WO2018101591A1 - 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지 - Google Patents

막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지 Download PDF

Info

Publication number
WO2018101591A1
WO2018101591A1 PCT/KR2017/010319 KR2017010319W WO2018101591A1 WO 2018101591 A1 WO2018101591 A1 WO 2018101591A1 KR 2017010319 W KR2017010319 W KR 2017010319W WO 2018101591 A1 WO2018101591 A1 WO 2018101591A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
electrode assembly
catalyst
slurry composition
catalyst slurry
Prior art date
Application number
PCT/KR2017/010319
Other languages
English (en)
French (fr)
Inventor
길이진
김혁
이상우
김도영
추민주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018544861A priority Critical patent/JP6819688B2/ja
Priority to EP17875980.9A priority patent/EP3416221B1/en
Priority to CN201780021158.9A priority patent/CN109075348B/zh
Priority to US16/082,845 priority patent/US10749198B2/en
Publication of WO2018101591A1 publication Critical patent/WO2018101591A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present specification relates to a membrane-electrode assembly manufacturing method, a membrane-electrode assembly manufactured therefrom, and a fuel cell including the same.
  • a fuel cell is a power generation system that directly converts chemical energy of hydrogen and oxygen contained in hydrocarbon-based materials such as methanol, ethanol, and natural gas into electrical energy by an electrochemical reaction.
  • Such fuel cells include a polymer electrolyte fuel cell (PEMFC) and a direct methanol fuel cell (DMFC) using methanol as a fuel. Development and research are active.
  • PEMFC polymer electrolyte fuel cell
  • DMFC direct methanol fuel cell
  • the polymer electrolyte membrane fuel cell has a high operating temperature, high energy density, low corrosiveness, and easy handling, and is therefore clean and usable as a mobile or fixed power source. It is accepted that it is an efficient energy conversion device.
  • the fuel cell system may be composed of, for example, a continuous composite such as a membrane-electrode assembly (MEA) and a bipolar plate that collects and supplies the generated electricity.
  • MEA membrane-electrode assembly
  • the membrane-electrode assembly is made by forming an electrode by coating a catalyst layer on an electrolyte membrane, and generally, a method of spraying a catalyst slurry prepared by stirring and dispersing an ionomer and a catalyst in a solvent or a catalyst slurry on a support. After the first coating, there is a transfer method for transferring the resulting catalyst layer to the polymer electrolyte membrane.
  • the ionomer is connected between the catalyst particles to optimize the three-phase network structure of the pores, the catalyst and the ionomer. It is easy to be pulled out, cracks are generated, and the pore structure becomes unstable, thereby degrading performance.
  • the present specification is to provide a membrane-electrode assembly manufacturing method, a membrane-electrode assembly prepared therefrom and a fuel cell including the same.
  • An exemplary embodiment of the present specification comprises the steps of (a) preparing a catalyst slurry composition comprising a platinum coated carbon powder (Pt / C) catalyst, an ionomer, and solvent A; (b) stirring the catalyst slurry composition; (c) sonicating the catalyst slurry composition subjected to step (b) to homogenizing; (d) drying the catalyst slurry composition passed through step (c) at a temperature of 30 ° C.
  • step (e) adding solvent B to the catalyst slurry composition passed through step (d); (f) sonicating the catalyst slurry composition subjected to step (e) to re-homogenizing; And (g) applying the catalyst slurry composition passed through step (f) onto a substrate, drying the substrate, and transferring the substrate to one or both surfaces of the electrolyte membrane to form a catalyst layer. It provides a method of manufacturing.
  • an exemplary embodiment of the present specification provides a membrane-electrode assembly manufactured by the method of manufacturing the membrane-electrode assembly.
  • an exemplary embodiment of the present disclosure provides a fuel cell including a membrane-electrode assembly.
  • the dispersibility of the ionomer may be improved.
  • the manufacturing method of the membrane-electrode assembly according to the exemplary embodiment of the present specification may reduce ionomer agglomeration and cracking phenomena by improving the dispersibility of the ionomer.
  • the manufacturing method of the membrane-electrode assembly according to the exemplary embodiment of the present specification reduces the agglomeration and cracking of the ionomer, thereby reducing the permeation of fuel and improving the open circuit voltage (OCV) of the fuel cell. Therefore, the performance of the fuel cell can be improved.
  • 1 is a view schematically showing the structure of a membrane-electrode assembly.
  • Figure 6 shows the results of the performance measurement when the catalyst layer prepared according to the method for producing a membrane-electrode assembly according to Example 1 and Comparative Example 1 of both the cathode and the anode.
  • FIG. 7 shows the results of performance measurement when the catalyst layer prepared according to the method of manufacturing the membrane-electrode assembly according to Example 2 and Comparative Example 2 of the present specification was applied only to the cathode.
  • An exemplary embodiment of the present specification comprises the steps of (a) preparing a catalyst slurry composition comprising a platinum coated carbon powder (Pt / C) catalyst, an ionomer, and solvent A; (b) stirring the catalyst slurry composition; (c) sonicating the catalyst slurry composition subjected to step (b) to homogenizing; (d) drying the catalyst slurry composition passed through step (c) at a temperature of 30 ° C.
  • step (e) adding solvent B to the catalyst slurry composition passed through step (d); (f) sonicating the catalyst slurry composition subjected to step (e) to re-homogenizing; And (g) applying the catalyst slurry composition passed through step (f) onto a substrate, drying the substrate, and transferring the substrate to one or both surfaces of the electrolyte membrane to form a catalyst layer. It provides a method of manufacturing.
  • the catalyst slurry composition of step (a) includes a platinum-coated carbon powder (Pt / C) catalyst, an ionomer, and solvent A.
  • the catalyst of step (a) is a platinum powder coated carbon powder (Pt / C).
  • the catalyst of step (a) may use a catalyst on which a metal is supported on the surface of the carbon support.
  • Examples of the carbon support include, but are not limited to, graphite (graphite), carbon black, acetylene black, denka black, cathodic black, activated carbon, mesoporous carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, carbon nano One, two or more mixtures selected from the group consisting of rings, carbon nanowires, fullerenes (C60) and super P may be used.
  • graphite graphite
  • carbon black carbon black
  • acetylene black denka black
  • cathodic black activated carbon
  • mesoporous carbon mesoporous carbon
  • carbon nanotube carbon nanofiber
  • carbon nanohorn carbon nano One, two or more mixtures selected from the group consisting of rings, carbon nanowires, fullerenes (C60) and super P may be used.
  • the platinum powder coated carbon powder (Pt / C) in the catalyst slurry composition of step (a) is preferably 10 to 80 wt% compared to carbon, but is not limited thereto.
  • the ionomer of step (a) is a fluorine-based polymer.
  • the ionomer of step (a) may serve to provide a passage for the ions generated by the reaction between the fuel and the catalyst such as hydrogen or methanol to move to the electrolyte membrane.
  • the ionomer of step (a) may be a perfluorosulfonic acid (PFSA) polymer or a perfluorocarboxylic acid (PFCA) polymer.
  • PFSA perfluorosulfonic acid
  • PFCA perfluorocarboxylic acid
  • Nafion Nafion, Dupont, Inc.
  • plemion Femion, Asahi Glass, Inc.
  • the weight average molecular weight of the ionomer of step (a) may be 240 g / mol to 200,000 g / mol, specifically 240 g / mol to 10,000 g / mol.
  • the content of the ionomer of step (a) is preferably 5 to 150wt% compared to carbon, but is not limited thereto.
  • the solvent A of step (a) may be one or two or more selected from the group consisting of water, methanol, ethanol, butanol, 1-propanol and isopropanol. Preferably it may be water or propanol, but is not limited thereto.
  • the solvent A of the step (a) is water.
  • the solvent A of the step (a) is 1-propanol.
  • the solvent A of step (a) includes water and 1-propanol.
  • the content of the solvent A in the step (a) is preferably 10 wt% to 99 wt% based on the total catalyst slurry composition, but is not limited thereto.
  • solvent A of step (a) is a solvent capable of dispersing the catalyst, and only a solvent capable of evaporating in the range of 30 ° C. to 100 ° C. may be used. Therefore, water or alcohol solvents such as methanol, ethanol and propanol are suitable.
  • the catalyst slurry composition itself in the form of the catalyst and ionomer dispersed in the solution is maintained in the settled state, in order to maintain a stable dispersion state, stirring the catalyst slurry composition ( b).
  • the stirring step to relatively narrow the distribution of the catalyst particles to prevent agglomeration of the particles, it is possible to maintain a uniform dispersion state of the catalyst slurry.
  • step (c) is performed to homogenize the sonication of the catalyst slurry composition, which has undergone the step (b).
  • the ultrasonic treatment in step (c) may be of a tip type or a bath type.
  • the ultrasonic treatment refers to the act of dispersing energy having a frequency of 20 kHz or more to particles, wherein the bath type is relatively low and a certain amount of energy is used, and the tip type is a bath. It can variably apply about 50 times higher energy than the mold.
  • ionomers are aggregated together by electrostatic attraction in a solvent to exist as aggregates having a particle diameter of 0.01 ⁇ m to 1 ⁇ m.
  • unit particles formed by agglomeration of ionomers in a solvent are called ionomer clusters.
  • ionomer clusters When these are dispersed by sonication, specifically, the tip type or bath type sonication, most of the ionomer clusters have an average of 10 nm to 500 nm, preferably 10 nm to 300 nm. It is uniformly dispersed to have a particle size.
  • the tip ultrasonic treatment is not limited thereto, but may be performed for 10 to 30 minutes.
  • the bath sonication may be performed for 20 to 120 minutes, preferably 30 to 60 minutes.
  • the ultrasonication is performed within the above time range, it is possible to prevent the occurrence of local ionomer agglomeration.
  • the dispersion effect may not be large compared to time, and thus may be inefficient.
  • the ionomer In order to form a catalyst layer having a uniform structure, sufficient adsorption force between the ionomer and the carbon support in the catalyst is important. If the particle size of the ionomer is controlled to be small through such ultrasonication, the ionomer may be uniformly adsorbed onto the carbon support in the catalyst.
  • the catalyst slurry composition which has undergone the step (c), performs step (d) of drying at a temperature of 30 ° C to 100 ° C. More preferably, it may be dried at a temperature of 40 °C to 70 °C. At 30 ° C. or lower, the ionomer and the catalyst may be separated again due to a slow drying rate, and above 100 ° C., the catalyst may be ignited when solvent A is an alcoholic solvent.
  • step (e) of adding the solvent B to the catalyst slurry composition passed through step (d) is performed.
  • the solvent B of step (e) is one, two or more selected from the group consisting of water, methanol, ethanol, butanol, 1-propanol, isopropanol, n-butyl acetate, ethylene glycol and glycerol Can be. Preferably it may be glycerol, but is not limited thereto.
  • the solvent B of step (e) is glycerol.
  • the solvent B of step (e) is glycerol and 1-propanol.
  • the solvent B of step (e) includes glycerol, water and 1-propanol.
  • the content of the solvent B of step (e) is preferably 10 wt% to 99 wt% based on the total catalyst slurry composition, but is not limited thereto.
  • step (f) is performed to homogenize the sonication of the catalyst slurry composition passed through step (e).
  • the ultrasonic treatment in step (f) may be the same as the ultrasonic treatment in step (c).
  • step (f) is applied to the catalyst slurry composition applied to the substrate and dried, and performing the step (g) to transfer the substrate to one or both sides of the electrolyte membrane to form a catalyst layer do.
  • the coating of step (g) may be performed by spray coating, screen printing, tape casting, brushing, slot die casting, or slot die casting. It can be achieved through one method selected from the group consisting of casting, bar-casting and inkjetting.
  • the thickness of the catalyst layer formed in the step (g) is 5 ⁇ m to 15 ⁇ m.
  • the membrane electrode assembly further includes a cathode gas diffusion layer provided on the surface of the cathode catalyst layer opposite to the surface provided with the electrolyte membrane, and an anode gas diffusion layer provided on the opposite surface of the anode catalyst layer provided with the electrolyte membrane. can do.
  • the anode gas diffusion layer and the cathode gas diffusion layer are provided on one surface of the catalyst layer, respectively, and serve as a current conductor and a passage of reaction gas and water, and have a porous structure.
  • the gas diffusion layer is not particularly limited as long as the substrate has a conductivity and a porosity of 80% or more, and may include a conductive substrate selected from the group consisting of carbon paper, carbon cloth, and carbon felt.
  • the thickness of the substrate may be 30 ⁇ m to 500 ⁇ m. If the value is within the above range, the balance between the mechanical strength and the diffusivity of gas and water can be appropriately controlled.
  • the gas diffusion layer may further include a fine pore layer formed on one surface of the conductive substrate, and the fine pore layer may include a carbon material and a fluorine resin.
  • the microporous layer may inhibit the occurrence of flooding by promoting the discharge of excess moisture present in the catalyst layer.
  • Examples of the carbon-based material include graphite (graphite), carbon black, acetylene black, denka black, canyon black, activated carbon, mesoporous carbon, carbon nanotubes, carbon nanofibers, carbon or nohorn, carbon nano rings, carbon nanowires, One or more mixtures selected from the group consisting of fullerenes (C60) and super P may be used, but is not limited thereto.
  • the fluorine resins include polytetrafluoroethylene, polyvinylidene fluoride (PVdF), polyvinyl alcohol, cellulose acetate, copolymers of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) and styrene-butadiene rubber.
  • PVdF polyvinylidene fluoride
  • PVdF-HFP polyvinylidene fluoride-hexafluoropropylene
  • SBR styrene-butadiene rubber
  • FIG. 1 is a view schematically showing the structure of a membrane-electrode assembly, wherein the membrane-electrode assembly includes an electrolyte membrane 10 and a cathode 50 and an anode positioned opposite to each other with the electrolyte membrane 10 interposed therebetween. 51).
  • the cathode includes a cathode catalyst layer 20 and a cathode gas diffusion layer 40 sequentially provided from the electrolyte membrane 10
  • the anode includes an anode catalyst layer 21 and an anode sequentially provided from the electrolyte membrane 10. It may include a gas diffusion layer (41).
  • an exemplary embodiment of the present specification provides a membrane-electrode assembly manufactured by the method of manufacturing the membrane-electrode assembly.
  • an exemplary embodiment of the present disclosure provides a fuel cell including a membrane-electrode assembly.
  • 3M 825 ionomer was added to a solution where water and 1-propanol were mixed in a 7: 3 ratio. Thereafter, a TEC 10F50E catalyst sold by Tanaka was added with a mass ratio of ionomer and carbon (ionomer / Carbon) adjusted to 0.9. After stirring for 1 hour at room temperature with a magnetic stirrer, and then dispersed in a bath-type ultrasonic disperser for 1 hour at room temperature, the temperature was reduced to 50 °C or less and dispersed for 15 minutes using a tip-type ultrasonic disperser. And it dried in the oven of 70 degreeC, and obtained the catalyst particle of the solid state in which the ionomer was disperse
  • the particles were added to a solution in which 1-propanol and glycerol were mixed, and then ultrasonically dispersed as described above to prepare an electrode slurry.
  • the electrode catalyst layer was cast on a PTFE film using a doctor blade on a horizontal plate of an applicator in a clean bench using the prepared electrode slurry, and then dried at 35 ° C. for 30 minutes and at 140 ° C. for 30 minutes to finally prepare an electrode. .
  • 3M 825 ionomer was added to the mixed solution of 1-propanol and glycerol. Thereafter, a TEC 10F50E catalyst sold by Tanaka was added to adjust the mass ratio of ionomer and carbon to 0.9. Thereafter, an electrode slurry was prepared through stirring and ultrasonic dispersion in the same manner as in Example 1, and an electrode was prepared in the same manner as in Example 1.
  • Example 1 Evaluation of the membrane electrode assembly to which the electrode catalyst layers of Example 1 and Comparative Example 1 were applied was carried out.
  • the electrolyte membrane a sPEEK-based hydrocarbon membrane was used, GDL (gas diffusion layer) was used as SGL's 10BB, and a thickness of 380 ⁇ m to 420 ⁇ m was used.
  • the compression rate of GDL was set to 25% and glass fiber sheet was used to maintain it.
  • the active area of the membrane electrode assembly was manufactured in 25 cm 2 and the unit battery cell evaluation was performed. It proceeded using the same example electrode for an anode and a cathode.
  • the evaluation equipment used Scribner's PEMFC station equipment, the cell temperature was maintained at 70 °C and the humidity condition was maintained at RH 50% to perform the performance evaluation, the results are shown in Table 1 and Figures 2 to 6 below. .
  • Example 2 Evaluation of the membrane electrode assembly to which the electrode catalyst layers of Example 2 and Comparative Example 2 were applied was carried out.
  • the electrode manufactured by the manufacturing method of Comparative Example 1 using the TEC 10V50E catalyst sold by Tanaka was used in the same manner, and the electrode of the example corresponding to the cathode was used.
  • Other experimental methods were tested in the same manner as in Example 1.
  • Experimental Example 1 applied the 10F50E catalyst to both the anode and the cathode
  • Experimental Example 2 applied the 10F50E-HT catalyst only to the cathode
  • the 10V50E catalyst was applied to the anode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 막-전극 접합체의 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지에 관한 것으로, 상기 막-전극 접합체의 제조방법은 촉매 슬러리 조성물을 건조한 이후에, 용매 B를 첨가한 후 초음파 처리하여 재균일화하는 단계를 추가함으로써, 이오노머의 분산성을 향상시킬 수 있다.

Description

막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지
본 명세서는 2016년 11월 30일에 한국특허청에 제출된 한국 특허 출원 제 10-2016-0161995호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지에 관한 것이다.
연료전지(Fuel Cell)는 전기화학반응에 의해 메탄올, 에탄올, 천연가스와 같은 탄화수소 계열의 물질 내에 함유되어 있는 수소와 산소의 화학 에너지를 직접 전기 에너지로 변환시키는 발전 시스템이다.
이러한 연료전지의 대표적인 예로는, 고분자 전해질형 연료전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC)나 메탄올을 연료로 사용하는 직접 메탄올 연료전지(Direct Methanol Fuel Cell, DMFC) 등을 들 수 있으며, 이들에 관한 개발 및 연구가 활발히 이루어지고 있다.
특히, 고분자 전해질막 연료전지(PEMFC: polymer electrolyte membrane fuel cell)는 작동 온도가 높지 않고, 에너지 밀도가 높으며, 부식성이 적을 뿐 아니라 취급이 용이하다는 장점으로 인하여, 이동형 또는 고정형 전원으로 사용 가능한 깨끗하고 효율적인 에너지 전환 장치인 것으로 받아들여지고 있다.
연료전지 시스템은 예컨대 막-전극 접합체(MEA, Membrane Electrode Assembly)와 발생된 전기를 집전하고 연료를 공급하는 양극판(bipolar plate) 등의 연속적인 복합체로 구성될 수 있다.
막-전극 접합체는 전해질 막에 촉매층을 코팅하여 전극을 형성하여 만들어지는데, 일반적으로 이오노머(ionomer)와 촉매를 용매에 넣어 교반 및 분산하여 제조된 촉매 슬러리를 스프레이하는 방법 또는 지지체 상에 촉매 슬러리 등을 먼저 도포한 후 생성된 촉매층을 고분자 전해질막에 전사시키는 전사 방법 등이 있다.
연료전지의 성능을 향상시키기 위해서는 촉매 및 이오노머 입자의 용매에 대한 분산성이 중요한데, 종래의 촉매를 분산하는 방법인 직접적인 분산(ball mill, bid mill등)과 간접적인 분산(sonication)은 acetyl carbon black 기반의 촉매이거나 Pt 함량이 적은 촉매의 경우 뭉침 현상등의 문제로 인하여 분산이 힘들다는 문제점이 있다.
또한, 촉매층의 구조 최적화 중 가장 중요한 점은 이오노머가 촉매 입자 사이사이를 연결하여 기공, 촉매 및 이오노머의 3상 네트워크 구조를 최적화 하는 것인데, 기존의 분산 방법으로는 이오노머가 촉매 덩어리에 부착되거나 한쪽으로 쏠리는 현상이 일어나기 쉽고, 크랙(crack)이 발생하여 기공구조가 불안정하게 되어 성능이 저하된다.
따라서, 분산성이 높은 촉매 슬러리 및 크랙 현상이 최대한 억제되어 기공구조의 안정성을 확보함으로써 연료전지의 성능을 향상시킬 수 있는 막-전극 접합체의 개발이 계속 요구되고 있다.
본 명세서는 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지를 제공하고자 한다.
본 명세서의 일 실시상태는 (a) 백금이 코팅된 탄소분말(Pt/C) 촉매, 이오노머(ionomer), 및 용매 A를 포함하는 촉매 슬러리 조성물을 준비하는 단계; (b) 상기 촉매 슬러리 조성물을 교반하는 단계; (c) 상기 단계 (b)를 거친 촉매 슬러리 조성물을 초음파(sonication) 처리하여 균일화(homogenizing)하는 단계; (d) 상기 단계 (c)를 거친 촉매 슬러리 조성물을 30℃ 내지 100 ℃의 온도에서 건조하는 단계; (e) 상기 단계 (d)를 거친 촉매 슬러리 조성물에 용매 B를 첨가하는 단계; (f) 상기 단계 (e)를 거친 촉매 슬러리 조성물을 초음파(sonication) 처리하여 재균일화(homogenizing)하는 단계; 및 (g) 상기 단계 (f)를 거친 촉매 슬러리 조성물을 기재 상에 도포하고 건조시킨 다음, 상기 기재를 전해질막의 일면 또는 양면에 전사하여 촉매층을 형성하는 단계를 포함하는 막-전극 접합체(MEA)의 제조방법을 제공한다.
또한, 본 명세서의 일 실시상태는 상기 막-전극 접합체의 제조방법으로 제조된 막-전극 접합체를 제공한다.
또한, 본 명세서의 일 실시상태는 막-전극 접합체를 포함하는 연료전지를 제공한다.
본 명세서의 일 실시상태에 따른 막-전극 접합체의 제조방법은 촉매 슬러리 조성물을 건조한 이후에, 용매 B를 첨가한 후 초음파 처리하여 재균일화하는 단계를 추가함으로써, 이오노머의 분산성을 향상시킬 수 있다.
또한, 본 명세서의 일 실시상태에 따른 막-전극 접합체의 제조방법은 이오노머의 분산성을 향상시킴으로써, 기존의 제조방법에 비하여 이오노머 뭉침 현상 및 크랙 현상을 감소시킬 수 있다.
또한, 본 명세서의 일 실시상태에 따른 막-전극 접합체의 제조방법은 이오노머의 뭉침현상 및 크랙 현상을 감소시킴으로써, 연료의 투과가 감소하여 연료전지의 개회로 전압(OCV, Open Circuit Voltage)이 향상되므로 연료전지의 성능을 향상시킬 수 있다.
도 1은 막-전극 접합체의 구조를 개략적으로 나타낸 도면이다.
도 2 및 3은 본 명세서의 실시예 1에 따른 막-전극 접합체의 제조방법에 따라 제조된 촉매층의 SEM 사진을 나타낸 것이다.
도 4 및 5는 본 명세서의 비교예 1에 따른 막-전극 접합체의 제조방법에 따라 제조된 촉매층의 SEM 사진을 나타낸 것이다.
도 6은 본 명세서의 실시예 1 및 비교예 1에 따른 막-전극 접합체의 제조방법에 따라 제조된 촉매층을 캐소드 및 애노드에 모두 적용했을 때의 성능측정 결과를 나타낸 것이다.
도 7은 본 명세서의 실시예 2 및 비교예 2에 따른 막-전극 접합체의 제조방법에 따라 제조된 촉매층을 캐소드에만 적용했을 때의 성능측정 결과를 나타낸 것이다.
<부호의 설명>
10: 전해질막
20: 캐소드 촉매층
21: 애노드 촉매층
40: 캐소드 기체확산층
41: 애노드 기체확산층
50: 캐소드
51: 애노드
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술 분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 명세서의 일 실시상태는 (a) 백금이 코팅된 탄소분말(Pt/C) 촉매, 이오노머(ionomer), 및 용매 A를 포함하는 촉매 슬러리 조성물을 준비하는 단계; (b) 상기 촉매 슬러리 조성물을 교반하는 단계; (c) 상기 단계 (b)를 거친 촉매 슬러리 조성물을 초음파(sonication) 처리하여 균일화(homogenizing)하는 단계; (d) 상기 단계 (c)를 거친 촉매 슬러리 조성물을 30℃ 내지 100 ℃의 온도에서 건조하는 단계; (e) 상기 단계 (d)를 거친 촉매 슬러리 조성물에 용매 B를 첨가하는 단계; (f) 상기 단계 (e)를 거친 촉매 슬러리 조성물을 초음파(sonication) 처리하여 재균일화(homogenizing)하는 단계; 및 (g) 상기 단계 (f)를 거친 촉매 슬러리 조성물을 기재 상에 도포하고 건조시킨 다음, 상기 기재를 전해질막의 일면 또는 양면에 전사하여 촉매층을 형성하는 단계를 포함하는 막-전극 접합체(MEA)의 제조방법을 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (a)의 촉매 슬러리 조성물은 백금이 코팅된 탄소분말(Pt/C) 촉매, 이오노머(ionomer), 및 용매 A를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (a)의 촉매는 백금이 코팅된 탄소 분말(Pt/C)이다.
본 명세서에 있어서, 상기 단계 (a)의 촉매는 탄소지지체의 표면에 금속이 담지된 촉매를 사용할 수 있다.
상기 탄소 지지체로는, 이에 한정되는 것은 아니나, 흑연(그라파이트), 카본 블랙, 아세틸렌 블랙, 덴카 블랙, 캐천 블랙, 활성 카본, 중다공성 카본, 탄소나노 튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어, 플러렌(C60) 및 수퍼P로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
본 명세서에 있어서, 상기 단계 (a)의 촉매 슬러리 조성물에서 백금이 코팅된 탄소분말(Pt/C)은 carbon 대비 Pt담지량이 10 내지 80 wt%가 바람직하나, 이에 한정되지는 않는다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (a)의 이오노머는 불소계 고분자이다.
구체적으로, 상기 단계 (a)의 이오노머는 수소나 메탄올과 같은 연료와 촉매간의 반응에 의하여 생성된 이온이 전해질 막으로 이동하기 위한 통로를 제공하는 역할을 할 수 있다.
본 명세서에 있어서, 상기 단계 (a)의 이오노머는 퍼플루오로설폰산(perfluorosulfonic acid: PFSA)계 고분자 또는 퍼플루오로카복실산(perfluorocarboxylic acid: PFCA)계 고분자일 수 있다. 퍼플루오로설폰산계 고분자로는 나피온(Nafion, Dupont 社)을, 퍼플루오로카복실산계 고분자로는 플레미온(Flemion, Asahi Glass 社)을 사용할 수 있다.
본 명세서의 일 실시 상태에 따르면, 상기 단계 (a)의 이오노머의 중량평균분자량은 240 g/mol 내지 200,000 g/mol, 구체적으로 240 g/mol 내지 10,000 g/mol일 수 있다.
본 명세서에 있어서, 상기 단계 (a)의 이오노머의 함량은 carbon 대비 5 내지 150wt%가 바람직하나, 이에 한정되지는 않는다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (a)의 용매 A는 물, 메탄올, 에탄올, 부탄올, 1-프로판올 및 이소프로판올로 이루어진 군에서 선택된 하나 또는 둘 이상일 수 있다. 바람직하게는 물 또는 프로판올 일 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (a)의 용매 A는 물이다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (a)의 용매 A는 1-프로판올이다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (a)의 용매 A는 물 및 1-프로판올을 포함한다.
본 명세서에 있어서, 상기 단계 (a)의 용매 A의 함량은 전체 촉매 슬러리 조성물에 대하여 10 wt% 내지 99 wt%가 바람직하나, 이에 한정되지는 않는다.
본 명세서에 있어서, 상기 단계 (a)의 용매 A는 촉매를 분산시킬 수 있는 용매로서, 30℃ 내지 100℃의 범위에서 증발이 가능한 용매만이 사용 가능하다. 따라서, 물 이나 메탄올, 에탄올 및 프로판올과 같은 알코올 계열의 용매가 적합하다.
또한, 글리세롤은 MEA 접합 및 잔존 용매 유지의 용도로 사용되기 때문에 상기 단계 (a)에서 용매 A로 사용되는 것은 적합하지 않다. 게다가, 글리세롤의 끓는점은 290℃이므로 상기 용매 A에 적합한 온도범위를 벗어나므로 용매 A로 사용되는 것은 적합하지 않다.
본 명세서의 일 실시상태에 있어서, 용액 중에 촉매 및 이오노머가 분산된 형태의 촉매 슬러리 조성물 자체는 침강상태를 유지하고 있어, 안정한 분산상태를 유지할 수 있도록 하기 위하여, 상기 촉매 슬러리 조성물을 교반하는 단계(b)를 포함한다.
촉매 슬러리 조성물이 침강 상태가 되어 안정한 분산상태를 이루지 못하는 경우, 촉매의 분포량이 달라 각 부분에서의 촉매량 및 분포도에 차이가 발생하게 되며, 하부에 가라앉은 입자들의 응집에 의해 점도가 일관성 없이 증가하여 일정한 물성을 얻기가 어려운 점이 있었으나, 상기 교반하는 단계를 통해 상대적으로 촉매 입자의 분포도를 좁게 하여 입자들의 응집 현상을 방지하고, 촉매 슬러리의 분산상태를 균일하게 유지할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (b)를 거친 촉매 슬러리 조성물을 초음파(sonication) 처리하여 균일화(homogenizing)하는 단계 (c)를 수행한다.
본 명세서에 있어서, 상기 단계 (c)의 초음파 처리는 팁 형(tip type) 또는 배스형(bath type)으로 이루어질 수 있다.
본 명세서에서 초음파 처리란, 20kHz 이상의 주파수를 갖는 에너지를 입자에 가하여 분산시키는 행위를 의미하는데, 상기 배스형(bath type)은 비교적 낮고 일정한 크기의 에너지가 사용되며, 상기 팁형(tip type)은 배스형의 약 50배에 달하는 높은 에너지를 가변적으로 가할 수 있다.
일반적으로, 이오노머는 용매 내에서 서로 정전기적 인력으로 뭉쳐져 입경이 0.01 ㎛ 내지 1 ㎛인 응집체로 존재하며, 이렇게 용매 내에서 이오노머가 뭉쳐져 형성된 단위 입자를 이오노머 클러스터(Cluster)라고 한다. 이들을 초음파 처리, 구체적으로, 상기 팁형(tip type) 또는 배스형(bath type) 초음파 처리를 통해 분산시키게 되면, 상기 이오노머 클러스터의 대부분은 10 nm 내지 500 nm, 바람직하게는 10 nm 내지 300 nm의 평균 입경을 갖도록 균일하게 분산된다.
상기 팁형 초음파 처리는 이로 제한되는 것은 아니나, 10분 내지 30분 동안 수행될 수 있다. 상기 배스형 초음파 처리는 20분 내지 120분, 바람직하게는 30분 내지 60분 동안 수행될 수 있다.
초음파 처리가 상기 시간 범위 내에서 이루어지는 경우, 국부적인 이오노머 뭉침 현상의 발생을 방지할 수 있다. 상기 시간 범위를 초과하여 수행될 경우, 시간 대비 분산 효과가 크지 않아 비효율적일 수 있다.
균일한 구조의 촉매층을 형성하기 위해서는 이오노머와 촉매 내 탄소 지지체 간의 충분한 흡착력이 중요한데, 이러한 초음파 처리를 통하여 이오노머의 입경을 작게 조절하면, 이오노머가 촉매 내 탄소 지지체에 균일하게 흡착될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (c)를 거친 촉매 슬러리 조성물은 30℃ 내지 100 ℃의 온도에서 건조하는 단계 (d)를 수행한다. 더욱 바람직하게는 40℃ 내지 70℃의 온도에서 건조할 수 있다. 30℃ 이하에서는 건조 속도가 느려서 이오노머와 촉매가 다시 분리될 가능성이 있어 적합하지 않으며, 100℃ 이상에서는 용매 A가 알콜계 용매일 경우 촉매가 발화되는 문제가 발생할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (d)를 거친 촉매 슬러리 조성물에 용매 B를 첨가하는 단계 (e)를 수행한다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (e)의 용매 B는 물, 메탄올, 에탄올, 부탄올, 1-프로판올, 이소프로판올, n-부틸 아세테이트, 에틸렌 글리콜 및 글리세롤로 이루어진 군에서 선택된 하나 또는 둘 이상일 수 있다. 바람직하게는 글리세롤일 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (e)의 용매 B는 글리세롤이다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (e)의 용매 B는 글리세롤 및 1-프로판올이다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (e)의 용매 B는 글리세롤, 물 및 1-프로판올을 포함한다.
본 명세서에 있어서, 상기 단계 (e)의 용매 B의 함량은 전체 촉매 슬러리 조성물에 대하여 10 wt% 내지 99 wt%가 바람직하나, 이에 한정되지는 않는다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (e)를 거친 촉매 슬러리 조성물을 초음파(sonication) 처리하여 균일화(homogenizing)하는 단계 (f)를 수행한다.
본 명세서에 있어서, 상기 단계 (f)의 초음파 처리는 상기 단계 (c)의 초음파처리 과정과 동일할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (f)를 거친 촉매 슬러리 조성물을 기재상에 도포하고 건조시킨 다음, 상기 기재를 전해질막의 일면 또는 양면에 전사하여 촉매층을 형성하는 단계 (g)를 수행한다.
본 명세서에 있어서, 상기 단계 (g)의 도포는 스프레이 코팅법(spray coating), 스크린 프린팅법(screen printing), 테잎 캐스팅법(tape casting), 붓칠법(brushing), 슬롯 다이 캐스팅법(slot die casting), 바캐스팅법(bar-casting) 및 잉크젯팅(inkjetting) 으로 이루어진 군에서 선택되는 하나의 방법을 통해 이루어질 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 단계 (g)에서 형성되는 촉매층의 두께는 5㎛ 내지 15 ㎛이다.
상기 막 전극 접합체는 상기 캐소드 촉매층의 면 중 전해질막이 구비된 면의 반대면에 구비된 캐소드 기체확산층, 및 상기 애노드 촉매층의 면 중 전해질막이 구비된 면의 반대면에 구비된 애노드 기체확산층을 더 포함할 수 있다.
상기 애노드 기체확산층 및 캐소드 기체확산층은 촉매층의 일면에 각각 구비되며, 전류전도체로서의 역할과 함께 반응 가스와 물의 이동 통로가 되는 것으로, 다공성의 구조를 가진다.
상기 기체확산층은 일반적으로 도전성 및 80% 이상의 다공도를 갖는 기재라 면 특별한 제한이 없으며, 탄소페이퍼, 탄소천 및 탄소펠트로 이루어진 군에서 선택되는 도전성 기재를 포함하여 이루어질 수 있다. 기재의 두께는 30㎛ 내지 500㎛일 수 있다. 상기 범위 내의 값이면 기계적 강도와 가스 및 물의 확산성과의 균형이 적절하게 제어될 수 있다. 상기 기체확산층은 상기 도전성 기재의 일면에 형성되는 미세 기공층을 더 포함하여 형성될 수 있으며, 상기 미세 기공층은 탄소계 물질 및 불소계 수지를 포함하여 형성될 수 있다. 상기 미세 기공층은 촉매층에 존재하는 과잉 수분의 배출을 촉진시켜서 플러딩(flooding) 현상의 발생을 억제할 수 있다.
상기 탄소계 물질로는 흑연(그라파이트), 카본 블랙, 아세틸렌 블랙, 덴카 블랙, 캐천 블랙, 활성 카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나 노혼, 탄소나노링, 탄소나노와이어, 플러렌(C60) 및 수퍼P로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물이 사용될 수 있으나, 이에 한정되지는 않는다.
상기 불소계 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드(PVdF), 폴리비닐알코올, 셀룰로오스 아세테이트, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP) 및 스티렌-부타디엔고무(SBR)로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물이 사용될 수 있으나, 이에 한정되지는 않는다.
도 1은 막-전극 접합체의 구조를 개략적으로 나타낸 도면으로서, 막-전극 접합체는 전해질막(10)과, 이 전해질막(10)을 사이에 두고 서로 대향하여 위치하는 캐소드(50) 및 애노드(51)를 구비할 수 있다. 구체적으로, 캐소드에는 전해질막(10)으로부터 순차적으로 구비된 캐소드 촉매층(20)과 캐소드 기체확산층(40)을 포함하고, 애노드에는 전해질막(10)으로부터 순차적으로 구비된 애노드 촉매층(21)과 애노드 기체확산층 (41)을 포함할 수 있다.
또한, 본 명세서의 일 실시상태는 상기 막-전극 접합체의 제조방법으로 제조된 막-전극 접합체를 제공한다.
또한, 본 명세서의 일 실시상태는 막-전극 접합체를 포함하는 연료전지를 제공한다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석 되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
< 실시예 >
<실시예 1>
3M 825 이오노머를 물과 1-프로판올이 7:3 비율로 혼합된 용액에 첨가했다. 그 후, Tanaka사에서 판매하는 TEC 10F50E 촉매를 이오노머와 Carbon의 질량비율(이오노머/Carbon)을 0.9에 맞추어 첨가했다. 상온에서 1시간 동안 마그네틱 교반기로 교반한 다음, 상온에서 1시간동안 bath형 초음파 분산기로 분산을 한 후, 50℃ 이하의 상태로 감온하여 tip형 초음파 분산기를 이용하여 15분 동안 분산시켰다. 그리고, 70℃의 오븐에서 건조하여 이오노머가 분산되어 있는 고체상태의 촉매 입자를 얻었다.
이 입자를 1-프로판올과 글리세롤이 혼합된 용액에 첨가한 후, 상기와 같이 초음파 분산하여 전극 슬러리를 제조했다.
상기 준비된 전극 슬러리를 이용하여 clean bench 내 applicator의 수평판 위에서 닥터 블레이드를 이용하여 PTFE 필름 위에 전극 촉매층을 캐스팅한 후 35℃에서 30분 동안, 140℃에서 30분 동안 건조하여 최종적으로 전극을 제조하였다.
<실시예 2>
촉매로 Tanaka사에서 판매하는 TEC 10F50E-HT 촉매를 사용한 것을 제외하고 실시예 1과 동일하게 전극을 제조하였다.
<비교예1>
3M 825 이오노머를 1-프로판올과 글리세롤이 혼합된 용액에 첨가했다. 그 후, Tanaka사에서 판매하는 TEC 10F50E 촉매를 이오노머와 Carbon의 질량비율을 0.9에 맞추어 첨가했다. 그 후 상기 실시예 1과 동일하게 교반 및 초음파 분산을 통하여 전극 슬러리를 제조하고, 실시예 1과 동일하게 전극을 제조하였다.
<비교예 2>
촉매로 Tanaka사에서 판매하는 TEC 10F50E-HT 촉매를 사용한 것을 제외하고 비교예 1과 동일하게 전극을 제조하였다.
< 실험예 1>
실시예 1 및 비교예 1의 전극촉매층을 적용한 막전극 접합체의 평가를 진행하였다. 전해질막은 sPEEK계 탄화수소계 막을 사용하였으며, GDL(가스확산층)은 SGL사 10BB를 사용하였고, 두께는 380㎛ 내지 420㎛의 범위를 가지는 것을 사용했다. GDL의 압축률은 25%로 설정하였고 이를 유지시키기 위해 glass fiber sheet를 사용하였다. 막전극 접합체의 활성 면적은 25 cm2으로 제조하여 단위전지셀 평가를 진행했다. 애노드와 캐소드에 동일한 예의 전극을 사용하여 진행하였다.
평가 장비는 Scribner사의 PEMFC station장비를 사용했고, 셀의 온도는 70℃로 유지하고 가습조건을 RH 50%를 유지하여 성능 평가를 진행하였고, 그 결과를 하기 표 1 및 도 2 내지 6에 나타내었다.
OCV (V) 성능(@0.6V) (mA/cm2)
비교예 1 0.904 773
실시예 1 0.946 1,064
< 실험예 2>
실시예 2 및 비교예 2의 전극촉매층을 적용한 막전극 접합체의 평가를 진행하였다. 애노드에는 Tanaka사에서 판매하는 TEC 10V50E 촉매를 비교예 1의 제작방법으로 제조된 전극을 동일하게 사용하였으며, 캐소드에만 해당되는 예의 전극을 사용하였다. 이 외의 실험 방법은 실시예 1과 동일하게 실험하였다.
OCV (V) 성능(@0.6V) (mA/cm2)
비교예 2 0.946 1,123
실시예 2 0.972 1,227
상기 실험예 1은 10F50E 촉매를 애노드 및 캐소드에 모두 적용하였고, 상기 실험예 2는 10F50E-HT 촉매를 캐소드에만 적용하였고, 애노드에는 10V50E 촉매를 적용하였다.
상기 표 1, 표 2 및 하기 도 2 내지 6에서 알 수 있듯이, 본 명세서의 막-전극 접합체의 제조방법에 따라 제조된 전극의 경우, 종래 기술의 비교예 1 및 2에 비하여, 이오노머의 뭉침 현상이 감소하여, 연료전지의 개회로 전압(OCV, Open Circuit Voltage)이 향상되면서, 연료전지의 성능을 향상시켰음을 확인할 수 있다.

Claims (8)

  1. (a) 백금이 코팅된 탄소분말(Pt/C) 촉매, 이오노머(ionomer), 및 용매 A를 포함하는 촉매 슬러리 조성물을 준비하는 단계;
    (b) 상기 촉매 슬러리 조성물을 교반하는 단계;
    (c) 상기 단계 (b)를 거친 촉매 슬러리 조성물을 초음파(sonication) 처리하여 균일화(homogenizing)하는 단계;
    (d) 상기 단계 (c)를 거친 촉매 슬러리 조성물을 30℃ 내지 100 ℃의 온도에서 건조하는 단계;
    (e) 상기 단계 (d)를 거친 촉매 슬러리 조성물에 용매 B를 첨가하는 단계;
    (f) 상기 단계 (e)를 거친 촉매 슬러리 조성물을 초음파(sonication) 처리하여 재균일화(homogenizing)하는 단계; 및
    (g) 상기 단계 (f)를 거친 촉매 슬러리 조성물을 기재 상에 도포하고 건조시킨 다음, 상기 기재를 전해질막의 일면 또는 양면에 전사하여 촉매층을 형성하는 단계를 포함하는 막-전극 접합체(MEA)의 제조방법.
  2. 청구항 1에 있어서, 상기 단계 (a)의 이오노머는 불소계 고분자인 것인 막-전극 접합체의 제조방법.
  3. 청구항 1에 있어서, 상기 단계 (a)의 용매 A는 물, 메탄올, 에탄올, 부탄올, 1-프로판올 및 이소프로판올로 이루어진 군에서 선택된 하나 또는 둘 이상인 것인 막-전극 접합체의 제조방법.
  4. 청구항 1에 있어서, 상기 단계 (e)의 용매 B는 물, 메탄올, 에탄올, 부탄올, 1-프로판올, 이소프로판올, n-부틸 아세테이트, 에틸렌 글리콜 및 글리세롤로 이루어진 군에서 선택된 하나 또는 둘 이상인 것인 막-전극 접합체의 제조방법.
  5. 청구항 1에 있어서, 상기 단계 (g)의 도포는 스프레이 코팅법(spray coating), 스크린 프린팅법(screen printing), 테잎 캐스팅법(tape casting), 붓칠법(brushing), 슬롯 다이 캐스팅법(slot die casting), 바캐스팅법(bar-casting) 및 잉크젯팅(inkjetting) 으로 이루어진 군에서 선택되는 하나의 방법을 통해 이루어지는 것인 막-전극 접합체의 제조방법.
  6. 청구항 1에 있어서, 상기 단계 (g)의 촉매층의 두께는 5㎛ 내지 15 ㎛인 것인 막-전극 접합체의 제조방법.
  7. 청구항 1 내지 6 중 어느 한 항의 막-전극 접합체의 제조방법으로 제조된 막-전극 접합체.
  8. 청구항 7의 막-전극 접합체를 포함하는 연료전지.
PCT/KR2017/010319 2016-11-30 2017-09-20 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지 WO2018101591A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018544861A JP6819688B2 (ja) 2016-11-30 2017-09-20 膜−電極接合体の製造方法、これから製造された膜−電極接合体およびこれを含む燃料電池
EP17875980.9A EP3416221B1 (en) 2016-11-30 2017-09-20 Method for preparing membrane-electrode assembly
CN201780021158.9A CN109075348B (zh) 2016-11-30 2017-09-20 膜电极组件的制造方法、由其制造的膜电极组件和包括该膜电极组件的燃料电池
US16/082,845 US10749198B2 (en) 2016-11-30 2017-09-20 Method for preparing membrane-electrode assembly, membrane-electrode assembly prepared therefrom, and fuel cell comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0161995 2016-11-30
KR1020160161995A KR20180062091A (ko) 2016-11-30 2016-11-30 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지

Publications (1)

Publication Number Publication Date
WO2018101591A1 true WO2018101591A1 (ko) 2018-06-07

Family

ID=62242581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010319 WO2018101591A1 (ko) 2016-11-30 2017-09-20 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지

Country Status (6)

Country Link
US (1) US10749198B2 (ko)
EP (1) EP3416221B1 (ko)
JP (1) JP6819688B2 (ko)
KR (1) KR20180062091A (ko)
CN (1) CN109075348B (ko)
WO (1) WO2018101591A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276704A (zh) * 2018-12-04 2020-06-12 中国科学院大连化学物理研究所 一种燃料电池电极催化层浆液制备方法、催化剂浆液及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127603B2 (ja) * 2019-04-15 2022-08-30 トヨタ自動車株式会社 燃料電池用電極触媒層の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070056760A (ko) * 2005-11-30 2007-06-04 삼성에스디아이 주식회사 연료전지용 막-전극 어셈블리 및 이를 포함하는 연료전지시스템
KR20110114992A (ko) * 2010-04-14 2011-10-20 한국과학기술연구원 촉매 슬러리 조성물, 이를 사용한 연료전지용 막-전극 접합체의 제조방법 및 이로부터 제조된 연료전지용 막-전극 접합체
WO2012153915A2 (ko) * 2011-05-11 2012-11-15 한국화학연구원 고분자 전해질용 막-전극 어셈블리의 제조방법 및 그로부터 제조되는 막-전극 어셈블리
KR20130050154A (ko) * 2011-11-07 2013-05-15 (주) 디에이치홀딩스 연료전지용 막-전극 접합체 제조방법
KR20140131815A (ko) * 2013-05-06 2014-11-14 상명대학교 천안산학협력단 음이온 교환막 연료전지 전극용 촉매슬러리 조성물 및 이를 이용한 막 전극 접합체의 제조방법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536418A (ja) * 1991-03-13 1993-02-12 Fuji Electric Co Ltd 固体高分子電解質型燃料電池およびその製造方法
DE10037072A1 (de) * 2000-07-29 2002-02-14 Omg Ag & Co Kg Membran-Elektrodeneinheit für Polymerelektrolyt-Brennstoffzellen und Verfahren zu ihrer Herstellung
JP2003115299A (ja) * 2001-10-02 2003-04-18 Toyota Motor Corp 固体高分子型燃料電池
US20050200040A1 (en) * 2004-03-15 2005-09-15 Hara Hiroaki S. Method of preparing membrane electrode assemblies with aerogel supported catalyst
KR100647296B1 (ko) * 2004-11-16 2006-11-23 삼성에스디아이 주식회사 금속 촉매 및 이를 포함한 전극을 채용한 연료전지
KR100599813B1 (ko) * 2004-11-16 2006-07-12 삼성에스디아이 주식회사 연료전지용 막/전극 어셈블리 및 이를 포함하는 연료전지시스템
KR100612873B1 (ko) * 2004-11-20 2006-08-14 삼성에스디아이 주식회사 금속 촉매와 전극의 제조방법
JP2006260909A (ja) * 2005-03-16 2006-09-28 Nissan Motor Co Ltd 膜電極接合体およびこれを用いた固体高分子型燃料電池
JP2006310279A (ja) * 2005-03-28 2006-11-09 Toray Ind Inc 固体高分子型燃料電池用電極触媒層、それを用いた固体高分子型燃料電池用膜電極複合体、固体高分子型燃料電池、携帯機器および移動体
JP2006310121A (ja) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd 膜電極接合体の製造方法
TW200725974A (en) * 2005-09-16 2007-07-01 Sumitomo Chemical Co Polymer electrolyte, and polymer electrolyte membrane using same, membrane-electrode assembly and fuel cell
JP2007273161A (ja) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd 固体高分子形燃料電池用電極触媒粉末の製造方法
US7989513B2 (en) * 2006-12-20 2011-08-02 E.I. Du Pont De Nemours And Company Process for producing dispersions of highly fluorinated polymers
JP5109442B2 (ja) 2006-12-27 2012-12-26 トヨタ自動車株式会社 燃料電池用複合粉体とその製造方法
JP2010536548A (ja) * 2007-08-24 2010-12-02 ビーエーエスエフ ソシエタス・ヨーロピア 触媒、その製造方法、及びその使用方法
CN102119459B (zh) * 2008-06-04 2014-11-26 塞尔拉公司 碱性膜燃料电池及其补水装置和方法
KR101080783B1 (ko) * 2008-10-06 2011-11-07 현대자동차주식회사 고분자전해질 연료전지용 전극 및 막전극접합체의 제조 방법
JP2011096457A (ja) * 2009-10-28 2011-05-12 Toyota Motor Corp 燃料電池の製造方法
KR101267786B1 (ko) 2010-05-06 2013-05-31 주식회사 엘지화학 촉매층 형성용 파우더를 이용한 연료전지용 막전극 접합체, 이의 제조방법 및 이를 포함하는 연료전지
JP5510181B2 (ja) * 2010-08-18 2014-06-04 凸版印刷株式会社 電極触媒層の製造方法、及び固体高分子形燃料電池
US9391336B2 (en) * 2010-08-23 2016-07-12 Audi Ag Mixed-ionomer electrode
US9716285B2 (en) * 2011-01-19 2017-07-25 Audi Ag Porous nano-fiber mats to reinforce proton conducting membranes for PEM applications
US8940460B2 (en) * 2011-02-14 2015-01-27 Nissan North America, Inc. Catalyst ink preparation for fuel cell electrode fabrication
JP2013051106A (ja) * 2011-08-31 2013-03-14 Hitachi Ltd 膜電極接合体及び燃料電池
US20160064741A1 (en) * 2014-09-02 2016-03-03 GM Global Technology Operations LLC Electrode design with optimal ionomer content for polymer electrolyte membrane fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070056760A (ko) * 2005-11-30 2007-06-04 삼성에스디아이 주식회사 연료전지용 막-전극 어셈블리 및 이를 포함하는 연료전지시스템
KR20110114992A (ko) * 2010-04-14 2011-10-20 한국과학기술연구원 촉매 슬러리 조성물, 이를 사용한 연료전지용 막-전극 접합체의 제조방법 및 이로부터 제조된 연료전지용 막-전극 접합체
WO2012153915A2 (ko) * 2011-05-11 2012-11-15 한국화학연구원 고분자 전해질용 막-전극 어셈블리의 제조방법 및 그로부터 제조되는 막-전극 어셈블리
KR20130050154A (ko) * 2011-11-07 2013-05-15 (주) 디에이치홀딩스 연료전지용 막-전극 접합체 제조방법
KR20140131815A (ko) * 2013-05-06 2014-11-14 상명대학교 천안산학협력단 음이온 교환막 연료전지 전극용 촉매슬러리 조성물 및 이를 이용한 막 전극 접합체의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3416221A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276704A (zh) * 2018-12-04 2020-06-12 中国科学院大连化学物理研究所 一种燃料电池电极催化层浆液制备方法、催化剂浆液及其应用
CN111276704B (zh) * 2018-12-04 2021-02-02 中国科学院大连化学物理研究所 一种燃料电池电极催化层浆液制备方法、催化剂浆液及其应用

Also Published As

Publication number Publication date
EP3416221A1 (en) 2018-12-19
EP3416221B1 (en) 2022-12-21
JP6819688B2 (ja) 2021-01-27
CN109075348B (zh) 2022-04-12
CN109075348A (zh) 2018-12-21
JP2019509594A (ja) 2019-04-04
US10749198B2 (en) 2020-08-18
EP3416221A4 (en) 2019-03-20
US20190074533A1 (en) 2019-03-07
KR20180062091A (ko) 2018-06-08

Similar Documents

Publication Publication Date Title
WO2017052248A1 (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법, 그리고 이를 포함하는 연료 전지 시스템
WO2014104785A1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
WO2017175891A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
JP2012069536A (ja) 直接酸化型燃料電池用高分子電解質膜、その製造方法及びこれを含む直接酸化型燃料電池システム
WO2020138800A1 (ko) 촉매, 이의 제조 방법, 이를 포함하는 전극, 이를 포함하는 막-전극 어셈블리, 및 이를 포함하는 연료 전지
WO2020138799A1 (ko) 촉매, 그 제조방법, 그것을 포함하는 전극, 그것을 포함하는 막-전극 어셈블리, 및 그것을 포함하는 연료 전지
KR20110043908A (ko) 고분자 전해질 연료전지용 막전극접합체 제조 방법
WO2017116113A2 (ko) 전극과 전극의 제조방법, 그리고 이를 포함하는 연료전지
WO2022145771A1 (ko) 연료전지용 촉매층, 이의 제조 방법, 이를 포함하는 막-전극 접합체 및 연료전지
WO2018101591A1 (ko) 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지
WO2020263004A1 (ko) 연료전지용 촉매, 그 제조방법, 및 그것을 포함하는 막 전극 어셈블리
WO2017171328A1 (ko) 고분자 전해질 연료 전지용 나노구조 전극 및 이의 제조 방법
WO2016195313A1 (ko) 연료 전지용 캐소드 촉매층, 이의 제조 방법 및 이를 포함하는 연료 전지용 막-전극 어셈블리
WO2017175892A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
WO2022225246A1 (ko) 나노분산된 이오노머 바인더를 이용한 막-전극 접합체의 제조 방법 및 이에 의해 제조된 막-전극 접합체
WO2021137513A1 (ko) 고내구성을 갖는 연료전지용 전극, 그 제조방법, 및 그것을 포함하는 막-전극 어셈블리
WO2016117915A1 (ko) 고분자 전해질 막 및 그 제조방법
WO2019146959A1 (ko) 촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지
WO2021137514A1 (ko) 연료전지용 촉매, 그 제조방법, 및 그것을 포함하는 막-전극 어셈블리
KR20110110600A (ko) 연료전지용 막-전극 접합체의 제조방법
KR20130008850A (ko) 연료 전지용 전극, 및 이를 포함하는 막-전극 어셈블리 및 연료 전지 시스템
KR102720277B1 (ko) 연료전지 전극 형성용 조성물 및 이를 포함하는 연료전지 전극
WO2023101333A1 (ko) 연료전지용 촉매, 이의 제조방법 및 이를 포함하는 연료전지
CN101558519A (zh) 用于燃料电池的电催化剂层和用于燃料电池的电催化剂层的制备方法
WO2017175890A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544861

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017875980

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017875980

Country of ref document: EP

Effective date: 20180911

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE