WO2018099377A1 - 飞行器及其电子调速器的过压保护方法和装置 - Google Patents

飞行器及其电子调速器的过压保护方法和装置 Download PDF

Info

Publication number
WO2018099377A1
WO2018099377A1 PCT/CN2017/113395 CN2017113395W WO2018099377A1 WO 2018099377 A1 WO2018099377 A1 WO 2018099377A1 CN 2017113395 W CN2017113395 W CN 2017113395W WO 2018099377 A1 WO2018099377 A1 WO 2018099377A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electronic governor
motor
control
voltage threshold
Prior art date
Application number
PCT/CN2017/113395
Other languages
English (en)
French (fr)
Inventor
于江涛
Original Assignee
广州极飞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州极飞科技有限公司 filed Critical 广州极飞科技有限公司
Priority to US16/077,326 priority Critical patent/US10693411B2/en
Priority to KR1020187014953A priority patent/KR102099868B1/ko
Priority to JP2018530519A priority patent/JP6594548B2/ja
Priority to AU2017370239A priority patent/AU2017370239B2/en
Priority to CA3045354A priority patent/CA3045354C/en
Priority to RU2019118595A priority patent/RU2717541C1/ru
Priority to EP17876449.4A priority patent/EP3550720B1/en
Publication of WO2018099377A1 publication Critical patent/WO2018099377A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/1659Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 to indicate that the value is within or outside a predetermined range of values (window)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/008Testing of electric installations on transport means on air- or spacecraft, railway rolling stock or sea-going vessels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • H02H3/202Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage for dc systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2221/00Electric power distribution systems onboard aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the invention relates to the technical field of aircrafts, in particular to an overvoltage protection method for an electronic governor in an aircraft, an overvoltage protection device for an electronic governor in an aircraft, and an aircraft having the same.
  • the Applicant discovered and recognized that the aircraft experienced rapid deceleration during large flight operations. Since the motor has a certain inertia with the paddle, the motor will feedback energy to the electronic governor when the motor is decelerating, so that the bus voltage of the electronic governor rises, especially when the battery is fully charged, which may cause the electronic governor to appear. Overpressure condition. If the output of the electronic governor is disconnected due to overpressure during the flight of the aircraft, it may cause damage to the aircraft or even a bomber.
  • an object of the present invention is to provide an overvoltage protection method for an electronic governor in an aircraft, which can prevent damage or even burnout of the electronic governor device and prevent The voltage of the aircraft continues to rise during large flight.
  • an embodiment of the present invention provides an overvoltage protection method for an electronic governor in an aircraft, the electronic governor for controlling a motor, the method comprising the steps of: collecting the electronic speed control a DC bus voltage of the device; if the DC bus voltage is greater than a first voltage threshold and less than or equal to a second voltage threshold, adjusting the electronic tone according to a difference between the DC bus voltage and the first voltage threshold a control parameter of the speed controller to cause the electronic governor to control the motor according to the adjusted control parameter to suppress further rise of the DC bus voltage,
  • the second voltage threshold is greater than the first voltage threshold.
  • the DC bus voltage of the electronic governor is collected, and the DC bus voltage is judged if the DC bus voltage is greater than the first voltage threshold and less than the second
  • the voltage threshold adjusts the control parameters of the electronic governor according to the difference between the DC bus voltage and the first voltage threshold, so that the electronic governor controls the motor according to the adjusted control parameter to suppress the DC bus
  • the voltage further rises, and if the DC bus voltage is greater than the second voltage threshold, the electronic governor is stopped to output, so that the electronic governor controls the motor to stop running. Therefore, according to the embodiment of the present invention, two-stage voltage protection is adopted.
  • the control feedback parameter is adjusted to reduce the energy fed back from the motor, thereby suppressing further increase of the DC bus voltage and preventing the aircraft from being large.
  • the electronic governor is damaged due to overvoltage and the aircraft is damaged or even bombed.
  • control parameter comprises a given speed, a given axis current or a given axis voltage.
  • the adjusting the control parameter of the electronic governor according to the difference between the DC bus voltage and the first voltage threshold comprises: according to the DC bus voltage and the a difference between the first voltage threshold and a preset PI control algorithm to generate a superposition parameter; superimposing the superposition parameter and the control parameter according to a current speed direction of the motor, so that the electronic governor The rotational speed of the motor is controlled according to the superposed control parameters.
  • the superimposing the superimposing parameter and the control parameter according to a current speed direction of the motor including: if the current speed direction of the motor is forward rotation, The superposition parameter is superimposed to the control parameter; if the current speed direction of the motor is reversed, the negative superposition parameter is superimposed to the control parameter.
  • the method further includes: if the DC bus voltage is greater than the second voltage threshold, controlling the electronic governor to stop outputting, so that the electronic governor controls the motor to stop operating .
  • an overvoltage protection device for an electronic governor in an aircraft, the electronic governor for controlling a motor, the device comprising: a voltage acquisition module for collecting a DC bus voltage of the electronic governor; a control module, configured to: when the DC bus voltage is greater than a first voltage threshold and less than a second voltage threshold, according to the DC bus voltage and the first voltage threshold The difference adjusts the control parameters of the electronic governor to cause the electronic governor to control the motor according to the adjusted control parameter to suppress further rise of the DC bus voltage.
  • the DC bus voltage of the electronic governor is collected by the voltage collecting module, and the control module determines the DC bus voltage, and the DC bus voltage is greater than the first
  • the control parameter of the electronic governor is adjusted according to the difference between the DC bus voltage and the first voltage threshold, so that the electronic governor performs the motor according to the adjusted control parameter.
  • Control to suppress further rise of the DC bus voltage and control the electronic governor to stop when the DC bus voltage is greater than the second voltage threshold Output so that the electronic governor controls the motor to stop running. Therefore, according to the embodiment of the present invention, two-stage voltage protection is adopted.
  • the control feedback parameter is adjusted to reduce the energy fed back from the motor, thereby suppressing further increase of the DC bus voltage and preventing the aircraft from being large.
  • the electronic governor is damaged due to overvoltage and the aircraft is damaged or even bombed.
  • control parameter comprises a given speed, a given axis current or a given axis voltage.
  • control module is further configured to generate a superposition parameter according to a difference between the DC bus voltage and the first voltage threshold and a preset PI control algorithm, and according to the motor The current speed direction superimposes the superposition parameter and the control parameter, so that the electronic governor controls the rotation speed of the motor according to the superposed control parameter.
  • the control module if the current speed direction of the motor is forward rotation, the control module superimposes the superposition parameter to the control parameter; if the current speed direction of the motor is reversed, The control module then superimposes the negative superposition parameters onto the control parameters.
  • control module is further configured to: when the DC bus voltage is greater than the second voltage threshold, control the electronic governor to stop outputting, so that the electronic governor controls The motor stops running
  • an aircraft according to another embodiment of the present invention includes an overvoltage protection device for an electronic governor in the aircraft.
  • the overvoltage protection device of the above embodiment can prevent the electronic governor from being damaged or even exploding due to an overvoltage disconnection output when the aircraft is in a large motion flight.
  • FIG. 1 is a flow chart of an overvoltage protection method for an electronic governor in an aircraft according to an embodiment of the present invention
  • FIG. 2 is a control block diagram of an overvoltage protection method for an electronic governor in an aircraft according to an embodiment of the present invention
  • FIG. 3 is a control block diagram of an overvoltage protection method for an electronic governor in an aircraft according to another embodiment of the present invention.
  • FIG. 4 is a control block diagram of an overvoltage protection method for an electronic governor in an aircraft according to still another embodiment of the present invention.
  • FIG. 5 is a block schematic diagram of an overvoltage protection device for an electronic governor in an aircraft in accordance with an embodiment of the present invention.
  • FIG. 1 is a flow chart of an overvoltage protection method for an electronic governor in an aircraft according to an embodiment of the present invention.
  • the electronic governor is used to control the motor, and the electronic governor can include devices such as capacitors and MOSFETs.
  • the overvoltage protection method of the embodiment of the present invention includes the following steps:
  • S1 Collect the DC bus voltage of the electronic governor.
  • the electronic governor may comprise a full-bridge inverter circuit composed of six MOSFETs, the full-bridge inverter circuit may comprise a three-phase bridge arm, each phase bridge arm comprises two MOSFETs, and the DC bus voltage may be applied to each phase bridge The voltage across the two MOSFETs in the arm.
  • the capacitors, MOSFETs, etc. in the electronic governor have a withstand voltage limit. If the DC bus voltage is greater than the second voltage threshold, the voltage applied to the capacitor, MOSFET, etc. may exceed its own withstand voltage. Limits, causing damage or even burning.
  • the overvoltage protection function of the electronic governor can be enabled by software, and the DC bus voltage of the electronic governor can be collected in real time after the overvoltage protection function is enabled.
  • the electronic governor when the DC bus voltage is less than the first voltage threshold, it is judged that the electronic governor does not have an overvoltage and does not perform overvoltage protection, and the electronic governor can control the motor according to preset control parameters, thereby The flight has no effect.
  • the motor When the DC bus voltage is greater than the first voltage threshold and less than or equal to the second voltage threshold, it is determined that the rise of the DC bus voltage is caused by the flight of the aircraft, that is, when the aircraft performs a large motion command during the flight, the motor may appear. In the case of rapid acceleration and rapid deceleration, the motor will be fed back to the electronic governor due to the inertia of the motor with the paddle during deceleration, so that the DC bus voltage will rise. The faster the deceleration, the faster the energy feedback, which may cause the DC bus voltage to exceed the first voltage threshold.
  • the DC bus voltage When the DC bus voltage is greater than the second voltage threshold, it is judged that the overvoltage of the electronic governor is caused by an abnormal situation, that is, when the electronic governor has an abnormal condition such as an overvoltage of the access voltage, the DC bus voltage may exceed the first Two voltage thresholds, at which time the electronic governor stops output to control the motor to stop running, and can also alarm accordingly.
  • two-stage voltage protection is employed in accordance with an embodiment of the present invention, by introducing an overvoltage condition that may occur during flight.
  • Effective control makes the electronic governor operate within a safe voltage range, which can reduce the damage of the electronic components caused by the overvoltage of the electronic governor, thus ensuring the safety of the flight process more safely.
  • control parameters include a given speed, a given axis current, or a given axis voltage. That is to say, the overvoltage protection of the DC bus voltage can be performed by limiting the given speed, the given current of the AC axis, or the given voltage of the AC axis.
  • adjusting the control parameters of the electronic governor according to the difference between the DC bus voltage and the first voltage threshold includes: determining a difference between the DC bus voltage and the first voltage threshold And the preset PI control algorithm generates a superposition parameter; superimposes the superposition parameter and the control parameter according to the current speed direction of the motor, so that the electronic governor controls the rotation speed of the motor according to the superposed control parameter.
  • the superposition parameter and the control parameter are superimposed according to the current speed direction of the motor, including: if the current speed direction of the motor is forward rotation, superimposing the superposition parameter to the control parameter; The current velocity direction is inverted, and the negative superposition parameters are superimposed on the control parameters.
  • the overvoltage protection method for limiting the given speed, the given axis current, or the given axis voltage is described in the following with reference to FIG. 2-4.
  • the superimposed parameter is a superposition speed
  • the difference between the DC bus voltage and the first voltage threshold is used for the electronic governor.
  • the adjusting of the control parameter comprises: generating a superposition speed according to a difference between the DC bus voltage and the first voltage threshold and a first preset PI control algorithm; and superimposing the superposition speed and the given speed Sref according to the current speed direction of the motor, In order to make the electronic governor control the rotational speed of the motor according to the given speed after the superposition.
  • the first preset PI control algorithm used may be as follows:
  • V BUS is the DC bus voltage
  • V SET1 is the first voltage threshold
  • K sp is the corresponding proportional control parameter
  • K sI is the corresponding integral control parameter
  • the superposition parameters such as the superposition speed may be subjected to clipping processing, that is, Out ⁇ [0, Spd Max ], and if the superimposition speed is greater than the upper limit value Spd Max of the first limit range, the superposition will be superimposed.
  • the speed limit is Spd Max . If the stack speed is less than the lower limit 0 of the first limit range, the stack speed is limited to 0.
  • superimposing the superimposition speed and the given speed Sref according to the current speed direction of the motor includes: if the current speed direction of the motor is forward rotation, that is, the given speed Sref>0, superimposing the superposition speed to a given speed Sref; If the current speed direction of the motor is reversed, that is, the given speed Sref ⁇ 0, the negative superimposition speed is superimposed to the given speed Sref.
  • the clipping output of the limiting algorithm Out ⁇ [0, Spd Max ] can be superimposed.
  • the speed is limited to 0, so there is no impact on normal flight.
  • the motor When the aircraft performs a large motion command during the flight, the motor will have rapid acceleration and rapid deceleration. During the rapid deceleration, the motor will feed back the energy to the electronic governor due to the inertia of the motor with the paddle, so that the DC bus of the electronic governor The voltage rises. When the deceleration is too fast, the energy feedback is too fast, so that the DC bus voltage exceeds the first voltage threshold.
  • Out ⁇ 1 is superimposed on the given speed Sref; when the speed direction of the motor is reversed, the superposition speed Out ⁇ (-1) is superimposed on the given speed Sref.
  • the given speed Sref is adjusted to a given speed after superimposing the superposition speed, and the electronic governor will also control the motor according to the superimposed given speed, namely:
  • the three-phase currents Ia, Ib, and Ic of the motor and the three-phase voltages Va, Vb, and Vc are collected by the sampling module; the first Clarke coordinate conversion unit performs Clarke coordinate conversion on the three-phase voltages Va, Vb, and Vc to obtain a two-phase voltage V ⁇ , V ⁇ ; the second Clarke coordinate conversion unit performs Clarke coordinate conversion on the three-phase currents Ia, Ib, and Ic to obtain two-phase voltages I ⁇ , I ⁇ ; and the position estimation unit such as the velocity flux observer according to the two-phase voltages V ⁇ , V ⁇ , and the two-phase voltage I ⁇ , I ⁇ estimate the position and velocity of the rotor of the motor to obtain the estimated angle ⁇ of the rotor and the estimated speed S of the rotor; the park coordinate conversion unit performs park coordinate conversion on the two-phase currents I ⁇ , I ⁇ according to the estimated angle ⁇ of the rotor to obtain a straight axis. Current Id and cross-axis current Iq.
  • the given speed Sref is superimposed with the superposition speed; the speed correction module performs speed correction on the estimated speed S of the rotor according to the superimposed given speed to obtain the cross-axis given current Iqref; the first current correcting unit gives the current Idref according to the direct axis Current correction is performed on the direct axis current Id to obtain a direct axis voltage Vd; the second current correcting unit performs current correction on the quadrature axis current Iq according to the paraxial given current Iqref to obtain a quadrature axis voltage Vq; the space vector modulation unit is based on the estimated angle ⁇
  • the direct axis voltage Vd and the quadrature axis voltage Vq are spatially vector modulated to generate a drive signal; the drive unit drives the motor according to the drive signal.
  • the rapid decrease of the given speed Sref can be suppressed, thereby reducing the feedback energy due to the rapid deceleration of the motor with the paddle, suppressing
  • the rise of the DC bus voltage limits the DC bus voltage below the first preset voltage, ensuring that the electronic governor performs rapid acceleration and deceleration in the voltage safe range to prevent the failure of the electronic device due to the overvoltage of the bus voltage.
  • the DC bus voltage exceeds the second voltage threshold, and the electronic governor stops outputting and performs a corresponding overvoltage alarm.
  • Adjusting the control parameters of the speed controller includes: generating an overlay according to a difference between the DC bus voltage and the first voltage threshold and a second preset PI control algorithm The current is superimposed on the superimposed current and the given current Iqref according to the direction of the given current of the intersecting axis, so that the electronic governor controls the rotational speed of the motor according to the superimposed current of the intersecting axis.
  • the second preset PI control algorithm used may be as follows:
  • V BUS is the DC bus voltage
  • V SET1 is the first voltage threshold
  • K Ip is the corresponding proportional control parameter
  • K II is the corresponding integral control parameter.
  • the superposition parameters such as the superimposed current may be subjected to clipping processing, that is, Out ⁇ [0, Iq Max ], and if the superimposed current is greater than the upper limit value Iq Max of the second clipping range, the superposition will be superimposed.
  • the current limit is Iq Max , and if the superimposed current is less than the lower limit 0 of the second limit range, the superimposed current is limited to zero.
  • superimposing the superimposed current and the given current of the cross-axis according to the direction of the given current of the intersecting axis including: if the current speed direction of the motor is forward rotation, superimposing the superimposed current on the cross-axis given current Iqref; if the motor The current speed direction is reversed, and the negative superimposed current is superimposed to the cross-axis given current Iqref.
  • the clipping output of the limiting algorithm Out ⁇ [0, Spd Max ] can be superimposed.
  • the current is limited to zero so that it has no effect on normal flight.
  • the set axis current Iqref is adjusted to the set axis current after superimposing the superimposed current, and the electronic governor will also control the motor according to the superimposed axis of the given current.
  • the specific control flow and the superposition according to the superposition The control of the given speed after the speed is basically the same, the difference is that the speed correction module performs speed correction on the estimated speed S of the rotor according to the given speed Sref to obtain the given current Iqref of the intersecting axis; the given current Iqref of the intersecting axis and the superimposed current phase Superimposing; the second current correcting unit performs current correction on the cross-axis current Iq according to the superimposed cross-axis given current to obtain the cross-axis voltage Vq.
  • the DC bus voltage exceeds the second voltage threshold, and the electronic governor stops outputting and performs a corresponding overvoltage alarm.
  • Adjusting the control parameters of the speed controller includes: generating a superimposed voltage according to a difference between the DC bus voltage and the first voltage threshold and a third preset PI control algorithm; and superimposing the voltage and the cross axis according to the direction of the given voltage of the intersecting axis Constant voltage is superimposed to make the electronic governor The speed of the motor is controlled according to the given voltage of the superimposed axis.
  • the third preset PI control algorithm used may be as follows:
  • V BUS is the DC bus voltage
  • V SET1 is the first voltage threshold
  • K Vp is the corresponding proportional control parameter
  • K VI is the corresponding integral control parameter.
  • the superposition parameters such as the superimposed voltage may be subjected to clipping processing, that is, Out ⁇ [0, Vq Max ], and if the superimposed voltage is greater than the upper limit value Vq Max of the second clipping range, the superposition will be superimposed.
  • the voltage limit is Vq Max , and if the superimposed voltage is less than the lower limit 0 of the second limit range, the superimposed voltage is limited to zero.
  • superimposing the superimposed voltage and the given voltage of the cross-axis according to the direction of the given voltage of the intersecting axis including: if the current speed direction of the motor is forward rotation, superimposing the superimposed voltage on the given voltage of the cross-axis; if the motor When the current speed direction is reversed, the negative superimposed voltage is superimposed to the cross-axis given voltage.
  • the overvoltage protection function is enabled by software
  • the limiting output through the limiting algorithm Out ⁇ [0, Vq Max ] can be superimposed.
  • the voltage is limited to zero so that it has no effect on normal flight.
  • the given axis voltage Vqref is adjusted to the given axis voltage after superimposing the superimposed voltage, and the electronic governor will also control the motor according to the superimposed cross-axis given voltage, and the specific control flow and the superposition according to The control of the given speed after the speed is basically the same, the difference is that the given axis voltage Vqref is superimposed with the superimposed voltage; the space vector modulation unit performs space vector modulation on the straight-axis voltage Vd and the superimposed cross-axis voltage according to the estimated angle ⁇ . To generate a drive signal.
  • the DC bus voltage exceeds the second voltage threshold, and the electronic governor stops outputting and performs a corresponding overvoltage alarm.
  • the DC bus voltage of the electronic governor is collected, and the DC bus voltage is judged if the DC bus voltage is greater than the first voltage threshold and Less than or equal to the second voltage threshold, the control parameter of the electronic governor is adjusted according to the difference between the DC bus voltage and the first voltage threshold, so that the electronic governor controls the motor according to the adjusted control parameter.
  • the electronic governor is stopped to output, so that the electronic governor controls the motor to stop running.
  • two-stage voltage protection is employed, when the DC bus is electrically
  • the control feedback parameter is adjusted to reduce the energy fed back from the motor, thereby suppressing the further increase of the DC bus voltage, and preventing the electronic governor from being damaged due to the overvoltage output when the aircraft is in a large motion flight.
  • the bomber when the DC bus voltage exceeds the second voltage threshold due to other reasons, the electronic governor stops outputting, preventing the electronic governor device from being damaged or even burning.
  • FIG. 5 is a block schematic diagram of an overvoltage protection device for an electronic governor in an aircraft in accordance with an embodiment of the present invention.
  • the electronic governor is used to control the motor, and the electronic governor can include devices such as capacitors and MOSFETs.
  • the overvoltage protection device of the embodiment of the present invention includes a voltage acquisition module 10 and a control module 20.
  • the voltage collecting module 10 is configured to collect the DC bus voltage of the electronic governor.
  • the electronic governor may include a full-bridge inverter circuit composed of six MOSFETs, the full-bridge inverter circuit may include three-phase bridge arms, each phase bridge arm includes two MOSFETs, and the DC bus voltage may be applied to The voltage across the two MOSFETs in each phase of the bridge arm.
  • the control module 20 is configured to determine the DC bus voltage, and when the DC bus voltage is greater than the first voltage threshold and less than or equal to the second voltage threshold, the electronic speed is adjusted according to the difference between the DC bus voltage and the first voltage threshold.
  • the control parameters of the device are adjusted so that the electronic governor controls the motor according to the adjusted control parameters to suppress further rise of the DC bus voltage.
  • the control module 20 is further configured to control the electronic governor to stop outputting when the DC bus voltage is greater than the second voltage threshold, so that the electronic governor controls the motor to stop running.
  • the capacitors, MOSFETs, etc. in the electronic governor have a withstand voltage limit. If the DC bus voltage is greater than the second voltage threshold, the voltage applied to the capacitor, MOSFET, etc. may exceed its own withstand voltage. Limits, causing damage or even burning.
  • control module 20 can enable the overvoltage protection function of the electronic governor through software, and after the overvoltage protection function is enabled, the voltage collecting module 10 can collect the DC bus of the electronic governor in real time. Voltage.
  • the control module 20 when the DC bus voltage is less than the first voltage threshold, it is determined that the electronic governor does not have an overvoltage at this time, the control module 20 does not perform overvoltage protection, and the electronic governor can control the motor according to preset control parameters. Thus there is no impact on normal flight.
  • the motor When the DC bus voltage is greater than the first voltage threshold and less than or equal to the second voltage threshold, it is determined that the rise of the DC bus voltage is caused by the flight of the aircraft, that is, when the aircraft performs a large motion command during the flight, the motor may appear. In the case of rapid acceleration and rapid deceleration, the motor will be fed back to the electronic governor due to the inertia of the motor with the paddle during deceleration, so that the DC bus voltage will rise. The faster the deceleration, the faster the energy feedback, which may cause the DC bus voltage to exceed the first voltage threshold.
  • control module 20 reduces the rate of change of the motor speed by adjusting the control parameters, reduces the energy fed back by the motor, thereby suppressing the further increase of the DC bus voltage, and ensuring that the electronic governor performs rapid acceleration and deceleration in the voltage safety range. Prevents the failure of the electronics due to overvoltage of the DC bus voltage.
  • the control module 20 controls the electronic governor to stop output to control the motor to stop running, and may also perform corresponding Ground alarm.
  • the two-stage voltage protection is adopted, and the electronic governor can be operated within the safe voltage range by effectively controlling the over-voltage condition that may occur during the flight, which can be reduced due to the electronic governor. Damage to the electronic components caused by the pressure, thus ensuring the safety of the flight process more safely.
  • control parameters include a given speed, a given axis current, or a given axis voltage. That is to say, the control module 20 can perform overvoltage protection of the DC bus voltage by limiting the given speed, the given current of the AC axis, or the given voltage of the AC axis.
  • control module 20 is further configured to generate a superposition parameter according to a difference between the DC bus voltage and the first voltage threshold and a preset PI control algorithm, and according to a current speed direction of the motor
  • the superimposed parameters are superimposed with the control parameters so that the electronic governor controls the rotational speed of the motor according to the superimposed control parameters.
  • the control module 20 if the current speed direction of the motor is forward rotation, the control module 20 superimposes the superposition parameter to the control parameter; if the current speed direction of the motor is reversed, the control module 20 will be negative.
  • the overlay parameters are superimposed on the control parameters.
  • the overvoltage protection device for limiting the given speed, the given axis current, or the given axis voltage is described in the following with reference to FIG. 2-4.
  • the control module 20 when the control parameter is a given speed, the superimposed parameter is a superposition speed, and the control module 20 is further configured to: according to the difference between the DC bus voltage and the first voltage threshold The value and the first preset PI control algorithm generate a superposition speed, and superimpose the superposition speed and the given speed according to the current speed direction of the motor, so that the electronic governor controls the rotation speed of the motor according to the superimposed given speed. .
  • the first preset PI control algorithm used may be as follows:
  • V BUS is the DC bus voltage
  • V SET1 is the first voltage threshold
  • K sp is the corresponding proportional control parameter
  • K sI is the corresponding integral control parameter
  • control module 20 may also perform a limiting process on the superposition parameters, such as the superposition speed, that is, Out ⁇ [0, Spd Max ], and if the superimposition speed is greater than the upper limit value Spd Max of the first limiting range, The stacking speed is limited to Spd Max , and if the stacking speed is less than the lower limit value 0 of the first limiter range, the stacking speed is limited to zero.
  • the superposition speed that is, Out ⁇ [0, Spd Max ]
  • the control module 20 superimposes the superposition speed to a given speed; if the current speed direction of the motor is reversed, that is, the given speed Sref ⁇ 0, the control module 20 superimposes the negative superposition speed to a given speed.
  • the control module 20 passes the limiting algorithm of the limiting module 202 Out ⁇ [0, Spd Max The clipping output limits the stacking speed to zero, so there is no impact on normal flight.
  • the motor When the aircraft performs a large motion command during the flight, the motor will have rapid acceleration and rapid deceleration. During the rapid deceleration, the motor will feed back the energy to the electronic governor due to the inertia of the motor with the paddle, so that the DC bus of the electronic governor The voltage rises. When the deceleration is too fast, the energy feedback is too fast, so that the DC bus voltage exceeds the first voltage threshold.
  • the superimposition speed Out ⁇ 1 is superimposed on the given speed Sref; when the speed direction of the motor is reversed, the superimposition speed Out ⁇ (-1) is superimposed on the given speed Sref.
  • the given speed Sref is adjusted to a given speed after superimposing the superposition speed, and the electronic governor will also control the motor according to the superimposed given speed, namely:
  • the three-phase currents Ia, Ib, and Ic of the motor and the three-phase voltages Va, Vb, and Vc are collected by the sampling module 301; the first Clarke coordinate conversion unit 302 performs a Clark coordinate conversion on the three-phase voltages Va, Vb, and Vc to obtain a two-phase voltage.
  • the second clarke coordinate conversion unit 303 performs Clarke coordinate conversion on the three-phase currents Ia, Ib, and Ic to obtain two-phase voltages I ⁇ , I ⁇ ; and the position estimating unit 304, for example, the velocity flux observer, according to the two-phase voltages V ⁇ , V ⁇ And the two-phase voltages I ⁇ , I ⁇ estimate the position and velocity of the rotor of the motor to obtain the estimated angle ⁇ of the rotor and the estimated speed S of the rotor; the park coordinate conversion unit 305 performs the park coordinate on the two-phase currents I ⁇ , I ⁇ according to the estimated angle ⁇ of the rotor. Convert to obtain the direct axis current Id and the quadrature axis current Iq.
  • the given speed Sref is superimposed with the superposition speed; the speed correction module 306 performs speed correction on the estimated speed S of the rotor according to the superimposed given speed to obtain the cross-axis given current Iqref; the first current correcting unit 307 is given according to the straight axis The current Idref performs current correction on the direct axis current Id to obtain the direct axis voltage Vd; the second current correcting unit 308 performs current correction on the quadrature axis current Iq according to the intersecting axis given current Iqref to obtain the quadrature axis voltage Vq; the space vector modulation unit 309
  • the straight-axis voltage Vd and the quadrature axis voltage Vq are spatially vector-modulated according to the estimated angle ⁇ to generate a drive signal; the drive unit 310 drives the motor M according to the drive signal.
  • the rapid decrease of the given speed Sref can be suppressed, thereby reducing the feedback energy due to the rapid deceleration of the motor with the paddle, suppressing
  • the rise of the DC bus voltage limits the DC bus voltage below the first preset voltage, ensuring that the electronic governor performs rapid acceleration and deceleration in the voltage safe range to prevent the failure of the electronic device due to the overvoltage of the bus voltage.
  • control module 20 controls the electronic governor to stop outputting and performs a corresponding overvoltage alarm.
  • the superimposed reference The number is a superimposed current
  • the control module 20 is further configured to generate a superimposed current according to a difference between the DC bus voltage and the first voltage threshold and a second preset PI control algorithm, and superimpose the current according to the direction of the given current of the intersecting axis
  • the superimposed processing is performed with the given current of the intersecting axis, so that the electronic governor controls the rotational speed of the motor according to the given current of the superimposed intersecting axis.
  • the second preset PI control algorithm used may be as follows:
  • V BUS is the DC bus voltage
  • V SET1 is the first voltage threshold
  • K Ip is the corresponding proportional control parameter
  • K II is the corresponding integral control parameter.
  • control module 20 may also perform a limiting process on the superimposed parameters, such as the superimposed current, that is, Out ⁇ [0, Iq Max ], if the superimposed current is greater than the upper limit value Iq Max of the second limiting range, The superimposed current is limited to Iq Max , and if the superimposed current is less than the lower limit 0 of the second limit range, the superimposed current is limited to zero.
  • the superimposed current such as the superimposed current
  • control module 20 superimposes the superimposed current on the cross-axis given current; if the current speed direction of the motor is reversed, the control module 20 superimposes the negative superimposed current on the cross-axis to Constant current.
  • the control module 20 passes the second limiting module 205 to limit the algorithm Out ⁇ [0, Spd. Max 's limiting output limits the superimposed current to zero, so there is no impact on normal flight.
  • the axis is given current Iqref, that is, when the speed direction of the motor is forward rotation, the superimposed current Out ⁇ 1 is superimposed on the cross-axis given current Iqref; when the current speed direction of the motor is reversed, the superimposed current Out ⁇ ( -1) Superimposed on the given current Iqref of the cross-axis.
  • the set axis current Iqref is adjusted to the set axis current after superimposing the superimposed current, and the electronic governor will also control the motor according to the superimposed axis of the given current, and the specific control of the control module 20
  • the flow is basically the same as the control according to the given speed after the superimposition speed, except that the speed correction module 306 performs speed correction on the estimated speed S of the rotor according to the given speed Sref to obtain the given current Iqref of the intersecting axis;
  • the Iqref is superimposed with the superimposed current;
  • the second current correcting unit 308 performs current correction on the cross-axis current Iq according to the superimposed orthogonal axis given current to obtain the cross-axis voltage Vq.
  • control module 20 controls the electronic governor to stop outputting and performs a corresponding overvoltage alarm.
  • the control module 20 when the control parameter is a given voltage of the cross-axis, the superimposed parameter is a superimposed voltage, and the control module 20 is further configured to: according to the DC bus voltage and the first voltage threshold Difference between The third preset PI control algorithm generates a superimposed voltage, and superimposes the superimposed voltage and the given voltage of the cross-axis according to the direction of the given voltage of the intersecting axis, so that the electronic governor gives the voltage to the motor according to the superimposed cross-axis. The speed is controlled.
  • the third preset PI control algorithm used may be as follows:
  • V BUS is the DC bus voltage
  • V SET1 is the first voltage threshold
  • K Vp is the corresponding proportional control parameter
  • K VI is the corresponding integral control parameter.
  • control module 20 may also perform a limiting process on the superimposed parameters, such as the superimposed voltage, that is, Out ⁇ [0, Vq Max ], and if the superimposed voltage is greater than the upper limit value Vq Max of the second limiting range, The superimposed voltage is limited to Vq Max , and if the superimposed voltage is less than the lower limit value 0 of the second limit range, the superimposed voltage is limited to zero.
  • the superimposed voltage such as the superimposed voltage, that is, Out ⁇ [0, Vq Max ]
  • control module 20 superimposes the superimposed voltage on the cross-axis given voltage; if the current speed direction of the motor is reversed, the control module 20 superimposes the negative superimposed voltage on the cross-axis to Constant voltage.
  • the control module 20 passes the third limiting module 208 to limit the algorithm Out ⁇ [0, Vq Max 's limiting output limits the superimposed voltage to zero, so there is no impact on normal flight.
  • the given axis voltage Vqref is adjusted to the given axis voltage after superimposing the superimposed voltage, and the electronic governor will also control the motor according to the superimposed cross-axis given voltage, and the control module 20 has a specific control flow.
  • the control is basically the same as the control according to the given speed after the superimposition speed, except that the cross-axis given voltage Vqref is superimposed with the superimposed voltage; the space vector modulation unit 309 pairs the straight-axis voltage Vd and the superimposed cross-axis voltage according to the estimated angle ⁇ . Space vector modulation is performed to generate a drive signal.
  • control module 20 controls the electronic governor to stop outputting and perform a corresponding overvoltage alarm.
  • the DC bus voltage of the electronic governor is collected by the voltage collecting module, and the control module determines the DC bus voltage, and the DC bus voltage is When the value is greater than the first voltage threshold and less than or equal to the second voltage threshold, the control parameter of the electronic governor is adjusted according to the difference between the DC bus voltage and the first voltage threshold, so that the electronic governor is adjusted according to the adjusted Control parameters are applied to the motor Controlling to suppress further rise of the DC bus voltage, and controlling the electronic governor to stop output when the DC bus voltage is greater than the second voltage threshold, so that the electronic governor controls the motor to stop running. Therefore, according to the embodiment of the present invention, two-stage voltage protection is adopted.
  • the control feedback parameter is adjusted to reduce the energy fed back from the motor, thereby suppressing further increase of the DC bus voltage and preventing the aircraft from being large.
  • the electronic governor will damage the aircraft due to over-voltage disconnection and even destroy the aircraft.
  • the DC bus voltage exceeds the second voltage threshold due to other reasons, the electronic governor stops outputting to prevent damage to the electronic governor device. Even burned.
  • an embodiment of the present invention further provides an aircraft, including the overvoltage protection device of the electronic governor in the aircraft of the above embodiment.
  • the overvoltage protection device of the above embodiment can adopt two-stage voltage protection, thereby preventing damage or even burning of the electronic governor device, and preventing the electronic governor from being used during flight of the aircraft. Overvoltage disconnects the output and causes damage to the aircraft or even a bomber.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Direct Current Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种飞行器及其电子调速器的过压保护方法和装置,电子调速器用于控制电机,方法包括以下步骤:采集电子调速器的直流母线电压(S1);如果直流母线电压大于第一电压阈值且小于或等于第二电压阈值,则根据直流母线电压与第一电压阈值之间的差值对电子调速器的控制参数进行调整,以使电子调速器根据调整后的控制参数对电机进行控制,以抑制直流母线电压的进一步上升(S2),其中,第二电压阈值大于第一电压阈值;如果直流母线电压大于第二电压阈值,则控制电子调速器停止输出,以使电子调速器控制电机停止运行(S3),由此,抑制由电机和桨反馈的能量,抑制直流母线电压的持续增高,使母线电压限制在安全的范围内,防止电子器件损坏。

Description

飞行器及其电子调速器的过压保护方法和装置
相关申请的交叉引用
本申请基于申请号为201611093576.2,申请日为2016年12月1日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及飞行器技术领域,特别涉及一种飞行器中电子调速器的过压保护方法、一种飞行器中电子调速器的过压保护装置、一种具有该装置的飞行器。
背景技术
相关的飞行器例如无人机中,电子调速器与电机作为飞行器的动力系统,其稳定性是飞行器正常飞行的保障。在相关技术中,飞行器上的电子调速器大多只在直流母线电压超过预设值后断开输出,从而可能会在飞行器大动作飞行时断开电子调速器输出,进而导致飞行器损坏。
因此,相关技术需要进行改进。
发明内容
首先,申请人发现并认识到,飞行器在大动作飞行过程中,电机会出现快速减速的情况。由于电机带桨有一定的惯性,在电机减速时会反馈能量给电子调速器,使电子调速器的母线电压上升,特别是在电池满电的情况下,有可能导致电子调速器出现过压的情况。在飞行器大动作飞行时如果因过压而使电子调速器输出断开,可能会导致飞行器损坏甚至炸机。
为至少在一定程度上解决相关技术中的技术问题之一,本发明的一个目的在于提出一种飞行器中电子调速器的过压保护方法,能够防止电子调速器的器件损坏甚至烧毁,防止飞行器大动作飞行时电压持续升高。
本发明的另一个目的在于提出一种飞行器中电子调速器的过压保护装置。本发明的又一个目的在于提出一种飞行器。
为达到上述目的,本发明一方面实施例提出了一种飞行器中电子调速器的过压保护方法,所述电子调速器用于控制电机,所述方法包括以下步骤:采集所述电子调速器的直流母线电压;如果所述直流母线电压大于第一电压阈值且小于或等于第二电压阈值,则根据所述直流母线电压与所述第一电压阈值之间的差值调整所述电子调速器的控制参数,以使所述电子调速器根据调整后的控制参数对所述电机进行控制,以抑制所述直流母线电压的进一步上升, 其中,所述第二电压阈值大于所述第一电压阈值。
根据本发明实施例提出的飞行器中电子调速器的过压保护方法,采集电子调速器的直流母线电压,并对直流母线电压进行判断,如果直流母线电压大于第一电压阈值且小于第二电压阈值,则根据直流母线电压与第一电压阈值之间的差值对电子调速器的控制参数进行调整,以使电子调速器根据调整后的控制参数对电机进行控制,以抑制直流母线电压的进一步上升,如果直流母线电压大于第二电压阈值,则控制电子调速器停止输出,以使电子调速器控制电机停止运行。由此,根据本发明实施例采用两级电压保护,当直流母线电压超过第一电压阈值时,通过调节控制参数以减少从电机反馈的能量,从而抑制直流母线电压的进一步升高,防止飞行器大动作飞行时电子调速器因过压断开输出而导致飞行器损坏甚至炸机。
根据本发明的一个实施例,所述控制参数包括给定速度、交轴给定电流或交轴给定电压。
根据本发明的一个实施例,所述根据所述直流母线电压与所述第一电压阈值之间的差值对所述电子调速器的控制参数进行调整包括:根据所述直流母线电压与所述第一电压阈值之间的差值和预设PI控制算法生成叠加参数;根据所述电机的当前速度方向对所述叠加参数与所述控制参数进行叠加处理,以使所述电子调速器根据叠加后的控制参数对所述电机的转速进行控制。
根据本发明的一个实施例,所述根据所述电机的当前速度方向对所述叠加参数与所述控制参数进行叠加处理,包括:如果所述电机的当前速度方向为正转,则将所述叠加参数叠加至所述控制参数;如果所述电机的当前速度方向为反转,则将负的所述叠加参数叠加至所述控制参数。
根据本发明的一个实施例,还包括:如果所述直流母线电压大于所述第二电压阈值,则控制所述电子调速器停止输出,以使所述电子调速器控制所述电机停止运行。
为达到上述目的,本发明另一方面实施例提出了一种飞行器中电子调速器的过压保护装置,所述电子调速器用于控制电机,所述装置包括:电压采集模块,用于采集所述电子调速器的直流母线电压;控制模块,用于在所述直流母线电压大于第一电压阈值且小于第二电压阈值时,根据所述直流母线电压与所述第一电压阈值之间的差值调整所述电子调速器的控制参数,以使所述电子调速器根据调整后的控制参数对所述电机进行控制,以抑制所述直流母线电压的进一步上升。
根据本发明实施例提出的飞行器中电子调速器的过压保护装置,通过电压采集模块采集电子调速器的直流母线电压,控制模块对直流母线电压进行判断,并在直流母线电压大于第一电压阈值且小于第二电压阈值时,根据直流母线电压与第一电压阈值之间的差值对电子调速器的控制参数进行调整,以使电子调速器根据调整后的控制参数对电机进行控制,以抑制直流母线电压的进一步上升,并在直流母线电压大于第二电压阈值时,控制电子调速器停止 输出,以使电子调速器控制电机停止运行。由此,根据本发明实施例采用两级电压保护,当直流母线电压超过第一电压阈值时,通过调节控制参数以减少从电机反馈的能量,从而抑制直流母线电压的进一步升高,防止飞行器大动作飞行时电子调速器因过压断开输出而导致飞行器损坏甚至炸机。
根据本发明的一个实施例,所述控制参数包括给定速度、交轴给定电流或交轴给定电压。
根据本发明的一个实施例,所述控制模块进一步用于,根据所述直流母线电压与所述第一电压阈值之间的差值和预设PI控制算法生成叠加参数,并根据所述电机的当前速度方向对所述叠加参数与所述控制参数进行叠加处理,以使所述电子调速器根据叠加后的控制参数对所述电机的转速进行控制。
根据本发明的一个实施例,如果所述电机的当前速度方向为正转,所述控制模块则将所述叠加参数叠加至所述控制参数;如果所述电机的当前速度方向为反转,所述控制模块则将负的所述叠加参数叠加至所述控制参数。
根据本发明的一个实施例,所述控制模块还用于,在所述直流母线电压大于所述第二电压阈值时,控制所述电子调速器停止输出,以使所述电子调速器控制所述电机停止运行
为达到上述目的,本发明又一方面实施例提出的一种飞行器,包括所述的飞行器中电子调速器的过压保护装置。
根据本发明实施例提出的飞行器,通过上述实施例的过压保护装置,能够防止飞行器大动作飞行时电子调速器因过压断开输出而导致飞行器损坏甚至炸机。
附图说明
图1是根据本发明实施例的飞行器中电子调速器的过压保护方法的流程图;
图2是根据本发明一个具体实施例的飞行器中电子调速器的过压保护方法的控制框图;
图3是根据本发明另一个具体实施例的飞行器中电子调速器的过压保护方法的控制框图;
图4是根据本发明又一个具体实施例的飞行器中电子调速器的过压保护方法的控制框图;
图5是根据本发明实施例的飞行器中电子调速器的过压保护装置的方框示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图来描述本发明实施例的飞行器中电子调速器的过压保护方法和装置以及具有该装置的飞行器。
图1是根据本发明实施例的飞行器中电子调速器的过压保护方法的流程图。其中,电子调速器用于控制电机,电子调速器可包括电容、MOSFET等器件。
如图1所示,本发明实施例的过压保护方法包括以下步骤:
S1:采集电子调速器的直流母线电压。
其中,电子调速器可包括六个MOSFET构成的全桥逆变电路,全桥逆变电路可包括三相桥臂,每相桥臂包括两个MOSFET,直流母线电压可为施加在每相桥臂中两个MOSFET之上的电压。
S2:如果直流母线电压大于第一电压阈值且小于或等于第二电压阈值,则根据直流母线电压与第一电压阈值之间的差值对电子调速器的控制参数进行调整,以使电子调速器根据调整后的控制参数对电机进行控制,以抑制直流母线电压的进一步上升,其中,第二电压阈值大于第一电压阈值。
S3:如果直流母线电压大于第二电压阈值,则控制电子调速器停止输出,以使电子调速器控制电机停止运行。
应当理解的是,电子调速器中的电容、MOSFET等器件都有耐压限制,如果直流母线电压大于第二电压阈值,则可能会使施加到电容、MOSFET等器件的电压超过自身的耐压限值,造成器件损坏甚至烧毁。
在本发明实施例中,可通过软件使能电子调速器的过压保护功能,并且,在使能过压保护功能后,可实时采集电子调速器的直流母线电压。
其中,当直流母线电压小于第一电压阈值时,此时判断电子调速器未出现过压,不进行过压保护,电子调速器可根据预设的控制参数对电机进行控制,从而对于正常的飞行没有任何影响。
当直流母线电压大于第一电压阈值且小于或等于第二电压阈值时,此时判断直流母线电压的上升由飞行器大动作飞行引起,即当飞行器在飞行过程中执行大动作指令时,电机会出现快速加速和快速减速的情况,减速时由于电机带桨的惯性作用会回馈能量给电子调速器,使直流母线电压升高。当减速越快时,能量回馈越快,可能会使直流母线电压超过第一电压阈值。此时通过调整控制参数以降低电机转速的变化率,减少电机反馈的能量,进而抑制直流母线电压的进一步升高,保证电子调速器在电压安全范围内进行快速的加减速动作,防止出现由于直流母线电压过压导致电子器件失效的情况。
当直流母线电压大于第二电压阈值时,此时判断电子调速器的过压由异常情况引起,即电子调速器出现接入电压超限等异常情况时,可能会使直流母线电压超过第二电压阈值,此时电子调速器停止输出以控制电机停止运行,且还可进行相应地报警。
由此,根据本发明实施例采用两级电压保护,通过对飞行过程中可能产生的过压情况进 行有效的控制,使电子调速器运行在安全电压范围内,可以减少由于电子调速器过压导致的电子器件损坏,从而更安全的保障了飞行过程的安全。
根据本发明的一些实施例,控制参数包括给定速度、交轴给定电流或交轴给定电压。也就是说,可以通过限制给定速度、交轴给定电流或交轴给定电压等多个方式进行直流母线电压的过压保护。
具体地,根据本发明的一些实施例,根据直流母线电压与第一电压阈值之间的差值调整电子调速器的控制参数,包括:根据直流母线电压与第一电压阈值之间的差值和预设PI控制算法生成叠加参数;根据电机的当前速度方向对叠加参数与控制参数进行叠加处理,以使电子调速器根据叠加后的控制参数对电机的转速进行控制。
进一步地,根据本发明的一些实施例,根据电机的当前速度方向对叠加参数与控制参数进行叠加处理,包括:如果电机的当前速度方向为正转,则将叠加参数叠加至控制参数;如果电机的当前速度方向为反转,则将负的叠加参数叠加至控制参数。
下面结合图2-4分别对本发明实施例的限制给定速度、交轴给定电流或交轴给定电压这三个方式的过压保护方法进行描述。
根据本发明的一个具体实施例,如图2所示,当控制参数为给定速度时,叠加参数为叠加速度,根据直流母线电压与第一电压阈值之间的差值对电子调速器的控制参数进行调整包括:根据直流母线电压与第一电压阈值之间的差值和第一预设PI控制算法生成叠加速度;根据电机的当前速度方向对叠加速度与给定速度Sref进行叠加处理,以使电子调速器根据叠加后的给定速度对电机的转速进行控制。
本发明实施例中,所采用的第一预设PI控制算法可如下式所示:
Out=Ksp*[(VBUS-VSET1)+KsI∫(VBUS-VSET1)dt]
其中,VBUS为直流母线电压,VSET1为第一电压阈值,Ksp为相应的比例控参数,KsI为相应的积分控制参数。
另外,在进行叠加处理前,还可对叠加参数例如叠加速度进行限幅处理,即Out∈[0,SpdMax],如果叠加速度大于第一限幅范围的上限值SpdMax,则将叠加速度限制为SpdMax,如果叠加速度小于第一限幅范围的下限值0,则将叠加速度限制为0。
进一步地,根据电机的当前速度方向对叠加速度与给定速度Sref进行叠加处理,包括:如果电机的当前速度方向为正转,即给定速度Sref>0,则将叠加速度叠加至给定速度Sref;如果电机的当前速度方向为反转,即给定速度Sref<0,则将负的叠加速度叠加至给定速度Sref。
具体来说,如图2所示,通过软件使能过压保护功能后,当直流母线电压小于第一电压阈值时,通过限幅算法Out∈[0,SpdMax]的限幅输出可将叠加速度限定为0,从而对于正常的 飞行没有任何影响。
当飞行器在飞行过程中执行大动作指令时,电机会出现快速加速和快速减速的情况,快速减速时由于电机带桨的惯性作用会回馈能量给电子调速器,使电子调速器的直流母线电压升高。当减速过快时,能量回馈过快,使直流母线电压超过第一电压阈值。此时,将直流母线电压减去第一电压阈值的差值作为第一PI控制模块的输入,此差值通过第一预设PI控制算法Out=Ksp*[(VBUS-VSET1)+KsI∫(VBUS-VSET1)dt]处理后输出一个正向的叠加速度,并结合电机的速度方向叠加到给定速度Sref上,即当电机的速度方向为正转时,将叠加速度Out×1叠加至给定速度Sref上;当电机的速度方向为反转时,将叠加速度Out×(-1)叠加至给定速度Sref上。
由此,将给定速度Sref调整为叠加了叠加速度后的给定速度,电子调速器也将根据叠加后的给定速度对电机进行控制,即:
通过采样模块采集电机的三相电流Ia、Ib和Ic以及三相电压Va、Vb和Vc;第一clarke坐标转换单元对三相电压Va、Vb和Vc进行clarke坐标转换以获得两相电压Vα、Vβ;第二clarke坐标转换单元对三相电流Ia、Ib和Ic进行clarke坐标转换以获得两相电压Iα、Iβ;位置估计单元例如速度磁链观测器根据两相电压Vα、Vβ和两相电压Iα、Iβ估计电机的转子的位置和速度以获得转子的估计角度θ和转子的估计速度S;park坐标转换单元根据转子的估计角度θ对两相电流Iα、Iβ进行park坐标转换以获得直轴电流Id和交轴电流Iq。
给定速度Sref与叠加速度相叠加;速度校正模块根据叠加后的给定速度对转子的估计速度S进行速度校正以获得交轴给定电流Iqref;第一电流校正单元根据直轴给定电流Idref对直轴电流Id进行电流校正以获得直轴电压Vd;第二电流校正单元根据交轴给定电流Iqref对交轴电流Iq进行电流校正以获得交轴电压Vq;空间矢量调制单元根据估计角度θ对直轴电压Vd和交轴电压Vq进行空间矢量调制以生成驱动信号;驱动单元根据驱动信号驱动电机。
由此,在减速时,通过在给定速度Sref上叠加正的或负的叠加速度,可抑制给定速度Sref的快速减小,从而减少了由于电机带桨快速减速而来的回馈能量,抑制了直流母线电压的上升,将直流母线电压限定在第一预设电压以下,保证电子调速器在电压安全范围内进行快速的加减速动作,防止出现由于母线电压超限导致的电子器件失效情况。
另外,当电子调速器出现异常情况例如接入电压超限等时,使直流母线电压超过第二电压阈值,此时电子调速器停止输出并进行相应的过压报警。
根据本发明的另一个具体实施例,如图3所示,当控制参数为交轴给定电流时,叠加参数为叠加电流,根据直流母线电压与第一电压阈值之间的差值对电子调速器的控制参数进行调整包括:根据直流母线电压与第一电压阈值之间的差值和第二预设PI控制算法生成叠加 电流;根据交轴给定电流的方向对叠加电流与交轴给定电流Iqref进行叠加处理,以使电子调速器根据叠加后的交轴给定电流对电机的转速进行控制。
具体地,所采用的第二预设PI控制算法可如下式所示:
Out=KIp*[(VBUS-VSET1)+KII∫(VBUS-VSET1)dt]
其中,VBUS为直流母线电压,VSET1为第一电压阈值,KIp为相应的比例控参数,KII为相应的积分控制参数。
另外,在进行叠加处理前,还可对叠加参数例如叠加电流进行限幅处理,即Out∈[0,IqMax],如果叠加电流大于第二限幅范围的上限值IqMax,则将叠加电流限制为IqMax,如果叠加电流小于第二限幅范围的下限值0,则将叠加电流限制为0。
进一步地,根据交轴给定电流的方向对叠加电流与交轴给定电流进行叠加处理,包括:如果电机的当前速度方向为正转,则将叠加电流叠加至交轴给定电流Iqref;如果电机的当前速度方向为反转,则将负的叠加电流叠加至交轴给定电流Iqref。
具体来说,如图3所示,通过软件使能过压保护功能后,当直流母线电压小于第一电压阈值时,通过限幅算法Out∈[0,SpdMax]的限幅输出可将叠加电流限定为0,从而对于正常的飞行没有任何影响。
当飞行器大动作飞行导致直流母线电压超过第一电压阈值时,将直流母线电压减去第一电压阈值的差值作为第二PI控制模块的输入,此差值通过第二预设PI控制算法Out=KIp*[(VBUS-VSET1)+KII∫(VBUS-VSET1)dt]处理后输出一个正向的叠加速度,并结合电机的速度方向叠加到交轴给定电流Iqref上,即当电机的速度方向为正转时,将叠加电流Out×1叠加至交轴给定电流Iqref上;当电机的速度方向为反转时,将叠加电流Out×(-1)叠加至交轴给定电流Iqref上。
由此,将交轴给定电流Iqref调整为叠加了叠加电流后的交轴给定电流,电子调速器也将根据叠加后的交轴给定电流对电机进行控制,具体控制流程与根据叠加速度后的给定速度进行控制基本一致,区别在于,速度校正模块根据给定速度Sref对转子的估计速度S进行速度校正以获得交轴给定电流Iqref;交轴给定电流Iqref与叠加电流相叠加;第二电流校正单元根据叠加后的交轴给定电流对交轴电流Iq进行电流校正以获得交轴电压Vq。
另外,当电子调速器出现异常情况例如接入电压超限等时,使直流母线电压超过第二电压阈值,此时电子调速器停止输出并进行相应的过压报警。
根据本发明的又一个具体实施例,如图4所示,当控制参数为交轴给定电压时,叠加参数为叠加电压,根据直流母线电压与第一电压阈值之间的差值对电子调速器的控制参数进行调整包括:根据直流母线电压与第一电压阈值之间的差值和第三预设PI控制算法生成叠加电压;根据交轴给定电压的方向对叠加电压与交轴给定电压进行叠加处理,以使电子调速器 根据叠加后的交轴给定电压对电机的转速进行控制。
本发明实施例中,所采用的第三预设PI控制算法可如下式所示:
Out=KVp*[(VBUS-VSET1)+KVI∫(VBUS-VSET1)dt]
其中,VBUS为直流母线电压,VSET1为第一电压阈值,KVp为相应的比例控参数,KVI为相应的积分控制参数。
另外,在进行叠加处理前,还可对叠加参数例如叠加电压进行限幅处理,即Out∈[0,VqMax],如果叠加电压大于第二限幅范围的上限值VqMax,则将叠加电压限制为VqMax,如果叠加电压小于第二限幅范围的下限值0,则将叠加电压限制为0。
进一步地,根据交轴给定电压的方向对叠加电压与交轴给定电压进行叠加处理,包括:如果电机的当前速度方向为正转,则将叠加电压叠加至交轴给定电压;如果电机的当前速度方向为反转,则将负的叠加电压叠加至交轴给定电压。
具体来说,如图4所示,通过软件使能过压保护功能后,当直流母线电压小于第一电压阈值时,通过限幅算法Out∈[0,VqMax]的限幅输出可将叠加电压限定为0,从而对于正常的飞行没有任何影响。
当飞行器大动作飞行导致直流母线电压超过第一电压阈值时,将直流母线电压减去第一电压阈值的差值作为第三PI控制模块的输入,此差值通过第三预设PI控制算法Out=KVp*[(VBUS-VSET1)+KVI∫(VBUS-VSET1)dt]处理后输出一个正向的叠加速度,并结合电机的速度方向叠加到交轴给定电压Vqref上,即当电机的当前速度方向为正转时,将叠加电流Out×1叠加至交轴给定电压Vqref上;当电机的当前速度方向为反转时,将叠加电流Out×(-1)叠加至交轴给定电压Vqref上。
由此,将交轴给定电压Vqref调整为叠加了叠加电压后的交轴给定电压,电子调速器也将根据叠加后的交轴给定电压对电机进行控制,具体控制流程与根据叠加速度后的给定速度进行控制基本一致,区别在于,交轴给定电压Vqref与叠加电压相叠加;空间矢量调制单元根据估计角度θ对直轴电压Vd和叠加后的交轴电压进行空间矢量调制以生成驱动信号。
另外,当电子调速器出现异常情况例如接入电压超限等时,使直流母线电压超过第二电压阈值,此时电子调速器停止输出并进行相应的过压报警。
综上,根据本发明实施例提出的飞行器中电子调速器的过压保护方法,采集电子调速器的直流母线电压,并对直流母线电压进行判断,如果直流母线电压大于第一电压阈值且小于或等于第二电压阈值,则根据直流母线电压与第一电压阈值之间的差值对电子调速器的控制参数进行调整,以使电子调速器根据调整后的控制参数对电机进行控制,以抑制直流母线电压的进一步上升,如果直流母线电压大于第二电压阈值,则控制电子调速器停止输出,以使电子调速器控制电机停止运行。由此,根据本发明实施例采用两级电压保护,当直流母线电 压超过第一电压阈值时,通过调节控制参数以减少从电机反馈的能量,从而抑制直流母线电压的进一步升高,防止飞行器大动作飞行时电子调速器因过压断开输出而导致飞行器损坏甚至炸机,当由于其他原因导致直流母线电压超过第二电压阈值时电子调速器停止输出,防止电子调速器的器件损坏甚至烧毁。
图5是根据本发明实施例的飞行器中电子调速器的过压保护装置的方框示意图。电子调速器用于控制电机,电子调速器可包括电容、MOSFET等器件。
如图5所示,本发明实施例的过压保护装置包括电压采集模块10和控制模块20。
其中,电压采集模块10用于采集电子调速器的直流母线电压。需要说明的是,电子调速器可包括六个MOSFET构成的全桥逆变电路,全桥逆变电路可包括三相桥臂,每相桥臂包括两个MOSFET,直流母线电压可为施加在每相桥臂中两个MOSFET之上的电压。
控制模块20用于对直流母线电压进行判断,并在直流母线电压大于第一电压阈值且小于或等于第二电压阈值时,根据直流母线电压与第一电压阈值之间的差值对电子调速器的控制参数进行调整,以使电子调速器根据调整后的控制参数对电机进行控制,以抑制直流母线电压的进一步上升。
控制模块20还用于在直流母线电压大于第二电压阈值时,控制电子调速器停止输出,以使电子调速器控制电机停止运行。
应当理解的是,电子调速器中的电容、MOSFET等器件都有耐压限制,如果直流母线电压大于第二电压阈值,则可能会使施加到电容、MOSFET等器件的电压超过自身的耐压限值,造成器件损坏甚至烧毁。
在本发明实施例中,控制模块20可通过软件使能电子调速器的过压保护功能,并且,在使能过压保护功能后,电压采集模块10可实时采集电子调速器的直流母线电压。
其中,当直流母线电压小于第一电压阈值时,此时判断电子调速器未出现过压,控制模块20不进行过压保护,电子调速器可根据预设的控制参数对电机进行控制,从而对于正常的飞行没有任何影响。
当直流母线电压大于第一电压阈值且小于或等于第二电压阈值时,此时判断直流母线电压的上升由飞行器大动作飞行引起,即当飞行器在飞行过程中执行大动作指令时,电机会出现快速加速和快速减速的情况,减速时由于电机带桨的惯性作用会回馈能量给电子调速器,使直流母线电压升高。当减速越快时,能量回馈越快,可能会使直流母线电压超过第一电压阈值。控制模块20此时通过调整控制参数以降低电机转速的变化率,减少电机反馈的能量,进而抑制直流母线电压的进一步升高,保证电子调速器在电压安全范围内进行快速的加减速动作,防止出现由于直流母线电压过压导致电子器件失效的情况。
当直流母线电压大于第二电压阈值时,此时判断电子调速器的过压由异常情况引起,即 电子调速器出现接入电压超限等异常情况时,可能会使直流母线电压超过第二电压阈值,此时控制模块20控制电子调速器停止输出以控制电机停止运行,且还可进行相应地报警。
由此,根据本发明实施例采用两级电压保护,通过对飞行过程中可能产生的过压情况进行有效的控制,使电子调速器运行在安全电压范围内,可以减少由于电子调速器过压导致的电子器件损坏,从而更安全的保障了飞行过程的安全。
根据本发明的一些实施例,控制参数包括给定速度、交轴给定电流或交轴给定电压。也就是说,控制模块20可以通过限制给定速度、交轴给定电流或交轴给定电压等多个方式进行直流母线电压的过压保护。
具体地,根据本发明的一些实施例,控制模块20进一步用于,根据直流母线电压与第一电压阈值之间的差值和预设PI控制算法生成叠加参数,并根据电机的当前速度方向对叠加参数与控制参数进行叠加处理,以使电子调速器根据叠加后的控制参数对电机的转速进行控制。
进一步地,根据本发明的一些实施例,如果电机的当前速度方向为正转,控制模块20则将叠加参数叠加至控制参数;如果电机的当前速度方向为反转,控制模块20则将负的叠加参数叠加至控制参数。
下面结合图2-4分别对本发明实施例的限制给定速度、交轴给定电流或交轴给定电压这三个方式的过压保护装置进行描述。
根据本发明的一个具体实施例,如图2所示,当控制参数为给定速度时,叠加参数为叠加速度,控制模块20进一步用于,根据直流母线电压与第一电压阈值之间的差值和第一预设PI控制算法生成叠加速度,并根据电机的当前速度方向对叠加速度与给定速度进行叠加处理,以使电子调速器根据叠加后的给定速度对电机的转速进行控制。
具体地,所采用的第一预设PI控制算法可如下式所示:
Out=Ksp*[(VBUS-VSET1)+KsI∫(VBUS-VSET1)dt]
其中,VBUS为直流母线电压,VSET1为第一电压阈值,Ksp为相应的比例控参数,KsI为相应的积分控制参数。
另外,在进行叠加处理前,控制模块20还可对叠加参数例如叠加速度进行限幅处理,即Out∈[0,SpdMax],如果叠加速度大于第一限幅范围的上限值SpdMax,则将叠加速度限制为SpdMax,如果叠加速度小于第一限幅范围的下限值0,则将叠加速度限制为0。
进一步地,如果电机的当前速度方向为正转,即给定速度Sref>0,控制模块20则将叠加速度叠加至给定速度;如果电机的当前速度方向为反转,即给定速度Sref<0,控制模块20则将负的叠加速度叠加至给定速度。
具体来说,如图2所示,通过软件使能过压保护功能后,当直流母线电压小于第一电压 阈值时,控制模块20通过限幅模块202的限幅算法Out∈[0,SpdMax]的限幅输出可将叠加速度限定为0,从而对于正常的飞行没有任何影响。
当飞行器在飞行过程中执行大动作指令时,电机会出现快速加速和快速减速的情况,快速减速时由于电机带桨的惯性作用会回馈能量给电子调速器,使电子调速器的直流母线电压升高。当减速过快时,能量回馈过快,使直流母线电压超过第一电压阈值。此时,将直流母线电压减去第一电压阈值的差值作为第一PI控制模块201的输入,此差值通过第一预设PI控制算法Out=Ksp*[(VBUS-VSET1)+KsI∫(VBUS-VSET1)dt]处理后输出一个正向的叠加速度,并经过速度方向模块203结合电机的速度方向叠加到给定速度Sref上,即当电机的速度方向为正转时,将叠加速度Out×1叠加至给定速度Sref上;当电机的速度方向为反转时,将叠加速度Out×(-1)叠加至给定速度Sref上。
由此,将给定速度Sref调整为叠加了叠加速度后的给定速度,电子调速器也将根据叠加后的给定速度对电机进行控制,即:
通过采样模块301采集电机的三相电流Ia、Ib和Ic以及三相电压Va、Vb和Vc;第一clarke坐标转换单元302对三相电压Va、Vb和Vc进行clarke坐标转换以获得两相电压Vα、Vβ;第二clarke坐标转换单元303对三相电流Ia、Ib和Ic进行clarke坐标转换以获得两相电压Iα、Iβ;位置估计单元304例如速度磁链观测器根据两相电压Vα、Vβ和两相电压Iα、Iβ估计电机的转子的位置和速度以获得转子的估计角度θ和转子的估计速度S;park坐标转换单元305根据转子的估计角度θ对两相电流Iα、Iβ进行park坐标转换以获得直轴电流Id和交轴电流Iq。
给定速度Sref与叠加速度相叠加;速度校正模块306根据叠加后的给定速度对转子的估计速度S进行速度校正以获得交轴给定电流Iqref;第一电流校正单元307根据直轴给定电流Idref对直轴电流Id进行电流校正以获得直轴电压Vd;第二电流校正单元308根据交轴给定电流Iqref对交轴电流Iq进行电流校正以获得交轴电压Vq;空间矢量调制单元309根据估计角度θ对直轴电压Vd和交轴电压Vq进行空间矢量调制以生成驱动信号;驱动单元310根据驱动信号驱动电机M。
由此,在减速时,通过在给定速度Sref上叠加正的或负的叠加速度,可抑制给定速度Sref的快速减小,从而减少了由于电机带桨快速减速而来的回馈能量,抑制了直流母线电压的上升,将直流母线电压限定在第一预设电压以下,保证电子调速器在电压安全范围内进行快速的加减速动作,防止出现由于母线电压超限导致的电子器件失效情况。
另外,当电子调速器出现异常情况例如接入电压超限等时,使直流母线电压超过第二电压阈值,控制模块20此时控制电子调速器停止输出并进行相应的过压报警。
根据本发明的另一个具体实施例,如图3所示,当控制参数为交轴给定电流时,叠加参 数为叠加电流,控制模块20进一步用于,根据直流母线电压与第一电压阈值之间的差值和第二预设PI控制算法生成叠加电流,并根据交轴给定电流的方向对叠加电流与交轴给定电流进行叠加处理,以使电子调速器根据叠加后的交轴给定电流对电机的转速进行控制。
具体地,所采用的第二预设PI控制算法可如下式所示:
Out=KIp*[(VBUS-VSET1)+KII∫(VBUS-VSET1)dt]
其中,VBUS为直流母线电压,VSET1为第一电压阈值,KIp为相应的比例控参数,KII为相应的积分控制参数。
另外,在进行叠加处理前,控制模块20还可对叠加参数例如叠加电流进行限幅处理,即Out∈[0,IqMax],如果叠加电流大于第二限幅范围的上限值IqMax,则将叠加电流限制为IqMax,如果叠加电流小于第二限幅范围的下限值0,则将叠加电流限制为0。
进一步地,如果电机的当前速度方向为正转,控制模块20则将叠加电流叠加至交轴给定电流;如果电机的当前速度方向为反转,控制模块20则将负的叠加电流叠加至交轴给定电流。
具体来说,如图3所示,通过软件使能过压保护功能后,当直流母线电压小于第一电压阈值时,控制模块20通过第二限幅模块205限幅算法Out∈[0,SpdMax]的限幅输出可将叠加电流限定为0,从而对于正常的飞行没有任何影响。
当飞行器大动作飞行导致直流母线电压超过第一电压阈值时,将直流母线电压减去第一电压阈值的差值作为第二PI控制模块204的输入,此差值通过第二预设PI控制算法Out=KIp*[(VBUS-VSET1)+KII∫(VBUS-VSET1)dt]处理后输出一个正向的叠加速度,并经过电流方向模块206结合电机的速度方向叠加到交轴给定电流Iqref上,即当电机的速度方向为正转时,将叠加电流Out×1叠加至交轴给定电流Iqref上;当电机的当前速度方向为反转时,将叠加电流Out×(-1)叠加至交轴给定电流Iqref上。
由此,将交轴给定电流Iqref调整为叠加了叠加电流后的交轴给定电流,电子调速器也将根据叠加后的交轴给定电流对电机进行控制,控制模块20的具体控制流程与根据叠加速度后的给定速度进行控制基本一致,区别在于,速度校正模块306根据给定速度Sref对转子的估计速度S进行速度校正以获得交轴给定电流Iqref;交轴给定电流Iqref与叠加电流相叠加;第二电流校正单元308根据叠加后的交轴给定电流对交轴电流Iq进行电流校正以获得交轴电压Vq。
另外,当电子调速器出现异常情况例如接入电压超限等时,使直流母线电压超过第二电压阈值,控制模块20此时控制电子调速器停止输出并进行相应的过压报警。
根据本发明的又一个具体实施例,如图4所示,当控制参数为交轴给定电压时,叠加参数为叠加电压,控制模块20进一步用于,根据直流母线电压与第一电压阈值之间的差值和 第三预设PI控制算法生成叠加电压,并根据交轴给定电压的方向对叠加电压与交轴给定电压进行叠加处理,以使电子调速器根据叠加后的交轴给定电压对电机的转速进行控制。
具体地,所采用的第三预设PI控制算法可如下式所示:
Out=KVp*[(VBUS-VSET1)+KVI∫(VBUS-VSET1)dt]
其中,VBUS为直流母线电压,VSET1为第一电压阈值,KVp为相应的比例控参数,KVI为相应的积分控制参数。
另外,在进行叠加处理前,控制模块20还可对叠加参数例如叠加电压进行限幅处理,即Out∈[0,VqMax],如果叠加电压大于第二限幅范围的上限值VqMax,则将叠加电压限制为VqMax,如果叠加电压小于第二限幅范围的下限值0,则将叠加电压限制为0。
进一步地,如果电机的当前速度方向为正转,控制模块20则将叠加电压叠加至交轴给定电压;如果电机的当前速度方向为反转,控制模块20则将负的叠加电压叠加至交轴给定电压。
具体来说,如图4所示,通过软件使能过压保护功能后,当直流母线电压小于第一电压阈值时,控制模块20通过第三限幅模块208限幅算法Out∈[0,VqMax]的限幅输出可将叠加电压限定为0,从而对于正常的飞行没有任何影响。
当飞行器大动作飞行导致直流母线电压超过第一电压阈值时,将直流母线电压减去第一电压阈值的差值作为第三PI控制模块207的输入,此差值通过第三预设PI控制算法Out=KVp*[(VBUS-VSET1)+KVI∫(VBUS-VSET1)dt]处理后输出一个正向的叠加速度,并经过电压方向模块209结合电机的速度方向叠加到交轴给定电压Vqref上,即当电机的当前速度方向为正转时,将叠加电流Out×1叠加至交轴给定电压Vqref上;当电机的当前速度方向为反转时,将叠加电流Out×(-1)叠加至交轴给定电压Vqref上。
由此,将交轴给定电压Vqref调整为叠加了叠加电压后的交轴给定电压,电子调速器也将根据叠加后的交轴给定电压对电机进行控制,控制模块20具体控制流程与根据叠加速度后的给定速度进行控制基本一致,区别在于,交轴给定电压Vqref与叠加电压相叠加;空间矢量调制单元309根据估计角度θ对直轴电压Vd和叠加后的交轴电压进行空间矢量调制以生成驱动信号。
另外,当电子调速器出现异常情况例如接入电压超限等时,使直流母线电压超过第二电压阈值,此时控制模块20控制电子调速器停止输出并进行相应的过压报警。
综上,根据本发明实施例提出的飞行器中电子调速器的过压保护装置,通过电压采集模块采集电子调速器的直流母线电压,控制模块对直流母线电压进行判断,并在直流母线电压大于第一电压阈值且小于或等于第二电压阈值时,根据直流母线电压与第一电压阈值之间的差值对电子调速器的控制参数进行调整,以使电子调速器根据调整后的控制参数对电机进行 控制,以抑制直流母线电压的进一步上升,并在直流母线电压大于第二电压阈值时,控制电子调速器停止输出,以使电子调速器控制电机停止运行。由此,根据本发明实施例采用两级电压保护,当直流母线电压超过第一电压阈值时,通过调节控制参数以减少从电机反馈的能量,从而抑制直流母线电压的进一步升高,防止飞行器大动作飞行时电子调速器因过压断开输出而导致飞行器损坏甚至炸机,当由于其他原因导致直流母线电压超过第二电压阈值时电子调速器停止输出,防止电子调速器的器件损坏甚至烧毁。
另外,本发明实施例还提出可一种飞行器,包括上述实施例的飞行器中电子调速器的过压保护装置。
根据本发明实施例提出的飞行器,通过上述实施例的过压保护装置,,可采用两级电压保护,从而防止电子调速器的器件损坏甚至烧毁,防止飞行器大动作飞行时电子调速器因过压断开输出而导致飞行器损坏甚至炸机。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含 于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种飞行器中电子调速器的过压保护方法,其特征在于,所述电子调速器用于控制电机,所述方法包括以下步骤:
    采集所述电子调速器的直流母线电压;
    如果所述直流母线电压大于第一电压阈值且小于或等于第二电压阈值,则根据所述直流母线电压与所述第一电压阈值之间的差值调整所述电子调速器的控制参数,以使所述电子调速器根据调整后的控制参数对所述电机进行控制,以抑制所述直流母线电压的进一步上升,其中,所述第二电压阈值大于所述第一电压阈值;
    如果所述直流母线电压大于所述第二电压阈值,则控制所述电子调速器停止输出,以使所述电子调速器控制所述电机停止运行。
  2. 根据权利要求1所述的飞行器中电子调速器的过压保护方法,其特征在于,所述控制参数包括给定速度、交轴给定电流或交轴给定电压。
  3. 根据权利要求1或2所述的飞行器中电子调速器的过压保护方法,其特征在于,所述根据所述直流母线电压与所述第一电压阈值之间的差值调整所述电子调速器的控制参数,包括:
    根据所述直流母线电压与所述第一电压阈值之间的差值和预设PI控制算法生成叠加参数;
    根据所述电机的当前速度方向对所述叠加参数与所述控制参数进行叠加处理,以使所述电子调速器根据叠加后的控制参数对所述电机的转速进行控制。
  4. 根据权利要求3所述的飞行器中电子调速器的过压保护方法,其特征在于,所述根据所述电机的当前速度方向对所述叠加参数与所述控制参数进行叠加处理,包括:
    如果所述电机的当前速度方向为正转,则将所述叠加参数叠加至所述控制参数;
    如果所述电机的当前速度方向为反转,则将负的所述叠加参数叠加至所述控制参数。
  5. 根据权利要求1所述的飞行器中电子调速器的过压保护方法,其特征在于,还包括:
    如果所述直流母线电压大于所述第二电压阈值,则控制所述电子调速器停止输出,以使所述电子调速器控制所述电机停止运行。
  6. 一种飞行器中电子调速器的过压保护装置,其特征在于,所述电子调速器用于控制电机,所述装置包括:
    电压采集模块,用于采集所述电子调速器的直流母线电压;
    控制模块,用于在所述直流母线电压大于第一电压阈值且小于第二电压阈值时,根据所述直流母线电压与所述第一电压阈值之间的差值对所述电子调速器的控制参数进行调整,以使所述电子调速器根据调整后的控制参数对所述电机进行控制,以抑制所述直流母线电压的进一步上升。
  7. 根据权利要求6所述的飞行器中电子调速器的过压保护装置,其特征在于,所述控制参数包括给定速度、交轴给定电流或交轴给定电压。
  8. 根据权利要求6或7所述的飞行器中电子调速器的过压保护装置,其特征在于,所述控制模块进一步用于,根据所述直流母线电压与所述第一电压阈值之间的差值和预设PI控制算法生成叠加参数,并根据所述电机的当前速度方向对所述叠加参数与所述控制参数进行叠加处理,以使所述电子调速器根据叠加后的控制参数对所述电机的转速进行控制。
  9. 根据权利要求8所述的飞行器中电子调速器的过压保护装置,其特征在于,
    如果所述电机的当前速度方向为正转,所述控制模块则将所述叠加参数叠加至所述控制参数;
    如果所述电机的当前速度方向为反转,所述控制模块则将负的所述叠加参数叠加至所述控制参数。
  10. 根据权利要求6所述的飞行器中电子调速器的过压保护装置,其特征在于,控制模块,还用于在所述直流母线电压大于所述第二电压阈值时,控制所述电子调速器停止输出,以使所述电子调速器控制所述电机停止运行。
  11. 一种飞行器,其特征在于,包括根据权利要求6-10中任一项所述的飞行器中电子调速器的过压保护装置。
PCT/CN2017/113395 2016-12-01 2017-11-28 飞行器及其电子调速器的过压保护方法和装置 WO2018099377A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/077,326 US10693411B2 (en) 2016-12-01 2017-11-28 Aerial vehicle, and overvoltage protection method and device of electronic governor in the same
KR1020187014953A KR102099868B1 (ko) 2016-12-01 2017-11-28 비행기 및 그의 전자 거버너의 과전압 보호 방법과 장치
JP2018530519A JP6594548B2 (ja) 2016-12-01 2017-11-28 航空機並びにその電子ガバナーの過電圧保護方法及び装置
AU2017370239A AU2017370239B2 (en) 2016-12-01 2017-11-28 Aerial vehicle, and overvoltage protection method and device of electronic governor in the same
CA3045354A CA3045354C (en) 2016-12-01 2017-11-28 Aircraft, and over-voltage protection method and device for electronic governor thereof
RU2019118595A RU2717541C1 (ru) 2016-12-01 2017-11-28 Воздушное судно, а также способ и устройство защиты от перенапряжений для электронного регулятора на воздушном судне
EP17876449.4A EP3550720B1 (en) 2016-12-01 2017-11-28 Aircraft, and over-voltage protection method and device for electronic governor thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611093576.2A CN106655979B (zh) 2016-12-01 2016-12-01 飞行器及其电子调速器的过压保护方法和装置
CN201611093576.2 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018099377A1 true WO2018099377A1 (zh) 2018-06-07

Family

ID=58814072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113395 WO2018099377A1 (zh) 2016-12-01 2017-11-28 飞行器及其电子调速器的过压保护方法和装置

Country Status (9)

Country Link
US (1) US10693411B2 (zh)
EP (1) EP3550720B1 (zh)
JP (1) JP6594548B2 (zh)
KR (1) KR102099868B1 (zh)
CN (1) CN106655979B (zh)
AU (1) AU2017370239B2 (zh)
CA (1) CA3045354C (zh)
RU (1) RU2717541C1 (zh)
WO (1) WO2018099377A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106655979B (zh) 2016-12-01 2019-07-26 广州极飞科技有限公司 飞行器及其电子调速器的过压保护方法和装置
US10833605B2 (en) * 2016-12-16 2020-11-10 Ge Aviation Systems Llc Space vector modulation in aerospace applications
CN109071020A (zh) * 2017-12-18 2018-12-21 深圳市大疆创新科技有限公司 检测方法及装置、无人机、可读存储介质
CN108494305B (zh) * 2018-04-11 2020-03-06 深圳市道通智能航空技术有限公司 一种电机加速方法、装置、电子调速器和无人飞行器
CN108791910B (zh) * 2018-05-03 2020-09-08 深圳市道通智能航空技术有限公司 一种油门控制的方法、装置及无人机
CN108768236A (zh) * 2018-06-07 2018-11-06 深圳市道通智能航空技术有限公司 电机控制方法、装置、电子调速器和无人飞行器
CN110944017B (zh) * 2019-12-25 2024-04-05 中电科航空电子有限公司 一种双向信息传输的机载位置追踪设备
CN113346820B (zh) * 2020-03-02 2022-05-17 广东威灵电机制造有限公司 电机控制方法、电机控制装置、电机系统和存储介质
CN113346822B (zh) * 2020-03-02 2022-07-12 广东威灵电机制造有限公司 电机控制方法、电机控制装置、电机系统和存储介质
CN113346819B (zh) * 2020-03-02 2022-06-10 广东威灵电机制造有限公司 电机控制方法、电机控制装置、电机系统和存储介质
CN112737473B (zh) * 2021-03-29 2021-06-29 中汽创智科技有限公司 电机异常保护电路
CN113859554B (zh) * 2021-09-22 2022-12-09 北京三快在线科技有限公司 一种无人设备控制方法、装置、存储介质及电子设备
FR3130464A1 (fr) * 2021-12-10 2023-06-16 Safran Procédé de protection en tension d’un système électrique multi sources
US11691517B1 (en) 2022-05-04 2023-07-04 Beta Air, Llc Emergency high voltage disconnection device for an electric aircraft
US11817700B1 (en) * 2022-07-20 2023-11-14 General Electric Company Decentralized electrical power allocation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354556A (zh) * 2001-11-28 2002-06-19 深圳安圣电气有限公司 一种防止母线电压过高的方法
US20070013338A1 (en) * 2005-07-14 2007-01-18 Swamy Mahesh M Overvoltage suppression technique for variable frequency drives operating reciprocating loads
CN103227605A (zh) * 2012-11-01 2013-07-31 东方日立(成都)电控设备有限公司 一种用于高压变频器带风机负载降速防过压的控制方法
US20150137786A1 (en) * 2011-01-14 2015-05-21 Hamilton Sundstrand Corporation Overvoltage limiter in an aircraft electrical power generation system
CN105449639A (zh) * 2015-12-28 2016-03-30 广东威灵电机制造有限公司 基于永磁同步电机驱动器的电压保护控制方法及装置
CN106655979A (zh) * 2016-12-01 2017-05-10 广州极飞科技有限公司 飞行器及其电子调速器的过压保护方法和装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1169434A (en) * 1966-04-25 1969-11-05 Nippon Electronics Kaisha Ltd A Speed Controlling Apparatus for Small D.C. Motor.
JPH088785B2 (ja) * 1985-04-05 1996-01-29 ロ−ム株式会社 電子ガバナ
JPH1169880A (ja) * 1997-08-28 1999-03-09 Toshiba Corp インバータ制御装置
FR2888686B1 (fr) * 2005-07-18 2007-09-07 Schneider Toshiba Inverter Dispositif d'alimentation d'un variateur de vitesse
JP4692207B2 (ja) 2005-10-18 2011-06-01 トヨタ自動車株式会社 駆動装置およびこれを搭載する車両並びに駆動装置の制御方法
KR100848561B1 (ko) * 2006-12-29 2008-07-25 엘에스산전 주식회사 인버터의 과전압 억제를 위한 유도 전동기 감속 제어 장치및 방법
JP4452953B2 (ja) * 2007-08-09 2010-04-21 日立オートモティブシステムズ株式会社 電力変換装置
CN102136719B (zh) * 2010-01-21 2013-08-28 深圳市汇川技术股份有限公司 一种抑制变频器过压失速的方法及装置
JP5702988B2 (ja) * 2010-01-29 2015-04-15 株式会社 日立パワーデバイス 半導体パワーモジュール及びそれが搭載される電力変換装置並びに半導体パワーモジュール搭載用水路形成体の製造方法
US8319458B2 (en) * 2010-06-17 2012-11-27 GM Global Technology Operations LLC Vehicular electrical system and method for controlling an inverter during motor deceleration
US8970154B2 (en) * 2010-11-05 2015-03-03 Mitsubishi Electric Corporation Power conversion apparatus
WO2012105200A1 (ja) * 2011-01-31 2012-08-09 新電元工業株式会社 力率改善回路
CN103444071B (zh) * 2011-04-28 2016-04-13 松下电器产业株式会社 电动机驱动方法、电动机驱动装置以及无刷电动机
RU2474941C1 (ru) * 2011-07-14 2013-02-10 Открытое Акционерное Общество "Агрегатное Конструкторское Бюро "Якорь" Система генерирования напряжения
US8890463B2 (en) * 2011-08-25 2014-11-18 Hamilton Sundstrand Corporation Direct current bus management controller
DE102011086829A1 (de) * 2011-11-22 2013-05-23 Continental Automotive Gmbh Bordnetz und Verfahren zum Betreiben eines Bordnetzes
DE112012005865T5 (de) * 2012-02-13 2014-12-24 Mitsubishi Electric Corporation Energieumwandlungsvorrichtung
US9018889B2 (en) * 2012-12-18 2015-04-28 Hamilton Sundstrand Corporation Hardware-based, redundant overvoltage protection
CN203199825U (zh) * 2013-02-08 2013-09-18 浙江师范大学 一种电梯节能能量回馈控制系统
CN103501135B (zh) * 2013-10-15 2016-08-10 苏州汇川技术有限公司 高压变频器制动减速保护系统和方法
KR101663522B1 (ko) * 2015-02-10 2016-10-07 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 세탁물 처리기기
US9473028B1 (en) * 2015-04-29 2016-10-18 Hamilton Sundstrand Corporation Systems and methods for controlling power converters
US10389292B1 (en) * 2018-03-29 2019-08-20 Rockwell Automation Technologies, Inc. DC bus regulation using rectifier and inverter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354556A (zh) * 2001-11-28 2002-06-19 深圳安圣电气有限公司 一种防止母线电压过高的方法
US20070013338A1 (en) * 2005-07-14 2007-01-18 Swamy Mahesh M Overvoltage suppression technique for variable frequency drives operating reciprocating loads
US20150137786A1 (en) * 2011-01-14 2015-05-21 Hamilton Sundstrand Corporation Overvoltage limiter in an aircraft electrical power generation system
CN103227605A (zh) * 2012-11-01 2013-07-31 东方日立(成都)电控设备有限公司 一种用于高压变频器带风机负载降速防过压的控制方法
CN105449639A (zh) * 2015-12-28 2016-03-30 广东威灵电机制造有限公司 基于永磁同步电机驱动器的电压保护控制方法及装置
CN106655979A (zh) * 2016-12-01 2017-05-10 广州极飞科技有限公司 飞行器及其电子调速器的过压保护方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550720A4 *

Also Published As

Publication number Publication date
AU2017370239A1 (en) 2018-08-16
RU2717541C1 (ru) 2020-03-24
EP3550720B1 (en) 2022-08-10
JP2019502345A (ja) 2019-01-24
US10693411B2 (en) 2020-06-23
JP6594548B2 (ja) 2019-10-23
CA3045354A1 (en) 2018-06-07
CA3045354C (en) 2021-07-06
KR102099868B1 (ko) 2020-04-13
EP3550720A4 (en) 2020-07-15
CN106655979A (zh) 2017-05-10
US20190058434A1 (en) 2019-02-21
KR20180081745A (ko) 2018-07-17
AU2017370239B2 (en) 2019-09-12
EP3550720A1 (en) 2019-10-09
CN106655979B (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
WO2018099377A1 (zh) 飞行器及其电子调速器的过压保护方法和装置
US8093740B2 (en) Wind power generation system and operation method thereof
JP4834691B2 (ja) 風力発電システム
JP4736871B2 (ja) 二次励磁発電システム用電力変換装置
JP5486949B2 (ja) 風力発電システム
JP2009189189A (ja) 風力発電システム
JP2008301584A (ja) 風力発電システムおよび電力変換器の制御方法
JP2008306776A (ja) 風力発電システムおよびその制御方法
JP2002034289A (ja) インバータ装置およびその電流制限方法
JP4449775B2 (ja) 二次励磁用電力変換装置
CN110943665B (zh) 有失控发电故障保护的直流调磁记忆电机控制方法及系统
JP5409335B2 (ja) 風力発電システムおよびその制御方法
JP2014121172A (ja) 電力変換システムの故障検知装置
JP2016167900A (ja) 風力発電システムの制御装置
JP5693337B2 (ja) 発電機の制御装置
JP6441880B2 (ja) インバータ
JP4733948B2 (ja) インバータ駆動ブロワ制御装置
CN115498937A (zh) 一种具有新型保护功能的电机快速停机控制系统和方法
JP2010200584A (ja) 電動機制御装置
CN207638589U (zh) 适用于短路保护的异步发电机整流供电系统
KR20220131678A (ko) 인버터 제어장치
JP2007189872A (ja) インバータ制御装置とモータ起動方法。
CN113964883A (zh) 一种虚拟同步发电机控制方法及控制系统
JPH11220899A (ja) 交流励磁同期機の2次励磁装置
JPH0542236B2 (zh)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187014953

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018530519

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017370239

Country of ref document: AU

Date of ref document: 20171128

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3045354

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017876449

Country of ref document: EP

Effective date: 20190701