WO2018123756A1 - フィン装置及び船舶 - Google Patents

フィン装置及び船舶 Download PDF

Info

Publication number
WO2018123756A1
WO2018123756A1 PCT/JP2017/045665 JP2017045665W WO2018123756A1 WO 2018123756 A1 WO2018123756 A1 WO 2018123756A1 JP 2017045665 W JP2017045665 W JP 2017045665W WO 2018123756 A1 WO2018123756 A1 WO 2018123756A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
ship
fins
line
propeller
Prior art date
Application number
PCT/JP2017/045665
Other languages
English (en)
French (fr)
Inventor
裕樹 齋藤
聖始 増田
憲璽 高岸
智文 井上
Original Assignee
ジャパンマリンユナイテッド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパンマリンユナイテッド株式会社 filed Critical ジャパンマリンユナイテッド株式会社
Priority to KR1020197014928A priority Critical patent/KR20190092398A/ko
Priority to KR1020217034358A priority patent/KR20210132226A/ko
Priority to CN201780077103.XA priority patent/CN110062734B/zh
Publication of WO2018123756A1 publication Critical patent/WO2018123756A1/ja
Priority to PH12019501442A priority patent/PH12019501442A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a fin device and a ship, and more particularly to a fin device suitable for energy saving of a ship and a ship provided with the fin device.
  • a bilge vortex (separation vortex) is generated in the stern part, and the propulsion efficiency can be improved by collecting the bilge vortex with a propeller.
  • a device in which a substantially cylindrical duct is disposed immediately before the propeller see Patent Document 1
  • a fin is disposed in the side surface of the hull (see Patent Documents 2 and 3).
  • a water flow (wake) including a bilge vortex is taken into the duct, whereby the flow of the water flow can be rectified in the axial direction, and the bilge vortex can be efficiently recovered. it can.
  • production of the bilge vortex is suppressed by the front fin, and diffusion of the bilge vortex is suppressed by the rear fin.
  • the bilge vortex is guided to the propeller by changing the flow direction of the generated bilge vortex to the ship bottom side.
  • the wake at the stern part has a complicated flow, and has a slow zone (hereinafter referred to as “slow zone”) in addition to the bilge vortex. Therefore, the method of suppressing the generation of bilge vortices or rectifying the direction of bilge vortices as described in Patent Documents 1 to 3 described above suppresses reduction in propulsion efficiency due to a slow speed zone other than bilge vortices. There was a problem that could not be done.
  • the present invention was devised in view of such problems, and provides a fin device and a ship that can improve propulsion efficiency and conserve energy by aggregating the slow-speed region on the propeller surface. Objective.
  • the fin device disposed on the hull having a flat side flat formed in the ship side on the ship side, the stern side lowest point P 1 of the side flat, the planned full-length water line DWL, and the propeller position and the straight line L 1 connecting the intersection Q of the propeller line PL showing the bilge and bilge height line BHL showing a height, a plurality of at least partially disposed in a region surrounded by said propeller line PL
  • a fin device characterized by having one fin.
  • a fin device disposed in a hull having a flat side flat formed in the ship side on the ship side, the stern side lowest point P 1 of the side flat and the plan load line DWL and the straight line L 1 connecting the intersection Q of the propeller line PL indicating the position of the propeller, bilge and bilge height line BHL showing the height, at least a to an area surrounded by said propeller line PL.
  • the region includes a straight line L 2 passing through an intersection P 2 between the rear end line SEL of the side flat and the bilge height line BHL and parallel to the straight line L 1 , and the straight line L 1. And a first region surrounded by the bilge height line BHL and the propeller line PL, and at least a part of the fins may be disposed in the first region.
  • the region includes a straight line L 3 passing through an intersection P 3 between a vertical line FTL passing through the tip of the first fin arranged on the most bow side and the bilge height line BHL and parallel to the straight line L 1. , and the straight line L 1, and the bilge height line BHL, comprising a second region surrounded by said propeller line PL, at least a portion of the fin may be disposed in the second region.
  • the plurality of fins may include at least two fins having different horizontal positions, and the fin located on the stern part side may be disposed above the fin located on the bow part side.
  • the fins may be arranged so as not to exceed the ship width.
  • the fins may be arranged substantially horizontally.
  • the plurality of fins may be arranged at positions where vortices generated by the fins interfere with each other.
  • the ship may have a rectifier that is disposed in front of a propeller disposed at a stern part and rectifies a water flow flowing into the propeller.
  • the slow speed zone is disturbed by the vortex generated by the fin and the slow speed zone is formed.
  • the water flow can be concentrated and guided to the propeller.
  • the slow zone can be more effectively disturbed and aggregated by the synergistic effect of vortices generated by the plurality of fins. Therefore, according to the present invention, the efficiency of propulsion can be improved and energy can be saved by consolidating the slow-speed region on the propeller surface.
  • FIG. It is a perspective view which shows the stern part of the ship provided with the fin apparatus which concerns on one Embodiment of this invention. It is a profile diagram of the ship shown in FIG. It is a figure which shows the positioning method of a fin, (A) has shown the 1st example, (B) has shown the 2nd example. It is a figure which shows the positioning method of a fin, (A) is a 3rd example, (B) is a 4th example, (C) is a 5th example, (D) is a 6th example, (E) is a 7th example, Is shown. It is a figure which shows the positioning method of a fin, (A) has shown the 8th example, (B) has shown the 9th example.
  • FIG. 1 is a perspective view showing a stern part of a ship provided with a fin device according to an embodiment of the present invention.
  • FIG. 2 is a profile diagram of the ship shown in FIG. In FIG. 1, for convenience of explanation, the illustration of structures other than the hull (propeller, rudder, etc.) is omitted.
  • the ship 1 which concerns on one Embodiment of this invention is equipped with the fin apparatus 2 arrange
  • first fin 21 and second fin 22 are collectively referred to as fins 21 and 22.
  • the profile diagram shown in FIG. 2 is a diagram in which a plurality of profile diagrams of the ship 1 are integrated into a single diagram.
  • the hull center profile diagram F1 (solid line) showing the outer shape in the vertical plane including the hull center line
  • the side flat profile diagram F2 (solid line) showing the outer edge of the side flat 11, and the horizontal plane including the first fins 21.
  • the horizontal line profile diagram F3 (solid line) showing the outer shape in FIG.
  • the horizontal line profile diagram F4 (solid line) showing the outer shape in the horizontal plane including the second fins 22, and the outer shape in the horizontal plane including the planned full waterline DWL 6 profile diagrams of the draft surface profile F5 (dashed line) and the deck profile diagram F6 (two-dot chain line) showing the outer shape in the horizontal plane including the deck are shown.
  • the lower straight line portion in the hull center profile diagram F1 indicates the ship bottom 13 of the ship 1 and the upper straight line portion indicates the deck 14 of the ship 1.
  • the position of the ship bottom 13 is generally referred to as a baseline BL.
  • symbol 1a shows the bow part and the code
  • the side flat 11 is formed in a substantially central part in a side view of the hull, and has a straight part 11 a substantially parallel to the ship bottom 13.
  • the rearmost end of the straight line portion 11 a corresponds to the stern side lowest point P 1 of the side flat 11.
  • the difference (vertical distance) between the ship bottom 13 and the straight portion 11a indicates the bilge height (the height of the curved portion on both sides of the ship bottom 13).
  • the straight line portion 11a coincides with the bilge height line BHL.
  • the side flat 11 has a rear end portion 11b formed substantially vertically on the stern portion 1b side.
  • a straight line including the rear end portion 11b is defined as a rear end line SEL.
  • the profile connecting the lower end of the rear end portion 11b and the rearmost end of the straight portion 11a (stern side lowest point P 1 ) rises from the bottom 13 side to the deck 14 side toward the stern portion 1b.
  • An inclined portion 11c is formed.
  • the rear end line SEL is configured by a vertical line that passes through the intersection of the inclined portion 11 c and the deck 14.
  • the first fins 21 and the second fins 22 are arranged so as not to exceed the ship width B.
  • the arrangement positions of the first fin 21 and the second fin 22 may be shifted so as not to exceed the ship width B, or a portion protruding from the ship width B may be cut.
  • 1st fin 21 and 2nd fin 22 are comprised by the substantially rectangular shaped flat plate, for example, as shown in FIG. 1, You may form R in a corner
  • the mounting angle of the fins 21 and 22 with respect to the hull is set, for example, substantially horizontally, and the angle of attack of the fins 21 and 22 with respect to the water flow is set to 0 °, for example.
  • the fins 21 and 22 may have a streamline shape or a wing shape in order to reduce water flow resistance.
  • substantially horizontal means including a state inclined by several degrees with respect to the horizontal.
  • FIG. 3 is a view showing a fin positioning method, in which (A) shows a first example and (B) shows a second example.
  • 4A and 4B are diagrams illustrating a fin positioning method, where FIG. 4A is a third example, FIG. 4B is a fourth example, FIG. 4C is a fifth example, FIG. 4D is a sixth example, and FIG. A seventh example is shown.
  • 5A and 5B are diagrams showing a fin positioning method, in which FIG. 5A shows an eighth example and FIG. 5B shows a ninth example.
  • the shape of the propeller 12 is schematically shown, and accessories such as a rudder and a duct are not shown.
  • Propeller line PL is a propeller blade base line perpendicular to the axis of propeller 12.
  • the stern portion 1b in a state where the side view, the straight line connecting the aft lowest point P 1 and the point of intersection Q of the side flat 11 and L 1.
  • fins 21 and 22 are arranged in the region alpha. Note that “arranged in the region ⁇ ” means that at least a part of the fins 21 and 22 may be disposed in the region ⁇ .
  • the fin device 2 when the fin device 2 includes two fins (first fin 21 and second fin 22) having different horizontal positions, the first position located on the stern portion 1b side.
  • the two fins 22 are disposed above the first fins 21 located on the bow portion 1a side.
  • the horizontal positions of the fins 21 and 22 are determined based on, for example, the end (tip) on the bow 1a side.
  • “upward” means that at least a part of the second fin 22 is located above (the water surface side) of the first fin 21.
  • the fin device 2 when the fin device 2 includes three fins (first fin 21 to third fin 23) having different positions in the horizontal direction, the first fin 21 and the second fin 22, the second fin 22 located on the stern portion 1 b side is disposed above the first fin 21 located on the bow portion 1 a side, and the positions of the second fin 22 and the third fin 23 are arranged.
  • the third fin 23 located on the stern portion 1b side is disposed above the second fin 22 located on the bow portion 1a side.
  • the fin device 2 includes four or more fins having different horizontal positions, if two front and rear fins are selected, the fin located on the stern portion 1b side is the bow. It arrange
  • the present embodiment is not limited to the fin arrangement shown in FIGS. 3 (A) and 3 (B).
  • the third to fifth examples shown in FIGS. 4 (A) to 4 (C) show the positioning method in the case of two fins, and are shown in FIGS. 4 (D) and 4 (E).
  • the sixth and seventh examples show the positioning method in the case where there are three fins.
  • the second fins 22 are arranged above the first fins 21 and at the same horizontal position. As illustrated, a part of the second fin 22 only needs to be included in the region ⁇ , and a part of the second fin 22 may protrude from the region ⁇ . Although not shown, a part of the first fin 21 may protrude from the region ⁇ .
  • the second fin 22 is disposed above and in front of the first fin 21.
  • “front” means that at least the tip of the second fin 22 is positioned forward (the bow portion 1 a side) of the tip of the first fin 21.
  • the second fins 22 are arranged behind the first fins 21 and at the same height.
  • “rearward” means that at least the front end of the second fin 22 is located rearward (stern part 1 b side) from the rear end of the first fin 21.
  • the second fin 22 is disposed above and behind the first fin 21, and the third fin 23 is disposed behind and at the same height as the second fin 22. It is a thing.
  • the first fin 21 and the second fin 22 may have the positional relationship of the third to fifth examples shown in FIGS. 4 (A) to 4 (C).
  • the second fin 22 is disposed above and behind the first fin 21, and the third fin 23 is disposed below and behind the second fin 22. It is.
  • the first fin 21 and the second fin 22 may have the positional relationship of the third to fifth examples shown in FIGS. 4 (A) to 4 (C).
  • the fins 21 and 22 may be disposed in the first region ⁇ enclosed by the straight line L 2 and the straight line L 1 and the bilge height line BHL and the propeller line PL.
  • the first region ⁇ is a region included in the region ⁇ .
  • the vertical line passing through the tip of the first fin (first fin 21) arranged on the most bow side is defined as FTL, and this vertical line FTL and the bilge height line BHL.
  • the intersection between the P 3, through the intersection point P 3, the straight line parallel to the straight line L 1 is defined as L 3.
  • the fins 21 and 22 may be disposed in a second region ⁇ surrounded by the straight line L 3 , the straight line L 1 , the bilge height line BHL, and the propeller line PL.
  • the case where there are two fins 21 and 22 is illustrated, but three or more fins may be used. Further, the fins 21 and 22 may be arranged as shown in the third to fifth examples. Although not shown, the fins 21 and 22 are only required to be at least partially included in the first region ⁇ or the second region ⁇ , and the entire fins 21 and 22 are not necessarily the first region ⁇ or the second region. It may not be contained in ⁇ .
  • FIG. 6 is a distribution diagram showing the relationship between the positional relationship of the fins and the effect of improving the wake coefficient.
  • the surrounding water near the hull of the ship 1 is pulled by the ship 1 as the ship 1 travels and runs in the same direction as the ship 1.
  • the flow of water that follows the ship 1 is called wake.
  • FIG. 6 shows the result of simulating the improvement effect of the wake coefficient when ⁇ X is changed within the range of 0 to 50 m and ⁇ Z within the range of 2 to 8 m.
  • the numerical values of ⁇ X and ⁇ Z are merely examples, and are not limited to such numerical values.
  • the wake coefficient can be effectively improved by arranging the second fin 22 rearward (stern portion 1b side) and upper (water surface side) with respect to the first fin 21. it can. Further, by arranging the second fin 22 at a position relatively close to the first fin 21, an improvement effect of a high wake coefficient can be obtained.
  • 3 dashed line of this shown in FIG. 6 shows a straight line L 1, L 2, L 3 used in the positioning method of the fins 21 and 22 described above.
  • L 1, L 2, L 3 used in the positioning method of the fins 21 and 22 described above.
  • FIG. 7 is a side view showing a stern part of a ship provided with a fin device and a rectifying device.
  • FIG. 7A shows a case where there are two fins
  • FIG. 7B shows a case where there are three fins.
  • the illustrated ship 1 is disposed in front of a propeller 12 disposed in the stern portion 1b and a rectifier 15 that rectifies a water flow flowing into the propeller 12, and a rudder that is disposed behind the propeller 12 and controls the traveling direction of the ship 1. 16.
  • the rectifying device 15 is, for example, a substantially cylindrical or substantially semi-cylindrical duct disposed immediately before the propeller 12.
  • this rectifier 15 for example, known ones described in Japanese Patent Publication No. 03-066197 and Japanese Patent No. 5132140 can be arbitrarily applied.
  • the above-described considerations also apply to the case where there are three fins as shown in FIG. 7B.
  • the water flow that has collided with the third fin 23 generates a flow (vortex 23v) that goes from the lower surface of the third fin 23 to the upper surface.
  • the vortices 21v, 22v, and 23v go downstream while growing, and interfere with each other at a certain point, resulting in a behavior like a larger vortex 2v.
  • the plurality of fins are preferably arranged at positions where vortices generated by the fins interfere with each other. Even if the vortices generated by the fins do not interfere with each other, the vortices have the effect of disturbing and consolidating the slow speed zone of the stern portion 1b. That is, as long as a plurality of fins are arranged within the range described in the fin positioning method described above, the vortices generated by the fins do not necessarily have to interfere with each other.
  • FIG. 8 is a comparison diagram showing the energy saving effect.
  • Sample A is a ship having one fin (for example, only the first fin 21)
  • sample B is a ship having two fins (for example, the first fin 21 and the second fin 22)
  • the sample C is a rectifier 15.
  • the sample D shows a ship having one fin and the rectifying device 15
  • the sample E shows a ship having two fins and the rectifying device 15.
  • the energy saving effect shown in FIG. 8 is calculated from the result of a water tank test using a hull model. Specifically, the hull models of Sample A to Sample E are manufactured, the propulsion performance test is performed for each sample under the same conditions, and the fuel consumption is calculated from the test results. The energy saving effect was calculated.
  • the number of fins is two, that is, the second fin 22 is added to obtain a greater energy saving effect than the case of one fin. be able to. Further, when comparing the sample D and the sample E, the energy saving effect of the sample E is improved compared to the sample D by the amount of the fins increased.
  • an energy saving effect of ⁇ E 1 can be obtained by a synergistic effect of one fin (first fin 21) and the rectifier 15.
  • This synergistic effect is due to the fact that by arranging the first fins 21, it is possible to recover the wake in the slow speed zone that cannot be recovered by the rectifier 15 in the conventional ship.
  • sample E an energy saving effect of ⁇ E 2 can be obtained by the synergistic effect of the two fins (first fin 21 and second fin 22) and rectifier 15. As shown in the figure, ⁇ E 2 shows a larger numerical value than ⁇ E 1 , and it can be seen that sample E has a higher synergistic effect than sample D. This means that by arranging the two fins, the wake in the slow speed band that cannot be recovered by the rectifier 15 in the ship of sample D can be recovered.
  • the above-described ship 1 is not limited to a tanker, a bulk carrier, an LNG ship, an LPG ship, a ferry, or other large-sized ship, but a dredger such as a PCC (automobile carrier), a general cargo ship, or a container ship. It can also be applied to shape ships.
  • a dredger such as a PCC (automobile carrier), a general cargo ship, or a container ship. It can also be applied to shape ships.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Traffic Control Systems (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

遅速帯の領域をプロペラ面に集約することによって推進効率を改善し、省エネルギー化を図ることができる、フィン装置及び船舶を提供する。 本発明の一実施形態に係る船舶1は、船側の船長方向に形成された平面状のサイドフラット11を備えた船体に配置されるフィン装置2を備え、サイドフラット11の船尾側最下点Pと、計画満載喫水線DWLとプロペラ12の位置を示すプロペラ線PLとの交点Qとを結ぶ直線Lと、ビルジ高さを示すビルジ高さ線BHLと、プロペラ線PLとにより囲まれた領域α内に2枚のフィン(第一フィン21及び第二フィン22)を有している。

Description

フィン装置及び船舶
 本発明は、フィン装置及び船舶に関し、特に、船舶の省エネルギー化に適したフィン装置及び該フィン装置を備えた船舶に関する。
 近年、原油価格高騰や二酸化炭素放出量削減等の環境問題の観点から、船舶に対する燃費改善の要求が高くなっており、より一層の省エネルギー化が求められている。ところで、船尾部では、一般にビルジ渦(剥離渦)が発生しており、このビルジ渦をプロペラで回収することにより、推進効率を向上させることができる。このビルジ渦を回収するための装置として、例えば、プロペラの直前に略円筒形状のダクトを配置したもの(特許文献1参照)や船体の側面部にフィンを配置したもの(特許文献2,3参照)が既に提案されている。
 特許文献1に記載されたダクト装置では、ビルジ渦を含む水流(伴流)をダクト内に取り込むことによって、水流の流れを軸方向に整流することができ、ビルジ渦を効率よく回収することができる。また、特許文献2に記載されたフィン装置では、前部フィンによってビルジ渦の発生を抑制し、後部フィンによってビルジ渦の拡散を抑制している。また、特許文献3に記載されたビルジ構造では、生成されたビルジ渦の流れ方向を船底側に変化させることによって、ビルジ渦をプロペラに導いている。
 しかしながら、船尾部における伴流は複雑な流れを有しており、ビルジ渦以外にも速度が遅い帯域(以下、「遅速帯」と称する)を有している。したがって、上述した特許文献1~3に記載されたような、ビルジ渦の発生を抑制したり、ビルジ渦の方向を整流したりする方法では、ビルジ渦以外の遅速帯による推進効率の低下を抑制することができないという問題があった。
 かかる問題を解決すべく、本願出願人は、船体の所定の範囲内にフィンを配置することによって遅速帯の領域をプロペラ面に集約し、推進効率を改善する発明について既に特許を取得している(特許文献4参照)。
特許第5132140号公報 特許第3808726号公報 実用新案登録第3097653号公報 特許第6041440号公報
 特許文献4に記載された発明においても、推進効率の改善を図ることができるものの、例えば、方形係数(CB)の大きな肥大船では遅速帯の領域が広くなる傾向にあり、更なる改善の余地があった。
 本発明はかかる問題点に鑑み創案されたものであり、遅速帯の領域をプロペラ面に集約することによって推進効率を改善し、省エネルギー化を図ることができる、フィン装置及び船舶を提供することを目的とする。
 本発明によれば、船側の船長方向に形成された平面状のサイドフラットを備えた船体に配置されるフィン装置において、前記サイドフラットの船尾側最下点Pと計画満載喫水線DWLとプロペラの位置を示すプロペラ線PLとの交点Qとを結ぶ直線Lと、ビルジ高さを示すビルジ高さ線BHLと、前記プロペラ線PLとにより囲まれた領域内に少なくとも一部が配置された複数枚のフィンを有する、ことを特徴とするフィン装置が提供される。
 また、本発明によれば、船側の船長方向に形成された平面状のサイドフラットを備えた船体に配置されるフィン装置を備えた船舶において、前記サイドフラットの船尾側最下点Pと計画満載喫水線DWLとプロペラの位置を示すプロペラ線PLとの交点Qとを結ぶ直線Lと、ビルジ高さを示すビルジ高さ線BHLと、前記プロペラ線PLとにより囲まれた領域内に少なくとも一部が配置された複数のフィンを有する、ことを特徴とする船舶が提供される。
 上述したフィン装置及び船舶において、前記領域は、前記サイドフラットの後端線SELと前記ビルジ高さ線BHLとの交点Pを通り前記直線Lに平行な直線Lと、前記直線Lと、前記ビルジ高さ線BHLと、前記プロペラ線PLとにより囲まれた第一領域を含み、前記フィンの少なくとも一部が前記第一領域内に配置されていてもよい。
 また、前記領域は、最も船首部側に配置された1番目のフィンの先端を通る鉛直線FTLと前記ビルジ高さ線BHLとの交点Pを通り前記直線Lに平行な直線Lと、前記直線Lと、前記ビルジ高さ線BHLと、前記プロペラ線PLとにより囲まれた第二領域を含み、前記フィンの少なくとも一部が前記第二領域内に配置されていてもよい。
 また、前記複数のフィンは、水平方向の位置が異なる少なくとも2枚のフィンを含み、船尾部側に位置するフィンは船首部側に位置するフィンよりも上方に配置されていてもよい。
 また、前記フィンは、船幅を超えないように配置されていてもよい。
 また、前記フィンは、略水平に配置されていてもよい。
 また、前記複数のフィンは、各フィンにより生成された渦が互いに干渉し合う位置に配置されていてもよい。
 また、前記船舶は、船尾部に配置されたプロペラの前方に配置され、前記プロペラに流入する水流を整流する整流装置を有していてもよい。
 上述した本発明に係るフィン装置及び船舶によれば、船尾部の所定の範囲内に複数のフィンを配置したことにより、フィンによって生じた渦によって遅速帯を撹乱するとともに、遅速帯を形成していた水流を集約してプロペラに導くことができる。また、複数のフィンによって生じた渦の相乗効果によって、より効果的に遅速帯を撹乱及び集約することができる。したがって、本発明によれば、遅速帯の領域をプロペラ面に集約することによって推進効率を改善し、省エネルギー化を図ることができる。
本発明の一実施形態に係るフィン装置を備えた船舶の船尾部を示す斜視図である。 図1に示した船舶のプロファイル線図である。 フィンの位置決め方法を示す図であり、(A)は第一例、(B)は第二例、を示している。 フィンの位置決め方法を示す図であり、(A)は第三例、(B)は第四例、(C)は第五例、(D)は第六例、(E)は第七例、を示している。 フィンの位置決め方法を示す図であり、(A)は第八例、(B)は第九例、を示している。 フィンの位置関係と伴流係数改善効果との関係を示す分布図である。 フィン装置と整流装置とを備えた船舶の船尾部を示す側面図であり、(A)はフィンが2枚の場合、(B)はフィンが3枚の場合、を示している。 省エネ効果を示す比較図である。
 以下、本発明の実施形態について図1~図8を用いて説明する。ここで、図1は、本発明の一実施形態に係るフィン装置を備えた船舶の船尾部を示す斜視図である。図2は、図1に示した船舶のプロファイル線図である。なお、図1において、説明の便宜上、船体以外の構造物(プロペラ、舵等)については、図を省略してある。
 本発明の一実施形態に係る船舶1は、図1及び図2に示したように、船側の船長方向に形成された平面状のサイドフラット11を備えた船体に配置されるフィン装置2を備え、サイドフラット11の船尾側最下点Pと計画満載喫水線DWLとプロペラ12の位置を示すプロペラ線PLとの交点Qとを結ぶ直線Lと、ビルジ高さを示すビルジ高さ線BHLと、プロペラ線PLとにより囲まれた領域α内に2枚のフィン(第一フィン21及び第二フィン22)を有している。なお、以下の説明において、第一フィン21及び第二フィン22を総称する場合にはフィン21,22と称するものとする。
 図2に示したプロファイル線図は、船舶1の複数のプロファイル線図を一つの図に統合して記載したものである。ここでは、船体中心線を含む鉛直面における外形を示した船体中心プロファイル線図F1(実線)、サイドフラット11の外縁を示したサイドフラットプロファイル線図F2(実線)、第一フィン21を含む水平面における外形を示した水線面プロファイル線図F3(実線)、第二フィン22を含む水平面における外形を示した水線面プロファイル線図F4(実線)、計画満載喫水線DWLを含む水平面における外形を示した喫水面プロファイル線図F5(破線)及び甲板を含む水平面における外形を示した甲板面プロファイル線図F6(二点鎖線)の6つのプロファイル線図を統合して図示している。
 なお、水線面プロファイル線図F3、水線面プロファイル線図F4、喫水面プロファイル線図F5及び甲板面プロファイル線図F6については、船体中心線に対する右半分の領域(右舷側)のみを図示している。したがって、図中に示したB/2は船幅Bの半幅を示している。
 船体中心プロファイル線図F1における下端の直線部は船舶1の船底13を示し、上端の直線部は船舶1の甲板14を示している。船底13の位置は、一般にベースラインBLと称する。また、図2において、符号1aは船首部を示し、符号1bは船尾部を示している。
 サイドフラット11は、船体の側面視略中央部に形成されており、船底13と略平行な直線部11aを有している。この直線部11aの最後端は、サイドフラット11の船尾側最下点Pに相当する。また、船底13と直線部11aとの差分(鉛直距離)は、ビルジ高さ(船底13の両側部における湾曲部分の高さ)を示している。なお、本実施形態において、直線部11aはビルジ高さ線BHLと一致している。
 また、サイドフラット11は、船尾部1b側に略鉛直に形成された後端部11bを有している。本実施形態において、この後端部11bを含む直線を後端線SELと定義する。また、サイドフラット11は、後端部11bの下端と直線部11aの最後端(船尾側最下点P)とを結ぶプロファイルは、船尾部1bに向かって船底13側から甲板14側に上昇する傾斜部11cを有している。なお、後端部11bを有しない船舶1の場合は、後端線SELは、傾斜部11cと甲板14との交点を通る鉛直線によって構成される。
 また、水線面プロファイル線図F3及び水線面プロファイル線図F4に示したように、第一フィン21及び第二フィン22は、船幅Bを超えないように配置されている。第一フィン21及び第二フィン22は、船幅Bを超えないように配置位置をずらしてもよいし、船幅Bからはみ出した部分をカットするようにしてもよい。
 第一フィン21及び第二フィン22は、例えば、図1に示したように、略矩形形状の平板により構成されており、角部には必要に応じてRを形成してもよい。フィン21,22の船体に対する取付角度は、例えば、略水平に設定され、フィン21,22の水流に対する迎角は、例えば、0°に設定される。また、図示しないが、フィン21,22は、水流の抵抗を低減するために、流線形状や翼形状を有していてもよい。なお、本実施形態において「略水平」とは、水平に対して数度程度の傾斜した状態を含む意味である。
 次に、フィンの位置決め方法について、図3(A)~図5(B)を参照しつつ説明する。ここで、図3は、フィンの位置決め方法を示す図であり、(A)は第一例、(B)は第二例、を示している。図4は、フィンの位置決め方法を示す図であり、(A)は第三例、(B)は第四例、(C)は第五例、(D)は第六例、(E)は第七例、を示している。図5は、フィンの位置決め方法を示す図であり、(A)は第八例、(B)は第九例、を示している。なお、各図において、プロペラ12の形状を模式化して図示し、舵やダクト等の付属品の図を省略してある。
 図3(A)に示したように、プロペラ12の位置を示すプロペラ線PLと計画満載喫水線DWLとの交点をQとする。プロペラ線PLは、プロペラ12の軸線に垂直なプロペラ翼基線である。船尾部1bを側面視した状態において、サイドフラット11の船尾側最下点Pと交点Qとを結ぶ直線をLとする。この直線Lと計画満載喫水線DWLとビルジ高さ線BHLとにより囲まれた領域(図の斜線部分)をαとすれば、フィン21,22は領域α内に配置される。なお、「領域α内に配置」とは、フィン21,22の少なくとも一部が領域α内に配置されていればよい趣旨である。
 例えば、図3(A)に示したように、フィン装置2が水平方向の位置が異なる2枚のフィン(第一フィン21及び第二フィン22)を含む場合、船尾部1b側に位置する第二フィン22は船首部1a側に位置する第一フィン21よりも上方に配置される。ここで、フィン21,22の水平方向の位置は、例えば、船首部1a側の端部(先端)を基準に判断される。また、「上方」とは、第二フィン22の少なくとも一部が第一フィン21よりも上方(水面側)に位置することを意味している。
 例えば、図3(B)に示したように、フィン装置2が水平方向の位置が異なる3枚のフィン(第一フィン21~第三フィン23)を含む場合、第一フィン21と第二フィン22との位置関係については、船尾部1b側に位置する第二フィン22が船首部1a側に位置する第一フィン21よりも上方に配置され、第二フィン22と第三フィン23との位置関係については、船尾部1b側に位置する第三フィン23が船首部1a側に位置する第二フィン22よりも上方に配置される。
 なお、図示しないが、フィン装置2が水平方向の位置が異なる4枚以上のフィンを含む場合であっても、前後する2枚のフィンを選択すれば、船尾部1b側に位置するフィンは船首部1a側に位置するフィンよりも上方に配置される。
 また、本実施形態は、図3(A)及び図3(B)に示したフィンの配置に限定されるものではない。例えば、図4(A)~図4(C)に示した第三例~第五例は、フィンが2枚の場合の位置決め方法を示し、図4(D)及び図4(E)に示した第六例及び第七例は、フィンが3枚の場合の位置決め方法を示している。
 図4(A)に示した第三例は、第二フィン22を第一フィン21よりも上方かつ水平方向の同じ位置に配置したものである。図示したように、第二フィン22の一部が領域α内に含まれていればよく、第二フィン22の一部が領域αからはみ出ていてもよい。なお、図示しないが、第一フィン21の一部が領域αからはみ出ていてもよい。
 図4(B)に示した第四例は、第二フィン22を第一フィン21よりも上方かつ前方に配置したものである。ここで、「前方」とは、少なくとも第二フィン22の先端が第一フィン21の先端よりも前方(船首部1a側)に位置することを意味している。
 図4(C)に示した第五例は、第二フィン22を第一フィン21よりも後方かつ同じ高さに配置したものである。ここで、「後方」とは、少なくとも第二フィン22の先端が第一フィン21の後端よりも後方(船尾部1b側)に位置することを意味している。
 図4(D)に示した第六例は、第二フィン22を第一フィン21よりも上方かつ後方に配置するとともに、第三フィン23を第二フィン22よりも後方かつ同じ高さに配置したものである。なお、図示しないが、第一フィン21及び第二フィン22は、図4(A)~図4(C)に示した第三例~第五例の位置関係を有していてもよい。
 図4(E)に示した第七例は、第二フィン22を第一フィン21よりも上方かつ後方に配置するとともに、第三フィン23を第二フィン22よりも下方かつ後方に配置したものである。なお、図示しないが、第一フィン21及び第二フィン22は、図4(A)~図4(C)に示した第三例~第五例の位置関係を有していてもよい。
 また、図5(A)に示したように、サイドフラット11の後端線SELとビルジ高さ線BHLとの交点をPとし、この交点Pを通り、直線Lに平行な直線をLと定義する。このとき、フィン21,22は、直線Lと直線Lとビルジ高さ線BHLとプロペラ線PLとにより囲まれた第一領域β内に配置されていてもよい。図示したように、第一領域βは領域αに含まれる領域である。
 また、図5(B)に示したように、最も船首側に配置された1番目のフィン(第一フィン21)の先端を通る鉛直線をFTLとし、この鉛直線FTLとビルジ高さ線BHLとの交点をPとし、この交点Pを通り、直線Lに平行な直線をLと定義する。このとき、フィン21,22は、直線Lと直線Lとビルジ高さ線BHLとプロペラ線PLとにより囲まれた第二領域γ内に配置されていてもよい。
 上述した第八例及び第九例では、フィン21,22が2枚の場合について図示しているが、フィンは3枚以上であってもよい。また、フィン21,22の配置は、上述した第三例~第五例に示した構成であってもよい。また、図示しないが、フィン21,22は、少なくとも一部が第一領域β又は第二領域γ内に含まれていればよく、必ずしもフィン21,22の全体が第一領域β又は第二領域γ内に含まれていなくてもよい。
 次に、フィンが2枚の場合におけるフィン21,22の位置関係と伴流係数改善効果との関係について、図6を参照しつつ説明する。ここで、図6は、フィンの位置関係と伴流係数改善効果との関係を示す分布図である。
 一般に、船舶1の船体に近い周囲の水は、船舶1の走行に伴って船舶1に引っ張られて船舶1と同じ方向に走ることとなる。この船舶1を追いかけて進む水の流れのことを伴流という。この伴流の速度を船舶1の速度で割った値を伴流率wという。船舶1の速度をVとし、プロペラ12の前進速度をVpとすれば、Vp=V(1-w)と表すことができる。「1-w」は一般に伴流係数という。したがって、伴流係数wの値が大きいほどプロペラ12の前進速度Vpは船舶1の速度Vに対して遅くなり、推進効率が向上する。
 図2に示したように、第一フィン21の先端と第二フィン22の先端との水平方向の距離をΔXとし、第一フィン21と第二フィン22との鉛直方向の距離をΔZとする。図6は、ΔXを0~50m、ΔZを2~8mの範囲内で変化させた場合における伴流係数の改善効果をシミュレーションした結果を図示したものである。なお、ΔX及びΔZの数値は単なる例示であって、かかる数値に限定されるものではない。
 図6に示したように、第二フィン22を第一フィン21に対して後方(船尾部1b側)かつ上方(水面側)に配置することによって、伴流係数を効果的に改善することができる。また、第二フィン22を第一フィン21に比較的接近した位置に配置することによって、高い伴流係数の改善効果を得ることができる。
 また、図6に示した3本の一点鎖線は、上述したフィン21,22の位置決め方法で用いた直線L,L,Lを示している。この図からも判るように、直線Lの上方に超えない範囲にフィン21,22を配置することによって一定の伴流係数の改善効果を得ることができる。また、直線Lと直線Lとの間にフィン21,22を配置することによっても一定の伴流係数の改善効果を得ることができ、直線Lと直線Lとの間にフィン21,22の先端を配置することによっても一定の伴流係数の改善効果を得ることができる。
 ここで、図6に示した伴流係数改善効果の原理について、図7(A)及び図7(B)を参照しつつ考察する。図7は、フィン装置と整流装置とを備えた船舶の船尾部を示す側面図であり、(A)はフィンが2枚の場合、(B)はフィンが3枚の場合、を示している。図示した船舶1は、船尾部1bに配置されたプロペラ12の前方に配置されプロペラ12に流入する水流を整流する整流装置15と、プロペラ12の後方に配置され船舶1の進行方向を制御する舵16と、を備えている。
 整流装置15は、例えば、プロペラ12の直前に配置された略円筒形状又は略半円筒形状のダクトである。かかる整流装置15は、例えば、特公平03-066197や特許第5132140号等に記載された既知のものを任意に適用することができる。
 船尾部1bの底部における水流は、船底13から後方(船尾部1b側)かつ上方(水面側)に向かう方向に流れていることから、略水平に配置された第一フィン21に衝突した水流は、第一フィン21の下面から上面に回り込む流れ(渦21v)を生成する。同様に、第二フィン22に衝突した水流は、第二フィン22の下面から上面に回り込む流れ(渦22v)を生成する。
 これらの渦21v,22vは成長しながら下流に向かい、ある地点で互いに干渉し合い、より大きな渦2vのような振る舞いを生じるものと考えられる。この大きな渦2vが生成されると、船尾部1bの遅速帯を効果的に撹乱することができ、遅速帯を形成していた水流を集約してプロペラ12に導くことができるものと考えられる。
 また、第一フィン21と第二フィン22とが近過ぎたり、離れ過ぎたりしている場合には、大きな渦2vを生成することが難しく船尾部1bの遅速帯に与える影響が低減することとなる。かかる考察は、図6に示した伴流係数改善効果の傾向と一致する。
 また、上述した考察は、図7(B)に示したように、フィンが3枚の場合にも当てはまる。第三フィン23に衝突した水流は、第三フィン23の下面から上面に回り込む流れ(渦23v)を生成する。渦21v,22v,23vは成長しながら下流に向かい、ある地点で互いに干渉し合い、より大きな渦2vのような振る舞いを生じることとなる。
 したがって、以上の考察に基づけば、複数のフィンは、各フィンにより生成された渦が互いに干渉し合う位置に配置されていることが好ましい。なお、各フィンによって生成された渦が互いに干渉しない場合であっても、少なからず、各渦によって船尾部1bの遅速帯を撹乱し集約する効果を有している。すなわち、上述したフィンの位置決め方法において説明した範囲内に複数のフィンが配置されていれば、必ずしも各フィンによって生成された渦が互いに干渉していなくてもよい。
 最後に、本実施形態に係るフィン装置2の省エネ効果について説明する。ここで、図8は、省エネ効果を示す比較図である。サンプルAは1枚のフィン(例えば、第一フィン21のみ)を有する船舶、サンプルBは2枚のフィン(例えば、第一フィン21及び第二フィン22)を有する船舶、サンプルCは整流装置15のみを有する船舶、サンプルDは1枚のフィンと整流装置15とを有する船舶、サンプルEは2枚のフィンと整流装置15とを有する船舶、を示している。
 図8に示した省エネ効果は、船体模型を用いた水槽試験の結果から算出したものである。具体的には、サンプルA~サンプルEの船体模型を製作し、それぞれのサンプルについて同じ条件で推進性能試験を行い、その試験結果から燃料消費量を計算することによって、削減できた燃料消費量から省エネ効果を算出した。
 図8に示したように、サンプルAとサンプルBとを比較すれば、フィンを2枚にする、すなわち、第二フィン22を追加することによってフィンが1枚の場合よりも大きな省エネ効果を得ることができる。また、サンプルDとサンプルEとを比較すれば、サンプルEではフィンの枚数を増やした分だけサンプルDよりも省エネ効果が改善されている。
 また、サンプルDでは、1枚のフィン(第一フィン21)と整流装置15との相乗効果によってΔEの省エネ効果を得ることができる。この相乗効果は、第一フィン21を配置することによって、従来の船舶では整流装置15で回収できなかった遅速帯の伴流を回収することができるようになったことに起因している。
 また、サンプルEでは、2枚のフィン(第一フィン21及び第二フィン22)と整流装置15との相乗効果によってΔEの省エネ効果を得ることができる。図示したように、ΔEはΔEよりも大きな数値を示し、サンプルEの方がサンプルDよりも相乗効果が高いことが判る。これは、2枚のフィンを配置することによって、サンプルDの船舶では整流装置15で回収できなかった遅速帯の伴流を回収することができるようになったことを意味している。
 上述した本実施形態に係る船舶1は、タンカー、バルクキャリアー、LNG船、LPG船、フェリー等の肥大船に限定されるものではなく、PCC(自動車運搬船)、一般貨物船、コンテナ船等の瘠形船にも適用することができる。
 本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。
1 船舶
1a 船首部
1b 船尾部
2 フィン装置
11 サイドフラット
11a 直線部
11b 後端部
11c 傾斜部
12 プロペラ
13 船底
14 甲板
15 整流装置
16 舵
21 第一フィン
22 第二フィン
23 第三フィン
2v,21v,22v,23v 渦
F1 船体中心プロファイル線図
F2 サイドフラットプロファイル線図
F3 第一フィンを含む水線面プロファイル線図
F4 第二フィンを含む水線面プロファイル線図
F5 喫水面プロファイル線図
F6 甲板面プロファイル線図
BL ベースライン
BHL ビルジ高さ線
DWL  計画満載喫水線
FTL 鉛直線
,L,L 直線
 船尾側最下点
,P,Q 交点
PL プロペラ線
SEL 後端線
 
 

Claims (9)

  1.  船側の船長方向に形成された平面状のサイドフラットを備えた船体に配置されるフィン装置において、
     前記サイドフラットの船尾側最下点Pと計画満載喫水線DWLとプロペラの位置を示すプロペラ線PLとの交点Qとを結ぶ直線Lと、ビルジ高さを示すビルジ高さ線BHLと、前記プロペラ線PLとにより囲まれた領域内に少なくとも一部が配置された複数のフィンを有する、
    ことを特徴とするフィン装置。
  2.  前記領域は、前記サイドフラットの後端線SELと前記ビルジ高さ線BHLとの交点Pを通り前記直線Lに平行な直線Lと、前記直線Lと、前記ビルジ高さ線BHLと、前記プロペラ線PLとにより囲まれた第一領域を含み、前記フィンの少なくとも一部が前記第一領域内に配置されている、ことを特徴とする請求項1に記載のフィン装置。
  3.  前記領域は、最も船首部側に配置された1番目のフィンの先端を通る鉛直線FTLと前記ビルジ高さ線BHLとの交点Pを通り前記直線Lに平行な直線Lと、前記直線Lと、前記ビルジ高さ線BHLと、前記プロペラ線PLとにより囲まれた第二領域を含み、前記フィンの少なくとも一部が前記第二領域内に配置されている、ことを特徴とする請求項1に記載のフィン装置。
  4.  前記複数のフィンは、水平方向の位置が異なる少なくとも2枚のフィンを含み、船尾部側に位置するフィンは船首部側に位置するフィンよりも上方に配置されている、ことを特徴とする請求項1に記載のフィン装置。
  5.  前記フィンは、船幅を超えないように配置されている、ことを特徴とする請求項1に記載のフィン装置。
  6.  前記フィンは、略水平に配置されている、ことを特徴とする請求項1に記載のフィン装置。
  7.  前記複数のフィンは、各フィンにより生成された渦が互いに干渉し合う位置に配置されている、ことを特徴とする請求項1に記載のフィン装置。
  8.  船側の船長方向に形成された平面状のサイドフラットを備えた船体に配置されるフィン装置を備えた船舶において、
     前記フィン装置は、請求項1~7の何れか一項に記載されたフィン装置である、ことを特徴とする船舶。
  9.  船尾部に配置されたプロペラの前方に配置され、前記プロペラに流入する水流を整流する整流装置を有する、ことを特徴とする請求項8に記載の船舶。
     
     
PCT/JP2017/045665 2016-12-27 2017-12-20 フィン装置及び船舶 WO2018123756A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197014928A KR20190092398A (ko) 2016-12-27 2017-12-20 핀 장치 및 선박
KR1020217034358A KR20210132226A (ko) 2016-12-27 2017-12-20 핀 장치 및 선박
CN201780077103.XA CN110062734B (zh) 2016-12-27 2017-12-20 翅片装置及船舶
PH12019501442A PH12019501442A1 (en) 2016-12-27 2019-06-21 Fin device and ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254512 2016-12-27
JP2016254512A JP6351700B2 (ja) 2016-12-27 2016-12-27 フィン装置及び船舶

Publications (1)

Publication Number Publication Date
WO2018123756A1 true WO2018123756A1 (ja) 2018-07-05

Family

ID=62710488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045665 WO2018123756A1 (ja) 2016-12-27 2017-12-20 フィン装置及び船舶

Country Status (6)

Country Link
JP (1) JP6351700B2 (ja)
KR (2) KR20210132226A (ja)
CN (1) CN110062734B (ja)
PH (1) PH12019501442A1 (ja)
TW (1) TWI749106B (ja)
WO (1) WO2018123756A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973390A (ja) * 1982-10-20 1984-04-25 Mitsui Eng & Shipbuild Co Ltd 船舶における整流装置
JPS62137289A (ja) * 1985-12-10 1987-06-20 Mitsubishi Heavy Ind Ltd 後方延長部付きビルジキ−ル
JPS6490895A (en) * 1987-10-01 1989-04-07 Mitsubishi Heavy Ind Ltd Slim vessel provided with reaction fin
JPH0441032Y2 (ja) * 1986-03-14 1992-09-25
JPH0542098U (ja) * 1991-11-13 1993-06-08 三菱重工業株式会社 船舶のビルジフイン装置
JPH11255178A (ja) * 1998-03-09 1999-09-21 Ishikawajima Harima Heavy Ind Co Ltd 船 舶
JP3097653U (ja) * 2003-05-07 2004-02-05 株式会社大島造船所 船尾ビルジ構造
JP2010502492A (ja) * 2006-09-01 2010-01-28 三星重工業株式会社 圧力抵抗及び船体振動を改善するための流れ制御装置
JP2014028551A (ja) * 2012-07-31 2014-02-13 Sumitomo Heavy Industries Marine & Engineering Co Ltd 肥大船
JP2015098214A (ja) * 2013-11-18 2015-05-28 ジャパンマリンユナイテッド株式会社 フィン装置及び船舶

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132140A (en) 1974-09-11 1976-03-18 Matsushita Electric Ind Co Ltd Raitopensochi
JPS6041440A (ja) 1983-08-17 1985-03-05 Kawasaki Kasei Chem Ltd 漬物の製造法
JP2979273B2 (ja) 1991-09-27 1999-11-15 三機工業株式会社 廃棄物の管路輸送方法
JP3097653B2 (ja) 1998-04-17 2000-10-10 日本電気株式会社 半導体装置用パッケージおよびその製造方法
JP3808726B2 (ja) 2001-06-05 2006-08-16 株式会社サノヤス・ヒシノ明昌 船舶フィン装置
JP5095521B2 (ja) * 2008-06-25 2012-12-12 住友重機械マリンエンジニアリング株式会社 船体構造
CN202175163U (zh) * 2011-07-19 2012-03-28 上海外高桥造船海洋工程设计有限公司 船舶尾部的节能装置
CN204056274U (zh) * 2014-06-24 2014-12-31 上海船舶运输科学研究所 船舶桨前节能附体结构

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973390A (ja) * 1982-10-20 1984-04-25 Mitsui Eng & Shipbuild Co Ltd 船舶における整流装置
JPS62137289A (ja) * 1985-12-10 1987-06-20 Mitsubishi Heavy Ind Ltd 後方延長部付きビルジキ−ル
JPH0441032Y2 (ja) * 1986-03-14 1992-09-25
JPS6490895A (en) * 1987-10-01 1989-04-07 Mitsubishi Heavy Ind Ltd Slim vessel provided with reaction fin
JPH0542098U (ja) * 1991-11-13 1993-06-08 三菱重工業株式会社 船舶のビルジフイン装置
JPH11255178A (ja) * 1998-03-09 1999-09-21 Ishikawajima Harima Heavy Ind Co Ltd 船 舶
JP3097653U (ja) * 2003-05-07 2004-02-05 株式会社大島造船所 船尾ビルジ構造
JP2010502492A (ja) * 2006-09-01 2010-01-28 三星重工業株式会社 圧力抵抗及び船体振動を改善するための流れ制御装置
JP2014028551A (ja) * 2012-07-31 2014-02-13 Sumitomo Heavy Industries Marine & Engineering Co Ltd 肥大船
JP2015098214A (ja) * 2013-11-18 2015-05-28 ジャパンマリンユナイテッド株式会社 フィン装置及び船舶

Also Published As

Publication number Publication date
CN110062734A (zh) 2019-07-26
JP6351700B2 (ja) 2018-07-04
KR20190092398A (ko) 2019-08-07
TW201823104A (zh) 2018-07-01
PH12019501442A1 (en) 2020-02-24
KR20210132226A (ko) 2021-11-03
CN110062734B (zh) 2021-03-30
JP2018103917A (ja) 2018-07-05
TWI749106B (zh) 2021-12-11

Similar Documents

Publication Publication Date Title
KR101503881B1 (ko) 배 선수에서의 유동 관리를 위한 유체역학적 덕트
JP4977208B2 (ja) 圧力抵抗及び船体振動を改善するための流れ制御装置
JP6041440B2 (ja) フィン装置及び船舶
KR20090072242A (ko) 추진기 유기 기진력 저감을 위한 선박의 다중 유동제어장치
JP2008247050A (ja) 船舶の抵抗低減装置及び船舶
JP6351700B2 (ja) フィン装置及び船舶
KR101467074B1 (ko) 선박용 추진 장치
JP4216858B2 (ja) 船舶
KR101939861B1 (ko) 선박용 러더
Htay et al. A CFD based comparison study of conventional rudder and rudder with bulb-fins system of KVLCC2 in waves
CN107539445A (zh) 船舶用方向舵
KR101580402B1 (ko) 선박용 러더 및 이를 포함하는 선박
JP4999384B2 (ja) 船尾ダクト及びそれを取り付けた船舶
CN208412081U (zh) 帽舵及船
KR102460495B1 (ko) 선박용 에너지 절감장치 및 이를 포함하는 선박
JP2023164133A (ja) フィン装置及び船舶
KR101381464B1 (ko) 선박용 러더
KR101358126B1 (ko) 선박
KR20140015924A (ko) 선박용 러더
CN217198531U (zh) 一种用于船舶的整流装置及船舶
CN109050862B (zh) 帽舵及船
WO2020262250A1 (ja) 船舶
KR102209080B1 (ko) 선박용 추진 장치
KR102211152B1 (ko) 선박용 추진 장치
KR20220051711A (ko) 유체 정류 장치 및 이를 포함하는 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197014928

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887767

Country of ref document: EP

Kind code of ref document: A1