is set to a higher temperature than the other surrounding rooms and stores a stored product that is a food such as vegetables.
  • a vegetable compartment 5 In the vegetable compartment 5, one rectangular vacuum heat insulating material 24, 33, 36, 39 is arranged on each wall portion 20 that divides the six surfaces of the vegetable compartment 5.
  • the covering area of the vegetable compartment 5 by the vacuum heat insulating materials 24, 33, 36, and 39 increases as much as possible.
  • the vacuum heat insulating materials 24, 33, 36, and 39 are rectangular, and the heat insulating performance required by a simple configuration can be secured without providing a cutout or a hole in the vacuum heat insulating materials 24, 33, 36, and 39. Therefore, the manufacturing cost can be reduced, the assembly is simple, and the manufacturing efficiency is good.
  • the refrigerator 1 is laid out in the order of the refrigerator compartment 2, the ice making compartment 3, the temperature switching compartment 4, the vegetable compartment 5, and the freezer compartment 6 from the top.
  • the ice making chamber 3 and the temperature switching chamber 4 that store stored items such as food at a lower temperature than the vegetable chamber 5 are disposed above the vegetable chamber 5.
  • a freezer compartment 6 for storing stored items such as food at a lower temperature than the vegetable compartment 5 is disposed below the vegetable compartment 5. For this reason, inflow of cold heat may occur in the vegetable compartment 5 and the inside of the vegetable compartment 5 may be too cold.
  • one rectangular vacuum heat insulating material 24, 33, 36, 39 is arranged on each wall 20 that partitions the vegetable compartment 5.
  • the inside of the vegetable chamber 5 is not cooled too much.
  • heat radiation from the inside of the vegetable compartment 5 to the periphery of the refrigerator 1 outside the vegetable compartment 5 can also be prevented, and the inside of the vegetable compartment 5 can be maintained at the set temperature with high efficiency.
  • the vegetable room 5 with a high use frequency can be arrange
  • the rectangular vacuum heat insulating material 24 of 1 sheet is distribute
  • the rectangular vacuum heat insulating materials 24, 33, 36, and 39 are arranged on the ceiling wall portion 32, the bottom wall portion 35, the back wall portion 31, and the door wall portion of the vegetable room 5, respectively.
  • one rectangular vacuum heat insulating material 24 is arranged over the two side wall portions of the entire box 19 of the refrigerator 1 including the other chambers in the side wall portion of the vegetable room 5, and is used for the refrigerator 1. Vacuum insulation is arranged efficiently. For this reason, the number of vacuum heat insulating materials used can be reduced, the manufacturing cost can be reduced, the assembly is simple, and the manufacturing efficiency is improved.
  • the cooler 14 is provided behind the vegetable compartment 5.
  • the back wall 31 of the vegetable compartment 5 is provided with one rectangular vacuum heat insulating material 39 between the inner wall of the vegetable compartment 5 and the cooler 14. According to this configuration, inflow of cold heat from the cooler 14 toward the vegetable compartment 5 can be prevented. Thereby, the temperature rise of the cooler 14 can be prevented. Moreover, the temperature fall of the back wall part 31 of the vegetable compartment 5 can be prevented. And problems, such as dew in the vegetable room 5 and frost formation, can be prevented.
  • the rear wall 31 of the vegetable compartment 5 includes the cold air passage 41 communicating from the cooler 14 to the freezer compartment 6 between the inner wall of the vegetable compartment 5 and the cooler 14. .
  • the air passage 41 is disposed on the front projection surface of the cooler 14. According to this configuration, the air passage 41 through which cool air having a low temperature flows can be gathered together with the cooler 14, and the thermal efficiency can be improved.
  • one rectangular vacuum heat insulating material 39 arranged between the inner wall of the vegetable compartment 5 and the cooler 14 at the back wall portion 31 of the vegetable compartment 5 includes the cooler 14 and the wind
  • the path 41 is separated from the vegetable compartment 5 over a wider range than the front projection surface of the cooler 14 and the air path 41. According to this configuration, it is possible to prevent inflow of cold heat from the cooler 14 and the air passage 41 toward the vegetable compartment 5 with only one rectangular vacuum heat insulating material 39.
  • the refrigerator 1 includes a vegetable room 5 that is set to a higher temperature than the other surrounding rooms and stores a stored product that is a food such as vegetables.
  • the refrigerator 1 includes a cooler 14 provided behind the vegetable compartment 5.
  • the refrigerator 1 includes a back wall portion 31 provided between the inner wall of the vegetable compartment 5 and the cooler 14.
  • the refrigerator 1 includes a vacuum heat insulating material 39 provided on the cooler 14 side of the back wall portion 31. According to this configuration, inflow of cold heat from the cooler 14 toward the vegetable compartment 5 can be prevented. Thereby, the temperature rise of the cooler 14 can be prevented. Moreover, the temperature fall of the back wall part 31 of the vegetable compartment 5 can be prevented. And problems, such as dew in the vegetable room 5 and frost formation, can be prevented.
  • the refrigerator 1 is provided with the vacuum heat insulating materials 33 and 36 on the ceiling wall part 32 and the bottom wall part 35 that partition the vegetable room 5 and the surrounding other rooms.
  • the covering area of the vegetable compartment 5 by the vacuum heat insulating materials 33 and 36 increases as much as possible.
  • the vacuum heat insulating materials 33 and 36 are not provided with a notch or a hole, and a necessary heat insulating performance can be ensured with a simple configuration.
  • surroundings of the vegetable chamber 5 can be prevented, and the inside of the vegetable chamber 5 is not cooled too much.
  • the vacuum heat insulating materials 24, 33, 36, and 39 are one rectangular plate-like shape. According to this configuration, the vacuum heat insulating materials 24, 33, 36, and 39 are rectangular, and the heat insulating performance required by a simple configuration is not required without providing cutouts or holes in the vacuum heat insulating materials 24, 33, 36, and 39. Can be secured. Therefore, the manufacturing cost can be reduced, the assembly is simple, and the manufacturing efficiency is good.
  • the cold air outlet 44 and the cold air return port 45 are formed on the inner wall of the back wall 31 of the vegetable compartment 5.
  • One rectangular vacuum heat insulating material 39 arranged on the back wall 31 of the vegetable compartment 5 does not overlap the rear projection plane of the cold air outlet 44 and the cold air outlet 45.
  • the cold air outlet 44 and the cold air return port 45 can be formed at positions that are not separated by the single rectangular vacuum heat insulating material 39. For this reason, since the cold air outlet 44 and the cold air return port 45 are formed, special processing such as making a hole in the vacuum heat insulating material 39 or providing a notch in the vacuum heat insulating material 39, or vacuum heat insulating There is no need to use multiple materials. Therefore, the manufacturing cost can be reduced, the assembly is simple, and the manufacturing efficiency is good.
  • one rectangular vacuum heat insulating material 39 disposed on the back wall portion 31 of the vegetable room 5 avoids the vertical projection region or the horizontal projection region of the cold air outlet 44 and the cold air return port 45.
  • the vertical and horizontal sides are installed so as to be substantially parallel to the vertical direction and the horizontal direction.
  • one rectangular vacuum heat insulating material 39 fits the shape of the rectangular parallelepiped of the refrigerator 1, the manufacturing worker can be prevented from mistakenly placing the vacuum heat insulating material 39, and assembly is simple, Manufacturing efficiency is good.
  • the cold air outlet 44 and the cold air return port 45 are respectively located at diagonal corners of the inner wall of the vegetable compartment 5. According to this configuration, the cold air outlet 44 and the cold air return port 45 can be formed at positions that are not separated by the single rectangular vacuum heat insulating material 39. Further, the distance between the cold air outlet 44 and the cold air return port 45 can be separated, and the cold air blown out from the cold air outlet 44 and returned to the cold air return port 45 travels throughout the vegetable compartment 5, thereby improving the thermal efficiency.
  • the cold air outlet 44 and the cold air return port 45 are located in the same range in the vertical direction or the horizontal direction of the inner wall of the vegetable compartment 5. According to this configuration, the cold air outlet 44 and the cold air return port 45 can be formed at positions that are not separated by the single rectangular vacuum heat insulating material 39. Further, the cold air outlet 44 and the cold air return port 45 approach each other, and the area where the single rectangular vacuum heat insulating material 39 is arranged on the back wall portion 31 of the vegetable compartment 5 can be enlarged.
  • the refrigerator 1 includes an electrical component that adjusts the opening and closing of a plurality of air paths.
  • the electrical parts are stored in the back wall of the other room above the vegetable room 5. According to this structure, it is not necessary to provide an extra space behind the vegetable compartment 5, and the large-capacity vegetable compartment 5 is provided.
  • the vegetable compartment 5 has the heat retaining heater 46 on one of the wall portions 20 that partitions the vegetable compartment 5. According to this configuration, when the inside of the vegetable compartment 5 is too cold, the inside of the vegetable compartment 5 is warmed by the heat retaining heater 46.
  • the vegetable compartment 5 has the radiation pipe 47 which distribute
  • the inside of the vegetable compartment 5 is warmed with the refrigerant
  • the storage room is the vegetable room 5.
  • Other rooms around the storage room can be switched to a freezing room 6, an ice making room 3, a chilled room, a storage room having a temperature lower than the temperature range of the vegetable room 5, or a temperature range lower than the temperature range of the vegetable room 5.
  • This is a temperature switching chamber 4.
  • one rectangular vacuum heat insulating material 24, 33, 36, 39 is arranged on each wall 20 that partitions the vegetable compartment 5.
  • surroundings of the vegetable chamber 5 can be prevented, and the inside of the vegetable chamber 5 is not cooled too much.
  • heat radiation from the inside of the vegetable compartment 5 to the periphery of the refrigerator 1 outside the vegetable compartment 5 can also be prevented, and the inside of the vegetable compartment 5 can be maintained at the set temperature with high efficiency.
  • FIG. The refrigerator 1 according to Embodiment 2 causes the return cold air from the refrigerator compartment 2 to flow into the vegetable compartment 5 with respect to the refrigerator 1 according to Embodiment 1. For this reason, the return air path of the cold air from the refrigerator compartment 2 and the return air path from the vegetable compartment 5 merge on the lower back side of the vegetable compartment 5, and the return air passage from the freezer compartment 6 is divided into left and right. It is comprised so that it may return to the cooler chamber 27 from the inside.
  • the characteristic part will be described. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • FIG. 31 is a front view showing the back wall portion 31 viewed from the vegetable compartment 5 of the refrigerator 1 according to Embodiment 2 of the present invention.
  • a refrigeration return port 75 is formed in the vegetable compartment 5 at the upper right side of the inner wall of the back wall portion 31 of the vegetable compartment 5.
  • the refrigeration return port 75 is located on the outside of the front projection surface of the rectangular plate-like vacuum heat insulating material 39 disposed on the back wall 31 of the vegetable compartment 5 and does not overlap the front projection surface. Yes.
  • a refrigerated return air passage 76 is formed on the back of the inner wall of the back wall portion 31 of the vegetable compartment 5.
  • the refrigeration return air passage 76 is formed from the upper right side of the inner wall of the back wall portion 31 of the vegetable compartment 5 where the refrigeration return port 75 is formed to the cold air outlet 44 at the center lower portion of the inner wall of the back wall portion 31.
  • the cold air outlet 44 is formed to be elongated in the left and right at the center lower part of the inner wall of the back wall 31.
  • the cold air outlet 44 is located on the outside of the front projection surface of the rectangular plate-like vacuum heat insulating material 39 disposed on the back wall 31 of the vegetable compartment 5 and does not overlap the front projection surface. Yes. Since the cold air outlet 44 is formed behind the inner wall of the back wall portion 31, the rectangular plate-like vacuum heat insulating material 39 is arranged behind the back wall portion 31 of the vegetable compartment 5. It may be blocked.
  • the cold air outlet 44 may be provided with an opening amount adjusting mechanism as a cold air amount adjusting mechanism capable of adjusting the opening amount from the left and right sides as shown by the arrows in the drawing.
  • a cold air return path (not shown) from the refrigerating chamber 2 is installed on the right side of the cooler 14 so as to allow necessary heat insulation using a foam heat insulating material.
  • the return air path of the cold air from the refrigerator compartment 2 extends from the temperature switching chamber 4 and the vegetable compartment 5 to the outer outline below the ceiling wall portion 32 in the rear projection plane of the ceiling wall portion 32 of the vegetable compartment 5.
  • a guide portion is formed on the surface and extended.
  • the return air path of the cold air from the refrigerator compartment 2 is an air passage formed in the bottom wall portion 35 of the vegetable compartment 5 between the vegetable compartment 5 and the freezer compartment 6 at the substantially lower center of the back of the vegetable compartment 5. Connected to.
  • the cool air blown by the blower 15 installed above the cooler 14 and generated by the cooler 14 passes through the air volume adjusting device 18a held in the foam heat insulating material above the cooler chamber 27. And supplied to the refrigerator compartment 2. Thereafter, the cold air is supplied from a cold air return port in the refrigerating chamber 2 to a refrigerating return port 75 formed in the back wall portion 31 of the vegetable chamber 5 via a return air passage.
  • the cold air supplied to the refrigeration return port 75 is supplied to the refrigeration return air passage 76 formed in the back wall portion 31 of the vegetable room 5 and supplied into the vegetable room 5 from the cold air outlet 44 in the vegetable room 5. Is done.
  • the subsequent cold air is supplied to a cold air return port 45 (not shown) in the vegetable room 5.
  • FIG. 32 is a front view showing another example of the back wall portion 31 viewed from the vegetable compartment 5 of the refrigerator 1 according to Embodiment 2 of the present invention.
  • the refrigerated return air passage 76 disposed in the back wall portion 31 of the vegetable compartment 5 has no heat insulating function between the vegetable compartment 5 and is separated by an inner wall surface formed by injection molding. Therefore, as shown in FIG. 32, in order to adjust the temperature in the vegetable compartment 5, a plurality of holes 77 may be provided on the inner wall surface that separates the refrigerated return air passage 76 and the vegetable compartment 5.
  • FIG. 33 is a front view showing another example of the back wall portion 31 viewed from the vegetable compartment 5 of the refrigerator 1 according to Embodiment 2 of the present invention.
  • a plurality of holes 77 are provided in the inner wall surface that separates the refrigerated return air passage 76 and the vegetable compartment 5 in order to adjust the temperature in the vegetable compartment 5 as in the configuration shown in FIG. 32. May be.
  • a slider 78 that can freely open and close the plurality of holes 77 provided on the inner wall surface may be provided. With such a configuration, the user can arbitrarily adjust the temperature in the vegetable compartment 5 by adjusting the number of holes 77 to be closed by sliding the slider 78 as shown by the arrow in the figure.
  • the flow rate adjusting device that adjusts the amount of cold air supplied to the vegetable compartment 5 does not have to be provided in the air passage portion on the back side of the refrigerator 1. good.
  • the cold air outlet 44 is cooled by the cooler 14 that returns from another room that stores a stored product such as food at a lower temperature than the vegetable room 5 around the vegetable room 5.
  • the low-temperature cold air thus produced is blown into the vegetable compartment 5.
  • the vegetable compartment 5 has a cold air amount adjusting mechanism that adjusts the amount of cold air blown out from the cold air outlet 44.
  • the temperature in the vegetable compartment 5 can be adjusted, and the store which is foodstuffs, such as vegetables, can be preserve
  • Embodiments 1 and 2 of the present invention may be combined or applied to other portions.
  • the vacuum heat insulating materials 24, 33, 36, and 39 were one rectangular and plate shape. However, it is not limited to this.
  • the vacuum heat insulating materials 24, 33, 36, and 39 may be formed in a shape having a rounded corner, a triangular shape, a polygonal shape, an elliptical shape, a circular shape, and other various shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Refrigerator Housings (AREA)

Abstract

冷蔵庫は、周囲の他室よりも高温に設定されて貯蔵物を貯蔵する貯蔵室を備え、貯蔵室は、貯蔵室を区画する各壁部にそれぞれ真空断熱材を配した。

Description

冷蔵庫
 本発明は、貯蔵室を区画する各壁部に真空断熱材を配した冷蔵庫に関する。
 従来の冷蔵庫では、上から、冷蔵室、製氷室、冷凍室、野菜室の順にレイアウトしている。このレイアウトの場合には、冷蔵庫の最も低い位置に野菜室が配置されている。このため、ユーザは、野菜を野菜室から取りだすために膝を折ってしゃがんだり、腰を曲げたりする必要があった。
 ここで、野菜室と冷凍室とで扉の開閉回数あるいは扉の開時間を比較した場合には、個人差はあるものの、おおよそ野菜室の方が扉の開閉回数が多く、扉の開時間も長い。そのため、野菜室と冷凍室との位置を入れ替えて、野菜室を冷凍室よりも上方に配置した方が冷蔵庫全体としての利便性が向上すると予想される。
 しかし、従来の冷蔵庫は、第1に熱的な効率を向上させるため、冷凍温度帯の複数の室を1箇所に集合させた構成になっている。
 従来の冷蔵庫は、第2に冷凍室の背面に冷却器を配置し、冷凍室と冷却器との間に特別な断熱部品を設けなくても、露付き、霜着きなどの不具合が起き難い構成になっている。
 これに対して、ユーザの利便性を向上するために、冷蔵庫が、上から、冷蔵室、製氷室、野菜室、冷凍室の順でレイアウトされることが考えられる。この冷蔵庫は、上から冷蔵温度帯(プラス温度)と冷凍温度帯(マイナス温度)との室が交互に入れ替えられて配置される。
 このため、このようなレイアウトの冷蔵庫は、第1に熱的な効率が従来の冷蔵庫よりも劣る。また、必要な断熱性能を確保するために各室の壁部の厚みが大きくなり、冷蔵庫の外形が同じ場合で比較すると食品が収納できるスペースが小さくなる。
 また、このようなレイアウトの冷蔵庫は、第2に冷却器が野菜室の背面に配置されることになり、野菜室と冷却器とを隔てる壁部に従来に比して高い断熱性能を持たせる必要がある。断熱性能を高めるためには、壁部の厚みを大きくすれば良い。しかし、前述の通り食品収納スペースが犠牲になってしまう。
 そのため、従来断熱部品としては、加工性がよく取り付けおよび取り外しあるいは運搬性に便利な発泡スチロールの成型品を用いていた。しかし、断熱部品として、より断熱性能が高い(熱伝達係数が小さい)真空断熱材を用いることで、断熱性能と食品収納スペース確保の両立が目指せる。
特開2012-242072号公報
 野菜室と冷却器との間に真空断熱材を配置する場合では、冷却器で冷やした冷気を野菜室に送り込むために風路が必要である。特許文献1では、「内壁面を構成する前記隔壁のうち、前記流入口および前記流出口以外の前面に前記真空断熱材」を設けたと記載がある(特許文献1の請求項10参照)。このように、流入口と流出口以外を全て真空断熱材で被覆してしまう方法がある。
 しかし、その場合には、真空断熱材に穴を開けたり、真空断熱材に切り欠きを設けたり、真空断熱材を複数枚使用したりする必要が生じる。そのため、製造コストが増大してしまう。
 本発明は、上記課題を解決するためのものであり、製造コストが低減でき、組み立てが簡便であり、製造効率が良い冷蔵庫を提供することを目的とする。
 本発明に係る冷蔵庫は、周囲の他室よりも高温に設定されて貯蔵物を貯蔵する貯蔵室を備え、前記貯蔵室は、前記貯蔵室を区画する各壁部にそれぞれ真空断熱材を配したものである。
 本発明に係る冷蔵庫によれば、貯蔵室は、貯蔵室を区画する各壁部にそれぞれ真空断熱材を配した。このため、真空断熱材による貯蔵室の被覆面積が可能な限り増大する。また、真空断熱材が矩形などの製造容易な形状であり、真空断熱材に切り欠きあるいは穴を設けることがなく、簡単な構成で必要な断熱性能が確保できる。したがって、製造コストが低減でき、組み立てが簡便であり、製造効率が良い。
本発明の実施の形態1に係る冷蔵庫を示す外観斜視図である。 本発明の実施の形態1に係る冷蔵庫の冷媒回路を示す図である。 本発明の実施の形態1に係る冷蔵庫の左右方向の縦断面を示す説明図である。 本発明の実施の形態1に係る冷蔵庫の箱体の壁部の一部の断面を示す説明図である。 本発明の実施の形態1に係る冷蔵庫の箱体のうち左側面部の壁部の一部の断面を示す説明図である。 本発明の実施の形態1に係る冷蔵庫の箱体の壁部の一部の断面の他の例を示す説明図である。 本発明の実施の形態1に係る冷蔵庫の箱体の壁部の一部の断面の他の例を示す説明図である。 本発明の実施の形態1に係る冷蔵庫の下部周辺の前後縦断面を示す図である。 本発明の実施の形態1に係る冷蔵庫の下部周辺の左右縦断面を示す図である。 本発明の実施の形態1に係る冷蔵庫の野菜室周辺の左右縦断面を示す図である。 本発明の実施の形態1に係る冷蔵庫の野菜室における天井壁部の他の例の縦断面を示す説明図である。 本発明の実施の形態1に係る冷蔵庫の野菜室における天井壁部の他の例の縦断面を示す説明図である。 本発明の実施の形態1に係る冷蔵庫の野菜室周辺の左右縦断面の他の例を示す図である。 本発明の実施の形態1に係る冷蔵庫の野菜室周辺の左右縦断面の他の例を示す図である。 本発明の実施の形態1に係る冷蔵庫の野菜室内から見た背面壁部を示す正面図である。 本発明の実施の形態1に係る冷蔵庫の野菜室内から見た背面壁部の他の例を示す正面図である。 本発明の実施の形態1に係る冷蔵庫の野菜室内から見た背面壁部の他の例を示す正面図である。 本発明の実施の形態1に係る冷蔵庫の野菜室を区画する一部の壁部における真空断熱材を示す模式図である。 本発明の実施の形態1に係る冷蔵庫の野菜室を区画する一部の壁部における真空断熱材を背面から見て示す模式図である。 本発明の実施の形態1に係る冷蔵庫の野菜室に設置された保温ヒータを示す模式図である。 本発明の実施の形態1に係る冷蔵庫の野菜室に設置された放熱パイプを示す模式図である。 本発明の実施の形態1に係る冷蔵庫の冷媒回路における放熱パイプを示す模式図である。 本発明の実施の形態1に係る冷蔵庫の流路切替三方弁における野菜室への放熱パイプに接続されていない出口パイプ側の流量特性を示す図である。 本発明の実施の形態1に係る冷蔵庫の流路切替三方弁の構成を示す説明図である。 本発明の実施の形態1に係る冷蔵庫の流路切替三方弁における回転ギアのSTEPに対する流路形成状態をまとめて示す図であり、図25(a)が回転ギアの0STEP状態を示す図であり、図25(b)が回転ギアの4STEP状態で流路閉となる場合を示す図であり、図25(c)が回転ギアの36STEP状態で絞りAとなる場合を示す図であり、図25(d)が回転ギアの73STEP状態で絞りBとなる場合を示す図であり、図25(e)が回転ギアの110STEP状態で絞りCとなる場合を示す図であり、図25(f)が回転ギアの177STEP状態で流路開となる場合を示す図であり、図25(g)が回転ギアの200STEP状態で段当たりとなる場合を示す図である。 本発明の実施の形態1に係る冷蔵庫の流路切替三方弁における回転パッドおよび弁座を図25(c)のA-A断面で示す説明図である。 本発明の実施の形態1に係る冷蔵庫の冷蔵室への冷気の吹出し風路および戻り風路をまとめて示す図であり、図27(a)が冷蔵室への冷気の吹出し風路および戻り風路を左右縦断面で示す説明図であり、図27(b)が冷蔵室への冷気の吹出し風路を前後縦断面で示す説明図であり、図27(c)が冷蔵室からの冷気の戻り風路を前後縦断面で示す説明図である。 本発明の実施の形態1に係る冷蔵庫の製氷室への冷気の吹出し風路および戻り風路をまとめて示す図であり、図28(a)が製氷室への冷気の吹出し風路および戻り風路を左右縦断面で示す説明図であり、図28(b)が製氷室内の冷気の吹出し状態を示す斜視図である。 本発明の実施の形態1に係る冷蔵庫の温度切替室への冷気の吹出し風路および戻り風路をまとめて示す図であり、図29(a)が温度切替室への冷気の吹出し風路および戻り風路を左右縦断面で示す説明図であり、図29(b)が温度切替室からの冷気の戻り風路を前後縦断面で示す説明図である。 本発明の実施の形態1に係る冷蔵庫の冷凍室への冷気の吹出し風路および戻り風路をまとめて示す図であり、図30(a)が冷凍室への冷気の吹出し風路および戻り風路を左右縦断面で示す説明図であり、図30(b)が冷凍室への冷気の吹出し風路および戻り風路を前後縦断面で示す説明図である。 本発明の実施の形態2に係る冷蔵庫の野菜室内から見た背面壁部を示す正面図である。 本発明の実施の形態2に係る冷蔵庫の野菜室内から見た背面壁部の他の例を示す正面図である。 本発明の実施の形態2に係る冷蔵庫の野菜室内から見た背面壁部の他の例を示す正面図である。
 以下、図面に基づいて本発明の実施の形態について説明する。
 なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。
 さらに、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷蔵庫1を示す外観斜視図である。
 図1に示すように、冷蔵庫1は、上から、冷蔵室2、左側の製氷室3および製氷室3の隣の右側の温度切替室4、野菜室5、冷凍室6の順でレイアウトされている。冷蔵室2、製氷室3および温度切替室4、野菜室5、冷凍室6の各貯蔵室の間は、図示しない仕切りで仕切られている。
 冷蔵庫1は、縦に長い直方体で構成された箱体19を備えている。箱体19は、上面部、底面部、右側面部、左側面部、背面部、並びに、冷蔵室2、製氷室3および温度切替室4、野菜室5、冷凍室6の各貯蔵室の扉部を有している。
 図2は、本発明の実施の形態1に係る冷蔵庫1の冷媒回路7を示す図である。
 図2に示すように、冷蔵庫1の冷媒回路7では、圧縮機8から吐出された冷媒が、図示しない機械室内に設置された空冷凝縮器9に供給される。そして、空冷凝縮器9を流通した冷媒は、冷蔵庫1の本体のウレタン内部に設置された凝縮器10を流通する。凝縮器10を流通した冷媒は、冷蔵庫1の前面にて冷蔵室2、製氷室3および温度切替室4、野菜室5、冷凍室6の各貯蔵室周囲に張り巡らされている露付き防止パイプ11を流通する。露付き防止パイプ11を流通する冷媒は、凝縮過程により凝縮される。露付き防止パイプ11を流通した冷媒は、ドライヤ12を経由した後に減圧装置13に供給される。減圧装置13で減圧された冷媒は、1つの冷却器14に供給される。冷却器14に供給された冷媒は、冷却器14内で蒸発し、送風機15により強制的に内部循環する冷気と熱交換する。冷却器14の熱交換で生成された冷気は、冷蔵庫1内の各貯蔵室を冷却する。冷却器14で熱交換した後の冷媒は、吸入管を経て減圧装置13と熱交換しながら温度上昇し、圧縮機8に戻る。
 冷蔵庫1の冷気は、まず冷却器14に供給される。そして、送風機15により強制的に内部循環する冷気は、冷却器14で冷媒と熱交換する。冷却器14の熱交換で生成された冷気は、冷蔵庫1内の冷蔵室2、製氷室3および温度切替室4、野菜室5、冷凍室6の各貯蔵室を冷却する。
 図3は、本発明の実施の形態1に係る冷蔵庫1の左右方向の縦断面を示す説明図である。
 図3に示すように、冷蔵室2、製氷室3および温度切替室4、野菜室5、冷凍室6の各貯蔵室に設置されたそれぞれの温度センサ16a、16b、16c、16dは、各貯蔵室内の空気温度あるいは貯蔵食品の温度を検知する。検知された温度情報は、冷蔵庫1内部の上方後側に設置された制御基板17に入力される。制御基板17には、冷蔵庫1の各種制御を行うマイクロコンピュータおよび電子部品が配置されている。制御基板17は、入力された温度情報に応じて各貯蔵室用の風量調整装置(ダンパー)18a、18b、18cを動作させる。風量調整装置18a、18b、18cは、風路の開閉を調節する電気部品である。
 これにより、各貯蔵室と冷却器14とを循環する冷気は、温度センサ16a、16b、16c、16dにより検知された温度に応じて、風量調整装置18a、18b、18cにより風量が調整され、各貯蔵室を適切な温度に保つ。
 図4は、本発明の実施の形態1に係る冷蔵庫1の箱体19の壁部20の一部の断面を示す説明図である。
 図4に示すように、箱体19の壁部20は、外郭を構成する板金21と、各貯蔵室内壁を構成する内箱22と、板金21と内箱22との間の断熱材23と、から構成され、外部からの侵入熱量を抑制している。
 ここで、断熱材23には、真空断熱材24が外郭の板金21に貼付され、真空断熱材24により熱侵入量が大きく低減できるようにしている。真空断熱材24は、各壁部20内に配される1枚の矩形の板状である。
 また、断熱材23は、真空断熱材24以外に主にウレタン発泡材を使用している。断熱材23は、ウレタン発泡材を封入する空間に、冷蔵庫1の歪みを矯正する補強部材、上記した冷媒回路部品、電気配線部品などの様々な内設部材を配置し、これらの内接部材をウレタン発泡材にて固定している。
 図5は、本発明の実施の形態1に係る冷蔵庫1の箱体19のうち左側面部の壁部20の一部の断面を示す説明図である。
 図5に示すように、冷蔵庫1の箱体19のうち左側面部の壁部20の断熱材23は、ウレタン発泡材を封入する空間に、上記した内設部材の他に、引出式の貯蔵室の扉を構成するフレーム構造を受けるレール構造の支え25も内接部材として配置し、これらの内接部材をウレタン発泡材にて固定している。また、この断熱材23は、引出式の貯蔵室の扉を構成するフレーム構造を受けるレール構造の固定形状に形成されている。
 図6は、本発明の実施の形態1に係る冷蔵庫1の箱体19の壁部20の一部の断面の他の例を示す説明図である。図7は、本発明の実施の形態1に係る冷蔵庫1の箱体19の壁部20の一部の断面の他の例を示す説明図である。
 図6に示すように、断熱材23に配される真空断熱材24は、設置箇所により、外郭の板金21と内箱22の壁面の中間位置にスペーサ26を用いて配されても良い。図7に示すように、断熱材23に配される真空断熱材24は、設置箇所により、内箱22の壁面に貼付されても良い。このように、断熱材23に配される真空断熱材24は、図4、図6、図7に示すいずれの方法で配されていても良い。ただし、真空断熱材24は、上記した内設部材と干渉しないように設置される。
 冷蔵庫1の箱体19の断熱材23に配される真空断熱材24の被覆面積は、各貯蔵室の扉表面積を含めた外郭表面積全体の40%以上を確保する。また、これらの真空断熱材24の周囲に封入されるウレタン発泡材の発泡密度は、60kg/cm以上を確保する。かつ、ウレタン発泡材の曲げ弾性率は、15.0MPa以上を確保する。これにより、冷蔵庫1の箱体19の強度が担保される。
 このように、真空断熱材24が冷蔵庫1の箱体19の断熱材23に配されることにより、冷蔵庫1の外郭と内箱22の内壁との間の断熱厚である距離は、狭められる。これにより、冷蔵庫1の内容積が増加できる。
 図3に示すように、冷蔵庫1は、冷蔵室2、製氷室3および温度切替室4、野菜室5、冷凍室6の各貯蔵室へのアクセスし易さと、各貯蔵室の内容積バランスとを考慮し、床面から冷蔵室床面までの距離Lが954mm以上994mm以下の間に設定される。
 図3に示すように、冷却器14は、製氷室3、温度切替室4、野菜室5の背面に形成された冷却器室27内に収納される。冷却器14の下端は、冷却器室27内にて、野菜室5の床面Fよりも下に位置している。
 冷却器14の下端が野菜室5の床面Fよりも下に位置することにより、冷却器14の上方により大きな空間が確保できる。これにより、この空間に配置され、冷蔵室2、製氷室3および温度切替室4、野菜室5、冷凍室6の各貯蔵室に冷気を送風する送風機15のサイズの自由度が大きくなる。また、送風機15の上方には、発泡断熱材により保持された、各貯蔵室に向かう風路への風量調整装置18a、18b、18cが設置されている。
 図8は、本発明の実施の形態1に係る冷蔵庫1の下部周辺の前後縦断面を示す図である。図9は、本発明の実施の形態1に係る冷蔵庫1の下部周辺の左右縦断面を示す図である。
 図8に示すように、冷却器14の右側面には、冷蔵室2からの空気循環の戻り風路28が形成されている。図9に示すように、冷蔵室2からの空気循環の戻り風路28の前方には、温度切替室4の戻り風路29および野菜室5への吹出し風路30が形成されている。
 図9に示すように、冷却器14および上記した風路29、30の前方には、野菜室5内の空間との断熱壁である背面壁部31が形成されている。
 図10は、本発明の実施の形態1に係る冷蔵庫1の野菜室5周辺の左右縦断面を示す図である。
 図10に示すように、野菜室5の天井壁部32は、製氷室3および温度切替室4との間の仕切りになっている。天井壁部32は、断熱壁であり、熱移動が抑制される。
 天井壁部32は、射出成型材にて外郭が構成され、内部を真空断熱材33とウレタン発泡材34とにより構成されている。真空断熱材33は、野菜室5よりも低温に設定される製氷室3および温度切替室4側に設置されている。真空断熱材33は、1枚の矩形で板状である。
 ウレタン発泡材34の厚みは、製造時の流動性と製造バラツキを考慮して7mm以上確保している。
 図10に示すように、野菜室5の底壁部35は、冷凍室6との間の仕切りになっている。底壁部35は、断熱壁であり、熱移動が抑制される。
 底壁部35は、天井壁部32と同様に、射出成型材にて外郭が構成され、内部を真空断熱材36とウレタン発泡材37とにより構成されている。真空断熱材36は、野菜室5よりも低温に設定される冷凍室6側に設置されている。真空断熱材36は、1枚の矩形で板状である。
 ウレタン発泡材37の厚みは、製造時の流動性と製造バラツキとを考慮して7mm以上確保している。
 野菜室5の天井壁部32と底壁部35とに配される真空断熱材33、36は、冷蔵庫1の製造工程中におけるウレタン注入工程で、ウレタン発泡材34、37により包み込むことにより、真空断熱材33、36の劣化の抑制が図られている。
 図11は、本発明の実施の形態1に係る冷蔵庫1の野菜室5における天井壁部32の他の例の縦断面を示す説明図である。
 図11に示すように、天井壁部32は、真空断熱材33を、ウレタン発泡材34の粘性や流路幅を確保することにより、仕切外郭壁面の中間に配設し、ウレタン発泡材34によって全体を包み込み、真空断熱材33の更なる劣化抑制が図られても良い。
 図12は、本発明の実施の形態1に係る冷蔵庫1の野菜室5における天井壁部32の他の例の縦断面を示す説明図である。
 図12に示すように、天井壁部32は、真空断熱材33を、仕切外郭壁面の野菜室5側に配設しても良い。この場合には、真空断熱材33は、野菜室5の内壁面に対する被覆率を増加でき、熱侵入量の抑制が図れる。
 図10に示すように、野菜室5の背面には、野菜室5と冷却器室27とを隔てる背面壁部31が形成されている。背面壁部31は、断熱壁であり、その内部構成が、断熱壁外郭38と、真空断熱材39と、真空断熱材39を包み込むように設置した発泡断熱材40と、を用いて構成される。すなわち、野菜室5の背面壁部31は、野菜室5の内壁と冷却器14との間に1枚の矩形で板状の真空断熱材39が配されている。
 背面壁部31の発泡断熱材40の厚さは、成型できる限界の厚みを規準とし、その他に追加機能があれば必要な断熱厚を設ける。発泡断熱材40の材料にPS-FOを用いた場合には、たとえば発泡倍率40倍のときには、およそ厚みが最低5mm以上となるように構成する。
 背面壁部31の発泡断熱材40には、冷凍室6への送風用の風路41が設けられている。この風路41の前後配置は、後方から、冷却器14、断熱壁外郭42、風路41の構成を有した発泡断熱材40、真空断熱材39、発泡断熱材40、野菜室5の内壁を構成する断熱壁外郭38の順になっている。そして、図8に示すように、上記した冷凍室6への風路41は、冷却器14の前方投影面上に配置されている。つまり、野菜室5の背面壁部31は、冷却器14および冷凍室6への風路41を冷却器14および風路41の前方投影面よりも広範囲にわたって真空断熱材39で野菜室5から隔てている。
 図10に示すように、野菜室5の背面壁部31の風路41を有する発泡断熱材40には、野菜室5用の風量調整装置18cが保持されている。
 なお、各貯蔵室用の風量調整装置18a、18b、18cは、野菜室5の背面壁部31に設けず、野菜室5よりも上方の他室の背面壁部に格納されても良い。これによれば、野菜室5の背後に余計なスペースを設ける必要がなく、大容量の野菜室5が設けられる。
 図13は、本発明の実施の形態1に係る冷蔵庫1の野菜室5周辺の左右縦断面の他の例を示す図である。
 図13に示すように、野菜室5の背面壁部31の真空断熱材39は、真空断熱材39の効果をより確保するために、冷却器14側の断熱壁外郭42の内壁に貼付されても良い。すなわち、野菜室5の背面壁部31の真空断熱材39は、背面壁部31内の冷却器14側に設けられている。
 その場合には、送風機15から排出される冷気の出口の位置あるいは出口のサイズによる規制を受けて真空断熱材39の高さ方向の寸法が若干小さくなる。また、真空断熱材39が発泡断熱材40で覆われないため、真空断熱材39の劣化促進の懸念も生じ得る。
 図14は、本発明の実施の形態1に係る冷蔵庫1の野菜室5周辺の左右縦断面の他の例を示す図である。
 図14に示すように、野菜室5の背面壁部31は、図13に示す場合の不具合を解消して真空断熱材39を保護する目的から、発泡断熱材40が真空断熱材39と冷却器14側の断熱壁外郭42の内壁との間に設置されても良い。
 図15は、本発明の実施の形態1に係る冷蔵庫の野菜室5内から見た背面壁部31を示す正面図である。
 図15に示すように、野菜室5の背面壁部31は、野菜室5の内壁と冷却器14との間に1枚の矩形で板状の真空断熱材39が配されている。
 真空断熱材39の平面部の大きさは、冷却器14の前方投影面積よりも大きい。また、冷凍室6への風路41は、冷却器14の前方投影面上に配置されている。このため、図10に示すように、野菜室5の背面壁部31は、冷却器14および冷凍室6への風路41を冷却器14および風路41の前方投影面よりも広範囲にわたって真空断熱材39で野菜室5から隔てている。これにより、野菜室5内に向けて野菜室5の背面壁部31を通過する1次元的な熱移動量が最大限抑制される。
 図15に示すように、野菜室5内への冷気吹出し口44は、野菜室5の背面壁部31の内壁における右側上部に形成されている。冷気吹出し口44は、野菜室5の背面壁部31に配された1枚の矩形で板状の真空断熱材39の前方投影面上に重ならず、この前方投影面より外側に位置している。
 冷気吹出し口44は、冷却器14の上方に配設された送風機15により、冷却器14で生成された冷気を、冷却器室27の上方の発泡断熱材40に保持された野菜室用の風量調整装置18cを経由して供給する。
 なお、冷気吹出し口44は、野菜室5の背面壁部31以外の壁部の内壁に形成されても良い。
 野菜室5からの冷気戻り口45は、野菜室5の背面壁部31の内壁における冷気吹出し口44に対して対角上の左側下部に形成されている。冷気戻り口45は、野菜室5の背面壁部31に配された1枚の矩形で板状の真空断熱材39の前方投影面上に重ならず、この前方投影面より外側に位置している。
 冷気吹出し口44より吹出された冷気は、冷気吹出し口44に対して野菜室5の内壁の対角の隅部に位置する冷気戻り口45から排出され、冷却器14へと導かれ、再び冷却器14を通過して冷却されるように循環している。
 なお、冷気戻り口45は、野菜室5の背面壁部31以外の壁部の内壁に形成されても良い。
 図15に示すように、野菜室5の背面壁部31に配された1枚の矩形で板状の真空断熱材39は、冷気吹出し口44および冷気戻り口45の鉛直投影領域を避けて縦横の辺が鉛直方向および水平方向と略平行になるように設置されている。
 なお、図15に示す構成とは異なり、野菜室5の背面壁部31に配された1枚の矩形で板状の真空断熱材39は、冷気吹出し口44および冷気戻り口45の水平投影領域を避けて縦横の辺が鉛直方向および水平方向と略平行になるように設置されていても良い。
 また、野菜室5の背面壁部31に配された1枚の矩形で板状の真空断熱材39は、冷気吹出し口44および冷気戻り口45を塞がないように配されれば、縦横の辺が鉛直方向および水平方向に対して斜めになるように設置されていても良い。
 図16は、本発明の実施の形態1に係る冷蔵庫1の野菜室5内から見た背面壁部31の他の例を示す正面図である。図17は、本発明の実施の形態1に係る冷蔵庫1の野菜室5内から見た背面壁部31の他の例を示す正面図である。
 図16に示すように、冷気吹出し口44は、野菜室5の背面壁部31の内壁における右側上部に形成されても良い。このとき、冷気戻り口45は、野菜室5の背面壁部31の内壁における右側下部に形成される。
 また、図17に示すように、冷気吹出し口44は、野菜室5の背面壁部31の内壁における左側上部に形成されても良い。このとき、冷気戻り口45は、野菜室5の背面壁部31の内壁における左側下部に形成される。
 つまり、図16、図17に示す構成では、冷気吹出し口44および冷気戻り口45は、野菜室5の内壁の鉛直方向における同一範囲に位置している。なお、冷気吹出し口44および冷気戻り口45は、野菜室5の内壁の水平方向における同一範囲に位置しても良い。
 図16、図17に示す構成とした場合には、野菜室5の背面壁部31における真空断熱材39の平面部の大きさがより大きくなる。このため、真空断熱材39が他の風路が構成された部分にも配され、野菜室5の真空断熱材39による被覆率が上昇し、野菜室5の断熱が強化される。
 図18は、本発明の実施の形態1に係る冷蔵庫1の野菜室5を区画する一部の壁部20における真空断熱材24、33、36、39を示す模式図である。図19は、本発明の実施の形態1に係る冷蔵庫1の野菜室5を区画する一部の壁部20における真空断熱材24、33、36、39を背面から見て示す模式図である。
 冷蔵庫1は、上方の製氷室3および温度切替室4並びに下方の冷凍室6よりも高温に設定されてたとえば野菜といった食品である貯蔵物を貯蔵する野菜室5を備えている。図18、図19に示すように、野菜室5は、野菜室5を区画する右側壁部、左側面部、天井壁部32、底壁部35、背面壁部31および扉壁部の各壁部20にそれぞれ1枚の矩形の真空断熱材24、33、36、39を配している。
 ここで、野菜室5の右側壁部は、野菜室5の上方および下方の他の貯蔵室を含めた冷蔵庫1の全体の箱体19の右側の壁部20にわたって1枚の矩形で板状の真空断熱材24が配されている。野菜室5の左側壁部は、野菜室5の上方および下方の他の貯蔵室を含めた冷蔵庫1の全体の箱体19の左側の壁部20にわたって1枚の矩形で板状の真空断熱材24が配されている。
 一方、野菜室5の天井壁部32は、1枚の矩形で板状の真空断熱材33が配されている。野菜室5の底壁部35は、1枚の矩形で板状の真空断熱材36が配されている。野菜室5の背面壁部31は、冷却器室27を隔てるように1枚の矩形で板状の真空断熱材39が配されている。野菜室5の扉壁部は、1枚の矩形で板状の真空断熱材24が配されている。
 このように構成することにより、ほぼ直方体あるいは立方体で構成される野菜室5の6面全てが真空断熱材24、33、36、39で覆われる。このため、野菜室5の壁面総面積に対する真空断熱材24、33、36、39の被覆率が80%以上となる。それにより、野菜室5から他の貯蔵室への熱移動が抑制できる。あるいは、他の貯蔵室および冷却器室27から野菜室5への冷熱移動が抑制できる。また、右側壁部、左側壁部および扉壁部で外部から野菜室5への熱侵入量が抑制できる。
 図20は、本発明の実施の形態1に係る冷蔵庫1の野菜室5に設置された保温ヒータ46を示す模式図である。
 上記した図18、図19に示すように構成すると、野菜室5の平均温度が低下する傾向となる。このため、図20に示すように、野菜室5は、必要な時に野菜室5の室内温度を保つため、電気抵抗を利用した保温ヒータ46が設置されても良い。
 野菜室5の保温ヒータ46は、野菜室5の底面、背面あるいは左右両側面における任意の位置、特には野菜室5の室内温度が比較的低めのポイントに、3W以上10W以下程度の任意の容量で設置される。保温ヒータ46は、外気温度、野菜室5の室内温度により時間ベースの通電率(通電時間/規準時間)により通電を実施される。
 図21は、本発明の実施の形態1に係る冷蔵庫1の野菜室5に設置された放熱パイプ47を示す模式図である。
 図21に示すように、野菜室5は、保温ヒータ46の他に、箱体19の左右側壁部におけるウレタン発泡断熱材の内部に、野菜室5の温度保持を目的として放熱パイプ47が設置されても良い。また、野菜室5は、底壁部35の仕切りの外郭内部における断熱材側に、野菜室5の温度保持を目的として放熱パイプ47が設置されても良い。放熱パイプ47は、冷却器14に用いる冷媒を流通させて野菜室5内に放熱するものである。
 放熱パイプ47からの野菜室5内への放熱量は、放熱パイプ47を1.5W/m以上3.0W/m以下の単位放熱量で5m以上の長さで配設し、総熱量4.5W程度を確保すると良い。これによれば、内容積90L程の野菜室5では、温度として約2℃以上3℃以下の昇温効果が得られる。
 なお、野菜室5の容量が大きい場合は、放熱パイプ47の長さを適宜調整して対応すると良い。
 図22は、本発明の実施の形態1に係る冷蔵庫1の冷媒回路7における放熱パイプ47を示す模式図である。
 図22に示すように、冷媒回路7上において、放熱パイプ47は、冷蔵庫1の表面の露付き防止パイプ11を経てドライヤ12に接続後、流路切替三方弁48の下流側にて流路切替三方弁48で切り替えられるように接続される。
 流路切替三方弁48の2本の出口パイプ49、50のうち、片側一方の出口パイプ49は、2本ある毛細管51の片側に接続されている。出口パイプ49が接続された毛細管51は、減圧量を変更できると良い。残りのもう一方の出口パイプ50は、上記した野菜室5への放熱パイプ47に接続されている。
 このように構成すると、放熱パイプ47が冷媒の熱を野菜室5内に放熱し、空気側では負荷が増加するが、冷凍サイクル側では冷媒の凝縮能力が増加する方向に働くため、冷凍サイクルの効率が改善される。
 すなわち、保温ヒータ46による野菜室5内への放熱の場合には、消費電力量として、空気側の負荷と、ヒータ入力分の増加とが大きく影響する。このため、放熱パイプ47による野菜室5内への放熱の場合の方が、比較的消費電力としては優位となる。
 図22に示すように、流路切替三方弁48の下流側にて野菜室5への放熱パイプ47に接続されていないもう一方の出口パイプ49は、排出する冷媒の流量を疑似的に電子制御膨張弁として多段階に調整できると良い。これにより、消費電力量の低減がより図れる。
 図23は、本発明の実施の形態1に係る冷蔵庫1の流路切替三方弁48における野菜室5への放熱パイプ47に接続されていない出口パイプ49側の流量特性を示す図である。
 図23に示すように、流路切替三方弁48において、野菜室5への放熱パイプ47に接続されていないもう一方の出口パイプ49側の流量特性は、5段階に流量制御される。5段階の流量制御は、全閉、絞り流量A、絞り流量B、絞り流量C、全開の切替えである。
 図24は、本発明の実施の形態1に係る冷蔵庫1の流路切替三方弁48の構成を示す説明図である。
 図24に示すように、流路切替三方弁48は、低電圧4相ステッピングモータ52と弁本体53とに大きく2分される。弁本体53の内部は、主要部品として、着磁ロータ54、センタギア55、回転ギア56、回転パッド57、弁座58、外郭ケース59、床板60を有している。
 流路切替三方弁48は、4相ステッピングモータ52を1-2相励磁によるユニポーラ駆動により、着磁ロータ54を回転動作させる。着磁ロータ54は、センタギア55と直結しており、着磁ロータ54が回転すると、センタギア55が着磁ロータ54と同方向に同量だけ回転動作を行う。
 図25は、本発明の実施の形態1に係る冷蔵庫1の流路切替三方弁48における回転ギア56のSTEPに対する流路形成状態をまとめて示す図であり、図25(a)が回転ギア56の0STEP状態を示す図であり、図25(b)が回転ギア56の4STEP状態で流路閉となる場合を示す図であり、図25(c)が回転ギア56の36STEP状態で絞りAとなる場合を示す図であり、図25(d)が回転ギア56の73STEP状態で絞りBとなる場合を示す図であり、図25(e)が回転ギア56の110STEP状態で絞りCとなる場合を示す図であり、図25(f)が回転ギア56の177STEP状態で流路開となる場合を示す図であり、図25(g)が回転ギア56の200STEP状態で段当たりとなる場合を示す図である。
 図25に示すように、センタギア55と回転ギア56とが直接接合されている。このため、回転ギア56に固定された回転パッド57は、弁座58に設けた中心軸を基準としてセンタギア55の回転駆動を受けて回転動作を行う。
 回転パッド57には、内径の異なるオリフィス61、62、63が3箇所設けられている。3箇所のオリフィス61、62、63のうち、いずれかのオリフィスが回転パッド57の回転動作により弁座58の出口オリフィス64と重なったときに、所定の流量が流出する。
 図25(b)に示すように、回転ギア56の4STEP状態で流路閉となる場合には、流路切替三方弁48の流量が図23の全閉状態となる。図25(c)に示すように、回転ギア56の36STEP状態で絞りAとなる場合には、流路切替三方弁48の流量が図23の流量A状態となる。図25(d)に示すように、回転ギア56の73STEP状態で絞りBとなる場合には、流路切替三方弁48の流量が図23の流量B状態となる。図25(e)に示すように、回転ギア56の110STEP状態で絞りCとなる場合には、流路切替三方弁48の流量が図23の流量C状態となる。図25(f)に示すように、回転ギア56の177STEP状態で流路開となる場合には、流路切替三方弁48の流量が図23の全開状態となる。
 図26は、本発明の実施の形態1に係る冷蔵庫1の流路切替三方弁48における回転パッド57および弁座58を図25(c)のA-A断面で示す説明図である。
 図26に示すように、回転パッド57に形成されるオリフィス61の周囲形状は、段階的に深く成型されている。回転パッド57に形成されたオリフィス61、62、63は、非常に微小のため、成型が困難である。このため、オリフィス61、62、63の周囲形状は、オリフィス61、62,63の深さを浅くする必要があることと、接続ギアのバックラッシュにより発生するステッピングモータ52の逆方向駆動(CCW)時のヒステリシスの影響の除去と、弁座58に形成された出口オリフィス64の面取り形状のバラツキの除去と、の関係から上記したように段階的に深く成型されている。
 このように構成すると、ステッピングモータ52の逆方向駆動(CCW)時のヒステリシスの影響が除去でき、流量が安定し、かつ、成型型の安定度も増加し、製造品の修正のリスクが抑制できる。
 上記した流路切替三方弁48は、冷蔵庫1の負荷により最適な冷媒流量に切替えられ、従来使用していた流路切替三方弁に対し、流量制御の幅が増加する。また、流路切替三方弁48は、流量調整を目的とした必要な毛細管が1本減ぜられ、コスト抑制も同時に図れる。
 なお、野菜室5の保温に電気抵抗を利用した保温ヒータ46を使用する場合には、流路切替弁としては、流路切替弁の2つの出口のうち流量制御可能な側のみを残した2方弁を利用しても良い。
 図27は、本発明の実施の形態1に係る冷蔵庫1の冷蔵室2への冷気の吹出し風路65および戻り風路28をまとめて示す図であり、図27(a)が冷蔵室2への冷気の吹出し風路65および戻り風路28を左右縦断面で示す説明図であり、図27(b)が冷蔵室2への冷気の吹出し風路65を前後縦断面で示す説明図であり、図27(c)が冷蔵室2からの冷気の戻り風路28を前後縦断面で示す説明図である。
 図27(a)、図27(b)に示すように、冷蔵室2への冷気の吹出し風路65は、冷却器14の上方に設置された送風機15から冷気を排出した後の野菜室5と冷却器室27とを隔てる背面壁部31内を経由する風路と、冷却器室27の上方の発泡断熱材内の冷蔵室2へ向けた風路と、冷蔵室2と製氷室3および温度切替室4とを仕切る仕切り内の発泡断熱材内の風路と、冷蔵室2の背面側に設置された発泡断熱材にて成型された風路と、を接続して構成される。
 なお、冷蔵室2への冷気供給量を調整する風量調整装置18aは、冷蔵室2への冷気の吹出し風路65の途中で冷蔵室2への冷気供給量を調整する。風量調整装置18aは、上記した風路のいずれに設置されても良い。
 また、冷蔵室2内の冷気吹出し口は、冷蔵室2内の各貯蔵品収納棚に、最低でも1つ以上形成され、棚内の冷気分布および棚間の冷気分布が2℃以内になるように吹出し量が調整される。
 図27(a)、図27(c)に示すように、冷蔵室2からの冷気の戻り風路28は、冷却器14より右側に発泡断熱材を用いて必要断熱を可能なように設置される。冷蔵室2からの冷気の戻り風路28の排出口は、冷却器室27内で冷却器14の下方右側から霜取り時の融解水を受けるドリップトレイ66に接続される。
 図27(a)に示すように、冷蔵室2からの戻り風路28内には、必要断熱が確保されない場合には、風路内着霜による戻り風路28の閉塞を回避するためのヒータ67が設けられると良い。ヒータ67は、冷却器14の上下投影寸法以上の範囲にて、戻り風路28内の任意の位置に風路長手方向に設置され、必要な時に発熱を行う。ヒータ67は、たとえば、戻り風路28とドリップトレイ66との接合部を中心に上下100mmの範囲で戻り冷気の流動方向に沿うように設けられると良い。
 図28は、本発明の実施の形態1に係る冷蔵庫1の製氷室3への冷気の吹出し風路68および戻り風路69をまとめて示す図であり、図28(a)が製氷室3への冷気の吹出し風路68および戻り風路69を左右縦断面で示す説明図であり、図28(b)が製氷室3内の冷気の吹出し状態を示す斜視図である。
 図28(a)に示すように、製氷室3への冷気吹出し風路68は、冷却器14の上方に設置された送風機15から冷気を排出した後の冷却器室27の上方の発泡断熱材内の製氷室3へ向けた風路と、製氷室3の背面側に設置された発泡断熱材にて成型された風路と、を接続して構成される。
 なお、製氷室3への冷気供給量を調整する図示しない風量調整装置は、製氷室3への冷気の吹出し風路68の途中で製氷室3への冷気供給量を調整する。風量調整装置は、上記した風路のいずれに設置されても良い。
 図28(b)に示すように、製氷室3の背面の任意の位置の冷気吹出し口70から吹出した冷気は、製氷機構71に流入する。
 図28(a)に示すように、製氷室3からの戻り風路69は、冷却器14の前面から冷却器14の全幅内における冷蔵庫1中心より製氷室3側でかつ製氷室3の背面投影幅内に設置される。
 製氷室3からの戻り風路69は、製氷室3の背面壁部内に任意に設置された冷気戻り口72と、製氷室表面の外郭における裏側と、製氷室3の表面の外郭に隣接する発泡断熱材の一部と、で構成され、製氷室3からの戻り風路69の排出口が冷凍室6からの冷気戻り口近傍で合流する。合流箇所における合流圧損を回避するため、製氷室3からの冷気の排出口近傍の冷凍室6からの冷気戻り口は、製氷室3からの戻り風路69の左右幅方向寸法以上の範囲を有している。
 なお、製氷室3からの戻り風路69は、冷凍室6からの冷気戻り口より上方位置にて、冷却器室27内に直接戻しても良い。
 図29は、本発明の実施の形態1に係る冷蔵庫1の温度切替室4への冷気の吹出し風路73および戻り風路29をまとめて示す図であり、図29(a)が温度切替室4への冷気の吹出し風路73および戻り風路29を左右縦断面で示す説明図であり、図29(b)が温度切替室4からの冷気の戻り風路29を前後縦断面で示す説明図である。
 図29(a)に示すように、温度切替室4への冷気の吹出し風路73は、冷却器14の上方に設置された送風機15から冷気を排出した後の冷却器室27の上方の発泡断熱材内の温度切替室4へ向けた風路と、温度切替室4の背面側に設置された発泡断熱材にて成型された風路と、を接続して構成される。
 なお、温度切替室4への冷気供給量を調整する風量調整装置18bは、温度切替室4への冷気の吹出し風路73の途中で温度切替室4への冷気供給量を調整する。風量調整装置18bは、上記した風路のいずれに設置されても良い。
 図29(a)、図29(b)に示すように、温度切替室4からの戻り風路29は、温度切替室4の背面壁部内に任意に設置された冷気戻り口と、温度切替室4表面の外郭における裏側と、温度切替室4表面の外郭に隣接する発泡断熱材の一部と、で構成され、温度切替室4からの戻り風路29の排出口は、冷凍室6からの戻り風路の右側に設置される。
 図30は、本発明の実施の形態1に係る冷蔵庫の冷凍室6への冷気の吹出し風路41および戻り風路74をまとめて示す図であり、図30(a)が冷凍室6への冷気の吹出し風路41および戻り風路74を左右縦断面で示す説明図であり、図30(b)が冷凍室6への冷気の吹出し風路41および戻り風路74を前後縦断面で示す説明図である。
 図30(a)、図30(b)に示すように、冷凍室6への冷気の吹出し風路41は、冷却器14の上方に設置された送風機15から冷気を排出した後の野菜室5と冷却器室27とを隔てる野菜室5の背面壁部31内の風路と、野菜室5と冷凍室6との間の野菜室5の底壁部35に設けられた風路と、を接続して構成される。
 冷凍室6への冷気の吹出し風路41を通過した冷気は、冷凍室6の奥側天井に設けられたガイド部により冷凍室6内の複数段に積み上げられた貯蔵物収納ケース内に導かれ、冷凍室6内の貯蔵物を冷却する。
 図30(a)、図30(b)に示すように、冷凍室6からの戻り風路74は、冷凍室6の奥側天井に設けられたガイド部により冷凍室6内から冷気を排出した後の野菜室5と冷凍室6との間の野菜室5の底壁部35の後方に設けられた冷却器14の幅内の範囲で形成された風路で構成される。冷凍室6からの戻り風路74の排出口は、冷蔵室2からの戻り風路28と同じように、冷却器室27内で冷却器14の下方右側から霜取り時の融解水を受けるドリップトレイ66に接続される。
 冷凍室6の奥側天井に設けられた図示しないガイド部は、冷凍室6内への吹出し側のガイドと冷凍室6内からの戻り側のガイドとの両方を兼ね、冷蔵庫1を前方より臨んだときに前後に配置されている。具体的には、冷蔵庫1の前側に冷凍室6内への吹出し側のガイドが配置される。冷蔵庫1の奥側に冷凍室6内からの戻り側のガイドが配置される。
 実施の形態1によれば、冷蔵庫1は、周囲の他室よりも高温に設定されてたとえば野菜といった食品である貯蔵物を貯蔵する野菜室5を備えている。野菜室5は、野菜室5の6面を区画する各壁部20にそれぞれ1枚の矩形の真空断熱材24、33、36、39を配している。
 この構成によれば、真空断熱材24、33、36、39による野菜室5の被覆面積が可能な限り増大する。また、真空断熱材24、33、36、39が矩形であり、真空断熱材24、33、36、39に切り欠きあるいは穴を設けることがなく、簡単な構成で必要な断熱性能が確保できる。したがって、製造コストが低減でき、組み立てが簡便であり、製造効率が良い。
 実施の形態1によれば、冷蔵庫1は、上から、冷蔵室2、製氷室3および温度切替室4、野菜室5、冷凍室6の順でレイアウトされている。
 この構成によれば、野菜室5よりも低温で食品などである貯蔵物を貯蔵する製氷室3および温度切替室4が野菜室5の上方に配置される。また、野菜室5よりも低温で食品などである貯蔵物を貯蔵する冷凍室6が野菜室5の下方に配置される。このため、野菜室5内に冷熱の流入が生じて野菜室5内が冷え過ぎるおそれがある。しかし、野菜室5を区画する各壁部20にそれぞれ1枚の矩形の真空断熱材24、33、36、39を配している。これにより、野菜室5の周囲から野菜室5内に向かう冷熱の流入が防止でき、野菜室5内が冷え過ぎない。一方で、野菜室5内から野菜室5の外部である冷蔵庫1の周囲への放熱も防止でき、野菜室5内が設定温度に熱効率良く維持できる。
 また、使用頻度の高い野菜室5がユーザのおおよそ腰の高さ位置に配置でき、ユーザの利便性が向上できる。
 実施の形態1によれば、野菜室5の側壁部は、他室を含めた冷蔵庫1の全体の箱体19の2つの側壁部にわたってそれぞれ1枚の矩形の真空断熱材24が配されている。野菜室5の天井壁部32、底壁部35、背面壁部31および扉壁部は、それぞれ1枚の矩形の真空断熱材24、33、36、39が配されている。
 この構成によれば、野菜室5の側壁部に他室を含めた冷蔵庫1の全体の箱体19の2つの側壁部にわたってそれぞれ1枚の矩形の真空断熱材24が配され、冷蔵庫1に用いる真空断熱材が効率良く配される。このため、真空断熱材の使用枚数が低減でき、製造コストが低減でき、組み立てが簡便であり、製造効率が向上する。
 実施の形態1によれば、野菜室5の背後に冷却器14を備えている。野菜室5の背面壁部31は、野菜室5の内壁と冷却器14との間に1枚の矩形の真空断熱材39が配されている。
 この構成によれば、野菜室5内に向かう冷却器14からの冷熱の流入が防止できる。これにより、冷却器14の温度上昇が防止できる。また、野菜室5の背面壁部31の温度低下が防止できる。そして、野菜室5内の露付き、霜着きなどの不具合が防止できる。
 実施の形態1によれば、野菜室5の背面壁部31は、野菜室5の内壁と冷却器14との間に冷却器14から冷凍室6に連通する冷気の風路41を備えている。風路41は、冷却器14の前方投影面上に配置されている。
 この構成によれば、低温となる冷気が流通する風路41が冷却器14と共に集合でき、熱的な効率が向上できる。
 実施の形態1によれば、野菜室5の背面壁部31にて野菜室5の内壁と冷却器14との間に配された1枚の矩形の真空断熱材39は、冷却器14および風路41を野菜室5から冷却器14および風路41の前方投影面よりも広範囲にわたって隔てる大きさを有している。
 この構成によれば、1枚の矩形の真空断熱材39だけで野菜室5内に向かう冷却器14および風路41の冷熱の流入が防止できる。
 実施の形態1によれば、冷蔵庫1は、周囲の他室よりも高温に設定されてたとえば野菜といった食品である貯蔵物を貯蔵する野菜室5を備えている。冷蔵庫1は、野菜室5の背後に設けられた冷却器14を備えている。冷蔵庫1は、野菜室5の内壁と冷却器14との間に設けられた背面壁部31を備えている。冷蔵庫1は、背面壁部31の冷却器14側に設けられた真空断熱材39を備えている。
 この構成によれば、野菜室5内に向かう冷却器14からの冷熱の流入が防止できる。これにより、冷却器14の温度上昇が防止できる。また、野菜室5の背面壁部31の温度低下が防止できる。そして、野菜室5内の露付き、霜着きなどの不具合が防止できる。
 実施の形態1によれば、冷蔵庫1は、野菜室5と周囲の他室との間を仕切る天井壁部32および底壁部35に真空断熱材33、36を配している。
 この構成によれば、真空断熱材33、36による野菜室5の被覆面積が可能な限り増大する。また、真空断熱材33、36に切り欠きあるいは穴を設けることがなく、簡単な構成で必要な断熱性能が確保できる。また、野菜室5の周囲から野菜室5内に向かう冷熱の流入が防止でき、野菜室5内が冷え過ぎない。
 真空断熱材24、33、36、39は、1枚の矩形で板状である。
 この構成によれば、真空断熱材24、33、36、39が矩形であり、真空断熱材24、33、36、39に切り欠きあるいは穴を設けることがなく、簡単な構成で必要な断熱性能が確保できる。したがって、製造コストが低減でき、組み立てが簡便であり、製造効率が良い。
 実施の形態1によれば、野菜室5の背面壁部31の内壁には、冷気吹出し口44および冷気戻り口45が形成されている。野菜室5の背面壁部31に配された1枚の矩形の真空断熱材39は、冷気吹出し口44および冷気戻り口45の後方投影面上に重ならない。
 この構成によれば、冷気吹出し口44および冷気戻り口45が1枚の矩形の真空断熱材39で隔てられない位置に形成できる。このため、冷気吹出し口44および冷気戻り口45が形成されるために、真空断熱材39に穴を開けたり、真空断熱材39に切欠きを設けたりするなどの特殊な加工、あるいは、真空断熱材を複数枚使用する必要が無い。したがって、製造コストが低減でき、組み立てが簡便であり、製造効率が良い。
 実施の形態1によれば、野菜室5の背面壁部31に配された1枚の矩形の真空断熱材39は、冷気吹出し口44および冷気戻り口45の鉛直投影領域または水平投影領域を避けて縦横の辺が鉛直方向および水平方向と略平行となるように設置されている。
 この構成によれば、1枚の矩形の真空断熱材39が冷蔵庫1の直方体の形状に合い、製造作業者が真空断熱材39を配置する箇所を誤ることが防止でき、組み立てが簡便であり、製造効率が良い。
 実施の形態1によれば、冷気吹出し口44および冷気戻り口45は、野菜室5の内壁の対角の隅部にそれぞれ位置している。
 この構成によれば、冷気吹出し口44および冷気戻り口45が1枚の矩形の真空断熱材39で隔てられない位置に形成できる。また、冷気吹出し口44と冷気戻り口45との距離が離間でき、冷気吹出し口44から吹き出して冷気戻り口45に戻る冷気が野菜室5内の全体に巡り、熱的な効率が向上できる。
 実施の形態1によれば、冷気吹出し口44および冷気戻り口45は、野菜室5の内壁の鉛直方向または水平方向における同一範囲に位置している。
 この構成によれば、冷気吹出し口44および冷気戻り口45が1枚の矩形の真空断熱材39で隔てられない位置に形成できる。また、冷気吹出し口44および冷気戻り口45が接近し、野菜室5の背面壁部31にて1枚の矩形の真空断熱材39が配される領域を大きくできる。
 実施の形態1によれば、冷蔵庫1は、複数の風路の開閉を調節する電気部品を備えている。電気部品は、野菜室5よりも上方の他室の背面壁部に格納されている。
 この構成によれば、野菜室5の背後に余計なスペースを設ける必要がなく、大容量の野菜室5が設けられる。
 実施の形態1によれば、野菜室5は、野菜室5を区画するいずれかの壁部20に保温ヒータ46を有している。
 この構成によれば、野菜室5内が冷え過ぎた場合に保温ヒータ46で野菜室5内が温められる。
 実施の形態1によれば、野菜室5は、野菜室5を区画するいずれかの壁部20に冷却器14に用いる冷媒を流通させて放熱する放熱パイプ47を有している。
 この構成によれば、野菜室5内が冷え過ぎた場合に放熱パイプ47を流通して放熱する冷媒で野菜室5内が温められる。
 実施の形態1によれば、貯蔵室は、野菜室5である。貯蔵室の周囲の他室は、冷凍室6、製氷室3、チルド室、野菜室5の温度帯よりも低温の保存室、あるいは、野菜室5の温度帯よりも低温の温度帯に切り替え可能な温度切替室4である。
 この構成によれば、野菜室5内に冷熱の流入が生じて野菜室5内が冷え過ぎるおそれがある。しかし、野菜室5を区画する各壁部20にそれぞれ1枚の矩形の真空断熱材24、33、36、39を配している。これにより、野菜室5の周囲から野菜室5内に向かう冷熱の流入が防止でき、野菜室5内が冷え過ぎない。一方で、野菜室5内から野菜室5の外部である冷蔵庫1の周囲への放熱も防止でき、野菜室5内が設定温度に熱効率良く維持できる。
実施の形態2.
 実施の形態2に係る冷蔵庫1は、実施の形態1に係る冷蔵庫1に対し、冷蔵室2からの戻り冷気を野菜室5に流入させる。このため、冷蔵室2からの冷気の戻り風路と、野菜室5からの戻り風路とが、野菜室5の背面下側にて合流し、冷凍室6からの戻り風路を左右に分割した間から冷却器室27に戻るように構成される。
 実施の形態2では、上記特徴部分について説明する。その他の構成は、実施の形態1と同様であるので、説明を省略する。
 図31は、本発明の実施の形態2に係る冷蔵庫1の野菜室5内から見た背面壁部31を示す正面図である。
 図31に示すように、野菜室5内には、野菜室5の背面壁部31の内壁における右側上部に冷蔵戻り口75が形成されている。冷蔵戻り口75は、野菜室5の背面壁部31に配された1枚の矩形で板状の真空断熱材39の前方投影面上に重ならず、この前方投影面より外側に位置している。
 野菜室5内には、野菜室5の背面壁部31の内壁の背面に冷蔵戻り風路76が形成されている。冷蔵戻り風路76は、冷蔵戻り口75が形成された野菜室5の背面壁部31の内壁における右側上部から背面壁部31の内壁における中央下部の冷気吹出し口44まで形成されている。
 冷気吹出し口44は、背面壁部31の内壁における中央下部に左右に細長く形成されている。冷気吹出し口44は、野菜室5の背面壁部31に配された1枚の矩形で板状の真空断熱材39の前方投影面上に重ならず、この前方投影面より外側に位置している。
 なお、冷気吹出し口44は、背面壁部31の内壁の背後に形成されていることから、後方を野菜室5の背面壁部31に配された1枚の矩形で板状の真空断熱材39に塞がれていても良い。
 なお、冷気吹出し口44は、図示矢印のように開口量を左右両側から調整できる冷気量調節機構として開口量調整機構を設けると良い。
 冷蔵室2からの図示しない冷気の戻り風路は、冷却器14より右側に発泡断熱材を用いて必要断熱を可能なように設置される。冷蔵室2からの冷気の戻り風路は、温度切替室4と野菜室5との間の野菜室5の天井壁部32の後方投影面内にて天井壁部32の下側の外郭まで外郭表面上にガイド部を形成して延出されている。冷蔵室2からの冷気の戻り風路は、野菜室5の背面下部の略中央部にて野菜室5と冷凍室6との間の野菜室5の底壁部35内に構成された風路に接続される。
 冷却器14の上方に設置された送風機15により送風される冷気であって冷却器14により生成された冷気は、冷却器室27の上方の発泡断熱材に保持された風量調整装置18aを経由し、冷蔵室2へ供給される。その後の冷気は、冷蔵室2内の冷気戻り口から戻り風路を経て、野菜室5の背面壁部31内に形成された冷蔵戻り口75に供給される。冷蔵戻り口75に供給された冷気は、野菜室5の背面壁部31内に形成された冷蔵戻り風路76へと供給され、野菜室5内の冷気吹出し口44から野菜室5内に供給される。その後の冷気は、野菜室5内の図示しない冷気戻り口45へ供給される。
 図32は、本発明の実施の形態2に係る冷蔵庫1の野菜室5内から見た背面壁部31の他の例を示す正面図である。
 野菜室5の背面壁部31内に配設された冷蔵戻り風路76は、野菜室5内との間に断熱機能が無く、射出成型により成型された内壁面により隔たれている。
 そこで、図32に示すように、野菜室5内の温度を調整するために、冷蔵戻り風路76と野菜室5内とを隔てる内壁面に複数の孔77が設けられても良い。
 図33は、本発明の実施の形態2に係る冷蔵庫1の野菜室5内から見た背面壁部31の他の例を示す正面図である。
 図33に示すように、図32に示す構成と同様に、野菜室5内の温度を調整するために、冷蔵戻り風路76と野菜室5内とを隔てる内壁面に複数の孔77が設けられても良い。
 そして、この内壁面に設けられた複数の孔77を自在に開閉可能とするスライダ78が設けられても良い。
 このような構成であると、ユーザが図示矢印のようにスライダ78をスライドさせて閉塞する孔77の数を調整することにより、ユーザが野菜室5内の温度を任意に調整できる。
 なお、実施の形態2では、野菜室5内で温度調整できるため、野菜室5内への冷気供給量を調整する流量調整装置を冷蔵庫1の背面部の風路箇所に有していなくても良い。
 実施の形態2によれば、冷気吹出し口44は、野菜室5の周囲の野菜室5よりも低温で食品などである貯蔵物を貯蔵する他室から戻る冷気、または、冷却器14にて冷却された低温の冷気を野菜室5内に吹き出させる。
 この構成によれば、野菜室5だけのために風路あるいは風路の開閉を調節する電気部品を設ける必要が無くなる。このため、製造コストが低減でき、組み立てが簡便であり、製造効率が良い。
 実施の形態2によれば、野菜室5は、冷気吹出し口44から吹き出させる冷気の量を調節する冷気量調節機構を有している。
 この構成によれば、野菜室5内の温度を調節でき、たとえば野菜といった食品である貯蔵物が好適に保存できる。
 なお、本発明の実施の形態1、2を組み合わせても良いし、他の部分に適用しても良い。
 また、本発明の実施の形態1、2では、真空断熱材24、33、36、39は、1枚の矩形で板状であった。しかし、これに限られない。真空断熱材24、33、36、39は、角部がR形状のもの、三角形状、多角形形状、楕円形状、円形状、その他多種の形状で形成されていても良い。
 1 冷蔵庫、2 冷蔵室、3 製氷室、4 温度切替室、5 野菜室、6 冷凍室、7 冷媒回路、8 圧縮機、9 空冷凝縮器、10 凝縮器、11 露付き防止パイプ、12 ドライヤ、13 減圧装置、14 冷却器、15 送風機、16a 温度センサ、16b 温度センサ、16c 温度センサ、16d 温度センサ、17 制御基板、18a 風量調整装置、18b 風量調整装置、18c 風量調整装置、19 箱体、20 壁部、21 板金、22 内箱、23 断熱材、24 真空断熱材、25 支え、26 スペーサ、27 冷却器室、28 戻り風路、29 戻り風路、30 吹出し風路、31 背面壁部、32 天井壁部、33 真空断熱材、34 ウレタン発泡材、35 底壁部、36 真空断熱材、37 ウレタン発泡材、38 断熱壁外郭、39 真空断熱材、40 発泡断熱材、41 吹出し風路、42 断熱壁外郭、44 冷気吹出し口、45 冷気戻り口、46 保温ヒータ、47 放熱パイプ、48 流路切替三方弁、49 出口パイプ、50 出口パイプ、51 毛細管、52 ステッピングモータ、53 弁本体、54 着磁ロータ、55 センタギア、56 回転ギア、57 回転パッド、58 弁座、59 外郭ケース、60 床板、61 オリフィス、62 オリフィス、63 オリフィス、64 出口オリフィス、65 吹出し風路、66 ドリップトレイ、67 ヒータ、68 吹出し風路、69 戻り風路、70 冷気吹出し口、71 製氷機構、72 冷気戻り口、73 吹出し風路、74 戻り風路、75 冷蔵戻り口、76 冷蔵戻り風路、77 孔、78 スライダ。

Claims (19)

  1.  周囲の他室よりも高温に設定されて貯蔵物を貯蔵する貯蔵室を備え、
     前記貯蔵室は、前記貯蔵室を区画する各壁部にそれぞれ真空断熱材を配した冷蔵庫。
  2.  前記冷蔵庫は、上から、冷蔵室、製氷室および温度切替室、野菜室、冷凍室の順でレイアウトされ、
     前記貯蔵室は、前記野菜室である請求項1に記載の冷蔵庫。
  3.  前記貯蔵室の側壁部は、他室を含めた前記冷蔵庫の全体の箱体の2つの側壁部にわたってそれぞれ前記真空断熱材が配され、
     前記貯蔵室の天井壁部、底壁部、背面壁部および扉壁部は、それぞれ前記真空断熱材が配された請求項1または2に記載の冷蔵庫。
  4.  前記貯蔵室の背後に冷却器を備え、
     前記貯蔵室の背面壁部は、貯蔵室内壁と前記冷却器との間に前記真空断熱材が配された請求項1~3のいずれか1項に記載の冷蔵庫。
  5.  前記貯蔵室の背面壁部は、前記貯蔵室内壁と前記冷却器との間に前記冷却器から一部の室に連通する冷気の風路を備え、
     前記風路は、前記冷却器の前方投影面上に配置された請求項4に記載の冷蔵庫。
  6.  前記貯蔵室の背面壁部にて前記貯蔵室内壁と前記冷却器との間に配された前記真空断熱材は、前記冷却器および前記風路を前記貯蔵室から前記冷却器および前記風路の前方投影面よりも広範囲にわたって隔てる大きさを有した請求項5に記載の冷蔵庫。
  7.  周囲の他室よりも高温に設定されて貯蔵物を貯蔵する貯蔵室と、
     前記貯蔵室の背後に設けられた冷却器と、
     前記貯蔵室内壁と前記冷却器との間に設けられた背面壁部と、
     前記背面壁部の前記冷却器側に設けられた真空断熱材と、
    を備えた冷蔵庫。
  8.  前記貯蔵室と前記周囲の他室との間を仕切る壁部に真空断熱材を配した請求項7に記載の冷蔵庫。
  9.  前記真空断熱材は、1枚の矩形で板状である請求項1~8のいずれか1項に記載の冷蔵庫。
  10.  前記貯蔵室の背面壁部の前記貯蔵室内壁には、冷気吹出し口および冷気戻り口が形成され、
     前記貯蔵室の背面壁部に配された前記真空断熱材は、前記冷気吹出し口および前記冷気戻り口の後方投影面上に重ならない請求項1~9のいずれか1項に記載の冷蔵庫。
  11.  前記貯蔵室の背面壁部に配された前記真空断熱材は、前記冷気吹出し口および前記冷気戻り口の鉛直投影領域または水平投影領域を避けて縦横の辺が鉛直方向および水平方向と略平行となるように設置された請求項10に記載の冷蔵庫。
  12.  前記冷気吹出し口および前記冷気戻り口は、前記貯蔵室内壁の対角の隅部にそれぞれ位置した請求項10または11に記載の冷蔵庫。
  13.  前記冷気吹出し口および前記冷気戻り口は、前記貯蔵室内壁の鉛直方向または水平方向における同一範囲に位置した請求項10または11に記載の冷蔵庫。
  14.  複数の風路の開閉を調節する電気部品を備え、
     前記電気部品は、前記貯蔵室よりも上方の他室の背面壁部に格納された請求項5~13のいずれか1項に記載の冷蔵庫。
  15.  前記貯蔵室は、前記貯蔵室を区画するいずれかの壁部に保温ヒータを有した請求項1~14のいずれか1項に記載の冷蔵庫。
  16.  前記貯蔵室は、前記貯蔵室を区画するいずれかの壁部に前記冷却器に用いる冷媒を流通させて放熱する放熱パイプを有した請求項4~15のいずれか1項に記載の冷蔵庫。
  17.  前記冷気吹出し口は、前記貯蔵室の周囲の前記貯蔵室よりも低温で貯蔵物を貯蔵する他室から戻る冷気、または、前記冷却器にて冷却された低温の冷気を前記貯蔵室内に吹き出させる請求項10~16のいずれか1項に記載の冷蔵庫。
  18.  前記貯蔵室は、前記冷気吹出し口から吹き出させる冷気の量を調節する冷気量調節機構を有した請求項17に記載の冷蔵庫。
  19.  前記貯蔵室は、野菜室であり、
     前記他室は、冷凍室、製氷室、チルド室、前記野菜室の温度帯よりも低温の保存室、あるいは、前記野菜室の温度帯よりも低温の温度帯に切り替え可能な温度切替室である請求項1~18のいずれか1項に記載の冷蔵庫。
PCT/JP2017/001224 2017-01-16 2017-01-16 冷蔵庫 WO2018131157A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2017392604A AU2017392604B2 (en) 2017-01-16 2017-01-16 Refrigerator
SG11201903277WA SG11201903277WA (en) 2017-01-16 2017-01-16 Refrigerator
JP2018561769A JP6689415B2 (ja) 2017-01-16 2017-01-16 冷蔵庫
PCT/JP2017/001224 WO2018131157A1 (ja) 2017-01-16 2017-01-16 冷蔵庫
TW106133108A TWI675173B (zh) 2017-01-16 2017-09-27 冰箱
CN201711035441.5A CN108317797B (zh) 2017-01-16 2017-10-30 冰箱
CN201721417186.6U CN208170823U (zh) 2017-01-16 2017-10-30 冰箱
HK18115996.2A HK1256990A1 (zh) 2017-01-16 2018-12-13 冰箱

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001224 WO2018131157A1 (ja) 2017-01-16 2017-01-16 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2018131157A1 true WO2018131157A1 (ja) 2018-07-19

Family

ID=62840106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001224 WO2018131157A1 (ja) 2017-01-16 2017-01-16 冷蔵庫

Country Status (7)

Country Link
JP (1) JP6689415B2 (ja)
CN (2) CN108317797B (ja)
AU (1) AU2017392604B2 (ja)
HK (1) HK1256990A1 (ja)
SG (1) SG11201903277WA (ja)
TW (1) TWI675173B (ja)
WO (1) WO2018131157A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118345A (ja) * 2019-01-23 2020-08-06 日立グローバルライフソリューションズ株式会社 冷蔵庫
JP2020133970A (ja) * 2019-02-18 2020-08-31 日立グローバルライフソリューションズ株式会社 冷蔵庫
WO2023084784A1 (ja) * 2021-11-15 2023-05-19 三菱電機株式会社 冷蔵庫

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285095B (zh) * 2019-05-21 2022-03-11 合肥美的电冰箱有限公司 蜗壳、制冷系统及具有其的制冷设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361866A (ja) * 1986-08-29 1988-03-18 松下冷機株式会社 野菜室付冷蔵庫
JPH10153379A (ja) * 1996-11-22 1998-06-09 Matsushita Refrig Co Ltd 冷蔵庫
JP2003106734A (ja) * 2001-09-27 2003-04-09 Mitsubishi Electric Corp 冷蔵庫
JP2004333124A (ja) * 2004-08-31 2004-11-25 Matsushita Refrig Co Ltd 冷蔵庫
JP2005127600A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2007120854A (ja) * 2005-10-27 2007-05-17 Toshiba Corp 冷蔵庫
JP2008116161A (ja) * 2006-11-07 2008-05-22 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2012242072A (ja) * 2011-05-24 2012-12-10 Mitsubishi Electric Corp 冷蔵庫
JP2015117849A (ja) * 2013-12-17 2015-06-25 株式会社東芝 冷蔵庫
JP2016014488A (ja) * 2014-07-01 2016-01-28 パナソニックIpマネジメント株式会社 冷蔵庫

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100662530B1 (ko) * 2002-04-22 2006-12-28 마쓰시타 레키 가부시키가이샤 냉장고
TW593919B (en) * 2002-05-31 2004-06-21 Matsushita Refrigeration Vacuum heat insulating material and method for producing the same, and refrigerator using the vacuum heat insulating material
JP4221402B2 (ja) * 2005-09-09 2009-02-12 日立アプライアンス株式会社 冷蔵庫
CN101169300A (zh) * 2006-10-26 2008-04-30 海尔集团公司 设有直管状冷凝器的冰箱

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361866A (ja) * 1986-08-29 1988-03-18 松下冷機株式会社 野菜室付冷蔵庫
JPH10153379A (ja) * 1996-11-22 1998-06-09 Matsushita Refrig Co Ltd 冷蔵庫
JP2003106734A (ja) * 2001-09-27 2003-04-09 Mitsubishi Electric Corp 冷蔵庫
JP2005127600A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2004333124A (ja) * 2004-08-31 2004-11-25 Matsushita Refrig Co Ltd 冷蔵庫
JP2007120854A (ja) * 2005-10-27 2007-05-17 Toshiba Corp 冷蔵庫
JP2008116161A (ja) * 2006-11-07 2008-05-22 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2012242072A (ja) * 2011-05-24 2012-12-10 Mitsubishi Electric Corp 冷蔵庫
JP2015117849A (ja) * 2013-12-17 2015-06-25 株式会社東芝 冷蔵庫
JP2016014488A (ja) * 2014-07-01 2016-01-28 パナソニックIpマネジメント株式会社 冷蔵庫

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118345A (ja) * 2019-01-23 2020-08-06 日立グローバルライフソリューションズ株式会社 冷蔵庫
JP7493305B2 (ja) 2019-01-23 2024-05-31 日立グローバルライフソリューションズ株式会社 冷蔵庫
JP2020133970A (ja) * 2019-02-18 2020-08-31 日立グローバルライフソリューションズ株式会社 冷蔵庫
JP7191715B2 (ja) 2019-02-18 2022-12-19 日立グローバルライフソリューションズ株式会社 冷蔵庫
WO2023084784A1 (ja) * 2021-11-15 2023-05-19 三菱電機株式会社 冷蔵庫
TWI822453B (zh) * 2021-11-15 2023-11-11 日商三菱電機股份有限公司 冰箱

Also Published As

Publication number Publication date
JP6689415B2 (ja) 2020-04-28
TWI675173B (zh) 2019-10-21
SG11201903277WA (en) 2019-08-27
TW201827772A (zh) 2018-08-01
AU2017392604B2 (en) 2019-11-28
CN108317797A (zh) 2018-07-24
CN108317797B (zh) 2020-12-11
HK1256990A1 (zh) 2019-10-11
JPWO2018131157A1 (ja) 2019-08-08
CN208170823U (zh) 2018-11-30
AU2017392604A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
WO2018131157A1 (ja) 冷蔵庫
US10808983B2 (en) Refrigerator
CN108351149A (zh) 具有分隔的储存空间的制冷器具
TWI716636B (zh) 冰箱
JP3904866B2 (ja) 冷蔵庫
JP6469966B2 (ja) 冷蔵庫
JP3617702B2 (ja) 冷蔵庫における冷気供給構造
JP2008111640A (ja) 冷蔵庫
US20060016202A1 (en) Refrigerator with system for controlling drawer temperatures
EP3926266B1 (en) Refrigerator having blower transversely disposed besides and downstream of evaporator
TWI822453B (zh) 冰箱
JP6799853B2 (ja) 冷蔵庫
JP2008202882A (ja) 冷却庫
JP2007113800A (ja) 冷蔵庫
JP3919597B2 (ja) 冷蔵庫
JPWO2019043913A1 (ja) 冷蔵庫
JP6587477B2 (ja) 冷蔵庫
EP3929513B1 (en) Refrigerator with air blower located upstream of lateral side of evaporator
JP5175954B2 (ja) 冷蔵庫
CN108366680A (zh) 冷藏销售器具
JP6955348B2 (ja) 冷蔵庫
JP2007132570A (ja) 冷蔵庫
JP2023077123A (ja) 冷蔵庫
JP2024075862A (ja) 冷蔵庫
JPH06147721A (ja) 冷凍庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561769

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017392604

Country of ref document: AU

Date of ref document: 20170116

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891584

Country of ref document: EP

Kind code of ref document: A1