WO2018096910A1 - 導電性熱可塑性エラストマー組成物 - Google Patents

導電性熱可塑性エラストマー組成物 Download PDF

Info

Publication number
WO2018096910A1
WO2018096910A1 PCT/JP2017/039790 JP2017039790W WO2018096910A1 WO 2018096910 A1 WO2018096910 A1 WO 2018096910A1 JP 2017039790 W JP2017039790 W JP 2017039790W WO 2018096910 A1 WO2018096910 A1 WO 2018096910A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
side chain
clay
thermoplastic elastomer
site
Prior art date
Application number
PCT/JP2017/039790
Other languages
English (en)
French (fr)
Inventor
正哲 金
知野 圭介
雄介 松尾
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to US16/464,052 priority Critical patent/US11024440B2/en
Priority to CN201780072767.7A priority patent/CN110234714A/zh
Priority to EP17874250.8A priority patent/EP3546526B1/en
Publication of WO2018096910A1 publication Critical patent/WO2018096910A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/322Liquid component is processing oil

Definitions

  • the present invention relates to a conductive thermoplastic elastomer composition.
  • Thermoplastic elastomer is an extremely useful material in the industry because it can be melted at the processing temperature during molding and can be molded by a known resin molding method.
  • a thermoplastic elastomer for example, in Japanese Patent No. 5918878 (Patent Document 1), it has a side chain (a) containing a hydrogen-bonded cross-linking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle. And an elastomeric polymer (A) having a glass transition point of 25 ° C. or lower, and an elastomeric polymer containing a hydrogen-bonding cross-linking site and a covalent cross-linking site in the side chain and having a glass transition point of 25 ° C. or lower.
  • a thermoplastic elastomer composition containing at least one elastomer component selected from the group consisting of polymer (B) and clay is disclosed.
  • thermoplastic elastomer composition as described in Patent Document 1 is not necessarily sufficient in terms of exhibiting a good balance between conductivity and compression set resistance at a sufficiently high level.
  • the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a conductive thermoplastic elastomer composition having a sufficient balance between conductivity and compression set resistance at a sufficiently high level.
  • the inventors of the present invention have made the conductive thermoplastic elastomer composition into a side chain containing a hydrogen-bonding crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring.
  • the elastomeric polymer (A) having (a) and having a glass transition point of 25 ° C.
  • the content ratio of the clay is 20 parts by mass or less with respect to 100 parts by mass of the elastomer component, and the content ratio of the paraffin oil Is 1 to 65% by mass with respect to the total amount of the composition, so that the conductive thermoplastic elastomer composition has a sufficiently high balance between conductivity and compression set resistance. (Which has sufficiently high conductivity and sufficiently high compression set resistance in a well-balanced manner) has been found, and the present invention has been completed.
  • the conductive thermoplastic elastomer composition of the present invention is An elastomeric polymer (A) having a side chain (a) containing a hydrogen-bonding cross-linking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle, and having a glass transition point of 25 ° C. or lower; At least one elastomer component selected from the group consisting of an elastomeric polymer (B) containing a hydrogen-bonding cross-linking site and a covalent bond cross-linking site and having a glass transition point of 25 ° C.
  • Paraffin oil A carbon-based filler having a BET specific surface area of 50 m 2 / g or more;
  • the clay content is 20 parts by mass or less with respect to 100 parts by mass of the elastomer component, and the paraffin oil content is 1 to 65 with respect to the total amount of the composition. It is what is mass%.
  • the carbon-based filler is preferably at least one selected from the group consisting of carbon black and carbon nanotubes, and more preferably ketjen black. .
  • the content ratio of the carbon filler is preferably 0.1 to 50% by mass with respect to the total amount of the composition.
  • the clay is preferably an organized clay.
  • thermoplastic elastomer composition having a sufficient balance between conductivity and compression set resistance at a sufficiently high level.
  • the conductive thermoplastic elastomer composition of the present invention is An elastomeric polymer (A) having a side chain (a) containing a hydrogen-bonding cross-linking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle, and having a glass transition point of 25 ° C. or lower; At least one elastomer component selected from the group consisting of an elastomeric polymer (B) containing a hydrogen-bonding cross-linking site and a covalent bond cross-linking site and having a glass transition point of 25 ° C.
  • Paraffin oil A carbon-based filler having a BET specific surface area of 50 m 2 / g or more;
  • the clay content is 20 parts by mass or less with respect to 100 parts by mass of the elastomer component, and the paraffin oil content is 1 to 65 with respect to the total amount of the composition. It is what is mass%.
  • each component contained in the conductive thermoplastic elastomer composition of the present invention will be described separately.
  • Such an elastomer component is at least one selected from the group consisting of the above-mentioned elastomeric polymers (A) to (B).
  • “side chains” refer to side chains and terminals of the elastomeric polymer.
  • the “side chain (a) containing a hydrogen-bonding cross-linked site having a carbonyl-containing group and / or a nitrogen-containing heterocycle” refers to an atom (usually a carbon atom) that forms the main chain of the elastomeric polymer.
  • the side chain contains a hydrogen-bonding crosslinking site and a covalent bonding site means a side chain having a hydrogen-bonding crosslinking site (hereinafter referred to as “side chain (a ′)” for convenience). )) And a side chain having a covalent crosslinking site (hereinafter, sometimes referred to as “side chain (b)” for the sake of convenience), the side chain of the polymer contains a hydrogen bonding crosslinking site.
  • side chains including both cross-linked sites are sometimes referred to as “side chains (c)”.
  • side chains (c) A concept that includes the case where both binding crosslink sites are contained. is there.
  • Such an elastomeric polymer (A) to (B) main chain is generally a known natural polymer or synthetic polymer, and has a glass transition point at room temperature ( 25 ° C.) or lower polymer (so long as it is made of so-called elastomer), it is not particularly limited.
  • the elastomeric polymers (A) to (B) have, for example, an elastomeric polymer having a glass transition point of room temperature (25 ° C.) or lower such as a natural polymer or a synthetic polymer as a main chain, and a carbonyl-containing group and And / or containing a side chain (a) containing a hydrogen-bonding cross-linked moiety having a nitrogen-containing heterocycle; mainly composed of an elastomeric polymer having a glass transition point of room temperature (25 ° C.) or less, such as a natural polymer or a synthetic polymer Containing a side chain (a ′) having a hydrogen-bonding cross-linking site and a side chain (b) having a covalent cross-linking site as a side chain; glass such as a natural polymer or a synthetic polymer An elastomeric polymer having a transition point of room temperature (25 ° C.) or lower and having a side chain (c) including both
  • Examples of the main chains of the elastomeric polymers (A) to (B) include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), 1, 2-butadiene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), ethylene-propylene-diene rubber (EPDM) and other diene rubbers and their hydrogenation Olefin rubbers such as ethylene-propylene rubber (EPM), ethylene-acrylic rubber (AEM), ethylene-butene rubber (EBM), chlorosulfonated polyethylene, acrylic rubber, fluororubber, polyethylene rubber, polypropylene rubber; epichlorohydride Rubber; Polysulfide rubber; Silico Rubber, urethane rubber, and the like.
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • SBR 1, 2-
  • the main chain of the elastomeric polymers (A) to (B) may be composed of an elastomeric polymer containing a resin component, for example, hydrogenated.
  • a resin component for example, hydrogenated.
  • Polystyrene-based elastomeric polymer for example, SBS, SIS, SEBS, etc.
  • polyolefin-based elastomeric polymer for example, polyvinyl chloride-based elastomeric polymer
  • polyurethane-based elastomeric polymer polyester-based elastomeric polymer
  • polyamide-based elastomeric polymer Etc polyamide-based elastomeric polymer Etc.
  • the main chain of such elastomeric polymers (A) to (B) includes diene rubber, hydrogenated diene rubber, olefin rubber, hydrogenated polystyrene elastomeric polymer, polyolefin At least one selected from an elastomeric polymer, a polyvinyl chloride-based elastomeric polymer, a polyurethane-based elastomeric polymer, a polyester-based elastomeric polymer, and a polyamide-based elastomeric polymer is preferable.
  • a hydrogenated diene rubber or an olefin rubber is preferable as the main chain of the elastomeric polymers (A) to (B).
  • a diene rubber is preferable as the main chain of the elastomeric polymers (A) to (B).
  • the elastomeric polymers (A) to (B) may be liquid or solid, and the molecular weight thereof is not particularly limited, and uses and demands for the use of the conductive thermoplastic elastomer composition of the present invention are required. It can select suitably according to a physical property etc.
  • the elastomeric polymers (A) to (B) are preferably in a liquid state.
  • the chain portion is a diene rubber such as isoprene rubber or butadiene rubber
  • the weight average molecular weight of the main chain portion is 1,000 in order to make the elastomeric polymers (A) to (B) liquid. Is preferably from about 100,000 to about 1,000 to 50,000.
  • the elastomeric polymers (A) to (B) are preferably solid, and for example, the main chain portion is isoprene rubber, butadiene.
  • the main chain portion preferably has a weight average molecular weight of 100,000 or more so that the elastomeric polymers (A) to (B) are solid. It is particularly preferably about 500,000 to 1,500,000.
  • Such a weight average molecular weight is a weight average molecular weight (in terms of polystyrene) measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • the elastomeric polymers (A) to (B) can be used in combination of two or more.
  • the mixing ratio of the respective elastomeric polymers can be set to an arbitrary ratio according to the use in which the conductive thermoplastic elastomer composition of the present invention is used or the required physical properties.
  • the glass transition point of the elastomeric polymers (A) to (B) is 25 ° C. or less as described above. If the glass transition point of the elastomeric polymer is within this range, the conductive thermoplastic elastomer composition of the present invention exhibits rubber-like elasticity at room temperature.
  • the “glass transition point” is a glass transition point measured by differential scanning calorimetry (DSC-Differential Scanning Calorimetry). In the measurement, the rate of temperature rise is preferably 10 ° C./min.
  • the main chain of such elastomeric polymers (A) to (B) has a glass transition point of 25 ° C. or less for the elastomeric polymers (A) to (B), and is formed of the resulting conductive thermoplastic elastomer composition.
  • the product exhibits rubber-like elasticity at room temperature (25 ° C.), natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), 1,2-butadiene rubber, styrene-butadiene rubber (SBR), ethylene A diene rubber such as propylene-diene rubber (EPDM) or butyl rubber (IIR); an olefin rubber such as ethylene-propylene rubber (EPM), ethylene-acrylic rubber (AEM), or ethylene-butene rubber (EBM); preferable.
  • the amount of bound styrene of the styrene-butadiene rubber (SBR) that can be used for the elastomeric polymers (A) to (B), the hydrogenation rate of the hydrogenated elastomeric polymer, and the like are not particularly limited.
  • the ratio can be adjusted to any ratio according to the use of the conductive thermoplastic elastomer composition, the physical properties required of the composition, and the like.
  • ethylene-propylene-diene rubber EPDM
  • ethylene-acrylic rubber AEM
  • ethylene-propylene rubber EPM
  • ethylene-butene rubber EBM
  • the degree of crystallinity is less than 10% (more preferably 5 to 0%) from the viewpoint of good rubbery elasticity at room temperature.
  • ethylene-propylene-diene rubber (EPDM), ethylene-acrylic rubber (AEM), ethylene-propylene rubber (EPM), and ethylene-butene rubber (EBM) are used as the main chains of the elastomeric polymers (A) to (B).
  • the ethylene content is preferably 10 to 90 mol%, more preferably 30 to 90 mol%. If the ethylene content is within this range, it is preferable because it is excellent in compression set, mechanical strength, particularly tensile strength when it is used as a thermoplastic elastomer (composition).
  • the elastomeric polymers (A) to (B) are preferably amorphous from the viewpoint of good rubbery elasticity at room temperature.
  • such elastomeric polymers (A) to (B) may be elastomers having a crystallinity (crystal structure) in part, but even in this case, the degree of crystallinity is 10%. It is preferably less than (particularly preferably 5 to 0%).
  • crystallinity is measured by using an X-ray diffractometer (for example, trade name “MiniFlex300” manufactured by Rigaku Corporation) as a measuring device, measuring a diffraction peak, and integrating a scattering peak derived from crystallinity / amorphous. It can be determined by calculating the ratio.
  • the elastomeric polymers (A) to (B) include, as a side chain, a side chain (a) containing a hydrogen-bonded crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle; A side chain (a ′) containing a hydrogen-bonding crosslinking site and a side chain (b) containing a covalent bonding site; and a side chain (c) containing a hydrogen-bonding crosslinking site and a covalent crosslinking site. And at least one of them.
  • the side chain (c) can also be said to be a side chain that functions as a side chain (b) while functioning as a side chain (a ').
  • each side chain will be described.
  • the side chain (a ′) containing a hydrogen-bonding cross-linking site has a group capable of forming a cross-link by hydrogen bonding (for example, a hydroxyl group, a hydrogen-bonding cross-linking site contained in the side chain (a) described later). Any side chain that forms a hydrogen bond based on the group may be used, and the structure is not particularly limited.
  • the hydrogen bond crosslinking site is a site where polymers (elastomers) are crosslinked by hydrogen bonding.
  • Cross-linking by hydrogen bonding includes a hydrogen acceptor (such as a group containing an atom containing a lone pair) and a hydrogen donor (such as a group including a hydrogen atom covalently bonded to an atom having a large electronegativity). Therefore, when both the hydrogen acceptor and the hydrogen donor are not present between the side chains of the elastomers, no crosslinks due to hydrogen bonds are formed. Therefore, a hydrogen bonding cross-linked site is present in the system only when both hydrogen acceptors and hydrogen donors exist between the side chains of the elastomers.
  • a hydrogen acceptor such as a group containing an atom containing a lone pair
  • a hydrogen donor such as a group including a hydrogen atom covalently bonded to an atom having a large electronegativity
  • a hydrogen acceptor for example, a carbonyl group
  • a hydrogen donor for example, a hydroxyl group
  • a hydrogen-bonding bridging site in the side chain (a ′) a hydrogen bond having a carbonyl-containing group and / or a nitrogen-containing heterocycle described below from the viewpoint of forming a stronger hydrogen bond. It is preferable that it is an ionic crosslinking site (hydrogen bonding crosslinking site contained in the side chain (a)). That is, as the side chain (a ′), the side chain (a) described later is more preferable. From the same viewpoint, the hydrogen-bonding cross-linking site in the side chain (a ′) is more preferably a hydrogen-bonding cross-linking site having a carbonyl-containing group and a nitrogen-containing heterocycle.
  • the side chain (a) containing a hydrogen-bonded bridging site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring may be any as long as it has a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring. It is not limited. As such a hydrogen bonding cross-linking site, those having a carbonyl-containing group and a nitrogen-containing heterocyclic ring are more preferred.
  • Such a carbonyl-containing group is not particularly limited as long as it contains a carbonyl group, and specific examples thereof include amide, ester, imide, carboxy group, carbonyl group and the like.
  • Such a carbonyl-containing group may be a group introduced into the main chain (polymer of the main chain portion) using a compound capable of introducing a carbonyl-containing group into the main chain.
  • the compound capable of introducing such a carbonyl-containing group into the main chain is not particularly limited, and specific examples thereof include ketones, carboxylic acids and derivatives thereof.
  • carboxylic acid examples include organic acids having a saturated or unsaturated hydrocarbon group, and the hydrocarbon group may be any of aliphatic, alicyclic, aromatic and the like.
  • carboxylic acid derivatives include carboxylic acid anhydrides, amino acids, thiocarboxylic acids (mercapto group-containing carboxylic acids), esters, amino acids, ketones, amides, imides, dicarboxylic acids and monoesters thereof. Etc.
  • carboxylic acid and derivatives thereof include malonic acid, maleic acid, succinic acid, glutaric acid, phthalic acid, isophthalic acid, terephthalic acid, p-phenylenediacetic acid, and p-hydroxybenzoic acid.
  • Acids carboxylic acids such as p-aminobenzoic acid and mercaptoacetic acid, and those carboxylic acids containing substituents; acids such as succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride, propionic anhydride, benzoic anhydride Anhydrides; aliphatic esters such as maleic acid ester, malonic acid ester, succinic acid ester, glutaric acid ester and ethyl acetate; phthalic acid ester, isophthalic acid ester, terephthalic acid ester, ethyl-m-aminobenzoate, methyl-p- Aromatic esters such as hydroxybenzoate; quinone, anne Ketones such as laquinone and naphthoquinone; glycine, tyrosine, bicine, alanine, valine, leucine, serine, threonine, lysine, aspartic acid,
  • maleamide maleamic acid (maleic monoamide), succinic monoamide, 5-hydroxyvaleramide, N-acetylethanolamine, N, N′-hexamethylenebis (acetamide), malonamide, cycloserine, 4-acetamidophenol, amides such as p-acetamidobenzoic acid; imides such as maleimide and succinimide; and the like.
  • the compound capable of introducing a carbonyl group is preferably a cyclic acid anhydride such as succinic anhydride, maleic anhydride, glutaric anhydride, and phthalic anhydride, and is maleic anhydride. It is particularly preferred.
  • the nitrogen-containing heterocycle may be introduced into the main chain directly or via an organic group, and the configuration thereof is particularly limited. It is not a thing.
  • a nitrogen-containing heterocycle may be used even if it contains a heteroatom other than a nitrogen atom in the heterocycle, for example, a sulfur atom, an oxygen atom, a phosphorus atom, etc., as long as it contains a nitrogen atom in the heterocycle. it can.
  • thermoplastic elastomer composition of the present invention if it has a heterocyclic structure, the hydrogen bond forming a bridge becomes stronger, and the resulting thermoplastic elastomer composition of the present invention This is preferable because the tensile strength is further improved.
  • the nitrogen-containing heterocyclic ring may have a substituent, and examples of the substituent include alkyl groups such as a methyl group, an ethyl group, a (iso) propyl group, and a hexyl group; a methoxy group and an ethoxy group.
  • Alkoxy groups such as (iso) propoxy group; groups consisting of halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; cyano group; amino group; aromatic hydrocarbon group; ester group; ether group; A thioether group; and the like can be used in combination.
  • the substitution position of these substituents is not particularly limited, and the number of substituents is not limited.
  • the nitrogen-containing heterocyclic ring may or may not have aromaticity, but the conductive thermoplastic elastomer composition of the present invention obtained when having aromaticity is used. This is preferable because compression set and mechanical strength are further improved.
  • such a nitrogen-containing heterocyclic ring is not particularly limited, but from the viewpoints that hydrogen bonds become stronger and compression set and mechanical strength are further improved, a 5-membered ring or a 6-membered ring. It is preferable that Specific examples of such nitrogen-containing heterocycle include pyrrololine, pyrrolidone, oxindole (2-oxindole), indoxyl (3-oxindole), dioxindole, isatin, indolyl, phthalimidine, ⁇ -Isoindigo, monoporphyrin, diporphyrin, triporphyrin, azaporphyrin, phthalocyanine, hemoglobin, uroporphyrin, chlorophyll, phyroerythrin, imidazole, pyrazole, triazole, tetrazole, benzimidazole, benzopyrazole, benzotriazole, imidazoline, imidazolone, imidazolidone Hydan
  • the substituents X, Y, and Z in the general formulas (10) and (11) are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or 6 to 6 carbon atoms. 20 aryl groups or amino groups. Note that any one of X and Y in the general formula (10) is not a hydrogen atom, and similarly, at least one of X, Y and Z in the general formula (11) is not a hydrogen atom.
  • substituents X, Y, and Z include, in addition to hydrogen atoms and amino groups, specifically, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, octyl group, dodecyl group, stearyl Linear alkyl groups such as isopropyl groups, isobutyl groups, s-butyl groups, t-butyl groups, isopentyl groups, neopentyl groups, t-pentyl groups, 1-methylbutyl groups, 1-methylheptyl groups, 2- Branched alkyl groups such as ethylhexyl group; aralkyl groups such as benzyl group and phenethyl group; aryl groups such as phenyl group, tolyl group (o-, m-, p-), dimethylphenyl group, mesityl group; It is done.
  • the substituents X, Y, and Z are alkyl groups, particularly butyl, octyl, dodecyl, isopropyl, and 2-ethylhexyl groups. It is preferable because the processability of the composition becomes good.
  • the following compounds are preferably exemplified for the nitrogen-containing 6-membered ring. These may also have the above-described various substituents (for example, the substituents that the above-mentioned nitrogen-containing heterocycle may have), or may be hydrogenated or eliminated. .
  • a condensed product of the nitrogen-containing heterocycle and a benzene ring or a nitrogen-containing heterocycle can be used, and specific examples thereof include the following condensed rings.
  • These condensed rings may also have the above-described various substituents, and may have hydrogen atoms added or eliminated.
  • the resulting conductive thermoplastic elastomer composition of the present invention is excellent in recyclability, compression set, hardness and mechanical strength, particularly tensile strength. It is preferably at least one selected from a ring, a thiadiazole ring, a pyridine ring, an imidazole ring, a triazine ring and a hydantoin ring, and is selected from a triazole ring, a thiadiazole ring, a pyridine ring, an imidazole ring and a hydantoin ring. It is preferable that it is at least one kind.
  • the side chain (a) includes both the carbonyl-containing group and the nitrogen-containing heterocycle
  • the carbonyl-containing group and the nitrogen-containing heterocycle are introduced into the main chain as side chains independent of each other.
  • the carbonyl-containing group and the nitrogen-containing heterocycle are introduced into the main chain as one side chain bonded through different groups.
  • a side chain containing a hydrogen-bonded cross-linking site having the carbonyl-containing group and the nitrogen-containing heterocycle is introduced into the main chain as one side chain.
  • A is a nitrogen-containing heterocyclic ring
  • B is a single bond
  • an oxygen atom and a formula: NR ′
  • R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the side chain containing the structural part represented by is introduced into the main chain as one side chain.
  • the hydrogen-bonding cross-linked site of the side chain (a) contains a structural portion represented by the general formula (1).
  • the nitrogen-containing heterocyclic ring A in the above formula (1) specifically includes the nitrogen-containing heterocyclic rings exemplified above.
  • Specific examples of the substituent B in the above formula (1) include, for example, a single bond; an oxygen atom, a sulfur atom, or a formula: NR ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms).
  • NR ′ is simply referred to as “amino group NR ′”); the number of carbon atoms that may contain these atoms or groups An alkylene group having 1 to 20 carbon atoms or an aralkylene group; an alkylene ether group having 1 to 20 carbon atoms (an alkyleneoxy group such as an —O—CH 2 CH 2 — group) or an alkyleneamino group having these atoms or groups as terminals.
  • alkylene thioether group (alkylene thio group, for example, —S—CH 2 CH 2 — group);
  • alkylene thio group for example, —S—CH 2 CH 2 — group;
  • a xylene ether group (aralkyleneoxy group), an aralkylene amino group, or an aralkylene thioether group;
  • examples of the alkyl group having 1 to 10 carbon atoms that can be selected as R ′ in the amino group NR ′ include methyl, ethyl, propyl, butyl, pentyl, hexyl, A heptyl group, an octyl group, a nonyl group, a decyl group, etc. are mentioned.
  • the substituent B is an oxygen atom, a sulfur atom or an amino group forming a conjugated system; an alkylene ether group having 1 to 20 carbon atoms, an alkyleneamino group or an alkylene having these atoms or groups at the terminal. It is preferably a thioether group, an amino group (NH), an alkyleneamino group (—NH—CH 2 — group, —NH—CH 2 CH 2 — group, —NH—CH 2 CH 2 CH 2 — group), alkylene An ether group (—O—CH 2 — group, —O—CH 2 CH 2 — group, —O—CH 2 CH 2 CH 2 — group) is particularly preferred.
  • the side chain (a) is a side chain containing a hydrogen-bonded cross-linking site having the carbonyl-containing group and the nitrogen-containing heterocycle
  • the hydrogen bond having the carbonyl-containing group and the nitrogen-containing heterocycle is more preferably a side chain introduced into the polymer main chain at the ⁇ -position or ⁇ -position as one side chain represented by the following formula (2) or (3).
  • A is a nitrogen-containing heterocyclic ring
  • B and D are each independently a single bond; an oxygen atom, an amino group NR ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) or A sulfur atom; or an organic group that may contain these atoms or groups.
  • the nitrogen-containing heterocyclic ring A is basically the same as the nitrogen-containing heterocyclic ring A of the above formula (1), and the substituents B and D are each independently of the substituent B of the above formula (1). The same as above.
  • the substituent D in the formula (3) is a single bond; an alkylene having 1 to 20 carbon atoms which may contain an oxygen atom, a nitrogen atom or a sulfur atom among those exemplified as the substituent B in the formula (1). It is preferable to form a conjugated system of a group or an aralkylene group, and a single bond is particularly preferable. That is, it is preferable to form an alkyleneamino group or an aralkyleneamino group having 1 to 20 carbon atoms which may contain an oxygen atom, a nitrogen atom or a sulfur atom together with the imide nitrogen of the above formula (3). It is particularly preferred that the nitrogen-containing heterocycle is directly bonded to the imide nitrogen (single bond).
  • the substituent D includes a single bond; the above-described alkylene ether or aralkylene ether group having 1 to 20 carbon atoms having an oxygen atom, sulfur atom or amino group as a terminal; methylene including isomers; Group, ethylene group, propylene group, butylene group, hexylene group, phenylene group, xylylene group and the like.
  • the hydrogen-bond cross-linking site of the side chain (a) is Formula (101):
  • A is a nitrogen-containing heterocyclic ring.
  • the nitrogen-containing heterocycle A in the formula (101) is basically the same as the nitrogen-containing heterocycle A in the formula (1).
  • the hydrogen bond cross-linking site of such a side chain (a) is represented by the following general formula (102) from the viewpoint of high modulus and high breaking strength:
  • the side chain (a) is particularly preferably a group represented by the general formula (102).
  • the ratio between the carbonyl-containing group and the nitrogen-containing heterocycle of the thermoplastic elastomer is not particularly limited, and 2: 1 is preferable because it tends to form a complementary interaction and can be easily produced. .
  • the side chain (a) containing a hydrogen-bonded cross-linking site having such a carbonyl-containing group and / or a nitrogen-containing heterocycle has a ratio of 0.1 to 50 mol% with respect to 100 mol% of the main chain portion ( It is preferably introduced at a rate of 1 to 30 mol%.
  • the introduction rate of such side chain (a) is less than 0.1 mol%, the tensile strength at the time of crosslinking may not be sufficient.
  • it exceeds 50 mol% the crosslinking density increases and rubber elasticity is lost. There is.
  • the introduction rate is within the above-mentioned range, the crosslinks are efficiently formed between the molecules by the interaction between the side chains of the thermoplastic elastomer, so the tensile strength at the time of crosslinking is high and the recyclability is excellent. Therefore, it is preferable.
  • the introduction rate is such that the side chain (a) includes a side chain (ai) containing a hydrogen-bonded cross-linking site having the carbonyl-containing group and a hydrogen bond cross-linking site having the nitrogen-containing heterocycle.
  • the side chain (aii) containing the carbonyl-containing group and the side chain (ai-ii) containing the nitrogen-containing heterocyclic ring According to the ratio, these are considered as one side chain (a) and calculated.
  • the introduction rate may be considered based on the larger side chain.
  • the introduction rate is, for example, when the main chain portion is ethylene-propylene rubber (EPM), the amount of the monomer having the side chain portion introduced is 0.1 to 50 per 100 units of ethylene and propylene monomer units. About unit.
  • EPM ethylene-propylene rubber
  • a polymer having a cyclic acid anhydride group (more preferably a maleic anhydride group) as a functional group in a polymer (material for forming an elastomeric polymer) that forms the main chain after the reaction.
  • the compound capable of introducing such a nitrogen-containing heterocycle may be the nitrogen-containing heterocycle itself exemplified above, and a substituent that reacts with a cyclic acid anhydride group such as maleic anhydride (for example, hydroxyl group, thiol).
  • nitrogen-containing heterocycle in the side chain (a)
  • nitrogen heterocycle is referred to as “nitrogen-containing n-membered ring compound (n ⁇ 3)”.
  • the bonding positions described below are based on the IUPAC nomenclature. For example, in the case of a compound having three nitrogen atoms having an unshared electron pair, the bonding position is determined by the order based on the IUPAC nomenclature. Specifically, the bonding positions are indicated on the 5-membered, 6-membered and condensed nitrogen-containing heterocycles exemplified above.
  • the bonding position of the nitrogen-containing n-membered ring compound bonded to the copolymer directly or via an organic group is not particularly limited, and any bonding position (position 1 to position n) But you can. Preferably, it is the 1-position or 3-position to n-position.
  • the nitrogen-containing n-membered ring compound contains one nitrogen atom (for example, a pyridine ring), the chelate is easily formed in the molecule, and the physical properties such as tensile strength when the composition is obtained are excellent.
  • the (n-1) position is preferred.
  • the elastomeric polymer is easy to form crosslinks due to hydrogen bonding, ionic bonding, coordination bonding, etc. between the molecules of the elastomeric polymer, and is excellent in recyclability. , Tend to be excellent in mechanical properties, particularly tensile strength.
  • the “side chain (b) containing a covalently bonded cross-linking site” is a covalent cross-linking site (containing an amino group described later) on an atom (usually a carbon atom) forming the main chain of the elastomeric polymer.
  • Functional groups that can generate at least one bond selected from the group consisting of amides, esters, lactones, urethanes, ethers, thiourethanes, and thioethers by reacting with “compounds that form covalent bonds” such as compounds ) Has a chemically stable bond (covalent bond).
  • the side chain (b) is a side chain containing a covalent cross-linking site, but has a covalent bond site and a group capable of hydrogen bonding, and hydrogen bonds between the side chains.
  • a hydrogen donor that can be used as a side chain (c) described later (which can form a hydrogen bond between the side chains of the elastomers, and
  • both hydrogen acceptors are not included, for example, when only a side chain containing an ester group (—COO—) is present in the system, the ester groups (—COO—)
  • a hydrogen-donating hydrogen donor site such as a carboxy group or a triazole ring, and a hydrogen acceptor Part
  • hydrogen bonds are formed between the side chains of the elastomers, so that
  • the site where the hydrogen bond is formed becomes a hydrogen-bonding crosslinking site.
  • the side chain (b) may be used as the side chain (c) depending on the structure itself, the structure of the side chain (b) and the type of substituents of the other side chain, etc.) .
  • the “covalent bonding crosslinking site” referred to here is a site that crosslinks polymers (elastomers) by covalent bonding.
  • the side chain (b) containing such a covalently cross-linked site is not particularly limited.
  • an elastomeric polymer having a functional group in the side chain (polymer for forming the main chain portion) and the functional group It is preferable to contain a covalent crosslinking site formed by reacting with a compound that reacts with a group to form a covalent crosslinking site (compound that generates a covalent bond).
  • Crosslinking at the covalent cross-linking site of such a side chain (b) is formed by at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether. Is preferred.
  • the functional group possessed by the polymer constituting the main chain is a functional group capable of producing at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether. It is preferable.
  • Examples of such “compound that forms a covalent bond site (compound that forms a covalent bond)” include, for example, two or more amino groups and / or imino groups (both amino groups and imino groups are combined in one molecule).
  • the “compound that forms a covalent crosslinkable site (compound that forms a covalent bond)” refers to the type of substituent that the compound has, the degree of progress of the reaction when the compound is reacted, Depending on the above, it becomes a compound that can introduce both the hydrogen-bonding cross-linking site and the covalent-bonding cross-linking site (for example, when a cross-linking site by a covalent bond is formed using a compound having 3 or more hydroxyl groups). Depending on the progress of the reaction, two hydroxyl groups may react with the functional group of the elastomeric polymer having a functional group in the side chain, and the remaining one hydroxyl group may remain as a hydroxyl group.
  • the “compound that forms a covalent bond site (compound that forms a covalent bond)” exemplified here also includes “a compound that forms both a hydrogen bond bridge site and a covalent bond site”. obtain. From this point of view, when the side chain (b) is formed, the compound is appropriately selected from “compounds that form a covalent bond site (compound that generates a covalent bond)” according to the intended design. Or the side chain (b) may be formed by appropriately controlling the degree of progress of the reaction.
  • Polyamine compounds that can be used as such “compound that forms a covalent bond site (compound that forms a covalent bond)” include, for example, the following alicyclic amines, aliphatic polyamines, aromatic polyamines, and the like. And nitrogen heterocyclic amines.
  • alicyclic amines include, for example, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis- (4-aminocyclohexyl) methane, diaminocyclohexane, di- (Aminomethyl) cyclohexane and the like.
  • the aliphatic polyamine is not particularly limited, and examples thereof include methylene diamine, ethylene diamine, propylene diamine, 1,2-diaminopropane, 1,3-diaminopentane, hexamethylene diamine, diaminoheptane, diaminododecane, diethylenetriamine, Diethylaminopropylamine, N-aminoethylpiperazine, triethylenetetramine, N, N'-dimethylethylenediamine, N, N'-diethylethylenediamine, N, N'-diisopropylethylenediamine, N, N'-dimethyl-1,3-propane Diamine, N, N'-diethyl-1,3-propanediamine, N, N'-diisopropyl-1,3-propanediamine, N, N'-dimethyl-1,6-hexanediamine, N, N'-diethyl -1, - he
  • the aromatic polyamine and the nitrogen-containing heterocyclic amine are not particularly limited.
  • examples include sulfone and 3-amino-1,2,4-triazole.
  • one or more of the hydrogen atoms may be substituted with an alkyl group, an alkylene group, an aralkylene group, an oxy group, an acyl group, a halogen atom, or the like. It may contain a hetero atom such as a sulfur atom.
  • the polyamine compounds may be used singly or in combination of two or more.
  • the mixing ratio when two or more types are used in combination is an arbitrary ratio depending on the use in which the thermoplastic elastomer (composition) of the present invention is used, the physical properties required for the thermoplastic elastomer (composition) of the present invention, and the like. Can be adjusted.
  • hexamethylene diamine, N, N′-dimethyl-1,6-hexanediamine, diaminodiphenyl sulfone and the like are preferable because of their high effect of improving compression set, mechanical strength, particularly tensile strength. .
  • the polyol compound is a compound having two or more hydroxyl groups
  • the molecular weight and skeleton thereof are not particularly limited.
  • the following polyether polyols, polyester polyols, other polyols, and mixed polyols thereof may be used. Can be mentioned.
  • polyether polyols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin, 1,1,1-trimethylolpropane, 1,2,5-hexanetriol, 1 , 3-butanediol, 1,4-butanediol, 4,4′-dihydroxyphenylpropane, 4,4′-dihydroxyphenylmethane, at least one selected from polyhydric alcohols such as pentaerythritol, ethylene oxide, propylene Polyol obtained by adding at least one selected from oxide, butylene oxide, styrene oxide, etc .; polyoxytetramethylene oxide; and the like may be used alone or in combination of two or more. Good
  • polyester polyol examples include ethylene glycol, propylene glycol, butanediol pentanediol, hexanediol, cyclohexanedimethanol, glycerin, 1,1,1-trimethylolpropane, and other low molecular polyols.
  • polystyrene resin examples include, for example, polymer polyol, polycarbonate polyol; polybutadiene polyol; hydrogenated polybutadiene polyol; acrylic polyol; ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butanediol, pentanediol, Hexanediol, polyethylene glycol laurylamine (eg, N, N-bis (2-hydroxyethyl) laurylamine), polypropylene glycol laurylamine (eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine) Polyethylene glycol octylamine (eg, N, N-bis (2-hydroxyethyl) octylamine), polypropylene glycol octyl Ruamine (eg, N, N-bis (2-methyl-2-hydroxyethyl) octylamine), polyethylene glycol stearylamine (e
  • polyisocyanate compound examples include 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4,4′-diphenylmethane diisocyanate (4,4′- MDI), 2,4′-diphenylmethane diisocyanate (2,4′-MDI), 1,4-phenylene diisocyanate, xylylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), tolidine diisocyanate (TODI), 1, Aromatic polyisocyanates such as 5-naphthalene diisocyanate (NDI), hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHDI), lysine diisocyanate, norbornane diisocyanate methyl (NB) DI) aliphatic polyisocyanate, transcyclohexane-1,4-
  • the polythiol compound is a compound having two or more thiol groups
  • its molecular weight and skeleton are not particularly limited. Specific examples thereof include methanedithiol, 1,3-butanedithiol, 1,4-butanedithiol, 2,3-butanedithiol, 1,2-benzenedithiol, 1,3-benzenedithiol, 1,4-benzenedithiol, 1,10-decanedithiol, 1,2-ethanedithiol, 1,6-hexanedithiol, , 9-nonanedithiol, 1,8-octanedithiol, 1,5-pentanedithiol, 1,2-propanedithiol, 1,3-propadithiol, toluene-3,4-dithiol, 3,6-dichloro-1, 2-benzenedithiol, 1,5-naphthalenedithiol, 1,2-benzenedimethanethiol,
  • the functional group possessed by the polymer constituting the main chain that reacts with such a “compound that forms a covalent bond site (compound that forms a covalent bond)” includes amide, ester, lactone, urethane, and thiourethane.
  • the elastomeric polymer (B) having the side chain (b) has a cross-linking at the covalent cross-linking site in the side chain (b), that is, the above-mentioned “covalent cross-linking with the functional group”. Having at least one covalent bond formed in a molecule by reaction with a compound that forms a site (compound that forms a covalent bond), and in particular, lactone, urethane, ether, thiourethane and thioether In the case where the cross-link is formed by at least one bond selected from the group consisting of: preferably 2 or more, more preferably 2 to 20, more preferably 2 to 10 More preferably.
  • the crosslinking at the covalent crosslinking site of the side chain (b) contains a tertiary amino bond (—N ⁇ ) or an ester bond (—COO—).
  • the compression set and mechanical strength (breaking elongation, breaking strength) of the composition) are preferable because they can be more easily improved.
  • an elastomer having a side chain containing a group capable of forming a hydrogen bond with respect to a tertiary amino bond (—N ⁇ ) and an ester bond (—COO—) is included.
  • the covalently crosslinked site can function as a side chain (c) described later.
  • the elastomeric polymer (B) having the side chain (a) as the side chain (a ′) that is, the elastomeric polymer (B) has both side chains (a) and (b).
  • the crosslinking at the covalent crosslinking site has the tertiary amino bond and / or the ester bond
  • these groups and the side chain (a) carbonyl-containing group and / or nitrogen-containing group
  • the crosslink density can be further improved by hydrogen bonding (interaction) with a group in the side chain having a heterocyclic ring.
  • a side chain (b) having such a structure containing a tertiary amino bond (—N ⁇ ) and an ester bond (—COO—)
  • a covalently linked cross-linking site is formed.
  • polyethylene glycol laurylamine eg, N, N-bis (2-hydroxyethyl) laurylamine
  • polypropylene glycol laurylamine eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine
  • polyethylene glycol octylamine eg, N, N-bis (2-hydroxyethyl) octylamine
  • polypropylene glycol octylamine eg, N, N-bis (2-methyl-2-hydroxyethyl) octylamine
  • Such a side chain (c) is a side chain containing both a hydrogen-bonding crosslinking site and a covalent bonding site in one side chain.
  • a hydrogen-bonding cross-linking site contained in the side chain (c) is the same as the hydrogen-bonding cross-linking site described in the side chain (a ′), and the hydrogen-bonding cross-linking site in the side chain (a).
  • part is preferable.
  • the thing similar to the covalent bond crosslinkable part in a side chain (b) can be utilized (The same bridge
  • Such a side chain (c) reacts with an elastomeric polymer having a functional group in the side chain (polymer for forming the main chain portion) and the functional group to form a hydrogen-bonding crosslinking site and a covalent bond.
  • a side chain formed by reacting a compound that forms both of the crosslinking sites is preferable.
  • a compound that forms both such a hydrogen-bonding crosslinking site and a covalent-bonding crosslinking site a compound that introduces both a hydrogen-bonding crosslinking site and a covalent-bonding crosslinking site
  • a heterocyclic ring particularly preferably a nitrogen-containing compound
  • a compound having a heterocycle) and capable of forming a covalent crosslinking site is preferable, among which a heterocycle-containing polyol, a heterocycle-containing polyamine, a heterocycle-containing polythiol, and the like are more preferable. preferable.
  • the polyol, polyamine, and polythiol containing such a heterocyclic ring may form the above-mentioned “covalently linked crosslinking site” except that it has a heterocyclic ring (particularly preferably a nitrogen-containing heterocyclic ring).
  • the same polyols, polyamines and polythiols as described in “Possible compounds (compounds forming a covalent bond)” can be used as appropriate.
  • Such a heterocyclic ring-containing polyol is not particularly limited, and examples thereof include bis, tris (2-hydroxyethyl) isocyanurate, kojic acid, dihydroxydithiane, and trishydroxyethyltriazine.
  • the heterocycle-containing polyamine is not particularly limited, and examples thereof include acetoguanamine, piperazine, bis (aminopropyl) piperazine, benzoguanamine, and melamine. Further, examples of such a heterocyclic ring-containing polythiol include dimercaptothiadiazole and tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate.
  • the side chain (c) an elastomeric polymer having a functional group in the side chain (polymer for forming the main chain part) is reacted with a polyol, polyamine, polythiol, etc. containing a heterocyclic ring. It is preferable that the side chain is obtained.
  • the main chain that reacts with “a compound that forms both a hydrogen bonding crosslinking site and a covalent crosslinking site (a compound that introduces both a hydrogen bonding crosslinking site and a covalent crosslinking site)” is formed.
  • the functional group possessed by the polymer is preferably a functional group capable of producing (generating: forming) at least one bond selected from the group consisting of amide, ester, lactone, urethane, thiourethane and thioether.
  • Preferred examples include a cyclic acid anhydride group, a hydroxyl group, an amino group, a carboxy group, an isocyanate group, and a thiol group.
  • the elastomeric polymer (B) having the side chain (c) has at least one crosslink in the molecule at the covalent crosslink site in the side chain (c),
  • a bridge is formed by at least one bond selected from the group consisting of lactone, urethane, ether, thiourethane and thioether
  • it preferably has 2 or more, and has 2 to 20 More preferably, 2 to 10 are more preferable.
  • the crosslinking at the covalent crosslinking site of the side chain (c) contains a tertiary amino bond (—N ⁇ ) or an ester bond (—COO—). This is preferable because the compression set and mechanical strength (breaking elongation, breaking strength) of the composition) are further improved.
  • the bridge at the covalent crosslinking site contains a tertiary amino bond (—N ⁇ ), an ester bond (—COO—),
  • a tertiary amino bond (—N ⁇ )
  • an ester bond (—COO—)
  • the tertiary amino bond (—N ⁇ ) or ester bond (—COO—) in the side chain having a covalent cross-linking site forms a hydrogen bond with the other side chain.
  • the covalent bond cross-linking site containing such a tertiary amino bond (—N ⁇ ) and ester bond (—COO—) is also provided with a hydrogen bond cross-linking site, and the side chain (c) Can function.
  • the share containing the tertiary amino bond and / or the ester bond is included.
  • the cross-linking density is further improved. Is considered possible.
  • a compound capable of reacting with a functional group of the polymer constituting the main chain to form a covalently crosslinked site containing the tertiary amino bond and / or the ester bond examples include polyethylene glycol laurylamine (for example, N, N-bis (2-hydroxyethyl) laurylamine), polypropylene glycol laurylamine (Eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine), polyethylene glycol octylamine (eg, N, N-bis (2-hydroxyethyl) octylamine), polypropylene glycol octylamine (eg, N, N-bis (2-methyl-2-hydroxyethyl) o Tilamine), polyethylene glycol stearylamine (eg, N, N-bis (2-hydroxyethyl) stearylamine), polypropy
  • the crosslink at the covalent crosslink site of the side chain (b) and / or side chain (c) contains at least one structure represented by any of the following general formulas (4) to (6). More preferably, G in the formula contains a tertiary amino bond or an ester bond (in the following structure, when it contains a hydrogen-bonding cross-linked site, the side having that structure) The chain is used as the side chain (c)).
  • E, J, K and L are each independently a single bond; an oxygen atom, an amino group NR ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) .) Or a sulfur atom; or an organic group that may contain these atoms or groups, G may contain an oxygen atom, a sulfur atom, or a nitrogen atom, and may have a linear, branched, or cyclic carbon number. 1 to 20 hydrocarbon groups.
  • substituent G examples include a methylene group, an ethylene group, a 1,3-propylene group, a 1,4-butylene group, a 1,5-pentylene group, a 1,6-hexylene group, and a 1,7-heptylene group.
  • Alkylene groups such as 1,8-octylene group, 1,9-nonylene group, 1,10-decylene group, 1,11-undecylene group, 1,12-dodecylene group; N, N-diethyldodecylamine-2, 2'-diyl, N, N-dipropyldodecylamine-2,2'-diyl, N, N-diethyloctylamine-2,2'-diyl, N, N-dipropyloctylamine-2,2'- Diyl, N, N-diethylstearylamine-2,2′-diyl, N, N-dipropylstearylamine-2,2′-diyl, divinyl, bivalent group such as 1,4-cyclohexylene group Alicyclic charcoal Hydrogen group; divalent aromatic hydrocarbon group such as 1,4-phenylene group, 1,2-phenylene group, 1,3-phenylene group, 1,
  • the substituent G in such a formula preferably has an isocyanurate group (isocyanurate ring) structure from the viewpoint of high heat resistance and high strength due to hydrogen bonding.
  • the substituent G in such a formula is a group represented by the following general formula (111) and the following general formula (112) from the viewpoint of high heat resistance and high strength due to hydrogen bonding. It is more preferable that it is a group represented.
  • the crosslinking at the covalent crosslinking site of the side chain (c) is bonded to the main chain of the elastomeric polymer at the ⁇ -position or ⁇ -position. It is preferable to contain at least one of the structures represented, and it is more preferred that G in the formula contains a tertiary amino group (the structures shown in the formulas (7) to (9) are a hydroxyl group and a carbonyl group. And a side chain having such a structure can function as a side chain (c)).
  • the substituents E, J, K and L are each independently the same as the substituents E, J, K and L in the above formulas (4) to (6).
  • the substituent G is basically the same as the substituent G in the above formula (4).
  • the cross-linking at the covalent cross-linking site is preferably formed by a reaction between a cyclic acid anhydride group and a hydroxyl group or an amino group and / or an imino group. .
  • the polymer that forms the main chain portion after the reaction has a cyclic acid anhydride group (for example, maleic anhydride group) as a functional group
  • the cyclic acid anhydride group of the polymer a hydroxyl group or an amino group, and It is formed by reacting with a compound that forms the above-described covalently crosslinked site having an imino group (compound that generates a covalent bond) to form a site that is crosslinked by a covalent bond, thereby crosslinking between the polymers.
  • Crosslinking may be used.
  • the crosslinking at the covalent crosslinking site is at least one selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether. More preferably, it is formed by bonding.
  • the side chain (a ′), the side chain (a), the side chain (b), and the side chain (c) have been described above.
  • Each group (structure) of the side chain in such a polymer is NMR, It can be confirmed by a commonly used analytical means such as an IR spectrum.
  • the elastomeric polymer (A) is an elastomeric polymer having the side chain (a) and a glass transition point of 25 ° C. or less, and the elastomeric polymer (B) has a hydrogen-bonding cross-linked site in the side chain. And an elastomeric polymer having a glass transition point of 25 ° C. or less (a polymer having both side chains (a ′) and side chains (b) as side chains, side chains on side chains) A polymer containing at least one chain (c)).
  • an elastomer component one of the elastomeric polymers (A) to (B) may be used alone, or two or more of them may be used in combination. Good.
  • the elastomeric polymer (B) may be a polymer having both a side chain (a ′) and a side chain (b) or a polymer having a side chain (c). From the viewpoint that a stronger hydrogen bond is formed as the hydrogen bonding cross-linking site contained in the side chain of the elastomeric polymer (B), hydrogen bonding cross-linking having a carbonyl-containing group and / or a nitrogen-containing heterocycle. It is preferably a site (more preferably a hydrogen-bonding cross-linked site having a carbonyl-containing group and a nitrogen-containing heterocycle).
  • the method for producing such elastomeric polymers (A) to (B) is not particularly limited, and the side chain (a) as described above; the side chain (a ′) and the side chain (b);
  • a known method capable of introducing at least one selected from the group consisting of the side chain (c) as a side chain of an elastomeric polymer having a glass transition point of 25 ° C. or lower can be appropriately employed.
  • a method for producing the elastomeric polymer (B) a method described in JP-A-2006-131663 may be employed.
  • a cyclic acid anhydride group for example, a maleic anhydride group
  • a compound that reacts with the cyclic acid anhydride group to form a covalent bond cross-linking site compound that forms a covalent bond
  • a hydrogen bond that reacts with the cyclic acid anhydride group on the elastomeric polymer in the side chain
  • Each side chain may be introduced at the same time using a mixture (mixed raw material) with a compound (a compound capable of introducing a nitrogen-containing heterocycle) that forms a sexually cross-linked site.
  • elastomeric polymers (A) to (B) for example, an elastomeric polymer having a functional group (for example, a cyclic acid anhydride group) in the side chain is used, and the elastomeric polymer is used.
  • a functional group for example, a cyclic acid anhydride group
  • a compound that reacts with the functional group to form a hydrogen-bonding cross-linking site, a compound that reacts with the functional group to form a hydrogen-bonding cross-linking site, and a functional group to react with a covalent bond An elastomeric polymer having the side chain (a ′) and side chain (b) by reacting with at least one raw material compound among the mixed raw materials of the compound forming the site; And / or a method of producing an elastomeric polymer having the side chain (c) (the elastomeric polymers (A) to (B)) may be employed.
  • the conditions (temperature conditions, atmospheric conditions, etc.) employed in the case of such a reaction are not particularly limited, and the functional group and the compound that reacts with the functional group (the compound that forms a hydrogen-bonding cross-linked site and / or the covalent bond) What is necessary is just to set suitably according to the kind of compound which forms a binding bridge
  • the elastomeric polymer (A) it may be produced by polymerizing a monomer having a hydrogen bonding site.
  • the elastomeric polymer having such a functional group (for example, cyclic acid anhydride group) in the side chain is a polymer capable of forming the main chain of the above-mentioned elastomeric polymers (A) to (B). Those having a functional group in the side chain are preferred.
  • the “elastomeric polymer containing a functional group in a side chain” means that a functional group (the above-described functional group such as a cyclic acid anhydride group) is chemically stable at an atom forming a main chain.
  • Such a functional group is preferably a functional group capable of causing at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether, and among them, cyclic
  • An acid anhydride group, a hydroxyl group, an amino group, a carboxy group, an isocyanate group, a thiol group, and the like are preferable.
  • a cyclic acid anhydride group is particularly preferable. preferable.
  • a succinic anhydride group a maleic anhydride group, a glutaric anhydride group, and a phthalic anhydride group are preferable. Among them, it can be easily introduced into a polymer side chain and is industrially available. From the viewpoint of being easy, maleic anhydride groups are more preferable.
  • the functional group is a cyclic acid anhydride group
  • examples of the compound into which the functional group can be introduced include succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride, and derivatives thereof.
  • a cyclic acid anhydride may be used to introduce a functional group into an elastomeric polymer (for example, a known natural polymer or synthetic polymer).
  • the compound that reacts with the functional group to form a hydrogen-bonding cross-linking site is not particularly limited, but the above-mentioned “compound that forms a hydrogen-bonding cross-linking site (compound capable of introducing a nitrogen-containing heterocycle)” It is preferable to use it. Further, the compound that reacts with the functional group to form a covalent crosslinking site is not particularly limited, but the above-mentioned “compound that forms a covalent crosslinking site (compound that generates a covalent bond)” is used. Is preferred.
  • a compound that forms a hydrogen-bonding cross-linked site a compound that can introduce a nitrogen-containing heterocycle
  • a compound that forms a covalent-bonded cross-linked site a compound that generates a covalent bond
  • the compound reacts with the functional group.
  • compounds that form both hydrogen-bonding and covalent bonding sites for example, polyols, polyamines, polythiols, and the like containing nitrogen-containing heterocycles
  • an elastomeric polymer having a functional group for example, a cyclic acid anhydride group
  • a compound that reacts with the functional group to form a hydrogen-bonding cross-linking site, a compound that reacts with the functional group to form a hydrogen-bonding cross-linking site, and a functional group to react with a covalent bond The elastomeric polymer (A) having the side chain (a) by reacting with at least one raw material compound among the mixed raw materials of the compound forming the site, the hydrogen-bonding cross-linking site and the covalent bond in the side chain
  • the elastomeric polymer having a functional group in the side chain is converted into the raw material.
  • clay and an elastomeric polymer having a functional group in the side chain are mixed, and then the raw material compound is added and reacted to form a composition simultaneously with the preparation of the elastomer component ( You may employ
  • a method of adding the above-mentioned clay in advance when producing an elastomer component elastomer polymers (A) to (B)
  • the composition is preferably prepared simultaneously with the preparation of the elastomer component.
  • At least one elastomer component selected from the group consisting of such elastomeric polymers (A) and (B) is industrially easily available and has high mechanical strength and compression set resistance.
  • a maleic anhydride-modified elastomeric polymer and a triazole optionally having at least one substituent selected from a hydroxyl group, a thiol group, and an amino group
  • Pyridine optionally having at least one substituent selected from a hydroxyl group, thiol group and amino group
  • thiadiazole optionally having at least one substituent selected from hydroxyl group, thiol group and amino group
  • An imidazole optionally having at least one substituent selected from a hydroxyl group, a thiol group and an amino group; It may have at least one substituent selected from an isocyanurate, a hydroxyl group, a thiol group, and an amino group, which may have at least one substituent selected from an
  • At least one compound selected from hydantoin, trishydroxyethyl isocyanurate, sulfamide, and polyether polyol which may have at least one substituent selected from triazine, hydroxyl group, thiol group and amino group (hereinafter referred to as “polyether polyol”) In some cases, it is preferably at least one selected from the group consisting of reactants with “compound (X)”.
  • polyether polyol a reaction product of the maleic anhydride-modified elastomeric polymer and the compound (X) is preferable.
  • the clay according to the present invention is not particularly limited, and a known clay (clay mineral or the like) can be appropriately used.
  • a known clay clay
  • examples of such clay include natural clay, synthetic clay, and organic clay.
  • examples of such clays include montmorillonite, saponite, hectorite, beidellite, stevensite, nontronite, vermiculite, halloysite, mica, fluorinated mica, kaolinite, pyrophyllolite, smectite, sericite. Sites (sericite), illite, groconite (sea green stone), chlorite (chlorite), talc (talc), zeolite (zeolite), hydrotalcite and the like.
  • clays at least one selected from the group consisting of clays mainly composed of silicon and magnesium and organic clays is preferable.
  • the clay mainly composed of silicon and magnesium refers to a clay in which the metal main component of the metal oxide, which is a constituent component of clay, is silicon (Si) and magnesium (Mg). Metal oxides (aluminum (Al), iron (Fe), etc.) may be included as subcomponents.
  • the clay containing silicon and magnesium as main components is not particularly limited, and a known clay can be appropriately used. By using clay mainly composed of silicon and magnesium, the particle size is small, so that the reinforcing property can be enhanced.
  • the clay which has such a silicon and magnesium as a main component the clay which has a smectite structure from a viewpoint of availability is preferable.
  • Examples of the clay mainly composed of silicon and magnesium include stevensite, hectorite, saponite, and talc. It is more preferable to use light or saponite.
  • the clay mainly composed of silicon and magnesium synthetic clay is preferable.
  • synthetic clay commercially available ones may be used.
  • trade names “Smecton SA” and “Smecton ST” manufactured by Kunimine Industry Co., Ltd. trade names “Ionite” manufactured by Mizusawa Chemical Industry Co., Ltd., Corp.
  • a trade name “Lucentite” manufactured by Chemical Co., Ltd. can be used as appropriate.
  • the organic clay is not particularly limited, but it is preferable that the clay is made organic by an organic agent.
  • Such clay before being organized is not particularly limited and may be a so-called clay mineral, for example, montmorillonite, saponite, hectorite, beidellite, stevensite, nontronite, vermiculite, halloysite, mica, Fluorinated mica, kaolinite, pyrophyllolite, smectite, sericite, illite, glowconite, chlorite, talc, zeolite (zeolite) ), Hydrotalcite and the like.
  • Such clay may be a natural product or a synthetic product.
  • the organic agent is not particularly limited, and a known organic agent capable of organicizing clay can be appropriately used.
  • a quaternary ammonium salt of clay can be preferably used from the viewpoint of monolayer dispersibility.
  • the quaternary ammonium salt of such an organized clay is not particularly limited.
  • trimethyl stearyl ammonium salt, oleyl bis (2-hydroxylethyl) salt, methyl ammonium salt, dimethyl stearyl benzyl ammonium salt, dimethyl octadecyl ammonium salt , And a mixture of two or more of these can be suitably used.
  • dimethylstearylbenzylammonium salt, dimethyloctadecylammonium salt, and mixtures thereof can be more suitably used from the viewpoint of improving tensile strength and heat resistance.
  • a mixture of stearylbenzylammonium salt and dimethyloctadecylammonium salt can be more suitably used.
  • clays and organoclays mainly composed of silicon and magnesium are preferable, and among them, higher tensile stress (modulus) can be obtained. It is particularly preferable to use an organized clay.
  • paraffin oil It does not restrict
  • paraffin oil a correlation ring analysis (ndM ring analysis) based on ASTM D3238-85 is performed on the oil, and the percentage of the paraffin carbon number to the total carbon number (paraffin) Parts: C P ), percentage of total number of naphthene carbons (naphthene part: C N ), and percentage of total number of aromatic carbons (aromatic part: C A ), respectively. It is preferable that the percentage (C P ) of the paraffin carbon number to the total carbon number is 60% or more.
  • the paraffin oil is, JIS K 2283 is determined according to (published 2000), kinematic viscosity at 40 °C is 10mm 2 / s ⁇ 700mm 2 / S is preferable, 20 to 600 mm 2 / s is more preferable, and 30 to 500 mm 2 / s is still more preferable. If such a kinematic viscosity ( ⁇ ) is less than the lower limit, oil bleeding tends to occur. On the other hand, if it exceeds the upper limit, sufficient fluidity tends not to be imparted.
  • kinematic viscosity of such paraffin oil a value measured according to JIS K 2283 (issued in 2000) under a temperature condition of 40 ° C. is adopted.
  • JIS K 2283 (issued in 2000)
  • the value automatically measured under a temperature condition of 40 ° C. using a Canon-Fenske viscometer (for example, trade name “SO Series” manufactured by Shibata Kagaku Co., Ltd.) may be employed.
  • the paraffin oil has an aniline point measured by a U-tube method in accordance with JIS K2256 (issued in 2013) of 80 ° C. to 145 ° C. It is preferably 100 to 145 ° C, more preferably 105 to 145 ° C.
  • a value measured by the U-shaped tube method conforming to JIS K2256 is adopted.
  • the aniline point conforming to JIS K2256 is adopted.
  • a value measured using a measuring device for example, trade name “aap-6” manufactured by Tanaka Scientific Instruments Co., Ltd.
  • a measuring device for example, trade name “aap-6” manufactured by Tanaka Scientific Instruments Co., Ltd.
  • paraffin oil As such paraffin oil, commercially available products can be used as appropriate, for example, trade names “Super Oil M Series”, “Super Oil N Series” (P200, P400, P500S, etc.) manufactured by JX Energy, “300HV-S (J)”; trade names “Diana Process Oil PW90”, “Diana Process Oil PW150”, “Diana Process Oil PW380” manufactured by Idemitsu Kosan Co., Ltd .; trade names “SUNPAR Series (110 115, 120, 130, 150, 2100, 2280, etc.) ”; the product name“ Gargoyle Arctic Series (1010, 1022, 1032, 1046, 1068, 1100, etc.) ”manufactured by Mobil Corporation may be used as appropriate. .
  • the carbon filler according to the present invention has a BET specific surface area of 50 m 2 / g or more. If such a BET specific surface area is less than 50 m 2 / g, a sufficiently high conductivity cannot be obtained. Further, the BET specific surface area of such a carbon-based filler is more preferably 100 m 2 / g or more and more preferably 200 m 2 / g or more because higher conductivity can be obtained. More preferably, it is particularly preferably 300 m 2 / g or more, and most preferably 500 m 2 / g or more.
  • the upper limit of such a BET specific surface area is not particularly limited, but it becomes possible to more easily mix a carbon-based filler in the composition, and the workability during the production of the composition is improved.
  • the BET specific surface area of the carbon-based filler is preferably 2500 m 2 / g or less, and more preferably 2000 m 2 / g or less.
  • the value measured by BET 1-point method by the gas adsorption method (nitrogen gas adsorption method) using nitrogen gas according to DIN66132 is employable.
  • the conductive thermoplastic elastomer composition of this invention contains the carbon-type filler whose BET specific surface area is 50 m ⁇ 2 > / g or more as mentioned above.
  • various components have been used as fillers.
  • a filler having a large specific surface area is used, even if such filler is mixed into the elastomer, dispersibility and the like For various reasons, it was thought that the effect could not be sufficiently obtained even if the component was added. Therefore, conventionally, it is common to use a filler having a sufficiently small specific surface area.
  • a filler having a relatively large specific surface area with a BET specific surface area of 50 m 2 / g or more has not been used as a reinforcing agent for an elastomer composition.
  • the present inventors have a relatively large specific surface area such that the BET specific surface area becomes 50 m 2 / g or more together with the specific elastomer component, the specific amount of clay, and the specific amount of paraffin oil.
  • Examples of such a carbon-based filler include carbon black, carbon nanotube, carbon fiber (carbon fiber), graphene, and the like. Carbon black, carbon nanotube, carbon fiber (carbon fiber), graphene, and the like that can be used as such a carbon-based filler are known (commercially available products) as long as the BET specific surface area is 50 m 2 / g or more. ) Can be used as appropriate. Among such carbon-based fillers, carbon black and carbon nanotubes are more preferable from the viewpoint that the content can be reduced and the cost can be further reduced. In addition, as such a carbon-type filler, 1 type can be used individually or in combination of 2 or more types.
  • carbon black examples include ketjen black, furnace black, channel black, acetylene black, arc black, and the like. These carbon blacks may be used alone or in combination of two or more.
  • the average primary particle size of such carbon black is preferably 10 to 700 nm, and more preferably 20 to 100 nm. If the average primary particle size is less than the lower limit, it tends to be too fine and difficult to disperse and it becomes difficult to make the balance of physical properties sufficiently advanced. There is a concern that when an external force is applied due to the particle diameter, it becomes a starting point of fracture, and depending on the case, there is a tendency that the tensile properties and the like may be lowered.
  • carbon black As such carbon black, commercially available products can be appropriately used.
  • commercially available carbon fillers include Ketjen Black EC300J, EC600JD (manufactured by Lion Specialty Chemicals), Toka Black # 4400, # 4500, # 5500 (manufactured by Tokai Carbon Co., Ltd.), Mitsubishi conductive carbon black (manufactured by Mitsubishi Chemical Corporation), etc. can be used as appropriate.
  • examples of carbon nanotubes that can be suitably used as the carbon filler include single-walled carbon nanotubes and multi-walled carbon nanotubes.
  • a single-walled carbon nanotube is preferable from the viewpoint that higher physical properties can be expressed.
  • Such carbon nanotubes preferably have an average diameter of 0.1 to 120 nm (more preferably 0.4 to 100 nm). If the diameter is less than the lower limit, it tends to be too fine and difficult to disperse, and the physical properties tend to decrease. It tends to decrease.
  • Such carbon nanotubes preferably have an average length of 1 nm to 1 mm (more preferably 10 to 100 nm).
  • Such carbon nanotubes preferably have an aspect ratio of 1 to 1000 (more preferably 10 to 100). If the length or aspect ratio is less than the lower limit, the dispersion tends to be difficult because the dispersion is difficult, and the physical properties are lowered. There exists a tendency for tensile physical properties etc. to fall.
  • carbon nanotubes for example, ED, EP, HP manufactured by Sakai Kogyo Co., Ltd .; EC 1.0, EC 1.5, EC 2.0 manufactured by Meijo Nano Carbon Co., Ltd .; Marubeni Information 9000, 9100, 9110 manufactured by Systems Co., Ltd .; Zeonano SG101 manufactured by Nippon Zeon Co., Ltd .; these dispersions and polymer master batch products; and the like can be used.
  • carbon black and carbon nanotubes can be suitably used as the carbon-based filler according to the present invention.
  • carbon black is more preferable from the viewpoint of balance between cost and performance, and kettle.
  • Chain black is particularly preferred.
  • the conductive thermoplastic elastomer composition of the present invention contains the elastomer component, the clay, the paraffin oil, and a carbon-based filler having a BET specific surface area of 50 m 2 / g or more.
  • the elastomer component comprises an elastomeric polymer containing at least a side chain having a hydrogen-bonding cross-linking site (on the side chain, side chain (a); side chain (a ′) And a polymer containing at least one of the side chains (c)).
  • the clay first interacts with the hydrogen-bonding cross-linked site (for example, a new hydrogen bond is formed), and the clay The elastomer component is cross-linked by utilizing the surface of the surface.
  • the cross-linking points due to covalent bonds and hydrogen bonds are made uniform, and the tensile properties are improved.
  • paraffin oil in the elastomer component in which such surface cross-linking is formed, fluidity is improved and processability is improved.
  • the side chain containing the covalent crosslinking site is more The present inventors speculate that it is possible to develop a high level of compression set resistance. Further, in the case where a hydrogen bonding crosslinking site and a covalent bonding crosslinking site are present in the elastomer component (when the elastomeric polymer (B) is contained, a mixture of the elastomeric polymer (B) and another elastomeric polymer is added.
  • the elastomeric polymer having a side chain (b) other than the elastomeric polymer (A) and the elastomeric polymer (B) In the case of using a mixture of a hydrogen bond and a covalent bond site, a higher mechanical strength due to the covalent bond and a heating due to the hydrogen bond due to the presence of the hydrogen bond crosslink site and the covalent bond site. Higher fluidity (formability) can be developed at the same time by cleaving. Therefore, the present inventors speculate that it is possible to appropriately change the composition according to the type of the side chain and to appropriately exhibit the characteristics according to the application.
  • the elastomeric polymer having a side chain (b) other than the elastomeric polymer (B) as described above is obtained by using an elastomeric polymer having a functional group (for example, a cyclic acid anhydride group) in the side chain.
  • a functional group for example, a cyclic acid anhydride group
  • reacting a functional polymer with a compound that reacts with the functional group to form a covalently cross-linked site (compound that generates a covalent bond) to produce the elastomeric polymer having the side chain (b) It is possible to obtain.
  • the above-mentioned “compound that forms a covalent crosslinking site (compound that generates a covalent bond)” is used as the compound that forms a covalent crosslinking site (a compound that generates a covalent bond). can do.
  • the conductive thermoplastic elastomer composition of the present invention contains the elastomer component, the clay, the paraffin oil, and the carbon filler.
  • the content (content ratio) of the clay in such a composition is 20 parts by mass or less with respect to 100 parts by mass of the elastomer component. When the content of such clay exceeds the upper limit, the tensile properties are deteriorated.
  • the clay content in such a conductive thermoplastic elastomer composition is more preferably 0.01 to 10 parts by mass, and 0.05 to 5 parts by mass with respect to 100 parts by mass of the elastomer component. More preferred is 0.08 to 3 parts by mass.
  • the clay content is less than the lower limit, the clay content tends to be too low to obtain a sufficient effect, whereas if the upper limit is exceeded, the crosslinking becomes too strong, and the elongation and strength are rather high. However, it tends to be difficult to use in various applications (practicality is reduced).
  • clay in a single layer form is present in the composition. Presence of such a single-layered clay can be confirmed by measuring the surface of the composition with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • a measurement point having a size of 5.63 ⁇ m 2 above any three points on the surface of the conductive thermoplastic elastomer composition is measured with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • a conductive electron microscope for example, trade name “JEM-2010” manufactured by JEOL Ltd.
  • 10 g of a plastic elastomer composition was prepared, and three or more measurement points having a size of 5.63 ⁇ m 2 on the surface of the conductive thermoplastic elastomer composition were measured.
  • the number of clays in the layer and the number of clays in the multi-layered shape are respectively determined, and for each measurement point (each TEM image), the abundance (ratio) of the single-layer clay in all the clays is calculated based on the number. It can be obtained by calculation.
  • the interlayer distance of montmorillonite is about 9.8 ⁇
  • the interlayer distance of general organic clay is about 20 to 40 ⁇ (2 to 4 nm). is there.
  • the interlayer distance is 50 angstroms (> 5 nm) or more, so the interlayer distance of each layer that can be confirmed by a TEM image is Based on the fact that the distance is larger than the interlayer distance, it may be determined as a single layer.
  • the clay when a single layer of clay was contained in the composition in the above-described proportion (existence), the clay was more dispersed and contained than the multilayered clay was dispersed as it was. Since it becomes a state (because the multilayered clay is decomposed to form a single-layered clay), the clay can be dispersed in the composition with higher dispersibility. In this way, the clay has higher dispersibility when the monolayer is present in the above ratio than the multi-layered composition in the composition, and has higher heat resistance and breaking strength. Can be. Therefore, it is more preferable to contain the clay in a single layer at the ratio as described above, whereby the clay is more dispersed and the heat resistance and the breaking strength can be improved more efficiently.
  • the conductive thermoplastic elastomer composition of the present invention measurement points having a size of 5.63 ⁇ m 2 above any three points on the surface of the conductive thermoplastic elastomer composition are measured by a transmission electron microscope. In this case, it is preferable that 1 to 100 (more preferably 3 to 80, still more preferably 5 to 50) are dispersed per 1 ⁇ m 2 at all measurement points. If the number of such single-layer clays is less than the lower limit, the amount of clay is too small and sufficient effects tend not to be obtained. The number of single-layer clays can be determined by confirming a TEM image in the same manner as the measurement of the abundance (ratio) of single-layer clay.
  • the content (content ratio) of the paraffin oil is the total amount of the composition (all components contained in the composition (the elastomer component, the clay, the paraffin).
  • the total amount (total amount) including such other components) needs to be 1 to 65% by mass. If the content ratio of the paraffin oil is less than the lower limit, it is difficult to maintain the permanent compression strain resistance at a sufficiently high level. On the other hand, if the content exceeds the upper limit, the conductivity is maintained at a sufficiently high level. As a result, it becomes difficult to exhibit a good balance between the conductivity and the resistance to permanent compression at a sufficiently high level.
  • the content ratio of such paraffin oil is preferably 5 to 65% by mass and more preferably 10 to 65% by mass from the same viewpoint.
  • the content ratio of such paraffin oil is 25 to 60% by mass (more preferably) from the viewpoint that the balance between the permanent compression strain resistance and the conductivity can be improved. (35 to 60% by mass, particularly preferably 40 to 60% by mass).
  • the content (content ratio) of the carbon filler is the total amount of the composition (in the composition).
  • the content of such a carbon-based filler is less than the lower limit, the surface resistivity and the volume resistivity increase, and the conductivity tends not to be sufficiently high. If the upper limit is exceeded, the workability during mixing of the elastomer and the carbon filler tends to decrease, and the performance (particularly conductivity) of the composition obtained due to this tends to decrease.
  • the conductive thermoplastic elastomer composition of the present invention characteristics depending on the use can be appropriately imparted depending on the type of elastomer component used.
  • a conductive thermoplastic elastomer composition comprising an elastomeric polymer (A) as an elastomer component
  • the properties derived from the side chain (a) can be imparted to the composition, and therefore, particularly elongation at break, strength at break, and fluidity. Can be improved.
  • the composition in the conductive thermoplastic elastomer composition containing the elastomeric polymer (B) as an elastomer component, the composition can be imparted with a characteristic derived from a covalently crosslinked site in the side chain.
  • the conductive thermoplastic elastomer composition containing the elastomeric polymer (B) as an elastomer component in addition to the characteristics derived from the covalent bond crosslinking site, the hydrogen bond crosslinking site (side chain) Since the property derived from the hydrogen bonding cross-linking site described in (a ′) can also be imparted, it is possible to further improve the compression set resistance while maintaining fluidity (moldability). By appropriately changing the type of the side chain, the type of the polymer (B), etc., it is possible to more efficiently exhibit the desired characteristics according to the application.
  • the conductive thermoplastic elastomer composition of the present invention containing the elastomeric polymer (A) as an elastomer component and the conductive thermoplastic containing the elastomeric polymer (B) as an elastomer component. It is good also as an electrically conductive thermoplastic elastomer composition which contains an elastomeric polymer (A) and (B) as an elastomer component, after manufacturing each elastomer composition separately and mixing this.
  • the elastomer component only needs to contain at least the elastomeric polymers (A) and (B).
  • the covalent bond can be made more efficiently by providing a covalent cross-linking site in the composition.
  • a covalent cross-linking site in the composition.
  • other elastomeric polymers having side chains (b) other than the elastomeric polymer (B) may be used in combination.
  • an elastomeric polymer (A) when used as the elastomer component, when another elastomeric polymer having a side chain (b) other than the elastomeric polymer (B) is used in combination, Derived from the side chain contained, imparts almost the same characteristics as the conductive thermoplastic elastomer composition using an elastomeric polymer (B) containing a hydrogen-bonding cross-linking site and a covalent cross-linking site in the side chain It is also possible to do.
  • the conductive thermoplastic elastomer composition containing elastomeric polymers (A) and (B) as an elastomer component side chains other than the elastomeric polymer (A) and the elastomeric polymer (B) (b
  • the ratio of each component for example, each component of the elastomeric polymer (A) and the elastomeric polymer (B)) is appropriately set. By changing it, it is possible to appropriately exhibit desired characteristics.
  • the content ratio of the elastomeric polymer (A) and the elastomeric polymer (B) Is preferably 1: 9 to 9: 1 in terms of mass ratio ([polymer (A)]: [polymer (B)]), more preferably 2: 8 to 8: 2. If the content ratio of such a polymer (A) is less than the lower limit, the fluidity (moldability) and mechanical strength tend to be insufficient. On the other hand, if the content ratio exceeds the upper limit, the resistance to compression set tends to decrease. It is in.
  • the conductive thermoplastic elastomer composition of the present invention has, as an elastomer component, an elastomeric polymer (A) and another elastomeric polymer having a side chain (b) other than the elastomeric polymer (B) (hereinafter, depending on circumstances).
  • "Elastomeric polymer (C)" the content ratio of the elastomeric polymer (A) and the elastomeric polymer (C) is a mass ratio ([elastomeric polymer (A)]: [ Elastomeric polymer (C)]) is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2.
  • the content ratio of such a polymer (A) is less than the lower limit, the fluidity (moldability) and mechanical strength tend to be insufficient. On the other hand, if the content ratio exceeds the upper limit, the resistance to compression set tends to decrease. It is in.
  • the total amount of the side chain (a ′) is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2, based on the mass ratio. If the total amount of such side chains (a ′) is less than the lower limit, the fluidity (formability) and mechanical strength tend to be insufficient. On the other hand, if the upper limit is exceeded, the resistance to compression set is reduced. There is a tendency.
  • Such a side chain (a ′) is a concept including the side chain (a). Therefore, even when only the side chain (a) is contained as the side chain (a ′), both the side chain (a) and the side chain (b) are present in the composition at the above-described mass ratio. Is preferred.
  • the conductive thermoplastic elastomer composition of the present invention may be a polymer other than the above-mentioned elastomer component (for example, a styrene block copolymer containing no chemically-bonded cross-linking sites, as long as it does not impair the purpose of the present invention.
  • a polymer other than the above-mentioned elastomer component for example, a styrene block copolymer containing no chemically-bonded cross-linking sites, as long as it does not impair the purpose of the present invention.
  • Copolymer polymer having a styrene block
  • ⁇ -olefin resin ⁇ -olefin homopolymer, ⁇ -olefin copolymer, etc.
  • reinforcing agent filler
  • hydrogen A binding reinforcing agent filler
  • amino group-introducing filler an amino group-introduced filler
  • metal salt Compound (hereinafter simply referred to as “metal salt”), maleic anhydride-modified polymer, anti-aging agent, antioxidant, pigment (dye), plasticizer, thixotropic agent, ultraviolet absorber, flame retardant, Agents, surfactants (including leveling agents), dispersants, dehydrating agents, rust inhibitors, adhesion-imparting agents, antistatic agents, fillers, and the like.
  • metal salt a compound
  • maleic anhydride-modified polymer anhydride-modified polymer
  • anti-aging agent antioxidant
  • pigment (dye) pigment (dye)
  • plasticizer thixotropic agent
  • ultraviolet absorber flame retardant
  • Agents surfactants (including leveling agents), dispersants, dehydrating agents, rust inhibitors, adhesion-imparting agents, antistatic agents, fillers, and the like.
  • thermoplastic elastomer in the field of thermoplastic elastomer, a known polymer that is appropriately used from the viewpoint of adjusting the hardness and maintaining the mechanical properties can be appropriately used, and is not particularly limited.
  • examples thereof include a styrene block copolymer (polymer having a styrene block) that does not include a chemical bonding crosslinking site, and an ⁇ -olefin resin that does not include a chemical bonding crosslinking site.
  • polymer other than the elastomer component examples include other elastomeric polymers having a side chain (b) other than the elastomeric polymer (B), and a styrene block copolymer (a styrene block containing no chemically-bonded crosslinking site).
  • Polymer) and ⁇ -olefin-based resins that do not contain a chemically-bonded crosslinking site can be suitably used.
  • the styrene block copolymer (polymer having a styrene block) that can be suitably used as a polymer other than such an elastomer component does not have a chemically-bonded crosslinking site.
  • Chemically-bonded cross-linking sites include hydrogen bonds, covalent bonds, chelation between metal ions and polar functional groups, and ⁇ - ⁇ interactions between metal and unsaturated bonds (double bonds and triple bonds).
  • crosslinking is formed by chemical bonds, such as the bond formed by (1).
  • “does not have a chemical bond crosslinking site” means the hydrogen bond, covalent bond, metal ion-polar functional group chelation, metal-unsaturated bond (double bond) described above.
  • a triple bond means a state having no chemical bond formed by a bond formed by a ⁇ - ⁇ interaction.
  • a styrene block copolymer having no chemically-bonded crosslinking site a functional group (for example, hydroxyl group, carbonyl group, carboxyl group, thiol group, amide group, Those that do not contain an amino group) and do not contain a binding site (such as a cross-linking site by a covalent bond) that directly cross-links polymer chains are preferably used.
  • a styrene block copolymer having no chemically-bonded cross-linking site has at least the above-mentioned side chain (a), side chain (a ′), side chain (b), side chain ( c) The polymer does not have.
  • styrene block copolymer herein may be a polymer having a styrene block structure at any part.
  • a styrene block copolymer has a styrene block structure, and at normal temperature, the styrene block structure part aggregates to form a physical crosslinking point (physical pseudo-crosslinking point) and is heated. Based on the fact that such a physical pseudo-crosslinking point collapses, it can be used as a material having thermoplasticity and rubber-like properties (elasticity, etc.) at room temperature.
  • styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene- Propylene-styrene block copolymer (SEPS), Styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), Styrene-butadiene-styrene block copolymer (SBS), Styrene-ethylene-butylene-styrene block copolymer Polymers (SEBS), styrene-isoprene-butadiene-styrene block copolymers (SIBS), and hydrogenated products thereof (so-called hydrogenated products) are preferable, and SEBS and SEEPS are more preferable.
  • SIS styrene-isoprene-styrene block copolymer
  • SEPS Styrene-ethylene-ethylene-propylene-styrene block copolymer
  • SEEPS Styren
  • the styrene block copolymer having no chemically-bonded cross-linking site is a styrene block copolymer having a styrene content of 20 to 40% by mass (more preferably 25 to 37% by mass). preferable. If the styrene content is less than the lower limit, the thermoplasticity tends to decrease due to a decrease in the styrene block component. On the other hand, if the styrene content exceeds the upper limit, the rubber elasticity tends to decrease due to a decrease in the olefin component.
  • the styrene content in such a styrene block styrene block copolymer can be measured by a method based on the IR method described in JIS K6239 (issued in 2007).
  • the weight average molecular weight (Mw) of the styrene block copolymer having no chemically-bonded crosslinking site is preferably 200,000 to 700,000, more preferably 300,000 to 600,000. Preferably, it is 350,000 or more and 550,000 or less.
  • Mw weight average molecular weight
  • the weight average molecular weight is less than the lower limit, the heat resistance tends to be reduced.
  • the weight average molecular weight exceeds the upper limit, the compatibility with the elastomeric polymer tends to be reduced.
  • the number average molecular weight (Mn) of the styrene block copolymer having no chemically-bonded crosslinking site is preferably 100,000 or more and 600,000 or less, more preferably 150,000 or more and 550,000 or less. Preferably, it is 200,000 or more and 500,000 or less.
  • Mn number average molecular weight
  • the heat resistance tends to be lowered.
  • the upper limit is exceeded, the compatibility with the elastomeric polymer (the elastomer component) tends to be lowered.
  • the dispersity (Mw / Mn) of the molecular weight distribution of the styrene block copolymer having no chemically bonding cross-linked site is preferably 5 or less, more preferably 1 to 3.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution dispersity (Mw / Mn) can be determined by a so-called gel permeation chromatography (GPC) method. Further, as a specific apparatus and conditions for measuring such molecular weight, “Prominence GPC system” manufactured by Shimadzu Corporation can be used.
  • the glass transition point of the styrene block copolymer having no chemically bonding crosslinking site is preferably ⁇ 80 to ⁇ 40 ° C., more preferably ⁇ 70 to ⁇ 50 ° C.
  • the melting point becomes low, and thus the heat resistance tends to be lowered.
  • the upper limit is exceeded, rubber elasticity tends to be lowered.
  • the “glass transition point” here is a glass transition point measured by differential scanning calorimetry (DSC-Differential Scanning Calorimetry) as described above. In such DSC measurement, the rate of temperature rise is preferably 10 ° C./min.
  • the method for producing the styrene block copolymer having no chemical bonding cross-linking site is not particularly limited, and a known method can be appropriately employed. Moreover, as such a styrene block copolymer, you may use a commercial item, for example, the brand name "G1633" "G1640" “G1641” “G1642” “G1643” “G1645" “G1650” by a Kraton company.
  • the conductive thermoplastic elastomer composition of the present invention further contains a styrene block copolymer having no chemically-bonded crosslinking site
  • the styrene block copolymer having no chemically-bonded crosslinking site is used.
  • the content of the coalescence is preferably 5 to 60% by mass, more preferably 7 to 45% by mass, and more preferably 10 to 30% by mass with respect to the total amount of the conductive thermoplastic elastomer composition. Further preferred. If the content of the styrene block copolymer having no such chemically bondable crosslinking site is less than the lower limit, the content of the styrene block copolymer is too small, particularly in terms of fluidity and workability. On the other hand, if the upper limit is exceeded, the characteristics of the matrix structure (characteristics derived from the elastomer component) due to the crosslinked elastomer tend to be diluted.
  • the ⁇ -olefin-based resin that can be suitably used as a polymer other than such an elastomer component does not have a chemically-bonded crosslinking site.
  • ⁇ -olefin resins having no chemically-bonded cross-linking sites functional groups (for example, hydroxyl groups, carbonyl groups, carboxyl groups, thiol groups, amide groups) that form cross-linking points by chemical bonds are used. , Amino groups) and those not containing a binding site (such as a cross-linking site due to a covalent bond) that directly cross-links the polymer chains.
  • the ⁇ -olefin-based resin having no chemically-bonded cross-linking site includes at least the side chain (a), the side chain (a ′), the side chain (b), the side chain ( c) The polymer does not have.
  • ⁇ -olefin-based resin here refers to an ⁇ -olefin homopolymer and an ⁇ -olefin copolymer.
  • ⁇ -olefin refers to an alkene having a carbon-carbon double bond at the ⁇ -position (an alkene having a carbon-carbon double bond at the end: such an alkene may be linear. It may be branched, and preferably has 2 to 20 carbon atoms (more preferably 2 to 10), for example, ethylene, propylene, 1-butene, 1-pentene, 1 -Hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like.
  • an ⁇ -olefin polymer (poly ⁇ -olefin: either a homopolymer or a copolymer) may be used.
  • poly ⁇ -olefin polymer poly ⁇ -olefin: either a homopolymer or a copolymer
  • examples thereof include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, and propylene-ethylene-butene copolymer.
  • polypropylene, polyethylene, and ethylene-propylene copolymer are preferable from the viewpoint of compatibility with the base elastomer.
  • such ⁇ -olefin-based resins having no chemically bonding cross-linking sites may be used alone or in combination of two or more.
  • the ⁇ -olefin resin having no chemically-bonded cross-linking site preferably has a crystallinity of 10% or more, more preferably 10 to 80%, and more preferably 10 to 75%. Further preferred. If the degree of crystallinity is less than the lower limit, the resin-like properties become dilute, so it tends to be difficult to make the mechanical properties and fluidity more advanced. Therefore, it tends to be difficult to exhibit mechanical properties in a balanced manner at a higher level.
  • Such crystallinity is measured by using an X-ray diffractometer (for example, trade name “MiniFlex300” manufactured by Rigaku Corporation) as a measuring device, measuring a diffraction peak, and integrating a scattering peak derived from crystallinity / amorphous. It can be determined by calculating the ratio.
  • an X-ray diffractometer for example, trade name “MiniFlex300” manufactured by Rigaku Corporation
  • melt flow rate (MFR) is preferably 40 g / 10 min or more.
  • MFR melt flow rate
  • Such a melt flow rate (MFR) is a value measured in accordance with method B described in JIS K6922-2 (issued in 2010), and is a product manufactured by Toyo Seiki Seisakusho as a melt flow rate measuring device.
  • the weight average molecular weight (Mw) of the ⁇ -olefin-based resin having no chemically-bonded crosslinking site is preferably 10,000 or more and 2,000,000 or less, more preferably 30,000 or more and 1,500,000 or less. Preferably, it is 50,000 or more and 1.25 million or less.
  • Mw weight average molecular weight
  • the weight average molecular weight is less than the lower limit, the mechanical strength tends to decrease.
  • the weight average molecular weight exceeds the upper limit, the compatibility with the elastomer component decreases and the phase tends to be separated.
  • the number average molecular weight (Mn) of the ⁇ -olefin resin having no chemically-bonded crosslinking site is preferably 10,000 or more and 2,000,000 or less, more preferably 30,000 or more and 1,500,000 or less. Preferably, it is 50,000 or more and 1.25 million or less. If the number average molecular weight is less than the lower limit, the mechanical strength tends to decrease. On the other hand, if the number average molecular weight exceeds the upper limit, the compatibility with the elastomer component decreases, and phase separation tends to occur.
  • the dispersity (Mw / Mn) of the molecular weight distribution of the ⁇ -olefin resin having no chemical bonding crosslinking site is preferably 100 or less, and more preferably 1.5 to 50. If the degree of dispersion (Mw / Mn) of the molecular weight distribution is less than the lower limit, the fluidity tends to decrease, and if it exceeds the upper limit, the compatibility with the elastomer tends to decrease.
  • the weight-average molecular weight (Mw), the number-average molecular weight (Mn), and the molecular weight distribution dispersity (Mw / Mn) of the ⁇ -olefin resin as described above are determined by a so-called gel permeation chromatography (GPC) method. Can be sought. Moreover, as a specific apparatus and conditions for measuring such molecular weight, “Prominence GPC system” manufactured by Shimadzu Corporation can be used.
  • the glass transition point of the ⁇ -olefin-based resin having no chemical bonding cross-linking site is preferably ⁇ 150 to 5 ° C., more preferably ⁇ 125 to 0 ° C. If such a glass transition point is less than the lower limit, the melting point becomes low and the heat resistance tends to be lowered. On the other hand, if the upper limit is exceeded, rubber elasticity after blending the elastomer tends to be lowered.
  • the “glass transition point” here is a glass transition point measured by differential scanning calorimetry (DSC-Differential Scanning Calorimetry) as described above. In such DSC measurement, the rate of temperature rise is preferably 10 ° C./min.
  • the method for producing such an ⁇ -olefin-based resin having no chemically-bonded crosslinking site is not particularly limited, and a known method can be appropriately employed.
  • ⁇ -olefin resin commercially available products may be used.
  • trade names “Tafmer” manufactured by Mitsui Chemicals, Inc . trade names “Novatech HD”, “Novatech LD” Novatec LL, “Kernel”
  • an anti-aging agent for example, a hindered phenol-based, aliphatic and aromatic hindered amine-based compound can be appropriately used.
  • a hindered phenol-based, aliphatic and aromatic hindered amine-based compound can be appropriately used.
  • BHT butylhydroxytoluene
  • BHA butylhydroxyanisole
  • the pigment include inorganic pigments such as titanium dioxide, zinc oxide, ultramarine, bengara, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochloride, and sulfate, organic pigments such as azo pigments and copper phthalocyanine pigments.
  • Pigments can be used as appropriate, and examples of the plasticizer include benzoic acid, phthalic acid, trimellitic acid, pyromellitic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, itaconic acid, citric acid.
  • plasticizer include benzoic acid, phthalic acid, trimellitic acid, pyromellitic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, itaconic acid, citric acid.
  • derivatives such as acids, polyesters, polyethers, epoxy resins, and the like can be used as appropriate.
  • the content of such an additive can be appropriately changed according to the intended use and design, and is not particularly limited.
  • the additive is a cross-linked site having a chemical bond.
  • the fluidity is improved, so that a higher effect can be obtained from the viewpoint of improving the dispersibility of the additive.
  • To 250 parts by mass or less (more preferably 5 to 250 parts by mass, still more preferably 10 to 225 parts by mass, particularly preferably 25 to 200 parts by mass, most preferably 35 to 175 parts by mass). More preferably.
  • the content thereof is 10 to 400 parts by mass (more preferably 15 to 100 parts by mass with respect to 100 parts by mass of the elastomer component). 350 parts by weight, more preferably 20 to 310 parts by weight, particularly preferably 20 to 300 parts by weight, and most preferably 30 to 250 parts by weight. If the content of the styrene block copolymer is less than the lower limit, the effect of containing the styrene block copolymer tends not to be obtained particularly in terms of fluidity and workability, and on the other hand, when the content exceeds the upper limit.
  • the characteristics of the matrix structure due to the crosslinked elastomer tend to be dilute.
  • the additive is an anti-aging agent, an antioxidant, a pigment (dye) or a plasticizer
  • the content of these components is (for each component) with respect to 100 parts by mass of the elastomer component, respectively.
  • the amount is preferably 20 parts by mass or less, and more preferably 0.1 to 10 parts by mass.
  • other components such as additives can be used as appropriate according to the intended use and design.
  • the conductive thermoplastic elastomer composition of the present invention is heated (for example, heated to 100 to 250 ° C.) to dissociate hydrogen bonds formed at the hydrogen bond cross-linked sites and other cross-linked structures. And can be softened to impart fluidity. This is considered to be because the interaction between the side chains formed between the molecules or within the molecules by heating (weakly due to hydrogen bonds) is weakened.
  • the side chain contains an elastomer component containing at least a hydrogen-bonding cross-linked site, dissociated hydrogen bonds are bonded again when left to stand after being given fluidity by heating. Therefore, depending on the composition, the conductive thermoplastic elastomer composition can be made to exhibit recyclability more efficiently.
  • the conductive thermoplastic elastomer composition of the present invention preferably has a volume resistivity of 300 ⁇ ⁇ cm or less, more preferably 150 ⁇ ⁇ cm or less, and further preferably 100 ⁇ ⁇ cm or less, More preferably, it is 50 ⁇ ⁇ cm or less, particularly preferably 10 ⁇ ⁇ cm or less, and most preferably 1 ⁇ ⁇ cm or less.
  • volume resistivity exceeds the upper limit, the conductivity tends to decrease.
  • a lower limit value of the volume resistivity is desirably a value closer to 0 from the viewpoint of conductivity, and is not particularly limited.
  • a method of measuring such “volume resistivity” the following method is adopted.
  • a rectangular test piece having a length of 150 mm, a width of 20 mm, and a thickness of 1.8 mm was prepared as a sample, the test environment temperature was 23 ⁇ 2 ° C., the test environment humidity (relative humidity) was 50 ⁇ 5% RH, and the applied current Changed to 1 ⁇ A (first test), 10 ⁇ A (second test), and 100 ⁇ A (third test) for each test, and changed to JIS K 6271 (issued in 2008) under the condition that the distance between the potential difference electrodes is 60 mm.
  • test piece is prepared, and the magnitude of the applied current is changed for each test under the above conditions), and the average value of the measured values obtained in each test is calculated.
  • the value obtained is adopted as “volume resistivity”.
  • volume resistivity measured values of three tests of volume resistivity measured by the parallel terminal electrode method based on JIS K 6271 (issued in 2008) (actual values of three test pieces) The average value of is adopted.
  • the test piece is preferably prepared by preheating the conductive thermoplastic elastomer composition at 200 ° C. for 3 minutes and then cutting a sheet hot-pressed at 200 ° C. for 5 minutes to the above size.
  • the conductive thermoplastic elastomer composition of the present invention has a compression set (unit:%) measured after being compressed at 25% in accordance with JIS K6262 (issued in 2013) and left at 70 ° C. for 22 hours. 60% or less, more preferably 55% or less, still more preferably 40% or less, particularly preferably 30% or less, and most preferably 25% or less. If such compression set exceeds the upper limit, permanent deformation tends to occur in some cases.
  • Such compression set (unit:%) is obtained by using a product name “vulcanized rubber compression set tester SCM-1008L” manufactured by Dumbbell as a compression device, and using a conductive thermoplastic elastomer composition as a sample. Is pre-heated at 200 ° C.
  • the seven disc-shaped sheets are used, and a test piece prepared so that the height (thickness) becomes 12.5 ⁇ 0.5 mm is used, and the test piece is compressed 25% by a dedicated jig used in the compression device.
  • a value obtained by measuring the compression set (unit:%) after lapse of 22 hours at 70 ° C. according to JIS K6262 (issued in 2013) can be employed.
  • the conductive thermoplastic elastomer composition of the present invention has a melt flow rate (MFR) of 2 g / 10 min or more at 230 ° C. under a load of 10 kg measured in accordance with JIS K6922-2 (issued in 2010). It is preferably 4 g / 10 minutes or more, more preferably 8 g / 10 minutes. When such a melt flow rate (MFR) is less than the lower limit, sufficient processability tends not to be exhibited.
  • MFR melt flow rate
  • Such a melt flow rate (MFR) is a value measured in accordance with method B described in JIS K6922-2 (issued in 2010), and is a product manufactured by Toyo Seiki Seisakusho as a melt flow rate measuring device.
  • the 5% weight loss temperature of the conductive thermoplastic elastomer composition of the present invention is preferably 320 ° C. or higher, more preferably 325 ° C. or higher. When such a 5% weight loss temperature is less than the lower limit, the heat resistance tends to decrease.
  • Such 5% weight loss temperature is prepared by preparing 10 mg of a conductive thermoplastic elastomer composition as a measurement sample, and using a thermogravimetric measurement device (TGA) as a measurement device and heating at a temperature rising rate of 10 ° C./min. And it can obtain
  • TGA thermogravimetric measurement device
  • the conductive thermoplastic elastomer composition of the present invention is, for example, an electromagnetic shielding material for containers containing electronic devices such as computers and communication devices, a grounding wire for electronic components, and an ignition prevention material caused by static electricity such as triboelectricity. It is suitable as a joining member used for such members. Further, it is suitably used for applications such as removal of static electricity by raising and lowering friction of gas and oil tanks, flooring materials for explosive factories, operating rooms, computer rooms, etc., electromagnetic shielding materials such as antistatic for work tables, and antistatic materials.
  • the conductive thermoplastic elastomer composition of the present invention can exhibit various properties in a well-balanced manner according to the composition. That is, in such a conductive thermoplastic elastomer composition, it is possible to appropriately exhibit characteristics (for example, characteristics such as self-healing properties) required according to applications by appropriately changing the composition. .
  • the conductive thermoplastic elastomer composition of the present invention can exhibit characteristics such as sufficient hardness and sufficient elongation at break. In this way, by appropriately changing the composition, it is possible to appropriately exhibit the necessary characteristics in a balanced manner according to the use of the conductive thermoplastic elastomer composition. For this, it is preferable to use it by appropriately changing the type (composition) of the components in the composition in consideration of characteristics required according to the application.
  • thermoplastic elastomer composition of the present invention has been described above, a method that can be suitably used as a method for producing such a conductive thermoplastic elastomer composition of the present invention will be described below. explain.
  • the method for producing such a conductive thermoplastic elastomer composition of the present invention is not particularly limited, for example, An elastomeric polymer having a cyclic acid anhydride group in the side chain; The clay, The paraffin oil; A carbon-based filler having a BET specific surface area of 50 m 2 / g or more; Compound (I) which reacts with the cyclic acid anhydride group to form a hydrogen-bonding cross-linking site, and compound which reacts with the compound (I) and the cyclic acid anhydride group to form a covalent-bonding cross-linking site At least one raw material compound of the mixed raw materials of (II); While the content ratio of the clay and the paraffin oil is within the above-described range (the content range described in the conductive thermoplastic elastomer composition of the present invention) in the finally obtained composition, A method (A) for obtaining the conductive thermoplastic elastomer composition of the present invention described above by mixing and reacting the elastomeric
  • the order of mixing the components is not particularly limited, and an optimal method may be adopted as appropriate depending on the target design, the apparatus to be used, and the like.
  • the dispersibility of the clay becomes higher and the properties as rubber can be made higher, so the following method (A-1) is adopted. It is preferable.
  • the thermoplastic elastomer composition (precursor of a conductive thermoplastic elastomer composition) obtained in the second step is a side chain containing a hydrogen-bonding cross-linked site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring ( an elastomeric polymer (A) having a)
  • the method (A-1) is a composition comprising at least one elastomer component selected from the group consisting of the following elastomeric polymers (B), the clay, and the paraffin oil: be able to.
  • B elastomeric polymers
  • paraffin oil be able to.
  • the first step in the method (A-1) is a step in which an elastomeric polymer having a cyclic acid anhydride group in the side chain, clay and paraffin oil are mixed to obtain a mixture.
  • an elastomeric polymer having a cyclic acid anhydride group in the side chain means that the cyclic acid anhydride group has a chemically stable bond (covalent bond) at the atom forming the main chain of the polymer.
  • a polymer capable of forming a main chain portion of the elastomeric polymers (A) to (B) is reacted with a compound capable of introducing a cyclic acid anhydride group. Can be suitably used.
  • the glass transition point consists of a polymer below room temperature (25 degreeC). Any material may be used as long as it is made of a so-called elastomer, and is not particularly limited.
  • Examples of the polymer capable of forming the main chain portion of such elastomeric polymers (A) to (B) include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), 1, 2-butadiene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), ethylene-propylene-diene rubber (EPDM) and other diene rubbers and their hydrogenation Olefin rubbers such as ethylene-propylene rubber (EPM), ethylene-acrylic rubber (AEM), ethylene-butene rubber (EBM), chlorosulfonated polyethylene, acrylic rubber, fluororubber, polyethylene rubber, polypropylene rubber; epichlorohydride Rubber; polysulfide rubber; Examples include ricone rubber; urethane rubber;
  • the polymer capable of forming the main chain portion of the elastomeric polymers (A) to (B) may be an elastomeric polymer containing a resin component, for example, hydrogenated.
  • a resin component for example, hydrogenated.
  • Polystyrene-based elastomeric polymer for example, SBS, SIS, SEBS, etc.
  • polyolefin-based elastomeric polymer for example, SBS, SIS, SEBS, etc.
  • polyvinyl chloride-based elastomeric polymer polyurethane-based elastomeric polymer
  • polyester-based elastomeric polymer polyamide-based elastomeric polymer Etc.
  • polymers capable of forming the main chain portion of such elastomeric polymers (A) to (B) include diene rubber, hydrogenated diene rubber, olefin rubber, and hydrogenated. At least one selected from polystyrene-based elastomeric polymer, polyolefin-based elastomeric polymer, polyvinyl chloride-based elastomeric polymer, polyurethane-based elastomeric polymer, polyester-based elastomeric polymer, and polyamide-based elastomeric polymer It preferably consists of seeds.
  • a diene rubber is preferable from the viewpoint of easy introduction of a maleic anhydride group suitable as a cyclic acid anhydride group, and an olefin rubber is preferable from the viewpoint of aging resistance. preferable.
  • Examples of the compound into which the cyclic acid anhydride group can be introduced include cyclic acid anhydrides such as succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride, and derivatives thereof.
  • cyclic acid anhydride group of the elastomeric polymer having a cyclic acid anhydride group in the side chain used in the first step succinic anhydride group, maleic anhydride group, glutaric anhydride group, phthalic anhydride group Among them, a maleic anhydride group is more preferable from the viewpoint of high reactivity of the raw material and industrial availability of the raw material.
  • the elastomeric polymer having a cyclic acid anhydride group in the side chain used in the first step can form the main chain portion of the elastomeric polymer (A) to (B), for example, by a usual method.
  • a polymer may be produced by a method in which a cyclic acid anhydride is graft-polymerized under the usual conditions, for example, stirring under heating.
  • Examples of commercially available elastomeric polymers having such a cyclic acid anhydride group in the side chain include maleic anhydride-modified isoprene rubbers such as LIR-403 (manufactured by Kuraray Co., Ltd.) and LIR-410A (prototype manufactured by Kuraray Co., Ltd.).
  • Modified isoprene rubber such as LIR-410 (manufactured by Kuraray Co., Ltd.); carboxy-modified nitrile rubber such as Clinac 110, 221 and 231 (manufactured by Policer); CPIB (manufactured by Nisseki Chemical Co., Ltd.) Carboxy-modified polybutene such as Nucrel (made by Mitsui Dupont Polychemical), Yucaron (made by Mitsubishi Chemical), Tuffmer M (for example, MP0610 (made by Mitsui Chemicals), MP0620 (made by Mitsui Chemicals)), etc.
  • LIR-410 manufactured by Kuraray Co., Ltd.
  • carboxy-modified nitrile rubber such as Clinac 110, 221 and 231 (manufactured by Policer); CPIB (manufactured by Nisseki Chemical Co., Ltd.)
  • Carboxy-modified polybutene such as Nucrel (made by Mitsui Dupont Poly
  • the elastomeric polymer having a cyclic acid anhydride group in the side chain is more preferably maleic anhydride-modified ethylene-propylene rubber or maleic anhydride-modified ethylene-butene rubber from the viewpoint of high molecular weight and high strength.
  • the clay used in the first step is the same as the clay described in the conductive thermoplastic elastomer composition of the present invention (the preferred one is also the same).
  • the paraffin oil utilized in such a method is the same as the paraffin oil described in the conductive thermoplastic elastomer composition of the present invention (the preferred one is also the same).
  • the carbon-based filler used in such a method is the same as the carbon-based filler described in the conductive thermoplastic elastomer composition of the present invention (the preferred one is also the same).
  • an elastomeric polymer having a cyclic acid anhydride group in the side chain, clay, and paraffin oil are mixed to obtain a mixture.
  • the order of addition of the elastomeric polymer having a cyclic acid anhydride group in the side chain, clay, and the paraffin oil is not particularly limited, but the dispersibility of the clay is further improved. From the viewpoint of improving, it is preferable to prepare a precursor of a mixture containing the paraffin oil and an elastomeric polymer having a cyclic acid anhydride group in the side chain, and then add clay to the precursor.
  • the clay when adding clay to obtain the mixture, the clay should be added after plasticizing an elastomeric polymer having a cyclic acid anhydride group in the side chain in advance so that the clay is sufficiently dispersed. It is preferable to plasticize the mixture precursor and add clay to it.
  • the method of plasticizing the elastomeric polymer having a cyclic acid anhydride group in the side chain and the mixture precursor is not particularly limited, and for example, a temperature (that enables plasticizing them) ( For example, a method of kneading using a roll, a kneader, an extruder, a universal stirrer, or the like at about 100 to 250 ° C. can be appropriately employed.
  • Conditions such as temperature at the time of plasticizing the elastomeric polymer having such a cyclic acid anhydride group in the side chain and the mixture precursor are not particularly limited, and the type of component (for example, cyclic acid anhydride) What is necessary is just to set suitably according to the kind etc. of the elastomeric polymer which has a physical group in a side chain.
  • the content ratio of the clay and the paraffin oil is within the above-mentioned range in the composition, respectively (the clay described in the conductive thermoplastic elastomer composition of the present invention and the The elastomeric polymer having the cyclic acid anhydride group in the side chain, the clay, and the paraffin oil are mixed while satisfying the condition of the content of paraffin oil).
  • the clay content in the finally obtained conductive thermoplastic elastomer composition is 20 parts by mass or less (more preferably 0.01 to 10 parts by mass) with respect to 100 parts by mass of the elastomer component. 10 parts by mass, more preferably 0.05 to 5 parts by mass, particularly preferably 0.08 to 3 parts by mass) using the clay in an amount having the cyclic acid anhydride group in the side chain. It is preferable to mix the functional polymer, the clay and the paraffin oil. When the content of such clay exceeds the upper limit, crosslinking is too strong, and the elongation and strength tend to decrease.On the other hand, when the content is lower than the lower limit, the amount of clay is too small, and the clay is used. There exists a tendency for the obtained effect to fall.
  • the clay content in such a mixture is preferably 20 parts by mass or less, based on 100 parts by mass of the elastomeric polymer having a cyclic acid anhydride group in the side chain, and is 0.05 to 5 parts by mass. Part is more preferable, and 0.08 to 3 parts by mass is still more preferable. If the content is less than the lower limit, the amount of clay is too small, and the effect obtained by using clay tends to be reduced.On the other hand, if the upper limit is exceeded, crosslinking is too strong, On the other hand, the elongation and strength tend to decrease. In addition, by using clay with such a content, content of the clay in the electroconductive thermoplastic elastomer composition finally obtained becomes a value within the said range.
  • the amount of clay used in the formation of such a mixture is as follows.
  • the amount of the clay is 0.01 g to 1 mmol of the cyclic acid anhydride group in the elastomeric polymer having the cyclic acid anhydride group in the side chain.
  • the content is preferably 2.0 g (more preferably 0.02 to 1.0 g). If the ratio of the clay to the acid anhydride group is less than the lower limit, the effect tends to be too low, whereas if the upper limit is exceeded, the crosslinking is too strong, and the elongation and strength tend to decrease. It is in.
  • the clay contained in the mixture can be efficiently decomposed, and a single-layer clay can be efficiently produced, and the dispersibility of the clay is further improved. It tends to be advanced.
  • the content of the paraffin oil in the finally obtained conductive thermoplastic elastomer composition is 1 to 65% by mass (preferably 5 to 65% by mass, more preferably It is preferable to mix the elastomeric polymer having the cyclic acid anhydride group in the side chain, the clay, and the paraffin oil using the paraffin oil at a ratio of 10 to 65% by mass). If the content of such paraffin oil is less than the lower limit, the fluidity and dispersibility tend to be insufficient. On the other hand, if the content exceeds the upper limit, the oil tends to bleed.
  • the mixing method for obtaining such a mixture is not particularly limited, and a known method or the like can be appropriately employed.
  • a method of mixing with a roll, a kneader, an extruder, a universal stirrer, or the like is employed. be able to.
  • the above-described various additives polymers other than the elastomer component (for example, a styrene block copolymer containing no chemically-bonded crosslinking site (Polmers with styrene blocks), ⁇ -olefin resins that do not contain chemically-bonded crosslinking sites ( ⁇ -olefin homopolymers, ⁇ -olefin copolymers, etc.), reinforcing agents (fillers), hydrogen bonding properties Reinforcing agents (fillers), fillers obtained by introducing amino groups (hereinafter simply referred to as “amino group-introduced fillers”), amino group-containing compounds other than the amino group-introduced fillers, compounds containing metal elements (Hereinafter simply referred to as “metal salt”), maleic anhydride-modified polymer, anti-aging agent, antioxidant, pigment (dye), plasticizer, thixotropic agent, ultraviolet absorber, flame retardant, solvent, surface activity
  • Such components such as additives (other components) are the same as those described in the conductive thermoplastic elastomer composition of the present invention, and the content and the like are appropriately changed according to the intended design. It is possible to use it.
  • the amount used is appropriately adjusted so that the preferred range of the content already explained is used. It is preferable to use while changing.
  • the additive is the ⁇ -olefin resin
  • the content thereof is 250 parts by mass or less (more preferably 5 to 250 parts by mass, still more preferably) with respect to 100 parts by mass of the elastomer component as described above.
  • the additive is a styrene block copolymer having no chemically-bonded crosslinking site
  • the content thereof is 10 to 400 parts by mass (more preferably 15 to 100 parts by mass with respect to 100 parts by mass of the elastomer component).
  • the additive is a reinforcing agent (filler)
  • the content is 500 parts by mass or less (more preferably 20 to 400 parts by mass) with respect to 100 parts by mass of the elastomer component. It is preferable. If the content of such a reinforcing agent (filler) is less than the lower limit, the effect of using the reinforcing agent (filler) tends to be insufficiently expressed. On the other hand, if the content exceeds the upper limit, the component to be used Although it depends on the type of the material, the effect of the elastomer of the substrate is diminished and the physical properties tend to be lowered.
  • the content thereof is 600 parts by mass or less (more preferably 10 to 600 parts by mass, still more preferably) with respect to 100 parts by mass of the elastomer component. 50 to 550 parts by mass, particularly preferably 75 to 500 parts by mass, and most preferably 100 to 400 parts by mass).
  • the content of the additive is 20 parts by mass or less (more preferably 0.1 parts per 100 parts by mass of the elastomer component). (About 10 parts by mass) is preferably used. If the content of such an additive is less than the lower limit, the effect of using the additive tends to be insufficiently expressed. On the other hand, if the content exceeds the upper limit, it adversely affects the reaction of the substrate elastomer, On the other hand, physical properties tend to decrease.
  • thermoplastic elastomer composition conductive heat This is a step of obtaining a precursor of a plastic elastomer composition: a composition before introduction of a carbon-based filler).
  • a compound including a compound that forms a hydrogen bonding cross-linking site described in the conductive thermoplastic elastomer composition of the present invention described above
  • a compound similar to the compound capable of introducing a nitrogen heterocycle can be suitably used.
  • the nitrogen-containing heterocycle described in the conductive thermoplastic elastomer composition of the present invention may be used.
  • a compound for example, a nitrogen-containing heterocycle having the substituent in which a substituent that reacts with a cyclic acid anhydride group such as maleic anhydride (for example, a hydroxyl group, a thiol group, or an amino group) is bonded to the nitrogen-containing heterocyclic ring.
  • a substituent that reacts with a cyclic acid anhydride group such as maleic anhydride (for example, a hydroxyl group, a thiol group, or an amino group) is bonded to the nitrogen-containing heterocyclic ring.
  • a compound that forms both a hydrogen bonding crosslinking site and a covalent bonding site both hydrogen bonding crosslinking site and covalent bonding site can be introduced simultaneously.
  • a side chain having both a hydrogen bonding crosslinking site and a covalent bonding site can be said to be a preferred form of a side chain having a hydrogen bonding crosslinking site).
  • the compound (I) is not particularly limited, and the compound as described above depending on the type of side chain (side chain (a) or side chain (a ′)) in the target polymer.
  • a suitable compound can be appropriately selected from (I).
  • a compound (I) from the viewpoint that higher reactivity is obtained, triazole, pyridine, which may have at least one substituent selected from a hydroxyl group, a thiol group, and an amino group, It is preferably thiadiazole, imidazole, isocyanurate, triazine and hydantoin, and more preferably triazole, pyridine, thiadiazole, imidazole, isocyanurate, triazine and hydantoin having the above-mentioned substituents.
  • the triazole, isocyanurate, and triazine are more preferable, and the triazole having the substituent is particularly preferable.
  • Examples of the triazole, pyridine, thiadiazole, imidazole and hydantoin which may have such a substituent include, for example, 4H-3-amino-1,2,4-triazole, aminopyridine, aminoimidazole and aminotriazine. Aminoisocyanurate, hydroxypyridine, hydroxyethyl isocyanurate and the like.
  • the “covalently crosslinked site is formed” explained in the conductive thermoplastic elastomer composition of the present invention.
  • a compound similar to “compound (compound that forms a covalent bond)” can be preferably used (the same is true for the compound).
  • a compound that forms both a hydrogen bonding crosslinking site and a covalent bonding site both hydrogen bonding crosslinking site and covalent bonding site can be introduced simultaneously.
  • a side chain having both a hydrogen bonding crosslinking site and a covalent crosslinking site can be said to be a preferred form of a side chain having a covalent crosslinking site).
  • trishydroxyethyl isocyanurate, sulfamide and polyether polyol are preferable, trishydroxyethyl isocyanurate and sulfamide are more preferable, and trishydroxyethyl isocyanurate is preferable. Further preferred.
  • the compound (I) and / or (II) a compound having at least one substituent selected from a hydroxyl group, a thiol group, an amino group, and an imino group from the viewpoint of introducing a hydrogen-bonding crosslinking site. It is preferable to use it. Further, as the compound (I) and / or (II), it is possible to more efficiently introduce both a hydrogen-bonding crosslinking site and a covalent-bonding crosslinking site into the composition.
  • a compound that reacts with an anhydride group to form both a hydrogen bonding crosslinking site and a covalent crosslinking site (compound capable of simultaneously introducing both a hydrogen bonding crosslinking site and a covalent crosslinking site) It is preferable to use it.
  • the compound that forms both the hydrogen bond crosslinking site and the covalent bond site the heterocyclic ring-containing polyol, the heterocyclic ring-containing polyamine, and the heterocyclic ring-containing polythiol can be suitably used. Trishydroxyethyl isocyanurate is particularly preferred.
  • the amount of compound (I) and compound (II) added is not particularly limited.
  • active hydrogen such as amine or alcohol
  • the amount of active hydrogen such as amine or alcohol in the compound is 20 to 250 mol% with respect to 100 mol% of the cyclic acid anhydride group.
  • the amount is preferably 50 to 150 mol%, more preferably 80 to 120 mol%. If the amount added is less than the lower limit, the amount of side chains introduced is small, it is difficult to make the crosslinking density sufficiently high, and physical properties such as tensile strength tend to be reduced. On the other hand, when the above upper limit is exceeded, the amount of the compound used is too large, the number of branches increases, and the crosslinking density tends to decrease.
  • the amount of compound (I) and compound (II) added is such that the total amount thereof (when only one compound is used, is the amount of one compound), the polymer ( The elastomeric polymer having a cyclic acid anhydride group in the side chain) is preferably from 0.1 to 10 parts by weight, more preferably from 0.3 to 7 parts by weight, based on 100 parts by weight, More preferably, it is ⁇ 5.0 parts by mass. If the amount of compound (I) and compound (II) added (the amount based on parts by mass) is less than the lower limit, the crosslinking density does not increase and the desired physical properties tend not to be exhibited. When it exceeds, it will be too many, and there exists a tendency for a branch to increase and a crosslinking density to fall.
  • the order of adding compound (I) and compound (II) is not particularly limited, and either may be added first.
  • compound (I) is reacted with a part of the cyclic acid anhydride group of the elastomeric polymer having a cyclic acid anhydride group in the side chain. You may let them. Thereby, it is also possible to react the compound (II) with an unreacted cyclic acid anhydride group (a cyclic acid anhydride group that has not been reacted) to form a covalently crosslinked site.
  • the part mentioned here is preferably 1 mol% or more and 50 mol% or less with respect to 100 mol% of the cyclic acid anhydride group.
  • the effect of introducing a group derived from the compound (I) for example, a nitrogen-containing heterocyclic ring
  • the compound (II) is preferably reacted with the cyclic acid anhydride group so that a suitable number of covalent crosslinks (for example, 1 to 3 per molecule) is obtained.
  • the cyclic acid anhydride group of the polymer is opened, and the cyclic acid anhydride group and the raw material compound ( The compound (I) and / or compound (II)) is chemically bonded.
  • the side chain formed (introduced) by such a reaction can contain the structure represented by the above formula (2) or (3).
  • the side chain formed by such a reaction can also contain a structure represented by the above formulas (7) to (9).
  • each group (structure) of the side chain in such a polymer that is, an unreacted cyclic acid anhydride group, a structure represented by the above formulas (2), (3) and (7) to (9) Etc. can be confirmed by commonly used analytical means such as NMR and IR spectra.
  • an elastomeric polymer having a side chain (a) containing a hydrogen-bonding cross-linking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or lower (A) and at least one selected from the group consisting of an elastomeric polymer (B) containing a hydrogen-bonding cross-linking site and a covalent cross-linking site in the side chain and having a glass transition point of 25 ° C. or lower.
  • the paraffin oil; Can be obtained (precursor of conductive thermoplastic elastomer composition).
  • the elastomeric polymer (A) and the elastomeric polymer (B) in the composition thus obtained are the side chain (a), side chain (a ′), side chain (b), Those in which the side chain (c) is derived from a reaction with a cyclic acid anhydride group (for example, a side chain containing a structure represented by the above formulas (2), (3) and (7) to (9)) ) Is the same as the elastomeric polymer (A) and the elastomeric polymer (B) described in the conductive thermoplastic elastomer composition of the present invention.
  • thermoplastic elastomer composition precursor of the conductive thermoplastic elastomer composition
  • conductive heat of the present invention is mixed. This is a step of obtaining a plastic elastomer composition.
  • Such a carbon-based filler having a BET specific surface area of 50 m 2 / g or more is the same as that described in the conductive thermoplastic elastomer composition of the present invention (the preferred one is also the same).
  • the method of mixing such a carbon-based filler with the thermoplastic elastomer composition is not particularly limited, and a known method or the like can be appropriately employed. A method of mixing by a roll, a kneader, an extruder, a universal stirrer or the like can be employed. Moreover, the mixing conditions of the carbon-based filler are not particularly limited, and may be set as appropriate according to the type of mixing apparatus used so that the carbon-based filler is sufficiently dispersed.
  • the content of the carbon-based filler in the finally obtained conductive thermoplastic elastomer composition should be within a suitable range of the content of the carbon-based filler described above.
  • thermoplastic elastomer composition (conducting thermoplastic elastomer composition). It is preferable to mix a carbon-based filler with the precursor). If the content of such carbon filler is less than the lower limit, the surface resistivity and volume resistivity tend to increase. On the other hand, if the upper limit is exceeded, workability during mixing of the elastomer and the carbon filler decreases. The performance of the resulting composition tends to decrease.
  • a carbon-based filler having a BET specific surface area of 50 m 2 / g or more (having a relatively large specific surface area) is used, but at least a composition that is a final product.
  • a carbon-based filler is mixed together with an elastomer component, clay, and paraffin oil.
  • the paraffin oil in the composition becomes a lubricating component, and the carbon-based filler is sufficiently dispersed in the composition, so that a sufficiently high conductivity is obtained, and the paraffin oil and Together, the present inventors infer that the rubber is easily deformed, so that the finally obtained conductive thermoplastic elastomer composition has sufficiently high compression set resistance.
  • a mixing method including the first step to the third step when used in this way, a single layer of clay can be more efficiently contained in the composition, and the clay can be dispersed efficiently. It becomes possible.
  • the present inventors guess as follows. That is, when utilizing such a mixing method including the first step to the third step, in the first step, the clay and the elastomeric polymer having the cyclic acid anhydride group in the side chain (hereinafter referred to as “acid” in some cases). And the clay is dispersed in advance in the acid anhydride polymer, whereby the acid anhydride group and the clay interact with each other, and the clay layer is easily peeled off.
  • the clay when the clay is an organic clay that is preferably used in the present invention (organic clay), an organic substance such as an ammonium salt present between the layers interacts more efficiently with the acid anhydride. The layer tends to peel easily. Then, after the clay is dispersed, the raw material compound (functions as a cross-linking agent for forming a cross-link.
  • cross-linking agent hereinafter, sometimes referred to as “cross-linking agent” is reacted with the cross-linking agent and the acid anhydride group.
  • cross-linking agent at least hydrogen bonding cross-linking sites (for example, carboxylic acid groups) are generated in the system. Therefore, interaction by hydrogen bonding is caused between the clay and the clay is further dispersed in the elastomer. In this way, the present inventors infer that the single-layer clay can be more efficiently contained and the clay can be efficiently dispersed.
  • the conductive thermoplastic elastomer composition of the present invention obtained by using the mixing method including the first step to the third step in this way contains a single layer of clay in the composition.
  • TEM transmission electron microscope
  • the proportion of clay in the form of a single layer (single layer clay) in the composition is more efficiently selected as described above. It is possible to make it a proper ratio.
  • the clay interacts with the cyclic acid anhydride group, making it possible to more efficiently peel off the layers of the multilayered clay, and the clay is in a single layer state. It is possible to disperse (finely disperse) at a higher rate, so that a higher proportion of single-layered clay (single-layer clay) is present in the composition, and the above-mentioned preferred proportion of single-layered clay
  • the present inventors infer that the clay can be contained. Note that the presence of such a single-layered clay can be confirmed by measuring the surface of the obtained composition with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • thermoplastic elastomer composition containing the elastomeric polymer (A) as an elastomer component and the elastomeric polymer (B).
  • thermoplastic elastomer composition containing elastomeric polymers (A) and (B) as an elastomer component after separately producing a conductive thermoplastic elastomer composition having an elastomer component as an elastomer component. It is good.
  • the ratio of the elastomeric polymer (A) to the elastomeric polymer (B) is determined.
  • the method (A) is not limited to the method (A-1).
  • the raw material compound and the carbon-based filler are sequentially added and mixed according to the order in which the first step to the third step are performed.
  • the order of adding the elastomeric polymer having a cyclic acid anhydride group in the side chain, clay, paraffin oil, carbon filler, and raw material compound is not particularly limited.
  • the elastomeric polymer having a cyclic acid anhydride group in the side chain, clay, paraffin oil, carbon filler, and raw material compound may be mixed, and the order of adding these materials. Etc. are not particularly limited.
  • a reaction vessel for example, a heating cylinder (heating cylinder) of an extruder
  • a mixture of components prepared in advance with a blender or the like May be added at the same time by mixing, or may be mixed, or each component may be added to the reaction vessel in the same order as in the first to third steps or in the first to third steps. May be added and mixed sequentially in a different order.
  • the elastomeric polymer having the cyclic acid anhydride group in the side chain, the clay, the paraffin oil, the carbon filler, and the raw material compound are mixed, and the elastomeric polymer is mixed.
  • the method of reacting the raw material compound with the raw material compound is not particularly limited, and a known method can be appropriately employed. For example, a mixture of these components is continuously mixed using an extruder (continuous kneading). ), A method of mixing the respective components and reacting the elastomeric polymer and the raw material compound may be suitably employed.
  • an extruder from the viewpoint of adjusting the kneading time, a multi-screw extruder is preferably used, and a twin-screw extruder is particularly preferably used.
  • the temperature conditions described in the first production method described above are temperatures at which the polymer and the raw material compound (the compound (I) and / or the compound (II)) can react (preferably from 100 to 100). 250 ° C., more preferably 120 to 230 ° C.). Further, the temperature condition in the case of employing such a method of continuous mixing (continuous kneading) is more preferably 140 to 249 ° C., and further preferably 160 to 220 ° C. If such a temperature condition is less than the lower limit, the fluidity tends to decrease. On the other hand, if it exceeds the upper limit, thermal degradation of the polymer component occurs and the breaking strength tends to decrease.
  • the characteristics (shape, etc.) of the screw to be used ) Is not particularly limited, and the design can be changed as appropriate.
  • fills the conditions that L / D is 30 or more is more preferable in the relationship between the length (L) of a screw, and the diameter (D) of a screw. When satisfying such a relationship, the fluidity is improved and the breaking strength tends to be improved.
  • a maximum shear rate is carried out with an extruder. It is preferable to adjust the rotational speed of the screw so that is 1 to 1599 sec ⁇ 1 (more preferably 50 to 900 sec ⁇ 1 , still more preferably 100 to 600 sec ⁇ 1 ). When the maximum shear rate is less than the lower limit, the fluidity tends to decrease, and when it exceeds the upper limit, the breaking strength tends to decrease.
  • each component an elastomeric polymer having a cyclic acid anhydride group in the side chain, clay, paraffin
  • a plurality of supply ports corresponding to oil, a carbon-based filler, and a raw material compound) are provided, and each component is sequentially added to the extruder, so that the order of addition of the components to be used may be appropriately changed.
  • the step of sequentially mixing the components can be more efficiently performed. Become.
  • the content ratio of the said clay and the said paraffin oil become the above-mentioned range in a composition, respectively. It may be adjusted as appropriate according to the conditions.
  • the method (A) includes a step of further adding other components such as various additives as long as the object of the present invention is not impaired as described in the method (A-1). May be.
  • the conditions such as the content of such other components are the same as those described in the above method (A-1) (the preferred range is also the same).
  • the elastomeric polymer, the clay, the paraffin oil, the carbon-based filler, and the raw material compound, and the content ratio of the clay and the paraffin oil in the composition are within the above-mentioned ranges.
  • the content range described in the conductive thermoplastic elastomer composition of the present invention described above is mixed while being reacted, and the elastomeric polymer and the raw material compound are reacted,
  • the clay The paraffin oil;
  • the carbon-based filler It is possible to obtain the conductive thermoplastic elastomer composition of the present invention comprising the above.
  • ⁇ JIS-A hardness> Each of the conductive thermoplastic elastomer compositions obtained in each Example and each Comparative Example was used. First, the conductive thermoplastic elastomer composition was preheated at 200 ° C. for 3 minutes and then hot pressed at 200 ° C. for 5 minutes. The sheet was prepared so that the thickness was about 2 mm. Next, the sheet thus obtained was punched into a disk shape having a diameter of 29 mm, and seven sheets were overlapped to prepare a sample so that the height (thickness) was 12.5 ⁇ 0.5 mm. Using the sample thus obtained, JIS-A hardness was measured in accordance with JIS K6253 (issued in 2012).
  • Elongation at break (E B )> Each of the conductive thermoplastic elastomer compositions obtained in each Example and each Comparative Example was used. First, the conductive thermoplastic elastomer composition was preheated at 200 ° C. for 3 minutes and then hot pressed at 200 ° C. for 5 minutes. A 2 mm thick sheet was prepared. A No. 3 dumbbell-shaped test piece was punched out from the sheet thus obtained, and a tensile test at a tensile speed of 500 mm / min was conducted in accordance with JIS K6251 (issued in 2010). Elongation at break (E B ) [unit %] was measured at room temperature (25 ° C.).
  • volume resistivity of the conductive thermoplastic elastomer composition obtained in each example and each comparative example was determined by three test pieces (longitudinal lengths) from the conductive thermoplastic elastomer composition obtained in each example and each comparative example.
  • test 150 mm, 20 mm wide, 1.8 mm thick rectangular test specimens
  • test 150 mm, 20 mm wide, 1.8 mm thick rectangular test specimens
  • test 150 mm, 20 mm wide, 1.8 mm thick rectangular test specimens
  • test 150 mm, 20 mm wide, 1.8 mm thick rectangular test specimens
  • each test specimen was subjected to the following test conditions according to JIS K 6271 (issued in 2008: “vulcanized rubber and thermoplastic rubber volume resistance” Measurement (test) by the parallel terminal electrode method in accordance with “How to obtain the rate and surface resistivity”), and each measurement (3 times measurement: each of the first time, the second time, and the third time (each test piece) ),
  • the magnitude of the applied current was changed based on the following conditions), and the average value of the measured values (actually measured volume resistivity values of the three test pieces) was calculated.
  • Example 1 First, 25 g of styrene-ethylene-butylene-styrene block copolymer (SEBS: trade name “G1633” manufactured by Clayton Co., Ltd.) was put into a pressure kneader and kneaded at 180 ° C. 50 g of paraffin oil (trade name “Diana Process Oil PW380” manufactured by Idemitsu Kosan Co., Ltd., kinematic viscosity: 380 mm 2 / s, Cp value: 68.0%, aniline point: 143 ° C.) was added dropwise, and styrene-ethylene-butylene- The styrene block copolymer and paraffin oil were mixed for 1 minute.
  • SEBS trade name “G1633” manufactured by Clayton Co., Ltd.
  • maleic anhydride-modified ethylene-butene copolymer maleinized EBM: trade name “Tuffmer MH5040” manufactured by Mitsui Chemicals, crystallinity: 4%) 100 g, polyethylene (PE: Japan) Trade name “HJ590N” manufactured by Polyethylene Co., Ltd., crystallinity: 74%, MFR: 40 g / 10 minutes (2.16 kg, 190 ° C., Mw: 70000) 150 g and anti-aging agent (trade name “Adeka” AO-50 ”) 0.33 g was further added, and the mixture was masticated at a temperature of 180 ° C.
  • a first mixture a mixture of SEBS, paraffin oil, maleated EBM, PE and anti-aging agent.
  • the said 1st mixture was plasticized by this mastication process.
  • 0.1 g of organic clay (trade name “Esven WX” manufactured by Hojun Co., Ltd.) is further added to the first mixture in the pressure kneader and kneaded at 180 ° C. for 4 minutes. A second mixture was obtained.
  • thermoplastic elastomer composition (conductive heat A precursor of a plastic elastomer composition) was prepared.
  • thermoplastic elastomer composition precursor of conductive thermoplastic elastomer composition
  • pressure kneader 19.7 g of ketjen black
  • BET specific surface area 1270 m 2 / g
  • average primary particle size 34 nm
  • side chain (i) A side chain containing a structure represented by the following formula (26) (hereinafter sometimes simply referred to as “side chain (i)”), a side chain containing a structure represented by the following formula (27) ( Hereinafter, in some cases, simply referred to as “side chain (ii)”) and a side chain containing a structure represented by the following formula (28) (hereinafter, sometimes simply referred to as “side chain (iii)”).
  • an elastomeric polymer mainly having the side chain (iii) is formed. Further, it was found that such an elastomeric polymer has a glass transition point of 25 ° C. or lower because the main chain is composed of ethylene and butene.
  • Example 1 Example 1 except that the addition amount of styrene-ethylene-butylene-styrene block copolymer, paraffin oil, anti-aging agent and ketjen black (amount used: g) was changed to the amounts shown in Table 1 below. In the same manner as above, a conductive thermoplastic elastomer composition for comparison was obtained.
  • Table 1 below shows the addition amount (use amount) of the raw materials used in Examples 1 to 7 and Comparative Example 1, the content ratio of some components in the composition, and the like.
  • the conductive thermoplastic elastomer compositions obtained in Examples 1 to 7 all have a volume resistivity of 200 ⁇ ⁇ cm or less, which is a sufficiently high level. It was found to have conductivity.
  • the conductive thermoplastic elastomer compositions obtained in Examples 1 to 7 all have a compression set of 59% or less and have a sufficiently high level of resistance to compression set. I understood. From these results, it can be seen that the conductive thermoplastic elastomer compositions obtained in Examples 1 to 7 all have a sufficiently high balance between conductivity and resistance to compression set. I understood.
  • the conductive thermoplastic elastomer composition obtained in Comparative Example 1 has a volume resistivity of 310 ⁇ ⁇ cm, and the conductive thermoplastic elastomer composition obtained in Examples 1 to 7 It was found that the conductivity was lower than that.
  • the conductive thermoplastic elastomer compositions obtained in Examples 1 to 7 have sufficiently high tensile strength (tensile strength based on elongation at break). I also found out. Further, as is apparent from the results shown in Table 2, the conductive thermoplastic elastomer compositions obtained in Examples 1 to 7 had various hardnesses. From these results, the conductive thermoplastic elastomer compositions of the present invention (Examples 1 to 7) can have a sufficiently high balance between conductivity and compression set at a high level. In addition, it has been found that it is possible to have a sufficiently high tensile strength, and furthermore, it is possible to easily adjust the hardness of the final product according to the application.
  • the conductivity, compression set, and tensile strength are well balanced at a sufficiently high level. It has been found that since the hardness can be changed to a desired value, it is possible to provide a conductive material that can have a desired hardness depending on the application.
  • thermoplastic elastomer composition having a sufficient balance between conductivity and compression set resistance at a sufficiently high level.
  • the conductive thermoplastic elastomer composition of the present invention has a sufficiently high conductivity and a sufficiently high resistance to compression set in a well-balanced manner, and is not sufficiently plastically deformed and sufficient. Because it is a thermoplastic elastomer with electrical conductivity, for example, it can prevent ignition by sparks generated from static electricity such as electromagnetic shielding materials for containers that store electronic devices such as computers and communication devices, ground wires for electronic components, etc., and triboelectricity. It is suitable as a joining member used for members such as materials. Also used to manufacture products used for applications such as gas, oil tank lifting friction static electricity removal, explosives factory, operating room, computer room floor materials, electromagnetic shielding materials such as work table antistatic, antistatic materials, etc. It is particularly useful for materials and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

特定のエラストマー成分と、クレイと、パラフィンオイルと、BET比表面積が50m/g以上のカーボン系フィラーとを含有する組成物であり、前記クレイの含有比率が前記エラストマー成分100質量部に対して20質量部以下であり、かつ、前記パラフィンオイルの含有比率が前記組成物の総量に対して1~65質量%である、導電性熱可塑性エラストマー組成物。

Description

導電性熱可塑性エラストマー組成物
 本発明は、導電性熱可塑性エラストマー組成物に関する。
 熱可塑性エラストマーは、その成形加工時に加工温度で溶融し、周知の樹脂成形法で成形することが可能であることから、産業上極めて有用な材料である。このような熱可塑性エラストマーとしては、例えば、特許5918878号公報(特許文献1)において、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、クレイとを含有する熱可塑性エラストマー組成物が開示されている。
特許5918878号公報
 しかしながら、上記特許文献1に記載のような熱可塑性エラストマー組成物においては、導電性と耐圧縮永久歪性とを十分に高い水準でバランスよく発揮するといった点では必ずしも十分なものではなかった。
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、導電性と耐圧縮永久歪性とを十分に高い水準でバランスよく有する導電性熱可塑性エラストマー組成物を提供することを目的とする。
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、導電性熱可塑性エラストマー組成物を、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、クレイと、パラフィンオイルと、BET比表面積が50m/g以上のカーボン系フィラーとを含有する組成物とし、前記クレイの含有比率を前記エラストマー成分100質量部に対して20質量部以下とし、更に、前記パラフィンオイルの含有比率を前記組成物の総量に対して1~65質量%とすることにより、その導電性熱可塑性エラストマー組成物を、導電性と耐圧縮永久歪性とを十分に高い水準でバランスよく有するものとすること(十分に高度な導電性と十分に高い耐圧縮永久歪性とをバランスよく有するものとすること)が可能となることを見出し、本発明を完成するに至った。
 すなわち、本発明の導電性熱可塑性エラストマー組成物は、
 カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 クレイと、
 パラフィンオイルと、
 BET比表面積が50m/g以上のカーボン系フィラーと、
を含有する組成物であり、前記クレイの含有比率が前記エラストマー成分100質量部に対して20質量部以下であり、かつ、前記パラフィンオイルの含有比率が前記組成物の総量に対して1~65質量%であるものである。
 上記本発明の導電性熱可塑性エラストマー組成物においては、前記カーボン系フィラーが、カーボンブラック及びカーボンナノチューブからなる群から選択される少なくとも1種であることが好ましく、ケッチェンブラックであることがより好ましい。
 また、上記本発明の導電性熱可塑性エラストマー組成物においては、前記カーボン系フィラーの含有比率が前記組成物の総量に対して0.1~50質量%であることが好ましい。
 また、上記本発明の導電性熱可塑性エラストマー組成物においては、前記クレイが有機化クレイであることが好ましい。
 本発明によれば、導電性と耐圧縮永久歪性とを十分に高い水準でバランスよく有する導電性熱可塑性エラストマー組成物を提供することが可能となる。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 本発明の導電性熱可塑性エラストマー組成物は、
 カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 クレイと、
 パラフィンオイルと、
 BET比表面積が50m/g以上のカーボン系フィラーと、
を含有する組成物であり、前記クレイの含有比率が前記エラストマー成分100質量部に対して20質量部以下であり、かつ、前記パラフィンオイルの含有比率が前記組成物の総量に対して1~65質量%であるものである。ここで、先ず、本発明の導電性熱可塑性エラストマー組成物に含まれる各成分を分けて説明する。
 (エラストマー成分)
 このようなエラストマー成分は、上述のエラストマー性ポリマー(A)~(B)からなる群から選択される少なくとも1種のものである。このようなエラストマー性ポリマー(A)~(B)において、「側鎖」とは、エラストマー性ポリマーの側鎖および末端をいう。また、「カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)」とは、エラストマー性ポリマーの主鎖を形成する原子(通常、炭素原子)に、水素結合性架橋部位としてのカルボニル含有基および/または含窒素複素環(より好ましくはカルボニル含有基および含窒素複素環)が化学的に安定な結合(共有結合)をしていることを意味する。また、「側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有され」とは、水素結合性架橋部位を有する側鎖(以下、便宜上、場合により「側鎖(a’)」と称する。)と、共有結合性架橋部位を有する側鎖(以下、便宜上、場合により「側鎖(b)」と称する。)の双方の側鎖を含むことによってポリマーの側鎖に水素結合性架橋部位及び共有結合性架橋部位の双方が含有されている場合の他、水素結合性架橋部位及び共有結合性架橋部位の双方を有する側鎖(1つの側鎖中に水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖:以下、このような側鎖を便宜上、場合により「側鎖(c)」と称する。)を含むことで、ポリマーの側鎖に、水素結合性架橋部位及び共有結合性架橋部位の双方が含有されている場合を含む概念である。
 このようなエラストマー性ポリマー(A)~(B)の主鎖(主鎖部分を形成するポリマー)は、一般的に公知の天然高分子または合成高分子であって、そのガラス転移点が室温(25℃)以下のポリマーからなるものであればよく(いわゆるエラストマーからなるものであればよく)、特に限定されるものではない。そのため、エラストマー性ポリマー(A)~(B)は、例えば、天然高分子または合成高分子等のガラス転移点が室温(25℃)以下のエラストマー性ポリマーを主鎖とし、かつ、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を含むもの;天然高分子または合成高分子等のガラス転移点が室温(25℃)以下のエラストマー性ポリマーを主鎖とし、かつ、側鎖として、水素結合性架橋部位を有する側鎖(a’)及び共有結合性架橋部位を有する側鎖(b)を含有するもの;天然高分子または合成高分子等のガラス転移点が室温(25℃)以下のエラストマー性ポリマーを主鎖とし、かつ、水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖(c)を含むもの;等としてもよい。
 このようなエラストマー性ポリマー(A)~(B)の主鎖(主鎖部分を形成するポリマー)としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、1,2-ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、エチレン-プロピレン-ジエンゴム(EPDM)などのジエン系ゴムおよびこれらの水素添加物;エチレン-プロピレンゴム(EPM)、エチレン-アクリルゴム(AEM)、エチレン-ブテンゴム(EBM)、クロロスルホン化ポリエチレン、アクリルゴム、フッ素ゴム、ポリエチレンゴム、ポリプロピレンゴムなどのオレフィン系ゴム;エピクロロヒドリンゴム;多硫化ゴム;シリコーンゴム;ウレタンゴム;等が挙げられる。
 また、前記エラストマー性ポリマー(A)~(B)の主鎖(主鎖部分を形成するポリマー)は、樹脂成分を含むエラストマー性のポリマーからなるものであってもよく、例えば、水添されていてもよいポリスチレン系エラストマー性ポリマー(例えば、SBS、SIS、SEBS等)、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、ポリアミド系エラストマー性ポリマー等が挙げられる。
 このようなエラストマー性ポリマー(A)~(B)の主鎖としては、ジエン系ゴム、ジエン系ゴムの水素添加物、オレフィン系ゴム、水添されていてもよいポリスチレン系エラストマー性ポリマー、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、及び、ポリアミド系エラストマー性ポリマーの中から選択される少なくとも1種が好ましい。また、このような前記エラストマー性ポリマー(A)~(B)の主鎖としては、老化しやすい二重結合がないという観点からは、ジエン系ゴムの水添物、オレフィン系ゴムが好ましく、コストの低さ、反応性の高さ(無水マレイン酸等の化合物のエン反応が可能な二重結合を多数有する)の観点からは、ジエン系ゴムが好ましい。
 さらに、エラストマー性ポリマー(A)~(B)は、液状または固体状であってもよく、その分子量は特に限定されず、本発明の導電性熱可塑性エラストマー組成物が用いられる用途や要求される物性等に応じて適宜選択することができる。
 本発明の導電性熱可塑性エラストマー組成物を加熱(脱架橋等)した時の流動性を重視する場合は、上記エラストマー性ポリマー(A)~(B)は液状であることが好ましく、例えば、主鎖部分がイソプレンゴム、ブタジエンゴム等のジエン系ゴムである場合には、エラストマー性ポリマー(A)~(B)を液状のものとするために、該主鎖部分の重量平均分子量が1,000~100,000であることが好ましく、1,000~50,000程度であることが特に好ましい。
 一方、本発明の導電性熱可塑性エラストマー組成物の強度を重視する場合は、上記エラストマー性ポリマー(A)~(B)は固体状であることが好ましく、例えば、主鎖部分がイソプレンゴム、ブタジエンゴム等のジエン系ゴムである場合には、エラストマー性ポリマー(A)~(B)を固体状のものとするために、該主鎖部分の重量平均分子量が100,000以上であることが好ましく、500,000~1,500,000程度であることが特に好ましい。
 このような重量平均分子量は、ゲルパーミエションクロマトグラフィー(Gel permeation chromatography(GPC))により測定した重量平均分子量(ポリスチレン換算)である。測定にはテトラヒドロフラン(THF)を溶媒として用いることが好ましい。
 本発明の導電性熱可塑性エラストマー組成物においては、前記エラストマー性ポリマー(A)~(B)は2種以上を混合して用いることができる。この場合の各エラストマー性ポリマー同士の混合比は、本発明の導電性熱可塑性エラストマー組成物が用いられる用途や要求される物性等に応じて任意の比率とすることができる。
 また、前記エラストマー性ポリマー(A)~(B)のガラス転移点は、前述のように25℃以下である。エラストマー性ポリマーのガラス転移点がこの範囲であれば、本発明の導電性熱可塑性エラストマー組成物が室温でゴム状弾性を示すためである。また、本発明において「ガラス転移点」は、示差走査熱量測定(DSC-Differential Scanning Calorimetry)により測定したガラス転移点である。測定に際しては、昇温速度は10℃/minにするのが好ましい。
 このようなエラストマー性ポリマー(A)~(B)の主鎖は、エラストマー性ポリマー(A)~(B)のガラス転移点が25℃以下となり、得られる導電性熱可塑性エラストマー組成物からなる成形物が室温(25℃)でゴム状弾性を示すことから、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、1,2-ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、エチレン-プロピレン-ジエンゴム(EPDM)、ブチルゴム(IIR)などのジエン系ゴム;エチレン-プロピレンゴム(EPM)、エチレン-アクリルゴム(AEM)、エチレン-ブテンゴム(EBM)などのオレフィン系ゴム;であることが好ましい。また、前記エラストマー性ポリマー(A)~(B)の主鎖に、それぞれオレフィン系ゴムを用いると、得られる導電性熱可塑性エラストマー組成物の引張強度が向上し、二重結合が存在しないため組成物の劣化がより十分に抑制される傾向にある。
 エラストマー性ポリマー(A)~(B)に用いることが可能な前記スチレン-ブタジエンゴム(SBR)の結合スチレン量や、水添エラストマー性ポリマーの水添率等は、特に限定されず、本発明の導電性熱可塑性エラストマー組成物が用いられる用途や、組成物に要求される物性等に応じて任意の比率に調整することができる。
 また、上記エラストマー性ポリマー(A)~(B)の主鎖として、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-アクリルゴム(AEM)、エチレン-プロピレンゴム(EPM)、エチレン-ブテンゴム(EBM)を用いる場合、室温における良好なゴム状弾性発現の観点から、特に、結晶化度が10%未満(より好ましくは5~0%)のものであることが好ましい。また、上記エラストマー性ポリマー(A)~(B)の主鎖として、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-アクリルゴム(AEM)、エチレン-プロピレンゴム(EPM)、エチレン-ブテンゴム(EBM)を用いる場合、そのエチレン含有量は、好ましくは10~90モル%であり、より好ましくは30~90モル%である。エチレン含有量がこの範囲であれば、熱可塑性エラストマー(組成物)としたときの圧縮永久歪、機械的強度、特に引張強度に優れるため好ましい。
 さらに、前記エラストマー性ポリマー(A)~(B)としては、室温における良好なゴム状弾性発現の観点から、非晶性のものが好ましい。また、このようなエラストマー性ポリマー(A)~(B)としては、一部に結晶性(結晶構造)を有するエラストマーであってもよいが、この場合であっても、結晶化度が10%未満(特に好ましくは5~0%)であることが好ましい。なお、このような結晶化度は、測定装置としてX線回折装置(例えば、リガク社製の商品名「MiniFlex300」を用い、回折ピークを測定し、結晶性/非晶性由来の散乱ピークの積分比を計算することにより求めることができる。
 また、上記エラストマー性ポリマー(A)~(B)は、上述のように、側鎖として、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a);水素結合性架橋部位を含有する側鎖(a’)及び共有結合性架橋部位を含有する側鎖(b);並びに、水素結合性架橋部位及び共有結合性架橋部位を含有する側鎖(c);のうちの少なくとも1種を有するものとなる。なお、本発明において、側鎖(c)は、側鎖(a’)としても機能しつつ側鎖(b)としても機能するような側鎖であるとも言える。以下において、各側鎖を説明する。
 <側鎖(a’):水素結合性架橋部位を含有する側鎖>
 水素結合性架橋部位を含有する側鎖(a’)は、水素結合による架橋を形成し得る基(例えば、水酸基、後述の側鎖(a)に含まれる水素結合性架橋部位等)を有し、その基に基づいて水素結合を形成する側鎖であればよく、その構造は特に制限されるものではない。ここにおいて、水素結合性架橋部位は、水素結合によりポリマー同士(エラストマー同士)を架橋する部位である。なお、水素結合による架橋は、水素のアクセプター(孤立電子対を含む原子を含有する基等)と、水素のドナー(電気陰性度が大きな原子に共有結合した水素原子を備える基等)とがあって初めて形成されることから、エラストマー同士の側鎖間において水素のアクセプターと水素のドナーの双方が存在しない場合には、水素結合による架橋が形成されない。そのため、エラストマー同士の側鎖間において、水素のアクセプターと水素のドナーの双方が存在することによって初めて、水素結合性架橋部位が系中に存在することとなる。なお、本発明においては、エラストマー同士の側鎖間において、水素のアクセプターとして機能し得る部分(例えばカルボニル基等)と、水素のドナーとして機能し得る部分(例えば水酸基等)の双方が存在することをもって、その側鎖の水素のアクセプターとして機能し得る部分とドナーとして機能し得る部分とを、水素結合性架橋部位と判断することができる。
 このような側鎖(a’)中の水素結合性架橋部位としては、より強固な水素結合を形成するといった観点から、以下において説明する、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位(側鎖(a)に含まれる水素結合性架橋部位)であることが好ましい。すなわち、かかる側鎖(a’)としては、後述の側鎖(a)がより好ましい。また、同様の観点で、前記側鎖(a’)中の水素結合性架橋部位としては、カルボニル含有基および含窒素複素環を有する水素結合性架橋部位であることがより好ましい。
 <側鎖(a):カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖>
 カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)は、カルボニル含有基および/または含窒素複素環を有するものであればよく、他の構成は特に限定されない。このような水素結合性架橋部位としては、カルボニル含有基および含窒素複素環を有するものがより好ましい。
 このようなカルボニル含有基としては、カルボニル基を含むものであればよく、特に限定されず、その具体例としては、アミド、エステル、イミド、カルボキシ基、カルボニル基等が挙げられる。このようなカルボニル含有基は、カルボニル含有基を前記主鎖に導入し得る化合物を用いて、前記主鎖(主鎖部分のポリマー)に導入した基であってもよい。このようなカルボニル含有基を前記主鎖に導入し得る化合物は特に限定されず、その具体例としては、ケトン、カルボン酸およびその誘導体等が挙げられる。
 このようなカルボン酸としては、例えば、飽和または不飽和の炭化水素基を有する有機酸が挙げられ、該炭化水素基は、脂肪族、脂環族、芳香族等のいずれであってもよい。また、カルボン酸誘導体としては、具体的には、例えば、カルボン酸無水物、アミノ酸、チオカルボン酸(メルカプト基含有カルボン酸)、エステル、アミノ酸、ケトン、アミド類、イミド類、ジカルボン酸およびそのモノエステル等が挙げられる。
 また、前記カルボン酸およびその誘導体等としては、具体的には、例えば、マロン酸、マレイン酸、スクシン酸、グルタル酸、フタル酸、イソフタル酸、テレフタル酸、p-フェニレンジ酢酸、p-ヒドロキシ安息香酸、p-アミノ安息香酸、メルカプト酢酸などのカルボン酸および置換基含有するこれらのカルボン酸;無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸、無水プロピオン酸、無水安息香酸などの酸無水物;マレイン酸エステル、マロン酸エステル、コハク酸エステル、グルタル酸エステル、酢酸エチルなどの脂肪族エステル;フタル酸エステル、イソフタル酸エステル、テレフタル酸エステル、エチル-m-アミノベンゾエート、メチル-p-ヒドロキシベンゾエートなどの芳香族エステル;キノン、アントラキノン、ナフトキノンなどのケトン;グリシン、チロシン、ビシン、アラニン、バリン、ロイシン、セリン、スレオニン、リシン、アスパラギン酸、グルタミン酸、システイン、メチオニン、プロリン、N-(p-アミノベンゾイル)-β-アラニンなどのアミノ酸;マレインアミド、マレインアミド酸(マレインモノアミド)、コハク酸モノアミド、5-ヒドロキシバレルアミド、N-アセチルエタノールアミン、N,N’-ヘキサメチレンビス(アセトアミド)、マロンアミド、シクロセリン、4-アセトアミドフェノール、p-アセトアミド安息香酸などのアミド類;マレインイミド、スクシンイミドなどのイミド類;等が挙げられる。
 これらのうち、カルボニル基(カルボニル含有基)を導入し得る化合物として、無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸等の環状酸無水物であることが好ましく、無水マレイン酸であることが特に好ましい。
 また、前記側鎖(a)が含窒素複素環を有する場合、前記含窒素複素環は、直接又は有機基を介して前記主鎖に導入されていればよく、その構成等は特に制限されるものではない。このような含窒素複素環は、複素環内に窒素原子を含むものであれば複素環内に窒素原子以外のヘテロ原子、例えば、イオウ原子、酸素原子、リン原子等を有するものでも用いることができる。ここで、前記側鎖(a)中に含窒素複素環を用いた場合には、複素環構造を有すると架橋を形成する水素結合がより強くなり、得られる本発明の熱可塑性エラスマー組成物の引張強度がより向上するため好ましい。
 また、上記含窒素複素環は置換基を有していてもよく、該置換基としては、例えば、メチル基、エチル基、(イソ)プロピル基、ヘキシル基などのアルキル基;メトキシ基、エトキシ基、(イソ)プロポキシ基などのアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子からなる基;シアノ基;アミノ基;芳香族炭化水素基;エステル基;エーテル基;アシル基;チオエーテル基;等が挙げられ、これらを組み合わせて用いることもできる。これらの置換基の置換位置は特に限定されず、置換基数も限定されない。
 さらに、上記含窒素複素環は、芳香族性を有していても、有していなくてもよいが、芳香族性を有していると得られる本発明の導電性熱可塑性エラストマー組成物の圧縮永久歪や機械的強度がより向上するため好ましい。
 また、このような含窒素複素環は、特に制限されるものではないが、水素結合がより強固になり、圧縮永久歪や機械的強度がより向上するといった観点から、5員環、6員環であることが好ましい。このような含窒素複素環としては、具体的には、例えば、ピロロリン、ピロリドン、オキシインドール(2-オキシインドール)、インドキシル(3-オキシインドール)、ジオキシインドール、イサチン、インドリル、フタルイミジン、β-イソインジゴ、モノポルフィリン、ジポルフィリン、トリポルフィリン、アザポルフィリン、フタロシアニン、ヘモグロビン、ウロポルフィリン、クロロフィル、フィロエリトリン、イミダゾール、ピラゾール、トリアゾール、テトラゾール、ベンゾイミダゾール、ベンゾピラゾール、ベンゾトリアゾール、イミダゾリン、イミダゾロン、イミダゾリドン、ヒダントイン、ピラゾリン、ピラゾロン、ピラゾリドン、インダゾール、ピリドインドール、プリン、シンノリン、ピロール、ピロリン、インドール、インドリン、オキシルインドール、カルバゾール、フェノチアジン、インドレニン、イソインドール、オキサゾール、チアゾール、イソオキサゾール、イソチアゾール、オキサジアゾール、チアジアゾール、オキサトリアゾール、チアトリアゾール、フェナントロリン、オキサジン、ベンゾオキサジン、フタラジン、プテリジン、ピラジン、フェナジン、テトラジン、ベンゾオキサゾール、ベンゾイソオキサゾール、アントラニル、ベンゾチアゾール、ベンゾフラザン、ピリジン、キノリン、イソキノリン、アクリジン、フェナントリジン、アントラゾリン、ナフチリジン、チアジン、ピリダジン、ピリミジン、キナゾリン、キノキサリン、トリアジン、ヒスチジン、トリアゾリジン、メラミン、アデニン、グアニン、チミン、シトシン、ヒドロキシエチルイソシアヌレートおよびこれらの誘導体等が挙げられる。これらのうち、特に含窒素5員環については、下記の化合物(化学式で記載の環状構造)、下記一般式(10)で表されるトリアゾール誘導体および下記一般式(11)で表されるイミダゾール誘導体が好ましく例示される。また、これらは上記した種々の置換基を有していてもよいし、水素付加または脱離されたものであってもよい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
上記一般式(10)及び(11)中の置換基X、Y、Zは、それぞれ独立に、水素原子、炭素数1~30のアルキル基、炭素数7~20のアラルキル基、炭素数6~20のアリール基又はアミノ基である。なお、上記一般式(10)中のXおよびYのいずれか一方は水素原子ではなく、同様に、上記一般式(11)中のX、YおよびZの少なくとも1つは水素原子ではない。
 このような置換基X、Y、Zとしては、水素原子、アミノ基以外に、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、オクチル基、ドデシル基、ステアリル基などの直鎖状のアルキル基;イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、1-メチルブチル基、1-メチルヘプチル基、2-エチルヘキシル基などの分岐状のアルキル基;ベンジル基、フェネチル基などのアラルキル基;フェニル基、トリル基(o-、m-、p-)、ジメチルフェニル基、メシチル基などのアリール基;等が挙げられる。
 これらのうち、置換基X、Y、Zとしては、アルキル基、特に、ブチル基、オクチル基、ドデシル基、イソプロピル基、2-エチルヘキシル基であることが、得られる本発明の導電性熱可塑性エラストマー組成物の加工性が良好となるため好ましい。
 また、含窒素6員環については、下記の化合物が好ましく例示される。これらについても上記した種々の置換基(例えば、前述の含窒素複素環が有していてもよい置換基)を有していてもよいし、水素付加または脱離されたものであってもよい。
Figure JPOXMLDOC01-appb-C000003
 また、上記含窒素複素環とベンゼン環または含窒素複素環同士が縮合したものも用いることができ、具体的には、下記の縮合環が好適に例示される。これらの縮合環についても上記した種々の置換基を有していてもよいし、水素原子が付加または脱離されたものであってもよい。
Figure JPOXMLDOC01-appb-C000004
 このような含窒素複素環としては、中でも、得られる本発明の導電性熱可塑性エラストマー組成物のリサイクル性、圧縮永久歪、硬度および機械的強度、特に引張強度に優れるため、トリアゾール環、イソシアヌレート環、チアジアゾール環、ピリジン環、イミダゾール環、トリアジン環及びヒダントイン環の中から選択される少なくとも1種であることが好ましく、トリアゾール環、チアジアゾール環、ピリジン環、イミダゾール環およびヒダントイン環の中から選択される少なくとも1種であることが好ましい。
 また、前記側鎖(a)において、上記カルボニル含有基および上記含窒素複素環の双方が含まれる場合、上記カルボニル含有基および上記含窒素複素環は、互いに独立の側鎖として主鎖に導入されていてもよいが、上記カルボニル含有基と上記含窒素複素環とが互いに異なる基を介して結合した1つの側鎖として主鎖に導入されていることが好ましい。このように、側鎖(a)としては、上記カルボニル含有基および上記含窒素複素環を有する水素結合性架橋部位を含有する側鎖が1つの側鎖として主鎖に導入されていることが好ましく、下記一般式(1):
Figure JPOXMLDOC01-appb-C000005
[式(1)中、Aは含窒素複素環であり、Bは単結合;酸素原子、式:NR’(R'は水素原子又は炭素数1~10のアルキル基である。)で表されるアミノ基又はイオウ原子;或いはこれらの原子又は基を含んでもよい有機基である。]
で表される構造部分を含有する側鎖が1つの側鎖として主鎖に導入されていることがより好ましい。このように、前記側鎖(a)の前記水素結合性架橋部位としては、上記一般式(1)で表される構造部分を含有することが好ましい。
 ここで、上記式(1)における含窒素複素環Aは、具体的には、上記で例示した含窒素複素環が挙げられる。また、上記式(1)における置換基Bとしては、具体的には、例えば、単結合;酸素原子、イオウ原子または式:NR’(R’は水素原子または炭素数1~10のアルキル基)で表されるアミノ基(なお、以下、便宜上、場合により、式:NR’で表されるアミノ基を単に「アミノ基NR’」と称する。);これらの原子または基を含んでもよい炭素数1~20のアルキレン基またはアラルキレン基;これらの原子または基を末端に有する、炭素数1~20のアルキレンエーテル基(アルキレンオキシ基、例えば、-O-CH2CH2-基)、アルキレンアミノ基(例えば、-NH-CH2CH2-基等)またはアルキレンチオエーテル基(アルキレンチオ基、例えば、-S-CH2CH2-基);これらを末端に有する、炭素数1~20のアラルキレンエーテル基(アラルキレンオキシ基)、アラルキレンアミノ基またはアラルキレンチオエーテル基;等が挙げられる。
 ここで、上記アミノ基NR’中のR’として選択され得る炭素数1~10のアルキル基としては、異性体を含む、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。上記式(1)における置換基B中の酸素原子、イオウ原子およびアミノ基NR’;ならびに;これらの原子または基を末端に有する炭素数1~20の、アルキレンエーテル基、アルキレンアミノ基、アルキレンチオエーテル基、または、アラルキレンエーテル基、アラルキレンアミノ基、アラルキレンチオエーテル基等の酸素原子、アミノ基NR’およびイオウ原子は、隣接するカルボニル基と組み合わされ共役系のエステル基、アミド基、イミド基、チオエステル基等を形成することが好ましい。
 これらのうち、前記置換基Bは、共役系を形成する、酸素原子、イオウ原子またはアミノ基;これらの原子または基を末端に有する、炭素数1~20のアルキレンエーテル基、アルキレンアミノ基またはアルキレンチオエーテル基であることが好ましく、アミノ基(NH)、アルキレンアミノ基(-NH-CH2-基、-NH-CH2CH2-基、-NH-CH2CH2CH2-基)、アルキレンエーテル基(-O-CH2-基、-O-CH2CH2-基、-O-CH2CH2CH2-基)であることが特に好ましい。
 また、側鎖(a)が、上記カルボニル含有基および上記含窒素複素環を有する水素結合性架橋部位を含有する側鎖である場合、上記カルボニル含有基および上記含窒素複素環を有する前記水素結合性架橋部位は、下記式(2)または(3)で表される1つの側鎖として、そのα位またはβ位で上記ポリマー主鎖に導入されている側鎖であることがより好ましい。
Figure JPOXMLDOC01-appb-C000006
[式中、Aは含窒素複素環であり、BおよびDはそれぞれ独立に単結合;酸素原子、アミノ基NR’(R’は水素原子または炭素数1~10のアルキル基である。)またはイオウ原子;あるいはこれらの原子または基を含んでもよい有機基である。]
 ここで、含窒素複素環Aは上記式(1)の含窒素複素環Aと基本的に同様であり、置換基BおよびDはそれぞれ独立に、上記式(1)の置換基Bと基本的に同様である。ただし、上記式(3)における置換基Dは、上記式(1)の置換基Bで例示したもののうち、単結合;酸素原子、窒素原子またはイオウ原子を含んでもよい炭素数1~20のアルキレン基またはアラルキレン基の共役系を形成するものであることが好ましく、単結合であることが特に好ましい。すなわち、上記式(3)のイミド窒素と共に、酸素原子、窒素原子またはイオウ原子を含んでもよい炭素数1~20のアルキレンアミノ基またはアラルキレンアミノ基を形成することが好ましく、上記式(3)のイミド窒素に含窒素複素環が直接結合する(単結合)ことが特に好ましい。具体的には、上記置換基Dとしては、単結合;上記した酸素原子、イオウ原子またはアミノ基を末端に有する炭素数1~20のアルキレンエーテルまたはアラルキレンエーテル基等;異性体を含む、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、フェニレン基、キシリレン基等が挙げられる。
 また、側鎖(a)が上記カルボニル含有基および上記含窒素複素環を有する水素結合性架橋部位を含有する側鎖である場合、前記側鎖(a)の前記水素結合性架橋部位が下記一般式(101):
Figure JPOXMLDOC01-appb-C000007
[式(101)中、Aは含窒素複素環である。]
で表される構造部分を含有することが好ましい。このような式(101)中の含窒素複素環Aは上記式(1)の含窒素複素環Aと基本的に同様のものである。また、このような側鎖(a)の前記水素結合性架橋部位としては、高モジュラス、高破断強度の観点から、下記一般式(102):
Figure JPOXMLDOC01-appb-C000008
で表される構造を有するものがより好ましい。更に、前記側鎖(a)が上記一般式(102)で表される基であることが特に好ましい。
 上記熱可塑性エラストマーが有する上記カルボニル含有基と上記含窒素複素環との割合は特に限定されず、2:1であると相補的な相互作用を形成しやすくなり、また、容易に製造できるため好ましい。
 このようなカルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)は、主鎖部分100モル%に対して、0.1~50モル%の割合(導入率)で導入されていることが好ましく、1~30モル%の割合で導入されていることがより好ましい。このような側鎖(a)の導入率が0.1モル%未満では架橋時の引張強度が十分でない場合があり、他方、50モル%を超えると架橋密度が高くなりゴム弾性が失われる場合がある。すなわち、導入率が上記した範囲内であれば、上記熱可塑性エラストマーの側鎖同士の相互作用によって、分子間で効率良く架橋が形成されるため、架橋時の引張強度が高く、リサイクル性に優れるため好ましい。
 上記導入率は、側鎖(a)として、上記カルボニル含有基を有する水素結合性架橋部位を含有する側鎖(a-i)と上記含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a-ii)とがそれぞれ独立に導入されている場合には、該カルボニル含有基を含有する側鎖(a-i)と該含窒素複素環を含有する側鎖(a-ii)との割合に従って、これらを一組で1つの側鎖(a)として考えて算出する。なお、側鎖(a-i)及び(a-ii)のうちの何れかが過剰の場合は、多い方の側鎖を基準として、上記導入率を考えればよい。
 また、上記導入率は、例えば、主鎖部分がエチレン-プロピレンゴム(EPM)である場合には、エチレンおよびプロピレンモノマー単位100ユニット当り、側鎖部分の導入されたモノマーが、0.1~50ユニット程度である。
 また、側鎖(a)としては、反応後に前記主鎖を形成するポリマー(エラストマー性ポリマー形成用の材料)に、官能基として環状酸無水物基(より好ましくは無水マレイン酸基)を有するポリマー(環状酸無水物基を側鎖に有するエラストマー性ポリマー)を用いて、前記官能基(環状酸無水物基)と、該環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)とを反応させて、水素結合性架橋部位を形成して、ポリマーの側鎖を側鎖(a)としたものが好ましい。このような含窒素複素環を導入し得る化合物は、上記で例示した含窒素複素環そのものであってもよく、無水マレイン酸等の環状酸無水物基と反応する置換基(例えば、水酸基、チオール基、アミノ基等)を有する含窒素複素環であってもよい。
 ここで、側鎖(a)における含窒素複素環の結合位置について説明する。なお、窒素複素環を便宜上「含窒素n員環化合物(n≧3)」とする。
 以下に説明する結合位置(「1~n位」)は、IUPAC命名法に基づくものである。例えば、非共有電子対を有する窒素原子を3個有する化合物の場合、IUPAC命名法に基づく順位によって結合位置を決定する。具体的には、上記で例示した5員環、6員環および縮合環の含窒素複素環に結合位置を記している。
 このような側鎖(a)においては、直接または有機基を介して共重合体と結合する含窒素n員環化合物の結合位置は特に限定されず、いずれの結合位置(1位~n位)でもよい。好ましくは、その1位または3位~n位である。
 含窒素n員環化合物に含まれる窒素原子が1個(例えば、ピリジン環等)の場合は、分子内でキレートが形成されやすく組成物としたときの引張強度等の物性に優れるため、3位~(n-1)位が好ましい。含窒素n員環化合物の結合位置を選択することにより、エラストマー性ポリマーは、エラストマー性ポリマー同士の分子間で、水素結合、イオン結合、配位結合等による架橋が形成されやすく、リサイクル性に優れ、機械的特性、特に引張強度に優れるものとなる傾向にある。
 <側鎖(b):共有結合性架橋部位を含有する側鎖>
 本明細書において「共有結合性架橋部位を含有する側鎖(b)」は、エラストマー性ポリマーの主鎖を形成する原子(通常、炭素原子)に、共有結合性架橋部位(後述するアミノ基含有化合物等の「共有結合を生成する化合物」等と反応することで、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起しうる官能基等)が化学的に安定な結合(共有結合)をしていることを意味する。なお、側鎖(b)は共有結合性架橋部位を含有する側鎖であるが、共有結合性部位を有しつつ、更に、水素結合が可能な基を有して、側鎖間において水素結合による架橋を形成するような場合には、後述の側鎖(c)として利用されることとなる(なお、エラストマー同士の側鎖間に水素結合を形成することが可能な、水素のドナーと、水素のアクセプターの双方が含まれていない場合、例えば、系中に単にエステル基(-COO-)が含まれている側鎖のみが存在するような場合には、エステル基(-COO-)同士では特に水素結合は形成されないため、かかる基は水素結合性架橋部位としては機能しない。他方、例えば、カルボキシ基やトリアゾール環のような、水素結合の水素のドナーとなる部位と、水素のアクセプターとなる部位の双方を有する構造をエラストマー同士の側鎖にそれぞれ含む場合には、エラストマー同士の側鎖間で水素結合が形成されるため、水素結合性架橋部位が含有されることとなる。また、例えば、エラストマー同士の側鎖間に、エステル基と水酸基とが共存して、それらの基により側鎖間で水素結合が形成される場合、その水素結合を形成する部位が水素結合性架橋部位となる。そのため、側鎖(b)が有する構造自体や、側鎖(b)が有する構造と他の側鎖が有する置換基の種類等に応じて、側鎖(c)として利用される場合がある。)。また、ここにいう「共有結合性架橋部位」は、共有結合によりポリマー同士(エラストマー同士)を架橋する部位である。
 このような共有結合性架橋部位を含有する側鎖(b)は特に制限されないが、例えば、官能基を側鎖に有するエラストマー性ポリマー(前記主鎖部分を形成させるためのポリマー)と、前記官能基と反応して共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)とを反応させることで、形成される共有結合性架橋部位を含有するものであることが好ましい。このような側鎖(b)の前記共有結合性架橋部位における架橋は、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により形成されてなることが好ましい。そのため、前記主鎖を構成するポリマーが有する前記官能基としては、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起しうる官能基であることが好ましい。
 このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」としては、例えば、1分子中にアミノ基および/またはイミノ基を2個以上(アミノ基およびイミノ基をともに有する場合はこれらの基を合計して2個以上)有するポリアミン化合物;1分子中に水酸基を2個以上有するポリオール化合物;1分子中にイソシアネート(NCO)基を2個以上有するポリイソシアネート化合物;1分子中にチオール基(メルカプト基)を2個以上有するポリチオール化合物;等が挙げられる。ここにおいて「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」は、かかる化合物が有する置換基の種類や、かかる化合物を利用して反応せしめた場合に反応の進行の程度、等によっては、前記水素結合性架橋部位及び前記共有結合性架橋部位の双方を導入し得る化合物となる(例えば、水酸基を3個以上有する化合物を利用して、共有結合による架橋部位を形成する場合において、反応の進行の程度によっては、官能基を側鎖に有するエラストマー性ポリマーの該官能基に2個の水酸基が反応して、残りの1個の水酸基が水酸基として残るような場合も生じ、その場合には、水素結合性の架橋を形成する部位も併せて導入され得ることとなる。)。そのため、ここに例示する「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」には、「水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物」も含まれ得る。このような観点から、側鎖(b)を形成する場合には、「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」の中から目的の設計に応じて化合物を適宜選択したり、反応の進行の程度を適宜制御する等して、側鎖(b)を形成すればよい。なお、共有結合性架橋部位を形成する化合物が複素環を有している場合には、より効率よく水素結合性の架橋部位も同時に製造することが可能になり、後述の側鎖(c)として、前記共有結合性架橋部位を有する側鎖を効率よく形成することが可能となる。そのため、かかる複素環を有しているような化合物の具体例については、側鎖(c)を製造するための好適な化合物として、特に側鎖(c)と併せて説明する。なお、側鎖(c)は、その構造から、側鎖(a)や側鎖(b)等の側鎖の好適な一形態であるとも言える。
 このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」として利用可能なポリアミン化合物としては、例えば、以下に示す脂環族アミン、脂肪族ポリアミン、芳香族ポリアミン、含窒素複素環アミン等が挙げられる。
 このような脂環族アミンとしては、具体的には、例えば、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス-(4-アミノシクロヘキシル)メタン、ジアミノシクロヘキサン、ジ-(アミノメチル)シクロヘキサン等が挙げられる。
 また、前記脂肪族ポリアミンとしては、特に制限されないが、例えば、メチレンジアミン、エチレンジアミン、プロピレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノペンタン、ヘキサメチレンジアミン、ジアミノヘプタン、ジアミノドデカン、ジエチレントリアミン、ジエチルアミノプロピルアミン、N-アミノエチルピペラジン、トリエチレンテトラミン、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジイソプロピルエチレンジアミン、N,N’-ジメチル-1,3-プロパンジアミン、N,N’-ジエチル-1,3-プロパンジアミン、N,N’-ジイソプロピル-1,3-プロパンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン、N,N’-ジエチル-1,6-ヘキサンジアミン、N,N’,N’’-トリメチルビス(ヘキサメチレン)トリアミン等が挙げられる。
 前記芳香族ポリアミンおよび前記含窒素複素環アミンとしては、特に制限されないが、例えば、ジアミノトルエン、ジアミノキシレン、テトラメチルキシリレンジアミン、トリス(ジメチルアミノメチル)フェノール、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、3-アミノ-1,2,4-トリアゾール等が挙げられる。
 また、前記ポリアミン化合物は、その水素原子の一つ以上を、アルキル基、アルキレン基、アラルキレン基、オキシ基、アシル基、ハロゲン原子等で置換してもよく、また、その骨格に、酸素原子、イオウ原子等のヘテロ原子を含んでいてもよい。
 また、前記ポリアミン化合物は、1種単独で用いても2種以上を併用してもよい。2種以上を併用する場合の混合比は、本発明の熱可塑性エラストマー(組成物)が用いられる用途、本発明の熱可塑性エラストマー(組成物)に要求される物性等に応じて任意の比率に調整することができる。
 上記で例示したポリアミン化合物のうち、ヘキサメチレンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン、ジアミノジフェニルスルホン等が、圧縮永久歪、機械的強度、特に引張強度の改善効果が高く好ましい。
 前記ポリオール化合物は、水酸基を2個以上有する化合物であれば、その分子量および骨格などは特に限定されず、例えば、以下に示すポリエーテルポリオール、ポリエステルポリオール、その他のポリオール、およびこれらの混合ポリオール等が挙げられる。
 このようなポリエーテルポリオールとしては、具体的には、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセリン、1,1,1-トリメチロールプロパン、1,2,5-ヘキサントリオール、1,3-ブタンジオール、1,4-ブタンジオール、4,4’-ジヒドロキシフェニルプロパン、4,4’-ジヒドロキシフェニルメタン、ペンタエリスリトール等の多価アルコールから選ばれる少なくとも1種に、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド等から選ばれる少なくとも1種を付加させて得られるポリオール;ポリオキシテトラメチレンオキサイド;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 前記ポリエステルポリオールとしては、具体的には、例えば、エチレングリコール、プロピレングリコール、ブタンジオールペンタンジオール、ヘキサンジオール、シクロヘキサンジメタノール、グリセリン、1,1,1-トリメチロールプロパンその他の低分子ポリオールの1種または2種以上と、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、テレフタル酸、イソフタル酸、ダイマー酸その他の低分子カルボン酸やオリゴマー酸の1種または2種以上との縮合重合体;プロピオンラクトン、バレロラクトンなどの開環重合体;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 その他のポリオールとしては、具体的には、例えば、ポリマーポリオール、ポリカーボネートポリオール;ポリブタジエンポリオール;水素添加されたポリブタジエンポリオール;アクリルポリオール;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ポリエチレングリコールラウリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ラウリルアミン)、ポリプロピレングリコールラウリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ラウリルアミン)、ポリエチレングリコールオクチルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)オクチルアミン)、ポリプロピレングリコールオクチルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)オクチルアミン)、ポリエチレングリコールステアリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ステアリルアミン)、ポリプロピレングリコールステアリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ステアリルアミン)などの低分子ポリオール;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 前記ポリイソシアネート化合物としては、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)、2,4’-ジフェニルメタンジイソシアネート(2,4’-MDI)、1,4-フェニレンジイソシアネート、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、トリジンジイソシアネート(TODI)、1,5-ナフタレンジイソシアネート(NDI)等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMHDI)、リジンジイソシアネート、ノルボルナンジイソシアナートメチル(NBDI)等の脂肪族ポリイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート(IPDI)、H6XDI(水添XDI)、H12MDI(水添MDI)、H6TDI(水添TDI)等の脂環式ポリイソシアネートなどのジイソシアネート化合物;ポリメチレンポリフェニレンポリイソシアネートなどのポリイソシアネート化合物;これらのイソシアネート化合物のカルボジイミド変性ポリイソシアネート;これらのイソシアネート化合物のイソシアヌレート変性ポリイソシアネート;これらのイソシアネート化合物と上記で例示したポリオール化合物とを反応させて得られるウレタンプレポリマー;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 ポリチオール化合物は、チオール基を2個以上有する化合物であれば、その分子量および骨格などは特に限定されず、その具体例としては、メタンジチオール、1,3-ブタンジチオール、1,4-ブタンジチオール、2,3-ブタンジチオール、1,2-ベンゼンジチオール、1,3-ベンゼンジチオール、1,4-ベンゼンジチオール、1,10-デカンジチオール、1,2-エタンジチオール、1,6-ヘキサンジチオール、1,9-ノナンジチオール、1,8-オクタンジチオール、1,5-ペンタンジチオール、1,2-プロパンジチオール、1,3-プロパジチオール、トルエン-3,4-ジチオール、3,6-ジクロロ-1,2-ベンゼンジチオール、1,5-ナフタレンジチオール、1,2-ベンゼンジメタンチオール、1,3-ベンゼンジメタンチオール、1,4-ベンゼンジメタンチオール、4,4’-チオビスベンゼンチオール、2,5-ジメルカプト-1,3,4-チアジアゾール、1,8-ジメルカプト-3,6-ジオキサオクタン、1,5-ジメルカプト-3-チアペンタン、1,3,5-トリアジン-2,4,6-トリチオール(トリメルカプト-トリアジン)、2-ジ-n-ブチルアミノ-4,6-ジメルカプト-s-トリアジン、トリメチロールプロパントリス(β-チオプロピオネート)、トリメチロールプロパントリス(チオグリコレート)、ポリチオール(チオコールまたはチオール変性高分子(樹脂、ゴム等))等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」と反応する、前記主鎖を構成するポリマーが有する官能基としては、アミド、エステル、ラクトン、ウレタン、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起(生成:形成)し得る官能基が好ましく、かかる官能基としては、環状酸無水物基、水酸基、アミノ基、カルボキシ基、イソシアネート基、チオール基等が好適に例示される。
 なお、前記側鎖(b)を有するエラストマー性ポリマー(B)は、かかる側鎖(b)の部分において、前記共有結合性架橋部位における架橋、すなわち、前記官能基と上述した「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」との反応により形成される共有結合による架橋を1分子中に少なくとも1個有しており、特に、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により架橋が形成される場合は、2個以上有しているのが好ましく、2~20個有しているのがより好ましく、2~10個有しているのがさらに好ましい。
 また、前記側鎖(b)の共有結合性架橋部位における架橋が、第三級アミノ結合(-N=)、エステル結合(-COO-)を含有していることが、得られる熱可塑性エラストマー(組成物)の圧縮永久歪および機械的強度(破断伸び、破断強度)がより容易に改善され得るとの理由から好ましい。なお、この場合において、第三級アミノ結合(-N=)、エステル結合(-COO-)に対して、水素結合を形成することが可能な基を含む側鎖を有するエラストマーが含まれている場合(例えば、水酸基等を含む側鎖を有するエラストマーが他に存在する場合等)には、前記共有結合性架橋部位が、後述の側鎖(c)として機能し得る。例えば、前記側鎖(a’)として前記側鎖(a)を有するエラストマー性ポリマー(B)の場合(すなわちエラストマー性ポリマー(B)が側鎖(a)及び(b)の双方を有するエラストマー性ポリマーである場合)において、共有結合性架橋部位における架橋が前記第三級アミノ結合及び/又は前記エステル結合を有する場合、それらの基と、側鎖(a)(カルボニル含有基および/または含窒素複素環を有する側鎖)中の基とが水素結合(相互作用)することで、架橋密度をより向上させることも可能となるものと考えられる。なお、このような第三級アミノ結合(-N=)、エステル結合(-COO-)を含有している構造の側鎖(b)を形成するとの観点で、「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」としては、上記で例示したもののうち、ポリエチレングリコールラウリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ラウリルアミン)、ポリプロピレングリコールラウリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ラウリルアミン)、ポリエチレングリコールオクチルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)オクチルアミン)、ポリプロピレングリコールオクチルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)オクチルアミン)、ポリエチレングリコールステアリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ステアリルアミン)、ポリプロピレングリコールステアリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ステアリルアミン)であることが好ましい。
 なお、上述のような共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)を利用しても、反応の進行度や置換基の種類、用いる原料の化学量論比等によっては、水素結合性の架橋部位も併せて導入されるような場合もあるため、前記共有結合性架橋部位の好適な構造については、側鎖(c)中の共有結合性架橋部位の好適な構造と併せて説明する。
 <側鎖(c):水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖>
 このような側鎖(c)は、1つの側鎖中に水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖である。このような側鎖(c)に含まれる水素結合性架橋部位は、側鎖(a’)において説明した水素結合性架橋部位と同様のものであり、側鎖(a)中の水素結合性架橋部位と同様のものが好ましい。また、側鎖(c)に含まれる共有結合性架橋部位としては、側鎖(b)中の共有結合性架橋部位と同様のものを利用できる(その好適な架橋も同様のものを利用できる。)。
 このような側鎖(c)は、官能基を側鎖に有するエラストマー性ポリマー(前記主鎖部分を形成させるためのポリマー)と、前記官能基と反応して水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を導入する化合物)とを反応させることで、形成される側鎖であることが好ましい。 このような水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を導入する化合物)としては、複素環(特に好ましくは含窒素複素環)を有しかつ共有結合性架橋部位を形成することが可能な化合物(共有結合を生成する化合物)が好ましく、中でも、複素環含有ポリオール、複素環含有ポリアミン、複素環含有ポリチオール等がより好ましい。
 なお、このような複素環を含有する、ポリオール、ポリアミンおよびポリチオールは、複素環(特に好ましくは含窒素複素環)を有するものである以外は、前述の「共有結合性架橋部位を形成することが可能な化合物(共有結合を生成する化合物)」において説明したポリオール、ポリアミンおよびポリチオールと同様のものを適宜利用することができる。また、このような複素環含有ポリオールとしては、特に制限されないが、例えば、ビス、トリス(2-ヒドロキシエチル)イソシアヌレート、コウジ酸、ジヒドロキシジチアン、トリスヒドロキシエチルトリアジンが挙げられる。また、前記複素環含有ポリアミンとしては、特に制限されないが、例えば、アセトグアナミン、ピペラジン、ビス(アミノプロピル)ピペラジン、ベンゾグアナミン、メラミンが挙げられる。更に、このような複素環含有ポリチオールとしては、ジメルカプトチアジアゾール、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートが挙げられる。このように、側鎖(c)としては、官能基を側鎖に有するエラストマー性ポリマー(前記主鎖部分を形成させるためのポリマー)と、複素環を含有するポリオール、ポリアミンおよびポリチオール等とを反応させて、得られる側鎖であることが好ましい。
 なお、「水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を導入する化合物)」と反応する、前記主鎖を構成するポリマーが有する官能基としては、アミド、エステル、ラクトン、ウレタン、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起(生成:形成)し得る官能基が好ましく、かかる官能基としては、環状酸無水物基、水酸基、アミノ基、カルボキシ基、イソシアネート基、チオール基等が好適に例示される。
 また、前記側鎖(c)を有するエラストマー性ポリマー(B)は、かかる側鎖(c)の部分において、前記共有結合性架橋部位における架橋を1分子中に少なくとも1個有しており、特に、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により架橋が形成される場合は、2個以上有しているのが好ましく、2~20個有しているのがより好ましく、2~10個有しているのがさらに好ましい。また、前記側鎖(c)の共有結合性架橋部位における架橋が、第三級アミノ結合(-N=)、エステル結合(-COO-)を含有していることが、得られる熱可塑性エラストマー(組成物)の圧縮永久歪および機械的強度(破断伸び、破断強度)がより改善されるとの理由から好ましい。
 (側鎖(b)~(c)中の共有結合性架橋部位として好適な構造について)
 側鎖(b)及び/又は(c)に関して、共有結合性架橋部位における架橋が、第三級アミノ結合(-N=)、エステル結合(-COO-)を含有している場合であって、これらの結合部位が水素結合性架橋部位としても機能する場合、得られる熱可塑性エラストマー(組成物)の圧縮永久歪および機械的強度(破断伸び、破断強度)がより高度に改善されるとの理由から好ましい。このように、共有結合性架橋部位を有する側鎖中の第三級アミノ結合(-N=)やエステル結合(-COO-)が、他の側鎖との間において、水素結合を形成するような場合、かかる第三級アミノ結合(-N=)、エステル結合(-COO-)を含有している共有結合性架橋部位は、水素結合性架橋部位も備えることとなり、側鎖(c)として機能し得る。
 なお、例えば、前記側鎖(a’)として前記側鎖(a)を有するエラストマー性ポリマー(B)の場合であって、前記第三級アミノ結合及び/又は前記エステル結合を含有している共有結合性架橋部位を有する場合において、前記第三級アミノ結合及び/又は前記エステル結合が、前記側鎖(a)中の基と水素結合(相互作用)を形成すると、架橋密度をより向上させることが可能となるものと考えられる。ここで、前記主鎖を構成するポリマーが有する官能基と反応して前記第三級アミノ結合及び/又は前記エステル結合を含有している共有結合性架橋部位を形成させることが可能な化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を形成することが可能な化合物)としては、ポリエチレングリコールラウリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ラウリルアミン)、ポリプロピレングリコールラウリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ラウリルアミン)、ポリエチレングリコールオクチルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)オクチルアミン)、ポリプロピレングリコールオクチルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)オクチルアミン)、ポリエチレングリコールステアリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ステアリルアミン)、ポリプロピレングリコールステアリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ステアリルアミン)を好適なものとして挙げることができる。
 前記側鎖(b)及び/又は側鎖(c)の上記共有結合性架橋部位における架橋としては、下記一般式(4)~(6)のいずれかで表される構造を少なくとも1つ含有しているものが好ましく、式中のGが第三級アミノ結合、エステル結合を含有しているものがより好ましい(なお、以下の構造において、水素結合性架橋部位を含む場合、その構造を有する側鎖は、側鎖(c)として利用されるものである。)。
Figure JPOXMLDOC01-appb-C000009
上記一般式(4)~(6)中、E、J、KおよびLはそれぞれ独立に単結合;酸素原子、アミノ基NR’(R’は水素原子または炭素数1~10のアルキル基である。)またはイオウ原子;あるいはこれらの原子または基を含んでもよい有機基であり、Gは酸素原子、イオウ原子または窒素原子を含んでいてもよく、直鎖状、分岐鎖状又は環状の炭素数1~20の炭化水素基である。
 ここで、置換基E、J、KおよびLはそれぞれ独立に、上記一般式(1)の置換基Bと基本的に同様である。
 また、置換基Gとしては、例えば、メチレン基、エチレン基、1,3-プロピレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,7-ヘプチレン基、1,8-オクチレン基、1,9-ノニレン基、1,10-デシレン基、1,11-ウンデシレン基、1,12-ドデシレン基などのアルキレン基;N,N-ジエチルドデシルアミン-2,2’-ジイル、N,N-ジプロピルドデシルアミン-2,2’-ジイル、N,N-ジエチルオクチルアミン-2,2’-ジイル、N,N-ジプロピルオクチルアミン-2,2’-ジイル、N,N-ジエチルステアリルアミン-2,2’-ジイル、N,N-ジプロピルステアリルアミン-2,2’-ジイル、;ビニレン基;1,4-シクロへキシレン基等の2価の脂環式炭化水素基;1,4-フェニレン基、1,2-フェニレン基、1,3-フェニレン基、1,3-フェニレンビス(メチレン)基などの2価の芳香族炭化水素基;プロパン-1,2,3-トリイル、ブタン-1,3,4-トリイル、トリメチルアミン-1,1’,1’’-トリイル、トリエチルアミン-2,2’,2’’-トリイル等の3価の炭化水素基;イソシアヌレート基、トリアジン基等の酸素原子、イオウ原子または窒素原子を含む3価の環状炭化水素;下記式(12)および(13)で表される4価の炭化水素基;およびこれらを組み合わせて形成される置換基;等が挙げられる。また、このような式中の置換基Gとしては、耐熱性が高く、水素結合により、高強度になるという観点から、イソシアヌレート基(イソシアヌレート環)の構造を有するものであることが好ましい。また、このような式中の置換基Gとしては、耐熱性が高く、水素結合により、高強度になるという観点から、下記一般式(111)で表される基及び下記一般式(112)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000010
 さらに、前記側鎖(c)の上記共有結合性架橋部位における架橋が、上述した上記エラストマー性ポリマーの主鎖にα位またはβ位で結合する下記式(7)~(9)のいずれかで表される構造を少なくとも1つ含有するのが好ましく、式中のGが第三級アミノ基を含有しているのがより好ましい(式(7)~(9)に示す構造は水酸基とカルボニル基を含有しており、水素結合性架橋部位及び共有結合性架橋部位の双方を含む構造といえ、かかる構造を有する側鎖は側鎖(c)として機能し得る。)。
Figure JPOXMLDOC01-appb-C000011
式(7)~(9)中、置換基E、J、KおよびLはそれぞれ独立に、上記式(4)~(6)の置換基E、J、KおよびLと基本的に同様であり、置換基Gは、上記式(4)の置換基Gと基本的に同様である。
 また、このような式(7)~(9)のいずれかで表される構造としては、具体的には、下記式(14)~(25)で表される構造が好適なものとして例示される。
Figure JPOXMLDOC01-appb-C000012
(式中、lは、1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
(式中、l、mおよびnは、それぞれ独立に1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000015
 また、前記側鎖(b)及び(c)において、上記共有結合性架橋部位における架橋は、環状酸無水物基と、水酸基あるいはアミノ基及び/又はイミノ基との反応により形成されることが好ましい。例えば、反応後に主鎖部分を形成するポリマーが官能基として環状酸無水物基(例えば無水マレイン酸基)を有している場合に、該ポリマーの環状酸無水物基と、水酸基あるいはアミノ基および/またはイミノ基を有する前記共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)とを反応させて、共有結合により架橋する部位を形成してポリマー間を架橋させることで、形成される架橋としてもよい。
 また、このような側鎖(b)及び(c)において、前記共有結合性架橋部位における架橋は、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により形成されてなることがより好ましい。
 以上、側鎖(a’)、側鎖(a)、側鎖(b)、側鎖(c)について説明したが、このようなポリマー中の側鎖の各基(構造)等は、NMR、IRスペクトル等の通常用いられる分析手段により確認することができる。
 また、前記エラストマー性ポリマー(A)は、前記側鎖(a)を有するガラス転移点が25℃以下のエラストマー性ポリマーであり、前記エラストマー性ポリマー(B)は、側鎖に水素結合性架橋部位及び共有結合性架橋部位を含有しているガラス転移点が25℃以下のエラストマー性ポリマー(側鎖として、側鎖(a’)及び側鎖(b)の双方を有するポリマーや、側鎖に側鎖(c)を少なくとも一つ含むポリマー等)である。このようなエラストマー成分としては、前記エラストマー性ポリマー(A)~(B)のうちの1種を単独で利用してもよく、あるいは、それらのうちの2種以上を混合して利用してもよい。
 なお、エラストマー性ポリマー(B)は、側鎖(a’)及び側鎖(b)の双方を有するポリマーであっても、側鎖(c)を有するポリマーであってもよいが、このようなエラストマー性ポリマー(B)の側鎖に含有される水素結合性架橋部位としては、より強固な水素結合が形成されるといった観点から、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位(より好ましくはカルボニル含有基および含窒素複素環を有する水素結合性架橋部位)であることが好ましい。
 このようなエラストマー性ポリマー(A)~(B)を製造する方法としては特に制限されず、上述のような側鎖(a);側鎖(a')及び側鎖(b);、並びに、側鎖(c);からなる群から選択される少なくとも1種を、ガラス転移点が25℃以下のエラストマー性ポリマーの側鎖として導入することが可能な公知の方法を適宜採用することができる。例えば、エラストマー性ポリマー(B)を製造するための方法としては、特開2006-131663号公報に記載の方法を採用してもよい。また、上述のような側鎖(a’)及び側鎖(b)を備えるエラストマー性ポリマー(B)を得るために、例えば、官能基としての環状酸無水物基(例えば無水マレイン酸基)を側鎖に有するエラストマー性ポリマーに、前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)と、前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)との混合物(混合原料)を利用して、それぞれの側鎖を同時に導入してもよい。
 また、このようなエラストマー性ポリマー(A)~(B)を製造する方法としては、例えば、官能基(例えば環状酸無水物基等)を側鎖に有するエラストマー性ポリマーを用いて、該エラストマー性ポリマーを、前記官能基と反応して水素結合性架橋部位を形成する化合物、並びに、前記官能基と反応して水素結合性架橋部位を形成する化合物及び前記官能基と反応して共有結合性架橋部位を形成する化合物の混合原料のうちの少なくとも1種の原料化合物と反応させて、前記側鎖(a)を有するエラストマー性ポリマー;側鎖(a')及び側鎖(b)を有するエラストマー性ポリマー;及び/又は前記側鎖(c)を有するエラストマー性ポリマー(前記エラストマー性ポリマー(A)~(B))を製造する方法を採用してもよい。なお、このような反応の際に採用する条件(温度条件や雰囲気条件等)は特に制限されず、官能基や該官能基と反応させる化合物(水素結合性架橋部位を形成する化合物及び/又は共有結合性架橋部位を形成する化合物)の種類に応じて適宜設定すればよい。なお、前記エラストマー性ポリマー(A)の場合は、水素結合部位を持つモノマーを重合して製造しても良い。
 このような官能基(例えば環状酸無水物基)を側鎖に有するエラストマー性ポリマーとしては、前述のエラストマー性ポリマー(A)~(B)の主鎖を形成することが可能なポリマーであって、官能基を側鎖に有するものが好ましい。ここで、「官能基を側鎖に含有するエラストマー性ポリマー」とは、主鎖を形成する原子に官能基(上述の官能基等、例えば、環状酸無水物基等)が化学的に安定な結合(共有結合)をしているエラストマー性ポリマーをいい、エラストマー性ポリマー(例えば公知の天然高分子または合成高分子)と官能基を導入し得る化合物とを反応させることにより得られるものを好適に利用できる。
 また、このような官能基としては、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起し得る官能基であることが好ましく、中でも、環状酸無水物基、水酸基、アミノ基、カルボキシ基、イソシアネート基、チオール基等が好ましく、組成物中にクレイをより効率よく分散させることが可能であるといった観点からは、環状酸無水物基が特に好ましい。また、このような環状酸無水物基としては、無水コハク酸基、無水マレイン酸基、無水グルタル酸基、無水フタル酸基が好ましく、中でも、容易にポリマー側鎖に導入可能で、工業上入手が容易である観点からは、無水マレイン酸基がより好ましい。また、前記官能基が環状酸無水物基である場合には、例えば、前記官能基を導入しうる化合物として、無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸およびこれらの誘導体等の環状酸無水物を用いて、エラストマー性ポリマー(例えば公知の天然高分子または合成高分子)に官能基を導入してもよい。
 なお、前記官能基と反応して水素結合性架橋部位を形成する化合物としては特に制限されないが、前述の「水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)」を利用することが好ましい。また、前記官能基と反応して共有結合性架橋部位を形成する化合物としては特に制限されないが、前述の「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」を利用することが好ましい。また、水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)、及び、共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)としては、前記官能基と反応して水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(例えば、含窒素複素環を含むポリオール、ポリアミン、ポリチオール等)も好適に利用することができる。
 また、このようなエラストマー成分(エラストマー性ポリマー(A)~(B))を製造する方法に、官能基(例えば環状酸無水物基)を側鎖に有するエラストマー性ポリマーを用いて、該エラストマー性ポリマーを、前記官能基と反応して水素結合性架橋部位を形成する化合物、並びに、前記官能基と反応して水素結合性架橋部位を形成する化合物及び前記官能基と反応して共有結合性架橋部位を形成する化合物の混合原料のうちの少なくとも1種の原料化合物と反応させて、前記側鎖(a)を有する前記エラストマー性ポリマー(A)、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されている前記エラストマー性ポリマー(B)を製造する方法を採用する場合、官能基を側鎖に有するエラストマー性ポリマーを、前記原料化合物と反応させる前に、クレイと官能基を側鎖に有するエラストマー性ポリマーとを混合し、その後、前記原料化合物を添加し、反応させて、エラストマー成分の調製と同時に組成物を形成する方法(クレイを先添加する方法)を採用してもよい。
 なお、クレイの分散性がより向上し、より高度な耐熱性が得られることから、エラストマー成分(エラストマー性ポリマー(A)~(B))を製造する際に、前述のクレイを先添加する方法を採用して、エラストマー成分の調製と同時に組成物を調製することが好ましい。
 また、このようなエラストマー性ポリマー(A)及び(B)からなる群から選択される少なくとも1種のエラストマー成分としては、工業的に入手しやすく、しかも機械的強度及び圧縮永久歪に対する耐性を高度にバランスよく有するものとすることが可能であるといった観点から、無水マレイン酸変性エラストマー性ポリマーと、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいピリジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいチアジアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイミダゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイソシアヌレート、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいヒダントイン、トリスヒドロキシエチルイソシアヌレート、スルファミド、並びに、ポリエーテルポリオールのうちの少なくとも1種の化合物(以下、場合により単に「化合物(X)」と称する。)との反応物からなる群から選択される少なくとも1種であることが好ましい。このように、エラストマー性ポリマー(A)及び(B)としては、前記無水マレイン酸変性エラストマー性ポリマーと前記化合物(X)との反応物が好ましい。
 (クレイ)
 本発明にかかるクレイとしては特に制限されず、公知のクレイ(粘土鉱物等)を適宜利用することができる。また、このようなクレイとしては、天然のクレイ、合成クレイ、有機化クレイが挙げられる。このようなクレイとしては、例えば、モンモリロナイト、サポナイト、ヘクトライト、バイデライト、スティブンサイト、ノントロナイト、バーミキュライト、ハロイサイト、マイカ、フッ素化マイカ、カオリナイト(高陵石)、パイロフィロライト、スメクタイト、セリサイト(絹雲母)、イライト、グローコナイト(海緑石)、クロライト(緑泥石)、タルク(滑石)、ゼオライト(沸石)、ハイドロタルサイト等が挙げられる。
 このようなクレイの中でも、ケイ素及びマグネシウムを主成分とするクレイ、並びに、有機化クレイからなる群から選択される少なくとも1種が好ましい。
 また、本発明において、ケイ素及びマグネシウムを主成分とするクレイとは、クレイの構成成分である金属酸化物の金属の主成分がケイ素(Si)及びマグネシウム(Mg)であるクレイを指し、その他の金属酸化物(アルミニウム(Al)、鉄(Fe)等)を副成分として含んでいても良い。ケイ素及びマグネシウムを主成分とするクレイとしては特に制限されず、公知のものを適宜利用することができる。ケイ素及びマグネシウムを主成分とするクレイを用いることで、粒径が小さいため補強性を高くすることが可能となる。また、このようなケイ素及びマグネシウムを主成分とするクレイとしては、入手のし易さの観点から、スメクタイト構造を有するクレイが好ましい。
 また、このようなケイ素及びマグネシウムを主成分とするクレイとしては、例えば、スティブンサイト、ヘクトライト、サポナイト、タルク等を挙げることができるが、中でも、分散性の観点から、スティブンサイト、ヘクトライト、サポナイトを用いることがより好ましい。
 また、ケイ素及びマグネシウムを主成分とするクレイとしては、合成クレイが好ましい。このような合成クレイとしては、市販のものを利用してもよく、例えば、クニミネ工業社製の商品名「スメクトンSA」、「スメクトンST」、水澤化学工業社製の商品名「イオナイト」、コープケミカル社製の商品名「ルーセンタイト」などを適宜利用することができる。
 また、前記有機化クレイは特に制限されないが、クレイが有機化剤により有機化されてなるものであることが好ましい。このような有機化される前のクレイとしては特に制限されず、いわゆる粘土鉱物であればよく、例えば、モンモリロナイト、サポナイト、ヘクトライト、バイデライト、スティブンサイト、ノントロナイト、バーミキュライト、ハロイサイト、マイカ、フッ素化マイカ、カオリナイト(高陵石)、パイロフィロライト、スメクタイト、セリサイト(絹雲母)、イライト、グローコナイト(海緑石)、クロライト(緑泥石)、タルク(滑石)、ゼオライト(沸石)、ハイドロタルサイト等が挙げられる。また、このようなクレイは天然物であっても合成物であってもよい。
 また、前記有機化剤としては特に制限されず、クレイを有機化することが可能な公知の有機化剤を適宜利用することができ、例えば、ヘキシルアンモニウムイオン、オクチルアンモニウムイオン、2-エチルヘキシルアンモニウムイオン、ドデシルアンモニウムイオン、ラウリルアンモニウムイオン、オクタデシルアンモニウムイオン、ジオクチルジメチルアンモニウムイオン、トリオクチルアンモニウムイオン、ジオクタデシルジメチルアンモニウムイオン、トリオクチルアンモニウムイオン、ジオクタデシルジメチルアンモニウムイオン、トリオクタデシルアンモニウムイオン等を用いることができる。
 また、このような有機化クレイとしては、単層分散性の観点から、クレイの4級アンモニウム塩を好適に利用することができる。このような有機化クレイの4級アンモニウム塩としては、特に制限されないが、例えば、トリメチルステアリルアンモニウム塩、オレイルビス(2-ヒドロキシルエチル)の塩、メチルアンモニウム塩、ジメチルステアリルベンジルアンモニウム塩、ジメチルオクタデシルアンモニウム塩、及び、これらのうちの2種以上の混合物を好適に用いることができる。なお、このような有機化クレイの4級アンモニウム塩としては、引張強度、耐熱性向上の観点から、ジメチルステアリルベンジルアンモニウム塩、ジメチルオクタデシルアンモニウム塩、及び、これらの混合物をより好適に利用でき、ジメチルステアリルベンジルアンモニウム塩とジメチルオクタデシルアンモニウム塩との混合物を更に好適に利用できる。
 また、このような有機化クレイとしては、市販のものを利用してもよく、例えば、クニミネ工業社製の商品名「クニフィル-D36」、「クニフィル-B1」、「クニフィル-HY」などの他、ホージュン社製の商品名「エスベンシリーズ(C,E,W,WX,N-400,NX,NX80,NZ,NZ70,NE,NEZ,NO12S,NO12」、「オルガナイトシリーズ(D,T)などを適宜利用することができる。このような市販の有機化クレイの中でも、クニミネ工業社製の商品名「クニフィル-D36」とホージュン社製の商品名「エスベンシリーズWX」を好適に利用できる。
 このように、本発明にかかるクレイとしては、高分散性の観点から、ケイ素及びマグネシウムを主成分とするクレイ、有機化クレイが好ましく、中でも、より高度な引張応力(モジュラス)が得られることから、有機化クレイを用いることが特に好ましい。
 (パラフィンオイル)
 本発明にかかるパラフィンオイルとしては特に制限されず、公知のパラフィンオイルを適宜利用することができる。
 また、このようなパラフィンオイルとしては、そのオイルに対して、ASTM D3238-85に準拠した相関環分析(n-d-M環分析)を行って、パラフィン炭素数の全炭素数に対する百分率(パラフィン部:C)、ナフテン炭素数の全炭素数に対する百分率(ナフテン部:C)、及び、芳香族炭素数の全炭素数に対する百分率(芳香族部:C)をそれぞれ求めた場合において、パラフィン炭素数の全炭素数に対する百分率(C)が60%以上であることが好ましい。
 また、上記本発明の導電性熱可塑性エラストマー組成物においては、前記パラフィンオイルが、JIS K 2283(2000年発行)に準拠して測定される、40℃における動粘度が10mm/s~700mm/sのものであることが好ましく、20~600mm/sであることがより好ましく、30~500mm/sであることが更に好ましい。このような動粘度(ν)が前記下限未満ではオイルのブリードが起こりやすくなる傾向にあり、他方、前記上限を超えると充分な流動性を付与できなくなる傾向にある。なお、このようなパラフィンオイルの動粘度は、40℃の温度条件下において、JIS K 2283(2000年発行)に準拠して測定される値を採用するが、例えば、JIS K 2283(2000年発行)に準拠したキャノン・フェンスケ式粘度計(例えば柴田科学社製の商品名「SOシリーズ」)を利用して、40℃の温度条件で自動測定した値を採用してもよい。
 さらに、上記本発明の導電性熱可塑性エラストマー組成物においては、前記パラフィンオイルが、JIS K2256(2013年発行)に準拠したU字管法により測定されるアニリン点が80℃~145℃であることが好ましく、100~145℃であることがより好ましく、105~145℃であることが更に好ましい。なお、このようなパラフィンオイルのアニリン点は、JIS K2256(2013年発行)に準拠したU字管法により測定される値を採用するが、例えば、JIS K2256(2013年発行)に準拠したアニリン点測定装置(例えば田中科学機器社製の商品名「aap-6」)を利用して測定した値を採用してもよい。
 このようなパラフィンオイルとしては、適宜市販のものを利用することができ、例えば、JXエネルギー社製の商品名「スーパーオイルMシリーズ」、「スーパーオイルNシリーズ」(P200、P400、P500Sなど)、「300HV-S(J)」;出光興産社製の商品名「ダイアナプロセスオイルPW90」、「ダイアナプロセスオイルPW150」、「ダイアナプロセスオイルPW380」;日本サン石油社製の商品名「SUNPARシリーズ(110、115、120、130、150、2100、2280など)」;モービル社製の商品名「ガーゴイルアークティックシリーズ(1010、1022、1032、1046、1068、1100など)」等を適宜利用してもよい。
 (カーボン系フィラー)
 本発明にかかるカーボン系フィラーは、BET比表面積が50m/g以上のものである。このようなBET比表面積が前記50m/g未満では十分に高度な導電性を得ることができなくなる。また、このようなカーボン系フィラーのBET比表面積は、より高度な導電性を得ることが可能となることから、100m/g以上であることがより好ましく、200m/g以上であることが更に好ましく、300m/g以上であることが特に好ましく、更には500m/g以上であることが最も好ましい。なお、このようなBET比表面積の上限値としては特に制限されるものではないが、組成物中にカーボン系フィラーをより容易に混合することが可能となり、組成物の製造時の作業性が向上するといった観点からは、カーボン系フィラーの前記BET比表面積は2500m/g以下とすることが好ましく、2000m/g以下とすることがより好ましい。なお、このようなカーボン系フィラーのBET比表面積としては、DIN66132に従い、窒素ガスを利用したガス吸着法(窒素ガス吸着法)により、BET1点法にて測定される値を採用することができる。なお、本発明の導電性熱可塑性エラストマー組成物は、前述のように、BET比表面積が50m/g以上のカーボン系フィラーを含有する。ここで、従来のエラストマーを基材とする組成物においては、フィラーとして様々な成分が利用されてきたが、比表面積が大きなフィラーを利用すると、かかるフィラーをエラストマーに混合しても分散性などの種々の事情により、その成分を添加しても効果が十分に得られないと考えられていた。そのため、従来、フィラーとしては比表面積が十分に小さなものを利用することが一般的であった。このように、従来は、BET比表面積が50m/g以上となるような比表面積が比較的大きなフィラーはエラストマー組成物の補強剤等に利用されていなかった。これに対して、本発明者らは、前記特定のエラストマー成分と、特定量の前記クレイと、特定量のパラフィンオイルとともに、BET比表面積が50m/g以上となるような比較的大きな比表面積を有するカーボン系フィラーを利用することで、驚くべきことに、得られる組成物に十分に高度な導電性と圧縮永久歪に対する十分に高度な耐性とをバランスよく付与することが可能となることを見出している。なお、単にカーボン系フィラーを含有させた場合には、圧縮永久歪に対する耐性を本願で求めるような十分に高度な水準に維持することが困難となるが、カーボン系フィラーと特定量のパラフィンオイルとを組み合わせて利用することで、圧縮永久歪に対する耐性を十分に高度な水準なものとすることが可能となり、これにより、導電性と圧縮永久歪に対する耐性とを十分に高度な水準のものとすることが可能となることを本発明者らは見出している。そして、このような本発明によれば、外部からの応力に対して塑性変形し難い導電性の材料を提供することが可能となる。
 このようなカーボン系フィラーとしては、例えば、カーボンブラック、カーボンナノチューブ、カーボンファイバー(炭素繊維)、グラフェン等が挙げられる。このようなカーボン系フィラーとして利用可能な、カーボンブラック、カーボンナノチューブ、カーボンファイバー(炭素繊維)、グラフェン等としては、BET比表面積が50m/g以上のものである限り公知のもの(市販品など)を適宜利用することができる。このようなカーボン系フィラーの中でも、含有量を低減させてより低コスト化を図ることが可能であるという観点から、カーボンブラック、カーボンナノチューブがより好ましい。なお、このようなカーボン系フィラーとしては、1種を単独であるいは2種以上を組み合わせて利用することができる。
 このようなカーボン系フィラーとして好適に利用可能なカーボンブラックとしては、例えば、ケッチェンブラック、ファーネスブラック、チャンネルブラック、アセチレンブラック、アークブラック等が挙げられる。これらのカーボンブラックは1種を単独で用いてもよくあるいは2種以上を組み合わせて用いてもよい。
 このようなカーボンブラックの平均一次粒子径としては、10~700nmであることが好ましく、20~100nmであることがより好ましい。このような平均一次粒子径が前記下限未満では細かすぎて十分に分散させることが難しくなり物性のバランスを十分に高度なものとすることが困難となる傾向にあり、他方、前記上限を超えると、その粒子径に起因して外力が加わった場合に破壊の起点となることが懸念され、それにより場合によっては引張物性等の低下が起こり得る傾向にある。
 このようなカーボンブラックとしては市販品を適宜利用することができ、例えば、カーボン系フィラーの市販品としては、ケッチェンブラックEC300J、EC600JD(ライオン・スペシャリティ・ケミカルズ社製)、トーカブラック#4400、#4500、#5500(東海カーボン株式会社製)、三菱導電性カーボンブラック(三菱化学社製)等を適宜利用することができる。
 さらに、前記カーボン系フィラーとして好適に利用可能なカーボンナノチューブとしては、単層カーボンナノチューブ、多層カーボンナノチューブが挙げられる。このようなカーボンナノチューブとしては、より高物性を発現できるといった観点から、単層カーボンナノチューブが好ましい。
 このようなカーボンナノチューブとしては、平均直径が0.1~120nm(より好ましくは0.4~100nm)のものが好ましい。このような直径が前記下限未満では細かすぎて分散が難しくなり物性が低下してしまう傾向にあり、他方、前記上限を超えると大きすぎて異物となって破壊の起点となって引張物性等が低下してしまう傾向にある。また、このようなカーボンナノチューブとしては、平均長さが1nm~1mm(より好ましくは10~100nm)のものが好ましい。また、このようなカーボンナノチューブとしては、アスペクト比が1~1000(より好ましくは10~100)のものが好ましい。このような長さやアスペクト比が、前記下限未満では細かすぎて分散が難しくなり物性が低下してしまう傾向にあり、他方、前記上限を超えると大きすぎて異物となって破壊の起点となって引張物性等が低下してしまう傾向にある。
 このようなカーボンナノチューブとしては市販品を適宜利用することができ、例えば、巴工業社製のED、EP,HP;名城ナノカーボン社製のEC1.0,EC1.5,EC2.0;丸紅情報システムズ社製の9000,9100,9110;日本ゼオン社製のZeonanoSG101;これらの分散液やポリマーマスターバッチ品;等を利用することができる。
 また、本発明にかかるカーボン系フィラーとしては、上述のように、カーボンブラック、カーボンナノチューブを好適に利用することができるが、中でも、コストおよび性能のバランスの観点から、カーボンブラックがより好ましく、ケッチェンブラックが特に好ましい。
 (組成物)
 本発明の導電性熱可塑性エラストマー組成物は、前記エラストマー成分と、前記クレイと、前記パラフィンオイルと、前記BET比表面積が50m/g以上のカーボン系フィラーとを含有するものである。
 なお、本発明の導電性熱可塑性エラストマー組成物によって、上述のような本発明の効果が得られる理由は必ずしも明らかではないが、本発明者らは以下のように推察する。すなわち、先ず、本発明においては、エラストマー成分は、少なくとも水素結合性架橋部位を有する側鎖を含むエラストマー性ポリマー(側鎖に、側鎖(a);側鎖(a’)及び側鎖(b);並びに、側鎖(c)のうちの少なくとも1種を含むポリマー)を含有している。そのため、かかるエラストマー性ポリマーとクレイとパラフィンオイルとカーボン系フィラーとを組み合わせると、先ず、クレイと水素結合性架橋部位との間で相互作用(新たな水素結合が形成される等)して、クレイの表面を利用してエラストマー成分が面架橋される。そして、このような面架橋が形成されると、共有結合と水素結合による架橋点が均一化されて、引張り物性が改善される。また、このような面架橋が形成されているエラストマー成分に特定量のパラフィンオイルを含有させることで、流動性が改善し、加工性が改善する。更に、このような各成分を含む組成物中にBET比表面積が50m/g以上のカーボン系フィラーを組み合わせて利用すると、パラフィンオイルが潤滑成分となってカーボン系フィラーが十分に分散し、これにより十分に高度な導電性を示すことが可能となるとともに、パラフィンオイルと相俟ってゴムの変形が容易となり、圧縮永久歪に対する耐性(耐圧縮永久歪性)を十分に高度な水準のものとすることが可能となるものと本発明者らは推察する。
 なお、本発明において、側鎖に共有結合性架橋部位を含むエラストマー成分を含有する場合(例えば、エラストマー性ポリマー(B)を含む場合)には、共有結合性架橋部位を含む側鎖により、より高い水準の耐圧縮永久歪性を発現させることも可能となるものと本発明者らは推察する。また、エラストマー成分中に、水素結合性架橋部位と共有結合性架橋部位とが存在する場合(エラストマー性ポリマー(B)を含有する場合、エラストマー性ポリマー(B)と他のエラストマー性ポリマーの混合物を含有する場合、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)との混合物を含有する場合、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)以外の側鎖(b)を有するエラストマー性ポリマーとの混合物を利用する場合等)には、水素結合性架橋部位と共有結合性架橋部位の存在に起因して、使用時に、共有結合による、より高度な機械的強度と、水素結合による加熱時の開裂による、より高度な流動性(成形性)を同時に発現させることも可能となる。そのため、側鎖の種類に応じて組成を適宜変更して、用途に応じた特性を適宜発揮させることも可能となるものと本発明者らは推察する。なお、上述のようなエラストマー性ポリマー(B)以外の側鎖(b)を有するエラストマー性ポリマーは、官能基(例えば環状酸無水物基)を側鎖に有するエラストマー性ポリマーを用いて、該エラストマー性ポリマーを、前記官能基と反応して共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)と反応させて、前記側鎖(b)を有する前記エラストマー性ポリマーを製造する方法により得ることが可能である。なお、この場合においても、共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)としては、前述の「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」を利用することができる。
 以上、本発明の導電性熱可塑性エラストマー組成物によって、上述のような効果が得られる理由等について検討したが、以下、本発明の導電性熱可塑性エラストマー組成物の好適な実施形態(各成分の含有比率の好適な条件等)について更に説明する。
 本発明の導電性熱可塑性エラストマー組成物は、前記エラストマー成分と、前記クレイと、前記パラフィンオイルと、前記カーボン系フィラーとを含有するものである。このような組成物中の前記クレイの含有量(含有比率)は、前記エラストマー成分100質量部に対して20質量部以下である。このようなクレイの含有量が前記上限を超えると、引張り特性が低下する。このような導電性熱可塑性エラストマー組成物におけるクレイの含有量としては、前記エラストマー成分100質量部に対して0.01~10質量部であることがより好ましく、0.05~5質量部であることが更に好ましく、0.08~3質量部であることが特に好ましい。このようなクレイの含有量が前記下限未満では、クレイの含有量が少なすぎて十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると架橋が強くなり過ぎて、却って伸びや強度が低下してしまい、各種用途に利用することが困難となる(実用性が低下する)傾向にある。
 また、このようなクレイとしては、単層の形態のクレイ(単層のクレイ)が組成物中に存在することが好ましい。このような単層状の形態のクレイの存在は、組成物の表面を透過型電子顕微鏡(TEM)により測定することにより確認できる。
 さらに、本発明の導電性熱可塑性エラストマー組成物においては、前記導電性熱可塑性エラストマー組成物の表面上の任意の3点以上の5.63μmの大きさの測定点を透過型電子顕微鏡(TEM)により測定した場合において、全測定点において、個数を基準として、全クレイのうちの50%以上(より好ましくは70%以上、更に好ましくは80~100%、特に好ましくは85~100%)が単層のクレイとして存在することが好ましい。単層のクレイの存在率が前記下限未満では破断伸び、破断強度が低下する傾向にある。なお、このような単層のクレイの存在率(割合)の測定に際しては、透過型電子顕微鏡(例えば、日本電子社製の商品名「JEM-2010」)を用いて、試料として前記導電性熱可塑性エラストマー組成物10gを準備し、前記導電性熱可塑性エラストマー組成物の表面上の5.63μmの大きさの測定点を3点以上それぞれ測定し、かかる測定により得られる各TEM画像において、単層のクレイの個数と、多層状のクレイの個数とをそれぞれ求めて、各測定点(各TEM画像)に関して、個数を基準として、全クレイのうちの単層のクレイの存在率(割合)を計算することで求めることができる。なお、単層の形態になる前の多層構造の場合に、モンモリロナイトの層間距離は9.8オングストローム程度であり、一般的な有機化クレイの層間距離は20~40オングストローム(2~4nm)程度である。また、一般的な有機化クレイを有機溶剤に分散させて単層にした場合、それらの層間距離は50オングストローム(>5nm)以上となることから、TEM画像により確認できる各層の層間距離がそのような層間距離よりも広くなっていることに基づいて、単層と判断してもよい。このように、クレイの種類にもよるが、例えば、5nm以上層の間隔があることをもって単層の状態であると判断してもよく、場合によっては、数10nm以上の層の間隔があることをもって単層の状態であると判断してもよい。
 なお、組成物中に、上述のような割合(存在率)で単層のクレイが含有されている場合、多層状のクレイがそのまま分散されているよりも、クレイがより分散して含有された状態となるため(多層状のクレイが分解されて単層のクレイが形成されるためである。)、より高い分散性でクレイを組成物中に分散させることが可能となる。このように、前記クレイは、組成物中において多層状のまま存在するよりも、単層状のものが前記割合で存在する場合に、より高い分散性が得られ、耐熱性や破断強度をより高度なものとすることが可能である。そのため、上述のような割合で、単層の状態のクレイを含有させることがより好ましく、これによりクレイがより分散されて耐熱性や破断強度の向上をより効率よく図ることが可能となる。
 また、本発明の導電性熱可塑性エラストマー組成物においては、前記導電性熱可塑性エラストマー組成物の表面上の任意の3点以上の5.63μmの大きさの測定点を透過型電子顕微鏡により測定した場合において、全測定点において、1μmあたり、1~100個(より好ましくは3~80個、更に好ましくは5~50個)分散されていることが好ましい。このような単層のクレイの個数が前記下限未満ではクレイの量が少なすぎて、十分な効果が得られなくなる傾向にある。なお、このような単層のクレイの個数は、単層のクレイの存在率(割合)の測定と同様の方法でTEM画像を確認することにより求めることができる。
 また、本発明の導電性熱可塑性エラストマー組成物において、前記パラフィンオイルの含有量(含有比率)は、組成物の総量(組成物中に含まれる全ての成分(前記エラストマー成分、前記クレイ、前記パラフィンオイル、前記カーボン系フィラーとともに他の成分を含む場合にはそのような他の成分を含む)の合計量(全量))に対して、1~65質量%とする必要がある。このようなパラフィンオイルの含有比率が前記下限未満では耐永久圧縮歪性を十分に高度な水準に維持することが困難となり、他方、前記上限を超えると導電性を十分に高度な水準に維持して、導電性と耐永久圧縮歪性を十分に高度な水準でバランスよく発揮させることが困難となる。このようなパラフィンオイルの含有比率としては、同様の観点から、5~65質量%であることが好ましく、10~65質量%であることがより好ましい。また、このようなパラフィンオイルの含有比率としては、耐永久圧縮歪性と導電性とのバランスをより高度なものとすることが可能となるといった観点からは、25~60質量%(更に好ましくは35~60質量%、特に好ましくは40~60質量%)とすることがより好ましい。
 また、本発明の導電性熱可塑性エラストマー組成物において、前記カーボン系フィラー(BET比表面積が50m/g以上のカーボン系フィラー)の含有量(含有比率)は、組成物の総量(組成物中に含まれる全ての成分(前記エラストマー成分、前記クレイ、前記パラフィンオイル、前記カーボン系フィラーとともに他の成分を含む場合にはそのような他の成分を含む)の合計量(全量))に対して、0.1~50質量%であることが好ましく、0.3~40質量%であることがより好ましく、2.0~30質量%であることが更に好ましく、3.0~20質量%であることが特に好ましい。このようなカーボン系フィラーの含有量が前記下限未満では、表面抵抗率および体積抵抗率が高くなり、導電性を必ずしも十分に高度な水準なものとすることができなくなる傾向にあり、他方、前記上限を超えるとエラストマーとカーボン系フィラーとの混合時の作業性が低下する傾向にあり、これに起因して得られる組成物の性能(特に導電性)の低下が生じ得る傾向にある。
 なお、本発明の導電性熱可塑性エラストマー組成物においては用いるエラストマー成分の種類に応じて、用途に応じた特性を適宜付与することもできる。例えば、エラストマー性ポリマー(A)をエラストマー成分とする導電性熱可塑性エラストマー組成物においては、組成物中に側鎖(a)に由来する特性を付与できるため、特に破断伸び、破断強度、流動性を向上させることが可能となる。また、エラストマー性ポリマー(B)をエラストマー成分とする導電性熱可塑性エラストマー組成物においては、組成物中に、側鎖中の共有結合性架橋部位に由来する特性を付与できるため、特に圧縮永久歪に対する耐性(耐圧縮永久歪性)を向上させることが可能となる。なお、エラストマー性ポリマー(B)をエラストマー成分として含有する導電性熱可塑性エラストマー組成物においては、組成物中において、共有結合性架橋部位に由来する特性の他に、水素結合性架橋部位(側鎖(a’)において説明した水素結合性架橋部位)に由来する特性をも付与できるため、流動性(成形性)を保持した状態で、耐圧縮永久歪性をより向上させることも可能となり、その側鎖の種類やポリマー(B)の種類等を適宜変更することで、用途に応じた所望の特性を、より効率よく発揮させることも可能となる。
 また、本発明の導電性熱可塑性エラストマー組成物においては、エラストマー性ポリマー(A)をエラストマー成分とする導電性熱可塑性エラストマー組成物と、エラストマー性ポリマー(B)をエラストマー成分とする導電性熱可塑性エラストマー組成物とをそれぞれ別々に製造した後、これを混合して、エラストマー成分としてエラストマー性ポリマー(A)及び(B)を含有する導電性熱可塑性エラストマー組成物としてもよい。また、本発明においては、エラストマー成分は、エラストマー性ポリマー(A)及び(B)を少なくとも含有していればよいが、組成物中に共有結合性架橋部位を存在せしめて、より効率よく共有結合性架橋部位の特性を利用するといった観点から、エラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマーを混合して用いてもよい。例えば、エラストマー成分として、エラストマー性ポリマー(A)を用いる場合に、エラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマーを組み合わせて用いた場合には、組成物中に含まれる側鎖に由来して、側鎖に水素結合性架橋部位及び共有結合性架橋部位を含有するエラストマー性ポリマー(B)を利用した導電性熱可塑性エラストマー組成物と、ほぼ同様の特性を付与することも可能となる。また、エラストマー成分としてエラストマー性ポリマー(A)及び(B)を含有する導電性熱可塑性エラストマー組成物を製造する場合や、エラストマー性ポリマー(A)及びエラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマーを含有する導電性熱可塑性エラストマー組成物を製造する場合には、各成分(例えばエラストマー性ポリマー(A)とエラストマー性ポリマー(B)の各成分)の比率を適宜変更することで、所望の特性を適宜発揮させることも可能となる。
 また、本発明の導電性熱可塑性エラストマー組成物がエラストマー成分として、エラストマー性ポリマー(A)及び(B)を含有する場合には、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)の含有比率は質量比([ポリマー(A)]:[ポリマー(B)])で1:9~9:1とすることが好ましく、2:8~8:2とすることがより好ましい。このようなポリマー(A)の含有比率が前記下限未満では流動性(成形性)、機械的強度が不十分となる傾向にあり、他方、前記上限を超えると圧縮永久歪に対する耐性が低下する傾向にある。
 さらに、本発明の導電性熱可塑性エラストマー組成物がエラストマー成分として、エラストマー性ポリマー(A)と、エラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマー(以下、場合により「エラストマー性ポリマー(C)」と称する。)とを含有する場合には、エラストマー性ポリマー(A)とエラストマー性ポリマー(C)の含有比率は質量比([エラストマー性ポリマー(A)]:[エラストマー性ポリマー(C)])で1:9~9:1とすることが好ましく、2:8~8:2とすることがより好ましい。このようなポリマー(A)の含有比率が前記下限未満では流動性(成形性)、機械的強度が不十分となる傾向にあり、他方、前記上限を超えると圧縮永久歪に対する耐性が低下する傾向にある。
 また、本発明の導電性熱可塑性エラストマー組成物においては、組成物中に側鎖(a’)と側鎖(b)の双方が存在する場合には、その側鎖(a’)の全量と側鎖(b)の全量とが、質量比を基準として、1:9~9:1となっていることが好ましく、2:8~8:2となっていることがより好ましい。このような側鎖(a’)の全量が前記下限未満では流動性(成形性)、機械的強度が不十分となる傾向にあり、他方、前記上限を超えると圧縮永久歪に対する耐性が低下する傾向にある。なお、このような側鎖(a’)は、側鎖(a)を含む概念である。そのため、側鎖(a’)として側鎖(a)のみが含まれるような場合においても、上記質量比で、組成物中に側鎖(a)と側鎖(b)の双方が存在することが好ましい。
 本発明の導電性熱可塑性エラストマー組成物は、必要に応じて、本発明の目的を損わない範囲で、前記エラストマー成分以外のポリマー(例えば、化学結合性の架橋部位を含まないスチレンブロック共重合体(スチレンブロックを有するポリマー)、化学結合性の架橋部位を含まないα-オレフィン系樹脂(α-オレフィンの単独重合体、α-オレフィンの共重合体等)、補強剤(充填剤)、水素結合性の補強剤(充填剤)、アミノ基を導入してなる充填剤(以下、単に「アミノ基導入充填剤」という。)、該アミノ基導入充填剤以外のアミノ基含有化合物、金属元素を含む化合物(以下、単に「金属塩」という。)、無水マレイン酸変性ポリマー、老化防止剤、酸化防止剤、顔料(染料)、可塑剤、揺変性付与剤、紫外線吸収剤、難燃剤、溶剤、界面活性剤(レベリング剤を含む)、分散剤、脱水剤、防錆剤、接着付与剤、帯電防止剤、フィラーなどの各種添加剤等を含有することができる。このような添加剤等は、特に制限されず、一般に用いられるもの(公知のもの)を適宜使用することができる。例えば、前記エラストマー成分以外のポリマー、老化防止剤、酸化防止剤、顔料(染料)、可塑剤としては、以下に記載のようなものを適宜利用することができる。
 このようなエラストマー成分以外のポリマーとしては、熱可塑性エラストマーの分野において、硬度の調整や機械物性の保持の観点等から適宜用いられるような公知のポリマーを適宜利用でき、特に制限されず、例えば、化学結合性の架橋部位を含まないスチレンブロック共重合体(スチレンブロックを有するポリマー)、化学結合性の架橋部位を含まないα-オレフィン系樹脂などを挙げることができる。このようなエラストマー成分以外のポリマーとしては、エラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマー、化学結合性の架橋部位を含まないスチレンブロック共重合体(スチレンブロックを有するポリマー)、化学結合性の架橋部位を含まないα-オレフィン系樹脂を好適に利用することができる。
 また、このようなエラストマー成分以外のポリマーとして好適に用いることが可能な、前記スチレンブロック共重合体(スチレンブロックを有するポリマー)は化学結合性の架橋部位を有さないものである。ここにいう「化学結合性の架橋部位」とは、水素結合、共有結合、金属イオン-極性官能基間のキレーション、金属-不飽和結合(二重結合、三重結合)間のσ-π相互作用により形成される結合等といった化学結合により架橋が形成されている部位をいう。そのため、本発明にいう「化学結合性の架橋部位を有さない」とは、上記に記載の水素結合、共有結合、金属イオン-極性官能基間のキレーション、金属-不飽和結合(二重結合、三重結合)間のσ-π相互作用により形成される結合等によって形成される化学結合を有さない状態であることをいう。そのため、化学結合性の架橋部位を有さないスチレンブロック共重合体としては、化学結合による架橋点を形成するような、官能基(例えば、水酸基、カルボニル基、カルボキシル基、チオール基、アミド基、アミノ基)を含まず、更に、高分子鎖同士を直接架橋する結合部位(共有結合による架橋部位等)を含まないものが好適に用いられる。また、このような化学結合性の架橋部位を有さないスチレンブロック共重合体は、少なくとも、上述のような側鎖(a)、側鎖(a’)、側鎖(b)、側鎖(c)等を有していないポリマーとなる。
 また、ここにいう「スチレンブロック共重合体」とは、いずれかの部位にスチレンブロック構造を有するポリマーであればよい。なお、一般に、スチレンブロック共重合体は、スチレンブロック構造を有し、常温では、そのスチレンブロック構造の部位が凝集して物理的架橋点(物理的な疑似架橋点)が形成され、加熱した場合にはかかる物理的な疑似架橋点が崩壊することに基づいて、熱可塑性を有しかつ常温でゴムのような特性(弾性等)を有するものとして利用可能なものである。
 また、このような化学結合性の架橋部位を有さないスチレンブロック共重合体としてはゴム弾性と熱可塑性の両立の観点から、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン‐エチレン‐プロピレン-スチレンブロック共重合体(SEPS)、スチレン‐エチレン‐エチレン‐プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-ブタジエン-スチレンブロック共重合体(SIBS)、これらの水素添加物(いわゆる水添物)が好ましく、SEBS、SEEPSがより好ましい。このようなスチレンブロック共重合体は1種を単独で用いてもよく、あるいは、2種以上を組み合わせて利用してもよい。
 また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体としては、スチレン含有量が20~40質量%(より好ましくは25~37質量%)のスチレンブロック共重合体であることが好ましい。このようなスチレン含有量が前記下限未満ではスチレンブロック成分の減少により熱可塑性が低下する傾向にあり、他方、前記上限を超えるとオレフィン成分の減少によりゴム弾性が低下する傾向にある。なお、このようなスチレンブロックスチレンブロック共重合体中のスチレン含有量は、JIS K6239(2007年発行)に記載のIR法に準拠した方法により測定できる。
 さらに、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の重量平均分子量(Mw)は、20万以上70万以下であることが好ましく、30万以上60万以下であることがより好ましく、35万以上55万以下であることが更に好ましい。このような重量平均分子量が前記下限未満では耐熱性が低下する傾向にあり、他方、前記上限を超えるとエラストマー性ポリマーとの相溶性が低下する傾向にある。
 また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の数平均分子量(Mn)は、10万以上60万以下であることが好ましく、15万以上55万以下であることがより好ましく、20万以上50万以下であることが更に好ましい。このような数平均分子量が前記下限未満では耐熱性が低下する傾向にあり、他方、前記上限を超えるとエラストマー性ポリマー(前記エラストマー成分)との相溶性が低下する傾向にある。
 また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の分子量分布の分散度(Mw/Mn)は5以下であることが好ましく、1~3であることがより好ましい。なお、このような重量平均分子量(Mw)や前記数平均分子量(Mn)および分子量分布の分散度(Mw/Mn)は、いわゆるゲルパーミエーションクロマトグラフィー(GPC)法により求めることができる。また、このような分子量等の測定の具体的な装置や条件としては、島津製作所製の「Prominence GPCシステム」を利用できる。
 また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体のガラス転移点は、-80~-40℃であることが好ましく、-70~-50℃であることがより好ましい。このようなガラス転移点が前記下限未満では融点が低くなるため耐熱性が低下する傾向にあり、他方、前記上限を超えるとゴム弾性が低下する傾向にある。なお、ここにいう「ガラス転移点」は、前述のように、示差走査熱量測定(DSC-Differential Scanning Calorimetry)により測定したガラス転移点である。このようなDSC測定に際しては、昇温速度は10℃/minにするのが好ましい。
 前記化学結合性の架橋部位を有さないスチレンブロック共重合体の製造するための方法は特に制限されず、公知の方法を適宜採用することができる。また、このようなスチレンブロック共重合体としては、市販品を用いてもよく、例えば、クレイトン社製の商品名「G1633」「G1640」「G1641」「G1642」「G1643」「G1645」「G1650」「G1651」「G1652」「G1654」「G1657」「G1660」;クラレ社製の商品名「S4055」「S4077」「S4099」「S8006」「S4044」「S8006」「S4033」「S8004」「S8007」「S8076」;旭化成社製の商品名「タフテックH1041」「タフテックN504」「タフテックH1272」「タフテックM1911」「タフテックM1913」「タフテックMP10」;アロン化成社製の商品名「AR-710」「AR-720」「AR-731」「AR-741」「AR-750」「AR-760」「AR-770」「AR-781」「AR-791」;等を適宜用いてもよい。
 さらに、本発明の導電性熱可塑性エラストマー組成物において前記化学結合性の架橋部位を有さないスチレンブロック共重合体を更に含有させる場合、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の含有量は、導電性熱可塑性エラストマー組成物の総量に対して5~60質量%であることが好ましく、7~45質量%であることがより好ましく、10~30質量%であることが更に好ましい。このような化学結合性の架橋部位を有さないスチレンブロック共重合体の含有量が前記下限未満では、前記スチレンブロック共重合体の含有量が少なすぎて、特に流動性及び加工性の点で十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると、架橋したエラストマーによる母体構造の特性(前記エラストマー成分に由来する特性)が希薄になる傾向にある。
 また、このようなエラストマー成分以外のポリマーとして好適に用いることが可能な、前記α-オレフィン系樹脂は化学結合性の架橋部位を有さないものである。このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、化学結合による架橋点を形成するような、官能基(例えば、水酸基、カルボニル基、カルボキシル基、チオール基、アミド基、アミノ基)を含まず、更に、高分子鎖同士を直接架橋する結合部位(共有結合による架橋部位等)を含まないものが好適に用いられる。また、このような化学結合性の架橋部位を有さないα-オレフィン系樹脂は、少なくとも、上述のような側鎖(a)、側鎖(a’)、側鎖(b)、側鎖(c)等を有していないポリマーとなる。
 また、ここにいう「α-オレフィン系樹脂」とは、α-オレフィンの単独重合体、α-オレフィンの共重合体をいう。ここにいう「α-オレフィン」とは、α位に炭素-炭素二重結合を有するアルケン(末端に炭素-炭素二重結合を有するアルケン:なお、かかるアルケンは直鎖状のものであっても分岐鎖状のものであってもよく、炭素数が2~20(より好ましくは2~10)であることが好ましい。)をいい、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン等が挙げられる。
 このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、α-オレフィンの重合体(ポリα-オレフィン:単独重合体であっても共重合体であってもよい。)であればよく、特に制限されないが、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、プロピレン-エチレン-ブテン共重合体等が挙げられる。このような化学結合性の架橋部位を有さないα-オレフィン系樹脂の中でも、母体となるエラストマーに対する相溶性の観点からは、ポリプロピレン、ポリエチレン、エチレン-プロピレン共重合体が好ましい。なお、このような化学結合性の架橋部位を有さないα-オレフィン系樹脂は1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。
 このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、結晶化度が10%以上のものが好ましく、10~80%のものがより好ましく、10~75%のものが更に好ましい。このような結晶化度が前記下限未満では樹脂的な性質が希薄になるため、機械特性、流動性をより高度なものとすることが困難となる傾向にあり、他方、前記上限を超えると樹脂的な性質が強くなるため、機械特性をより高い水準でバランスよく発揮させることが困難となる傾向にある。なお、このような結晶化度は、測定装置としてX線回折装置(例えば、リガク社製の商品名「MiniFlex300」を用い、回折ピークを測定し、結晶性/非晶性由来の散乱ピークの積分比を計算することにより求めることができる。
 また、このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、JIS K6922-2(2010年発行)に準拠して測定される、190℃、2.16kg荷重におけるメルトフローレート(MFR)が40g/10分以上であることが好ましい。このようなメルトフローレート(MFR)が前記下限未満ではエラストマー組成物中に配合しても流動性を向上させることが困難となる傾向にある。なお、このようなメルトフローレート(MFR)は、JIS K6922-2(2010年発行)に記載のB法に準拠して測定される値であり、メルトフローレート測定装置として東洋精機製作所製の商品名「Melt Indexer G-01」を用いて、該装置の炉体内に前記α-オレフィン系樹脂を3g添加した後、温度を190℃にして5分間保持した後、190℃に維持しつつ2.16kgに荷重する条件で、前記炉体の下部に接続されている直径1mm、長さ8mmの筒状のオリフィス部材の開口部から、10分の間に流出するエラストマーの質量(g)を測定(前記炉体内において温度を190℃にして5分間保持した後に荷重を開始してから、流出するエラストマーの質量の測定を開始する。)することにより求めることができる。
 さらに、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の重量平均分子量(Mw)は、1万以上200万以下であることが好ましく、3万以上150万以下であることがより好ましく、5万以上125万以下であることが更に好ましい。このような重量平均分子量が前記下限未満では機械強度が低下する傾向にあり、他方、前記上限を超えるとエラストマー成分に対する相溶性が低下してしまい、相分離しやすくなる傾向にある。
 また、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の数平均分子量(Mn)は、1万以上200万以下であることが好ましく、3万以上150万以下であることがより好ましく、5万以上125万以下であることが更に好ましい。このような数平均分子量が前記下限未満では機械強度が低下する傾向にあり、他方、前記上限を超えるとエラストマー成分に対する相溶性が低下してしまい、相分離しやすくなる傾向にある。
 また、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の分子量分布の分散度(Mw/Mn)は100以下であることが好ましく、1.5~50であることがより好ましい。このような分子量分布の分散度(Mw/Mn)の値が前記下限未満では流動性が低下する傾向にあり、他方、前記上限を超えるとエラストマーに対する相溶性が低下する傾向にある。
 なお、上述のようなα-オレフィン系樹脂の重量平均分子量(Mw)や前記数平均分子量(Mn)および分子量分布の分散度(Mw/Mn)は、いわゆるゲルパーミエーションクロマトグラフィー(GPC)法により求めることができる。また、このような分子量等の測定の具体的な装置や条件としては、島津製作所製「Prominence GPCシステム」を利用できる。
 また、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂のガラス転移点は、-150~5℃であることが好ましく、-125~0℃であることがより好ましい。このようなガラス転移点が前記下限未満では融点が低くなるため耐熱性が低下する傾向にあり、他方、前記上限を超えるとエラストマー配合後のゴム弾性が低下しやすい傾向にある。なお、ここにいう「ガラス転移点」は、前述のように、示差走査熱量測定(DSC-Differential Scanning Calorimetry)により測定したガラス転移点である。このようなDSC測定に際しては、昇温速度は10℃/minにするのが好ましい。
 このような化学結合性の架橋部位を有さないα-オレフィン系樹脂の製造するための方法は特に制限されず、公知の方法を適宜採用することができる。また、このようなα-オレフィン系樹脂としては、市販品を用いてもよく、例えば、三井化学社製の商品名「タフマー」;日本ポリエチレン社製の商品名「ノバテックHD」「ノバテックLD」「ノバテックLL」「カーネル」;プライムポリマー社製の商品名「ハイネックス」「ネオゼックス」「ウルトゼックス」「エボリュー」「プライムポリプロ」「ポリファイン」「モストロンーL」;サンアロマー社製のPP等を適宜用いてもよい。
 このような老化防止剤としては、例えば、ヒンダードフェノール系、脂肪族および芳香族のヒンダードアミン系等の化合物を適宜利用することができる。また、前記酸化防止剤としては、例えば、ブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)等を適宜利用することができる。また、前記顔料としては、例えば、二酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩等の無機顔料、アゾ顔料、銅フタロシアニン顔料等の有機顔料等を適宜利用することができ、また、前記可塑剤としては、例えば、安息香酸、フタル酸、トリメリット酸、ピロメリット酸、アジピン酸、セバチン酸、フマル酸、マレイン酸、イタコン酸、クエン酸等の誘導体をはじめ、ポリエステル、ポリエーテル、エポキシ系等を適宜利用することができる。なお、このような添加剤等としては、特開2006-131663号公報に例示されているようなものを適宜利用してもよい。
 このような添加剤の含有量は、目的とする用途や設計に応じて適宜変更することが可能であり、特に制限されるものではないが、例えば、前記添加剤が前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の場合は、流動性が改善することにより、添加剤の分散性が改善する観点でより高い効果が得られることから、その含有量が前記エラストマー成分100質量部に対して250質量部以下(より好ましくは5~250質量部、更に好ましくは10~225質量部、特に好ましくは25~200質量部、最も好ましくは35~175質量部)となるようにして利用することがより好ましい。また、前記添加剤が前記化学結合性の架橋部位を有さないスチレンブロック共重合体の場合、その含有量を、前記エラストマー成分100質量部に対して10~400質量部(より好ましくは15~350質量部、更に好ましくは20~310質量部、特に好ましくは20~300質量部、最も好ましくは30~250質量部)となるようにして利用とすることが好ましい。前記スチレンブロック共重合体の含有量が前記下限未満では特に流動性及び加工性の点でスチレンブロック共重合体を含有せしめた効果が十分に得られなくなる傾向にあり、他方、前記上限を超えると、架橋したエラストマーによる母体構造の特性(前記エラストマー成分に由来する特性)が希薄になる傾向にある。また、前記添加剤が老化防止剤、酸化防止剤、顔料(染料)又は可塑剤である場合、それらの成分の含有量は、それぞれ(各成分ごとに)、前記エラストマー成分100質量部に対して20質量部以下であることが好ましく、0.1~10質量部であることがより好ましい。このように、目的とする用途や設計に応じて、添加剤等の他の成分を適宜利用することができる。
 なお、本発明の導電性熱可塑性エラストマー組成物は、加熱(例えば100~250℃に加熱)することにより、水素結合性架橋部位において形成されていた水素結合や、他の架橋構造が解離する等して軟化し、流動性を付与することができる。これは、加熱により分子間または分子内で形成されている側鎖同士の相互作用(主に水素結合による相互作用)が弱まるためであると考えられる。なお、本発明においては、側鎖に、少なくとも水素結合性架橋部位を含むエラストマー成分が含有されているため、加熱により流動性が付与された後、放置した場合に、解離した水素結合が再び結合して硬化するため、その組成によっては、導電性熱可塑性エラストマー組成物に、より効率よくリサイクル性を発現させることも可能となる。
 また、本発明の導電性熱可塑性エラストマー組成物は、体積抵抗率が300Ω・cm以下であることが好ましく、150Ω・cm以下であることがより好ましく、100Ω・cm以下であることが更に好ましく、50Ω・cm以下であることが更に好ましく、10Ω・cm以下であることが特に好ましく、1Ω・cm以下であることが最も好ましい。このような体積抵抗率が前記上限を超えると導電性が低下する傾向にある。また、このような体積抵抗率の下限値は導電性の観点からは、より0に近い値であることが望ましく、特に制限されるものではない。なお、このような「体積抵抗率」を測定する方法としては以下のような方法を採用する。すなわち、先ず、測定装置として株式会社川口電気製作所製の商品名「デジタルオームメーター R-506型」を用い、測定電極として株式会社川口電気製作所製の商品名「P-617型」を用い、測定試料として縦150mm、横20mm、厚さ1.8mmの長方形状の試験片を準備し、試験環境温度を23±2℃とし、試験環境湿度(相対湿度)を50±5%RHとし、印加電流を試験ごとに1μA(1回目の試験)、10μA(2回目の試験)、100μA(3回目の試験)に変更し、電位差電極間距離を60mmとする条件でJIS K 6271(2008年発行)に準拠した平行端子電極法による測定を実施して、測定開始後1分後の測定値(体積抵抗率の実測値)を記録する試験を3回行い(試験ごとに試験片を新たなものとして測定を行う。そのため、上記試験片は3つ準備する。また、印加電流の大きさを上述の条件で試験ごとに変更する)、各試験で求められる測定値の平均値を求めることにより算出される値を「体積抵抗率」として採用する。このように、前記体積抵抗率としては、JIS K 6271(2008年発行)に準拠した平行端子電極法により測定される体積抵抗率の3回の試験の測定値(3つの試験片の実測値)の平均値を採用する。なお、前記試験片は導電性熱可塑性エラストマー組成物を200℃で3分間予熱した後、200℃で5分間熱プレスしたシートを上記大きさとなるように切削することにより調製することが好ましい。
 また、本発明の導電性熱可塑性エラストマー組成物は、JIS K6262(2013年発行)に準拠して25%圧縮して70℃で22時間放置した後に測定される圧縮永久歪(単位:%)が、60%以下であることが好ましく、55%以下であることがより好ましく、40%以下であることが更に好ましく、30%以下であることが特に好ましく、25%以下であることが最も好ましい。このような圧縮永久歪が前記上限を超えると場合によっては永久変形が生じてしまう傾向にある。なお、このような圧縮永久歪(単位:%)は、圧縮装置としてダンベル社製の商品名「加硫ゴム圧縮永久歪試験器 SCM-1008L」を用い、試料として、導電性熱可塑性エラストマー組成物を200℃で3分間予熱した後、200℃で5分間熱プレスして形成された厚みが約2mmのシートから直径29mmの円盤状のシートを7枚打ち抜いた後にその7枚の円盤状のシートを重ね合わせて高さ(厚み)が12.5±0.5mmになるようにして調製された試験片を利用し、該試験片を前記圧縮装置に利用する専用治具で25%圧縮して70℃で22時間経過した後の圧縮永久歪(単位:%)をJIS K6262(2013年発行)に準拠して測定して求められる値を採用することができる。
 また、本発明の導電性熱可塑性エラストマー組成物は、JIS K6922-2(2010年発行)に準拠して測定される230℃、10kg荷重におけるメルトフローレート(MFR)が2g/10分以上であることが好ましく、4g/10分以上であることがより好ましく、8g/10分であることが更に好ましい。このようなメルトフローレート(MFR)が前記下限未満では充分な加工性が発現できない傾向にある。なお、このようなメルトフローレート(MFR)は、JIS K6922-2(2010年発行)に記載のB法に準拠して測定される値であり、メルトフローレート測定装置として東洋精機製作所製の商品名「Melt Indexer G-01」を用いて、該装置の炉体内に導電性熱可塑性エラストマー組成物を3g添加した後、温度を230℃にして5分間保持した後、230℃に維持しつつ10kgに荷重する条件で、前記炉体の下部に接続されている直径1mm、長さ8mmの筒状のオリフィス部材の開口部から、10分の間に流出するエラストマーの質量(g)を測定(前記炉体内において温度を230℃にして5分間保持した後に荷重を開始してから、流出するエラストマーの質量の測定を開始する。)することにより求めることができる。
 さらに、本発明の導電性熱可塑性エラストマー組成物は、5%重量減少温度が320℃以上であることが好ましく、325℃以上であることがより好ましい。このような5%重量減少温度が前記下限未満では耐熱性が低下する傾向にある。なお、このような5%重量減少温度は、測定試料として10mgの導電性熱可塑性エラストマー組成物を準備し、測定装置として熱重量測定装置(TGA)を用い、昇温速度10℃/minで加熱して、初期の重量(10mg)から5%重量が減少した際の温度を測定することにより求めることができる。
 本発明の導電性熱可塑性エラストマー組成物は、例えば、コンピューター、通信機器等の電子機器を収納する容器の電磁遮蔽材、電子部品等の接地線、摩擦電気等の静電気から生ずる火花による発火防止材等の部材に用いられる接合部材として好適である。また、ガス、油タンクの昇降摩擦静電気除去、火薬工場、手術室、電算室等の床材、作業台の帯電防止等の電磁波シールド材料、帯電防止材料等の用途に好適に用いられる。
 本発明の導電性熱可塑性エラストマー組成物は、その組成に応じて、各種特性を適宜バランスよく発揮させることも可能である。すなわち、このような導電性熱可塑性エラストマー組成物においては、組成を適宜変更することで、用途に応じて必要となる特性(例えば、自己修復性等の特性)も適宜発揮させることが可能である。例えば、本発明の導電性熱可塑性エラストマー組成物は、十分な硬度、十分な破断伸び等の特性をも発揮させることが可能である。このように、組成を適宜変更することで導電性熱可塑性エラストマー組成物の用途に応じて、必要となる特性をバランスよく適宜発揮させることが可能であるため、上述のような各種用途に用いる場合には、その用途に応じて必要となる特性を考慮して、組成物中の成分の種類(組成)を適宜変更して利用することが好ましい。
 以上、本発明の導電性熱可塑性エラストマー組成物について説明したが、以下において、このような本発明の導電性熱可塑性エラストマー組成物を製造するための方法として好適に利用することが可能な方法について説明する。
 このような本発明の導電性熱可塑性エラストマー組成物を製造するための方法としては、特に制限されず、例えば、
 環状酸無水物基を側鎖に有するエラストマー性ポリマーと、
 前記クレイと、
 前記パラフィンオイルと、
 前記BET比表面積が50m/g以上のカーボン系フィラーと、
 前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(I)、並びに、前記化合物(I)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(II)の混合原料のうちの少なくとも1種の原料化合物と、
を、前記クレイ及び前記パラフィンオイルの含有比率がそれぞれ、最終的に得られる組成物中において前述の範囲(本発明の導電性熱可塑性エラストマー組成物において説明した含有量の範囲)となるようにしながら混合して、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーと前記原料化合物とを反応せしめることにより、上記本発明の導電性熱可塑性エラストマー組成物を得る方法(A)が挙げられる。
 このような方法(A)においては、各成分を混合する際の順序等は特に制限されず、目的の設計や利用する装置などに応じて適宜最適な方法を採用すればよい。このような方法(A)の中でも、クレイの分散性がより高度なものとなり、ゴムとしての特性をより高度なものとすることが可能となることから、下記方法(A-1)を採用することが好ましい。すなわち、上述のような方法(A)の好適な実施形態としては、
 前記環状酸無水物基を側鎖に有するエラストマー性ポリマーと、前記クレイと、前記パラフィンオイルとを混合して混合物を得る第一工程と、
 前記混合物に、前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(I)、並びに、前記化合物(I)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(II)の混合原料のうちの少なくとも1種の原料化合物を添加し、前記ポリマーと前記原料化合物とを反応させることにより、熱可塑性エラストマー組成物(導電性熱可塑性エラストマー組成物の前駆体)を得る第二工程と、
 前記熱可塑性エラストマー組成物に、BET比表面積が50m/g以上のカーボン系フィラーを混合して、上記本発明の導電性熱可塑性エラストマー組成物を得る第三工程と、
を含む方法であり、
 前記第一工程において、前記クレイ及び前記パラフィンオイルの含有比率がそれぞれ組成物中において前述の範囲となるようにしながら(上記本発明の導電性熱可塑性エラストマー組成物において説明した前記クレイ及び前記パラフィンオイルの含有量の条件を満たすようにしながら)、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーと、前記クレイと、前記パラフィンオイルとを混合し、かつ、
 前記第二工程において得られる前記熱可塑性エラストマー組成物(導電性熱可塑性エラストマー組成物の前駆体)が、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、前記クレイと、前記パラフィンオイルとを含有してなる組成物である、方法(A-1)を挙げることができる。ここで、先ず、上記方法(A)として好適に利用可能な方法(A-1)の各工程について説明する。
 (第一工程)
 上記方法(A-1)における第一工程は、環状酸無水物基を側鎖に有するエラストマー性ポリマーと、クレイと、パラフィンオイルとを混合して混合物を得る工程である。
 ここで、「環状酸無水物基を側鎖に有するエラストマー性ポリマー」とは、ポリマーの主鎖を形成する原子に環状酸無水物基が化学的に安定な結合(共有結合)をしているエラストマー性ポリマーのことをいい、例えば、前記エラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーと、環状酸無水物基を導入し得る化合物とを反応させることにより得られるものを好適に利用することができる。
 なお、このような主鎖部分を形成することが可能なポリマーとしては、一般的に公知の天然高分子または合成高分子であって、そのガラス転移点が室温(25℃)以下のポリマーからなるものであればよく(いわゆるエラストマーからなるものであればよく)、特に限定されるものではない。
 このようなエラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーとしては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、1,2-ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、エチレン-プロピレン-ジエンゴム(EPDM)などのジエン系ゴムおよびこれらの水素添加物;エチレン-プロピレンゴム(EPM)、エチレン-アクリルゴム(AEM)、エチレン-ブテンゴム(EBM)、クロロスルホン化ポリエチレン、アクリルゴム、フッ素ゴム、ポリエチレンゴム、ポリプロピレンゴムなどのオレフィン系ゴム;エピクロロヒドリンゴム;多硫化ゴム;シリコーンゴム;ウレタンゴム;等が挙げられる。
 また、このようなエラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーとしては、樹脂成分を含むエラストマー性のポリマーであってもよく、例えば、水添されていてもよいポリスチレン系エラストマー性ポリマー(例えば、SBS、SIS、SEBS等)、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、ポリアミド系エラストマー性ポリマー等が挙げられる。
 さらに、このようなエラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーとしては、ジエン系ゴム、ジエン系ゴムの水素添加物、オレフィン系ゴム、水添されていてもよいポリスチレン系エラストマー性ポリマー、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、及び、ポリアミド系エラストマー性ポリマーの中から選択される少なくとも1種からなることが好ましい。また、このようなポリマーとしては、環状酸無水物基として好適な無水マレイン酸基の導入のし易さといった観点からは、ジエン系ゴムが好ましく、耐老化性の観点からは、オレフィン系ゴムが好ましい。
 また、前記環状酸無水物基を導入し得る化合物としては、例えば、無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸およびこれらの誘導体等の環状酸無水物が挙げられる。
 また、第一工程に用いられる環状酸無水物基を側鎖に有するエラストマー性ポリマーの前記環状酸無水物基としては、無水コハク酸基、無水マレイン酸基、無水グルタル酸基、無水フタル酸基が好ましく、中でも、原料の反応性が高く、しかも工業的に原料の入手が容易であるといった観点からは、無水マレイン酸基がより好ましい。
 さらに、第一工程に用いられる環状酸無水物基を側鎖に有するエラストマー性ポリマーは、通常行われる方法、例えば、エラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーに、通常行われる条件、例えば、加熱下での撹拌等により環状酸無水物をグラフト重合させる方法で製造してもよい。また、第一工程に用いられる環状酸無水物基を側鎖に有するエラストマー性ポリマーとしては、市販品を用いてもよい。
 このような環状酸無水物基を側鎖に有するエラストマー性ポリマーの市販品としては、例えば、LIR-403(クラレ社製)、LIR-410A(クラレ社試作品)などの無水マレイン酸変性イソプレンゴム;LIR-410(クラレ社製)などの変性イソプレンゴム;クライナック110、221、231(ポリサー社製)などのカルボキシ変性ニトリルゴム;CPIB(日石化学社製)、HRPIB(日石化学社ラボ試作品)などのカルボキシ変性ポリブテン;ニュクレル(三井デュポンポリケミカル社製)、ユカロン(三菱化学社製)、タフマーM(例えば、MP0610(三井化学社製)、MP0620(三井化学社製))などの無水マレイン酸変性エチレン-プロピレンゴム;タフマーM(例えば、MA8510、MH7010、MH7020(三井化学社製)、MH5010、MH5020(三井化学社製)、MH5040(三井化学社製))などの無水マレイン酸変性エチレン-ブテンゴム;アドテックスシリーズ(無水マレイン酸変性EVA、無水マレイン酸変性EMA(日本ポリオレフィン社製))、HPRシリーズ(無水マレイン酸変性EEA、無水マレイン酸変性EVA(三井・ジュポンポリオレフィン社製))、ボンドファストシリーズ(無水マレイン酸変性EMA(住友化学社製))、デュミランシリーズ(無水マレイン酸変性EVOH(武田薬品工業社製))、ボンダイン(エチレン・アクリル酸エステル・無水マレイン酸三元共重合体(アトフィナ社製))、タフテック(無水マレイン酸変性SEBS、M1943(旭化成社製))、クレイトン(無水マレイン酸変性SEBS、FG1901,FG1924(クレイトンポリマー社製))、タフプレン(無水マレイン酸変性SBS、912(旭化成社製))、セプトン(無水マレイン酸変性SEPS(クラレ社製))、レクスパール(無水マレイン酸変性EVA、ET-182G、224M、234M(日本ポリオレフィン社製))、アウローレン(無水マレイン酸変性EVA、200S、250S(日本製紙ケミカル社製))などの無水マレイン酸変性ポリエチレン;アドマー(例えば、QB550、LF128(三井化学社製))などの無水マレイン酸変性ポリプロピレン;等が挙げられる。
 また、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーとしては、高分子量で高強度であるといった観点から、無水マレイン酸変性エチレン-プロピレンゴム、無水マレイン酸変性エチレン-ブテンゴムがより好ましい。
 さらに、このような第一工程に利用されるクレイは、上記本発明の導電性熱可塑性エラストマー組成物において説明したクレイと同様のものである(その好適なものも同様である)。また、このような方法に利用されるパラフィンオイルは、上記本発明の導電性熱可塑性エラストマー組成物において説明したパラフィンオイルと同様のものである(その好適なものも同様である)。また、このような方法に利用されるカーボン系フィラーは、上記本発明の導電性熱可塑性エラストマー組成物において説明したカーボン系フィラーと同様のものである(その好適なものも同様である)。
 また、第一工程においては、環状酸無水物基を側鎖に有するエラストマー性ポリマーと、クレイと、パラフィンオイルとを混合して混合物を得る。このような混合物の調製工程においては、環状酸無水物基を側鎖に有するエラストマー性ポリマーと、クレイと、前記パラフィンオイルの添加順序は特に制限されるものではないが、クレイの分散性をより向上させるといった観点から、前記パラフィンオイルと環状酸無水物基を側鎖に有するエラストマー性ポリマーとを含む混合物の前駆体を調製した後、該前駆体中にクレイを添加することが好ましい。
 また、前記混合物を得るためにクレイを添加する際には、クレイが十分に分散するように、予め環状酸無水物基を側鎖に有するエラストマー性ポリマーを可塑化した後に、クレイを添加することが好ましく、前記混合物前駆体を可塑化して、そこにクレイを添加することがより好ましい。
 このように、環状酸無水物基を側鎖に有するエラストマー性ポリマーや前記混合物前駆体を可塑化する方法としては特に制限されず、例えば、これらを可塑化することが可能となるような温度(例えば100~250℃程度)でロール、ニーダー、押出し機、万能攪拌機等を用いて素練りする方法等を適宜採用できる。このような環状酸無水物基を側鎖に有するエラストマー性ポリマーや前記混合物前駆体の可塑化を行う際の温度等の条件は特に制限されず、含有している成分の種類(例えば環状酸無水物基を側鎖に有するエラストマー性ポリマーの種類)等に応じて適宜設定すればよい。
 また、第一工程においては、前記クレイ及び前記パラフィンオイルの含有比率がそれぞれ組成物中において前述の範囲となるようにしながら(上記本発明の導電性熱可塑性エラストマー組成物において説明した前記クレイ及び前記パラフィンオイルの含有量の条件を満たすようにしながら)、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーと、前記クレイと、前記パラフィンオイルとを混合する。
 このような混合物の調製工程においては、最終的に得られる導電性熱可塑性エラストマー組成物中のクレイの含有量が前記エラストマー成分100質量部に対して20質量部以下(より好ましくは0.01~10質量部、更に好ましくは0.05~5質量部、特に好ましくは0.08~3質量部)となるような割合で前記クレイを用いて、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーと前記クレイと前記パラフィンオイルとを混合することが好ましい。このようなクレイの含有量が前記上限を超えると架橋が強すぎて、却って伸びや強度が低下する傾向にあり、他方、前記下限未満では、クレイの量が少なすぎて、クレイを用いることにより得られる効果が低下してしまう傾向にある。
 また、このような混合物中のクレイの含有量としては、環状酸無水物基を側鎖に有するエラストマー性ポリマー100質量部に対して20質量部以下であることが好ましく、0.05~5質量部であることがより好ましく、0.08~3質量部であることが更に好ましい。このような含有量が前記下限未満では、クレイの量が少なすぎて、クレイを用いることにより得られる効果が低下してしまう傾向にあり、他方、前記上限を超えると、架橋が強すぎて、却って伸びや強度が低下する傾向にある。なお、このような含有量でクレイを用いることで、最終的に得られる導電性熱可塑性エラストマー組成物中のクレイの含有量が前記範囲内の値となる。
 更に、このような混合物の形成の際に用いるクレイの量としては、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー中の環状酸無水物基1mmolに対して、クレイが0.01g~2.0g(より好ましくは0.02~1.0g)となるような割合で含有することが好ましい。このような酸無水物基に対するクレイの割合が前記下限未満では少なすぎて効果が低下してしまう傾向にあり、他方、前記上限を超えると架橋が強すぎて、却って伸びや強度が低下する傾向にある。なお、このような割合の範囲内でクレイを含有させることで、混合物中に含有せしめたクレイが効率よく分解されて、単層のクレイを効率よく製造することができ、クレイの分散性をより高度のものとすることができる傾向にある。
 また、このような混合物の調製工程においては、最終的に得られる導電性熱可塑性エラストマー組成物中の前記パラフィンオイルの含有量が1~65質量%(好ましくは5~65質量%、より好ましくは10~65質量%)となるような割合で前記パラフィンオイルを用いて、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーと前記クレイと前記パラフィンオイルとを混合することが好ましい。このようなパラフィンオイルの含有量が前記下限未満では流動性および分散性が不充分となる傾向にあり、他方、前記上限を超えるとオイルがブリードし易くなってしまう傾向にある。
 また、このような混合物を得るための混合の方法は特に制限されず、公知の方法等を適宜採用することができ、例えば、ロール、ニーダー、押出し機、万能攪拌機等により混合する方法を採用することができる。
 なお、このような混合物には、本発明の目的を損わない範囲で、前述の各種添加剤(前記エラストマー成分以外のポリマー(例えば、化学結合性の架橋部位を含まないスチレンブロック共重合体(スチレンブロックを有するポリマー)、化学結合性の架橋部位を含まないα-オレフィン系樹脂(α-オレフィンの単独重合体、α-オレフィンの共重合体等)、補強剤(充填剤)、水素結合性の補強剤(充填剤)、アミノ基を導入してなる充填剤(以下、単に「アミノ基導入充填剤」という。)、該アミノ基導入充填剤以外のアミノ基含有化合物、金属元素を含む化合物(以下、単に「金属塩」という。)、無水マレイン酸変性ポリマー、老化防止剤、酸化防止剤、顔料(染料)、可塑剤、揺変性付与剤、紫外線吸収剤、難燃剤、溶剤、界面活性剤(レベリング剤を含む)、分散剤、脱水剤、防錆剤、接着付与剤、帯電防止剤、フィラーなどの各種添加剤)を適宜含有させることができる。このような添加剤等は、特に制限されず、一般に用いられるものを適宜使用することができる。
 このような添加剤等の成分(他の成分)は、上記本発明の導電性熱可塑性エラストマー組成物において説明したものと同様のものであり、目的とする設計に応じて含有量などを適宜変更して利用することが可能である。例えば、既に上記本発明の導電性熱可塑性エラストマー組成物において含有量の好適な範囲を説明している添加剤については、既に説明した含有量の好適な範囲となるように、その使用量を適宜変更しながら利用することが好ましい。例えば、前記添加剤が前記α-オレフィン系樹脂の場合は、その含有量は前述の通り、前記エラストマー成分100質量部に対して250質量部以下(より好ましくは5~250質量部、更に好ましくは10~225質量部、特に好ましくは25~200質量部、最も好ましくは35~175質量部)となるようにして利用することがより好ましい。また、前記添加剤が前記化学結合性の架橋部位を有さないスチレンブロック共重合体の場合、その含有量を、前記エラストマー成分100質量部に対して10~400質量部(より好ましくは15~350質量部、更に好ましくは20~310質量部、特に好ましくは20~300質量部、最も好ましくは30~250質量部)となるようにして利用とすることが好ましい。
 また、前記添加剤が補強剤(充填剤)の場合は、その含有量が前記エラストマー成分100質量部に対して500質量部以下(より好ましくは20~400質量部)となるようにして利用することが好ましい。このような補強剤(充填剤)の含有量が前記下限未満では補強剤(充填剤)を利用することによる効果が十分に発現しなくなる傾向にあり、他方、前記上限を超えると、利用する成分の種類にもよるが、基質のエラストマーの効果が薄まって、物性が低下してしまう傾向にある。また、前述の添加剤が前記可塑剤(軟化剤を含む。)の場合、その含有量は、前記エラストマー成分100質量部に対して600質量部以下(より好ましくは10~600質量部、更に好ましくは50~550質量部、特に好ましくは75~500質量部、最も好ましくは100~400質量部)となるようにして利用することが好ましい。また、前記添加剤が、ポリマー類および前記可塑剤以外のものである場合は、前記添加剤の含有量は、それぞれ前記エラストマー成分100質量部に対して20質量部以下(より好ましくは0.1~10質量部)となるようにして利用することが好ましい。このような添加剤の含有量が前記下限未満では前記添加剤を利用することによる効果が十分に発現しなくなる傾向にあり、他方、前記上限を超えると、基質のエラストマーの反応に悪影響を及ぼし、却って物性が低下してしまう傾向にある。
 (第二工程)
 第二工程は、前記混合物に、前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(I)、並びに、前記化合物(I)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(II)の混合原料のうちの少なくとも1種の原料化合物を添加し、前記ポリマーと前記原料化合物とを反応させることにより、熱可塑性エラストマー組成物(導電性熱可塑性エラストマー組成物の前駆体:カーボン系フィラーの導入前の組成物)を得る工程である。
 前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(I)としては、上記本発明の導電性熱可塑性エラストマー組成物において説明した水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)と同様のものを好適に利用することができ、例えば、上記本発明の導電性熱可塑性エラストマー組成物において説明した含窒素複素環そのものであってもよく、あるいは、前記含窒素複素環に無水マレイン酸等の環状酸無水物基と反応する置換基(例えば、水酸基、チオール基、アミノ基等)が結合した化合物(前記置換基を有する含窒素複素環)であってもよい。なお、このような化合物(I)としては、水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を同時に導入することが可能な化合物)を利用してもよい(なお、水素結合性架橋部位及び共有結合性架橋部位の双方を有する側鎖は、水素結合性架橋部位を有する側鎖の好適な一形態といえる。)。
 また、このような化合物(I)としては、特に制限されず、目的とするポリマー中の側鎖の種類(側鎖(a)又は側鎖(a’))に応じて、上述のような化合物(I)の中から好適な化合物を適宜選択して用いることができる。このような化合物(I)としては、より高い反応性が得られるといった観点からは、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよい、トリアゾール、ピリジン、チアジアゾール、イミダゾール、イソシアヌレート、トリアジンおよびヒダントインであることが好ましく、前記置換基を有している、トリアゾール、ピリジン、チアジアゾール、イミダゾール、イソシアヌレート、トリアジンおよびヒダントインであることがより好ましく、前記置換基を有しているトリアゾール、イソシアヌレート、トリアジンであることが更に好ましく、前記置換基を有しているトリアゾールが特に好ましい。なお、このような置換基を有していてもよいトリアゾール、ピリジン、チアジアゾール、イミダゾールおよびヒダントインとしては、例えば、4H-3-アミノ-1,2,4-トリアゾール、アミノピリジン、アミノイミダゾール、アミノトリアジン、アミノイソシアヌレート、ヒドロキシピリジン、ヒドロキシエチルイソシアヌレート等が挙げられる。
 また、前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(II)としては、上記本発明の導電性熱可塑性エラストマー組成物において説明した「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」と同様のものを好適に利用することができる(その化合物として好適なものも同様である。)。また、このような化合物(II)としては、水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を同時に導入することが可能な化合物)を利用してもよい(なお、水素結合性架橋部位及び共有結合性架橋部位の双方を有する側鎖は、共有結合性架橋部位を有する側鎖の好適な一形態といえる。)。
 このような化合物(II)としては、耐圧縮永久歪性の観点から、トリスヒドロキシエチルイソシアヌレート、スルファミド、ポリエーテルポリオールが好ましく、トリスヒドロキシエチルイソシアヌレート、スルファミドがより好ましく、トリスヒドロキシエチルイソシアヌレートが更に好ましい。
 また、前記化合物(I)及び/又は(II)としては、水素結合性架橋部位を導入する観点から、水酸基、チオール基、アミノ基及びイミノ基のうちの少なくとも1種の置換基を有する化合物を利用することが好ましい。さらに、前記化合物(I)及び/又は(II)としては、より効率よく組成物中に水素結合性架橋部位及び共有結合性架橋部位の双方を導入することが可能となることから、前記環状酸無水物基と反応して、水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を同時に導入することが可能な化合物)を利用することが好ましい。このような水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物としては、前記複素環含有ポリオール、前記複素環含有ポリアミン、前記複素環含有ポリチオールを好適に利用することができ、中でも、トリスヒドロキシエチルイソシアヌレートが特に好ましい。
 また、化合物(I)及び化合物(II)の添加量(これらの総量:一方の化合物のみを利用する場合には、その一方の化合物の量となる。)は、特に制限されないが、該化合物中にアミン、アルコール等の活性水素が含まれる場合においては、環状酸無水物基100モル%に対して、該化合物中のアミン、アルコール等の活性水素が20~250モル%となる量であることが好ましく、50~150モル%となる量であることがより好ましく、80~120モル%となる量であることが更に好ましい。このような添加量が前記下限未満では、導入される側鎖の量が少なくなって、架橋密度を十分に高度なものとすることが困難となり、引張強度等の物性が低下する傾向にあり、他方、前記上限を超えると、用いる化合物の量が多すぎて、ブランチが多くなり、却って架橋密度が下がってしまう傾向にある。
 また、化合物(I)及び化合物(II)の添加量は、これらの総量が(一方の化合物のみを利用する場合には、その一方の化合物の量となる。)、前記混合物中の前記ポリマー(環状酸無水物基を側鎖に有するエラストマー性ポリマー)100質量部に対して0.1~10質量部であることが好ましく、0.3~7質量部であることがより好ましく、0.5~5.0質量部であることが更に好ましい。このような化合物(I)及び化合物(II)の添加量(質量部に基づく量)が前記下限未満では少なすぎて架橋密度が上がらず所望の物性が発現しない傾向にあり、他方、前記上限を超えると多すぎてブランチが多くなり架橋密度が下がってしまうとなる傾向にある。
 化合物(I)及び化合物(II)の双方を利用する場合において、化合物(I)及び化合物(II)を添加する順序は特に制限されず、どちらを先に加えても良い。また、化合物(I)及び化合物(II)の双方を利用する場合において、化合物(I)を、環状酸無水物基を側鎖に有するエラストマー性ポリマーの、環状酸無水物基の一部と反応させてもよい。これにより、未反応の環状酸無水物基(反応させていない環状酸無水物基)に、化合物(II)を反応させて共有結合性架橋部位を形成させることも可能となる。ここにいう一部とは、環状酸無水物基100モル%に対して1モル%以上50モル%以下であることが好ましい。この範囲であれば、得られるエラストマー性ポリマー(B)において、化合物(I)に由来した基(例えば含窒素複素環等)を導入した効果が十分に発現され、リサイクル性がより向上する傾向にある。なお、化合物(II)は、共有結合による架橋が適当な個数(例えば、1分子中に1~3個)となるように前記環状酸無水物基と反応させることが好ましい。
 前記ポリマーと前記原料化合物(化合物(I)及び/又は化合物(II))とを反応させると、前記ポリマーが有する環状酸無水物基が開環されて、環状酸無水物基と前記原料化合物(前記化合物(I)及び/又は化合物(II))とが化学結合される。このような前記ポリマーと前記原料化合物(前記化合物(I)及び/又は化合物(II))とを反応(環状酸無水物基を開環)させる際の温度条件は特に制限されず、前記化合物と環状酸無水物基との種類に応じて、これらが反応可能な温度に調整すればよいが、軟化させて反応を瞬時に進める観点からは、100~250℃とすることが好ましく、120~230℃とすることがより好ましい。
 このような反応により、前記化合物(I)と環状酸無水物基とが反応した箇所においては、少なくとも水素結合性架橋部位が形成されるため、前記ポリマーの側鎖に水素結合性架橋部位(カルボニル含有基および/または含窒素複素環を有する部位、より好ましくはカルボニル含有基および含窒素複素環を有する部位)を含有させることが可能となる。このような反応により、形成(導入)される側鎖を、上記式(2)または(3)で表される構造を含有するものとすることができる。
 また、このような反応により、前記化合物(II)と環状酸無水物基とが反応した箇所においては、少なくとも、共有結合性架橋部位が形成されるため、前記ポリマーの側鎖を共有結合性架橋部を含有するもの(側鎖(b)又は側鎖(c))とすることが可能となる。そして、このような反応により、形成される側鎖を、上記式(7)~(9)で表される構造を含有するものとすることもできる。
 なお、このようなポリマー中の側鎖の各基(構造)、すなわち、未反応の環状酸無水物基、上記式(2)、(3)および(7)~(9)で表される構造等は、NMR、IRスペクトル等の通常用いられる分析手段により確認することができる。
 このようにして反応させることで、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 前記エラストマー成分100質量部に対して20質量部以下の含有比率のクレイと、
 前記パラフィンオイルと、
を含有してなる組成物(導電性熱可塑性エラストマー組成物の前駆体)を得ることができる。なお、このようにして得られる組成物中のエラストマー性ポリマー(A)、エラストマー性ポリマー(B)は、各ポリマー中の側鎖(a)、側鎖(a’)、側鎖(b)、側鎖(c)がそれぞれ環状酸無水物基との反応に由来するもの(例えば、上記式(2)、(3)および(7)~(9)で表される構造を含有する側鎖等)となる以外は、上記本発明の導電性熱可塑性エラストマー組成物において説明したエラストマー性ポリマー(A)、エラストマー性ポリマー(B)と同様のものである。
 (第三工程)
 第三工程は、前記熱可塑性エラストマー組成物(導電性熱可塑性エラストマー組成物の前駆体)に、BET比表面積が50m/g以上のカーボン系フィラーを混合して、上記本発明の導電性熱可塑性エラストマー組成物を得る工程である。
 このようなBET比表面積が50m/g以上のカーボン系フィラーは、上記本発明の導電性熱可塑性エラストマー組成物において説明したものと同様のものである(その好適なものも同様である)。
 また、このようなカーボン系フィラーを前記熱可塑性エラストマー組成物(導電性熱可塑性エラストマー組成物の前駆体)に混合する方法は特に制限されず、公知の方法等を適宜採用することができ、例えば、ロール、ニーダー、押出し機、万能攪拌機等により混合する方法を採用することができる。また、カーボン系フィラーの混合条件は特に制限されず、カーボン系フィラーが十分に分散するように、用いる混合装置の種類などに応じて適宜条件を設定すればよい。
 なお、このような第三工程においては、最終的に得られる導電性熱可塑性エラストマー組成物中の前記カーボン系フィラーの含有量が、上述のカーボン系フィラーの含有量の好適な範囲になるようにしながらカーボン系フィラーを用いて、前記熱可塑性エラストマー組成物(導電性熱可塑性エラストマー組成物の前駆体)に対してカーボン系フィラーを混合することが好ましい。すなわち、このような第三工程においては、最終的に得られる導電性熱可塑性エラストマー組成物中の前記カーボン系フィラーの含有量が0.1~50質量%(より好ましくは0.3~40質量%、更に好ましくは2.0~30質量%、3.0~20質量%)となるような割合で前記カーボン系フィラーを用いて、前記熱可塑性エラストマー組成物(導電性熱可塑性エラストマー組成物の前駆体)に対してカーボン系フィラーを混合することが好ましい。このようなカーボン系フィラーの含有量が前記下限未満では表面抵抗率および体積抵抗率が高くなる傾向にあり、他方、前記上限を超えるとエラストマーとカーボン系フィラーとの混合時の作業性が低下し、得られる組成物の性能が低下する傾向にある。
 なお、本発明において、上述のように、カーボン系フィラーとしては、BET比表面積が50m/g以上のもの(比表面積が比較的大きいもの)を利用するが、少なくとも最終生成物である組成物を得る際には、エラストマー成分と、クレイと、パラフィンオイルと共にカーボン系フィラーを混合することとなる。このような混合工程において、組成物中のパラフィオイルが潤滑成分となり、組成物中にカーボン系フィラーが十分に分散された状態になって、十分に高度な導電性が得られるとともに、パラフィンオイルと相俟ってゴムの変形が容易となるため、最終的に得られる導電性熱可塑性エラストマー組成物においては耐圧縮永久歪性が十分に高度なものとなるものと本発明者らは推察する。
 また、このようにして、第一工程~第三工程を含む混合方法を利用した場合においては、組成物中において、単層のクレイをより効率よく含有させることができ、クレイを効率よく分散することが可能となる。この点について、本発明者らは以下のように推察する。すなわち、このような第一工程~第三工程を含む混合方法を利用する場合、第一工程において、クレイと、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー(以下、場合により「酸無水物含有ポリマー」と称する。)とを混合して予め酸無水物ポリマー中にクレイを分散させることにより、酸無水物基とクレイとが相互作用して、クレイの層間が剥離され易くなる。特にクレイが、本発明において好適に用いられる有機化されたクレイ(有機化クレイ)の場合には、層間に存在するアンモニウム塩等の有機物が、酸無水物とより効率よく相互作用するため、より層が剥離され易い傾向にある。そして、クレイが分散した後に、前記原料化合物(架橋を形成する架橋剤として機能する。以下、場合により、「架橋剤」と称する。)を入れることにより、架橋剤と酸無水物基とが反応して、少なくとも、水素結合性架橋部位(例えばカルボン酸基等)が系中で発生する。そのため、クレイとの間で、水素結合による相互作用が引き起こされ、さらにクレイがエラストマー中に分散される。このようにして、単層のクレイをより効率よく含有させることができ、クレイを効率よく分散することが可能となるものと本発明者らは推察する。
 また、このようにして第一工程~第三工程を含む混合方法を利用して得られる上記本発明の導電性熱可塑性エラストマー組成物においては、組成物中において、単層のクレイを含有するものとすることができ、前記導電性熱可塑性エラストマー組成物の表面上の任意の3点以上の5.63μmの大きさの測定点を透過型電子顕微鏡(TEM)により測定した場合において、全測定点において、個数を基準として、全クレイのうちの50%以上(より好ましくは70%以上、更に好ましくは80~100%、特に好ましくは85~100%)が単層のクレイとして存在するものとすることも可能である。このような単層のクレイの存在率が前記下限未満では破断伸び、破断強度が低下する傾向にある。
 なお、このような第一工程~第三工程を含む方法(A-1)によれば、組成物中の単層の形態のクレイ(単層のクレイ)の存在割合を、より効率よく上記好適な割合とすることが可能である。この点に関しては、上述の第一工程において、クレイが環状酸無水物基とが相互作用して、より効率よく、多層構造のクレイの層間を剥離することが可能となり、クレイを単層の状態で分散(微分散)させることが可能となるため、より高い割合で、単層の形態のクレイ(単層のクレイ)が組成物中に存在することとなって、上記好適な割合で単層のクレイを含有させることが可能となるものと本発明者らは推察する。なお、このような単層状の形態のクレイの存在は、得られた組成物の表面を透過型電子顕微鏡(TEM)により測定することにより確認できる。
 また、このような第一工程~第三工程を含む方法(A-1)により、例えば、エラストマー性ポリマー(A)をエラストマー成分とする導電性熱可塑性エラストマー組成物と、エラストマー性ポリマー(B)をエラストマー成分とする導電性熱可塑性エラストマー組成物とをそれぞれ別々に製造した後、これを混合して、エラストマー成分としてエラストマー性ポリマー(A)及び(B)を含有する導電性熱可塑性エラストマー組成物としてもよい。また、エラストマー成分としてエラストマー性ポリマー(A)及び(B)を組み合わせて含有する導電性熱可塑性エラストマー組成物を製造する場合には、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)の比率を適宜変更して、組成物中に存在する水素結合性架橋部位と共有結合性架橋部位の比率等を適宜変更することで、所望の特性を発揮させることも可能である。
 以上、本発明の導電性熱可塑性エラストマー組成物を製造するための方法として好適に利用することが可能な方法(A)の好適な実施形態(上記第一工程~第三工程を含む方法(A-1))に利用される各工程について説明したが、前記方法(A)は上記方法(A-1)に限定されるものではない。
 例えば、前記方法(A-1)においては、第一工程~第三工程を施す順序に応じて、原料化合物やカーボン系フィラーを順次添加し混合する方法であったが、前述の方法(A)においては、環状酸無水物基を側鎖に有するエラストマー性ポリマー、クレイ、パラフィンオイル、カーボン系フィラー、及び、原料化合物を添加する順序などは特に制限されるものではない。言い換えれば、前述の方法(A)においては、環状酸無水物基を側鎖に有するエラストマー性ポリマー、クレイ、パラフィンオイル、カーボン系フィラー、及び、原料化合物を混合すればよく、これらを添加する順序などは特に制限されるものではない。
 このような方法(A)においては、例えば、反応容器(例えば、押出し機の加熱シリンダー(加熱筒)等)に、上述の各成分を同時に添加(例えば、ブレンダー等で予め調製した各成分の混合物を添加することにより同時に添加)して混合してもよく、あるいは、反応容器に各成分を、第一工程~第三工程を施す方法と同じ順序又は第一工程~第三工程を施す方法とは異なる順序で順々に添加して混合してもよい。
 また、前記方法(A)において、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー、前記クレイ、前記パラフィンオイル、前記カーボン系フィラー、及び、前記原料化合物を混合して、前記エラストマー性ポリマーと前記原料化合物とを反応させる方法としては特に制限されるものではなく、公知の方法を適宜採用することができ、例えば、これらの各成分の混合物を押出し機を利用して連続混合(連続混練)することで、各成分を混合して前記エラストマー性ポリマーと前記原料化合物とを反応させる方法を好適に採用してもよい。このような押出し機としては、混練時間の調整の観点から、多軸の押出し機を用いることが好ましく、2軸押出し機を用いることが特に好ましい。
 また、前記方法(A)において、前記エラストマー性ポリマーと前記原料化合物とを反応させる際に前記押出し機を利用して連続混合(連続混練)する方法を採用する場合、前記反応を効率よく進行せしめるといった観点から、温度条件を、上述の第一の製造方法において説明した、前記ポリマーと前記原料化合物(前記化合物(I)及び/又は化合物(II))とが反応可能な温度(好ましくは100~250℃、より好ましくは120~230℃)とすることが好ましい。また、このように連続混合(連続混練)する方法を採用する場合の温度条件としては140~249℃とすることがより好ましく、160~220℃とすることが更に好ましい。このような温度条件が前記下限未満では流動性が低下する傾向にあり、他方、前記上限を超えると、ポリマー成分の熱劣化が起こって破断強度が低下する傾向にある。
 また、前記方法(A)において、前記エラストマー性ポリマーと前記原料化合物とを反応させる際に前記押出し機を利用して連続混合(連続混練)する方法を採用する場合、用いるスクリュの特性(形状等)は特に制限されず、その設計を適宜変更することが可能である。また、このようなスクリュとしては、スクリュの長さ(L)とスクリュの直径(D)の関係において、L/Dが30以上という条件を満たすものがより好ましい。このような関係を満たす場合には、流動性が向上し、破断強度が向上する傾向にある。
 また、前記方法(A)において、前記エラストマー性ポリマーと前記原料化合物とを反応させる際に前記押出し機を利用して連続混合(連続混練)する方法を採用する場合、押出し機により、最大せん断速度が1~1599sec-1(より好ましくは50~900sec-1、更に好ましくは100~600sec-1)となるようにスクリュの回転数を調整することが好ましい。このような最大せん断速度が前記下限未満では流動性が低下する傾向にあり、他方、前記上限を超えると破断強度が低下する傾向にある。
 また、前記方法(A)において、前記押出し機を利用して連続混合(連続混練)する場合、前記押出し機に、各成分(環状酸無水物基を側鎖に有するエラストマー性ポリマー、クレイ、パラフィンオイル、カーボン系フィラー、及び、原料化合物)に応じた複数の供給口をそれぞれ設けて、前記押出し機中に各成分を順次添加することにより、利用する成分の添加順序を適宜変更してもよい。なお、このような押出し機を用いつつ、上記第一工程~上記第三工程を含む方法(A-1)を採用すれば、各成分を順次混合する工程をより効率よく実施することも可能となる。
 また、前記方法(A)においては、前記クレイ及び前記パラフィンオイルの含有比率がそれぞれ組成物中において前述の範囲となるようにしながら混合すればよく、他の成分の使用量などは目的とする設計に応じて適宜調整すればよい。なお、前記方法(A)においては、前述の方法(A-1)において説明したように本発明の目的を損わない範囲で、各種添加剤等の他の成分を更に添加する工程を含んでいてもよい。また、このような他の成分の含有量などの条件は、前述の方法(A-1)において説明した条件と同様である(その好適な範囲も同様である)。
 このようにして、前記エラストマー性ポリマーと、前記クレイと、前記パラフィンオイルと、前記カーボン系フィラーと、前記原料化合物とを、前記クレイ及び前記パラフィンオイルの含有比率がそれぞれ組成物中において前述の範囲(上記本発明の導電性熱可塑性エラストマー組成物において説明した含有量の範囲)となるようにしながら混合して、前記エラストマー性ポリマーと前記原料化合物とを反応させることにより、
 カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 前記クレイと、
 前記パラフィンオイルと、
 前記カーボン系フィラーと、
を含有してなる上記本発明の導電性熱可塑性エラストマー組成物を得ることができる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 先ず、各実施例及び各比較例で得られた導電性熱可塑性エラストマー組成物の特性の評価方法について説明する。
 <JIS-A硬度>
 各実施例及び各比較例で得られた導電性熱可塑性エラストマー組成物をそれぞれ用い、先ず、該導電性熱可塑性エラストマー組成物を200℃で3分間予熱した後、200℃で5分間熱プレスし、厚みが約2mmとなるようにシートを調製した。次に、このようにして得られたシートを直径29mmの円盤状に打ち抜いて、7枚重ね合わせ、高さ(厚み)が12.5±0.5mmになるようにサンプルを調製した。このようにして得られたサンプルを用い、JIS K6253(2012年発行)に準拠して、JIS-A硬度を測定した。
 <破断伸び(E)>
 各実施例及び各比較例で得られた導電性熱可塑性エラストマー組成物をそれぞれ用い、先ず、該導電性熱可塑性エラストマー組成物を200℃で3分間予熱した後、200℃で5分間熱プレスし、2mm厚のシートを調製した。このようにして得られたシートから3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251(2010年発行)に準拠して行い、破断伸び(E)[単位:%]を室温(25℃)にて測定した。
 <圧縮永久歪(C-Set)>
 各実施例及び各比較例で得られた導電性熱可塑性エラストマー組成物をそれぞれ用い、先ず、該導電性熱可塑性エラストマー組成物を200℃で3分間予熱した後、200℃で5分間熱プレスし、厚みが約2mmとなるようにシートを調製した。このようにして得られたシートを直径29mmの円盤状に打ち抜いて7枚重ね合わせ、高さ(厚み)が12.5±0.5mmになるようにサンプルを調製した。このようにして得られたサンプルを用い、専用治具で25%圧縮し、70℃で22時間放置した後の圧縮永久歪(単位:%)をJIS K6262(2013年発行)に準拠して測定した。なお、圧縮装置としてはダンベル社製の商品名「加硫ゴム圧縮永久歪試験器 SCM-1008L」を用いた。
 <体積抵抗率>
 各実施例及び各比較例で得られた導電性熱可塑性エラストマー組成物の体積抵抗率は、各実施例及び各比較例で得られた導電性熱可塑性エラストマー組成物からそれぞれ3つの試験片(縦150mm、横20mm、厚さ1.8mmの長方形状の試験片)を調製して、各試験片ごとに下記試験条件にてJIS K 6271(2008年発行:「加硫ゴム及び熱可塑性ゴム 体積抵抗率及び表面抵抗率の求め方」)に準拠した平行端子電極法による測定(試験)を行い、各測定(3回の測定:なお、1回目、2回目及び3回目の測定ごと(試験片ごと)に印加電流の大きさを下記条件に基づいて変更した)においてそれぞれ求められた測定値(3つの試験片のそれぞれの体積抵抗率の実測値)の平均値を算出することにより求めた。なお、各測定(試験)においては、測定開始後1分後に観測される体積抵抗率の値を測定値(体積抵抗率の実測値)として記録した。また、試験片は、200℃で3分間予熱した後、200℃で5分間熱プレスしたシートを上記大きさに切削することにより調製した。
[試験条件]
測定装置:デジタルオームメーター R-506型(株式会社川口電気製作所製)
測定電極:P-617型(株式会社川口電気製作所製、ASTM D991及びSRIS2301に準拠)
測定試料:縦150mm、横20mm、厚さ1.8mmの長方形状の試験片
試験環境温度:23±2℃
試験環境湿度:50±5%RH(相対湿度)
印加電流:1μA(1回目)、10μA(2回目)、100μA(3回目)
電位差電極間距離:60mm。
 (実施例1)
 先ず、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS:クレイトン社製の商品名「G1633」)25gを加圧ニーダーに投入して、180℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(出光興産社製の商品名「ダイアナプロセスオイルPW380」、動粘度:380mm/s、Cp値:68.0%、アニリン点:143℃)50gを滴下し、スチレン-エチレン-ブチレン-スチレンブロック共重合体とパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM:三井化学社製の商品名「タフマーMH5040」、結晶化度:4%)100g、ポリエチレン(PE:日本ポリエチレン社製の商品名「HJ590N」、結晶化度:74%、MFR:40g/10分(2.16kg、190℃)、Mw:70000)150gおよび老化防止剤(株式会社アデカ製の商品名「AO-50」)0.33gを更に投入し、温度を180℃として2分間素練りして第一の混合物(SEBS、パラフィンオイル、マレイン化EBM、PEおよび老化防止剤の混合物)を得た。なお、かかる素練り工程により、前記第一の混合物は可塑化された。次に、前記加圧ニーダー中の前記第一の混合物に対して、有機化クレイ(株式会社ホージュン製の商品名「エスベンWX」)0.1gを更に加えて、180℃で4分間混練して第二の混合物を得た。
 次に、前記第二の混合物にトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を2.62g加え、180℃で4分間混合し、熱可塑性エラストマー組成物(導電性熱可塑性エラストマー組成物の前駆体)を調製した。
 その後、前記加圧ニーダー中の前記熱可塑性エラストマー組成物(導電性熱可塑性エラストマー組成物の前駆体)に対してカーボンブラック(ライオン・スペシャリティ・ケミカルズ株式会社製の商品名「ケッチェンブラック EC600JD」:ケッチェンブラック、BET比表面積:1270m/g、平均一次粒子径:34nm)を19.7g添加し、180℃で8分間混合することにより、導電性熱可塑性エラストマー組成物を得た。
 なお、このような組成物においては、用いた原料化合物の赤外分光分析の結果から、無水マレイン酸変性エチレン-ブテン共重合体中の無水マレイン酸基とトリスヒドロキシエチルイソシアヌレートとが反応して、下記式(26)で表される構造を含有する側鎖(以下、場合により単に「側鎖(i)」と称する。)、下記式(27)で表される構造を含有する側鎖(以下、場合により単に「側鎖(ii)」と称する。)、及び、下記式(28)で表される構造を含有する側鎖(以下、場合により単に「側鎖(iii)」と称する。)のうちの、前記側鎖(iii)を主として有するエラストマー性ポリマーが形成されたことが分かる。また、このようなエラストマー性ポリマーは、主鎖がエチレンとブテンからなっているため、ガラス転移点は25℃以下のものであることが分かった。
Figure JPOXMLDOC01-appb-C000016
[式(26)~(28)中、α及びβで示される炭素は、それらの炭素の位置(α位又はβ位)のいずれかにおいてエラストマー性ポリマーの主鎖に結合していることを示す。]
 (実施例2~7)
 スチレン-エチレン-ブチレン-スチレンブロック共重合体、パラフィンオイル、老化防止剤、及び、ケッチェンブラックの添加量(使用量:単位g)をそれぞれ下記表1に示す量に変更した以外は実施例1と同様にして、導電性熱可塑性エラストマー組成物を得た。
 (比較例1)
 スチレン-エチレン-ブチレン-スチレンブロック共重合体、パラフィンオイル、老化防止剤、及び、ケッチェンブラックの添加量(使用量:単位g)をそれぞれ下記表1に示す量に変更した以外は実施例1と同様にして、比較のための導電性熱可塑性エラストマー組成物を得た。
 なお、下記表1は実施例1~7及び比較例1で用いた原料の添加量(使用量)や組成物中の一部の成分の含有比率等を示すものである。
Figure JPOXMLDOC01-appb-T000017
 [導電性熱可塑性エラストマー組成物の特性評価]
 実施例1~7及び比較例1で得られた導電性熱可塑性エラストマー組成物の特性(圧縮永久歪、体積抵抗率、破断伸び、JIS-A硬度)について、前述の特性の評価方法に基いて測定した値をそれぞれ表2に示す。
Figure JPOXMLDOC01-appb-T000018
 表2に示す結果からも明らかなように、実施例1~7で得られた導電性熱可塑性エラストマー組成物はいずれも体積抵抗率が200Ω・cm以下となっており、十分に高度な水準の導電性を有するものであることが分かった。また、実施例1~7で得られた導電性熱可塑性エラストマー組成物はいずれも圧縮永久歪が59%以下となっており、圧縮永久歪に対する耐性が十分に高度な水準のものであることが分かった。このような結果から、実施例1~7で得られた導電性熱可塑性エラストマー組成物はいずれも、導電性と圧縮永久歪に対する耐性とを十分に高度な水準でバランスよく有するものであることが分かった。これに対して、比較例1で得られた導電性熱可塑性エラストマー組成物においては、体積抵抗率が310Ω・cmとなっており、実施例1~7で得られた導電性熱可塑性エラストマー組成物と比較して、導電性が低いものとなっていることが分かった。
 また、表2に示す結果から、パラフィンオイルの量と圧縮永久歪との関係を考慮すれば、実施例6で調製した導電性熱可塑性エラストマー組成物よりもパラフィンオイルの含有量をより低減させていくと圧縮永久歪の値がより大きくなっていくことが分かった。
 このような表2に示す結果から、導電性熱可塑性エラストマー組成物中のパラフィンオイルの含有量を1~65質量%とした場合(実施例1~7)においては、導電性と圧縮永久歪とを十分に高度な水準でバランスよく有する導電性熱可塑性エラストマー組成物が得られることが分かった。このように、エラストマー成分とクレイとを含有する熱可塑性エラストマー組成物の系においては、カーボンブラックと特定量のパラフィンオイルを組み合わせて含有させることによって、導電性と圧縮永久歪とを十分に高度な水準でバランスよく有するものとすることが可能となることが分かった。
 なお、表2に示す結果からも明らかなように、実施例1~7で得られた導電性熱可塑性エラストマー組成物は、十分に高い引張強度(破断伸びを基準とした引張強度)を有するものであることも分かった。また、表2に示す結果からも明らかなように、実施例1~7で得られた導電性熱可塑性エラストマー組成物は、様々な硬度を有するものとなっていた。このような結果から、本発明の導電性熱可塑性エラストマー組成物(実施例1~7)においては、導電性と圧縮永久歪とを十分に高度な水準でバランスよく有するものとすることを可能とするとともに、十分に高い引張強度を有するものとすることも可能とし、更には、用途に応じて最終製品の硬度を容易に調整することが可能であることが分かった。このように、本発明の導電性熱可塑性エラストマー組成物(実施例1~7)によれば、導電性、圧縮永久歪、及び、引張強度を十分に高度な水準でバランスよく有するものとしつつ、硬度を所望の値に変更することができるため、用途に応じて所望の硬度とすることが可能な導電性の材料を提供することが可能であることが分かった。
 以上説明したように、本発明によれば、導電性と耐圧縮永久歪性とを十分に高い水準でバランスよく有する導電性熱可塑性エラストマー組成物を提供することが可能となる。
 このように、本発明の導電性熱可塑性エラストマー組成物は、十分に高い導電性と、十分に高度な圧縮永久歪に対する耐性とをバランスよく有するものであり、十分に塑性変形し難くかつ十分な導電性を備える熱可塑性のエラストマーであることから、例えば、コンピューター、通信機器等の電子機器を収納する容器の電磁遮蔽材、電子部品等の接地線、摩擦電気等の静電気から生ずる火花による発火防止材等の部材に用いられる接合部材として好適である。また、ガス、油タンクの昇降摩擦静電気除去、火薬工場、手術室、電算室等の床材、作業台の帯電防止等の電磁波シールド材料、帯電防止材料等の用途に用いる商品を製造するための材料等に特に有用である。

Claims (5)

  1.  カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
     クレイと、
     パラフィンオイルと、
     BET比表面積が50m/g以上のカーボン系フィラーと、
    を含有する組成物であり、前記クレイの含有比率が前記エラストマー成分100質量部に対して20質量部以下であり、かつ、前記パラフィンオイルの含有比率が前記組成物の総量に対して1~65質量%である、導電性熱可塑性エラストマー組成物。
  2.  前記カーボン系フィラーがカーボンブラック及びカーボンナノチューブからなる群から選択される少なくとも1種である、請求項1に記載の導電性熱可塑性エラストマー組成物。
  3.  前記カーボン系フィラーがケッチェンブラックである、請求項1又は2に記載の導電性熱可塑性エラストマー組成物。
  4.  前記カーボン系フィラーの含有比率が前記組成物の総量に対して0.1~50質量%である、請求項1~3のうちのいずれか一項に記載の導電性熱可塑性エラストマー組成物。
  5.  前記クレイが有機化クレイである、請求項1~4のうちのいずれか一項に記載の導電性熱可塑性エラストマー組成物。
     
PCT/JP2017/039790 2016-11-24 2017-11-02 導電性熱可塑性エラストマー組成物 WO2018096910A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/464,052 US11024440B2 (en) 2016-11-24 2017-11-02 Conductive thermoplastic elastomer composition
CN201780072767.7A CN110234714A (zh) 2016-11-24 2017-11-02 导电性热塑性弹性体组合物
EP17874250.8A EP3546526B1 (en) 2016-11-24 2017-11-02 Conductive thermoplastic elastomer composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-227635 2016-11-24
JP2016227635A JP6817041B2 (ja) 2016-11-24 2016-11-24 導電性熱可塑性エラストマー組成物

Publications (1)

Publication Number Publication Date
WO2018096910A1 true WO2018096910A1 (ja) 2018-05-31

Family

ID=62194897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039790 WO2018096910A1 (ja) 2016-11-24 2017-11-02 導電性熱可塑性エラストマー組成物

Country Status (5)

Country Link
US (1) US11024440B2 (ja)
EP (1) EP3546526B1 (ja)
JP (1) JP6817041B2 (ja)
CN (1) CN110234714A (ja)
WO (1) WO2018096910A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162092A1 (ja) * 2019-02-08 2020-08-13 クニミネ工業株式会社 蓄電デバイス
WO2022019050A1 (ja) 2020-07-20 2022-01-27 Eneos株式会社 導電性熱可塑性エラストマー組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210155771A1 (en) * 2019-11-25 2021-05-27 Largan Medical Co., Ltd. Plasticizer and plastic product
CN111599510B (zh) * 2020-06-08 2021-11-02 江苏国瓷泓源光电科技有限公司 一种汽车电容器用导电银浆料
JP2022102442A (ja) * 2020-12-25 2022-07-07 パナソニックIpマネジメント株式会社 導電性樹脂組成物、並びに、それを用いた回路基板および回路基板の製造方法
CN113980478B (zh) * 2021-10-27 2022-09-06 中化学科学技术研究有限公司 导电性热塑性弹性体组合物、电极部件及开关

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918878B2 (ja) 1981-09-24 1984-05-01 日本電信電話株式会社 光送信装置
JPH05507952A (ja) * 1990-06-15 1993-11-11 エクソン・ケミカル・パテンツ・インク 動的手段組成物
JPH05508435A (ja) * 1990-07-18 1993-11-25 エクソン・ケミカル・パテンツ・インク タイヤインナーライナー用組成物
JP2004307576A (ja) * 2003-04-03 2004-11-04 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物
JP2005513221A (ja) * 2001-12-07 2005-05-12 クーパー−スタンダード・オートモーティブ・インコーポレーテッド 弾性ゴムにおける変色を防止する方法
JP2006131663A (ja) 2004-11-02 2006-05-25 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー
JP2007056145A (ja) * 2005-08-25 2007-03-08 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物
WO2011114990A1 (ja) * 2010-03-17 2011-09-22 横浜ゴム株式会社 ゴム組成物、架橋ゴム組成物および高減衰積層体
JP2014028890A (ja) * 2012-07-31 2014-02-13 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2017057323A (ja) * 2015-09-17 2017-03-23 Jxエネルギー株式会社 熱可塑性エラストマー組成物及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179241A (ja) * 1982-04-14 1983-10-20 Toray Ind Inc 導電性熱可塑性樹脂発泡体
US4525492A (en) * 1982-06-04 1985-06-25 Fiberglas Canada Inc. Modified phenolic foams
AU4754090A (en) * 1988-11-25 1990-06-26 Dow Chemical Company, The Polystyrene foam containing carbon black
US5333662A (en) 1990-07-18 1994-08-02 Exxon Chemical Patents Inc. Tire innerliner composition
DE4235309A1 (de) * 1992-10-20 1994-04-21 Wacker Chemie Gmbh Treibmittelzusammensetzungen und zu elastomeren Siliconschaumstoffen härtbare Massen
EP1724318A1 (en) * 2004-03-09 2006-11-22 The Yokohama Rubber Co., Ltd. Method for adhesive-bonding vulcanized rubber compositions by the use of thermoplastic elastomer compositions
JP3998690B2 (ja) * 2005-02-24 2007-10-31 横浜ゴム株式会社 熱可塑性エラストマー組成物
JP2006232983A (ja) * 2005-02-24 2006-09-07 Yokohama Rubber Co Ltd:The 熱可塑性エラストマーの製造方法
JP4040669B2 (ja) * 2005-02-24 2008-01-30 横浜ゴム株式会社 発泡体用組成物および発泡体
JP4163219B2 (ja) * 2006-04-27 2008-10-08 横浜ゴム株式会社 熱可塑性エラストマーおよび熱可塑性エラストマー組成物
JP2008088194A (ja) * 2006-09-29 2008-04-17 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物
WO2008041768A1 (fr) * 2006-10-05 2008-04-10 Kaneka Corporation Composition durcissable
JP5200663B2 (ja) * 2008-05-27 2013-06-05 横浜ゴム株式会社 非空気式タイヤ
JP5167111B2 (ja) * 2008-12-27 2013-03-21 横浜ゴム株式会社 ゴルフクラブ用グリップおよびその製造方法
KR20170129204A (ko) * 2015-03-13 2017-11-24 바스프 에스이 열가소성 엘라스토머를 기초로 하는 전기 전도성 입자 폼
JP5918878B1 (ja) 2015-03-31 2016-05-18 Jxエネルギー株式会社 熱可塑性エラストマー組成物及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918878B2 (ja) 1981-09-24 1984-05-01 日本電信電話株式会社 光送信装置
JPH05507952A (ja) * 1990-06-15 1993-11-11 エクソン・ケミカル・パテンツ・インク 動的手段組成物
JPH05508435A (ja) * 1990-07-18 1993-11-25 エクソン・ケミカル・パテンツ・インク タイヤインナーライナー用組成物
JP2005513221A (ja) * 2001-12-07 2005-05-12 クーパー−スタンダード・オートモーティブ・インコーポレーテッド 弾性ゴムにおける変色を防止する方法
JP2004307576A (ja) * 2003-04-03 2004-11-04 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物
JP2006131663A (ja) 2004-11-02 2006-05-25 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー
JP2007056145A (ja) * 2005-08-25 2007-03-08 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物
WO2011114990A1 (ja) * 2010-03-17 2011-09-22 横浜ゴム株式会社 ゴム組成物、架橋ゴム組成物および高減衰積層体
JP2014028890A (ja) * 2012-07-31 2014-02-13 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2017057323A (ja) * 2015-09-17 2017-03-23 Jxエネルギー株式会社 熱可塑性エラストマー組成物及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3546526A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162092A1 (ja) * 2019-02-08 2020-08-13 クニミネ工業株式会社 蓄電デバイス
JP2020129625A (ja) * 2019-02-08 2020-08-27 クニミネ工業株式会社 蓄電デバイス
JP7235292B2 (ja) 2019-02-08 2023-03-08 クニミネ工業株式会社 蓄電デバイス
US11718533B2 (en) 2019-02-08 2023-08-08 Kunimine Industries Co., Ltd. Power storage device
WO2022019050A1 (ja) 2020-07-20 2022-01-27 Eneos株式会社 導電性熱可塑性エラストマー組成物
KR20220147138A (ko) 2020-07-20 2022-11-02 에네오스 가부시키가이샤 도전성 열가소성 엘라스토머 조성물
US20230242734A1 (en) * 2020-07-20 2023-08-03 Eneos Corporation Conductive thermoplastic elastomer composition

Also Published As

Publication number Publication date
JP2018083894A (ja) 2018-05-31
CN110234714A (zh) 2019-09-13
EP3546526B1 (en) 2021-08-18
EP3546526A4 (en) 2020-07-29
US20190385763A1 (en) 2019-12-19
US11024440B2 (en) 2021-06-01
EP3546526A1 (en) 2019-10-02
JP6817041B2 (ja) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2018096910A1 (ja) 導電性熱可塑性エラストマー組成物
WO2017047274A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP5918878B1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP6949830B2 (ja) 熱可塑性エラストマー組成物及びその製造方法、並びに、エラストマー成形体
JP2017057322A (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2017057323A (ja) 熱可塑性エラストマー組成物及びその製造方法
WO2017199805A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2017057393A (ja) 熱可塑性エラストマー組成物、その製造方法及び積層体
WO2017159786A1 (ja) 発泡体用組成物、発泡体及びそれらの製造方法、並びに、発泡成形体
JP2008291083A (ja) 放熱材用熱可塑性エラストマー組成物
WO2017199806A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2008088194A (ja) 熱可塑性エラストマー組成物
JP2017206589A (ja) 熱可塑性エラストマー組成物及びその製造方法
JP7348186B2 (ja) 樹脂組成物
WO2021220884A1 (ja) ポリマー組成物
JP2016194072A (ja) 熱可塑性エラストマー組成物及びその製造方法
CN115836114A (zh) 导电性热塑性弹性体组合物
JP2008266417A (ja) 改質アスファルト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017874250

Country of ref document: EP

Effective date: 20190624