WO2017047274A1 - 熱可塑性エラストマー組成物及びその製造方法 - Google Patents

熱可塑性エラストマー組成物及びその製造方法 Download PDF

Info

Publication number
WO2017047274A1
WO2017047274A1 PCT/JP2016/073002 JP2016073002W WO2017047274A1 WO 2017047274 A1 WO2017047274 A1 WO 2017047274A1 JP 2016073002 W JP2016073002 W JP 2016073002W WO 2017047274 A1 WO2017047274 A1 WO 2017047274A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thermoplastic elastomer
side chain
elastomer composition
compound
Prior art date
Application number
PCT/JP2016/073002
Other languages
English (en)
French (fr)
Inventor
知野 圭介
鈴木 宏明
正哲 金
雄介 松尾
Original Assignee
Jxエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社 filed Critical Jxエネルギー株式会社
Priority to US15/759,702 priority Critical patent/US10995207B2/en
Priority to JP2017539765A priority patent/JP6991065B2/ja
Priority to KR1020187006705A priority patent/KR102506817B1/ko
Priority to EP16846147.3A priority patent/EP3351595B1/en
Priority to CN201680053894.8A priority patent/CN108026377B/zh
Publication of WO2017047274A1 publication Critical patent/WO2017047274A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/025Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to a thermoplastic elastomer composition and a method for producing the same.
  • Thermoplastic elastomer is an extremely useful material in the industry because it can be melted at the processing temperature during molding and can be molded by a known resin molding method.
  • thermoplastic elastomer for example, in Japanese Patent Application Laid-Open No. 2006-131663 (Patent Document 1), a side chain containing a hydrogen-bonding crosslinking site having a carbonyl-containing group and a nitrogen-containing heterocyclic ring is covalently bonded.
  • Patent Document 1 a side chain containing a hydrogen-bonding crosslinking site having a carbonyl-containing group and a nitrogen-containing heterocyclic ring is covalently bonded.
  • a thermoplastic elastomer comprising an elastomeric polymer having a glass transition point of 25 ° C. or lower and having other side chains containing a functional crosslinking site is disclosed.
  • the thermoplastic elastomer described in Patent Document 1 is not always sufficient in terms of heat resistance and breaking strength.
  • the present invention has been made in view of the above-described problems of the prior art, and provides a thermoplastic elastomer composition capable of having sufficiently high heat resistance and breaking strength, and a method for producing the same. With the goal.
  • the inventors of the present invention have a side chain (a) containing a hydrogen-bonding bridging site having a carbonyl-containing group and / or a nitrogen-containing heterocycle, and a glass transition.
  • At least one elastomer component selected from the group consisting of: a clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the elastomer component, and an ⁇ -olefin system having no chemically-bonded crosslinking site
  • a resin By including a resin, the resulting thermoplastic elastomer composition can have sufficiently high heat resistance and breaking strength. The heading, which resulted in the completion of the present invention.
  • thermoplastic elastomer composition of the present invention has a side chain (a) containing a hydrogen-bonding crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring, and has a glass transition point of 25 ° C. or lower.
  • side chain (a) containing a hydrogen-bonding crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring, and has a glass transition point of 25 ° C. or lower.
  • At least one elastomer component Clay having a content ratio of 20 parts by mass or less with respect to 100 parts by mass of the elastomer component;
  • the content ratio of the ⁇ -olefin resin is preferably 5 to 250 parts by mass with respect to 100 parts by mass of the elastomer component.
  • the ⁇ -olefin resin is at least one selected from the group consisting of polypropylene, polyethylene, ethylene-butene copolymer and ethylene-propylene copolymer. Preferably, it is at least one selected from the group consisting of polypropylene, polyethylene, and ethylene-propylene copolymer.
  • thermoplastic elastomer composition of the present invention includes a melt flow rate at 190 ° C. and a load of 2.16 kg (measured in accordance with JIS K6922-2 (issued in 2010) of the ⁇ -olefin resin ( MFR) is preferably 40 g / 10 min or more.
  • the hydrogen bondable cross-linking site contained in the side chain of the elastomeric polymer (B) has a carbonyl-containing group and / or a nitrogen-containing heterocycle. A crosslinking site is preferred.
  • the clay is preferably at least one selected from the group consisting of clays mainly composed of silicon and magnesium, and organic clay. More preferred is clay.
  • the crosslinking at the covalent crosslinking site contained in the side chain of the elastomeric polymer (B) is amide, ester, lactone, urethane, ether, thiourethane. And at least one bond selected from the group consisting of thioethers.
  • thermoplastic elastomer composition of the present invention the hydrogen-bonding cross-linked site of the side chain (a) is represented by the following general formula (1):
  • A is a nitrogen-containing heterocyclic ring
  • B is a single bond
  • an oxygen atom and a formula: NR ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms).
  • R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the nitrogen-containing heterocycle is preferably a 5-membered ring and / or a 6-membered ring.
  • the nitrogen-containing heterocycle is at least one selected from a triazole ring, a thiadiazole ring, a pyridine ring, an imidazole ring, a triazine ring, an isocyanurate ring, and a hydantoin ring. It is preferable that
  • the main chains of the elastomeric polymers (A) to (B) are respectively diene rubber, hydrogenated diene rubber, olefin rubber, and hydrogenated.
  • thermoplastic elastomer composition of the present invention it is preferable that the main chain of the polymer contained as the elastomer component is an olefin copolymer and the side chain of the polymer has an isocyanurate ring.
  • thermoplastic elastomer composition of the present invention when the main chain of the polymer contained as the elastomer component is an olefin copolymer and the side chain of the polymer has an isocyanurate ring, the thermoplasticity In the infrared absorption spectrum of an elastomer composition, an olefin resin (the main chain of the polymer contained as the elastomer component in addition to the ⁇ -olefin resin having no chemically-bonded crosslinking site in the olefin resin)
  • the yield strength (A)]) is more preferably 0.01 or more
  • thermoplastic elastomer composition of the present invention further contains paraffin oil.
  • thermoplastic elastomer composition of the present invention preferably further contains a styrene block copolymer having no chemically bonding cross-linked site.
  • thermoplastic elastomer composition of the present invention comprises mixing an elastomeric polymer having a cyclic acid anhydride group in the side chain, clay, and an ⁇ -olefin resin having no chemically-bonded crosslinking site.
  • the thermoplastic elastomer composition obtained in the second step has a side chain (a) containing a hydrogen-bonded crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle, and has a glass transition point of 25 ° C.
  • a composition comprising In the first step, the cyclic acid anhydride is used by using the clay in such a proportion that the content of the clay in the thermoplastic elastomer composition is 20 parts by mass or less with respect to 100 parts by mass of the elastomer component.
  • an elastomeric polymer having a group in a side chain, the clay, and the ⁇ -olefin resin are mixed.
  • the elastomeric polymer having a cyclic acid anhydride group in the side chain is preferably a maleic anhydride-modified elastomeric polymer.
  • the compound (I) and / or (II) reacts with the cyclic acid anhydride group to react with a hydrogen-bonding cross-linked site and a covalent bond. It is preferable to use a compound that forms both sites.
  • the compound (I) and / or (II) includes at least one substituent selected from a hydroxyl group, a thiol group, an amino group, and an imino group. It is preferable to use the compound which has.
  • thermoplastic elastomer composition capable of having sufficiently high heat resistance and breaking strength, and a method for producing the same.
  • thermoplastic elastomer composition has an elastomeric property having a side chain (a) containing a hydrogen-bonding crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or lower. At least selected from the group consisting of a polymer (A) and an elastomeric polymer (B) containing a hydrogen-bonding cross-linking site and a covalent cross-linking site in the side chain and having a glass transition point of 25 ° C. or lower.
  • Such an elastomer component is at least one selected from the group consisting of the above-mentioned elastomeric polymers (A) to (B).
  • “side chains” refer to side chains and terminals of the elastomeric polymer.
  • the “side chain (a) containing a hydrogen-bonding cross-linked site having a carbonyl-containing group and / or a nitrogen-containing heterocycle” refers to an atom (usually a carbon atom) that forms the main chain of the elastomeric polymer.
  • the side chain contains a hydrogen-bonding crosslinking site and a covalent bonding site means a side chain having a hydrogen-bonding crosslinking site (hereinafter referred to as “side chain (a ′)” for convenience). )) And a side chain having a covalent crosslinking site (hereinafter, sometimes referred to as “side chain (b)” for the sake of convenience), the side chain of the polymer contains a hydrogen bonding crosslinking site.
  • side chains including both cross-linked sites are sometimes referred to as “side chains (c)”.
  • side chains (c) A concept that includes the case where both binding crosslink sites are contained. is there.
  • Such an elastomeric polymer (A) to (B) main chain is generally a known natural polymer or synthetic polymer, and has a glass transition point at room temperature ( 25 ° C.) or lower polymer (so long as it is made of so-called elastomer), it is not particularly limited.
  • the elastomeric polymers (A) to (B) have, for example, an elastomeric polymer having a glass transition point of room temperature (25 ° C.) or lower such as a natural polymer or a synthetic polymer as a main chain, and a carbonyl-containing group and And / or containing a side chain (a) containing a hydrogen-bonding cross-linked moiety having a nitrogen-containing heterocycle; mainly composed of an elastomeric polymer having a glass transition point of room temperature (25 ° C.) or less, such as a natural polymer or a synthetic polymer Containing a side chain (a ′) having a hydrogen-bonding cross-linking site and a side chain (b) having a covalent cross-linking site as a side chain; glass such as a natural polymer or a synthetic polymer An elastomeric polymer having a transition point of room temperature (25 ° C.) or lower and having a side chain (c) including both
  • Examples of the main chains of the elastomeric polymers (A) to (B) include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), 1, 2-butadiene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), ethylene-propylene-diene rubber (EPDM) and other diene rubbers and their hydrogenation Olefin rubbers such as ethylene-propylene rubber (EPM), ethylene-acrylic rubber (AEM), ethylene-butene rubber (EBM), chlorosulfonated polyethylene, acrylic rubber, fluororubber, polyethylene rubber, polypropylene rubber; epichlorohydride Rubber; Polysulfide rubber; Silico Rubber, urethane rubber, and the like.
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • SBR 1, 2-
  • the main chain of the elastomeric polymers (A) to (B) may be composed of an elastomeric polymer containing a resin component, for example, hydrogenated.
  • a resin component for example, hydrogenated.
  • Polystyrene-based elastomeric polymer for example, SBS, SIS, SEBS, etc.
  • polyolefin-based elastomeric polymer for example, polyvinyl chloride-based elastomeric polymer
  • polyurethane-based elastomeric polymer polyester-based elastomeric polymer
  • polyamide-based elastomeric polymer Etc polyamide-based elastomeric polymer Etc.
  • the main chain of such elastomeric polymers (A) to (B) includes diene rubber, hydrogenated diene rubber, olefin rubber, hydrogenated polystyrene elastomeric polymer, polyolefin At least one selected from an elastomeric polymer, a polyvinyl chloride-based elastomeric polymer, a polyurethane-based elastomeric polymer, a polyester-based elastomeric polymer, and a polyamide-based elastomeric polymer is preferable.
  • a hydrogenated diene rubber or an olefin rubber is preferable as the main chain of the elastomeric polymers (A) to (B).
  • a diene rubber is preferable as the main chain of the elastomeric polymers (A) to (B).
  • the main chain of the polymer contained as such an elastomer component is an olefin copolymer from the viewpoint of low crystallinity, easy rubber elasticity, and no aging-prone double bonds. Is preferred.
  • the elastomeric polymers (A) to (B) may be in a liquid or solid state, and the molecular weight thereof is not particularly limited, and uses for which the thermoplastic elastomer composition of the present invention is used, required physical properties, etc. It can be selected as appropriate according to the conditions.
  • the elastomeric polymers (A) to (B) are preferably in a liquid state, for example, a main chain portion.
  • a diene rubber such as isoprene rubber or butadiene rubber
  • the weight average molecular weight of the main chain portion is 1,000 to 100 in order to make the elastomeric polymers (A) to (B) liquid.
  • the elastomeric polymers (A) to (B) are preferably in a solid state, for example, the main chain portion is isoprene rubber, butadiene rubber or the like.
  • the weight average molecular weight of the main chain portion is 100,000 or more. It is particularly preferably about 1,000,000 to 1,500,000.
  • Such a weight average molecular weight is a weight average molecular weight (in terms of polystyrene) measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • the elastomeric polymers (A) to (B) can be used in combination of two or more.
  • the mixing ratio of the respective elastomeric polymers can be set to an arbitrary ratio according to the use in which the thermoplastic elastomer composition of the present invention is used or the required physical properties.
  • the glass transition point of the elastomeric polymers (A) to (B) is 25 ° C. or less as described above. If the glass transition point of the elastomeric polymer is within this range, the thermoplastic elastomer composition of the present invention exhibits rubber-like elasticity at room temperature.
  • the “glass transition point” is a glass transition point measured by differential scanning calorimetry (DSC-Differential Scanning Calorimetry). In the measurement, the rate of temperature rise is preferably 10 ° C./min.
  • the main chain of such elastomeric polymers (A) to (B) has a glass transition point of 25 ° C. or less for the elastomeric polymers (A) to (B), and a molded product comprising the resulting thermoplastic elastomer composition is obtained.
  • Natural rubber isoprene rubber (IR), butadiene rubber (BR), 1,2-butadiene rubber, styrene-butadiene rubber (SBR), ethylene-propylene because it exhibits rubber-like elasticity at room temperature (25 ° C) -Diene rubbers such as diene rubber (EPDM) and butyl rubber (IIR); and olefin rubbers such as ethylene-propylene rubber (EPM), ethylene-acrylic rubber (AEM), and ethylene-butene rubber (EBM).
  • thermoplastic elastomer composition when an olefin rubber is used for each of the main chains of the elastomeric polymers (A) to (B), the tensile strength of the resulting thermoplastic elastomer composition is improved and there is no double bond. Degradation tends to be more sufficiently suppressed.
  • the amount of bound styrene of the styrene-butadiene rubber (SBR) that can be used for the elastomeric polymers (A) to (B), the hydrogenation rate of the hydrogenated elastomeric polymer, and the like are not particularly limited.
  • the ratio can be adjusted to any ratio according to the use of the thermoplastic elastomer composition, the physical properties required of the composition, and the like.
  • ethylene-propylene-diene rubber EPDM
  • ethylene-acrylic rubber AEM
  • ethylene-propylene rubber EPM
  • ethylene-butene rubber EBM
  • the degree of crystallinity is less than 10% (more preferably 5 to 0%) from the viewpoint of good rubbery elasticity at room temperature.
  • ethylene-propylene-diene rubber (EPDM), ethylene-acrylic rubber (AEM), ethylene-propylene rubber (EPM), and ethylene-butene rubber (EBM) are used as the main chains of the elastomeric polymers (A) to (B).
  • the ethylene content is preferably 10 to 90 mol%, more preferably 30 to 90 mol%. If the ethylene content is within this range, it is preferable because it is excellent in compression set, mechanical strength, particularly tensile strength when it is used as a thermoplastic elastomer (composition).
  • the elastomeric polymers (A) to (B) are preferably amorphous from the viewpoint of good rubbery elasticity at room temperature.
  • such elastomeric polymers (A) to (B) may be elastomers having a crystallinity (crystal structure) in part, but even in this case, the degree of crystallinity is 10%. It is preferably less than (particularly preferably 5 to 0%).
  • crystallinity is measured by using an X-ray diffractometer (for example, trade name “MiniFlex300” manufactured by Rigaku Corporation) as a measuring device, measuring a diffraction peak, and integrating a scattering peak derived from crystallinity / amorphous. It can be determined by calculating the ratio.
  • the elastomeric polymers (A) to (B) include, as a side chain, a side chain (a) containing a hydrogen-bonded crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle; A side chain (a ′) containing a hydrogen-bonding crosslinking site and a side chain (b) containing a covalent bonding site; and a side chain (c) containing a hydrogen-bonding crosslinking site and a covalent crosslinking site. And at least one of them.
  • the side chain (c) can also be said to be a side chain that functions as a side chain (b) while functioning as a side chain (a ').
  • each side chain will be described.
  • the side chain (a ′) containing a hydrogen-bonding cross-linking site has a group capable of forming a cross-link by hydrogen bonding (for example, a hydroxyl group, a hydrogen-bonding cross-linking site contained in the side chain (a) described later). Any side chain that forms a hydrogen bond based on the group may be used, and the structure is not particularly limited.
  • the hydrogen bond crosslinking site is a site where polymers (elastomers) are crosslinked by hydrogen bonding.
  • Cross-linking by hydrogen bonding includes a hydrogen acceptor (such as a group containing an atom containing a lone pair) and a hydrogen donor (such as a group including a hydrogen atom covalently bonded to an atom having a large electronegativity). Therefore, when both the hydrogen acceptor and the hydrogen donor are not present between the side chains of the elastomers, no crosslinks due to hydrogen bonds are formed. Therefore, a hydrogen bonding cross-linked site is present in the system only when both hydrogen acceptors and hydrogen donors exist between the side chains of the elastomers.
  • a hydrogen acceptor such as a group containing an atom containing a lone pair
  • a hydrogen donor such as a group including a hydrogen atom covalently bonded to an atom having a large electronegativity
  • a hydrogen acceptor for example, a carbonyl group
  • a hydrogen donor for example, a hydroxyl group
  • a hydrogen-bonding bridging site in the side chain (a ′) a hydrogen bond having a carbonyl-containing group and / or a nitrogen-containing heterocycle described below from the viewpoint of forming a stronger hydrogen bond. It is preferable that it is an ionic crosslinking site (hydrogen bonding crosslinking site contained in the side chain (a)). That is, as the side chain (a ′), the side chain (a) described later is more preferable. From the same viewpoint, the hydrogen-bonding cross-linking site in the side chain (a ′) is more preferably a hydrogen-bonding cross-linking site having a carbonyl-containing group and a nitrogen-containing heterocycle.
  • the side chain (a) containing a hydrogen-bonded bridging site having a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring may be any as long as it has a carbonyl-containing group and / or a nitrogen-containing heterocyclic ring. It is not limited. As such a hydrogen bonding cross-linking site, those having a carbonyl-containing group and a nitrogen-containing heterocyclic ring are more preferred.
  • Such a carbonyl-containing group is not particularly limited as long as it contains a carbonyl group, and specific examples thereof include amide, ester, imide, carboxy group, carbonyl group and the like.
  • Such a carbonyl-containing group may be a group introduced into the main chain (polymer of the main chain portion) using a compound capable of introducing a carbonyl-containing group into the main chain.
  • the compound capable of introducing such a carbonyl-containing group into the main chain is not particularly limited, and specific examples thereof include ketones, carboxylic acids and derivatives thereof.
  • carboxylic acid examples include organic acids having a saturated or unsaturated hydrocarbon group, and the hydrocarbon group may be any of aliphatic, alicyclic, aromatic and the like.
  • carboxylic acid derivatives include carboxylic acid anhydrides, amino acids, thiocarboxylic acids (mercapto group-containing carboxylic acids), esters, amino acids, ketones, amides, imides, dicarboxylic acids and monoesters thereof. Etc.
  • carboxylic acid and derivatives thereof include malonic acid, maleic acid, succinic acid, glutaric acid, phthalic acid, isophthalic acid, terephthalic acid, p-phenylenediacetic acid, and p-hydroxybenzoic acid.
  • Acids carboxylic acids such as p-aminobenzoic acid and mercaptoacetic acid, and those carboxylic acids containing substituents; acids such as succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride, propionic anhydride, benzoic anhydride Anhydrides; aliphatic esters such as maleic acid ester, malonic acid ester, succinic acid ester, glutaric acid ester and ethyl acetate; phthalic acid ester, isophthalic acid ester, terephthalic acid ester, ethyl-m-aminobenzoate, methyl-p- Aromatic esters such as hydroxybenzoate; quinone, anne Ketones such as laquinone and naphthoquinone; glycine, tyrosine, bicine, alanine, valine, leucine, serine, threonine, lysine, aspartic acid,
  • maleamide maleamic acid (maleic monoamide), succinic monoamide, 5-hydroxyvaleramide, N-acetylethanolamine, N, N′-hexamethylenebis (acetamide), malonamide, cycloserine, 4-acetamidophenol, amides such as p-acetamidobenzoic acid; imides such as maleimide and succinimide; and the like.
  • the compound capable of introducing a carbonyl group is preferably a cyclic acid anhydride such as succinic anhydride, maleic anhydride, glutaric anhydride, and phthalic anhydride, and is maleic anhydride. It is particularly preferred.
  • the nitrogen-containing heterocycle may be introduced into the main chain directly or via an organic group, and the configuration thereof is particularly limited. It is not a thing.
  • a nitrogen-containing heterocycle may be used even if it contains a heteroatom other than a nitrogen atom in the heterocycle, for example, a sulfur atom, an oxygen atom, a phosphorus atom, etc., as long as it contains a nitrogen atom in the heterocycle. it can.
  • thermoplastic elastomer composition of the present invention if it has a heterocyclic structure, the hydrogen bond forming a bridge becomes stronger, and the resulting thermoplastic elastomer composition of the present invention This is preferable because the tensile strength is further improved.
  • the nitrogen-containing heterocyclic ring may have a substituent, and examples of the substituent include alkyl groups such as a methyl group, an ethyl group, a (iso) propyl group, and a hexyl group; a methoxy group and an ethoxy group.
  • Alkoxy groups such as (iso) propoxy group; groups consisting of halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; cyano group; amino group; aromatic hydrocarbon group; ester group; ether group; A thioether group; and the like can be used in combination.
  • the substitution position of these substituents is not particularly limited, and the number of substituents is not limited.
  • the nitrogen-containing heterocycle may or may not have aromaticity, but the permanent compression of the thermoplastic elastomer composition of the present invention obtained when having aromaticity. This is preferable because strain and mechanical strength are further improved.
  • such a nitrogen-containing heterocyclic ring is not particularly limited, but from the viewpoints that hydrogen bonds become stronger and compression set and mechanical strength are further improved, a 5-membered ring or a 6-membered ring. It is preferable that Specific examples of such nitrogen-containing heterocycle include pyrrololine, pyrrolidone, oxindole (2-oxindole), indoxyl (3-oxindole), dioxindole, isatin, indolyl, phthalimidine, ⁇ -Isoindigo, monoporphyrin, diporphyrin, triporphyrin, azaporphyrin, phthalocyanine, hemoglobin, uroporphyrin, chlorophyll, phyroerythrin, imidazole, pyrazole, triazole, tetrazole, benzimidazole, benzopyrazole, benzotriazole, imidazoline, imidazolone, imidazolidone Hydan
  • the substituents X, Y, and Z in the general formulas (10) and (11) are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or 6 to 6 carbon atoms. 20 aryl groups or amino groups. Note that any one of X and Y in the general formula (10) is not a hydrogen atom, and similarly, at least one of X, Y and Z in the general formula (11) is not a hydrogen atom.
  • substituents X, Y, and Z include, in addition to hydrogen atoms and amino groups, specifically, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, octyl group, dodecyl group, stearyl Linear alkyl groups such as isopropyl groups, isobutyl groups, s-butyl groups, t-butyl groups, isopentyl groups, neopentyl groups, t-pentyl groups, 1-methylbutyl groups, 1-methylheptyl groups, 2- Branched alkyl groups such as ethylhexyl group; aralkyl groups such as benzyl group and phenethyl group; aryl groups such as phenyl group, tolyl group (o-, m-, p-), dimethylphenyl group, mesityl group; It is done.
  • substituents X, Y, and Z are alkyl groups, particularly butyl, octyl, dodecyl, isopropyl, and 2-ethylhexyl groups. This is preferable because the processability of is improved.
  • the following compounds are preferably exemplified for the nitrogen-containing 6-membered ring. These may also have the above-described various substituents (for example, the substituents that the above-mentioned nitrogen-containing heterocycle may have), or may be hydrogenated or eliminated. .
  • a condensed product of the nitrogen-containing heterocycle and a benzene ring or a nitrogen-containing heterocycle can be used, and specific examples thereof include the following condensed rings.
  • These condensed rings may also have the above-described various substituents, and may have hydrogen atoms added or eliminated.
  • thermoplastic elastomer composition of the present invention to be obtained is excellent in recyclability, compression set, hardness and mechanical strength, particularly tensile strength. Therefore, a triazole ring, an isocyanurate ring, It is preferably at least one selected from thiadiazole ring, pyridine ring, imidazole ring, triazine ring and hydantoin ring, and at least selected from triazole ring, thiadiazole ring, pyridine ring, imidazole ring and hydantoin ring One type is preferable.
  • the side chain (a) includes both the carbonyl-containing group and the nitrogen-containing heterocycle
  • the carbonyl-containing group and the nitrogen-containing heterocycle are introduced into the main chain as side chains independent of each other.
  • the carbonyl-containing group and the nitrogen-containing heterocycle are introduced into the main chain as one side chain bonded through different groups.
  • a side chain containing a hydrogen-bonded cross-linking site having the carbonyl-containing group and the nitrogen-containing heterocycle is introduced into the main chain as one side chain.
  • A is a nitrogen-containing heterocyclic ring
  • B is a single bond
  • an oxygen atom and a formula: NR ′
  • R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the side chain containing the structural part represented by is introduced into the main chain as one side chain.
  • the hydrogen-bonding cross-linked site of the side chain (a) contains a structural portion represented by the general formula (1).
  • the nitrogen-containing heterocyclic ring A in the above formula (1) specifically includes the nitrogen-containing heterocyclic rings exemplified above.
  • Specific examples of the substituent B in the above formula (1) include, for example, a single bond; an oxygen atom, a sulfur atom, or a formula: NR ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms).
  • NR ′ is simply referred to as “amino group NR ′”); the number of carbon atoms that may contain these atoms or groups An alkylene group having 1 to 20 carbon atoms or an aralkylene group; an alkylene ether group having 1 to 20 carbon atoms (an alkyleneoxy group such as an —O—CH 2 CH 2 — group) or an alkyleneamino group having these atoms or groups as terminals.
  • alkylene thioether group (alkylene thio group, for example, —S—CH 2 CH 2 — group);
  • alkylene thio group for example, —S—CH 2 CH 2 — group;
  • a xylene ether group (aralkyleneoxy group), an aralkylene amino group, or an aralkylene thioether group;
  • examples of the alkyl group having 1 to 10 carbon atoms that can be selected as R ′ in the amino group NR ′ include methyl, ethyl, propyl, butyl, pentyl, hexyl, A heptyl group, an octyl group, a nonyl group, a decyl group, etc. are mentioned.
  • the substituent B is an oxygen atom, a sulfur atom or an amino group forming a conjugated system; an alkylene ether group having 1 to 20 carbon atoms, an alkyleneamino group or an alkylene having these atoms or groups at the terminal. It is preferably a thioether group, an amino group (NH), an alkyleneamino group (—NH—CH 2 — group, —NH—CH 2 CH 2 — group, —NH—CH 2 CH 2 CH 2 — group), alkylene An ether group (—O—CH 2 — group, —O—CH 2 CH 2 — group, —O—CH 2 CH 2 CH 2 — group) is particularly preferred.
  • the side chain (a) is a side chain containing a hydrogen-bonded cross-linking site having the carbonyl-containing group and the nitrogen-containing heterocycle
  • the hydrogen bond having the carbonyl-containing group and the nitrogen-containing heterocycle is more preferably a side chain introduced into the polymer main chain at the ⁇ -position or ⁇ -position as one side chain represented by the following formula (2) or (3).
  • A is a nitrogen-containing heterocyclic ring
  • B and D are each independently a single bond; an oxygen atom, an amino group NR ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) or A sulfur atom; or an organic group that may contain these atoms or groups.
  • the nitrogen-containing heterocyclic ring A is basically the same as the nitrogen-containing heterocyclic ring A of the above formula (1), and the substituents B and D are each independently of the substituent B of the above formula (1). The same as above.
  • the substituent D in the formula (3) is a single bond; an alkylene having 1 to 20 carbon atoms which may contain an oxygen atom, a nitrogen atom or a sulfur atom among those exemplified as the substituent B in the formula (1). It is preferable to form a conjugated system of a group or an aralkylene group, and a single bond is particularly preferable. That is, it is preferable to form an alkyleneamino group or an aralkyleneamino group having 1 to 20 carbon atoms which may contain an oxygen atom, a nitrogen atom or a sulfur atom together with the imide nitrogen of the above formula (3). It is particularly preferred that the nitrogen-containing heterocycle is directly bonded to the imide nitrogen (single bond).
  • the substituent D includes a single bond; the above-described alkylene ether or aralkylene ether group having 1 to 20 carbon atoms having an oxygen atom, sulfur atom or amino group as a terminal; methylene including isomers; Group, ethylene group, propylene group, butylene group, hexylene group, phenylene group, xylylene group and the like.
  • the hydrogen-bond cross-linking site of the side chain (a) is Formula (101):
  • A is a nitrogen-containing heterocyclic ring.
  • the nitrogen-containing heterocycle A in the formula (101) is basically the same as the nitrogen-containing heterocycle A in the formula (1).
  • the hydrogen bond cross-linking site of such a side chain (a) is represented by the following general formula (102) from the viewpoint of high modulus and high breaking strength:
  • the side chain (a) is particularly preferably a group represented by the general formula (102).
  • the ratio between the carbonyl-containing group and the nitrogen-containing heterocycle of the thermoplastic elastomer is not particularly limited, and 2: 1 is preferable because it tends to form a complementary interaction and can be easily produced. .
  • the side chain (a) containing a hydrogen-bonded cross-linking site having such a carbonyl-containing group and / or a nitrogen-containing heterocycle has a ratio of 0.1 to 50 mol% with respect to 100 mol% of the main chain portion ( It is preferably introduced at a rate of 1 to 30 mol%.
  • the introduction rate of such side chain (a) is less than 0.1 mol%, the tensile strength at the time of crosslinking may not be sufficient.
  • it exceeds 50 mol% the crosslinking density increases and rubber elasticity is lost. There is.
  • the introduction rate is within the above-mentioned range, the crosslinks are efficiently formed between the molecules by the interaction between the side chains of the thermoplastic elastomer, so the tensile strength at the time of crosslinking is high and the recyclability is excellent. Therefore, it is preferable.
  • the introduction rate is such that the side chain (a) includes a side chain (ai) containing a hydrogen-bonded cross-linking site having the carbonyl-containing group and a hydrogen bond cross-linking site having the nitrogen-containing heterocycle.
  • the side chain (aii) containing the carbonyl-containing group and the side chain (ai-ii) containing the nitrogen-containing heterocyclic ring According to the ratio, these are considered as one side chain (a) and calculated.
  • the introduction rate may be considered based on the larger side chain.
  • the introduction rate is, for example, when the main chain portion is ethylene-propylene rubber (EPM), the amount of the monomer having the side chain portion introduced is 0.1 to 50 per 100 units of ethylene and propylene monomer units. About unit.
  • EPM ethylene-propylene rubber
  • a polymer having a cyclic acid anhydride group (more preferably a maleic anhydride group) as a functional group in a polymer (material for forming an elastomeric polymer) that forms the main chain after the reaction.
  • the compound capable of introducing such a nitrogen-containing heterocycle may be the nitrogen-containing heterocycle itself exemplified above, and a substituent that reacts with a cyclic acid anhydride group such as maleic anhydride (for example, hydroxyl group, thiol).
  • nitrogen-containing heterocycle in the side chain (a)
  • nitrogen heterocycle is referred to as “nitrogen-containing n-membered ring compound (n ⁇ 3)”.
  • the bonding positions described below are based on the IUPAC nomenclature. For example, in the case of a compound having three nitrogen atoms having an unshared electron pair, the bonding position is determined by the order based on the IUPAC nomenclature. Specifically, the bonding positions are indicated on the 5-membered, 6-membered and condensed nitrogen-containing heterocycles exemplified above.
  • the bonding position of the nitrogen-containing n-membered ring compound bonded to the copolymer directly or via an organic group is not particularly limited, and any bonding position (position 1 to position n) But you can. Preferably, it is the 1-position or 3-position to n-position.
  • the nitrogen-containing n-membered ring compound contains one nitrogen atom (for example, a pyridine ring), the chelate is easily formed in the molecule, and the physical properties such as tensile strength when the composition is obtained are excellent.
  • the (n-1) position is preferred.
  • the elastomeric polymer is easy to form crosslinks due to hydrogen bonding, ionic bonding, coordination bonding, etc. between the molecules of the elastomeric polymer, and is excellent in recyclability. , Tend to be excellent in mechanical properties, particularly tensile strength.
  • the “side chain (b) containing a covalently bonded cross-linking site” is a covalent cross-linking site (containing an amino group described later) on an atom (usually a carbon atom) forming the main chain of the elastomeric polymer.
  • Functional groups that can generate at least one bond selected from the group consisting of amides, esters, lactones, urethanes, ethers, thiourethanes, and thioethers by reacting with “compounds that form covalent bonds” such as compounds ) Has a chemically stable bond (covalent bond).
  • the side chain (b) is a side chain containing a covalent cross-linking site, but has a covalent bond site and a group capable of hydrogen bonding, and hydrogen bonds between the side chains.
  • a hydrogen donor that can be used as a side chain (c) described later (which can form a hydrogen bond between the side chains of the elastomers, and
  • both hydrogen acceptors are not included, for example, when only a side chain containing an ester group (—COO—) is present in the system, the ester groups (—COO—)
  • a hydrogen-donating hydrogen donor site such as a carboxy group or a triazole ring, and a hydrogen acceptor Part
  • hydrogen bonds are formed between the side chains of the elastomers, so that
  • the site where the hydrogen bond is formed becomes a hydrogen-bonding crosslinking site.
  • the side chain (b) may be used as the side chain (c) depending on the structure itself, the structure of the side chain (b) and the type of substituents of the other side chain, etc.) .
  • the “covalent bonding crosslinking site” referred to here is a site that crosslinks polymers (elastomers) by covalent bonding.
  • the side chain (b) containing such a covalently cross-linked site is not particularly limited.
  • an elastomeric polymer having a functional group in the side chain (polymer for forming the main chain portion) and the functional group It is preferable to contain a covalent crosslinking site formed by reacting with a compound that reacts with a group to form a covalent crosslinking site (compound that generates a covalent bond).
  • Crosslinking at the covalent cross-linking site of such a side chain (b) is formed by at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether. Is preferred.
  • the functional group possessed by the polymer constituting the main chain is a functional group capable of producing at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether. It is preferable.
  • Examples of such “compound that forms a covalent bond site (compound that forms a covalent bond)” include, for example, two or more amino groups and / or imino groups (both amino groups and imino groups are combined in one molecule).
  • the “compound that forms a covalent crosslinkable site (compound that forms a covalent bond)” refers to the type of substituent that the compound has, the degree of progress of the reaction when the compound is reacted, Depending on the above, it becomes a compound that can introduce both the hydrogen-bonding cross-linking site and the covalent-bonding cross-linking site (for example, when a cross-linking site by a covalent bond is formed using a compound having 3 or more hydroxyl groups). Depending on the progress of the reaction, two hydroxyl groups may react with the functional group of the elastomeric polymer having a functional group in the side chain, and the remaining one hydroxyl group may remain as a hydroxyl group.
  • the “compound that forms a covalent bond site (compound that forms a covalent bond)” exemplified here also includes “a compound that forms both a hydrogen bond bridge site and a covalent bond site”. obtain. From this point of view, when the side chain (b) is formed, the compound is appropriately selected from “compounds that form a covalent bond site (compound that generates a covalent bond)” according to the intended design. Or the side chain (b) may be formed by appropriately controlling the degree of progress of the reaction.
  • Polyamine compounds that can be used as such “compound that forms a covalent bond site (compound that forms a covalent bond)” include, for example, the following alicyclic amines, aliphatic polyamines, aromatic polyamines, and the like. And nitrogen heterocyclic amines.
  • alicyclic amines include, for example, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis- (4-aminocyclohexyl) methane, diaminocyclohexane, di- (Aminomethyl) cyclohexane and the like.
  • the aliphatic polyamine is not particularly limited, and examples thereof include methylene diamine, ethylene diamine, propylene diamine, 1,2-diaminopropane, 1,3-diaminopentane, hexamethylene diamine, diaminoheptane, diaminododecane, diethylenetriamine, Diethylaminopropylamine, N-aminoethylpiperazine, triethylenetetramine, N, N'-dimethylethylenediamine, N, N'-diethylethylenediamine, N, N'-diisopropylethylenediamine, N, N'-dimethyl-1,3-propane Diamine, N, N'-diethyl-1,3-propanediamine, N, N'-diisopropyl-1,3-propanediamine, N, N'-dimethyl-1,6-hexanediamine, N, N'-diethyl -1, - he
  • the aromatic polyamine and the nitrogen-containing heterocyclic amine are not particularly limited.
  • examples include sulfone and 3-amino-1,2,4-triazole.
  • one or more of the hydrogen atoms may be substituted with an alkyl group, an alkylene group, an aralkylene group, an oxy group, an acyl group, a halogen atom, or the like. It may contain a hetero atom such as a sulfur atom.
  • the polyamine compounds may be used singly or in combination of two or more.
  • the mixing ratio when two or more types are used in combination is an arbitrary ratio depending on the use in which the thermoplastic elastomer (composition) of the present invention is used, the physical properties required for the thermoplastic elastomer (composition) of the present invention, and the like. Can be adjusted.
  • hexamethylene diamine, N, N′-dimethyl-1,6-hexanediamine, diaminodiphenyl sulfone and the like are preferable because of their high effect of improving compression set, mechanical strength, particularly tensile strength. .
  • the polyol compound is a compound having two or more hydroxyl groups
  • the molecular weight and skeleton thereof are not particularly limited.
  • the following polyether polyols, polyester polyols, other polyols, and mixed polyols thereof may be used. Can be mentioned.
  • polyether polyols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin, 1,1,1-trimethylolpropane, 1,2,5-hexanetriol, 1 , 3-butanediol, 1,4-butanediol, 4,4′-dihydroxyphenylpropane, 4,4′-dihydroxyphenylmethane, at least one selected from polyhydric alcohols such as pentaerythritol, ethylene oxide, propylene Polyol obtained by adding at least one selected from oxide, butylene oxide, styrene oxide, etc .; polyoxytetramethylene oxide; and the like may be used alone or in combination of two or more. Good
  • polyester polyol examples include ethylene glycol, propylene glycol, butanediol pentanediol, hexanediol, cyclohexanedimethanol, glycerin, 1,1,1-trimethylolpropane, and other low molecular polyols.
  • polystyrene resin examples include, for example, polymer polyol, polycarbonate polyol; polybutadiene polyol; hydrogenated polybutadiene polyol; acrylic polyol; ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butanediol, pentanediol, Hexanediol, polyethylene glycol laurylamine (eg, N, N-bis (2-hydroxyethyl) laurylamine), polypropylene glycol laurylamine (eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine) Polyethylene glycol octylamine (eg, N, N-bis (2-hydroxyethyl) octylamine), polypropylene glycol octyl Ruamine (eg, N, N-bis (2-methyl-2-hydroxyethyl) octylamine), polyethylene glycol stearylamine (e
  • polyisocyanate compound examples include 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4,4′-diphenylmethane diisocyanate (4,4′- MDI), 2,4′-diphenylmethane diisocyanate (2,4′-MDI), 1,4-phenylene diisocyanate, xylylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), tolidine diisocyanate (TODI), 1, Aromatic polyisocyanates such as 5-naphthalene diisocyanate (NDI), hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHDI), lysine diisocyanate, norbornane diisocyanate methyl (NB) DI) aliphatic polyisocyanate, transcyclohexane-1,4-
  • the polythiol compound is a compound having two or more thiol groups
  • its molecular weight and skeleton are not particularly limited. Specific examples thereof include methanedithiol, 1,3-butanedithiol, 1,4-butanedithiol, 2,3-butanedithiol, 1,2-benzenedithiol, 1,3-benzenedithiol, 1,4-benzenedithiol, 1,10-decanedithiol, 1,2-ethanedithiol, 1,6-hexanedithiol, , 9-nonanedithiol, 1,8-octanedithiol, 1,5-pentanedithiol, 1,2-propanedithiol, 1,3-propadithiol, toluene-3,4-dithiol, 3,6-dichloro-1, 2-benzenedithiol, 1,5-naphthalenedithiol, 1,2-benzenedimethanethiol,
  • the polyepoxy compound is not particularly limited in terms of molecular weight and skeleton as long as it is a compound having two or more epoxy groups. Specific examples thereof include bisphenol A diglycidyl ether (bisphenol A type epoxy resin). Bisphenol F diglycidyl ether (bisphenol F type epoxy resin), 3,4-epoxycyclohexylmethyl-3'4'-epoxycyclohexanecarboxylate, DCPD type epoxy resin, epoxy novolak resin, orthocresol novolak type epoxy resin These may be used alone or in combination of two or more.
  • the polycarboxy compound is not particularly limited as long as it has two or more carboxy groups, and specific examples thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, Examples include adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, propanetricarboxylic acid, and benzenetricarboxylic acid. These may be used alone or in combination of two or more. May be.
  • the polyalkoxysilyl compound is not particularly limited as long as it has a compound having two or more alkoxysilyl groups, and specific examples thereof include tris- (trimethoxysilylpropyl) isocyanurate.
  • the functional group possessed by the polymer constituting the main chain that reacts with such a “compound that forms a covalent bond site (compound that forms a covalent bond)” includes amide, ester, lactone, urethane, and thiourethane.
  • the elastomeric polymer (B) having the side chain (b) has a cross-linking at the covalent cross-linking site in the side chain (b), that is, the above-mentioned “covalent cross-linking with the functional group”. Having at least one covalent bond formed in a molecule by reaction with a compound that forms a site (compound that forms a covalent bond), and in particular, lactone, urethane, ether, thiourethane and thioether In the case where the cross-link is formed by at least one bond selected from the group consisting of: preferably 2 or more, more preferably 2 to 20, more preferably 2 to 10 More preferably.
  • the crosslinking at the covalent crosslinking site of the side chain (b) contains a tertiary amino bond (—N ⁇ ) or an ester bond (—COO—).
  • the compression set and mechanical strength (breaking elongation, breaking strength) of the composition) are preferable because they can be more easily improved.
  • an elastomer having a side chain containing a group capable of forming a hydrogen bond with respect to a tertiary amino bond (—N ⁇ ) and an ester bond (—COO—) is included.
  • the covalently crosslinked site can function as a side chain (c) described later.
  • the elastomeric polymer (B) having the side chain (a) as the side chain (a ′) that is, the elastomeric polymer (B) has both side chains (a) and (b).
  • the crosslinking at the covalent crosslinking site has the tertiary amino bond and / or the ester bond
  • these groups and the side chain (a) carbonyl-containing group and / or nitrogen-containing group
  • the crosslink density can be further improved by hydrogen bonding (interaction) with a group in the side chain having a heterocyclic ring.
  • a side chain (b) having such a structure containing a tertiary amino bond (—N ⁇ ) and an ester bond (—COO—)
  • a covalently linked cross-linking site is formed.
  • polyethylene glycol laurylamine eg, N, N-bis (2-hydroxyethyl) laurylamine
  • polypropylene glycol laurylamine eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine
  • polyethylene glycol octylamine eg, N, N-bis (2-hydroxyethyl) octylamine
  • polypropylene glycol octylamine eg, N, N-bis (2-methyl-2-hydroxyethyl) octylamine
  • Such a side chain (c) is a side chain containing both a hydrogen-bonding crosslinking site and a covalent bonding site in one side chain.
  • a hydrogen-bonding cross-linking site contained in the side chain (c) is the same as the hydrogen-bonding cross-linking site described in the side chain (a ′), and the hydrogen-bonding cross-linking site in the side chain (a).
  • part is preferable.
  • the thing similar to the covalent bond crosslinkable part in a side chain (b) can be utilized (The same bridge
  • Such a side chain (c) reacts with an elastomeric polymer having a functional group in the side chain (polymer for forming the main chain portion) and the functional group to form a hydrogen-bonding crosslinking site and a covalent bond.
  • a side chain formed by reacting a compound that forms both of the crosslinking sites is preferable.
  • a compound that forms both such a hydrogen-bonding crosslinking site and a covalent-bonding crosslinking site a compound that introduces both a hydrogen-bonding crosslinking site and a covalent-bonding crosslinking site
  • a heterocyclic ring particularly preferably a nitrogen-containing compound
  • a compound having a heterocycle) and capable of forming a covalent crosslinking site is preferable, among which a heterocycle-containing polyol, a heterocycle-containing polyamine, a heterocycle-containing polythiol, and the like are more preferable. preferable.
  • the polyol, polyamine, and polythiol containing such a heterocyclic ring may form the above-mentioned “covalently linked crosslinking site” except that it has a heterocyclic ring (particularly preferably a nitrogen-containing heterocyclic ring).
  • the same polyols, polyamines and polythiols as described in “Possible compounds (compounds forming a covalent bond)” can be used as appropriate.
  • Such a heterocyclic ring-containing polyol is not particularly limited, and examples thereof include bis, tris (2-hydroxyethyl) isocyanurate, kojic acid, dihydroxydithiane, and trishydroxyethyltriazine.
  • the heterocycle-containing polyamine is not particularly limited, and examples thereof include acetoguanamine, piperazine, bis (aminopropyl) piperazine, benzoguanamine, and melamine. Further, examples of such a heterocyclic ring-containing polythiol include dimercaptothiadiazole and tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate.
  • the side chain (c) an elastomeric polymer having a functional group in the side chain (polymer for forming the main chain part) is reacted with a polyol, polyamine, polythiol, etc. containing a heterocyclic ring. It is preferable that the side chain is obtained.
  • the main chain that reacts with “a compound that forms both a hydrogen bonding crosslinking site and a covalent crosslinking site (a compound that introduces both a hydrogen bonding crosslinking site and a covalent crosslinking site)” is formed.
  • the functional group possessed by the polymer is preferably a functional group capable of producing (generating: forming) at least one bond selected from the group consisting of amide, ester, lactone, urethane, thiourethane and thioether.
  • Preferred examples include a cyclic acid anhydride group, a hydroxyl group, an amino group, a carboxy group, an isocyanate group, and a thiol group.
  • the elastomeric polymer (B) having the side chain (c) has at least one crosslink in the molecule at the covalent crosslink site in the side chain (c),
  • a bridge is formed by at least one bond selected from the group consisting of lactone, urethane, ether, thiourethane and thioether
  • it preferably has 2 or more, and has 2 to 20 More preferably, 2 to 10 are more preferable.
  • the crosslinking at the covalent crosslinking site of the side chain (c) contains a tertiary amino bond (—N ⁇ ) or an ester bond (—COO—). This is preferable because the compression set and mechanical strength (breaking elongation, breaking strength) of the composition) are further improved.
  • the bridge at the covalent crosslinking site contains a tertiary amino bond (—N ⁇ ), an ester bond (—COO—),
  • a tertiary amino bond (—N ⁇ )
  • an ester bond (—COO—)
  • the tertiary amino bond (—N ⁇ ) or ester bond (—COO—) in the side chain having a covalent cross-linking site forms a hydrogen bond with the other side chain.
  • the covalent bond cross-linking site containing such a tertiary amino bond (—N ⁇ ) and ester bond (—COO—) is also provided with a hydrogen bond cross-linking site, and the side chain (c) Can function.
  • the share containing the tertiary amino bond and / or the ester bond is included.
  • the cross-linking density is further improved. Is considered possible.
  • a compound capable of reacting with a functional group of the polymer constituting the main chain to form a covalently crosslinked site containing the tertiary amino bond and / or the ester bond examples include polyethylene glycol laurylamine (for example, N, N-bis (2-hydroxyethyl) laurylamine), polypropylene glycol laurylamine (Eg, N, N-bis (2-methyl-2-hydroxyethyl) laurylamine), polyethylene glycol octylamine (eg, N, N-bis (2-hydroxyethyl) octylamine), polypropylene glycol octylamine (eg, N, N-bis (2-methyl-2-hydroxyethyl) o Tilamine), polyethylene glycol stearylamine (eg, N, N-bis (2-hydroxyethyl) stearylamine), polypropy
  • the crosslink at the covalent crosslink site of the side chain (b) and / or side chain (c) contains at least one structure represented by any of the following general formulas (4) to (6). More preferably, G in the formula contains a tertiary amino bond or an ester bond (in the following structure, when it contains a hydrogen-bonding cross-linked site, the side having that structure) The chain is used as the side chain (c)).
  • E, J, K and L are each independently a single bond; an oxygen atom, an amino group NR ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) .) Or a sulfur atom; or an organic group that may contain these atoms or groups, G may contain an oxygen atom, a sulfur atom, or a nitrogen atom, and may have a linear, branched, or cyclic carbon number. 1 to 20 hydrocarbon groups.
  • substituent G examples include a methylene group, an ethylene group, a 1,3-propylene group, a 1,4-butylene group, a 1,5-pentylene group, a 1,6-hexylene group, and a 1,7-heptylene group.
  • Alkylene groups such as 1,8-octylene group, 1,9-nonylene group, 1,10-decylene group, 1,11-undecylene group, 1,12-dodecylene group; N, N-diethyldodecylamine-2, 2'-diyl, N, N-dipropyldodecylamine-2,2'-diyl, N, N-diethyloctylamine-2,2'-diyl, N, N-dipropyloctylamine-2,2'- Diyl, N, N-diethylstearylamine-2,2′-diyl, N, N-dipropylstearylamine-2,2′-diyl, divinyl, bivalent group such as 1,4-cyclohexylene group Alicyclic charcoal Hydrogen group; divalent aromatic hydrocarbon group such as 1,4-phenylene group, 1,2-phenylene group, 1,3-phenylene group, 1,
  • the substituent G in such a formula preferably has an isocyanurate group (isocyanurate ring) structure from the viewpoint of high heat resistance and high strength due to hydrogen bonding.
  • the substituent G in such a formula is a group represented by the following general formula (111) and the following general formula (112) from the viewpoint of high heat resistance and high strength due to hydrogen bonding. It is more preferable that it is a group represented.
  • the crosslinking at the covalent crosslinking site of the side chain (c) is bonded to the main chain of the elastomeric polymer at the ⁇ -position or ⁇ -position. It is preferable to contain at least one of the structures represented, and it is more preferred that G in the formula contains a tertiary amino group (the structures shown in the formulas (7) to (9) are a hydroxyl group and a carbonyl group. And a side chain having such a structure can function as a side chain (c)).
  • the substituents E, J, K and L are each independently the same as the substituents E, J, K and L in the above formulas (4) to (6).
  • the substituent G is basically the same as the substituent G in the above formula (4).
  • the cross-linking at the covalent cross-linking site is preferably formed by a reaction between a cyclic acid anhydride group and a hydroxyl group or an amino group and / or an imino group. .
  • the polymer that forms the main chain portion after the reaction has a cyclic acid anhydride group (for example, maleic anhydride group) as a functional group
  • the cyclic acid anhydride group of the polymer a hydroxyl group or an amino group, and It is formed by reacting with a compound that forms the above-described covalently crosslinked site having an imino group (compound that generates a covalent bond) to form a site that is crosslinked by a covalent bond, thereby crosslinking between the polymers.
  • Crosslinking may be used.
  • the crosslinking at the covalent crosslinking site is at least one selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether. More preferably, it is formed by bonding. In such side chains (b) and (c), it is also preferable that the covalent crosslinking site is formed by a urea bond.
  • the side chain (a ′), the side chain (a), the side chain (b), and the side chain (c) have been described above.
  • Each group (structure) of the side chain in such a polymer is NMR, It can be confirmed by a commonly used analytical means such as an IR spectrum.
  • the elastomeric polymer (A) is an elastomeric polymer having the side chain (a) and a glass transition point of 25 ° C. or less, and the elastomeric polymer (B) has a hydrogen-bonding cross-linked site in the side chain. And an elastomeric polymer having a glass transition point of 25 ° C. or less (a polymer having both side chains (a ′) and side chains (b) as side chains, side chains on side chains) A polymer containing at least one chain (c)).
  • an elastomer component one of the elastomeric polymers (A) to (B) may be used alone, or two or more of them may be used in combination. Good.
  • the elastomeric polymer (B) may be a polymer having both a side chain (a ′) and a side chain (b) or a polymer having a side chain (c). From the viewpoint that a stronger hydrogen bond is formed as the hydrogen bonding cross-linking site contained in the side chain of the elastomeric polymer (B), hydrogen bonding cross-linking having a carbonyl-containing group and / or a nitrogen-containing heterocycle. It is preferably a site (more preferably a hydrogen-bonding cross-linked site having a carbonyl-containing group and a nitrogen-containing heterocycle).
  • the at least one elastomer component selected from the group consisting of such elastomeric polymers (A) and (B) is at least one selected from the group consisting of the following reactants (I) to (VI): Preferably it is a seed.
  • elastomeric polymer (E1) Maleic anhydride-modified elastomeric polymer (hereinafter simply referred to as “elastomeric polymer (E1)” for convenience) and at least one substituent selected from a hydroxyl group, a thiol group, and an amino group It may have at least one substituent selected from triazole, hydroxyl group, thiol group and amino group, and may have at least one substituent selected from pyridine, hydroxyl group, thiol group and amino group. It may have thiadiazole, hydroxyl group, thiol group and amino group, which may have at least one substituent group, imidazole, hydroxyl group, thiol group and amino group, which has at least one substituent group.
  • a reactant with a hydrocarbon compound, trishydroxyethyl isocyanurate, sulfamide, and polyether polyol hereinafter simply referred to as “compound (M1)” in some cases for convenience
  • compound (M1) trishydroxyethyl isocyanurate, sulfamide, and polyether polyol
  • [Reactant (II)] A hydroxyl group-containing elastomeric polymer (hereinafter simply referred to as “elastomeric polymer (E2)” for convenience) and at least one substituent selected from a carboxy group, an alk
  • reaction product with a compound having two or more (hereinafter simply referred to as “compound (M2)” for convenience); [Reactant (III)] A carboxy group-containing elastomeric polymer (hereinafter simply referred to as “elastomeric polymer (E3)” for convenience) and at least one substituent selected from a hydroxyl group, a thiol group, and an amino group.
  • a reaction product with the above-mentioned compound (hereinafter simply referred to as “compound (M3)” in some cases for convenience);
  • a reaction product with a compound having two or more substituents hereinafter simply referred to as “compound (M4)” for convenience
  • a reaction product with a compound having two or more (hereinafter simply referred to as “compound (M5)” for convenience)
  • Such elastomeric polymers (E1) to (E6) are produced by a conventional method, for example, a polymer capable of forming the main chain portion of the above-mentioned elastomer component under the usual conditions such as heating.
  • the compound may be produced by a graft polymerization of a compound capable of introducing a functional group (for example, maleic anhydride or the like) according to the intended design by stirring the above.
  • a functional group for example, maleic anhydride or the like
  • the glass transition point of such elastomeric polymers (E1) to (E6) is preferably 25 ° C. or lower as in the case of the elastomer component described above. If the glass transition point of the elastomeric polymer is within this range, the resulting thermoplastic elastomer composition of the present invention will exhibit rubber-like elasticity at room temperature.
  • the preferred range of the weight average molecular weight of the main chain portions of the elastomeric polymers (E1) to (E6) is the weight average molecular weight of the main chain portions of the elastomeric polymers (A) and (B). This is the same as the preferred range.
  • maleic anhydride-modified elastomeric polymer (E1) examples include maleic anhydride-modified isoprene rubbers such as LIR-403 (manufactured by Kuraray Co., Ltd.) and LIR-410A (prototype of Kuraray Co., Ltd.); Chemical Company), Yucaron (Mitsubishi Chemical Corporation), Tuffmer M (for example, MP0610 (Mitsui Chemicals), MP0620 (Mitsui Chemicals)), etc .; maleic anhydride modified ethylene-propylene rubber; Tuffmer M (for example, MA8510, MH7010, MH7020 (manufactured by Mitsui Chemicals), MH5010, MH5020 (manufactured by Mitsui Chemicals), MH5040 (manufactured by Mitsui Chemicals)), etc .; Adtex series (maleic anhydride modified EVA, Maleic anhydride modified EMA (Nippon Polyolefin )
  • maleic anhydride-modified elastomeric polymer (E1) maleic anhydride-modified ethylene-propylene rubber and maleic anhydride-modified ethylene-butene rubber are more preferable from the viewpoint of high molecular weight and high strength.
  • hydroxyl group-containing elastomeric polymer (E2) examples include hydroxyl group-containing BR, hydroxyl group-containing SBR, hydroxyl group-containing IR, hydroxyl group-containing natural rubber, polyvinyl alcohol, and ethylene vinyl alcohol copolymer.
  • hydroxyl group-containing elastomeric polymers E2
  • an elastomeric polymer in which both ends are hydroxyl groups is preferable from the viewpoint of being easily available industrially and excellent in physical properties.
  • hydroxyl group-containing BR hydroxyl group-containing IR
  • An ethylene vinyl alcohol copolymer is more preferable, and a hydroxyl group-containing BR is more preferable.
  • Examples of such carboxy group-containing elastomeric polymer (E3) include carboxy group-containing BR, carboxy group-containing SBR, carboxy group-containing IR, carboxy group-containing natural rubber, polyacrylic acid, ethylene acrylic acid copolymer, poly A methacrylic acid, an ethylene methacrylic acid copolymer, etc. are mentioned.
  • carboxy group-containing elastomeric polymer (E3) As such a carboxy group-containing elastomeric polymer (E3), a carboxy group-containing IR, an ethylene acrylic acid copolymer, and an ethylene methacrylic acid copolymer are available from the viewpoint of being easily available industrially and having excellent physical properties.
  • carboxy group-containing IR is more preferable.
  • amino group-containing elastomeric polymer (E4) examples include amino group-containing BR, amino group-containing SBR, amino group-containing IR, amino group-containing natural rubber, amino group-containing polyethyleneimine, and the like.
  • an amino group-containing polyethyleneimine is more preferable from the viewpoint of being easily industrially available and having excellent physical properties.
  • the amino group-containing elastomeric polymer (E4) preferably has an amine value of 1 to 50 mmol / g, more preferably 5 to 40 mmol / g, and further preferably 10 to 30 mmol / g. preferable. If the amine value is less than the above lower limit, it is necessary to add a large amount, and the physical properties tend to decrease due to a decrease in the crosslink density. It tends to end up. As the amine value, a value measured by potentiometric titration can be used.
  • alkoxysilyl group-containing elastomeric polymer (E5) examples include, for example, alkoxysilyl group-containing BR, alkoxysilyl group-containing SBR, alkoxysilyl group-containing IR, alkoxysilyl group-containing natural rubber, and alkoxysilyl group-containing polyethylene. And alkoxysilyl group-containing polypropylene.
  • Such an alkoxysilyl group-containing elastomeric polymer (E5) is more preferably an alkoxysilyl group-containing polyethylene from the viewpoint of being easily available industrially and having excellent physical properties.
  • Examples of the epoxy group-containing elastomeric polymer (E6) include epoxy group-containing BR, epoxy group-containing SBR, epoxy group-containing IR, and epoxy group-containing natural rubber.
  • Such an epoxy group-containing elastomeric polymer (E6) is more preferably an epoxy group-containing SBR from the viewpoint of being easily available industrially and having excellent physical properties.
  • Examples of the hydrocarbon compound having two or more substituents selected from a hydroxyl group, a thiol group and an amino group used as such a compound (M1) include the aforementioned polyol compounds and polythiol compounds.
  • the hydrocarbon group having such a main skeleton is preferably an aliphatic hydrocarbon compound (more preferably an aliphatic hydrocarbon compound having 1 to 30 carbon atoms).
  • the hydrocarbon compound having two or more substituents selected from a hydroxyl group, a thiol group and an amino group used as such a compound (M1) can be easily obtained industrially. From the viewpoint of high crosslinking density and excellent physical properties, pentaerythritol, ethanedithiol, and ethanediamine are preferred, and pentaerythritol is more preferred.
  • Examples of the compound having two or more substituents selected from carboxy group, alkoxysilyl group and isocyanate group used as compound (M2) include the aforementioned polycarboxy compounds and polyalkoxysilyl compounds.
  • Polyisocyanate compounds can be suitably used. Among them, 2,6-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, xylylene diisocyanate (XDI) can be used from the viewpoint of being easily available industrially and having excellent physical properties. Is more preferable.
  • the compound having two or more substituents selected from the hydroxyl group, thiol group, and amino group used as the compound (M3) the aforementioned polyol compound, polythiol compound, and polyamine compound are preferable. Among them, trishydroxyethyl isocyanurate, 2,4-diamino-6-phenyl-1,3,5-triazine, tris-[( 3-mercaptopropionyloxy) -ethyl] -isocyanurate is more preferred.
  • Examples of the compound having two or more substituents selected from a carboxy group, an epoxy group, an alkoxysilyl group, and an isocyanate group, which are used as the compound (M4) include the above-described polycarboxy compounds, poly Epoxy compounds, polyalkoxysilyl compounds, and polyisocyanate compounds can be suitably used.
  • 2,6-pyridinedicarboxylic acid and 2,4-pyridinedicarboxylic acid are particularly preferable from the viewpoint of being easily available industrially and having excellent physical properties. Tris- (2,3-epoxypropyl) -isocyanurate is more preferred.
  • the compound (M5) used as the compound having two or more substituents selected from a hydroxyl group, a carboxy group, and an amino group the aforementioned polyol compound and polycarboxy compound are preferably used. Among them, trishydroxyethyl isocyanurate, 2,6-pyridinedicarboxylic acid, and 2,4-pyridinedicarboxylic acid are more preferable from the viewpoint of easy industrial availability and excellent physical properties.
  • the above-mentioned polythiol compounds and polyamine compounds can be preferably used as the compound (M6).
  • Tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate and 2,4-diamino-6-phenyl-1,3,5-triazine are more preferred.
  • the main chains of the elastomeric polymers (E1) to (E6) are the same as those described as the main chains of the elastomeric polymers (A) and (B) (the preferred ones are also the same). is there.).
  • the elastomeric polymers (E1) to (E6) used for producing each of these reactants are functional groups (maleic anhydride group, hydroxyl group, carboxy group, amino group, alkoxysilyl group, epoxy group) possessed by each polymer.
  • reactants (I) to (VI) those listed in the examples (maleic anhydride-modified ethylene-butene copolymer) can be easily obtained industrially and have excellent physical properties. And a reaction product of trishydroxyethyl isocyanurate, a reaction product of an elastomeric polymer (E) and a compound (M) described in Table 8 relating to each Example described later, and the like).
  • maleic anhydride-modified elastomeric polymer and at least one of a hydroxyl group, a thiol group, and an amino group are used.
  • At least one of pyridine, hydroxyl group, thiol group and amino group optionally having at least one substituent selected from triazole, hydroxyl group, thiol group and amino group optionally having one substituent group.
  • At least one of thiadiazole optionally having one substituent, hydroxyl group, thiol group and amino group and optionally having at least one substituent selected from substituents.
  • a method for producing the reactants (I) to (VI) used as the elastomer component is not particularly limited, and the elastomeric polymers (E1) to (E6) and the compounds (M1) to (M6) to be reacted therewith are not limited. ) Can be appropriately selected, and a method of obtaining the reactants (I) to (VI) can be appropriately used by appropriately reacting so that a side chain of the desired design is formed.
  • the conditions include the functional groups and main chain types of the elastomeric polymers (E1) to (E6) as raw materials for obtaining a reaction product, and the compound (M1) to be reacted therewith. ) To (M6) can be set.
  • reactants (I) to (VI) for example, a polymer appropriately selected from the elastomeric polymers (E1) to (E6) is added to the pressure kneader according to the target design. Then, while stirring, the compound selected from the compounds (M1) to (M6) for reacting with the polymer may be added and reacted, and the reaction proceeds at that time. What is necessary is just to set suitably to such temperature.
  • a polymer appropriately selected from the elastomeric polymers (E1) to (E6) used for preparing the reactants (I) to (VI) is used as the compound.
  • the polymer and the organoclay are mixed, and then the compound is added and reacted to form the composition simultaneously with the preparation of the elastomer component.
  • the polymer contained as the elastomer component does not have a double bond, it is difficult to deteriorate, from the viewpoint that interactions such as hydrogen bonds with isocyanurate rings and other hydrogen bond sites and clay occur. It is preferable that the main chain of the polymer is an olefin copolymer and the side chain of the polymer has an isocyanurate ring.
  • Examples of such a polymer in which the main chain is an olefin copolymer and the side chain has an isocyanurate ring include, for example, a maleic anhydride-modified elastomeric polymer comprising an olefin copolymer modified with maleic anhydride ( More preferred is a reaction product of maleic anhydride-modified ethylene-propylene rubber or maleic anhydride-modified ethylene-butene rubber) and trishydroxyethyl isocyanurate.
  • the intensity ratio between the absorption peak intensity (A) and the absorption peak intensity (B) in the infrared absorption spectrum (IR spectrum) is less than the lower limit, the abundance ratio of the side chain having an isocyanurate ring in the composition is lowered.
  • the crosslinking density is lowered, physical properties such as mechanical strength tend to be lowered.
  • the strength ratio exceeds the upper limit, the number of branches of the elastomer component increases in the system, and the crosslinking density of the entire system decreases, so that the mechanical properties tend to deteriorate.
  • thermoplastic elastomer composition As an infrared absorption spectrum (IR spectrum) of such a thermoplastic elastomer composition, an IR measuring device (for example, “NICOLET380” manufactured by Thermo Co.) provided with a total reflection type unit is used. 40 g of a thermoplastic elastomer composition containing (the polymer contained as the elastomer component in which the main chain is an olefin copolymer and the side chain has an isocyanurate ring) is thickened so that the surface is smooth.
  • IR spectrum infrared absorption spectrum
  • infrared absorption spectrum infrared attenuated total reflection (FTIR-ATR)
  • FTIR-ATR total reflection measurement
  • the peak of the infrared absorption spectrum of the carbonyl group in the isocyanurate ring of the side chain appears in the vicinity of a wavelength of 1695 cm ⁇ 1 (approximately in the range of 1690 to 1700 cm ⁇ 1 ), and the olefin resin (the olefin resin described above)
  • the olefin-based resin for example, olefin-based copolymer
  • the peak of the infrared absorption spectrum of —H stretching vibration appears in the vicinity of a wavelength of 2920 cm ⁇ 1 (approximately in the range of 2910 to 2930 cm ⁇ 1 ).
  • a maleic anhydride-modified elastomeric polymer (more preferably maleic anhydride-modified ethylene-propylene rubber or maleic anhydride-modified ethylene-butene rubber) composed of an olefin copolymer modified with maleic anhydride, and trishydroxyethylisocyanate.
  • the reaction product is prepared by adding an acid anhydride group in a maleic anhydride-modified elastomeric polymer and trishydroxyethyl isocyanurate during the production of the reaction product.
  • a side chain is formed by reaction with the hydroxyl group of the polymer, and an isocyanurate ring is introduced into the side chain of the polymer.
  • an isocyanurate ring is introduced into the side chain of the polymer.
  • the peak of the infrared absorption spectrum derived from the carbonyl group has a wavelength of 169.
  • cm -1 appears near (range of 1690 ⁇ 1700 cm -1), while the polymer (reaction product) of C-H stretching vibration and the crosslinking of the chemical bonds of the olefin copolymer backbone (the base polymer)
  • the peak derived from the C—H stretching vibration of the ⁇ -olefin resin having no site appears in the vicinity of a wavelength of 2920 cm ⁇ 1 (in the range of 2910 to 2930 cm ⁇ 1 ).
  • the method for producing such elastomeric polymers (A) to (B) is not particularly limited, and the side chain (a) as described above; the side chain (a ′) and the side chain (b);
  • a known method capable of introducing at least one selected from the group consisting of the side chain (c) as a side chain of an elastomeric polymer having a glass transition point of 25 ° C. or lower can be appropriately employed.
  • a method for producing the elastomeric polymer (B) a method described in JP-A-2006-131663 may be employed.
  • a cyclic acid anhydride group for example, a maleic anhydride group
  • a compound that reacts with the cyclic acid anhydride group to form a covalent bond cross-linking site compound that forms a covalent bond
  • a hydrogen bond that reacts with the cyclic acid anhydride group on the elastomeric polymer in the side chain
  • Each side chain may be introduced at the same time using a mixture (mixed raw material) with a compound (a compound capable of introducing a nitrogen-containing heterocycle) that forms a sexually cross-linked site.
  • elastomeric polymers (A) to (B) for example, an elastomeric polymer having a functional group (for example, a cyclic acid anhydride group) in the side chain is used, and the elastomeric polymer is used.
  • a functional group for example, a cyclic acid anhydride group
  • a compound that reacts with the functional group to form a hydrogen-bonding cross-linking site, a compound that reacts with the functional group to form a hydrogen-bonding cross-linking site, and a functional group to react with a covalent bond An elastomeric polymer having the side chain (a ′) and side chain (b) by reacting with at least one raw material compound among the mixed raw materials of the compound forming the site; And / or a method of producing an elastomeric polymer having the side chain (c) (the elastomeric polymers (A) to (B)) may be employed.
  • the conditions (temperature conditions, atmospheric conditions, etc.) employed in the case of such a reaction are not particularly limited, and the functional group and the compound that reacts with the functional group (the compound that forms a hydrogen-bonding cross-linked site and / or the covalent bond) What is necessary is just to set suitably according to the kind of compound which forms a binding bridge
  • the elastomeric polymer (A) it may be produced by polymerizing a monomer having a hydrogen bonding site.
  • the elastomeric polymer having such a functional group (for example, cyclic acid anhydride group) in the side chain is a polymer capable of forming the main chain of the above-mentioned elastomeric polymers (A) to (B). Those having a functional group in the side chain are preferred.
  • the “elastomeric polymer containing a functional group in a side chain” means that a functional group (the above-described functional group such as a cyclic acid anhydride group) is chemically stable at an atom forming a main chain.
  • Such a functional group is preferably a functional group capable of causing at least one bond selected from the group consisting of amide, ester, lactone, urethane, ether, thiourethane and thioether, and among them, cyclic
  • An acid anhydride group, a hydroxyl group, an amino group, a carboxy group, an isocyanate group, a thiol group, and the like are preferable.
  • a cyclic acid anhydride group is particularly preferable. preferable.
  • a succinic anhydride group a maleic anhydride group, a glutaric anhydride group, and a phthalic anhydride group are preferable. Among them, it can be easily introduced into a polymer side chain and is industrially available. From the viewpoint of being easy, maleic anhydride groups are more preferable.
  • the functional group is a cyclic acid anhydride group
  • examples of the compound into which the functional group can be introduced include succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride, and derivatives thereof.
  • a cyclic acid anhydride may be used to introduce a functional group into an elastomeric polymer (for example, a known natural polymer or synthetic polymer).
  • the compound that reacts with the functional group to form a hydrogen-bonding cross-linking site is not particularly limited, but the above-mentioned “compound that forms a hydrogen-bonding cross-linking site (compound capable of introducing a nitrogen-containing heterocycle)” It is preferable to use it. Further, the compound that reacts with the functional group to form a covalent crosslinking site is not particularly limited, but the above-mentioned “compound that forms a covalent crosslinking site (compound that generates a covalent bond)” is used. Is preferred.
  • a compound that forms a hydrogen-bonding cross-linked site a compound that can introduce a nitrogen-containing heterocycle
  • a compound that forms a covalent-bonded cross-linked site a compound that generates a covalent bond
  • the compound reacts with the functional group.
  • compounds that form both hydrogen-bonding and covalent bonding sites for example, polyols, polyamines, polythiols, and the like containing nitrogen-containing heterocycles
  • an elastomeric polymer having a functional group for example, a cyclic acid anhydride group
  • a compound that reacts with the functional group to form a hydrogen-bonding cross-linking site, a compound that reacts with the functional group to form a hydrogen-bonding cross-linking site, and a functional group to react with a covalent bond The elastomeric polymer (A) having the side chain (a) by reacting with at least one raw material compound among the mixed raw materials of the compound forming the site, the hydrogen-bonding cross-linking site and the covalent bond in the side chain
  • the elastomeric polymer having a functional group in the side chain is converted into the raw material.
  • clay and an elastomeric polymer having a functional group in the side chain are mixed, and then the raw material compound is added and reacted to form a composition simultaneously with the preparation of the elastomer component ( You may employ
  • a method of adding the above-mentioned clay in advance when producing an elastomer component elastomer polymers (A) to (B)
  • the composition is preferably prepared simultaneously with the preparation of the elastomer component.
  • a method of adding such clay in advance it is more preferable to employ a method for producing a thermoplastic elastomer composition of the present invention described later.
  • the clay according to the present invention is not particularly limited, and a known clay (clay mineral or the like) can be appropriately used.
  • a known clay clay
  • examples of such clay include natural clay, synthetic clay, and organic clay.
  • examples of such clays include montmorillonite, saponite, hectorite, beidellite, stevensite, nontronite, vermiculite, halloysite, mica, fluorinated mica, kaolinite, pyrophyllolite, smectite, sericite. Sites (sericite), illite, groconite (sea green stone), chlorite (chlorite), talc (talc), zeolite (zeolite), hydrotalcite and the like.
  • clays at least one selected from the group consisting of clays mainly composed of silicon and magnesium and organic clays is preferable.
  • the clay mainly composed of silicon and magnesium refers to a clay in which the metal main component of the metal oxide, which is a constituent component of clay, is silicon (Si) and magnesium (Mg). Metal oxides (aluminum (Al), iron (Fe), etc.) may be included as subcomponents.
  • the clay containing silicon and magnesium as main components is not particularly limited, and a known clay can be appropriately used. By using clay mainly composed of silicon and magnesium, the particle size is small, so that the reinforcing property can be enhanced.
  • the clay which has such a silicon and magnesium as a main component the clay which has a smectite structure from a viewpoint of availability is preferable.
  • Examples of the clay mainly composed of silicon and magnesium include stevensite, hectorite, saponite, and talc. It is more preferable to use light or saponite.
  • the clay mainly composed of silicon and magnesium synthetic clay is preferable.
  • synthetic clay commercially available ones may be used.
  • trade names “Smecton SA” and “Smecton ST” manufactured by Kunimine Industry Co., Ltd. trade names “Ionite” manufactured by Mizusawa Chemical Industry Co., Ltd., Corp.
  • a trade name “Lucentite” manufactured by Chemical Co., Ltd. can be used as appropriate.
  • the organic clay is not particularly limited, but it is preferable that the clay is made organic by an organic agent.
  • Such clay before being organized is not particularly limited and may be a so-called clay mineral, for example, montmorillonite, saponite, hectorite, beidellite, stevensite, nontronite, vermiculite, halloysite, mica, Fluorinated mica, kaolinite, pyrophyllolite, smectite, sericite, illite, glowconite, chlorite, talc, zeolite (zeolite) ), Hydrotalcite and the like.
  • Such clay may be a natural product or a synthetic product.
  • the organic agent is not particularly limited, and a known organic agent capable of organicizing clay can be appropriately used.
  • a quaternary ammonium salt of clay can be preferably used from the viewpoint of monolayer dispersibility.
  • the quaternary ammonium salt of such an organized clay is not particularly limited.
  • trimethyl stearyl ammonium salt, oleyl bis (2-hydroxylethyl) salt, methyl ammonium salt, dimethyl stearyl benzyl ammonium salt, dimethyl octadecyl ammonium salt , And a mixture of two or more of these can be suitably used.
  • dimethylstearylbenzylammonium salt, dimethyloctadecylammonium salt, and mixtures thereof can be more suitably used from the viewpoint of improving tensile strength and heat resistance.
  • a mixture of stearylbenzylammonium salt and dimethyloctadecylammonium salt can be more suitably used.
  • clays and organoclays mainly composed of silicon and magnesium are preferable, and among them, higher tensile stress (modulus) can be obtained. It is particularly preferable to use an organized clay.
  • ⁇ -olefin-based resin that does not have a chemical bonding cross-linking site The ⁇ -olefin resin according to the present invention does not have a chemical bonding cross-linking site.
  • “Chemically-bonded cross-linking sites” as used herein include hydrogen bonds, covalent bonds, chelation between metal ions and polar functional groups, and ⁇ - ⁇ interactions between metal and unsaturated bonds (double bonds and triple bonds).
  • crosslinking is formed by chemical bonds, such as the bond formed by (1).
  • “does not have a chemical bond crosslinking site” means the hydrogen bond, covalent bond, metal ion-polar functional group chelation, metal-unsaturated bond (double bond) described above.
  • a triple bond means a state having no chemical bond formed by a bond formed by a ⁇ - ⁇ interaction.
  • functional groups for example, hydroxyl groups, carbonyl groups, carboxyl groups, thiol groups, amide groups that form cross-linking points by chemical bonds are used.
  • the ⁇ -olefin-based resin having no chemically-bonded cross-linking site includes at least the side chain (a), the side chain (a ′), the side chain (b), the side chain ( c) The polymer does not have.
  • ⁇ -olefin-based resin here refers to an ⁇ -olefin homopolymer and an ⁇ -olefin copolymer.
  • ⁇ -olefin refers to an alkene having a carbon-carbon double bond at the ⁇ -position (an alkene having a carbon-carbon double bond at the end: such an alkene may be linear. It may be branched, and preferably has 2 to 20 carbon atoms (more preferably 2 to 10), for example, ethylene, propylene, 1-butene, 1-pentene, 1 -Hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like.
  • an ⁇ -olefin polymer (poly ⁇ -olefin: either a homopolymer or a copolymer) may be used.
  • poly ⁇ -olefin polymer poly ⁇ -olefin: either a homopolymer or a copolymer
  • examples thereof include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, and propylene-ethylene-butene copolymer.
  • polypropylene, polyethylene, ethylene-butene copolymer, ethylene-propylene copolymer are used from the viewpoint of compatibility with the base elastomer. Polypropylene, polyethylene, and ethylene-propylene copolymer are more preferable.
  • such ⁇ -olefin-based resins having no chemically bonding cross-linking sites may be used alone or in combination of two or more.
  • the ⁇ -olefin resin having no chemically-bonded cross-linking site preferably has a crystallinity of 10% or more, more preferably 10 to 80%, and more preferably 10 to 75%. Further preferred. If the degree of crystallinity is less than the lower limit, the resin-like properties become dilute, so it tends to be difficult to make the mechanical properties and fluidity more advanced. Therefore, it tends to be difficult to exhibit mechanical properties in a balanced manner at a higher level.
  • Such crystallinity is measured by using an X-ray diffractometer (for example, trade name “MiniFlex300” manufactured by Rigaku Corporation) as a measuring device, measuring a diffraction peak, and integrating a scattering peak derived from crystallinity / amorphous. It can be determined by calculating the ratio.
  • an X-ray diffractometer for example, trade name “MiniFlex300” manufactured by Rigaku Corporation
  • melt flow rate (MFR) is preferably 40 g / 10 min or more.
  • MFR melt flow rate
  • Such a melt flow rate (MFR) is a value measured in accordance with method B described in JIS K6922-2 (issued in 2010), and is a product manufactured by Toyo Seiki Seisakusho as a melt flow rate measuring device.
  • the weight average molecular weight (Mw) of the ⁇ -olefin-based resin having no chemically-bonded crosslinking site is preferably 10,000 or more and 2,000,000 or less, more preferably 30,000 or more and 1,500,000 or less. Preferably, it is 50,000 or more and 1.25 million or less.
  • Mw weight average molecular weight
  • the weight average molecular weight is less than the lower limit, the mechanical strength tends to decrease.
  • the weight average molecular weight exceeds the upper limit, the compatibility with the elastomer component decreases and the phase tends to be separated.
  • the number average molecular weight (Mn) of the ⁇ -olefin resin having no chemically-bonded crosslinking site is preferably 10,000 or more and 2,000,000 or less, more preferably 30,000 or more and 1,500,000 or less. Preferably, it is 50,000 or more and 1.25 million or less. If the number average molecular weight is less than the lower limit, the mechanical strength tends to decrease. On the other hand, if the number average molecular weight exceeds the upper limit, the compatibility with the elastomer component decreases, and phase separation tends to occur.
  • the dispersion degree (Mw / Mn) of the molecular weight distribution of the ⁇ -olefin-based resin having no chemically-bonded crosslinking site is preferably 5 or less, more preferably 1 to 3. If the degree of dispersion (Mw / Mn) of the molecular weight distribution is less than the lower limit, the fluidity tends to decrease, and if it exceeds the upper limit, the compatibility with the elastomer tends to decrease.
  • the weight-average molecular weight (Mw), the number-average molecular weight (Mn), and the molecular weight distribution dispersity (Mw / Mn) of the ⁇ -olefin resin as described above are determined by a so-called gel permeation chromatography (GPC) method. Can be sought. Moreover, as a specific apparatus and conditions for measuring such molecular weight, “Prominence GPC system” manufactured by Shimadzu Corporation can be used.
  • the glass transition point of the ⁇ -olefin-based resin having no chemical bonding cross-linking site is preferably ⁇ 150 to 5 ° C., more preferably ⁇ 125 to 0 ° C. If such a glass transition point is less than the lower limit, the melting point becomes low and the heat resistance tends to be lowered. On the other hand, if the upper limit is exceeded, rubber elasticity after blending the elastomer tends to be lowered.
  • the “glass transition point” here is a glass transition point measured by differential scanning calorimetry (DSC-Differential Scanning Calorimetry) as described above. In such DSC measurement, the rate of temperature rise is preferably 10 ° C./min.
  • the method for producing such an ⁇ -olefin-based resin having no chemically-bonded crosslinking site is not particularly limited, and a known method can be appropriately employed.
  • ⁇ -olefin resin commercially available products may be used.
  • trade names “Tafmer” manufactured by Mitsui Chemicals, Inc . trade names “Novatech HD”, “Novatech LD” Novatec LL, “Kernel”
  • thermoplastic elastomer composition of the present invention contains the elastomer component, the clay, and the ⁇ -olefin resin having no chemically-bonded crosslinking site.
  • thermoplastic elastomer composition of the present invention can have sufficiently high heat resistance and breaking strength is not necessarily clear, but the present inventors infer as follows.
  • the elastomer component is an elastomeric polymer containing a side chain having at least a hydrogen bonding cross-linking site (in the side chain, side chain (a); side chain (a ′) and side chain (b)). And a polymer containing at least one of the side chains (c)).
  • the clay interacts with the hydrogen-bonding cross-linked site (for example, a new hydrogen bond is formed), and the elastomer is utilized using the surface of the clay.
  • the components are cross-linked. And when such surface bridge
  • the hydrogen-bonding cross-linking site is “a hydrogen-bonding cross-linking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle (more preferably, a carbonyl-containing group and a nitrogen-containing heterocycle).
  • Hydrogen bonding cross-linkable sites it is possible to bond hydrogen at more points, and in addition to hydrogen bonding at more points between elastomers, there are more hydrogen bonds with clay. Since hydrogen bonding is performed at a point, it is possible to cross-link the surface more strongly, and a higher effect tends to be obtained in terms of tensile strength (breaking strength) and heat resistance.
  • thermoplastic elastomer is a type that uses pseudo-crosslinking by physical interaction between polymer molecular chains (physical interaction is caused by interaction between polymer molecules).
  • a type in which a weak bond is formed There are two types: a type in which a weak bond is formed) and a type in which rubber is dispersed in a thermoplastic resin matrix.
  • thermoplastic elastomers using pseudo-crosslinking include polymers having soft segments and hard segments such as block polymers and urethane elastomers.
  • a filler such as clay
  • a thermoplastic elastomer of a type utilizing pseudo-crosslinking an interaction at the pseudo-crosslinking point (polymer The physical interaction between the molecular chains) is hindered by the clay, and the mechanical strength of the polymer is lowered, making it unusable for actual use as a rubber product.
  • thermoplastic elastomers consisting only of thermoplastic elastomers of the type utilizing pseudo-crosslinking, in combination with clay, form pseudo-crosslinks in the composition instead. Is inhibited, and the mechanical strength (such as tensile stress) of the composition is lowered.
  • fillers such as clay are introduced only into the matrix phase.
  • a matrix made of a thermoplastic resin having no side chain no interaction with clay is formed in the matrix.
  • thermoplastic elastomer of a type in which rubber is dispersed in a thermoplastic resin matrix when a polymer containing no side chain is used as a hydrogen bonding cross-linked site, even if clay is simply introduced, Clay cannot be sufficiently dispersed, and the mechanical strength (breaking strength, etc.) of the composition is lowered.
  • the content of the clay is 20 parts by mass or less with respect to 100 parts by mass of the elastomer component, but even with such a content ratio (sufficiently low ratio), heat resistance A sufficiently high effect can be obtained.
  • the clay is sufficiently uniformly dispersed in the composition, and it is possible to sufficiently form the surface cross-linkage (in addition, the proportion dispersed in a single layer). If it is higher, it tends to be possible to form more surface crosslinks in the elastomer, and it can be said that this is a more preferable form.) Even if the content is as small as 20 parts by mass or less, The present inventors speculate that it is possible to exhibit sufficiently high tensile stress and sufficiently high heat resistance.
  • thermoplastic elastomer composition of the present invention contains an ⁇ -olefin resin having no chemically-bonded cross-linked site, together with the thermoplastic elastomer composition and clay.
  • an ⁇ -olefin resin that does not have such a chemical-bonding cross-linked site is contained in the composition, it is dispersed in the cross-linked structure of the base elastomer component. It becomes possible to express physical properties. Therefore, the thermoplastic elastomer composition of the present invention is derived from an ⁇ -olefin resin that does not have a chemically bonding cross-linked site, and can impart excellent fluidity and mechanical properties. The inventors speculate.
  • the ⁇ -olefin resin and the elastomer component are a highly compatible combination, the ⁇ -olefin resin and the elastomer component are sufficiently uniformly dispersed in the composition. And since the sufficiently dispersed elastomer component and clay interact (hydrogen bond or the like), the clay is also sufficiently dispersed. Therefore, the clay is sufficiently dispersed while sufficiently maintaining the effects obtained by using the ⁇ -olefin resin (for example, the effect of imparting excellent fluidity and mechanical properties), and the heat resistance, breaking strength, etc. are improved. The present inventors speculate that a sufficiently high level can be achieved.
  • the side chain containing the covalent crosslinking site is more The present inventors speculate that it is possible to develop a high level of compression set resistance. Further, in the case where a hydrogen bonding crosslinking site and a covalent bonding crosslinking site are present in the elastomer component (when the elastomeric polymer (B) is contained, a mixture of the elastomeric polymer (B) and another elastomeric polymer is added.
  • the elastomeric polymer having a side chain (b) other than the elastomeric polymer (A) and the elastomeric polymer (B) In the case of using a mixture of a hydrogen bond and a covalent bond site, a higher mechanical strength due to the covalent bond and a heating due to the hydrogen bond due to the presence of the hydrogen bond crosslink site and the covalent bond site. Higher fluidity (formability) can be developed at the same time by cleaving. Therefore, the present inventors speculate that it is possible to appropriately change the composition according to the type of the side chain and to appropriately exhibit the characteristics according to the application.
  • the elastomeric polymer having a side chain (b) other than the elastomeric polymer (B) as described above is obtained by using an elastomeric polymer having a functional group (for example, a cyclic acid anhydride group) in the side chain.
  • a functional group for example, a cyclic acid anhydride group
  • reacting a functional polymer with a compound that reacts with the functional group to form a covalently cross-linked site (compound that generates a covalent bond) to produce the elastomeric polymer having the side chain (b) It is possible to obtain.
  • the above-mentioned “compound that forms a covalent crosslinking site (compound that generates a covalent bond)” is used as the compound that forms a covalent crosslinking site (a compound that generates a covalent bond). can do.
  • thermoplastic elastomer composition of the present invention As described above, the reason why the above-described effects of the present invention can be obtained by the thermoplastic elastomer composition of the present invention has been examined. Preferred embodiments of the thermoplastic elastomer composition of the present invention (containing each component) The preferred conditions for the ratio and the like will be further described.
  • the thermoplastic elastomer composition of the present invention contains the elastomer component, the clay, and the ⁇ -olefin resin having no chemically-bonded cross-linked site, and the content of the clay is: It is 20 parts by mass or less with respect to 100 parts by mass of the elastomer component. When the content of such clay exceeds the upper limit, heat resistance and breaking strength are lowered.
  • the clay content in such a thermoplastic elastomer composition is more preferably 0.1 to 10 parts by mass, and 0.5 to 5 parts by mass with respect to 100 parts by mass of the elastomer component. More preferred is 1 to 3 parts by mass.
  • the clay content is less than the lower limit, the clay content tends to be too low to obtain a sufficient effect, whereas if the upper limit is exceeded, the crosslinking becomes too strong, and the elongation and strength are rather high. However, it tends to be difficult to use in various applications (practicality is reduced).
  • clay in a single layer form is present in the composition. Presence of such a single-layered clay can be confirmed by measuring the surface of the composition with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • thermoplastic elastomer composition of the present invention measurement points having a size of 5.63 ⁇ m 2 above any three points on the surface of the thermoplastic elastomer composition were measured by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • 50% or more (more preferably 70% or more, more preferably 80 to 100%, particularly preferably 85 to 100%) of the total clay is based on the number of single clays. It is preferable to exist as If the abundance of the single-layer clay is less than the lower limit, the elongation at break and the strength at break tend to decrease.
  • thermoplastic elastomer In measuring the abundance (ratio) of such a single-layer clay, the thermoplastic elastomer was used as a sample using a transmission electron microscope (for example, trade name “JEM-2010” manufactured by JEOL Ltd.). 10 g of the composition was prepared, and three or more measurement points having a size of 5.63 ⁇ m 2 on the surface of the thermoplastic elastomer composition were measured. In each TEM image obtained by such measurement, a single layer of clay was measured. By calculating the number and the number of multi-layered clays, and calculating the abundance (ratio) of single-layer clay among all the clays for each measurement point (each TEM image) based on the number. Can be sought.
  • a transmission electron microscope for example, trade name “JEM-2010” manufactured by JEOL Ltd.
  • the interlayer distance of montmorillonite is about 9.8 ⁇
  • the interlayer distance of general organic clay is about 20 to 40 ⁇ (2 to 4 nm). is there.
  • the interlayer distance is 50 angstroms (> 5 nm) or more, so the interlayer distance of each layer that can be confirmed by a TEM image is Based on the fact that the distance is larger than the interlayer distance, it may be determined as a single layer.
  • the clay when a single layer of clay was contained in the composition in the above-described proportion (existence), the clay was more dispersed and contained than the multilayered clay was dispersed as it was. Since it becomes a state (because the multilayered clay is decomposed to form a single-layered clay), the clay can be dispersed in the composition with higher dispersibility. In this way, the clay has higher dispersibility when the monolayer is present in the above ratio than the multi-layered composition in the composition, and has higher heat resistance and breaking strength. Can be. Therefore, it is more preferable to contain the clay in a single layer at the ratio as described above, whereby the clay is more dispersed and the heat resistance and the breaking strength can be improved more efficiently.
  • the method of containing the single layer of clay in the above-mentioned proportion (existence) is not particularly limited, but the method for producing the thermoplastic elastomer composition of the present invention described later is adopted to provide the thermoplastic elastomer composition. It becomes possible to contain a single layer of clay at the above ratio more efficiently.
  • thermoplastic elastomer composition of the present invention when measuring a measuring point of 5.63 ⁇ m 2 in size of any three or more points on the surface of the thermoplastic elastomer composition with a transmission electron microscope, it is preferable that 1 to 100 (more preferably 3 to 80, more preferably 5 to 50) are dispersed per 1 ⁇ m 2 at all measurement points. If the number of such single-layer clays is less than the lower limit, the amount of clay is too small and sufficient effects tend not to be obtained. The number of single-layer clays can be determined by confirming a TEM image in the same manner as the measurement of the abundance (ratio) of single-layer clay.
  • the content (content ratio) of the ⁇ -olefin resin having no chemically-bonded crosslinking site is 250 parts by mass or less with respect to 100 parts by mass of the elastomer component. It is preferably 5 to 250 parts by mass, more preferably 10 to 225 parts by mass, particularly preferably 25 to 200 parts by mass, and 35 to 175 parts by mass. Is most preferred. If the content of the ⁇ -olefin resin not having such a chemical bond cross-linking site is less than the lower limit, the fluidity tends to decrease. On the other hand, if the content exceeds the upper limit, mechanical properties (breaking strength, Compression set) tends to decrease.
  • the content of the ⁇ -olefin-based resin having no chemically bonding crosslinking site is 1 to 50% by mass with respect to the total amount of the thermoplastic elastomer composition. It is preferably 3 to 45% by mass, more preferably 5 to 40% by mass. If the content of the ⁇ -olefin resin not having such a chemical bond cross-linking site is less than the lower limit, the fluidity tends to decrease. On the other hand, if the content exceeds the upper limit, mechanical properties (breaking strength, Compression set) tends to decrease.
  • thermoplastic elastomer composition of the present invention characteristics depending on the use can be appropriately imparted depending on the type of elastomer component used.
  • a thermoplastic elastomer composition comprising an elastomeric polymer (A) as an elastomer component
  • the properties derived from the side chain (a) can be imparted to the composition, the elongation at break, strength at break, and fluidity are particularly improved. It becomes possible to make it.
  • thermoplastic elastomer composition which uses an elastomeric polymer (B) as an elastomer component, since the characteristic derived from the covalently crosslinked site in the side chain can be imparted to the composition, it is particularly resistant to compression set. (Compression set resistance) can be improved.
  • thermoplastic elastomer composition containing the elastomeric polymer (B) as an elastomer component
  • the hydrogen bond crosslinking site side chain (a The properties derived from the hydrogen-bonding cross-linking sites described in ') can also be imparted, so that it is possible to further improve compression set resistance while maintaining fluidity (formability), and its side chain
  • the type of the polymer, the type of the polymer (B), etc. it becomes possible to more efficiently exhibit the desired characteristics according to the application.
  • thermoplastic elastomer composition of the present invention a thermoplastic elastomer composition containing the elastomeric polymer (A) as an elastomer component and a thermoplastic elastomer composition containing the elastomeric polymer (B) as an elastomer component, respectively.
  • thermoplastic elastomer composition which mixes this and contains the elastomeric polymers (A) and (B) as an elastomer component.
  • the elastomer component only needs to contain at least the elastomeric polymers (A) and (B).
  • the covalent bond can be made more efficiently by providing a covalent cross-linking site in the composition.
  • elastomeric polymers having side chains (b) other than the elastomeric polymer (B) may be used in combination.
  • an elastomeric polymer (A) is used as the elastomer component
  • another elastomeric polymer having a side chain (b) other than the elastomeric polymer (B) is used in combination
  • Providing substantially the same characteristics as the thermoplastic elastomer composition using the elastomeric polymer (B) containing a hydrogen bonding crosslinking site and a covalent bonding crosslinking site in the side chain derived from the side chain contained Is also possible.
  • thermoplastic elastomer composition containing elastomeric polymers (A) and (B) as an elastomer component when manufacturing the thermoplastic elastomer composition containing elastomeric polymers (A) and (B) as an elastomer component, side chains (b) other than the elastomeric polymer (A) and the elastomeric polymer (B) are used.
  • thermoplastic elastomer composition containing other elastomeric polymer the ratio of each component (for example, each component of the elastomeric polymer (A) and the elastomeric polymer (B)) is appropriately changed. It is also possible to exhibit desired characteristics as appropriate.
  • the content ratio of the elastomeric polymer (A) and the elastomeric polymer (B) is mass.
  • the ratio ([polymer (A)]: [polymer (B)]) is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2. If the content ratio of such a polymer (A) is less than the lower limit, the fluidity (moldability) and mechanical strength tend to be insufficient. On the other hand, if the content ratio exceeds the upper limit, the resistance to compression set tends to decrease. It is in.
  • thermoplastic elastomer composition of the present invention contains, as an elastomer component, an elastomeric polymer (A) and another elastomeric polymer having a side chain (b) other than the elastomeric polymer (B) (hereinafter referred to as “elastomer” in some cases).
  • the content ratio of the elastomeric polymer (A) and the elastomeric polymer (C) is a mass ratio ([elastomeric polymer (A)]: [elastomeric]. In the polymer (C)]), the ratio is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2.
  • the content ratio of such a polymer (A) is less than the lower limit, the fluidity (moldability) and mechanical strength tend to be insufficient. On the other hand, if the content ratio exceeds the upper limit, the resistance to compression set tends to decrease. It is in.
  • the total amount of the side chain (a ′) and the side chain (b) is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2, based on the mass ratio. If the total amount of such side chains (a ′) is less than the lower limit, the fluidity (formability) and mechanical strength tend to be insufficient. On the other hand, if the upper limit is exceeded, the resistance to compression set is reduced. There is a tendency.
  • Such a side chain (a ′) is a concept including the side chain (a). Therefore, even when only the side chain (a) is contained as the side chain (a ′), both the side chain (a) and the side chain (b) are present in the composition at the above-described mass ratio. Is preferred.
  • thermoplastic elastomer composition of the present invention in addition to the elastomer component, the clay, and the ⁇ -olefin resin not having the chemically bonding cross-linked site, further additional components (others) (Component: Additive) may be appropriately contained.
  • the additive component (other components: additive) further contained in the thermoplastic elastomer composition of the present invention is a viewpoint that the fluidity can be further improved without reducing various physical properties.
  • paraffin oil When such paraffin oil is used, the oil component can be absorbed into the block polymer when used in combination with a styrenic block polymer, which will be described later.
  • improved mechanical properties by adding styrenic block polymer at a sufficiently high level, extruding workability, injection moldability, etc. while maintaining sufficient mechanical properties and heat resistance. The production processability can be made higher.
  • paraffin oil when used, for example, when heated and extruded from an orifice (for example, one having an opening with a diameter of 1 mm), the string-like thermoplastic extruded from the orifice opening
  • the shape (strand shape) of the elastomer composition has a sufficiently uniform thickness, and excellent extrudability tends to be obtained such that no fuzz is observed on the surface thereof.
  • paraffin oil is not particularly limited, and known paraffin oil can be appropriately used.
  • paraffin oil a correlation ring analysis (ndM ring analysis) based on ASTM D3238-85 is performed on the oil, and the percentage of the paraffin carbon number to the total carbon number (paraffin) Parts: C P ), percentage of total number of naphthene carbons (naphthene part: C N ), and percentage of total number of aromatic carbons (aromatic part: C A ), respectively. It is preferable that the percentage (C P ) of the paraffin carbon number to the total carbon number is 60% or more.
  • such a paraffin oil is measured according to JIS K 2283 (published in 2000), it preferably has 50mm 2 / s ⁇ 700mm 2 / s kinematic viscosity at 40 °C, 150 ⁇ 600mm 2 / S is more preferable, and 300 to 500 mm 2 / s is even more preferable. If such a kinematic viscosity ( ⁇ ) is less than the lower limit, oil bleeding tends to occur. On the other hand, if it exceeds the upper limit, sufficient fluidity tends not to be imparted. As the kinematic viscosity of such paraffin oil, a value measured according to JIS K 2283 (issued in 2000) under a temperature condition of 40 ° C. is adopted.
  • JIS K 2283 (issued in 2000) The value automatically measured under a temperature condition of 40 ° C. using a Canon-Fenske viscometer (for example, trade name “SO Series” manufactured by Shibata Kagaku Co., Ltd.) may be employed.
  • Canon-Fenske viscometer for example, trade name “SO Series” manufactured by Shibata Kagaku Co., Ltd.
  • such a paraffin oil preferably has an aniline point measured by a U-tube method according to JIS K2256 (issued in 2013) of 80 ° C. to 145 ° C., more preferably 100 to 145 ° C. Preferably, the temperature is 105 to 145 ° C.
  • a value measured by the U-shaped tube method conforming to JIS K2256 is adopted.
  • the aniline point conforming to JIS K2256 (issued in 2013) is adopted.
  • a value measured using a measuring device for example, trade name “aap-6” manufactured by Tanaka Scientific Instruments Co., Ltd. may be used.
  • paraffin oil commercially available products can be used as appropriate.
  • a trade name “Gargoyle Arctic Series (1010, 1022, 1032, 1046, 1068, 1100, etc.)” manufactured by Mobil Corporation may be used as appropriate.
  • the content of the paraffin oil is preferably 10 to 1500 parts by mass with respect to 100 parts by mass of the elastomer component.
  • the amount is more preferably 1400 parts by weight, still more preferably 50 to 1200 parts by weight, particularly preferably 75 to 1100 parts by weight, and most preferably 100 to 1000 parts by weight.
  • the content of the paraffin oil is more preferably 600 parts by mass or less with respect to 100 parts by mass of the elastomer component. In this case, it is preferably 10 to 600 parts by mass, and 50 to 550 parts by mass. Is more preferably 75 to 500 parts by mass, and particularly preferably 100 to 400 parts by mass.
  • the content of such paraffin oil is less than the lower limit, the content of paraffin oil is too small, and the effect obtained by adding paraffin oil (especially the effect of improving fluidity and workability) is not always sufficient.
  • the upper limit is exceeded, bleeding of paraffin oil tends to be induced.
  • the content of the paraffin oil is preferably 500 to 1500 parts by mass, and 600 to 1400 parts by mass. Is more preferable, and 800 to 1200 parts by mass is even more preferable.
  • the content of the paraffin oil is preferably 20 to 80% by mass with respect to the total amount of the thermoplastic elastomer composition. It is preferably from ⁇ 60% by mass, more preferably from 25 to 55% by mass, and even more preferably from 35 to 55% by mass. If the content of such paraffin oil is less than the above lower limit, the content of paraffin oil is too small, and in particular, there is a tendency that sufficient effects cannot be obtained in terms of fluidity and workability, while exceeding the upper limit In this case, paraffin oil bleed tends to be induced. From the viewpoint of adjusting the JIS-A hardness to a lower value (preferably 10 or less), the content of the paraffin oil is preferably 50 to 80% by mass, and preferably 55 to 75% by mass. Is more preferably 60 to 70% by mass.
  • the additive component (other component: additive) to be further contained in the thermoplastic elastomer composition of the present invention is a chemical bonding property from the viewpoint of not interfering with the crosslinking reaction of the base elastomer.
  • a styrene block copolymer having no crosslinking site is preferred. When such a styrene block copolymer is used, it basically does not interfere with the cross-linking structure of the base elastomeric polymer (the elastomer component) or the cross-linking reaction at the time of manufacture.
  • thermoplastic elastomer composition of the present invention Since the inherent physical properties of the structure are not hindered, excellent mechanical properties (particularly tensile properties, compression set, etc.) derived from the styrene block copolymer can be obtained while sufficiently maintaining the properties derived from the elastomer component.
  • the present inventors speculate that it can be reflected (provided) in the thermoplastic elastomer composition of the present invention and can have higher properties.
  • the styrene block copolymer which is a component suitably used in the thermoplastic elastomer composition of the present invention, does not have a chemically bonding cross-linked site.
  • “having no chemically-bonded cross-linking site” has the same meaning as described for the ⁇ -olefin resin.
  • a functional group for example, a hydroxyl group, a carbonyl group, a carboxyl group, a thiol group, an amide group, or the like, which forms a crosslinking point by a chemical bond
  • a binding site such as a cross-linking site by a covalent bond
  • such a styrene block copolymer having no chemically-bonded cross-linking site has at least the above-mentioned side chain (a), side chain (a ′), side chain (b), side chain ( c) The polymer does not have.
  • styrene block copolymer herein may be a polymer having a styrene block structure at any part.
  • a styrene block copolymer has a styrene block structure, and at normal temperature, the styrene block structure part aggregates to form a physical crosslinking point (physical pseudo-crosslinking point) and is heated. Based on the fact that such a physical pseudo-crosslinking point collapses, it can be used as a material having thermoplasticity and rubber-like properties (elasticity, etc.) at room temperature.
  • styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene- Propylene-styrene block copolymer (SEPS), Styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), Styrene-butadiene-styrene block copolymer (SBS), Styrene-ethylene-butylene-styrene block copolymer Polymers (SEBS), styrene-isoprene-butadiene-styrene block copolymers (SIBS), and hydrogenated products thereof (so-called hydrogenated products) are preferable, and SEBS and SEEPS are more preferable.
  • SIS styrene-isoprene-styrene block copolymer
  • SEPS Styrene-ethylene-ethylene-propylene-styrene block copolymer
  • SEEPS Styren
  • the styrene block copolymer having no chemically-bonded cross-linking site is a styrene block copolymer having a styrene content of 20 to 40% by mass (more preferably 25 to 37% by mass). preferable. If the styrene content is less than the lower limit, the thermoplasticity tends to decrease due to a decrease in the styrene block component. On the other hand, if the styrene content exceeds the upper limit, the rubber elasticity tends to decrease due to a decrease in the olefin component.
  • the styrene content in such a styrene block styrene block copolymer can be measured by a method based on the IR method described in JIS K6239 (issued in 2007).
  • the weight average molecular weight (Mw) of the styrene block copolymer having no chemically-bonded crosslinking site is preferably 200,000 to 700,000, more preferably 300,000 to 600,000. Preferably, it is 350,000 or more and 550,000 or less.
  • Mw weight average molecular weight
  • the weight average molecular weight is less than the lower limit, the heat resistance tends to be lowered.
  • the weight average molecular weight exceeds the upper limit, the compatibility with the elastomeric polymer tends to be lowered.
  • the number average molecular weight (Mn) of the styrene block copolymer having no chemically-bonded crosslinking site is preferably 100,000 or more and 600,000 or less, more preferably 150,000 or more and 550,000 or less. Preferably, it is 200,000 or more and 500,000 or less.
  • Mn number average molecular weight
  • the heat resistance tends to be lowered.
  • the upper limit is exceeded, the compatibility with the elastomeric polymer (the elastomer component) tends to be lowered.
  • the dispersity (Mw / Mn) of the molecular weight distribution of the styrene block copolymer having no chemically bonding cross-linked site is preferably 5 or less, more preferably 1 to 3.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution dispersity (Mw / Mn) can be determined by a so-called gel permeation chromatography (GPC) method. Further, as a specific apparatus and conditions for measuring such molecular weight, “Prominence GPC system” manufactured by Shimadzu Corporation can be used.
  • the glass transition point of the styrene block copolymer having no chemically bonding cross-linking site is preferably ⁇ 80 to ⁇ 40 ° C., and more preferably ⁇ 70 to ⁇ 50.
  • the melting point becomes low, and thus the heat resistance tends to be lowered.
  • the upper limit is exceeded, rubber elasticity tends to be lowered.
  • the “glass transition point” here is a glass transition point measured by differential scanning calorimetry (DSC-Differential Scanning Calorimetry) as described above. In such DSC measurement, the rate of temperature rise is preferably 10 ° C./min.
  • the method for producing the styrene block copolymer having no chemical bonding cross-linking site is not particularly limited, and a known method can be appropriately employed. Moreover, as such a styrene block copolymer, you may use a commercial item, for example, the brand name "G1633" "G1640" “G1641” “G1642” “G1643” “G1645" “G1650” by a Kraton company.
  • thermoplastic elastomer composition of the present invention further contains a styrene block copolymer having no chemically-bonded crosslinking site
  • the styrene block copolymer having no chemically-bonded crosslinking site is used.
  • the content (content ratio) is preferably 10 to 400 parts by mass or less, more preferably 15 to 350 parts by mass, and more preferably 20 to 300 parts by mass with respect to 100 parts by mass of the elastomer component. More preferred is 30 to 250 parts by mass.
  • the content of the styrene block copolymer having no such chemical bonding crosslinking site is less than the lower limit, the content of the styrene block copolymer having no chemical bonding crosslinking site is too small, In particular, there is a tendency that sufficient effects cannot be obtained in terms of fluidity and workability.
  • the upper limit is exceeded, the characteristics of the matrix structure (characteristics derived from the elastomer component) due to the crosslinked elastomer tend to be dilute. It is in.
  • thermoplastic elastomer composition of the present invention further contains a styrene block copolymer having no chemically-bonded crosslinking site
  • the styrene block copolymer having no chemically-bonded crosslinking site is used.
  • the content is preferably 5 to 60% by mass, more preferably 7 to 45% by mass, and still more preferably 10 to 30% by mass with respect to the total amount of the thermoplastic elastomer composition. If the content of the styrene block copolymer having no such chemically bondable crosslinking site is less than the lower limit, the content of the styrene block copolymer is too small, particularly in terms of fluidity and workability. On the other hand, if the upper limit is exceeded, the characteristics of the matrix structure (characteristics derived from the elastomer component) due to the crosslinked elastomer tend to be diluted.
  • the additive component further includes both the paraffin oil and the styrene block copolymer having no chemically-bonded cross-linked site from the viewpoint of improving fluidity and mechanical properties. That is, the thermoplastic elastomer composition of the present invention has the elastomer component, the clay, the ⁇ -olefin resin not having the chemically bonding crosslinking site, the paraffin oil, and the chemically bonding crosslinking site. What contains the styrene block copolymer which does not do is more preferable.
  • the styrene block copolymer and the ⁇ -olefin resin are highly compatible, they are uniformly dispersed in the system. Further, in such a system containing the styrene block copolymer and the ⁇ -olefin resin, the elastomer component has high compatibility with both, so that the elastomer component is also sufficiently contained in the composition. It will be uniformly dispersed. As described above, since the elastomer component and the clay interact to form surface cross-linking, the clay is also present in a sufficiently dispersed state as the elastomer component is dispersed.
  • each component is contained in a sufficiently dispersed state. Therefore, the state of the elastomer component that strongly influences the properties of the thermoplastic elastomer composition is sufficiently dispersed in a state of interacting with the clay (a state in which a strong bond is formed by surface cross-linking). It is possible to exhibit higher mechanical strength and heat resistance in a balanced manner.
  • the ⁇ -olefin resin and paraffin oil which are components that strongly affect the fluidity of the thermoplastic elastomer composition, are also sufficiently dispersed, resulting in higher fluidity (fluidity during heating). ) Can be achieved. Furthermore, since the mechanical strength of the styrene block copolymer can be adjusted depending on the amount added, it can also be adjusted to desired mechanical properties. Therefore, when the elastomer component, the clay, the ⁇ -olefin resin, the paraffin oil, and the styrene block copolymer are contained, characteristics such as heat resistance, breaking strength, and compression set resistance are provided. The present inventors speculate that the effect of being able to exhibit in a balanced manner at a higher level is obtained.
  • thermoplastic elastomer composition of the present invention may further contain, if necessary, other than the elastomer component, the ⁇ -olefin resin, and the styrene block copolymer) within a range not impairing the object of the present invention.
  • polymers reinforcing agents (fillers), hydrogen bonding reinforcing agents (fillers), fillers introduced with amino groups (hereinafter simply referred to as “amino group-introducing fillers”), and introduction of the amino groups
  • amino group-introducing fillers compounds containing metal elements (hereinafter simply referred to as “metal salts”), maleic anhydride-modified polymers, anti-aging agents, antioxidants, pigments (dyes), other than paraffin oil Plasticizers (including so-called softeners), thixotropic agents, UV absorbers, flame retardants, solvents, surfactants (including leveling agents), dispersants, dehydrating agents, rust inhibitors, adhesion promoters, charging Inhibitor It can contain various additives and the like such as a filler. Such additives are not particularly limited, and commonly used ones (known ones) can be appropriately used. For example, the following can be appropriately used as an anti-aging agent, an antioxidant, a pigment (dye), and a plasticizer.
  • thermoplastic elastomer field a known polymer that is appropriately used from the viewpoint of adjusting the hardness and maintaining the mechanical properties can be appropriately used, and is not particularly limited.
  • Other elastomeric polymers having side chains (b) other than the elastomeric polymer (B) can be suitably used.
  • carbon black silica, calcium carbonate and the like can be raised.
  • carbon black wet silica is used as silica, and calcium carbonate is preferably used.
  • an anti-aging agent for example, a hindered phenol-based, aliphatic and aromatic hindered amine-based compound can be appropriately used.
  • a hindered phenol-based, aliphatic and aromatic hindered amine-based compound can be appropriately used.
  • BHT butylhydroxytoluene
  • BHA butylhydroxyanisole
  • the pigment include inorganic pigments such as titanium dioxide, zinc oxide, ultramarine, bengara, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochloride, and sulfate, organic pigments such as azo pigments and copper phthalocyanine pigments. Pigments and masterbatch products thereof can be used as appropriate.
  • plasticizer for example, benzoic acid, phthalic acid, trimellitic acid, pyromellitic acid, adipic acid, sebacic acid, fumaric acid, maleic Derivatives such as acid, itaconic acid, citric acid, polyester, polyether Epoxy systems, etc.
  • plasticizer softener
  • Oils can also be used, and as such additives, those exemplified in JP-A-2006-131663 may be used as appropriate.
  • thermoplastic elastomer composition of the present invention has the elastomer component, the clay, the ⁇ -olefin resin having no chemically bonding crosslinking site, the paraffin oil, and the chemically bonding crosslinking site.
  • the content of the other components is not particularly limited, but polymers, reinforcing materials (fillers) ) Is preferably 400 parts by mass or less, more preferably 20 to 300 parts by mass with respect to 100 parts by mass of the elastomer component. If the content of such other components is less than the lower limit, the effect of using the other components tends to be insufficiently expressed. On the other hand, if the content exceeds the upper limit, it depends on the type of the component used. The effect of the substrate elastomer is diminished and the physical properties tend to decrease.
  • the content of the other components is 100 parts by mass of the elastomer component, respectively.
  • the amount is preferably 20 parts by mass or less, more preferably 0.1 to 10 parts by mass. If the content of such other components is less than the lower limit, the effect of using the other components tends to be insufficient, while if the upper limit is exceeded, the reaction of the substrate elastomer is adversely affected. On the other hand, physical properties tend to decrease.
  • thermoplastic elastomer composition of the present invention is heated (for example, heated to 100 to 250 ° C.) to form hydrogen bonds formed at the hydrogen bond cross-linked sites and other cross-linked structures (including a styrene block copolymer).
  • the physical cross-linking and the like can be dissociated and softened to impart fluidity. This is presumably because the interaction between the side chains formed between the molecules or within the molecule due to heating (mainly the interaction due to hydrogen bonding) is weakened.
  • the side chain contains an elastomer component containing at least a hydrogen-bonding cross-linked site, etc.
  • the dissociated hydrogen bond Since they are bonded and cured again, depending on the composition, the thermoplastic elastomer composition can be made to exhibit recyclability more efficiently.
  • the thermoplastic elastomer composition of the present invention has a melt flow rate (MFR) at 230 ° C. under a load of 10 kg measured in accordance with JIS K6922-2 (issued in 2010) of 2 g / 10 min or more. Preferably, it is 4 g / 10 min or more, and more preferably 8 g / 10 min or more. If such a melt flow rate (MFR) is less than the lower limit, there may be a case where sufficient processability cannot always be exhibited.
  • MFR melt flow rate
  • Such a melt flow rate (MFR) is a value measured in accordance with method B described in JIS K6922-2 (issued in 2010), and is a product manufactured by Toyo Seiki Seisakusho as a melt flow rate measuring device.
  • thermoplastic elastomer composition 3 g was added to the furnace of the apparatus, and the temperature was maintained at 230 ° C. for 5 minutes, and then maintained at 230 ° C. and loaded to 10 kg.
  • the mass (g) of the elastomer flowing out in 10 minutes from the opening of a cylindrical orifice member having a diameter of 1 mm and a length of 8 mm connected to the lower part of the furnace body is measured (the furnace body The temperature is maintained at 230 ° C. for 5 minutes and then the load is started, and then the measurement of the mass of the elastomer flowing out is started. Kill.
  • the 5% weight loss temperature is preferably 320 ° C. or higher, more preferably 325 ° C. or higher.
  • a 5% weight loss temperature is prepared by preparing 10 mg of a thermoplastic elastomer composition as a measurement sample, and using a thermogravimetric measurement device (TGA) as a measurement device and heating at a heating rate of 10 ° C./min. It can be determined by measuring the temperature when the 5% weight is reduced from the initial weight (10 mg).
  • TGA thermogravimetric measurement device
  • thermoplastic elastomer composition of the present invention can be used by appropriately changing properties such as hardness by appropriately changing the composition according to the application.
  • properties such as hardness by appropriately changing the composition according to the application.
  • the JIS-A hardness may be adjusted to 0 to 20 by adding a large amount of paraffin oil that can be used as a component, or the hardness is higher when used for automotive rubber parts such as weather strips. Therefore, the JIS-A hardness may be adjusted to 60 to 90 by increasing the resin or reducing the amount of oil.
  • the JIS-A hardness of the thermoplastic elastomer composition of the present invention is preferably adjusted to an optimum value by appropriately changing the composition according to the use, and the value is particularly limited. However, it is preferably 0 to 90, more preferably 10 to 80. If the JIS-A hardness is less than the lower limit, the oil tends to bleed. On the other hand, if it exceeds the upper limit, the rubber elasticity tends to decrease.
  • thermoplastic elastomer composition of the present invention can be used for various rubber applications by utilizing rubber elasticity, for example. Moreover, since it can improve heat resistance and recyclability, it is preferable to use it as a hot melt adhesive or as an additive contained therein.
  • the thermoplastic elastomer composition of the present invention includes automotive rubber parts, hoses, belts, sheets, anti-vibration rubbers, rollers, linings, rubberized cloths, sealing materials, gloves, fenders, medical rubbers (syringe gaskets, tubes). , Catheters), gaskets (for home appliances, construction), asphalt modifiers, hot melt adhesives, boots, grips, toys, shoes, sandals, keypads, gears, PET bottle cap liners, etc. Used.
  • the rubber parts for automobiles include, for example, tire treads, carcass, sidewalls, inner liners, undertreads, belt portions, and other tire parts; exterior radiator grilles, side moldings, garnishes (pillars, rears) , Cowl top), aero parts (air dam, spoiler), wheel cover, weather strip, cow belt grill, air outlet louver, air scoop, hood bulge, vent parts, anti-corrosion parts (over fender, side seal panel, Malls (windows, hoods, door belts)), marks, etc .; interior window frame parts such as doors, lights, wiper weatherstrips, glass runs, glass run channels; air duct hoses, radiator hoses, brake hoses; cranks Lubricating oil system parts such as shaft seal, valve stem seal, head cover gasket, A / T oil cooler hose, mission oil seal, P / S hose, P / S oil seal; fuel hose, emission control hose, inlet filler hose, diaphragms Anti-vi
  • a rubber modifier for example, as a flow preventive agent, when it is included in a resin or rubber that causes a cold flow at room temperature, it is possible to prevent a flow during extrusion or a cold flow.
  • thermoplastic elastomer composition of the present invention can have higher heat resistance and can have higher tensile properties based on the breaking strength.
  • thermoplastic elastomer composition it is possible to appropriately exhibit characteristics (for example, characteristics such as self-healing properties) required according to applications by appropriately changing the composition. In this way, by appropriately changing the composition, it is possible to appropriately exhibit the necessary characteristics in a balanced manner according to the use of the thermoplastic elastomer composition.
  • characteristics required according to the application it is preferable to appropriately change the type (composition) of the components in the composition.
  • thermoplastic elastomer composition of the present invention has been described above.
  • thermoplastic resin of the present invention that can be suitably used as a method for producing such a thermoplastic elastomer composition of the present invention.
  • a method for producing the elastomer composition will be described.
  • thermoplastic elastomer composition comprises mixing an elastomeric polymer having a cyclic acid anhydride group in the side chain, clay, and an ⁇ -olefin resin having no chemically-bonded crosslinking site.
  • the thermoplastic elastomer composition obtained in the second step has a side chain (a) containing a hydrogen-bonded crosslinking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle, and has a glass transition point of 25 ° C.
  • a composition comprising the cyclic acid anhydride is used by using the clay in such a proportion that the content of the clay in the thermoplastic elastomer composition is 20 parts by mass or less with respect to 100 parts by mass of the elastomer component.
  • an elastomeric polymer having a group in a side chain, the clay, and the ⁇ -olefin resin are mixed.
  • the first step and the second step will be described separately.
  • the first step is a step of obtaining a mixture by mixing an elastomeric polymer having a cyclic acid anhydride group in the side chain, clay, and an ⁇ -olefin resin having no chemically-bonded crosslinking site.
  • an elastomeric polymer having a cyclic acid anhydride group in the side chain means that the cyclic acid anhydride group has a chemically stable bond (covalent bond) at the atom forming the main chain of the polymer.
  • a polymer capable of forming a main chain portion of the elastomeric polymers (A) to (B) is reacted with a compound capable of introducing a cyclic acid anhydride group. Can be suitably used.
  • the glass transition point consists of a polymer below room temperature (25 degreeC). Any material may be used as long as it is made of a so-called elastomer, and is not particularly limited.
  • Examples of the polymer capable of forming the main chain portion of such elastomeric polymers (A) to (B) include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), 1, 2-butadiene rubber, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), ethylene-propylene-diene rubber (EPDM) and other diene rubbers and their hydrogenation Olefin rubbers such as ethylene-propylene rubber (EPM), ethylene-acrylic rubber (AEM), ethylene-butene rubber (EBM), chlorosulfonated polyethylene, acrylic rubber, fluororubber, polyethylene rubber, polypropylene rubber; epichlorohydride Rubber; polysulfide rubber; Examples include ricone rubber; urethane rubber;
  • the polymer capable of forming the main chain portion of the elastomeric polymers (A) to (B) may be an elastomeric polymer containing a resin component, for example, hydrogenated.
  • a resin component for example, hydrogenated.
  • Polystyrene-based elastomeric polymer for example, SBS, SIS, SEBS, etc.
  • polyolefin-based elastomeric polymer for example, SBS, SIS, SEBS, etc.
  • polyvinyl chloride-based elastomeric polymer polyurethane-based elastomeric polymer
  • polyester-based elastomeric polymer polyamide-based elastomeric polymer Etc.
  • polymers capable of forming the main chain portion of such elastomeric polymers (A) to (B) include diene rubber, hydrogenated diene rubber, olefin rubber, and hydrogenated. At least one selected from polystyrene-based elastomeric polymer, polyolefin-based elastomeric polymer, polyvinyl chloride-based elastomeric polymer, polyurethane-based elastomeric polymer, polyester-based elastomeric polymer, and polyamide-based elastomeric polymer It preferably consists of seeds.
  • a diene rubber is preferable from the viewpoint of easy introduction of a maleic anhydride group suitable as a cyclic acid anhydride group, and an olefin rubber is preferable from the viewpoint of aging resistance. preferable.
  • Examples of the compound into which the cyclic acid anhydride group can be introduced include cyclic acid anhydrides such as succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride, and derivatives thereof.
  • cyclic acid anhydride group of the elastomeric polymer having a cyclic acid anhydride group in the side chain used in the first step succinic anhydride group, maleic anhydride group, glutaric anhydride group, phthalic anhydride group Among them, a maleic anhydride group is more preferable from the viewpoint of high reactivity of the raw material and industrial availability of the raw material.
  • the elastomeric polymer having a cyclic acid anhydride group in the side chain used in the first step can form the main chain portion of the elastomeric polymer (A) to (B), for example, by a usual method.
  • a polymer may be produced by a method in which a cyclic acid anhydride is graft-polymerized under the usual conditions, for example, stirring under heating.
  • Examples of commercially available elastomeric polymers having such a cyclic acid anhydride group in the side chain include maleic anhydride-modified isoprene rubbers such as LIR-403 (manufactured by Kuraray Co., Ltd.) and LIR-410A (prototype manufactured by Kuraray Co., Ltd.).
  • Modified isoprene rubber such as LIR-410 (manufactured by Kuraray Co., Ltd.); carboxy-modified nitrile rubber such as Clinac 110, 221 and 231 (manufactured by Policer); CPIB (manufactured by Nisseki Chemical Co., Ltd.) Carboxy-modified polybutene such as Nucrel (made by Mitsui Dupont Polychemical), Yucaron (made by Mitsubishi Chemical), Tuffmer M (for example, MP0610 (made by Mitsui Chemicals), MP0620 (made by Mitsui Chemicals)), etc.
  • LIR-410 manufactured by Kuraray Co., Ltd.
  • carboxy-modified nitrile rubber such as Clinac 110, 221 and 231 (manufactured by Policer); CPIB (manufactured by Nisseki Chemical Co., Ltd.)
  • Carboxy-modified polybutene such as Nucrel (made by Mitsui Dupont Poly
  • the elastomeric polymer having a cyclic acid anhydride group in the side chain is preferably a maleic anhydride-modified elastomeric polymer.
  • a maleic anhydride-modified elastomeric polymer from the viewpoint of high molecular weight and high strength, maleic anhydride-modified ethylene-propylene rubber, anhydrous Maleic acid-modified ethylene-butene rubber is more preferable.
  • the clay used in the first step is the same as the clay described in the thermoplastic elastomer composition of the present invention (the preferred one is also the same).
  • the ⁇ -olefin-based resin having no chemically-bonded crosslinking site used in the first step is an ⁇ -olefin having no chemically-bonded crosslinking site described in the thermoplastic elastomer composition of the present invention. It is the same as the olefin resin (the preferred one is also the same).
  • an elastomeric polymer having a cyclic acid anhydride group in the side chain, clay, and an ⁇ -olefin-based resin having no chemically-bonded crosslinking site are mixed to obtain a mixture.
  • the order of addition of the elastomeric polymer having a cyclic acid anhydride group in the side chain, clay, and the ⁇ -olefin-based resin is not particularly limited. From the viewpoint of further improving the properties, after preparing a precursor of a mixture containing the ⁇ -olefin resin and an elastomeric polymer having a cyclic acid anhydride group in the side chain, clay is added to the precursor It is preferable.
  • the clay when adding clay to obtain the mixture, the clay should be added after plasticizing an elastomeric polymer having a cyclic acid anhydride group in the side chain in advance so that the clay is sufficiently dispersed. It is preferable to plasticize the mixture precursor and add clay to it.
  • the method of plasticizing the elastomeric polymer having a cyclic acid anhydride group in the side chain and the mixture precursor is not particularly limited, and for example, a temperature (that enables plasticizing them) ( For example, a method of kneading using a roll, a kneader, an extruder, a universal stirrer, or the like at about 100 to 250 ° C. can be appropriately employed.
  • Conditions such as temperature at the time of plasticizing the elastomeric polymer having such a cyclic acid anhydride group in the side chain and the mixture precursor are not particularly limited, and the type of component (for example, cyclic acid anhydride) What is necessary is just to set suitably according to the kind etc. of the elastomeric polymer which has a physical group in a side chain.
  • the clay content in the finally obtained thermoplastic elastomer composition is 20 parts by mass or less (more preferably 0.1 to 10 parts by mass) with respect to 100 parts by mass of the elastomer component. 10 parts by mass, more preferably 0.5 to 5 parts by mass, particularly preferably 1 to 3 parts by mass) using the clay, and an elastomeric polymer having the cyclic acid anhydride group in the side chain. It is preferable to mix the clay with the ⁇ -olefin resin having no chemically-bonded cross-linking site.
  • the clay content in such a mixture is preferably 20 parts by mass or less, based on 100 parts by mass of the elastomeric polymer having a cyclic acid anhydride group in the side chain, and is 0.5 to 5 parts by mass. More preferably, the amount is 1 to 3 parts by mass. If the content is less than the lower limit, the amount of clay is too small, and the effect obtained by using clay tends to be reduced.On the other hand, if the upper limit is exceeded, crosslinking is too strong, On the other hand, the elongation and strength tend to decrease. In addition, by using clay with such content, content of the clay in the thermoplastic elastomer composition finally obtained becomes a value within the said range.
  • the amount of clay used in the formation of such a mixture is as follows.
  • the amount of the clay is 0.01 g to 1 mmol of the cyclic acid anhydride group in the elastomeric polymer having the cyclic acid anhydride group in the side chain.
  • the content is preferably 2.0 g (more preferably 0.02 to 1.0 g). If the ratio of the clay to the acid anhydride group is less than the lower limit, the effect tends to be too low, whereas if the upper limit is exceeded, the crosslinking is too strong, and the elongation and strength tend to decrease. It is in.
  • the clay contained in the mixture can be efficiently decomposed, and a single-layer clay can be efficiently produced, and the dispersibility of the clay is further improved. It tends to be advanced.
  • the content of the ⁇ -olefin resin ( ⁇ -olefin resin having no chemically-bonded crosslinking site) in the finally obtained thermoplastic elastomer composition Is 250 parts by mass or less (more preferably 5 to 250 parts by mass, still more preferably 10 to 225 parts by mass, particularly preferably 25 to 200 parts by mass, most preferably 35 to 175 parts by mass) with respect to 100 parts by mass of the elastomer component. It is preferable to mix the elastomeric polymer having the cyclic acid anhydride group in the side chain, the clay, and the ⁇ -olefin resin using the ⁇ -olefin resin in such a ratio as follows. When the content of such an ⁇ -olefin resin exceeds the upper limit, mechanical properties (breaking strength, compression set) tend to be lowered. On the other hand, when the content is less than the lower limit, fluidity tends to be lowered.
  • the content of the ⁇ -olefin resin in such a mixture is 250 parts by mass or less (more preferably 5 to 250 parts by mass) with respect to 100 parts by mass of the elastomeric polymer having a cyclic acid anhydride group in the side chain.
  • Mass parts more preferably 10 to 225 parts by mass, particularly preferably 25 to 200 parts by mass, and most preferably 35 to 175 parts by mass). If such a content is less than the lower limit, mechanical properties (breaking strength, compression set) tend to decrease, and if it is less than the lower limit, fluidity tends to decrease.
  • the mixing method for obtaining such a mixture is not particularly limited, and a known method or the like can be appropriately employed.
  • a method of mixing with a roll, a kneader, an extruder, a universal stirrer, or the like is employed. be able to.
  • the paraffin oil and the styrene block copolymer having no chemical bonding cross-linking site do not have the paraffin oil and the chemical bonding cross-linking site described in the thermoplastic elastomer composition of the present invention, respectively. It is the same as the styrene block copolymer (the preferred ones are also the same).
  • an elastomeric polymer having a cyclic acid anhydride group in the side chain, clay an elastomeric polymer having a cyclic acid anhydride group in the side chain, clay.
  • the order of addition of the ⁇ -olefin resin, paraffin oil and / or styrene block copolymer having no chemically-bonded crosslinking site is not particularly limited, but the dispersibility of clay is further improved.
  • the ⁇ -olefin resin an elastomeric polymer having a cyclic acid anhydride group in the side chain, and the paraffin oil and / or the styrene block copolymer having no chemically-bonded cross-linking site.
  • the paraffin oil content is preferably 1500 parts by mass or less with respect to 100 parts by mass of the elastomer component, and in this case, with respect to 100 parts by mass of the elastomer component. It is preferably 10 to 1500 parts by weight, more preferably 10 to 1400 parts by weight, still more preferably 50 to 1200 parts by weight, particularly preferably 75 to 1100 parts by weight, Most preferably, it is 1000 parts by mass.
  • the content of the paraffin oil is more preferably 600 parts by mass or less with respect to 100 parts by mass of the elastomer component. In this case, it is more preferably 10 to 600 parts by mass, and 50 to 550 parts by mass.
  • the amount is preferably 400 parts by mass or less with respect to 100 parts by mass of the elastomer component. More preferred is 15 to 350 parts by weight, still more preferred is 20 to 300 parts by weight, and most preferred is 30 to 250 parts by weight.
  • the elastomer component, the ⁇ -olefin resin, and the styrene block are mixed with the mixture as long as the object of the present invention is not impaired.
  • polymers other than polymers reinforcing agents (fillers), fillers introduced with amino groups (hereinafter simply referred to as “amino group-introduced fillers”), amino group-containing compounds other than the amino group-introduced fillers, Compound containing metal element (hereinafter simply referred to as “metal salt”), maleic anhydride modified polymer, antioxidant, antioxidant, pigment (dye), plasticizer, thixotropic agent, ultraviolet absorber, flame retardant Further, other components such as various additives such as a solvent, a surfactant (including a leveling agent), a dispersant, a dehydrating agent, a rust preventive agent, an adhesion imparting agent, an antistatic agent, and a filler can be further contained.
  • a solvent a surfactant (including a leveling agent), a dispersant, a dehydrating agent, a rust preventive agent, an adhesion imparting agent, an antistatic agent, and a filler can be further contained.
  • thermoplastic elastomer composition by including other components in the mixture, it is possible to appropriately include such components in the finally obtained thermoplastic elastomer composition.
  • additives and the like are not particularly limited, and those commonly used can be appropriately used.
  • thermoplastic-elastomer composition of the said invention can be utilized suitably.
  • the content of such other components is preferably 500 parts by mass or less with respect to 100 parts by mass of the elastomer component when the other components are polymers and reinforcing materials (fillers). More preferred is 20 to 400 parts by mass. If the content of such other components is less than the lower limit, the effect of using the other components tends to be insufficiently expressed. On the other hand, if the content exceeds the upper limit, it depends on the type of the component used. The effect of the substrate elastomer is diminished and the physical properties tend to decrease.
  • the content of the other component is 20 with respect to 100 parts by mass of the elastomer component.
  • the amount is preferably not more than part by mass, more preferably 0.1 to 10 parts by mass. If the content of such other components is less than the lower limit, the effect of using the other components tends to be insufficient, while if the upper limit is exceeded, the reaction of the substrate elastomer is adversely affected. On the other hand, physical properties tend to decrease.
  • thermoplastic elastomer composition by adding at least one raw material compound of the mixed raw materials of the compound (II) that forms a covalent cross-linking site and reacting the polymer and the raw material compound. is there.
  • the compound (I) that forms a hydrogen bonding cross-linking site by reacting with the cyclic acid anhydride group a compound that forms the hydrogen bonding cross-linking site described in the thermoplastic elastomer composition of the present invention (nitrogen-containing complex).
  • nitrogen-containing complex a compound that forms the hydrogen bonding cross-linking site described in the thermoplastic elastomer composition of the present invention (nitrogen-containing complex).
  • the same compounds as the compound capable of introducing a ring) can be suitably used.
  • the nitrogen-containing heterocyclic ring described in the thermoplastic elastomer composition of the present invention may be used, or the nitrogen-containing compound may be used.
  • a substituent for example, a hydroxyl group, a thiol group, an amino group, etc.
  • a cyclic acid anhydride group such as maleic anhydride
  • it is possible to introduce a compound that forms both a hydrogen bonding crosslinking site and a covalent bonding site both hydrogen bonding crosslinking site and covalent bonding site can be introduced simultaneously).
  • a side chain having both a hydrogen bonding crosslinking site and a covalent bonding site can be said to be a preferred form of a side chain having a hydrogen bonding crosslinking site).
  • the compound (I) is not particularly limited, and the compound as described above depending on the type of side chain (side chain (a) or side chain (a ′)) in the target polymer.
  • a suitable compound can be appropriately selected from (I).
  • a compound (I) from the viewpoint that higher reactivity is obtained, triazole, pyridine, which may have at least one substituent selected from a hydroxyl group, a thiol group, and an amino group, It is preferably thiadiazole, imidazole, isocyanurate, triazine and hydantoin, and more preferably triazole, pyridine, thiadiazole, imidazole, isocyanurate, triazine and hydantoin having the above-mentioned substituents.
  • the triazole, isocyanurate, and triazine are more preferable, and the triazole having the substituent is particularly preferable.
  • Examples of the triazole, pyridine, thiadiazole, imidazole and hydantoin which may have such a substituent include, for example, 4H-3-amino-1,2,4-triazole, aminopyridine, aminoimidazole and aminotriazine. Aminoisocyanurate, hydroxypyridine, hydroxyethyl isocyanurate and the like.
  • the “compound that forms a covalently crosslinked site” described in the thermoplastic elastomer composition of the present invention A compound similar to “a compound that generates a covalent bond” ”can be preferably used (the same is true for the compound).
  • a compound that forms both a hydrogen bonding crosslinking site and a covalent bonding site both hydrogen bonding crosslinking site and covalent bonding site can be introduced simultaneously.
  • a side chain having both a hydrogen bonding crosslinking site and a covalent crosslinking site can be said to be a preferred form of a side chain having a covalent crosslinking site).
  • trishydroxyethyl isocyanurate, sulfamide and polyether polyol are preferable, trishydroxyethyl isocyanurate and sulfamide are more preferable, and trishydroxyethyl isocyanurate is preferable. Further preferred.
  • the compound (I) and / or (II) a compound having at least one substituent selected from a hydroxyl group, a thiol group, an amino group, and an imino group from the viewpoint of introducing a hydrogen-bonding crosslinking site. It is preferable to use it. Further, as the compound (I) and / or (II), it is possible to more efficiently introduce both a hydrogen-bonding crosslinking site and a covalent-bonding crosslinking site into the composition.
  • a compound that reacts with an anhydride group to form both a hydrogen bonding crosslinking site and a covalent crosslinking site (compound capable of simultaneously introducing both a hydrogen bonding crosslinking site and a covalent crosslinking site) It is preferable to use it.
  • the compound that forms both the hydrogen bond crosslinking site and the covalent bond site the heterocyclic ring-containing polyol, the heterocyclic ring-containing polyamine, and the heterocyclic ring-containing polythiol can be suitably used. Trishydroxyethyl isocyanurate is particularly preferred.
  • the triazole the hydroxyl group, thiol group which may have at least 1 sort (s) of a hydroxyl group, a thiol group, and an amino group
  • hydroxyl group, thiol group which may have at least one substituent among amino groups, thiadiazole, hydroxyl group, thiol group, which may have at least one substituent among amino groups
  • Isocyanurate hydroxyl group, thiol group optionally having at least one substituent of imidazole, hydroxyl group, thiol group and amino group optionally having at least one substituent of amino groups
  • a hydrocarbon compound having two or more substituents selected from hydantoin, hydroxyl group, thiol group and amino group optionally having a
  • hydrocarbon compound having at least two substituents selected from hydroxyl group, thiol group and amino group pentaerythritol, ethanedithiol, and ethanediamine are preferable, and pentaerythritol is more preferable. preferable.
  • the amount of compound (I) and compound (II) added is not particularly limited.
  • active hydrogen such as amine or alcohol
  • the amount of active hydrogen such as amine or alcohol in the compound is 20 to 250 mol% with respect to 100 mol% of the cyclic acid anhydride group.
  • the amount is preferably 50 to 150 mol%, more preferably 80 to 120 mol%. If the amount added is less than the lower limit, the amount of side chains introduced is small, it is difficult to make the crosslinking density sufficiently high, and physical properties such as tensile strength tend to be reduced. On the other hand, when the above upper limit is exceeded, the amount of the compound used is too large, the number of branches increases, and the crosslinking density tends to decrease.
  • the amount of compound (I) and compound (II) added is such that the total amount thereof (when only one compound is used, is the amount of one compound), the polymer ( The elastomeric polymer having a cyclic acid anhydride group in the side chain) is preferably from 0.1 to 10 parts by weight, more preferably from 0.3 to 7 parts by weight, based on 100 parts by weight, More preferably, it is ⁇ 5.0 parts by mass. If the amount of compound (I) and compound (II) added (the amount based on parts by mass) is less than the lower limit, the crosslinking density does not increase and the desired physical properties tend not to be exhibited. When it exceeds, it will be too many and there will be many branches, and it exists in the tendency for a crosslinking density to fall.
  • the order of adding compound (I) and compound (II) is not particularly limited, and either may be added first.
  • compound (I) is reacted with a part of the cyclic acid anhydride group of the elastomeric polymer having a cyclic acid anhydride group in the side chain. You may let them. Thereby, it is also possible to react the compound (II) with an unreacted cyclic acid anhydride group (a cyclic acid anhydride group that has not been reacted) to form a covalently crosslinked site.
  • the part mentioned here is preferably 1 mol% or more and 50 mol% or less with respect to 100 mol% of the cyclic acid anhydride group.
  • the effect of introducing a group derived from the compound (I) for example, a nitrogen-containing heterocyclic ring
  • the compound (II) is preferably reacted with the cyclic acid anhydride group so that a suitable number of covalent crosslinks (for example, 1 to 3 per molecule) is obtained.
  • the cyclic acid anhydride group of the polymer is opened, and the cyclic acid anhydride group and the raw material compound ( The compound (I) and / or compound (II)) is chemically bonded.
  • the side chain formed (introduced) by such a reaction can contain the structure represented by the above formula (2) or (3).
  • the side chain formed by such a reaction can also contain a structure represented by the above formulas (7) to (9).
  • each group (structure) of the side chain in such a polymer that is, an unreacted cyclic acid anhydride group, a structure represented by the above formulas (2), (3) and (7) to (9) Etc. can be confirmed by commonly used analytical means such as NMR and IR spectra.
  • an elastomeric polymer having a side chain (a) containing a hydrogen-bonding cross-linking site having a carbonyl-containing group and / or a nitrogen-containing heterocycle and having a glass transition point of 25 ° C. or lower (A) and at least one selected from the group consisting of an elastomeric polymer (B) containing a hydrogen-bonding cross-linking site and a covalent cross-linking site in the side chain and having a glass transition point of 25 ° C. or lower.
  • the elastomeric polymer (A) and the elastomeric polymer (B) in the thermoplastic elastomer composition thus obtained are the side chain (a), side chain (a ′), side chain ( b) and the side chain (c) each derived from a reaction with a cyclic acid anhydride group (for example, containing structures represented by the above formulas (2), (3) and (7) to (9)) Except for the side chain and the like, the elastomeric polymer (A) and the elastomeric polymer (B) described in the thermoplastic elastomer composition of the present invention are the same.
  • the elastomeric polymer having a cyclic acid anhydride group in the side chain is a maleic anhydride-modified elastomeric polymer
  • the elastomer component is a maleic anhydride-modified elastomeric polymer and at least one of a triazole, a hydroxyl group, a thiol group, and an amino group that may have at least one substituent selected from a hydroxyl group, a thiol group, and an amino group.
  • At least one of thiadiazole, hydroxyl group, thiol group and amino group which may have at least one substituent among pyridine, hydroxyl group, thiol group and amino group which may have one kind of substituent.
  • hydroxyl group, thiol group and amino group optionally having at least one substituent selected from imidazole, hydroxyl group, thiol group and amino group optionally having one substituent group At least one of triazine, hydroxyl group, thiol group and amino group optionally having at least one substituent.
  • thermoplastic elastomer composition modifies the elastomeric polymer having the cyclic acid anhydride group in the side chain (hereinafter sometimes referred to as “an acid anhydride-containing polymer”). Manufactured. In this way, by mixing the clay and the acid anhydride polymer and dispersing the clay in the acid anhydride polymer in advance, the acid anhydride group and the clay interact with each other, and the clay layer is easily peeled off.
  • the clay is an organic clay that is preferably used in the present invention (organic clay)
  • an organic substance such as an ammonium salt present between the layers interacts more efficiently with the acid anhydride.
  • the layer tends to peel easily.
  • the raw material compound functions as a cross-linking agent for forming a cross-link.
  • cross-linking agent is reacted with the cross-linking agent and the acid anhydride group.
  • at least hydrogen bonding cross-linking sites for example, carboxylic acid groups
  • interaction by hydrogen bonding is caused between the clay and the clay is further dispersed in the elastomer.
  • the clay is sufficiently dispersed, and the clay and the hydrogen bonding cross-linking site interact to form a uniform surface cross-linking site. Therefore, the present inventors speculate that sufficient heat resistance can be obtained.
  • the ⁇ -olefin resin is contained together with the clay and the elastomer component in the resulting thermoplastic elastomer composition. Since the ⁇ -olefin resin is a substance having high crystallinity, the present inventors infer that it can exhibit high fluidity due to a change in crystal structure by heating.
  • the obtained thermoplastic elastomer composition has sufficiently high heat resistance and breaking strength, and has compression set resistance and hardness sufficiently usable as a rubber product.
  • the present inventors infer that the fluidity at the time of heating can be imparted.
  • thermoplastic elastomer composition obtained by the present invention can contain a single layer of clay in the composition.
  • a measurement point having a size of 5.63 ⁇ m 2 above any three points on the surface of the thermoplastic elastomer composition is measured with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • 50% or more (more preferably 70% or more, still more preferably 80 to 100%, particularly preferably 85 to 100%) of the total clay is based on the number at all measurement points. It can also be present as a layer of clay. When the abundance of such a single layer of clay is less than the lower limit, the elongation at break and the strength at break tend to decrease.
  • the proportion of clay in the form of a single layer (single-layer clay) in the thermoplastic elastomer composition is more efficiently set to the above-mentioned suitable proportion.
  • the clay interacts with the cyclic acid anhydride group, making it possible to more efficiently peel off the layers of the multilayered clay, and the clay is in a single layer state.
  • thermoplastic elastomer composition containing an elastomeric polymer (A) as an elastomer component and a thermoplastic elastomer composition containing an elastomeric polymer (B) as an elastomer component, respectively.
  • thermoplastic elastomer composition containing the elastomeric polymers (A) and (B) as an elastomer component.
  • thermoplastic elastomer composition containing a combination of elastomeric polymers (A) and (B) as an elastomer component
  • the ratio of the elastomeric polymer (A) and the elastomeric polymer (B) is appropriately changed.
  • desired characteristics can be exhibited by appropriately changing the ratio of the hydrogen-bonding cross-linking site and the covalent cross-linking site existing in the composition.
  • thermoplastic elastomer composition thus obtained can be suitably used, for example, for various rubber applications by utilizing its rubber elasticity, for example, a hot melt adhesive or an additive contained therein, an automobile, Rubber parts, hoses, belts, sheets, anti-vibration rubber, rollers, linings, rubberized cloth, sealing materials, gloves, fenders, medical rubber (syringe gaskets, tubes, catheters), gaskets (for home appliances, construction) ), Asphalt modifiers, hot melt adhesives, boots, grips, toys, shoes, sandals, keypads, gears, PET bottle cap liners, and the like.
  • a hot melt adhesive or an additive contained therein an automobile, Rubber parts, hoses, belts, sheets, anti-vibration rubber, rollers, linings, rubberized cloth, sealing materials, gloves, fenders, medical rubber (syringe gaskets, tubes, catheters), gaskets (for home appliances, construction) ), Asphalt modifiers, hot melt adhesives, boots, grips, toys, shoes, sandal
  • thermoplastic elastomer composition of the present invention includes, for example, electricity / electronics, home appliances, chemicals, pharmaceuticals, glass, earth and stone, steel, non-ferrous metals, machinery, precision equipment, cosmetics, textiles, mining, pulp, paper, Architecture / Civil / Construction, Food / Beverage, Consumer Goods / Service, Transportation Equipment, Construction Machinery, Electrical Equipment, Equipment (Industry, Air Conditioning, Hot Water Supply, Energy Farm), Metal, Media, Information, Communication Equipment, Lighting, Display It is useful as a material for manufacturing various rubber parts used in fields such as agriculture, fishery, forestry, fishery, agribusiness, biotechnology, and nanotechnology.
  • thermoplastic elastomer composition of the present invention As mentioned above, as one of the methods that can be suitably used for producing the thermoplastic elastomer composition of the present invention, the production of the thermoplastic elastomer composition of the present invention including the first step and the second step described above. Although the method was demonstrated, the method which can be utilized suitably for manufacturing the thermoplastic-elastomer composition of this invention is not limited to this.
  • the method for producing the thermoplastic elastomer composition of the present invention can be suitably used when the elastomer component is the reactant (I).
  • the elastomer component is used as the reactant (II) as an elastomer.
  • thermoplastic elastomer composition When producing a thermoplastic elastomer composition as a component, a hydroxyl group-containing elastomeric polymer is used in place of the elastomeric polymer having a cyclic acid anhydride group in the side chain used in the first step, and the second step.
  • the method for producing the thermoplastic elastomer composition of the present invention is the same as that of the present invention except that a compound having two or more substituents selected from a carboxy group and an alkoxysilyl group is used instead of the raw material compound to be used. A method may be adopted.
  • thermoplastic elastomer composition of the present invention except that the type of elastomeric polymer used in the first step and the type of raw material compound are changed as appropriate.
  • a thermoplastic elastomer composition containing the reactants (II) to (VI) as an elastomer component can be appropriately produced.
  • thermoplastic elastomer composition obtained in each example and each comparative example First, a method for evaluating the characteristics of the thermoplastic elastomer composition obtained in each example and each comparative example will be described.
  • melt flow rate (MFR)> Using the thermoplastic elastomer compositions obtained in each Example and each Comparative Example, the melt flow rate (MFR, unit: g / 10) in accordance with the method B described in JIS K6922-2 (issued in 2010) Minute). That is, using the thermoplastic elastomer compositions obtained in each Example and each Comparative Example, using the product name “Melt Indexer G-01” manufactured by Toyo Seiki Seisakusho as the melt flow rate measuring device, the furnace of the device After 3 g of the thermoplastic elastomer composition was added to the body, the temperature was maintained at 230 ° C. for 5 minutes, and then maintained at 230 ° C.
  • Example 47 and Examples 51 to 54 and comparison In Example 17 and Comparative Examples 21 to 24, the load condition was changed to 5 kg, and in Examples 48 to 50 and Comparative Examples 18 to 20, the load condition was changed to 2.16 kg.
  • melt flow rate (MFR, unit: g / 10 min) of the ⁇ -olefin resin (PP, PE, EBM) used in each example and each comparative example is changed from 230 ° C. to 190 ° C. Aside from changing the load from 10 kg to 2.16 kg, the same measurement method as the measurement method of the melt flow rate (MFR, unit: g / 10 min) of the thermoplastic elastomer composition was employed.
  • thermoplastic elastomer compositions obtained in each Example and each Comparative Example were hot-pressed at 200 ° C. for 10 minutes to prepare a sheet having a thickness of about 2 mm. .
  • the sheets thus obtained were punched into a disk shape having a diameter of 29 mm, and seven sheets were stacked, so that samples were prepared so that the height (thickness) was 12.5 ⁇ 0.5 mm.
  • compression set (unit:%) after 25% compression with a dedicated jig and left at 70 ° C. for 22 hours was measured according to JIS K6262 (issued in 2013). did.
  • a trade name “vulcanized rubber compression set SCM-1008L” manufactured by Dumbbell Co., Ltd. was used as a compression device.
  • thermogravimetric measuring device TGA
  • thermoplastic elastomer compositions obtained in each Example and each Comparative Example were hot-pressed at 200 ° C. for 10 minutes to prepare a sheet having a thickness of 2 mm.
  • thermoplastic elastomer composition was hot-pressed at 200 ° C. for 10 minutes to prepare a sheet having a thickness of 2 mm.
  • No. 3 dumbbell-shaped test piece from the sheet obtained subjected to a tensile test at a tensile rate of 500 mm / min in conformity with JIS K6251 (published in 2010), strength at break (T B) [Units : MPa] and elongation at break (E B ) [unit:%] were measured at room temperature (25 ° C.).
  • thermoplastic elastomer compositions obtained in each Example and each Comparative Example first, the thermoplastic elastomer composition was hot-pressed at 200 ° C. for 10 minutes to prepare a sheet having a thickness of about 2 mm. . Next, the sheet thus obtained was punched into a disk shape having a diameter of 29 mm, and seven sheets were overlapped to prepare a sample so that the height (thickness) was 12.5 ⁇ 0.5 mm. Using the sample thus obtained, JIS-A hardness was measured in accordance with JIS K6253 (issued in 2012).
  • styrene block copolymer (styrene-ethylene-butylene-styrene block copolymer (SEBS): trade name “G1633” manufactured by Clayton Co., Ltd., molecular weight: 400,000 to 500,000, styrene content: 30 mass%) 50 g was introduced into a pressure kneader and kneaded at 200 ° C., while paraffin oil (trade name “Super Oil M Series P500S” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 472 mm 2 / s, Cp value: 68.7%, aniline point: 123 ° C.) was dropped, and styrene-ethylene-butylene-styrene block copolymer and paraffin oil were mixed for 1 minute.
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • maleic anhydride-modified ethylene-butene copolymer (maleinized EBM: trade name “Tuffmer MH5040”, crystallinity: 4%) manufactured by Mitsui Chemicals, Inc., ⁇ -olefin resin is added in the pressure kneader.
  • Polypropylene (PP: trade name “PWH00N” manufactured by Sun Allomer Co., Ltd., crystallinity: 62%, MFR: 500 g / 10 min (2.16 kg, 190 ° C.), weight average molecular weight (Mw): 200000) 100 g and aging Further, 0.3 g of an inhibitor (trade name “AO-50” manufactured by Adeka) was added, and the mixture was masticated at a temperature of 200 ° C. for 2 minutes to prepare a first mixture (a mixture containing PP and maleated EBM). Obtained. In addition, the said 1st mixture was plasticized by this mastication process.
  • a first mixture a mixture containing PP and maleated EBM
  • organoclay (trade name “Kunifil D-36” manufactured by Kunimine Kogyo Co., Ltd.) is further added to the first mixture in the pressure kneader and kneaded at 200 ° C. for 4 minutes. A second mixture was obtained.
  • thermoplastic elastomer composition 2.62 g of trishydroxyethyl isocyanurate (trade name “Tanac” manufactured by Nissei Sangyo Co., Ltd.) is added to the second mixture in the pressure kneader, and mixed at 200 ° C. for 8 minutes. A composition was prepared. Table 1 shows the evaluation results and the like of the properties of the obtained thermoplastic elastomer composition.
  • side chain (i) A side chain containing a structure represented by the following formula (26) (hereinafter sometimes simply referred to as “side chain (i)”), a side chain containing a structure represented by the following formula (27) ( Hereinafter, in some cases, simply referred to as “side chain (ii)”) and a side chain containing a structure represented by the following formula (28) (hereinafter, sometimes simply referred to as “side chain (iii)”).
  • An elastomeric polymer mainly having the side chain (iii) is formed (note that the side chain (i) to (iii) are stoichiometrically determined from the raw materials used). If considered, side chain (iii) is mainly formed It is clear that the side chain (i) and / or the side chain (ii) can be formed depending on the position of the side chain of the polymer, etc. Hereinafter, it is formed by reaction based on the raw materials used. In some cases, the type of the side chain that is considered to be the side chain (iii) is simply referred to as “the elastomeric polymer mainly having the side chain (iii)”. Further, it was found that such an elastomeric polymer has a glass transition point of 25 ° C. or lower because the main chain is composed of ethylene and butene.
  • thermoplastic elastomer composition was obtained in the same manner as in Example 1 except that the type of ⁇ -olefin resin was changed and an ⁇ -olefin resin described later was used instead of polypropylene (PP). As is clear from the description of the production method, the thermoplastic elastomer compositions obtained in Examples 1 to 4 have the same composition except for the type of ⁇ -olefin resin. .
  • Table 1 shows the evaluation results of the properties of the thermoplastic elastomer composition obtained in each Example.
  • Polyethylene PE: trade name “UJ790” manufactured by Nippon Polyethylene Co., Ltd., crystallinity: 74%, MFR: 50 g / 10 min (2.16 kg, 190 ° C.), Mw: 120,000
  • Ethylene-butene copolymer EBM: trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals, Inc., crystallinity: 10%, MFR: 35 g / 10 min (2.16 kg, 190
  • thermoplastic elastomer composition was obtained in the same manner as in Example 1 except that 2.62 g of a trade name “Tanac” manufactured by the manufacturer was added and mixed at 200 ° C. for 8 minutes (except that no organic clay was used). .
  • Table 1 shows the evaluation results and the like of the properties of the obtained thermoplastic elastomer composition.
  • thermoplastic elastomer compositions (Examples 1 to 4 and Comparative Example 1)
  • the composition of the thermoplastic elastomer composition obtained in Example 4 and the composition of the thermoplastic elastomer composition obtained in Comparative Example 1 are the presence or absence of organoclay. Only is different.
  • the organoclay is contained in the thermoplastic elastomer composition (Example 4)
  • the organoclay is not used. Since the 5% weight loss temperature is higher than that of (Comparative Example 1), the thermoplastic elastomer composition of the present invention (Example 4) can obtain higher heat resistance. confirmed.
  • thermoplastic elastomer composition (Example 4) of this invention from the evaluation result of the characteristic of the thermoplastic elastomer composition obtained in Example 4 and the thermoplastic elastomer composition obtained in Comparative Example 1, It was confirmed that the breaking strength was higher than that in the case where the organic clay was not used (Comparative Example 1). Furthermore, from the evaluation results of the properties of the thermoplastic elastomer composition obtained in Example 4 and the thermoplastic elastomer composition obtained in Comparative Example 1, in the thermoplastic elastomer composition of the present invention (Example 4), It was confirmed that the fluidity (MFR) and the resistance to compression set were further improved.
  • MFR fluidity
  • thermoplastic elastomer composition of the present invention (Example 4).
  • heat resistance, fluidity, compression set resistance, and mechanical properties (breaking strength) can all be advanced by using clay, and these properties are sufficiently advanced. It has been found that it is possible to obtain a composition having a well-balanced level.
  • thermoplastic elastomer compositions (Examples 1 to 4) of the present invention all have heat resistance based on a 5% weight loss temperature as compared with the thermoplastic elastomer composition obtained in Comparative Example 1.
  • the fracture strength was higher.
  • the breaking strength could be further improved by changing the type of ⁇ -olefin resin.
  • the values of compression set and hardness are sufficient to be used as rubber products. I understand.
  • thermoplastic elastomer composition having higher heat resistance and breaking strength, sufficient workability (fluidity) and compression set resistance. It was confirmed that a product was obtained.
  • styrene block copolymer styrene-ethylene-butylene-styrene block copolymer (SEBS): trade name “G1633” manufactured by Clayton Co., Ltd., molecular weight: 400,000 to 500,000, styrene content: 30 mass%) 50 g was introduced into a pressure kneader and kneaded at 200 ° C., while paraffin oil (trade name “Super Oil M Series P500S” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 472 mm 2 / s, Cp value: 68.7%, aniline point: 123 ° C.) was dropped, and styrene-ethylene-butylene-styrene block copolymer and paraffin oil were mixed for 1 minute.
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • maleic anhydride-modified ethylene-butene copolymer maleinized EBM: trade name “Tuffmer MH5020”, crystallinity: 4%) manufactured by Mitsui Chemicals, Inc.
  • ⁇ -olefin resin in the pressure kneader 100 g of ethylene-butene copolymer (EBM: trade name “Tafmer DF7350” manufactured by Mitsui Chemicals, Inc., crystallinity: 10%, MFR: 35 g / 10 minutes (2.16 kg, 190 ° C.), Mw: 100,000)
  • anti-aging agent trade name “AO-50” manufactured by Adeka Co., Ltd.
  • the first mixture a mixture containing EBM and maleated EBM.
  • the said 1st mixture was plasticized by this mastication process.
  • 2 g of organoclay (trade name “Kunifil D-36” manufactured by Kunimine Kogyo Co., Ltd.) is further added to the first mixture in the pressure kneader and kneaded at 200 ° C. for 4 minutes. A second mixture was obtained.
  • thermoplastic elastomer composition has a glass transition point of 25 ° C. or lower because the main chain is composed of ethylene and butene.
  • Table 2 shows the evaluation results of the properties of the obtained thermoplastic elastomer composition.
  • thermoplastic elastomer composition was obtained in the same manner as in Example 5 except that 100 g was changed to 75 g (Example 6), 50 g (Example 7), and 25 g (Example 8), respectively.
  • the thermoplastic elastomer compositions obtained in Examples 5 to 8 have the same composition except that the content of ⁇ -olefin resin is different. is there.
  • Table 2 shows the evaluation results and the like of the properties of the thermoplastic elastomer composition obtained in each Example.
  • thermoplastic Elastomer Composition (Examples 5 to 8)
  • the elastomer component the elastomeric polymer mainly having the side chain (iii)
  • EBM ⁇ -olefin resin
  • clay organized clay
  • the thermoplastic elastomer compositions of the present invention contained had sufficiently high heat resistance such that the 5% weight loss temperature was 340 ° C. or higher.
  • the thermoplastic elastomer compositions (Examples 5 to 8) of the present invention have a sufficiently high level of breaking strength of 5.1 MPa or more.
  • thermoplastic elastomer composition of the present invention (Examples 5 to 8) can provide sufficiently high heat resistance and breaking strength. Further, from the results shown in Table 2, according to the thermoplastic elastomer composition of the present invention (Examples 5 to 8), sufficiently high heat resistance and breaking strength can be obtained, as well as fluidity and compression resistance during heating. It was found that the permanent set was sufficient, and a composition having various properties in a well-balanced manner was obtained.
  • thermoplastic elastomer composition of the present invention (Examples 5 to 8)
  • heat resistance, fluidity, compression set resistance, and mechanical properties were obtained. It was found that all of the (breaking strength) can be made to a sufficient level, and these characteristics can be made well balanced at a sufficiently high level.
  • thermoplastic elastomer compositions obtained in Examples 5 to 8 the ⁇ -olefin resin ethylene-butene copolymer (EBM: trade name “Tuffmer DF7350 manufactured by Mitsui Chemicals, Inc.) ”, Crystallinity: 10%, MFR: 35 g / 10 minutes (2.16 kg, 190 ° C.), Mw: 100,000), but in each example, heat resistance, fluidity, compression resistance permanent The strain and the mechanical properties (breaking strength) were well balanced at a sufficiently high level.
  • EBM trade name “Tuffmer DF7350 manufactured by Mitsui Chemicals, Inc.”
  • Example 5 the amount of EBM used is 100 parts by mass with respect to 100 parts by mass of maleated EBM). Part), the fluidity (MFR) and hardness can be made higher, and the amount of ⁇ -olefin resin (EBM) used is 25 g, 50 g, or 75 g (Examples).
  • Example 6 to 8 When the amount of EBM used is 25 to 75 parts by mass with respect to 100 parts by mass of maleated EBM), the breaking strength can be further increased.
  • thermoplastic elastomer composition of the present invention has a sufficiently high level of heat resistance, fluidity, compression set resistance, and mechanical properties (breaking strength), and the intended use. It has been found that the design can be appropriately changed and used, for example, by appropriately changing the amount of ⁇ -olefin resin (EBM) used so that the characteristics according to the above can be improved.
  • styrene block copolymer styrene-ethylene-butylene-styrene block copolymer (SEBS): trade name “G1633” manufactured by Clayton Co., Ltd., molecular weight: 400,000 to 500,000, styrene content: 30 mass%) 200 g was added to a pressure kneader and 400 g of paraffin oil (trade name “Super Oil M Series P500S” manufactured by JX Nippon Oil & Energy Corporation) was dropped into the pressure kneader while kneading at 200 ° C. -Ethylene-butylene-styrene block copolymer and paraffin oil were mixed for 1 minute.
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • maleic anhydride-modified ethylene-butene copolymer (maleinized EBM: trade name “Tuffmer MH5040”, crystallinity: 4%) manufactured by Mitsui Chemicals, Inc., ⁇ -olefin resin is added in the pressure kneader.
  • Polyethylene (PE: trade name “HJ590N” manufactured by Nippon Polyethylene Co., Ltd., crystallinity: 74%, MFR: 40 g / 10 min (2.16 kg, 190 ° C.), Mw: 70000), 200 g and an anti-aging agent (ADEKA) Further, 0.3 g of a trade name “AO-50” manufactured by the company was added and masticated at a temperature of 200 ° C. for 2 minutes to obtain a first mixture (a mixture containing PE and maleated EBM). In addition, the said 1st mixture was plasticized by this mastication process.
  • organoclay (trade name “Kunifil D-36” manufactured by Kunimine Kogyo Co., Ltd.) is further added to the first mixture in the pressure kneader and kneaded at 200 ° C. for 4 minutes. A second mixture was obtained.
  • thermoplastic elastomer composition has a glass transition point of 25 ° C. or lower because the main chain is composed of ethylene and butene.
  • Table 3 shows the evaluation results of the properties of the obtained thermoplastic elastomer composition.
  • thermoplastic elastomer composition 200 g of ⁇ -olefin resin (PE: trade name “HJ590N” manufactured by Nippon Polyethylene Co., Ltd., crystallinity: 74%, MFR: 40 g / 10 min (2.16 kg, 190 ° C.), Mw: 70000) From each of the examples, the thermoplasticity was changed to 150 g (Example 10), 100 g (Example 11), 75 g (Example 12), and 50 g (Example 13). An elastomer composition was obtained. As is clear from the description of such production methods, the thermoplastic elastomer compositions obtained in Examples 9 to 13 have the same composition except that the content of ⁇ -olefin resin is different. is there. Table 3 shows the evaluation results of the properties of the thermoplastic elastomer composition obtained in each Example.
  • PE trade name “HJ590N” manufactured by Nippon Polyethylene Co., Ltd., crystallinity: 74%, MFR: 40 g
  • thermoplastic elastomer compositions obtained in Examples 9 to 13 were measured as follows. That is, first, 40 g of the thermoplastic elastomer composition obtained in Examples 9 to 13 was press-molded with a thickness of 2 mm so as to have a smooth surface, and a measurement sample was prepared. Infrared absorption spectrum (infrared attenuated total reflection (FTIR ⁇ )) in a wave number range of 400 to 4000 cm ⁇ 1 by total reflection measurement (ATR) method using an IR measurement apparatus (“NICOLET 380” manufactured by Thermo Co.). ATR) spectrum) was measured.
  • FTIR ⁇ infrared attenuated total reflection
  • C—H of the olefin resin (the ⁇ -olefin resin (PE) contained in the composition and the olefin copolymer of the main chain of the elastomer component) is obtained.
  • the peak absorption intensity (A) near the wavelength 2920 cm ⁇ 1 derived from the stretching vibration and the peak absorption intensity (B) near the wavelength 1695 cm ⁇ 1 derived from the carbonyl group in the isocyanurate ring were obtained, and these The intensity ratio ([absorption intensity (B)] / [absorption intensity (A)]) was determined.
  • the obtained results are also shown in Table 3.
  • thermoplastic Elastomer Composition (Examples 9 to 13)
  • the elastomer component the elastomeric polymer mainly having the side chain (iii)
  • PE ⁇ -olefin resin
  • clay organized clay
  • the thermoplastic elastomer compositions of the present invention contained, the 5% weight loss temperature was 335 ° C. or higher, and it was found that sufficiently high heat resistance was achieved.
  • the thermoplastic elastomer compositions (Examples 9 to 13) of the present invention were of a sufficiently high level that the breaking strength was 4.7 MPa or more.
  • thermoplastic elastomer composition of the present invention can provide a sufficiently high level of compression set resistance as a rubber product. Furthermore, it was confirmed that the thermoplastic elastomer compositions (Examples 9 to 13) of the present invention all had fluidity when heated and had sufficient processability. Furthermore, it was also confirmed that the thermoplastic elastomer compositions (Examples 9 to 13) of the present invention have a hardness that can be sufficiently used as a rubber product.
  • thermoplastic elastomer composition of the present invention can provide sufficiently high heat resistance and breaking strength.
  • thermoplastic elastomer composition of the present invention (Examples 9 to 13), as described above, sufficiently high heat resistance and breaking strength can be obtained, as well as fluidity during heating and compression set resistance. It has also been found that it is possible to have sufficient performance, and that each of these performances can be sufficiently balanced.
  • thermoplastic elastomer composition of the present invention (Examples 9 to 13), heat resistance, fluidity, compression set resistance, and mechanical properties (breaking strength) ) Can be of sufficient level, and it has been found that these characteristics can be sufficiently balanced at a sufficiently high level.
  • thermoplastic elastomer compositions obtained in Examples 9 to 13 the ⁇ -olefin resin polyethylene (PE: trade name “HJ590N” manufactured by Nippon Polyethylene Co., Ltd., crystallinity: 74%, MFR: 40 g / 10 minutes (2.16 kg, 190 ° C.), Mw: 70000), but as described above, in any of the examples, heat resistance, fluidity, compression set resistance, and machine The characteristic of the mechanical characteristics (breaking strength) was well balanced at a sufficiently high level.
  • the amount of ⁇ -olefin resin (PE) used is less than 100 g (when less than 100 parts by mass with respect to 100 parts by mass of maleated EBM).
  • the compression set is less than 20%, and it is confirmed that the resistance to compression set is further enhanced, and the amount of ⁇ -olefin resin (PE) used is 100 g or more.
  • the MFR was 20 g / 10 min or more, and it was confirmed that higher fluidity was obtained.
  • the breaking strength and hardness can be set to higher values. I understand.
  • thermoplastic elastomer composition of the present invention has a sufficiently high level of heat resistance, fluidity, compression set resistance, and mechanical properties (breaking strength), and the intended use. It is possible to change the design appropriately according to the application, for example, by changing the amount of ⁇ -olefin resin (EBM) used appropriately so that the characteristics corresponding to the above etc. become higher. I understood that.
  • EBM ⁇ -olefin resin
  • Example 14 First, 50 g of a styrene block copolymer (styrene-ethylene-butylene-styrene block copolymer (SEBS): trade name “G1633” manufactured by Clayton Co., Ltd.) was put into a pressure kneader and kneaded at 200 ° C. 100 g of paraffin oil (trade name “P200” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 75 mm 2 / s, Cp value: 67.9%, aniline point: 109 ° C.) was dropped into the pressure kneader.
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • styrene-ethylene-butylene-styrene block copolymer and paraffin oil were mixed for 1 minute.
  • maleic anhydride-modified ethylene-butene copolymer maleinized EBM: trade name “Tuffmer MH5040” manufactured by Mitsui Chemicals, Inc., crystallinity: 4%) 100 g, polypropylene (PP: sunalomer)
  • PP polypropylene
  • VMD81M manufactured by the company, 100 g of crystallinity: 60%
  • an anti-aging agent trade name “AO-50” manufactured by Adeka
  • a first mixture (mixture of SEBS, paraffin oil, maleated EBM, PP and anti-aging agent) was obtained by kneading. In addition, the said 1st mixture was plasticized by this mastication process. Next, 2 g of organoclay (trade name “Kunifil D-36” manufactured by Kunimine Kogyo Co., Ltd.) is further added to the first mixture in the pressure kneader and kneaded at 200 ° C. for 4 minutes. A second mixture was obtained.
  • organoclay trade name “Kunifil D-36” manufactured by Kunimine Kogyo Co., Ltd.
  • thermoplastic elastomer composition 2.62 g of trishydroxyethyl isocyanurate (trade name “Tanac” manufactured by Nissei Sangyo Co., Ltd.) was added to the second mixture and mixed at 200 ° C. for 8 minutes to prepare a thermoplastic elastomer composition.
  • a thermoplastic elastomer composition from the result of infrared spectroscopic analysis of the raw material compound used, the maleic anhydride group in the maleic anhydride-modified ethylene-butene copolymer reacted with trishydroxyethyl isocyanurate. It can be seen that this is an elastomeric polymer mainly having the side chain (iii) (the side chains (i) to (iii) can be included).
  • thermoplastic elastomer composition has a glass transition point of 25 ° C. or lower because the main chain is composed of ethylene and butene.
  • Table 4 shows the evaluation results of the properties of the obtained thermoplastic elastomer composition.
  • thermoplastic elastomer composition was obtained in the same manner as in Example 14, except that the type of paraffin oil was changed and each of the following paraffin oils was used. As is apparent from the description of such production methods, the thermoplastic elastomer compositions obtained in Examples 14 to 17 have the same composition except for the type of paraffin oil. Table 4 shows the evaluation results of the properties of the obtained thermoplastic elastomer composition.
  • ⁇ Paraffin oil used in Example 15> Product name “Super Oil M Series P400” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 156 mm 2 / s, Cp value: 68.1%, aniline point: 113 ° C.
  • ⁇ Paraffin oil used in Example 16 Trade name “Diana Process Oil PW380” manufactured by Idemitsu Kosan Co., Ltd., kinematic viscosity: 380 mm 2 / s, Cp value: 68.0%, aniline point: 143 ° C.
  • ⁇ Paraffin oil used in Example 17 JX Nippon Oil & Energy Co., Ltd. under the trade name "Super oil M Series P500S”, kinematic viscosity: 472mm 2 / s, Cp value: 68.7%, aniline point: 123 °C.
  • Example 18 First, 50 g of a styrene block copolymer (styrene-ethylene-butylene-styrene block copolymer (SEBS): trade name “G1633” manufactured by Clayton Co., Ltd.) was put into a pressure kneader and kneaded at 200 ° C.
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • organoclay (trade name “Kunifil D-36” manufactured by Kunimine Kogyo Co., Ltd.) is further added to the precursor of the mixture in the pressure kneader and kneaded at 200 ° C. for 4 minutes. A mixture was obtained.
  • thermoplastic elastomer composition does not contain paraffin oil.
  • a product was prepared.
  • a thermoplastic elastomer composition was obtained in the same manner as in Example 14 except that paraffin oil was not used.
  • the thermoplastic elastomer composition obtained in Example 18 and the thermoplastic elastomer composition obtained in Examples 14 to 17 contain paraffin oil.
  • the composition is the same except that it is not.
  • Table 4 shows the evaluation results of the properties of the obtained thermoplastic elastomer composition.
  • thermoplastic Elastomer Composition (Examples 14 to 18)
  • the elastomer component the elastomeric polymer mainly having the side chain (iii)
  • PP ⁇ -olefin resin
  • clay organized clay
  • the thermoplastic elastomer compositions of the present invention contained, the 5% weight loss temperature was 337 ° C. or higher, and it was found that sufficiently high heat resistance was achieved.
  • the thermoplastic elastomer compositions (Examples 14 to 18) of the present invention were of a sufficiently high level such that the breaking strength was 3.5 MPa or more.
  • thermoplastic elastomer compositions (Examples 14 to 18) of the present invention can provide sufficient compression set resistance and hardness as rubber products. Furthermore, it was confirmed that the thermoplastic elastomer compositions of the present invention (Examples 14 to 18) all had fluidity when heated and had sufficient processability.
  • thermoplastic elastomer composition of the present invention (Examples 14 to 18) can provide sufficiently high heat resistance and breaking strength.
  • thermoplastic elastomer compositions obtained in Examples 14 to 18 when the paraffin oil was used (Examples 14 to 17), the MFR value was dramatically improved, and the higher It was found that good fluidity can be achieved. Further, from the results of the characteristic evaluation of the thermoplastic elastomer compositions obtained in Examples 14 to 18, when paraffin oil is used (Examples 14 to 17), the compression set value is set to a smaller value. I also found that I can do it. Further, from the results of the characteristic evaluation of the thermoplastic elastomer compositions obtained in Examples 14 to 17, the higher the kinematic viscosity of the paraffin oil to be added, the smaller the compression set and the higher the compression resistance.
  • thermoplastic elastomer composition of the present invention the presence or absence of the additive component and its type (the type of paraffin oil) are used so that the required properties according to the intended application and the like become more advanced. It has been found that it is possible to change the design as appropriate according to the application, for example, by appropriately changing the above.
  • thermoplastic elastomer composition was obtained in the same manner as in Example 4 except that the type of paraffin oil was changed and paraffin oil described later was used.
  • the thermoplastic elastomer compositions obtained in Examples 19 to 21 are the thermoplastic elastomers obtained in Example 4 except that the type of paraffin oil is different.
  • the composition is the same as the composition.
  • Table 5 shows the evaluation results of the properties of the obtained thermoplastic elastomer composition.
  • ⁇ Paraffin oil used in Example 19> Product name “Super Oil M Series P200” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 75 mm 2 / s, Cp value: 67.9%, aniline point: 109 ° C.
  • ⁇ Paraffin oil used in Example 21> Trade name “Diana Process Oil PW380” manufactured by Idemitsu Kosan Co., Ltd., kinematic viscosity: 380 mm 2 / s, Cp value: 68.0%, aniline point: 143 ° C.
  • thermoplastic elastomer composition was the same as in Example 4, except that aroma oil (trade name “T-DAE” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 32 mm 2 / s) was used instead of paraffin oil. I got a thing.
  • aroma oil trade name “T-DAE” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 32 mm 2 / s
  • the thermoplastic elastomer composition obtained in Example 22 is the same as the thermoplastic elastomer composition obtained in Example 4 except that the type of oil is different.
  • the composition is the same.
  • Table 5 shows the evaluation results of the properties of the obtained thermoplastic elastomer composition.
  • Example 23 Thermoplastic elastomer in the same manner as in Example 4 except that naphthenic oil (trade name “Grade 200” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 1.56 mm 2 / s) was used instead of paraffin oil. A composition was obtained. As is clear from the description of such a production method, the thermoplastic elastomer composition obtained in Example 23 is the same as the thermoplastic elastomer composition obtained in Example 4 except that the type of oil is different. The composition is the same. Table 5 shows the evaluation results of the properties of the obtained thermoplastic elastomer composition.
  • naphthenic oil trade name “Grade 200” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 1.56 mm 2 / s
  • Table 5 also shows the evaluation results of the characteristics of the thermoplastic elastomer composition obtained in Example 4 and Comparative Example 1.
  • thermoplastic elastomer compositions (Examples 4 and 19 to 23) of the present invention had a breaking strength of 4.2 MPa or more, which was a sufficiently high level. It was also confirmed that the thermoplastic elastomer compositions (Examples 14 to 18) of the present invention can provide sufficient compression set resistance and hardness as rubber products. Furthermore, it was confirmed that the thermoplastic elastomer compositions of the present invention (Examples 4 and 19 to 23) all had fluidity when heated and had sufficient processability.
  • thermoplastic elastomer composition of the present invention can provide sufficiently high heat resistance and breaking strength, and can be used as a rubber product. It has also been found that sufficient compression set resistance and hardness possible are obtained.
  • thermoplastic elastomer compositions obtained in Examples 4 and 19 to 23 when paraffin oil was used as the oil (Examples 4 and 19 to 21), other oils were used. Compared to the case of using a kind (Examples 22 to 23), the MFR value is higher, and further higher fluidity can be achieved, and the compression strain resistance can be made higher. It was confirmed that Further, from the results of the characteristic evaluation of the thermoplastic elastomer compositions obtained in Example 4 and Examples 19 to 21, the higher the kinematic viscosity of the paraffin oil to be added, the smaller the compression set, and the more It was also found to have a high compression set resistance.
  • Example 24 First, 50 g of a styrene block copolymer (styrene-ethylene-butylene-styrene block copolymer (SEBS): trade name “G1633” manufactured by Clayton Co., Ltd.) was put into a pressure kneader and kneaded at 200 ° C.
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • paraffin oil (trade name “Super Oil M Series P200” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 75 mm 2 / s, Cp value: 67.9%, aniline point: 109 ° C.) 100 g was added dropwise, and styrene-ethylene-butylene-styrene block copolymer and paraffin oil were mixed for 1 minute.
  • maleic anhydride-modified ethylene-butene copolymer maleinized EBM: trade name “Tuffmer MH5040” manufactured by Mitsui Chemicals, crystallinity: 4%) 100 g, ethylene-propylene copolymer 100 g of combined (EPM: trade name “Tafmer PN20300” manufactured by Mitsui Chemicals, Inc., crystallinity: 12%) and 0.3 g of an anti-aging agent (trade name “AO-50” manufactured by Adeka) were further added to the temperature. The mixture was masticated at 200 ° C.
  • a first mixture a mixture of SEBS, paraffin oil, maleated EBM, EPM and anti-aging agent.
  • the said 1st mixture was plasticized by this mastication process.
  • 2 g of organoclay (trade name “Kunifil D-36” manufactured by Kunimine Kogyo Co., Ltd.) is further added to the first mixture in the pressure kneader and kneaded at 200 ° C. for 4 minutes. A second mixture was obtained.
  • thermoplastic elastomer composition contains the elastomeric polymer which mainly has the side chain (iii) as mentioned above from the result of the infrared spectroscopy analysis of the used raw material compound. Further, it was found that such an elastomeric polymer has a glass transition point of 25 ° C. or lower because the main chain is composed of ethylene and butene.
  • Table 6 shows the evaluation results and the like of the properties of the obtained thermoplastic elastomer composition.
  • thermoplastic elastomer composition was obtained in the same manner as in Example 24 except that the type of paraffin oil was changed and each of the following paraffin oils was used in each example. Table 6 shows the evaluation results and the like of the properties of the obtained thermoplastic elastomer composition.
  • ⁇ Paraffin oil used in Example 25> Product name “Super Oil M Series P400” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 156 mm 2 / s, Cp value: 68.1%, aniline point: 113 ° C.
  • ⁇ Paraffin oil used in Example 26 Trade name “Diana Process Oil PW380” manufactured by Idemitsu Kosan Co., Ltd., kinematic viscosity: 380 mm 2 / s, Cp value: 68.0%, aniline point: 143 ° C.
  • ⁇ Paraffin oil used in Example 27> Product name “Super Oil M Series P500S” manufactured by JX Nippon Oil & Energy, Kinematic viscosity: 472 mm 2 / s, Cp value: 68.7%, Aniline point: 123 ° C.
  • thermoplastic Elastomer Composition (Examples 24 to 27)
  • the elastomer component the elastomeric polymer mainly having the side chain (iii)
  • EPM ⁇ -olefin resin
  • clay organized clay
  • thermoplastic elastomer composition of the present invention (Examples 24 to 27)
  • the breaking strength was 4.0 MPa or more, and it was confirmed that sufficiently high breaking strength was obtained.
  • thermoplastic elastomer composition of the present invention (Examples 24 to 27) can provide sufficient compression set resistance and hardness usable as a rubber product.
  • thermoplastic elastomer compositions of the present invention (Examples 24 to 27) all had fluidity when heated and had sufficient processability.
  • thermoplastic elastomer composition of the present invention can provide sufficiently high heat resistance and breaking strength.
  • thermoplastic elastomer composition of the present invention provides sufficiently high heat resistance and breaking strength, and has a sufficient balance between fluidity during heating and compression set resistance. I found out that it would have.
  • thermoplastic elastomer composition of the present invention it is possible to further enhance the properties required depending on the application by appropriately using paraffin oil as an additive component. I understood.
  • styrene block copolymer styrene-ethylene-butylene-styrene block copolymer (SEBS): trade name “G1633” manufactured by Clayton Co., Ltd., molecular weight: 400,000 to 500,000, styrene content: 30 mass%) 50 g was added to a pressure kneader and 100 g of paraffin oil (trade name “Super Oil M Series P500S” manufactured by JX Nippon Oil & Energy Corporation) was dropped into the pressure kneader while kneading at 200 ° C. -Ethylene-butylene-styrene block copolymer and paraffin oil were mixed for 1 minute.
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • maleic anhydride-modified ethylene-butene copolymer (maleinized EBM: trade name “Toughmer MH5040”, crystallinity: 4%) manufactured by Mitsui Chemicals, Inc., ethylene-butene copolymer is added to the pressure kneader.
  • the mixture (EBM: trade name “Tafmer DF7350” manufactured by Mitsui Chemicals, Ltd., crystallinity: 10%) 75 g and anti-aging agent (trade name “AO-50” manufactured by Adeka) 0.3 g are further added, and the temperature is increased.
  • the mixture was masticated at 200 ° C.
  • a first mixture (a mixture containing EBM and maleated EBM).
  • the said 1st mixture was plasticized by this mastication process.
  • 1 g of organoclay (trade name “Kunifil D-36” manufactured by Kunimine Kogyo Co., Ltd.) is further added to the first mixture in the pressure kneader and kneaded at 200 ° C. for 4 minutes. A second mixture was obtained.
  • thermoplastic elastomer composition contains the elastomeric polymer which mainly has the side chain (iii) as mentioned above from the result of the infrared spectroscopy analysis of the used raw material compound. Further, it was found that such an elastomeric polymer has a glass transition point of 25 ° C. or lower because the main chain is composed of ethylene and butene.
  • Table 7 shows the evaluation results and the like of the properties of the obtained thermoplastic elastomer composition.
  • thermoplastic elastomer composition was obtained in the same manner as in Example 28, except that the type of styrene block copolymer was changed and a styrene block copolymer described later was used in each example.
  • the thermoplastic elastomer compositions obtained in Examples 28 to 32 have the same composition except for the type of styrene block copolymer.
  • Table 7 shows the evaluation results of the properties of the thermoplastic elastomer composition obtained in each Example.
  • ⁇ Styrene block copolymer used in Example 29> SEBS: trade name “G1641” manufactured by Clayton Co., Ltd., molecular weight: 250,000-350,000, styrene content: 33% by mass ⁇ Styrene block copolymer used in Example 30> SEBS: trade name “G1651” manufactured by Clayton Co., Ltd., molecular weight: 250,000-350,000, styrene content: 33% by mass ⁇ Styrene block copolymer used in Example 31> SEEPS: Kuraray's product name “4077”, molecular weight: 400,000 to 500,000, styrene content: 30% by mass ⁇ Styrene block copolymer used in Example 32> SEEPS: trade name “4099” manufactured by Kuraray Co., Ltd., molecular weight: 500,000 to 600,000, styrene content: 30% by mass.
  • styrene block copolymer styrene-ethylene-butylene-styrene block copolymer (SEBS): trade name “G1633” manufactured by Clayton Co., Ltd., molecular weight: 400,000 to 500,000, styrene content: 30 mass%) 50 g was added to a pressure kneader and 100 g of paraffin oil (trade name “Super Oil M Series P500S” manufactured by JX Nippon Oil & Energy Corporation) was dropped into the pressure kneader while kneading at 200 ° C. -Ethylene-butylene-styrene block copolymer and paraffin oil were mixed for 1 minute.
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • maleic anhydride-modified ethylene-butene copolymer (maleinized EBM: trade name “Toughmer MH5040”, crystallinity: 4%) manufactured by Mitsui Chemicals, Inc., ethylene-butene copolymer is added to the pressure kneader.
  • the mixture (EBM: trade name “Tafmer DF7350” manufactured by Mitsui Chemicals, Ltd., crystallinity: 10%) 75 g and anti-aging agent (trade name “AO-50” manufactured by Adeka) 0.3 g are further added, and the temperature is increased.
  • the mixture was masticated at 200 ° C.
  • thermoplastic elastomer composition a thermoplastic elastomer composition.
  • thermoplastic Elastomer Composition (Examples 28 to 32 and Comparative Example 2)
  • the elastomer component the elastomeric polymer mainly having the side chain (iii)
  • EBM ⁇ -olefin resin
  • clay organized clay
  • the 5% weight loss temperature was 340 ° C. or higher.
  • the thermoplastic elastomer composition containing no clay (organized clay) Comparative Example 2
  • the 5% weight loss temperature was 319 ° C. From these results, it was found that according to the thermoplastic elastomer composition of the present invention (Examples 28 to 32), the heat resistance based on the 5% weight loss temperature becomes higher.
  • thermoplastic elastomer composition of the present invention containing the elastomer component (the elastomeric polymer mainly having the side chain (iii)), the ⁇ -olefin resin (EBM), and clay (organized clay).
  • the breaking strength is 4.0 MPa or more, which is higher than that of the thermoplastic elastomer composition not containing clay (organized clay) (Comparative Example 2). It was confirmed that the breaking strength was obtained. It was also confirmed that the thermoplastic elastomer compositions (Examples 28 to 32) of the present invention have sufficient compression set resistance that can be used as rubber products and have sufficient hardness. Furthermore, it was confirmed that the thermoplastic elastomer compositions of the present invention (Examples 28 to 32) all had fluidity when heated and had sufficient processability.
  • thermoplastic elastomer composition of the present invention can provide sufficiently high heat resistance and breaking strength. Further, in the thermoplastic elastomer composition of the present invention (Examples 28 to 32), sufficiently high heat resistance and breaking strength are obtained, and the fluidity during heating and the compression set resistance are well balanced. I found out that it would have. That is, from the results shown in Table 7, according to the thermoplastic elastomer composition of the present invention (Examples 28 to 32), the heat resistance, fluidity, compression set resistance, and mechanical properties (breaking strength) were improved. It has been found that both can be of a sufficient level, and that these characteristics can be provided at a sufficiently high level in a well-balanced manner.
  • thermoplastic elastomer composition obtained in Example 28 when comparing the composition of the thermoplastic elastomer composition obtained in Example 28 and the thermoplastic elastomer composition obtained in Comparative Example 2, only the presence or absence of organic clay is different as the composition. In consideration of the difference in composition and the results shown in Table 7, when the organoclay is contained in the thermoplastic elastomer composition (Example 28), the organoclay is not used. It can also be seen that the values of breaking strength and breaking elongation are higher than those of (Comparative Example 2), and higher tensile properties can be obtained (a composition that is more easily stretched and has higher resistance to elongation can be obtained). It was.
  • thermoplastic elastomer composition of the present invention can have sufficiently high heat resistance and breaking strength. Further, in the thermoplastic elastomer composition of the present invention, the composition is appropriately changed according to the intended use or the like (for example, the content of the ⁇ -olefin resin is appropriately changed, or the additive component (styrene block copolymer) is changed. It has also been found that the characteristics required for the application can be used as more advanced ones by appropriately changing the type and amount of use of the coalescence etc.).
  • styrene block copolymer styrene-ethylene-butylene-styrene block copolymer (SEBS): trade name “G1633” manufactured by Clayton Co., Ltd., molecular weight: 400,000 to 500,000, styrene content: 30% by mass
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • paraffin oil trade name “Super Oil M Series P500S” manufactured by JX Nippon Oil & Energy Corporation, kinematic viscosity: 472 mm 2 / s, Cp value: 68.7%, aniline point: 123 ° C.
  • maleic anhydride-modified ethylene-butene copolymer maleinized EBM: trade name “Toughmer MH5040”, crystallinity: 4%, manufactured by Mitsui Chemicals, Inc.
  • ⁇ -olefin resin in the pressure kneader Ethylene-butene copolymer (trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals, Inc., crystallinity: 10%, MFR: 35 g / 10 minutes (2.16 kg, 190 ° C.), Mw: 100,000) 7 .5 g and an antioxidant (trade name “AO-50” manufactured by Adeka Co., Ltd.) 0.0778 g are further added, and the mixture is kneaded for 2 minutes at a temperature of 200 ° C.
  • thermoplastic elastomer composition 0.102 g of pentaerythritol (trade name “Neuraiser P” manufactured by Nippon Synthetic Chemical Co., Ltd.) is added to the second mixture in the pressure kneader, and mixed at 200 ° C. for 8 minutes to obtain a thermoplastic elastomer composition.
  • Table 8 shows the composition of the obtained thermoplastic elastomer composition
  • Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed becomes a reaction product of the maleic anhydride-modified ethylene-butene copolymer and pentaerythritol, and the side chain is in the maleic anhydride-modified ethylene-butene copolymer. It is formed by a reaction between an acid anhydride group and a hydroxyl group in pentaerythritol. Therefore, a cross-linked structure including a carboxylic acid ester group is formed in the side chain (the side chain is a side chain including both a hydrogen-bonded cross-linked site and a covalent-bonded cross-linked site).
  • Example 34 Instead of using 10 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), 10 g of hydroxyl-terminated polybutadiene (trade name “Polybd R-45HT” manufactured by Idemitsu Kosan Co., Ltd., hydroxyl group equivalent: 1400) is used, and pentaerythritol is used.
  • maleic anhydride-modified ethylene-butene copolymer maleinized EBM
  • 10 hydroxyl-terminated polybutadiene trade name “Polybd R-45HT” manufactured by Idemitsu Kosan Co., Ltd., hydroxyl group equivalent: 1400
  • pentaerythritol is used.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 33 except that 597 g was used and the amount of the anti-aging agent (trade name “AO-50” manufactured by Adeka) was changed from 0.0778 g to 0.0782 g. Prepared.
  • Table 8 shows the composition of the obtained thermoplastic elastomer composition, and Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed becomes a reaction product of the hydroxyl-terminated polybutadiene and 2,6-pyridinedicarboxylic acid, and the side chain has a hydroxyl group at the terminal of polybutadiene and 2,6-pyridinedicarboxylic acid. It is formed by reaction with a carbonyl group in the acid. Therefore, a cross-linked structure including a pyridine ring and a carboxylic acid ester group is formed in the side chain (the side chain is a side chain including both a hydrogen bond cross-link site and a covalent bond cross-link site).
  • Example 35 Instead of using 10 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), 10 g of carboxy group-containing polyisoprene (trade name “LIR-410” manufactured by Kuraray Co., Ltd., carboxy equivalent: 4000) was used, and pentaerythritol ( Ethylene-butene copolymer using 0.218 g of trishydroxyethyl isocyanurate (trade name “Tanac” manufactured by Nissei Sangyo Co., Ltd.) instead of using 0.102 g of trade name “Neuiser P” manufactured by Nippon Synthetic Chemical Co., Ltd.
  • thermoplastic elastomer composition instead of using 7.5 g of EBM (trade name “Tafmer DF7350” manufactured by Mitsui Chemicals), 15 g of high-density polyethylene (HDPE: product name “HJ590N” manufactured by Nippon Polyethylene) was used, and an anti-aging agent (manufactured by ADEKA) Used product name “AO-50”) from 0.0778 g to 0.0853 g Except for the further, the same procedure as in Example 33, was prepared a thermoplastic elastomer composition. Table 8 shows the composition of the obtained thermoplastic elastomer composition, and Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed becomes a reaction product of the carboxy group-containing polyisoprene and trishydroxyethyl isocyanurate, and the side chain is a polyisoprene carboxy group and trishydroxyethyl isocyanurate. It is formed by reaction with a hydroxyl group. Therefore, a cross-linked structure including an isocyanurate ring and a carboxylic ester group is formed in the side chain (the side chain is a side chain including both a hydrogen-bonded cross-linked site and a covalent-bonded cross-linked site).
  • thermoplastic elastomer composition was prepared in the same manner as in Example 35 except that the amount of the agent (trade name “AO-50” manufactured by Adeka Corporation) was changed from 0.0853 g to 0.0852 g.
  • Table 8 shows the composition of the obtained thermoplastic elastomer composition, and Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed becomes a reaction product of the carboxy group-containing polyisoprene and pentaerythritol, and the side chain is formed by the reaction of the carboxy group of polyisoprene and the hydroxyl group in pentaerythritol.
  • the side chain is a side chain containing both a hydrogen-bonded cross-linked site and a covalent-bonded cross-linked site.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 35 except that 0.234 g of the name “benzoguanamine”) was used.
  • Table 8 shows the composition of the obtained thermoplastic elastomer composition
  • Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed is a reaction product of the carboxy group-containing polyisoprene and 2,4-diamino-6-phenyl-1,3,5-triazine, and the side chain is polyisoprene. And the amino group (—NH 2 ) in 2,4-diamino-6-phenyl-1,3,5-triazine. Therefore, a cross-linked structure including a triazine ring in the side chain and a binding site represented by an amide bond (formula: -CONH-) is formed (the side chain is formed of a hydrogen-bonding cross-linking site and a covalent cross-linking site. Side chains including both.)
  • Example 38 Instead of using 0.218 g of trishydroxyethyl isocyanurate (trade name “Tanac” manufactured by Nissei Sangyo Co., Ltd.), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate (manufactured by SC Organic Chemical Co., Ltd.) was used.
  • thermoplastic elastomer composition instead of using 0.438 g and 15 g of high-density polyethylene (HDPE: trade name “HJ590N” manufactured by Nippon Polyethylene), ethylene-butene copolymer (EBM: trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals, Inc.) 7
  • HDPE high-density polyethylene
  • EBM ethylene-butene copolymer
  • Table 8 shows the composition of the obtained thermoplastic elastomer composition
  • Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer formed in this way is a reaction product of the carboxy group-containing polyisoprene and tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, and the side chain of polyisoprene is It is formed by the reaction of a carboxy group with a thiol group (—SH) in tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate.
  • —SH thiol group
  • a cross-linked structure including an isocyanurate ring and a thioester (group represented by the formula: —CO—S—) in the side chain is formed (the side chain includes a hydrogen-bonding cross-linking site and a covalent-bonding cross-linking site). It becomes a side chain containing both.
  • Example 39 Instead of using 10 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), 10 g of amino group-containing polyethyleneimine (trade name “Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd., amine value: 18 mmol / g) was used.
  • maleinized EBM maleic anhydride-modified ethylene-butene copolymer
  • amino group-containing polyethyleneimine trade name “Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd., amine value: 18 mmol / g
  • thermoplastic elastomer composition was prepared in the same manner as in Example 33 except that the amount was changed from 0.086 g to 0.0866 g.
  • Table 8 shows the composition of the obtained thermoplastic elastomer composition
  • Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed is a reaction product of the amino group-containing polyethyleneimine and 2,6-pyridinedicarboxylic acid, and the side chain is the amino group of polyethyleneimine and 2,6-pyridine. It is formed by reaction with a carboxy group in dicarboxylic acid. Therefore, a cross-linked structure including a pyridine ring and a bonding site represented by an amide bond (formula: -CONH-) in the side chain is formed (both the side chain is a hydrogen-bonding cross-linking site and a covalent bonding cross-linking site. A side chain containing).
  • Example 40 Instead of using 1.504 g of 2,6-pyridinedicarboxylic acid (trade name “2,6-pyridinedicarboxylic acid” manufactured by Air Water), tris- (2,3-epoxypropyl) -isocyanurate (Nissan Chemical) Instead of using 1.784 g of high density polyethylene (HDPE: trade name “HJ590N” manufactured by Nippon Polyethylene) and using ethylene-butene copolymer (EBM: trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals).
  • HDPE high density polyethylene
  • EBM ethylene-butene copolymer
  • Example 39 was used in the same manner as in Example 39 except that 7.5 g was used and the amount of the anti-aging agent (trade name “AO-50” manufactured by Adeka) was changed from 0.0866 g to 0.0794 g.
  • An elastomer composition was prepared. Table 8 shows the composition of the obtained thermoplastic elastomer composition, and Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed is a reaction product of the amino group-containing polyethyleneimine and tris- (2,3-epoxypropyl) -isocyanurate, and the side chain is the amino group of polyethyleneimine.
  • the side chain is the amino group of polyethyleneimine.
  • a cross-linked structure including an isocyanurate ring, a hydroxyl group (—OH group), and an imino group is formed in the side chain (the side chain includes both a hydrogen-bonded cross-linked site and a covalent-bonded cross-linked site) Become.).
  • Example 41 Instead of using 10 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), 10 g of alkoxysilyl group-containing polyethylene (trade name “Linklon” manufactured by Mitsubishi Chemical Co., Ltd., alkoxy group equivalent: 10000) was used, and pentaerythritol was used. (Instead of using 0.102 g of a product name “Neuiser P” manufactured by Nippon Synthetic Chemical Co., Ltd.), 0.087 g of trishydroxyethyl isocyanurate (trade name “Tanac” manufactured by Nissei Sangyo Co., Ltd.) was used.
  • thermoplastic elastomer composition instead of using 7.5 g of coalescence (EBM: trade name “Tafmer DF7350” manufactured by Mitsui Chemicals), 15 g of high density polyethylene (HDPE: trade name “HJ590N” manufactured by Nippon Polyethylene) is used, and an anti-aging agent (manufactured by ADEKA) Used product name “AO-50”) from 0.0778 g to 0.0852 Was changed to, in the same manner as in Example 33, was prepared a thermoplastic elastomer composition. Table 8 shows the composition of the obtained thermoplastic elastomer composition, and Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed becomes a reaction product of the alkoxysilyl group-containing polyethylene and trishydroxyethyl isocyanurate, and the side chain is contained in the alkoxysilyl group contained in the polyethylene and trishydroxyethyl isocyanurate. Formed by reaction with the hydroxyl group. Therefore, a cross-linked structure including an isocyanurate ring and a silyloxy bond (—O—Si—O—) is formed in the side chain (the side chain includes both a hydrogen-bonded cross-linked site and a covalent-bonded cross-linked site). It becomes a chain.)
  • thermoplastic elastomer composition was prepared in the same manner as in Example 41 except that the amount used (trade name “AO-50” manufactured by Adeka) was changed from 0.0852 g to 0.0851 g.
  • Table 8 shows the composition of the obtained thermoplastic elastomer composition, and Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed becomes a reaction product of the alkoxysilyl group-containing polyethylene and pentaerythritol, and the side chain is formed by a reaction between the alkoxysilyl group contained in the polyethylene and the hydroxyl group in pentaerythritol. It will be formed. Therefore, a cross-linked structure including a silyloxy bond (—O—Si—O—) and a hydroxyl group is formed in the side chain (the side chain includes both a hydrogen-bonded cross-linked site and a covalent cross-linked site) become.).
  • Example 43 Instead of using 10 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), 10 g of alkoxysilyl group-containing polyethylene (trade name “Linkron” manufactured by Mitsubishi Chemical Corporation) was used, and pentaerythritol (manufactured by Nippon Synthetic Chemical Co., Ltd.) was used.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 33 except that the amount of the anti-aging agent (trade name “AO-50” manufactured by Adeka) was changed from 0.0778 g to 0.0777 g.
  • Table 8 shows the composition of the obtained thermoplastic elastomer composition, and Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed is a reaction product of the alkoxysilyl group-containing polyethylene and 2,4-diamino-6-phenyl-1,3,5-triazine, and the side chain is the polyethylene.
  • Example 44 Instead of using 10 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), 10 g of epoxidized styrene-butadiene block copolymer (trade name “Epofriend” manufactured by Daicel, epoxy equivalent: 1000) is used.
  • maleinized EBM maleic anhydride-modified ethylene-butene copolymer
  • epoxidized styrene-butadiene block copolymer trade name “Epofriend” manufactured by Daicel, epoxy equivalent: 1000
  • 2,4-diamino-6-phenyl-1,3,5-triazine (trade name “manufactured by Nippon Shokubai Co., Ltd.”) instead of using 0.102 g of pentaerythritol (trade name “Neulizer P” manufactured by Nippon Synthetic Chemical Co., 0.936g of benzoguanamine ”) and 7.5g of ethylene-butene copolymer (EBM: trade name” Tuffmer DF7350 "manufactured by Mitsui Chemicals) are used instead of high density polyethylene (HDPE: trade name” made by Nippon Polyethylene ").
  • HDPE high density polyethylene
  • thermoplastic elastomer composition 15g of HJ590N ") and anti-aging agent (trade name" AO-50 "manufactured by Adeka)
  • a thermoplastic elastomer composition was prepared in the same manner as in Example 33 except that the amount was changed from 0.0778 g to 0.086 g.
  • Table 8 shows the composition of the obtained thermoplastic elastomer composition
  • Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed becomes a reaction product of the epoxidized product of the styrene-butadiene block copolymer and 2,4-diamino-6-phenyl-1,3,5-triazine
  • the side chain is formed by a reaction between the epoxy group contained in the epoxidized product and the amino group in 2,4-diamino-6-phenyl-1,3,5-triazine. Therefore, a cross-linked structure including a triazine ring, a hydroxyl group, and an imino bond is formed in the side chain (the side chain is a side chain including both a hydrogen-bonded cross-linked site and a covalent-bonded cross-linked site).
  • thermoplastic elastomer composition was prepared in the same manner as in Example 33 except that the amount of the agent (trade name “AO-50” manufactured by Adeka) was changed from 0.0778 g to 0.0793 g.
  • Table 8 shows the composition of the obtained thermoplastic elastomer composition, and Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed becomes a reaction product of the epoxidized product of the styrene-butadiene block copolymer and tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate,
  • the chain is formed by a reaction between an epoxy group contained in the epoxidized product and an amino group in tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate.
  • a cross-linked structure including a hydroxyl group, a thioether bond, and an isocyanurate ring is formed in the side chain (the side chain is a side chain including both a hydrogen-bonded cross-linked site and a covalent-bonded cross-linked site).
  • Example 46 Instead of using 10 g of maleic anhydride-modified ethylene-butene copolymer (maleinized EBM), 10 g of hydroxyl-terminated polybutadiene (trade name “Polybd R-45HT” manufactured by Idemitsu Kosan Co., Ltd., hydroxyl group equivalent: 1400) is used, and pentaerythritol is used. In place of using 0.102 g (trade name “Neuiser P” manufactured by Nippon Synthetic Chemical Co., Ltd.) A thermoplastic elastomer composition was prepared in the same manner as in Example 33 except that the amount of -50 ") was changed from 0.0778 g to 0.0783 g. Table 8 shows the composition of the obtained thermoplastic elastomer composition, and Table 10 shows the evaluation results of the characteristics.
  • the elastomeric polymer thus formed is a reaction product of the hydroxyl-terminated polybutadiene and m-xylylene diisocyanate, and the side chain is the hydroxyl group at the terminal of polybutadiene and the isocyanate in m-xylylene diisocyanate. It is formed by reaction with a group. Therefore, a cross-linked structure including a benzene ring and a urethane bond is formed in the side chain (the side chain is a side chain including both a hydrogen bond cross-linked site and a covalent bond cross-linked site).
  • thermoplastic elastomer composition for comparison was prepared in the same manner as in Examples 33 to 46, respectively, except that the organoclay was not used.
  • Table 9 shows the composition of the obtained thermoplastic elastomer composition, and Table 10 shows the evaluation results of the characteristics.
  • thermoplastic elastomer composition of the present invention (Examples 33 to 46) containing an elastomer component, an ⁇ -olefin resin (EBM or HDPE), and an organized clay
  • EBM or HDPE ⁇ -olefin resin
  • thermoplastic elastomer composition of the present invention (Examples 33 to 46) was compared.
  • the 5% weight loss temperature is 337 ° C.
  • thermoplastic elastomer compositions not containing the organized clay Comparative Examples 3 to 16
  • the 5% weight loss temperature is 322 ° C. It was below (below 325 ° C.). From these results, it was found that according to the thermoplastic elastomer composition of the present invention (Examples 33 to 46), the heat resistance based on the 5% weight loss temperature becomes higher.
  • thermoplastic elastomer composition of the present invention (Examples 33 to 46) containing an elastomer component, an ⁇ -olefin resin (EBM or HDPE), and an organized clay, and containing no organized clay. Comparing with the thermoplastic elastomer compositions for comparison of the same composition (Comparative Examples 3 to 16), respectively, the thermoplastic elastomer compositions of the present invention (Examples 33 to 46) do not contain organoclay. It was confirmed that a higher breaking strength can be obtained than the thermoplastic elastomer composition (Comparative Examples 3 to 16).
  • thermoplastic elastomer compositions of the present invention (Examples 33 to 46)
  • sufficient compression set resistance usable as rubber products can be obtained. It was also confirmed that it has sufficient hardness.
  • thermoplastic elastomer compositions of the present invention (Examples 33 to 46) all had fluidity when heated and had sufficient processability.
  • thermoplastic elastomer composition of the present invention (Examples 33 to 46) can have sufficiently high heat resistance and breaking strength.
  • styrene block copolymer styrene-ethylene-butylene-styrene block copolymer (SEBS): trade name “G1633” manufactured by Clayton Co., Ltd., molecular weight: 400,000 to 500,000, styrene content: 30% by mass
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • paraffin oil trade name “Diana Process Oil PW380”, manufactured by Idemitsu Kosan Co., Ltd., kinematic viscosity: 380 mm 2 / s, Cp value
  • maleic anhydride-modified ethylene-butene copolymer maleinized EBM: trade name “Toughmer MH5040”, crystallinity: 4%, manufactured by Mitsui Chemicals, Inc.
  • ⁇ -olefin resin in the pressure kneader Ethylene-butene copolymer (trade name “Tuffmer DF7350” manufactured by Mitsui Chemicals, Inc., crystallinity: 10%, MFR: 35 g / 10 minutes (2.16 kg, 190 ° C.), Mw: 100,000) 7 .5 g and an anti-aging agent (trade name “AO-50” manufactured by Adeka Co., Ltd.) 0.078 g were further added, and the mixture was kneaded at a temperature of 180 ° C.
  • thermoplastic elastomer composition 0.262 g of trishydroxyethyl isocyanurate (trade name “Tanac” manufactured by Nissei Sangyo Co., Ltd.) is added to the second mixture in the pressure kneader, and mixed at 180 ° C. for 8 minutes. A composition was prepared. Table 11 shows the evaluation results of the composition and properties of the obtained thermoplastic elastomer composition.
  • the elastomeric polymer thus formed becomes a reaction product of the maleic anhydride-modified ethylene-butene copolymer and the trishydroxyethyl isocyanurate, and the side chain is maleic anhydride-modified ethylene-butene copolymer. It is formed by the reaction between the acid anhydride group in the coalescence and the hydroxyl group in trishydroxyethyl isocyanurate. Therefore, a cross-linked structure including a carboxylic acid ester group is formed in the side chain (the side chain is a side chain including both a hydrogen-bonded cross-linked site and a covalent-bonded cross-linked site).
  • thermoplastic elastomer composition was prepared in the same manner as in Example 47, except that the amount of anti-aging agent and the amount of paraffin oil used were changed to the amounts shown in Table 11, respectively.
  • Table 11 shows the results of evaluating the composition and properties of the thermoplastic elastomer composition.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 47 except that the amount of anti-aging agent, the amount of paraffin oil and the amount of styrene block copolymer (SEBS) were changed to the amounts shown in Table 11. Prepared. Table 11 shows the results of evaluating the composition and properties of the thermoplastic elastomer composition.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 47 except that the amount was changed from 40 g to 100 g and the amount of the antioxidant was changed from 0.078 g to 0.143 g. Table 11 shows the results of evaluating the composition and properties of the thermoplastic elastomer composition.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 51 except that the amount of the antioxidant used and the amount of polyethylene used were changed to the amounts shown in Table 11. Table 11 shows the results of evaluating the composition and properties of the thermoplastic elastomer composition.
  • thermoplastic elastomer composition was prepared in the same manner as in Example 51 except that it was added after a minute. Table 11 shows the results of evaluating the composition and properties of the thermoplastic elastomer composition.
  • Example 54 The amount of the antioxidant used, the amount of polyethylene, the amount of styrene block copolymer (SEBS) and the amount of paraffin oil were changed to the amounts shown in Table 11, and the black color masterbatch (trade name “Nippon Pigment” A thermoplastic elastomer composition was prepared in the same manner as in Example 51 except that 0.3 g of “Nippisun”) was added 4 minutes after the addition of trishydroxyethyl isocyanurate. Table 11 shows the results of evaluating the composition and properties of the thermoplastic elastomer composition.
  • thermoplastic elastomer composition for comparison was prepared in the same manner as in Examples 47 to 54, respectively, except that the organic clay was not used. And Comparative Example 17, Example 48 and Comparative Example 18, Example 49 and Comparative Example 19, Example 50 and Comparative Example 20, Example 51 and Comparative Example 21, and Example 52. And Comparative Example 22, Example 53 and Comparative Example 23, and Example 54 and Comparative Example 24 have the same composition.) Table 12 shows the composition and evaluation results of the thermoplastic elastomer composition for comparison.
  • thermoplastic elastomer composition of the present invention (Examples 47 to 54) containing an elastomer component, an ⁇ -olefin resin (EBM or HDPE), and an organized clay.
  • thermoplastic elastomer composition for comparison of the same composition (Comparative Examples 17 to 24) except that no organoclay was contained, respectively, the thermoplastic elastomer composition of the present invention (Examples 47 to 54), the 5% weight reduction temperature is 344 ° C.
  • thermoplastic elastomer composition containing no organoclay (Comparative Examples 17 to 24) has a 5% weight reduction temperature.
  • thermoplastic elastomer composition of the present invention (Examples 47 to 54), the heat resistance based on the 5% weight loss temperature becomes higher.
  • thermoplastic elastomer composition of the present invention (Examples 47 to 54) containing an elastomer component, an ⁇ -olefin resin (EBM or HDPE), and an organized clay, and the organoclay was not contained. Comparing with the thermoplastic elastomer compositions for comparison of the same composition (Comparative Examples 17 to 24), respectively, the thermoplastic elastomer compositions of the present invention (Examples 47 to 54) do not contain organoclay. It was confirmed that higher breaking strength can be obtained than the thermoplastic elastomer composition (Comparative Examples 17 to 24).
  • thermoplastic elastomer compositions of the present invention all had sufficient compression set resistance. Furthermore, it was confirmed that the thermoplastic elastomer compositions of the present invention (Examples 47 to 54) all had fluidity when heated and had sufficient processability. Further, since the thermoplastic elastomer compositions obtained in Examples 48 to 51 have a very high heat resistance while having a hardness of 10 or less, for example, gaskets, packings, stoppers, 3D printers, etc. It can also be suitably used for materials. Thus, from the results shown in Tables 11 and 12, it was also found that the thermoplastic elastomer composition of the present invention can be used by changing its composition, such as hardness, by changing its composition.
  • thermoplastic elastomer composition capable of having sufficiently high heat resistance and breaking strength, and a method for producing the same.
  • thermoplastic elastomer composition of the present invention can exhibit various properties as described above in a well-balanced manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、 前記エラストマー成分100質量部に対して20質量部以下の含有比率のクレイと、 化学結合性の架橋部位を有さないα-オレフィン系樹脂と、 を含有してなる熱可塑性エラストマー組成物。

Description

熱可塑性エラストマー組成物及びその製造方法
 本発明は、熱可塑性エラストマー組成物並びにその製造方法に関する。
 熱可塑性エラストマーは、その成形加工時に加工温度で溶融し、周知の樹脂成形法で成形することが可能であることから、産業上極めて有用な材料である。
 このような熱可塑性エラストマーとしては、例えば、特開2006-131663号公報(特許文献1)においては、カルボニル含有基および含窒素複素環を有する水素結合性架橋部位を含有する側鎖と、共有結合性架橋部位を含有する他の側鎖とを有するガラス転移点が25℃以下のエラストマー性ポリマーからなる熱可塑性エラストマーが開示されている。しかしながら、このような特許文献1に記載の熱可塑性エラストマーは、耐熱性及び破断強度の点では必ずしも十分なものではなかった。
特開2006-131663号公報
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、十分に高度な耐熱性及び破断強度を有することを可能とする熱可塑性エラストマー組成物、並びに、その製造方法を提供することを目的とする。
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、前記エラストマー成分100質量部に対して20質量部以下の含有比率のクレイと、化学結合性の架橋部位を有さないα-オレフィン系樹脂とを含有せしめることにより、得られる熱可塑性エラストマー組成物を、十分に高度な耐熱性及び破断強度を有するものとすることが可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明の熱可塑性エラストマー組成物は、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 前記エラストマー成分100質量部に対して20質量部以下の含有比率のクレイと、
 化学結合性の架橋部位を有さないα-オレフィン系樹脂と、
を含有してなるものである。
 上記本発明の熱可塑性エラストマー組成物としては、前記α-オレフィン系樹脂の含有比率が、前記エラストマー成分100質量部に対して5~250質量部であることが好ましい。
 また、上記本発明の熱可塑性エラストマー組成物としては、前記α-オレフィン系樹脂が、ポリプロピレン、ポリエチレン、エチレン-ブテン共重合体及びエチレン-プロピレン共重合体からなる群から選択される少なくとも1種であることが好ましく、ポリプロピレン、ポリエチレン及びエチレン-プロピレン共重合体からなる群から選択される少なくとも1種であることがより好ましい。
 さらに、上記本発明の熱可塑性エラストマー組成物としては、前記α-オレフィン系樹脂のJIS K6922-2(2010年発行)に準拠して測定される、190℃、2.16kg荷重におけるメルトフローレート(MFR)が40g/10分以上であることが好ましい。
 また、上記本発明の熱可塑性エラストマー組成物としては、前記エラストマー性ポリマー(B)の側鎖に含有される水素結合性架橋部位が、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位であることが好ましい。
 また、上記本発明の熱可塑性エラストマー組成物としては、前記クレイが、ケイ素及びマグネシウムを主成分とするクレイ、並びに、有機化クレイからなる群から選択される少なくとも1種であることが好ましく、有機化クレイであることがより好ましい。
 さらに、上記本発明の熱可塑性エラストマー組成物においては、前記エラストマー性ポリマー(B)の側鎖に含有される前記共有結合性架橋部位における架橋が、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合からなることが好ましい。
 また、上記本発明の熱可塑性エラストマー組成物においては、前記側鎖(a)の前記水素結合性架橋部位が下記一般式(1):
Figure JPOXMLDOC01-appb-C000002
[式(1)中、Aは含窒素複素環であり、Bは単結合;酸素原子、式:NR’(R'は水素原子又は炭素数1~10のアルキル基である。)で表されるアミノ基又はイオウ原子;或いはこれらの原子又は基を含んでもよい有機基である。]
で表される構造部分を含有することが好ましい。
 さらに、上記本発明の熱可塑性エラストマー組成物においては、前記含窒素複素環が5員環及び/又は6員環であることが好ましい。
 また、上記本発明の熱可塑性エラストマー組成物においては、前記含窒素複素環がトリアゾール環、チアジアゾール環、ピリジン環、イミダゾール環、トリアジン環、イソシアヌレート環及びヒダントイン環の中から選択される少なくとも1種であることが好ましい。
 また、上記本発明の熱可塑性エラストマー組成物においては、前記エラストマー性ポリマー(A)~(B)の主鎖がそれぞれ、ジエン系ゴム、ジエン系ゴムの水素添加物、オレフィン系ゴム、水添されていてもよいポリスチレン系エラストマー性ポリマー、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、及び、ポリアミド系エラストマー性ポリマーの中から選択される少なくとも1種からなることが好ましい。
 また、上記本発明の熱可塑性エラストマー組成物においては、前記エラストマー成分として含有されるポリマーの主鎖がオレフィン系共重合体でありかつ該ポリマーの側鎖がイソシアヌレート環を有することが好ましい。
 また、上記本発明の熱可塑性エラストマー組成物においては、前記エラストマー成分として含有されるポリマーの主鎖がオレフィン系共重合体でありかつ該ポリマーの側鎖がイソシアヌレート環を有する場合、前記熱可塑性エラストマー組成物の赤外吸収スペクトルにおいて、オレフィン系樹脂(前記オレフィン系樹脂には、化学結合性の架橋部位を有さないα-オレフィン系樹脂の他、前記エラストマー成分として含有されるポリマーの主鎖を形成するオレフィン系樹脂(例えばオレフィン系共重合体)を含む。)のC-H伸縮振動に由来する波長2920cm-1付近のピークの吸収強度(A)と、イソシアヌレート環中のカルボニル基に由来する波長1695cm-1付近のピークの吸収強度(B)との比([吸収強度(B)]/[吸収強度(A)])が0.01以上であることがより好ましい。
 さらに、上記本発明の熱可塑性エラストマー組成物においては、パラフィンオイルを更に含有してなることが好ましい。
 また、上記本発明の熱可塑性エラストマー組成物においては、化学結合性の架橋部位を有さないスチレンブロック共重合体を更に含有してなることが好ましい。
 本発明の熱可塑性エラストマー組成物の製造方法は、環状酸無水物基を側鎖に有するエラストマー性ポリマーと、クレイと、化学結合性の架橋部位を有さないα-オレフィン系樹脂とを混合して混合物を得る第一工程と、
 前記混合物に、前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(I)、並びに、前記化合物(I)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(II)の混合原料のうちの少なくとも1種の原料化合物を添加し、前記ポリマーと前記原料化合物とを反応させることにより、熱可塑性エラストマー組成物を得る第二工程と、
を含み、
 前記第二工程において得られる前記熱可塑性エラストマー組成物が、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 前記エラストマー成分100質量部に対して20質量部以下の含有比率の前記クレイと、
 前記α-オレフィン系樹脂と、
を含有してなる組成物であり、
 前記第一工程において、前記熱可塑性エラストマー組成物中の前記クレイの含有量が前記エラストマー成分100質量部に対して20質量部以下となるような割合で前記クレイを用いて、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーと、前記クレイと、前記α-オレフィン系樹脂とを混合する、方法である。
 上記本発明の熱可塑性エラストマー組成物の製造方法においては、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーが無水マレイン酸変性エラストマー性ポリマーであることが好ましい。
 また、上記本発明の熱可塑性エラストマー組成物の製造方法においては、前記化合物(I)及び/又は(II)として、前記環状酸無水物基と反応して水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物を利用することが好ましい。
 また、上記本発明の熱可塑性エラストマー組成物の製造方法においては、前記化合物(I)及び/又は(II)として、水酸基、チオール基、アミノ基及びイミノ基のうちの少なくとも1種の置換基を有する化合物を利用することが好ましい。
 本発明によれば、十分に高度な耐熱性及び破断強度を有することを可能とする熱可塑性エラストマー組成物、並びに、その製造方法を提供することが可能となる。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 [熱可塑性エラストマー組成物]
 本発明の熱可塑性エラストマー組成物は、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 前記エラストマー成分100質量部に対して20質量部以下の含有比率のクレイと、
 化学結合性の架橋部位を有さないα-オレフィン系樹脂と、
を含有してなるものである。
 (エラストマー成分)
 このようなエラストマー成分は、上述のエラストマー性ポリマー(A)~(B)からなる群から選択される少なくとも1種のものである。このようなエラストマー性ポリマー(A)~(B)において、「側鎖」とは、エラストマー性ポリマーの側鎖および末端をいう。また、「カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)」とは、エラストマー性ポリマーの主鎖を形成する原子(通常、炭素原子)に、水素結合性架橋部位としてのカルボニル含有基および/または含窒素複素環(より好ましくはカルボニル含有基および含窒素複素環)が化学的に安定な結合(共有結合)をしていることを意味する。また、「側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有され」とは、水素結合性架橋部位を有する側鎖(以下、便宜上、場合により「側鎖(a’)」と称する。)と、共有結合性架橋部位を有する側鎖(以下、便宜上、場合により「側鎖(b)」と称する。)の双方の側鎖を含むことによってポリマーの側鎖に水素結合性架橋部位及び共有結合性架橋部位の双方が含有されている場合の他、水素結合性架橋部位及び共有結合性架橋部位の双方を有する側鎖(1つの側鎖中に水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖:以下、このような側鎖を便宜上、場合により「側鎖(c)」と称する。)を含むことで、ポリマーの側鎖に、水素結合性架橋部位及び共有結合性架橋部位の双方が含有されている場合を含む概念である。
 このようなエラストマー性ポリマー(A)~(B)の主鎖(主鎖部分を形成するポリマー)は、一般的に公知の天然高分子または合成高分子であって、そのガラス転移点が室温(25℃)以下のポリマーからなるものであればよく(いわゆるエラストマーからなるものであればよく)、特に限定されるものではない。そのため、エラストマー性ポリマー(A)~(B)は、例えば、天然高分子または合成高分子等のガラス転移点が室温(25℃)以下のエラストマー性ポリマーを主鎖とし、かつ、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を含むもの;天然高分子または合成高分子等のガラス転移点が室温(25℃)以下のエラストマー性ポリマーを主鎖とし、かつ、側鎖として、水素結合性架橋部位を有する側鎖(a’)及び共有結合性架橋部位を有する側鎖(b)を含有するもの;天然高分子または合成高分子等のガラス転移点が室温(25℃)以下のエラストマー性ポリマーを主鎖とし、かつ、水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖(c)を含むもの;等としてもよい。
 このようなエラストマー性ポリマー(A)~(B)の主鎖(主鎖部分を形成するポリマー)としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、1,2-ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、エチレン-プロピレン-ジエンゴム(EPDM)などのジエン系ゴムおよびこれらの水素添加物;エチレン-プロピレンゴム(EPM)、エチレン-アクリルゴム(AEM)、エチレン-ブテンゴム(EBM)、クロロスルホン化ポリエチレン、アクリルゴム、フッ素ゴム、ポリエチレンゴム、ポリプロピレンゴムなどのオレフィン系ゴム;エピクロロヒドリンゴム;多硫化ゴム;シリコーンゴム;ウレタンゴム;等が挙げられる。
 また、前記エラストマー性ポリマー(A)~(B)の主鎖(主鎖部分を形成するポリマー)は、樹脂成分を含むエラストマー性のポリマーからなるものであってもよく、例えば、水添されていてもよいポリスチレン系エラストマー性ポリマー(例えば、SBS、SIS、SEBS等)、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、ポリアミド系エラストマー性ポリマー等が挙げられる。
 このようなエラストマー性ポリマー(A)~(B)の主鎖としては、ジエン系ゴム、ジエン系ゴムの水素添加物、オレフィン系ゴム、水添されていてもよいポリスチレン系エラストマー性ポリマー、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、及び、ポリアミド系エラストマー性ポリマーの中から選択される少なくとも1種が好ましい。また、このような前記エラストマー性ポリマー(A)~(B)の主鎖としては、老化しやすい二重結合がないという観点からは、ジエン系ゴムの水添物、オレフィン系ゴムが好ましく、コストの低さ、反応性の高さ(無水マレイン酸等の化合物のエン反応が可能な二重結合を多数有する)の観点からは、ジエン系ゴムが好ましい。
 また、このようなエラストマー成分として含有されるポリマーの主鎖は、結晶性が低くゴム弾性を発現しやすい、また、老化しやすい二重結合がないという観点から、オレフィン系共重合体であることが好ましい。
 さらに、エラストマー性ポリマー(A)~(B)は、液状または固体状であってもよく、その分子量は特に限定されず、本発明の熱可塑性エラストマー組成物が用いられる用途や要求される物性等に応じて適宜選択することができる。
 本発明の熱可塑性エラストマー組成物を加熱(脱架橋等)した時の流動性を重視する場合は、上記エラストマー性ポリマー(A)~(B)は液状であることが好ましく、例えば、主鎖部分がイソプレンゴム、ブタジエンゴム等のジエン系ゴムである場合には、エラストマー性ポリマー(A)~(B)を液状のものとするために、該主鎖部分の重量平均分子量が1,000~100,000であることが好ましく、1,000~50,000程度であることが特に好ましい。
 一方、本発明の熱可塑性エラストマー組成物の強度を重視する場合は、上記エラストマー性ポリマー(A)~(B)は固体状であることが好ましく、例えば、主鎖部分がイソプレンゴム、ブタジエンゴム等のジエン系ゴムである場合には、エラストマー性ポリマー(A)~(B)を固体状のものとするために、該主鎖部分の重量平均分子量が100,000以上であることが好ましく、500,000~1,500,000程度であることが特に好ましい。
 このような重量平均分子量は、ゲルパーミエションクロマトグラフィー(Gel permeation chromatography(GPC))により測定した重量平均分子量(ポリスチレン換算)である。測定にはテトラヒドロフラン(THF)を溶媒として用いることが好ましい。
 本発明の熱可塑性エラストマー組成物においては、前記エラストマー性ポリマー(A)~(B)は2種以上を混合して用いることができる。この場合の各エラストマー性ポリマー同士の混合比は、本発明の熱可塑性エラストマー組成物が用いられる用途や要求される物性等に応じて任意の比率とすることができる。
 また、前記エラストマー性ポリマー(A)~(B)のガラス転移点は、前述のように25℃以下である。エラストマー性ポリマーのガラス転移点がこの範囲であれば、本発明の熱可塑性エラストマー組成物が室温でゴム状弾性を示すためである。また、本発明において「ガラス転移点」は、示差走査熱量測定(DSC-Differential Scanning Calorimetry)により測定したガラス転移点である。測定に際しては、昇温速度は10℃/minにするのが好ましい。
 このようなエラストマー性ポリマー(A)~(B)の主鎖は、エラストマー性ポリマー(A)~(B)のガラス転移点が25℃以下となり、得られる熱可塑性エラストマー組成物からなる成形物が室温(25℃)でゴム状弾性を示すことから、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、1,2-ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、エチレン-プロピレン-ジエンゴム(EPDM)、ブチルゴム(IIR)などのジエン系ゴム;エチレン-プロピレンゴム(EPM)、エチレン-アクリルゴム(AEM)、エチレン-ブテンゴム(EBM)などのオレフィン系ゴム;であることが好ましい。また、前記エラストマー性ポリマー(A)~(B)の主鎖に、それぞれオレフィン系ゴムを用いると、得られる熱可塑性エラストマー組成物の引張強度が向上し、二重結合が存在しないため組成物の劣化がより十分に抑制される傾向にある。
 エラストマー性ポリマー(A)~(B)に用いることが可能な前記スチレン-ブタジエンゴム(SBR)の結合スチレン量や、水添エラストマー性ポリマーの水添率等は、特に限定されず、本発明の熱可塑性エラストマー組成物が用いられる用途や、組成物に要求される物性等に応じて任意の比率に調整することができる。
 また、上記エラストマー性ポリマー(A)~(B)の主鎖として、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-アクリルゴム(AEM)、エチレン-プロピレンゴム(EPM)、エチレン-ブテンゴム(EBM)を用いる場合、室温における良好なゴム状弾性発現の観点から、特に、結晶化度が10%未満(より好ましくは5~0%)のものであることが好ましい。また、上記エラストマー性ポリマー(A)~(B)の主鎖として、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-アクリルゴム(AEM)、エチレン-プロピレンゴム(EPM)、エチレン-ブテンゴム(EBM)を用いる場合、そのエチレン含有量は、好ましくは10~90モル%であり、より好ましくは30~90モル%である。エチレン含有量がこの範囲であれば、熱可塑性エラストマー(組成物)としたときの圧縮永久歪、機械的強度、特に引張強度に優れるため好ましい。
 さらに、前記エラストマー性ポリマー(A)~(B)としては、室温における良好なゴム状弾性発現の観点から、非晶性のものが好ましい。また、このようなエラストマー性ポリマー(A)~(B)としては、一部に結晶性(結晶構造)を有するエラストマーであってもよいが、この場合であっても、結晶化度が10%未満(特に好ましくは5~0%)であることが好ましい。なお、このような結晶化度は、測定装置としてX線回折装置(例えば、リガク社製の商品名「MiniFlex300」を用い、回折ピークを測定し、結晶性/非晶性由来の散乱ピークの積分比を計算することにより求めることができる。
 また、上記エラストマー性ポリマー(A)~(B)は、上述のように、側鎖として、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a);水素結合性架橋部位を含有する側鎖(a’)及び共有結合性架橋部位を含有する側鎖(b);並びに、水素結合性架橋部位及び共有結合性架橋部位を含有する側鎖(c);のうちの少なくとも1種を有するものとなる。なお、本発明において、側鎖(c)は、側鎖(a’)としても機能しつつ側鎖(b)としても機能するような側鎖であるとも言える。以下において、各側鎖を説明する。
 <側鎖(a’):水素結合性架橋部位を含有する側鎖>
 水素結合性架橋部位を含有する側鎖(a’)は、水素結合による架橋を形成し得る基(例えば、水酸基、後述の側鎖(a)に含まれる水素結合性架橋部位等)を有し、その基に基づいて水素結合を形成する側鎖であればよく、その構造は特に制限されるものではない。ここにおいて、水素結合性架橋部位は、水素結合によりポリマー同士(エラストマー同士)を架橋する部位である。なお、水素結合による架橋は、水素のアクセプター(孤立電子対を含む原子を含有する基等)と、水素のドナー(電気陰性度が大きな原子に共有結合した水素原子を備える基等)とがあって初めて形成されることから、エラストマー同士の側鎖間において水素のアクセプターと水素のドナーの双方が存在しない場合には、水素結合による架橋が形成されない。そのため、エラストマー同士の側鎖間において、水素のアクセプターと水素のドナーの双方が存在することによって初めて、水素結合性架橋部位が系中に存在することとなる。なお、本発明においては、エラストマー同士の側鎖間において、水素のアクセプターとして機能し得る部分(例えばカルボニル基等)と、水素のドナーとして機能し得る部分(例えば水酸基等)の双方が存在することをもって、その側鎖の水素のアクセプターとして機能し得る部分とドナーとして機能し得る部分とを、水素結合性架橋部位と判断することができる。
 このような側鎖(a’)中の水素結合性架橋部位としては、より強固な水素結合を形成するといった観点から、以下において説明する、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位(側鎖(a)に含まれる水素結合性架橋部位)であることが好ましい。すなわち、かかる側鎖(a’)としては、後述の側鎖(a)がより好ましい。また、同様の観点で、前記側鎖(a’)中の水素結合性架橋部位としては、カルボニル含有基および含窒素複素環を有する水素結合性架橋部位であることがより好ましい。
 <側鎖(a):カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖>
 カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)は、カルボニル含有基および/または含窒素複素環を有するものであればよく、他の構成は特に限定されない。このような水素結合性架橋部位としては、カルボニル含有基および含窒素複素環を有するものがより好ましい。
 このようなカルボニル含有基としては、カルボニル基を含むものであればよく、特に限定されず、その具体例としては、アミド、エステル、イミド、カルボキシ基、カルボニル基等が挙げられる。このようなカルボニル含有基は、カルボニル含有基を前記主鎖に導入し得る化合物を用いて、前記主鎖(主鎖部分のポリマー)に導入した基であってもよい。このようなカルボニル含有基を前記主鎖に導入し得る化合物は特に限定されず、その具体例としては、ケトン、カルボン酸およびその誘導体等が挙げられる。
 このようなカルボン酸としては、例えば、飽和または不飽和の炭化水素基を有する有機酸が挙げられ、該炭化水素基は、脂肪族、脂環族、芳香族等のいずれであってもよい。また、カルボン酸誘導体としては、具体的には、例えば、カルボン酸無水物、アミノ酸、チオカルボン酸(メルカプト基含有カルボン酸)、エステル、アミノ酸、ケトン、アミド類、イミド類、ジカルボン酸およびそのモノエステル等が挙げられる。
 また、前記カルボン酸およびその誘導体等としては、具体的には、例えば、マロン酸、マレイン酸、スクシン酸、グルタル酸、フタル酸、イソフタル酸、テレフタル酸、p-フェニレンジ酢酸、p-ヒドロキシ安息香酸、p-アミノ安息香酸、メルカプト酢酸などのカルボン酸および置換基含有するこれらのカルボン酸;無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸、無水プロピオン酸、無水安息香酸などの酸無水物;マレイン酸エステル、マロン酸エステル、コハク酸エステル、グルタル酸エステル、酢酸エチルなどの脂肪族エステル;フタル酸エステル、イソフタル酸エステル、テレフタル酸エステル、エチル-m-アミノベンゾエート、メチル-p-ヒドロキシベンゾエートなどの芳香族エステル;キノン、アントラキノン、ナフトキノンなどのケトン;グリシン、チロシン、ビシン、アラニン、バリン、ロイシン、セリン、スレオニン、リシン、アスパラギン酸、グルタミン酸、システイン、メチオニン、プロリン、N-(p-アミノベンゾイル)-β-アラニンなどのアミノ酸;マレインアミド、マレインアミド酸(マレインモノアミド)、コハク酸モノアミド、5-ヒドロキシバレルアミド、N-アセチルエタノールアミン、N,N’-ヘキサメチレンビス(アセトアミド)、マロンアミド、シクロセリン、4-アセトアミドフェノール、p-アセトアミド安息香酸などのアミド類;マレインイミド、スクシンイミドなどのイミド類;等が挙げられる。
 これらのうち、カルボニル基(カルボニル含有基)を導入し得る化合物として、無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸等の環状酸無水物であることが好ましく、無水マレイン酸であることが特に好ましい。
 また、前記側鎖(a)が含窒素複素環を有する場合、前記含窒素複素環は、直接又は有機基を介して前記主鎖に導入されていればよく、その構成等は特に制限されるものではない。このような含窒素複素環は、複素環内に窒素原子を含むものであれば複素環内に窒素原子以外のヘテロ原子、例えば、イオウ原子、酸素原子、リン原子等を有するものでも用いることができる。ここで、前記側鎖(a)中に含窒素複素環を用いた場合には、複素環構造を有すると架橋を形成する水素結合がより強くなり、得られる本発明の熱可塑性エラスマー組成物の引張強度がより向上するため好ましい。
 また、上記含窒素複素環は置換基を有していてもよく、該置換基としては、例えば、メチル基、エチル基、(イソ)プロピル基、ヘキシル基などのアルキル基;メトキシ基、エトキシ基、(イソ)プロポキシ基などのアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子からなる基;シアノ基;アミノ基;芳香族炭化水素基;エステル基;エーテル基;アシル基;チオエーテル基;等が挙げられ、これらを組み合わせて用いることもできる。これらの置換基の置換位置は特に限定されず、置換基数も限定されない。
 さらに、上記含窒素複素環は、芳香族性を有していても、有していなくてもよいが、芳香族性を有していると得られる本発明の熱可塑性エラストマー組成物の圧縮永久歪や機械的強度がより向上するため好ましい。
 また、このような含窒素複素環は、特に制限されるものではないが、水素結合がより強固になり、圧縮永久歪や機械的強度がより向上するといった観点から、5員環、6員環であることが好ましい。このような含窒素複素環としては、具体的には、例えば、ピロロリン、ピロリドン、オキシインドール(2-オキシインドール)、インドキシル(3-オキシインドール)、ジオキシインドール、イサチン、インドリル、フタルイミジン、β-イソインジゴ、モノポルフィリン、ジポルフィリン、トリポルフィリン、アザポルフィリン、フタロシアニン、ヘモグロビン、ウロポルフィリン、クロロフィル、フィロエリトリン、イミダゾール、ピラゾール、トリアゾール、テトラゾール、ベンゾイミダゾール、ベンゾピラゾール、ベンゾトリアゾール、イミダゾリン、イミダゾロン、イミダゾリドン、ヒダントイン、ピラゾリン、ピラゾロン、ピラゾリドン、インダゾール、ピリドインドール、プリン、シンノリン、ピロール、ピロリン、インドール、インドリン、オキシルインドール、カルバゾール、フェノチアジン、インドレニン、イソインドール、オキサゾール、チアゾール、イソオキサゾール、イソチアゾール、オキサジアゾール、チアジアゾール、オキサトリアゾール、チアトリアゾール、フェナントロリン、オキサジン、ベンゾオキサジン、フタラジン、プテリジン、ピラジン、フェナジン、テトラジン、ベンゾオキサゾール、ベンゾイソオキサゾール、アントラニル、ベンゾチアゾール、ベンゾフラザン、ピリジン、キノリン、イソキノリン、アクリジン、フェナントリジン、アントラゾリン、ナフチリジン、チアジン、ピリダジン、ピリミジン、キナゾリン、キノキサリン、トリアジン、ヒスチジン、トリアゾリジン、メラミン、アデニン、グアニン、チミン、シトシン、ヒドロキシエチルイソシアヌレートおよびこれらの誘導体等が挙げられる。これらのうち、特に含窒素5員環については、下記の化合物(化学式で記載の環状構造)、下記一般式(10)で表されるトリアゾール誘導体および下記一般式(11)で表されるイミダゾール誘導体が好ましく例示される。また、これらは上記した種々の置換基を有していてもよいし、水素付加または脱離されたものであってもよい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
上記一般式(10)及び(11)中の置換基X、Y、Zは、それぞれ独立に、水素原子、炭素数1~30のアルキル基、炭素数7~20のアラルキル基、炭素数6~20のアリール基又はアミノ基である。なお、上記一般式(10)中のXおよびYのいずれか一方は水素原子ではなく、同様に、上記一般式(11)中のX、YおよびZの少なくとも1つは水素原子ではない。
 このような置換基X、Y、Zとしては、水素原子、アミノ基以外に、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、オクチル基、ドデシル基、ステアリル基などの直鎖状のアルキル基;イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、1-メチルブチル基、1-メチルヘプチル基、2-エチルヘキシル基などの分岐状のアルキル基;ベンジル基、フェネチル基などのアラルキル基;フェニル基、トリル基(o-、m-、p-)、ジメチルフェニル基、メシチル基などのアリール基;等が挙げられる。
 これらのうち、置換基X、Y、Zとしては、アルキル基、特に、ブチル基、オクチル基、ドデシル基、イソプロピル基、2-エチルヘキシル基であることが、得られる本発明の熱可塑性エラストマー組成物の加工性が良好となるため好ましい。
 また、含窒素6員環については、下記の化合物が好ましく例示される。これらについても上記した種々の置換基(例えば、前述の含窒素複素環が有していてもよい置換基)を有していてもよいし、水素付加または脱離されたものであってもよい。
Figure JPOXMLDOC01-appb-C000005
 また、上記含窒素複素環とベンゼン環または含窒素複素環同士が縮合したものも用いることができ、具体的には、下記の縮合環が好適に例示される。これらの縮合環についても上記した種々の置換基を有していてもよいし、水素原子が付加または脱離されたものであってもよい。
Figure JPOXMLDOC01-appb-C000006
 このような含窒素複素環としては、中でも、得られる本発明の熱可塑性エラストマー組成物のリサイクル性、圧縮永久歪、硬度および機械的強度、特に引張強度に優れるため、トリアゾール環、イソシアヌレート環、チアジアゾール環、ピリジン環、イミダゾール環、トリアジン環及びヒダントイン環の中から選択される少なくとも1種であることが好ましく、トリアゾール環、チアジアゾール環、ピリジン環、イミダゾール環およびヒダントイン環の中から選択される少なくとも1種であることが好ましい。
 また、前記側鎖(a)において、上記カルボニル含有基および上記含窒素複素環の双方が含まれる場合、上記カルボニル含有基および上記含窒素複素環は、互いに独立の側鎖として主鎖に導入されていてもよいが、上記カルボニル含有基と上記含窒素複素環とが互いに異なる基を介して結合した1つの側鎖として主鎖に導入されていることが好ましい。このように、側鎖(a)としては、上記カルボニル含有基および上記含窒素複素環を有する水素結合性架橋部位を含有する側鎖が1つの側鎖として主鎖に導入されていることが好ましく、下記一般式(1):
Figure JPOXMLDOC01-appb-C000007
[式(1)中、Aは含窒素複素環であり、Bは単結合;酸素原子、式:NR’(R'は水素原子又は炭素数1~10のアルキル基である。)で表されるアミノ基又はイオウ原子;或いはこれらの原子又は基を含んでもよい有機基である。]
で表される構造部分を含有する側鎖が1つの側鎖として主鎖に導入されていることがより好ましい。このように、前記側鎖(a)の前記水素結合性架橋部位としては、上記一般式(1)で表される構造部分を含有することが好ましい。
 ここで、上記式(1)における含窒素複素環Aは、具体的には、上記で例示した含窒素複素環が挙げられる。また、上記式(1)における置換基Bとしては、具体的には、例えば、単結合;酸素原子、イオウ原子または式:NR’(R’は水素原子または炭素数1~10のアルキル基)で表されるアミノ基(なお、以下、便宜上、場合により、式:NR’で表されるアミノ基を単に「アミノ基NR’」と称する。);これらの原子または基を含んでもよい炭素数1~20のアルキレン基またはアラルキレン基;これらの原子または基を末端に有する、炭素数1~20のアルキレンエーテル基(アルキレンオキシ基、例えば、-O-CH2CH2-基)、アルキレンアミノ基(例えば、-NH-CH2CH2-基等)またはアルキレンチオエーテル基(アルキレンチオ基、例えば、-S-CH2CH2-基);これらを末端に有する、炭素数1~20のアラルキレンエーテル基(アラルキレンオキシ基)、アラルキレンアミノ基またはアラルキレンチオエーテル基;等が挙げられる。
 ここで、上記アミノ基NR’中のR’として選択され得る炭素数1~10のアルキル基としては、異性体を含む、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。上記式(1)における置換基B中の酸素原子、イオウ原子およびアミノ基NR’;ならびに;これらの原子または基を末端に有する炭素数1~20の、アルキレンエーテル基、アルキレンアミノ基、アルキレンチオエーテル基、または、アラルキレンエーテル基、アラルキレンアミノ基、アラルキレンチオエーテル基等の酸素原子、アミノ基NR’およびイオウ原子は、隣接するカルボニル基と組み合わされ共役系のエステル基、アミド基、イミド基、チオエステル基等を形成することが好ましい。
 これらのうち、前記置換基Bは、共役系を形成する、酸素原子、イオウ原子またはアミノ基;これらの原子または基を末端に有する、炭素数1~20のアルキレンエーテル基、アルキレンアミノ基またはアルキレンチオエーテル基であることが好ましく、アミノ基(NH)、アルキレンアミノ基(-NH-CH2-基、-NH-CH2CH2-基、-NH-CH2CH2CH2-基)、アルキレンエーテル基(-O-CH2-基、-O-CH2CH2-基、-O-CH2CH2CH2-基)であることが特に好ましい。
 また、側鎖(a)が、上記カルボニル含有基および上記含窒素複素環を有する水素結合性架橋部位を含有する側鎖である場合、上記カルボニル含有基および上記含窒素複素環を有する前記水素結合性架橋部位は、下記式(2)または(3)で表される1つの側鎖として、そのα位またはβ位で上記ポリマー主鎖に導入されている側鎖であることがより好ましい。
Figure JPOXMLDOC01-appb-C000008
[式中、Aは含窒素複素環であり、BおよびDはそれぞれ独立に単結合;酸素原子、アミノ基NR’(R’は水素原子または炭素数1~10のアルキル基である。)またはイオウ原子;あるいはこれらの原子または基を含んでもよい有機基である。]
 ここで、含窒素複素環Aは上記式(1)の含窒素複素環Aと基本的に同様であり、置換基BおよびDはそれぞれ独立に、上記式(1)の置換基Bと基本的に同様である。ただし、上記式(3)における置換基Dは、上記式(1)の置換基Bで例示したもののうち、単結合;酸素原子、窒素原子またはイオウ原子を含んでもよい炭素数1~20のアルキレン基またはアラルキレン基の共役系を形成するものであることが好ましく、単結合であることが特に好ましい。すなわち、上記式(3)のイミド窒素と共に、酸素原子、窒素原子またはイオウ原子を含んでもよい炭素数1~20のアルキレンアミノ基またはアラルキレンアミノ基を形成することが好ましく、上記式(3)のイミド窒素に含窒素複素環が直接結合する(単結合)ことが特に好ましい。具体的には、上記置換基Dとしては、単結合;上記した酸素原子、イオウ原子またはアミノ基を末端に有する炭素数1~20のアルキレンエーテルまたはアラルキレンエーテル基等;異性体を含む、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、フェニレン基、キシリレン基等が挙げられる。
 また、側鎖(a)が上記カルボニル含有基および上記含窒素複素環を有する水素結合性架橋部位を含有する側鎖である場合、前記側鎖(a)の前記水素結合性架橋部位が下記一般式(101):
Figure JPOXMLDOC01-appb-C000009
[式(101)中、Aは含窒素複素環である。]
で表される構造部分を含有することが好ましい。このような式(101)中の含窒素複素環Aは上記式(1)の含窒素複素環Aと基本的に同様のものである。また、このような側鎖(a)の前記水素結合性架橋部位としては、高モジュラス、高破断強度の観点から、下記一般式(102):
Figure JPOXMLDOC01-appb-C000010
で表される構造を有するものがより好ましい。更に、前記側鎖(a)が上記一般式(102)で表される基であることが特に好ましい。
 上記熱可塑性エラストマーが有する上記カルボニル含有基と上記含窒素複素環との割合は特に限定されず、2:1であると相補的な相互作用を形成しやすくなり、また、容易に製造できるため好ましい。
 このようなカルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)は、主鎖部分100モル%に対して、0.1~50モル%の割合(導入率)で導入されていることが好ましく、1~30モル%の割合で導入されていることがより好ましい。このような側鎖(a)の導入率が0.1モル%未満では架橋時の引張強度が十分でない場合があり、他方、50モル%を超えると架橋密度が高くなりゴム弾性が失われる場合がある。すなわち、導入率が上記した範囲内であれば、上記熱可塑性エラストマーの側鎖同士の相互作用によって、分子間で効率良く架橋が形成されるため、架橋時の引張強度が高く、リサイクル性に優れるため好ましい。
 上記導入率は、側鎖(a)として、上記カルボニル含有基を有する水素結合性架橋部位を含有する側鎖(a-i)と上記含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a-ii)とがそれぞれ独立に導入されている場合には、該カルボニル含有基を含有する側鎖(a-i)と該含窒素複素環を含有する側鎖(a-ii)との割合に従って、これらを一組で1つの側鎖(a)として考えて算出する。なお、側鎖(a-i)及び(a-ii)のうちの何れかが過剰の場合は、多い方の側鎖を基準として、上記導入率を考えればよい。
 また、上記導入率は、例えば、主鎖部分がエチレン-プロピレンゴム(EPM)である場合には、エチレンおよびプロピレンモノマー単位100ユニット当り、側鎖部分の導入されたモノマーが、0.1~50ユニット程度である。
 また、側鎖(a)としては、反応後に前記主鎖を形成するポリマー(エラストマー性ポリマー形成用の材料)に、官能基として環状酸無水物基(より好ましくは無水マレイン酸基)を有するポリマー(環状酸無水物基を側鎖に有するエラストマー性ポリマー)を用いて、前記官能基(環状酸無水物基)と、該環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)とを反応させて、水素結合性架橋部位を形成して、ポリマーの側鎖を側鎖(a)としたものが好ましい。このような含窒素複素環を導入し得る化合物は、上記で例示した含窒素複素環そのものであってもよく、無水マレイン酸等の環状酸無水物基と反応する置換基(例えば、水酸基、チオール基、アミノ基等)を有する含窒素複素環であってもよい。
 ここで、側鎖(a)における含窒素複素環の結合位置について説明する。なお、窒素複素環を便宜上「含窒素n員環化合物(n≧3)」とする。
 以下に説明する結合位置(「1~n位」)は、IUPAC命名法に基づくものである。例えば、非共有電子対を有する窒素原子を3個有する化合物の場合、IUPAC命名法に基づく順位によって結合位置を決定する。具体的には、上記で例示した5員環、6員環および縮合環の含窒素複素環に結合位置を記している。
 このような側鎖(a)においては、直接または有機基を介して共重合体と結合する含窒素n員環化合物の結合位置は特に限定されず、いずれの結合位置(1位~n位)でもよい。好ましくは、その1位または3位~n位である。
 含窒素n員環化合物に含まれる窒素原子が1個(例えば、ピリジン環等)の場合は、分子内でキレートが形成されやすく組成物としたときの引張強度等の物性に優れるため、3位~(n-1)位が好ましい。含窒素n員環化合物の結合位置を選択することにより、エラストマー性ポリマーは、エラストマー性ポリマー同士の分子間で、水素結合、イオン結合、配位結合等による架橋が形成されやすく、リサイクル性に優れ、機械的特性、特に引張強度に優れるものとなる傾向にある。
 <側鎖(b):共有結合性架橋部位を含有する側鎖>
 本明細書において「共有結合性架橋部位を含有する側鎖(b)」は、エラストマー性ポリマーの主鎖を形成する原子(通常、炭素原子)に、共有結合性架橋部位(後述するアミノ基含有化合物等の「共有結合を生成する化合物」等と反応することで、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起しうる官能基等)が化学的に安定な結合(共有結合)をしていることを意味する。なお、側鎖(b)は共有結合性架橋部位を含有する側鎖であるが、共有結合性部位を有しつつ、更に、水素結合が可能な基を有して、側鎖間において水素結合による架橋を形成するような場合には、後述の側鎖(c)として利用されることとなる(なお、エラストマー同士の側鎖間に水素結合を形成することが可能な、水素のドナーと、水素のアクセプターの双方が含まれていない場合、例えば、系中に単にエステル基(-COO-)が含まれている側鎖のみが存在するような場合には、エステル基(-COO-)同士では特に水素結合は形成されないため、かかる基は水素結合性架橋部位としては機能しない。他方、例えば、カルボキシ基やトリアゾール環のような、水素結合の水素のドナーとなる部位と、水素のアクセプターとなる部位の双方を有する構造をエラストマー同士の側鎖にそれぞれ含む場合には、エラストマー同士の側鎖間で水素結合が形成されるため、水素結合性架橋部位が含有されることとなる。また、例えば、エラストマー同士の側鎖間に、エステル基と水酸基とが共存して、それらの基により側鎖間で水素結合が形成される場合、その水素結合を形成する部位が水素結合性架橋部位となる。そのため、側鎖(b)が有する構造自体や、側鎖(b)が有する構造と他の側鎖が有する置換基の種類等に応じて、側鎖(c)として利用される場合がある。)。また、ここにいう「共有結合性架橋部位」は、共有結合によりポリマー同士(エラストマー同士)を架橋する部位である。
 このような共有結合性架橋部位を含有する側鎖(b)は特に制限されないが、例えば、官能基を側鎖に有するエラストマー性ポリマー(前記主鎖部分を形成させるためのポリマー)と、前記官能基と反応して共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)とを反応させることで、形成される共有結合性架橋部位を含有するものであることが好ましい。このような側鎖(b)の前記共有結合性架橋部位における架橋は、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により形成されてなることが好ましい。そのため、前記主鎖を構成するポリマーが有する前記官能基としては、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起しうる官能基であることが好ましい。
 このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」としては、例えば、1分子中にアミノ基および/またはイミノ基を2個以上(アミノ基およびイミノ基をともに有する場合はこれらの基を合計して2個以上)有するポリアミン化合物;1分子中に水酸基を2個以上有するポリオール化合物;1分子中にイソシアネート(NCO)基を2個以上有するポリイソシアネート化合物;1分子中にチオール基(メルカプト基)を2個以上有するポリチオール化合物;1分子中にエポキシ基を2個以上有するポリエポキシ化合物;1分子中にカルボキシ基を2個以上有するポリカルボキシ化合物;1分子中にアルコキシシリル基を2個以上有するポリアルコキシシリル化合物;等が挙げられる。ここにおいて「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」は、かかる化合物が有する置換基の種類や、かかる化合物を利用して反応せしめた場合に反応の進行の程度、等によっては、前記水素結合性架橋部位及び前記共有結合性架橋部位の双方を導入し得る化合物となる(例えば、水酸基を3個以上有する化合物を利用して、共有結合による架橋部位を形成する場合において、反応の進行の程度によっては、官能基を側鎖に有するエラストマー性ポリマーの該官能基に2個の水酸基が反応して、残りの1個の水酸基が水酸基として残るような場合も生じ、その場合には、水素結合性の架橋を形成する部位も併せて導入され得ることとなる。)。そのため、ここに例示する「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」には、「水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物」も含まれ得る。このような観点から、側鎖(b)を形成する場合には、「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」の中から目的の設計に応じて化合物を適宜選択したり、反応の進行の程度を適宜制御する等して、側鎖(b)を形成すればよい。なお、共有結合性架橋部位を形成する化合物が複素環を有している場合には、より効率よく水素結合性の架橋部位も同時に製造することが可能になり、後述の側鎖(c)として、前記共有結合性架橋部位を有する側鎖を効率よく形成することが可能となる。そのため、かかる複素環を有しているような化合物の具体例については、側鎖(c)を製造するための好適な化合物として、特に側鎖(c)と併せて説明する。なお、側鎖(c)は、その構造から、側鎖(a)や側鎖(b)等の側鎖の好適な一形態であるとも言える。
 このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」として利用可能なポリアミン化合物としては、例えば、以下に示す脂環族アミン、脂肪族ポリアミン、芳香族ポリアミン、含窒素複素環アミン等が挙げられる。
 このような脂環族アミンとしては、具体的には、例えば、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス-(4-アミノシクロヘキシル)メタン、ジアミノシクロヘキサン、ジ-(アミノメチル)シクロヘキサン等が挙げられる。
 また、前記脂肪族ポリアミンとしては、特に制限されないが、例えば、メチレンジアミン、エチレンジアミン、プロピレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノペンタン、ヘキサメチレンジアミン、ジアミノヘプタン、ジアミノドデカン、ジエチレントリアミン、ジエチルアミノプロピルアミン、N-アミノエチルピペラジン、トリエチレンテトラミン、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジイソプロピルエチレンジアミン、N,N’-ジメチル-1,3-プロパンジアミン、N,N’-ジエチル-1,3-プロパンジアミン、N,N’-ジイソプロピル-1,3-プロパンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン、N,N’-ジエチル-1,6-ヘキサンジアミン、N,N’,N’’-トリメチルビス(ヘキサメチレン)トリアミン等が挙げられる。
 前記芳香族ポリアミンおよび前記含窒素複素環アミンとしては、特に制限されないが、例えば、ジアミノトルエン、ジアミノキシレン、テトラメチルキシリレンジアミン、トリス(ジメチルアミノメチル)フェノール、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、3-アミノ-1,2,4-トリアゾール等が挙げられる。
 また、前記ポリアミン化合物は、その水素原子の一つ以上を、アルキル基、アルキレン基、アラルキレン基、オキシ基、アシル基、ハロゲン原子等で置換してもよく、また、その骨格に、酸素原子、イオウ原子等のヘテロ原子を含んでいてもよい。
 また、前記ポリアミン化合物は、1種単独で用いても2種以上を併用してもよい。2種以上を併用する場合の混合比は、本発明の熱可塑性エラストマー(組成物)が用いられる用途、本発明の熱可塑性エラストマー(組成物)に要求される物性等に応じて任意の比率に調整することができる。
 上記で例示したポリアミン化合物のうち、ヘキサメチレンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン、ジアミノジフェニルスルホン等が、圧縮永久歪、機械的強度、特に引張強度の改善効果が高く好ましい。
 前記ポリオール化合物は、水酸基を2個以上有する化合物であれば、その分子量および骨格などは特に限定されず、例えば、以下に示すポリエーテルポリオール、ポリエステルポリオール、その他のポリオール、およびこれらの混合ポリオール等が挙げられる。
 このようなポリエーテルポリオールとしては、具体的には、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセリン、1,1,1-トリメチロールプロパン、1,2,5-ヘキサントリオール、1,3-ブタンジオール、1,4-ブタンジオール、4,4’-ジヒドロキシフェニルプロパン、4,4’-ジヒドロキシフェニルメタン、ペンタエリスリトール等の多価アルコールから選ばれる少なくとも1種に、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド等から選ばれる少なくとも1種を付加させて得られるポリオール;ポリオキシテトラメチレンオキサイド;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 前記ポリエステルポリオールとしては、具体的には、例えば、エチレングリコール、プロピレングリコール、ブタンジオールペンタンジオール、ヘキサンジオール、シクロヘキサンジメタノール、グリセリン、1,1,1-トリメチロールプロパンその他の低分子ポリオールの1種または2種以上と、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、テレフタル酸、イソフタル酸、ダイマー酸その他の低分子カルボン酸やオリゴマー酸の1種または2種以上との縮合重合体;プロピオンラクトン、バレロラクトンなどの開環重合体;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 その他のポリオールとしては、具体的には、例えば、ポリマーポリオール、ポリカーボネートポリオール;ポリブタジエンポリオール;水素添加されたポリブタジエンポリオール;アクリルポリオール;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ポリエチレングリコールラウリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ラウリルアミン)、ポリプロピレングリコールラウリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ラウリルアミン)、ポリエチレングリコールオクチルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)オクチルアミン)、ポリプロピレングリコールオクチルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)オクチルアミン)、ポリエチレングリコールステアリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ステアリルアミン)、ポリプロピレングリコールステアリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ステアリルアミン)などの低分子ポリオール;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 前記ポリイソシアネート化合物としては、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)、2,4’-ジフェニルメタンジイソシアネート(2,4’-MDI)、1,4-フェニレンジイソシアネート、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、トリジンジイソシアネート(TODI)、1,5-ナフタレンジイソシアネート(NDI)等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMHDI)、リジンジイソシアネート、ノルボルナンジイソシアナートメチル(NBDI)等の脂肪族ポリイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート(IPDI)、H6XDI(水添XDI)、H12MDI(水添MDI)、H6TDI(水添TDI)等の脂環式ポリイソシアネートなどのジイソシアネート化合物;ポリメチレンポリフェニレンポリイソシアネートなどのポリイソシアネート化合物;これらのイソシアネート化合物のカルボジイミド変性ポリイソシアネート;これらのイソシアネート化合物のイソシアヌレート変性ポリイソシアネート;これらのイソシアネート化合物と上記で例示したポリオール化合物とを反応させて得られるウレタンプレポリマー;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 ポリチオール化合物は、チオール基を2個以上有する化合物であれば、その分子量および骨格などは特に限定されず、その具体例としては、メタンジチオール、1,3-ブタンジチオール、1,4-ブタンジチオール、2,3-ブタンジチオール、1,2-ベンゼンジチオール、1,3-ベンゼンジチオール、1,4-ベンゼンジチオール、1,10-デカンジチオール、1,2-エタンジチオール、1,6-ヘキサンジチオール、1,9-ノナンジチオール、1,8-オクタンジチオール、1,5-ペンタンジチオール、1,2-プロパンジチオール、1,3-プロパジチオール、トルエン-3,4-ジチオール、3,6-ジクロロ-1,2-ベンゼンジチオール、1,5-ナフタレンジチオール、1,2-ベンゼンジメタンチオール、1,3-ベンゼンジメタンチオール、1,4-ベンゼンジメタンチオール、4,4’-チオビスベンゼンチオール、2,5-ジメルカプト-1,3,4-チアジアゾール、1,8-ジメルカプト-3,6-ジオキサオクタン、1,5-ジメルカプト-3-チアペンタン、1,3,5-トリアジン-2,4,6-トリチオール(トリメルカプト-トリアジン)、2-ジ-n-ブチルアミノ-4,6-ジメルカプト-s-トリアジン、トリメチロールプロパントリス(β-チオプロピオネート)、トリメチロールプロパントリス(チオグリコレート)、ポリチオール(チオコールまたはチオール変性高分子(樹脂、ゴム等))、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 また、前記ポリエポキシ化合物としては、エポキシ基を2個以上有する化合物であれば、その分子量および骨格などは特に限定されず、その具体例としては、ビスフェノールAジグリシジルエーテル(ビスフェノールA型エポキシ樹脂)、ビスフェノールFジグリシジルエーテル(ビスフェノールF型エポキシ樹脂)、3,4-エポキシシクロヘキシルメチルー3’4’-エポキシシクロヘキサンカルボキシレート、DCPD型エポキシ樹脂、エポキシノボラック樹脂、オルソクレゾールノボラック型エポキシ樹脂が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 また、前記ポリカルボキシ化合物としては、カルボキシ基を2個以上有する化合物であれば、その分子量および骨格などは特に限定されず、その具体例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、プロパントリカルボン酸、ベンゼントリカルボン酸が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 さらに、前記ポリアルコキシシリル化合物としては、アルコキシシリル基を2個以上有する化合物であれば、その分子量および骨格などは特に限定されず、その具体例としては、トリス-(トリメトキシシリルプロピル)イソシアヌレート、ビス(トリエトキシシリルプロピル)テトラスルフィド、1,6-ビス(トリメトキシシリル)ヘキサン、ビス[3-(トリメトキシシリル)プロピル]アミンが挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 このような「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」と反応する、前記主鎖を構成するポリマーが有する官能基としては、アミド、エステル、ラクトン、ウレタン、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起(生成:形成)し得る官能基が好ましく、かかる官能基としては、環状酸無水物基、水酸基、アミノ基、カルボキシ基、イソシアネート基、チオール基等が好適に例示される。
 なお、前記側鎖(b)を有するエラストマー性ポリマー(B)は、かかる側鎖(b)の部分において、前記共有結合性架橋部位における架橋、すなわち、前記官能基と上述した「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」との反応により形成される共有結合による架橋を1分子中に少なくとも1個有しており、特に、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により架橋が形成される場合は、2個以上有しているのが好ましく、2~20個有しているのがより好ましく、2~10個有しているのがさらに好ましい。
 また、前記側鎖(b)の共有結合性架橋部位における架橋が、第三級アミノ結合(-N=)、エステル結合(-COO-)を含有していることが、得られる熱可塑性エラストマー(組成物)の圧縮永久歪および機械的強度(破断伸び、破断強度)がより容易に改善され得るとの理由から好ましい。なお、この場合において、第三級アミノ結合(-N=)、エステル結合(-COO-)に対して、水素結合を形成することが可能な基を含む側鎖を有するエラストマーが含まれている場合(例えば、水酸基等を含む側鎖を有するエラストマーが他に存在する場合等)には、前記共有結合性架橋部位が、後述の側鎖(c)として機能し得る。例えば、前記側鎖(a’)として前記側鎖(a)を有するエラストマー性ポリマー(B)の場合(すなわちエラストマー性ポリマー(B)が側鎖(a)及び(b)の双方を有するエラストマー性ポリマーである場合)において、共有結合性架橋部位における架橋が前記第三級アミノ結合及び/又は前記エステル結合を有する場合、それらの基と、側鎖(a)(カルボニル含有基および/または含窒素複素環を有する側鎖)中の基とが水素結合(相互作用)することで、架橋密度をより向上させることも可能となるものと考えられる。なお、このような第三級アミノ結合(-N=)、エステル結合(-COO-)を含有している構造の側鎖(b)を形成するとの観点で、「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」としては、上記で例示したもののうち、ポリエチレングリコールラウリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ラウリルアミン)、ポリプロピレングリコールラウリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ラウリルアミン)、ポリエチレングリコールオクチルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)オクチルアミン)、ポリプロピレングリコールオクチルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)オクチルアミン)、ポリエチレングリコールステアリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ステアリルアミン)、ポリプロピレングリコールステアリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ステアリルアミン)であることが好ましい。
 なお、上述のような共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)を利用しても、反応の進行度や置換基の種類、用いる原料の化学量論比等によっては、水素結合性の架橋部位も併せて導入されるような場合もあるため、前記共有結合性架橋部位の好適な構造については、側鎖(c)中の共有結合性架橋部位の好適な構造と併せて説明する。
 <側鎖(c):水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖>
 このような側鎖(c)は、1つの側鎖中に水素結合性架橋部位及び共有結合性架橋部位の双方を含む側鎖である。このような側鎖(c)に含まれる水素結合性架橋部位は、側鎖(a’)において説明した水素結合性架橋部位と同様のものであり、側鎖(a)中の水素結合性架橋部位と同様のものが好ましい。また、側鎖(c)に含まれる共有結合性架橋部位としては、側鎖(b)中の共有結合性架橋部位と同様のものを利用できる(その好適な架橋も同様のものを利用できる。)。
 このような側鎖(c)は、官能基を側鎖に有するエラストマー性ポリマー(前記主鎖部分を形成させるためのポリマー)と、前記官能基と反応して水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を導入する化合物)とを反応させることで、形成される側鎖であることが好ましい。 このような水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を導入する化合物)としては、複素環(特に好ましくは含窒素複素環)を有しかつ共有結合性架橋部位を形成することが可能な化合物(共有結合を生成する化合物)が好ましく、中でも、複素環含有ポリオール、複素環含有ポリアミン、複素環含有ポリチオール等がより好ましい。
 なお、このような複素環を含有する、ポリオール、ポリアミンおよびポリチオールは、複素環(特に好ましくは含窒素複素環)を有するものである以外は、前述の「共有結合性架橋部位を形成することが可能な化合物(共有結合を生成する化合物)」において説明したポリオール、ポリアミンおよびポリチオールと同様のものを適宜利用することができる。また、このような複素環含有ポリオールとしては、特に制限されないが、例えば、ビス、トリス(2-ヒドロキシエチル)イソシアヌレート、コウジ酸、ジヒドロキシジチアン、トリスヒドロキシエチルトリアジンが挙げられる。また、前記複素環含有ポリアミンとしては、特に制限されないが、例えば、アセトグアナミン、ピペラジン、ビス(アミノプロピル)ピペラジン、ベンゾグアナミン、メラミンが挙げられる。更に、このような複素環含有ポリチオールとしては、ジメルカプトチアジアゾール、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートが挙げられる。このように、側鎖(c)としては、官能基を側鎖に有するエラストマー性ポリマー(前記主鎖部分を形成させるためのポリマー)と、複素環を含有するポリオール、ポリアミンおよびポリチオール等とを反応させて、得られる側鎖であることが好ましい。
 なお、「水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を導入する化合物)」と反応する、前記主鎖を構成するポリマーが有する官能基としては、アミド、エステル、ラクトン、ウレタン、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起(生成:形成)し得る官能基が好ましく、かかる官能基としては、環状酸無水物基、水酸基、アミノ基、カルボキシ基、イソシアネート基、チオール基等が好適に例示される。
 また、前記側鎖(c)を有するエラストマー性ポリマー(B)は、かかる側鎖(c)の部分において、前記共有結合性架橋部位における架橋を1分子中に少なくとも1個有しており、特に、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により架橋が形成される場合は、2個以上有しているのが好ましく、2~20個有しているのがより好ましく、2~10個有しているのがさらに好ましい。また、前記側鎖(c)の共有結合性架橋部位における架橋が、第三級アミノ結合(-N=)、エステル結合(-COO-)を含有していることが、得られる熱可塑性エラストマー(組成物)の圧縮永久歪および機械的強度(破断伸び、破断強度)がより改善されるとの理由から好ましい。
 (側鎖(b)~(c)中の共有結合性架橋部位として好適な構造について)
 側鎖(b)及び/又は(c)に関して、共有結合性架橋部位における架橋が、第三級アミノ結合(-N=)、エステル結合(-COO-)を含有している場合であって、これらの結合部位が水素結合性架橋部位としても機能する場合、得られる熱可塑性エラストマー(組成物)の圧縮永久歪および機械的強度(破断伸び、破断強度)がより高度に改善されるとの理由から好ましい。このように、共有結合性架橋部位を有する側鎖中の第三級アミノ結合(-N=)やエステル結合(-COO-)が、他の側鎖との間において、水素結合を形成するような場合、かかる第三級アミノ結合(-N=)、エステル結合(-COO-)を含有している共有結合性架橋部位は、水素結合性架橋部位も備えることとなり、側鎖(c)として機能し得る。
 なお、例えば、前記側鎖(a’)として前記側鎖(a)を有するエラストマー性ポリマー(B)の場合であって、前記第三級アミノ結合及び/又は前記エステル結合を含有している共有結合性架橋部位を有する場合において、前記第三級アミノ結合及び/又は前記エステル結合が、前記側鎖(a)中の基と水素結合(相互作用)を形成すると、架橋密度をより向上させることが可能となるものと考えられる。ここで、前記主鎖を構成するポリマーが有する官能基と反応して前記第三級アミノ結合及び/又は前記エステル結合を含有している共有結合性架橋部位を形成させることが可能な化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を形成することが可能な化合物)としては、ポリエチレングリコールラウリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ラウリルアミン)、ポリプロピレングリコールラウリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ラウリルアミン)、ポリエチレングリコールオクチルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)オクチルアミン)、ポリプロピレングリコールオクチルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)オクチルアミン)、ポリエチレングリコールステアリルアミン(例えば、N,N-ビス(2-ヒドロキシエチル)ステアリルアミン)、ポリプロピレングリコールステアリルアミン(例えば、N,N-ビス(2-メチル-2-ヒドロキシエチル)ステアリルアミン)を好適なものとして挙げることができる。
 前記側鎖(b)及び/又は側鎖(c)の上記共有結合性架橋部位における架橋としては、下記一般式(4)~(6)のいずれかで表される構造を少なくとも1つ含有しているものが好ましく、式中のGが第三級アミノ結合、エステル結合を含有しているものがより好ましい(なお、以下の構造において、水素結合性架橋部位を含む場合、その構造を有する側鎖は、側鎖(c)として利用されるものである。)。
Figure JPOXMLDOC01-appb-C000011
上記一般式(4)~(6)中、E、J、KおよびLはそれぞれ独立に単結合;酸素原子、アミノ基NR’(R’は水素原子または炭素数1~10のアルキル基である。)またはイオウ原子;あるいはこれらの原子または基を含んでもよい有機基であり、Gは酸素原子、イオウ原子または窒素原子を含んでいてもよく、直鎖状、分岐鎖状又は環状の炭素数1~20の炭化水素基である。
 ここで、置換基E、J、KおよびLはそれぞれ独立に、上記一般式(1)の置換基Bと基本的に同様である。
 また、置換基Gとしては、例えば、メチレン基、エチレン基、1,3-プロピレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,7-ヘプチレン基、1,8-オクチレン基、1,9-ノニレン基、1,10-デシレン基、1,11-ウンデシレン基、1,12-ドデシレン基などのアルキレン基;N,N-ジエチルドデシルアミン-2,2’-ジイル、N,N-ジプロピルドデシルアミン-2,2’-ジイル、N,N-ジエチルオクチルアミン-2,2’-ジイル、N,N-ジプロピルオクチルアミン-2,2’-ジイル、N,N-ジエチルステアリルアミン-2,2’-ジイル、N,N-ジプロピルステアリルアミン-2,2’-ジイル、;ビニレン基;1,4-シクロへキシレン基等の2価の脂環式炭化水素基;1,4-フェニレン基、1,2-フェニレン基、1,3-フェニレン基、1,3-フェニレンビス(メチレン)基などの2価の芳香族炭化水素基;プロパン-1,2,3-トリイル、ブタン-1,3,4-トリイル、トリメチルアミン-1,1’,1’’-トリイル、トリエチルアミン-2,2’,2’’-トリイル等の3価の炭化水素基;イソシアヌレート基、トリアジン基等の酸素原子、イオウ原子または窒素原子を含む3価の環状炭化水素;下記式(12)および(13)で表される4価の炭化水素基;およびこれらを組み合わせて形成される置換基;等が挙げられる。また、このような式中の置換基Gとしては、耐熱性が高く、水素結合により、高強度になるという観点から、イソシアヌレート基(イソシアヌレート環)の構造を有するものであることが好ましい。また、このような式中の置換基Gとしては、耐熱性が高く、水素結合により、高強度になるという観点から、下記一般式(111)で表される基及び下記一般式(112)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000012
 さらに、前記側鎖(c)の上記共有結合性架橋部位における架橋が、上述した上記エラストマー性ポリマーの主鎖にα位またはβ位で結合する下記式(7)~(9)のいずれかで表される構造を少なくとも1つ含有するのが好ましく、式中のGが第三級アミノ基を含有しているのがより好ましい(式(7)~(9)に示す構造は水酸基とカルボニル基を含有しており、水素結合性架橋部位及び共有結合性架橋部位の双方を含む構造といえ、かかる構造を有する側鎖は側鎖(c)として機能し得る。)。
Figure JPOXMLDOC01-appb-C000013
式(7)~(9)中、置換基E、J、KおよびLはそれぞれ独立に、上記式(4)~(6)の置換基E、J、KおよびLと基本的に同様であり、置換基Gは、上記式(4)の置換基Gと基本的に同様である。
 また、このような式(7)~(9)のいずれかで表される構造としては、具体的には、下記式(14)~(25)で表される構造が好適なものとして例示される。
Figure JPOXMLDOC01-appb-C000014
(式中、lは、1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(式中、l、mおよびnは、それぞれ独立に1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000017
 また、前記側鎖(b)及び(c)において、上記共有結合性架橋部位における架橋は、環状酸無水物基と、水酸基あるいはアミノ基及び/又はイミノ基との反応により形成されることが好ましい。例えば、反応後に主鎖部分を形成するポリマーが官能基として環状酸無水物基(例えば無水マレイン酸基)を有している場合に、該ポリマーの環状酸無水物基と、水酸基あるいはアミノ基および/またはイミノ基を有する前記共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)とを反応させて、共有結合により架橋する部位を形成してポリマー間を架橋させることで、形成される架橋としてもよい。
 また、このような側鎖(b)及び(c)において、前記共有結合性架橋部位における架橋は、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合により形成されてなることがより好ましい。なお、このような側鎖(b)及び(c)において、前記共有結合性架橋部位における架橋は、尿素結合により形成されたものも好ましい。
 以上、側鎖(a’)、側鎖(a)、側鎖(b)、側鎖(c)について説明したが、このようなポリマー中の側鎖の各基(構造)等は、NMR、IRスペクトル等の通常用いられる分析手段により確認することができる。
 また、前記エラストマー性ポリマー(A)は、前記側鎖(a)を有するガラス転移点が25℃以下のエラストマー性ポリマーであり、前記エラストマー性ポリマー(B)は、側鎖に水素結合性架橋部位及び共有結合性架橋部位を含有しているガラス転移点が25℃以下のエラストマー性ポリマー(側鎖として、側鎖(a’)及び側鎖(b)の双方を有するポリマーや、側鎖に側鎖(c)を少なくとも一つ含むポリマー等)である。このようなエラストマー成分としては、前記エラストマー性ポリマー(A)~(B)のうちの1種を単独で利用してもよく、あるいは、それらのうちの2種以上を混合して利用してもよい。
 なお、エラストマー性ポリマー(B)は、側鎖(a’)及び側鎖(b)の双方を有するポリマーであっても、側鎖(c)を有するポリマーであってもよいが、このようなエラストマー性ポリマー(B)の側鎖に含有される水素結合性架橋部位としては、より強固な水素結合が形成されるといった観点から、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位(より好ましくはカルボニル含有基および含窒素複素環を有する水素結合性架橋部位)であることが好ましい。
 また、このようなエラストマー性ポリマー(A)及び(B)からなる群から選択される少なくとも1種のエラストマー成分としては、下記反応物(I)~(VI)からなる群から選択される少なくとも1種であることが好ましい。
[反応物(I)]
無水マレイン酸変性エラストマー性ポリマー(以下、便宜上、場合により単に「エラストマー性ポリマー(E1)」と称する。)と、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいピリジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいチアジアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイミダゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイソシアヌレート、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいヒダントイン、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する炭化水素化合物、トリスヒドロキシエチルイソシアヌレート、スルファミド、並びに、ポリエーテルポリオールのうちの少なくとも1種の化合物(以下、便宜上、場合により単に「化合物(M1)」と称する。)との反応物;
[反応物(II)]
水酸基含有エラストマー性ポリマー(以下、便宜上、場合により単に「エラストマー性ポリマー(E2)」と称する。)と、カルボキシ基、アルコキシシリル基及びイソシアネート基の中から選択される少なくとも1種の置換基を2つ以上有する化合物(以下、便宜上、場合により単に「化合物(M2)」と称する。)との反応物;
[反応物(III)]
カルボキシ基含有エラストマー性ポリマー(以下、便宜上、場合により単に「エラストマー性ポリマー(E3)」と称する。)と、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物(以下、便宜上、場合により単に「化合物(M3)」と称する。)との反応物;
[反応物(IV)]
アミノ基含有エラストマー性ポリマー(以下、便宜上、場合により単に「エラストマー性ポリマー(E4)」と称する。)と、カルボキシ基、エポキシ基、アルコキシシリル基及びイソシアネート基の中から選択される少なくとも1種の置換基を2つ以上有する化合物(以下、便宜上、場合により単に「化合物(M4)」と称する。)との反応物;
[反応物(V)]
アルコキシシリル基含有エラストマー性ポリマー(以下、便宜上、場合により単に「エラストマー性ポリマー(E5)」と称する。)と、水酸基、カルボキシ基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物(以下、便宜上、場合により単に「化合物(M5)」と称する。)との反応物;
[反応物(VI)]
エポキシ基含有エラストマー性ポリマー(以下、便宜上、場合により単に「エラストマー性ポリマー(E6)」と称する。)と、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物(以下、便宜上、場合により単に「化合物(M6)」と称する。)との反応物。
 このようなエラストマー性ポリマー(E1)~(E6)は、通常行われる方法、例えば、上述のエラストマー成分の主鎖部分を形成することが可能なポリマーに、通常行われる条件、例えば、加熱下での撹拌等により、目的の設計に応じて、官能基を導入することが可能な化合物(例えば、マレイン酸無水物等)をグラフト重合させる方法で製造してもよい。また、このようなエラストマー性ポリマー(E1)~(E6)としては、市販品を用いてもよい。
 また、このようなエラストマー性ポリマー(E1)~(E6)のガラス転移点は、前述のエラストマー成分と同様に25℃以下であることが好ましい。エラストマー性ポリマーのガラス転移点がこの範囲であれば、得られる本発明の熱可塑性エラストマー組成物が室温でゴム状弾性を示すものとなるためである。なお、このようなエラストマー性ポリマー(E1)~(E6)の主鎖部分の重量平均分子量の好適な範囲は、前述のエラストマー性ポリマー(A)及び(B)の主鎖部分の重量平均分子量の好適な範囲と同様である。
 このような無水マレイン酸変性エラストマー性ポリマー(E1)としては、例えば、LIR-403(クラレ社製)、LIR-410A(クラレ社試作品)などの無水マレイン酸変性イソプレンゴム;ニュクレル(三井デュポンポリケミカル社製)、ユカロン(三菱化学社製)、タフマーM(例えば、MP0610(三井化学社製)、MP0620(三井化学社製))などの無水マレイン酸変性エチレン-プロピレンゴム;タフマーM(例えば、MA8510、MH7010、MH7020(三井化学社製)、MH5010、MH5020(三井化学社製)、MH5040(三井化学社製))などの無水マレイン酸変性エチレン-ブテンゴム;アドテックスシリーズ(無水マレイン酸変性EVA、無水マレイン酸変性EMA(日本ポリオレフィン社製))、HPRシリーズ(無水マレイン酸変性EEA、無水マレイン酸変性EVA(三井・ジュポンポリオレフィン社製))、ボンドファストシリーズ(無水マレイン酸変性EMA(住友化学社製))、デュミランシリーズ(無水マレイン酸変性EVOH(武田薬品工業社製))、ボンダイン(エチレン・アクリル酸エステル・無水マレイン酸三元共重合体(アトフィナ社製))、タフテック(無水マレイン酸変性SEBS、M1943(旭化成社製))、クレイトン(無水マレイン酸変性SEBS、FG1901,FG1924(クレイトンポリマー社製))、タフプレン(無水マレイン酸変性SBS、912(旭化成社製))、セプトン(無水マレイン酸変性SEPS(クラレ社製))、レクスパール(無水マレイン酸変性EVA、ET-182G、224M、234M(日本ポリオレフィン社製))、アウローレン(無水マレイン酸変性EVA、200S、250S(日本製紙ケミカル社製))などの無水マレイン酸変性ポリエチレン;アドマー(例えば、QB550、LF128(三井化学社製))などの無水マレイン酸変性ポリプロピレン;等が挙げられる。
 また、このような無水マレイン酸変性エラストマー性ポリマー(E1)としては、高分子量で高強度であるといった観点から、無水マレイン酸変性エチレン-プロピレンゴム、無水マレイン酸変性エチレン-ブテンゴムがより好ましい。
 このような水酸基含有エラストマー性ポリマー(E2)としては、例えば、水酸基含有BR、水酸基含有SBR、水酸基含有IR、水酸基含有天然ゴム、ポリビニルアルコール、エチレンビニルアルコール共重合体等が挙げられる。
 このような水酸基含有エラストマー性ポリマー(E2)の中でも、工業的に容易に入手でき、物性に優れるといった観点から、両末端が水酸基となるエラストマー性ポリマーが好ましく、中でも、水酸基含有BR、水酸基含有IR、エチレンビニルアルコール共重合体がより好ましく、水酸基含有BRが更に好ましい。
 このようなカルボキシ基含有エラストマー性ポリマー(E3)としては、例えば、カルボキシ基含有BR、カルボキシ基含有SBR、カルボキシ基含有IR、カルボキシ基含有天然ゴム、ポリアクリル酸、エチレンアクリル酸共重合体、ポリメタアクリル酸、エチレンメタアクリル酸共重合体等が挙げられる。
 このようなカルボキシ基含有エラストマー性ポリマー(E3)としては、工業的に容易に入手でき、物性に優れるといった観点から、カルボキシ基含有IR、エチレンアクリル酸共重合体、エチレンメタアクリル酸共重合体が好ましく、カルボキシ基含有IRがより好ましい。
 さらに、このようなアミノ基含有エラストマー性ポリマー(E4)としては、アミノ基含有BR、アミノ基含有SBR、アミノ基含有IR、アミノ基含有天然ゴム、アミノ基含有ポリエチレンイミン等が挙げられる。
 このようなアミノ基含有エラストマー性ポリマー(E4)としては、工業的に容易に入手でき、物性に優れるといった観点から、アミノ基含有ポリエチレンイミンがより好ましい。
 また、アミノ基含有エラストマー性ポリマー(E4)としては、アミン価が1~50mmol/gであることが好ましく、5~40mmol/gであることがより好ましく、10~30mmol/gであることが更に好ましい。このようなアミン価が前記下限未満では大量に添加する必要があり、また架橋密度の低下により物性が低下してしまう傾向にあり、他方、前記上限を超えると少量添加により架橋密度が高くなりすぎてしまう傾向にある。なお、このようなアミン価としては電位差滴定法により測定した値を採用することができる。
 また、このようなアルコキシシリル基含有エラストマー性ポリマー(E5)としては、例えば、アルコキシシリル基含有BR、アルコキシシリル基含有SBR、アルコキシシリル基含有IR、アルコキシシリル基含有天然ゴム、アルコキシシリル基含有ポリエチレン、アルコキシシリル基含有ポリプロピレン等が挙げられる。
 このようなアルコキシシリル基含有エラストマー性ポリマー(E5)としては、工業的に容易に入手でき、物性に優れるといった観点から、アルコキシシリル基含有ポリエチレンがより好ましい。
 このようなエポキシ基含有エラストマー性ポリマー(E6)としては、例えば、エポキシ基含有BR、エポキシ基含有SBR、エポキシ基含有IR、エポキシ基含有天然ゴム等が挙げられる。
 このようなエポキシ基含有エラストマー性ポリマー(E6)としては、工業的に容易に入手でき、物性に優れるといった観点から、エポキシ基含有SBRがより好ましい。
 また、このような化合物(M1)として利用する、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する炭化水素化合物としては、前述のポリオール化合物、ポリチオール化合物、ポリアミン化合物の中で、主骨格が炭化水素化合物からなるものが挙げられる。このような主骨格の炭化水素基としては脂肪族炭化水素化合物(より好ましくは炭素数が1~30の脂肪族炭化水素化合物)であることが好ましい。また、このような化合物(M1)として利用する、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する炭化水素化合物としては、工業的に容易に入手でき、架橋密度が高く物性に優れるといった観点からは、ペンタエリスリトール、エタンジチオール、エタンジアミンが好ましく、ペンタエリスリトールがより好ましい。
 また、化合物(M2)として利用する、カルボキシ基、アルコキシシリル基及びイソシアネート基の中から選択される少なくとも1種の置換基を2つ以上有する化合物としては、前述のポリカルボキシ化合物、ポリアルコキシシリル化合物、ポリイソシアネート化合物を好適に利用でき、中でも、工業的に容易に入手でき、物性に優れるといった観点からは、2,6-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、キシリレンジイソシアネート(XDI)がより好ましい。
 さらに、化合物(M3)として利用する、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物としては、前述のポリオール化合物、ポリチオール化合物、ポリアミン化合物を好適に利用でき、中でも、工業的に容易に入手でき、物性に優れるといった観点からは、トリスヒドロキシエチルイソシアヌレート、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートがより好ましい。
 また、化合物(M4)として利用する、カルボキシ基、エポキシ基、アルコキシシリル基及びイソシアネート基の中から選択される少なくとも1種の置換基を2つ以上有する化合物としては、前述のポリカルボキシ化合物、ポリエポキシ化合物、ポリアルコキシシリル化合物、ポリイソシアネート化合物を好適に利用でき、中でも、工業的に容易に入手でき、物性に優れるといった観点からは、2,6-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、トリス-(2,3-エポキシプロピル)-イソシアヌレートがより好ましい。
 また、化合物(M5)として利用する、水酸基、カルボキシ基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物としては、前述のポリオール化合物、ポリカルボキシ化合物を好適に利用でき、中でも、工業的に容易に入手でき、物性に優れるといった観点からは、トリスヒドロキシエチルイソシアヌレート、2,6-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸がより好ましい。
 さらに、化合物(M6)として利用する、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する化合物としては、前述のポリチオール化合物、ポリアミン化合物を好適に利用でき、中でも、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、2,4-ジアミノ-6-フェニル-1,3,5-トリアジンがより好ましい。
 なお、前記エラストマー性ポリマー(E1)~(E6)の主鎖は、前記エラストマー性ポリマー(A)及び(B)の主鎖として説明したものと同様のものである(その好適なものも同様である。)。このような各反応物を製造するために用いるエラストマー性ポリマー(E1)~(E6)は、各ポリマーが有する官能基(無水マレイン酸基、水酸基、カルボキシ基、アミノ基、アルコキシシリル基、エポキシ基)の部分に、各反応物を製造するために用いる化合物(M1)~(M6)が有する置換基が反応して、化合物(M1)~(M6)の主骨格に由来する構造を有する側鎖が形成されるが、基本的に反応の前後において主鎖に変化はないため、前記反応物(I)~(VI)の主鎖(前記エラストマー性ポリマー(A)及び(B)の主鎖)は、エラストマー性ポリマー(E1)~(E6)の主鎖に由来したものとなるためである。
 また、このような反応物(I)~(VI)の中でも、工業的に容易に入手でき、物性に優れるの観点からは、実施例に挙げたもの(無水マレイン酸変性エチレン-ブテン共重合体とトリスヒドロキシエチルイソシアヌレートとの反応物、後述の各実施例に関する表8に記載のエラストマー性ポリマー(E)と化合物(M)との反応物等)が好ましい。
 なお、前記反応物(I)としては、工業的入手が容易で、反応が効率的に進行するという観点からは、無水マレイン酸変性エラストマー性ポリマーと、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいピリジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいチアジアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイミダゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイソシアヌレート、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいヒダントイン、トリスヒドロキシエチルイソシアヌレート、スルファミド、並びに、ポリエーテルポリオールのうちの少なくとも1種の化合物との反応物がより好ましい。
 前記エラストマー成分として利用される前記反応物(I)~(VI)を製造する方法としては特に制限されず、エラストマー性ポリマー(E1)~(E6)と、それと反応させる化合物(M1)~(M6)とを、適宜選択して、目的の設計の側鎖が形成されるように適宜反応させることで反応物(I)~(VI)を得る方法を適宜使用することができ、そのような反応の条件(温度条件や雰囲気条件等)としては、反応物を得るための原料としてのエラストマー性ポリマー(E1)~(E6)の官能基や主鎖の種類、更には、それと反応させる化合物(M1)~(M6)の種類に応じて設定することができる。
 このような反応物(I)~(VI)を調製する際には、例えば、目的の設計に応じて、エラストマー性ポリマー(E1)~(E6)から適宜選択したポリマーを加圧ニーダ―に添加して撹拌しながら、そこに、該ポリマーと反応させるための化合物(M1)~(M6)から選択された化合物を添加して反応させて調製してもよく、その際に、反応が進行するような温度に適宜設定すればよい。なお、前記反応物(I)~(VI)を調製する際に、反応物(I)~(VI)の調製に用いるエラストマー性ポリマー(E1)~(E6)から適宜選択したポリマーを、前記化合物(M1)~(M6)から選択された化合物と反応させる前に、該ポリマーと有機化クレイとを混合し、その後、前記化合物を添加して反応させることにより、エラストマー成分の調製と同時に、組成物を形成する方法(有機化クレイを先添加する方法)を採用してもよい。なお、有機化クレイの分散性がより向上し、より高度な耐熱性が得られることから、組成物の調製には、前述の有機化クレイを先添加する方法を採用することが好ましい。
 また、前記エラストマー成分として含有されるポリマーとしては、二重結合がないため、劣化しづらく、イソシアヌレート環同志および他の水素結合部位やクレイとの水素結合等の相互作用が起こるといった観点から、該ポリマーの主鎖がオレフィン系共重合体でありかつ該ポリマーの側鎖がイソシアヌレート環を有することが好ましい。このような主鎖がオレフィン系共重合体でありかつ該側鎖がイソシアヌレート環を有するポリマーとしては、例えば、無水マレイン酸により変性したオレフィン系共重合体からなる無水マレイン酸変性エラストマー性ポリマー(より好ましくは無水マレイン酸変性エチレン-プロピレンゴム、無水マレイン酸変性エチレン-ブテンゴム)と、トリスヒドロキシエチルイソシアヌレートとの反応物が好適なものとして挙げられる。
 また、前記エラストマー成分として含有されるポリマーが、前述のような主鎖がオレフィン系共重合体でありかつ側鎖がイソシアヌレート環を有するものである場合、そのポリマーが含まれる熱可塑性エラストマー組成物の赤外吸収スペクトルにおいて、オレフィン系樹脂(前記オレフィン系樹脂には、化学結合性の架橋部位を有さないα-オレフィン系樹脂の他、前記エラストマー成分として含有されるポリマーの主鎖を形成するオレフィン系樹脂(例えば前記オレフィン系共重合体)を含む。)のC-H伸縮振動に由来する波長2920cm-1付近のピークの吸収強度(A)と、イソシアヌレート環中のカルボニル基に由来する波長1695cm-1付近のピークの吸収強度(B)との比([吸収強度(B)]/[吸収強度(A)])が0.01以上であること(より好ましくは0.012~10、更に好ましくは0.015~5)であることが好ましい。このような赤外吸収スペクトル(IRスペクトル)における吸収ピーク強度(A)と吸収ピーク強度(B)の強度比が前記下限未満では組成物中におけるイソシアヌレート環を有する側鎖の存在比率が低くなり、系中において架橋密度が低下するため、機械強度等の物性が低下する傾向にある。他方、前記強度比が前記上限を超えると系中にエラストマー成分のブランチが多くなり、系全体の架橋密度が下がってしまうため、機械特性が低下する傾向にある。なお、このような熱可塑性エラストマー組成物の赤外吸収スペクトル(IRスペクトル)としては、全反射型ユニットを備えたIR測定装置(例えば、Thermo社製の「NICOLET380」)を用い、また、前記ポリマー(主鎖がオレフィン系共重合体でありかつ側鎖がイソシアヌレート環を有するものである、前記エラストマー成分として含有されるポリマー)を含む熱可塑性エラストマー組成物40gを表面が平滑になるように厚さ2mmでプレス成形して調製した測定用の試料を用いて、全反射測定(ATR)法により、400~4000cm-1の波数レンジで赤外吸収スペクトル(赤外減衰全反射(FTIR-ATR)スペクトル)の測定を行うことで求められる吸収スペクトルのグラフを利用する。このような測定により、側鎖のイソシアヌレート環中のカルボニル基の赤外吸収スペクトルのピークは波長1695cm-1付近(概ね1690~1700cm-1の範囲)に表れ、オレフィン系樹脂(前記オレフィン系樹脂には、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の他、前記エラストマー成分の主鎖(ベースポリマー)のオレフィン系樹脂(例えばオレフィン系共重合体)を含む。)のC-H伸縮振動の赤外吸収スペクトルのピークは波長2920cm-1付近(概ね2910~2930cm-1の範囲)に表れる。
 なお、無水マレイン酸により変性したオレフィン系共重合体からなる無水マレイン酸変性エラストマー性ポリマー(より好ましくは、無水マレイン酸変性エチレン-プロピレンゴム又は無水マレイン酸変性エチレン-ブテンゴム)と、トリスヒドロキシエチルイソシアヌレートとの反応物を含む熱可塑性エラストマー組成物を例に挙げると、前記反応物は、その反応物の製造時に、無水マレイン酸変性エラストマー性ポリマー中の酸無水物基と、トリスヒドロキシエチルイソシアヌレートの水酸基との反応により側鎖が形成されて、ポリマーの側鎖にイソシアヌレート環が導入されたものとなるが、上述のように、かかるポリマー(反応物)の側鎖のイソシアヌレート環中のカルボニル基に由来する赤外吸収スペクトルのピークは波長1695cm-1付近(1690~1700cm-1の範囲)に表れ、他方、そのポリマー(反応物)の主鎖(ベースポリマー)のオレフィン系共重合体のC-H伸縮振動並びに前記化学結合性の架橋部位を有さないα-オレフィン系樹脂のC-H伸縮振動に由来するピークは波長2920cm-1付近(2910~2930cm-1の範囲)に表れるため、かかる反応物を含む前述の組成物においては、波長1695cm-1付近のピークと、波長2920cm-1付近のピークの強度の比を求めることで、系中に存在するオレフィン系樹脂の総量に対するイソシアヌレート環が導入された側鎖(上記例の場合には基本的に、形成される側鎖は水素結合性架橋部位と共有結合性架橋部位の双方を有するものとなる)の比率が分かり、これにより系全体の架橋密度を類推することができる。そして、このような強度比が前記下限値以上である場合には、イソシアヌレート環を有する側鎖の存在比率が十分なものとなり、系全体の架橋密度が十分なものとなって機械強度等の物性を十分なものとすることが可能となる。
 このようなエラストマー性ポリマー(A)~(B)を製造する方法としては特に制限されず、上述のような側鎖(a);側鎖(a')及び側鎖(b);、並びに、側鎖(c);からなる群から選択される少なくとも1種を、ガラス転移点が25℃以下のエラストマー性ポリマーの側鎖として導入することが可能な公知の方法を適宜採用することができる。例えば、エラストマー性ポリマー(B)を製造するための方法としては、特開2006-131663号公報に記載の方法を採用してもよい。また、上述のような側鎖(a’)及び側鎖(b)を備えるエラストマー性ポリマー(B)を得るために、例えば、官能基としての環状酸無水物基(例えば無水マレイン酸基)を側鎖に有するエラストマー性ポリマーに、前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)と、前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)との混合物(混合原料)を利用して、それぞれの側鎖を同時に導入してもよい。
 また、このようなエラストマー性ポリマー(A)~(B)を製造する方法としては、例えば、官能基(例えば環状酸無水物基等)を側鎖に有するエラストマー性ポリマーを用いて、該エラストマー性ポリマーを、前記官能基と反応して水素結合性架橋部位を形成する化合物、並びに、前記官能基と反応して水素結合性架橋部位を形成する化合物及び前記官能基と反応して共有結合性架橋部位を形成する化合物の混合原料のうちの少なくとも1種の原料化合物と反応させて、前記側鎖(a)を有するエラストマー性ポリマー;側鎖(a')及び側鎖(b)を有するエラストマー性ポリマー;及び/又は前記側鎖(c)を有するエラストマー性ポリマー(前記エラストマー性ポリマー(A)~(B))を製造する方法を採用してもよい。なお、このような反応の際に採用する条件(温度条件や雰囲気条件等)は特に制限されず、官能基や該官能基と反応させる化合物(水素結合性架橋部位を形成する化合物及び/又は共有結合性架橋部位を形成する化合物)の種類に応じて適宜設定すればよい。なお、前記エラストマー性ポリマー(A)の場合は、水素結合部位を持つモノマーを重合して製造しても良い。
 このような官能基(例えば環状酸無水物基)を側鎖に有するエラストマー性ポリマーとしては、前述のエラストマー性ポリマー(A)~(B)の主鎖を形成することが可能なポリマーであって、官能基を側鎖に有するものが好ましい。ここで、「官能基を側鎖に含有するエラストマー性ポリマー」とは、主鎖を形成する原子に官能基(上述の官能基等、例えば、環状酸無水物基等)が化学的に安定な結合(共有結合)をしているエラストマー性ポリマーをいい、エラストマー性ポリマー(例えば公知の天然高分子または合成高分子)と官能基を導入し得る化合物とを反応させることにより得られるものを好適に利用できる。
 また、このような官能基としては、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合を生起し得る官能基であることが好ましく、中でも、環状酸無水物基、水酸基、アミノ基、カルボキシ基、イソシアネート基、チオール基等が好ましく、組成物中にクレイをより効率よく分散させることが可能であるといった観点からは、環状酸無水物基が特に好ましい。また、このような環状酸無水物基としては、無水コハク酸基、無水マレイン酸基、無水グルタル酸基、無水フタル酸基が好ましく、中でも、容易にポリマー側鎖に導入可能で、工業上入手が容易である観点からは、無水マレイン酸基がより好ましい。また、前記官能基が環状酸無水物基である場合には、例えば、前記官能基を導入しうる化合物として、無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸およびこれらの誘導体等の環状酸無水物を用いて、エラストマー性ポリマー(例えば公知の天然高分子または合成高分子)に官能基を導入してもよい。
 なお、前記官能基と反応して水素結合性架橋部位を形成する化合物としては特に制限されないが、前述の「水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)」を利用することが好ましい。また、前記官能基と反応して共有結合性架橋部位を形成する化合物としては特に制限されないが、前述の「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」を利用することが好ましい。また、水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)、及び、共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)としては、前記官能基と反応して水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(例えば、含窒素複素環を含むポリオール、ポリアミン、ポリチオール等)も好適に利用することができる。
 また、このようなエラストマー成分(エラストマー性ポリマー(A)~(B))を製造する方法に、官能基(例えば環状酸無水物基)を側鎖に有するエラストマー性ポリマーを用いて、該エラストマー性ポリマーを、前記官能基と反応して水素結合性架橋部位を形成する化合物、並びに、前記官能基と反応して水素結合性架橋部位を形成する化合物及び前記官能基と反応して共有結合性架橋部位を形成する化合物の混合原料のうちの少なくとも1種の原料化合物と反応させて、前記側鎖(a)を有する前記エラストマー性ポリマー(A)、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されている前記エラストマー性ポリマー(B)を製造する方法を採用する場合、官能基を側鎖に有するエラストマー性ポリマーを、前記原料化合物と反応させる前に、クレイと官能基を側鎖に有するエラストマー性ポリマーとを混合し、その後、前記原料化合物を添加し、反応させて、エラストマー成分の調製と同時に組成物を形成する方法(クレイを先添加する方法)を採用してもよい。
 なお、クレイの分散性がより向上し、より高度な耐熱性が得られることから、エラストマー成分(エラストマー性ポリマー(A)~(B))を製造する際に、前述のクレイを先添加する方法を採用して、エラストマー成分の調製と同時に組成物を調製することが好ましい。また、このようなクレイを先添加する方法としては、後述の本発明の熱可塑性エラストマー組成物の製造方法を採用することがより好ましい。
 (クレイ)
 本発明にかかるクレイとしては特に制限されず、公知のクレイ(粘土鉱物等)を適宜利用することができる。また、このようなクレイとしては、天然のクレイ、合成クレイ、有機化クレイが挙げられる。このようなクレイとしては、例えば、モンモリロナイト、サポナイト、ヘクトライト、バイデライト、スティブンサイト、ノントロナイト、バーミキュライト、ハロイサイト、マイカ、フッ素化マイカ、カオリナイト(高陵石)、パイロフィロライト、スメクタイト、セリサイト(絹雲母)、イライト、グローコナイト(海緑石)、クロライト(緑泥石)、タルク(滑石)、ゼオライト(沸石)、ハイドロタルサイト等が挙げられる。
 このようなクレイの中でも、ケイ素及びマグネシウムを主成分とするクレイ、並びに、有機化クレイからなる群から選択される少なくとも1種が好ましい。
 また、本発明において、ケイ素及びマグネシウムを主成分とするクレイとは、クレイの構成成分である金属酸化物の金属の主成分がケイ素(Si)及びマグネシウム(Mg)であるクレイを指し、その他の金属酸化物(アルミニウム(Al)、鉄(Fe)等)を副成分として含んでいても良い。ケイ素及びマグネシウムを主成分とするクレイとしては特に制限されず、公知のものを適宜利用することができる。ケイ素及びマグネシウムを主成分とするクレイを用いることで、粒径が小さいため補強性を高くすることが可能となる。また、このようなケイ素及びマグネシウムを主成分とするクレイとしては、入手のし易さの観点から、スメクタイト構造を有するクレイが好ましい。
 また、このようなケイ素及びマグネシウムを主成分とするクレイとしては、例えば、スティブンサイト、ヘクトライト、サポナイト、タルク等を挙げることができるが、中でも、分散性の観点から、スティブンサイト、ヘクトライト、サポナイトを用いることがより好ましい。
 また、ケイ素及びマグネシウムを主成分とするクレイとしては、合成クレイが好ましい。このような合成クレイとしては、市販のものを利用してもよく、例えば、クニミネ工業社製の商品名「スメクトンSA」、「スメクトンST」、水澤化学工業社製の商品名「イオナイト」、コープケミカル社製の商品名「ルーセンタイト」などを適宜利用することができる。
 また、前記有機化クレイは特に制限されないが、クレイが有機化剤により有機化されてなるものであることが好ましい。このような有機化される前のクレイとしては特に制限されず、いわゆる粘土鉱物であればよく、例えば、モンモリロナイト、サポナイト、ヘクトライト、バイデライト、スティブンサイト、ノントロナイト、バーミキュライト、ハロイサイト、マイカ、フッ素化マイカ、カオリナイト(高陵石)、パイロフィロライト、スメクタイト、セリサイト(絹雲母)、イライト、グローコナイト(海緑石)、クロライト(緑泥石)、タルク(滑石)、ゼオライト(沸石)、ハイドロタルサイト等が挙げられる。また、このようなクレイは天然物であっても合成物であってもよい。
 また、前記有機化剤としては特に制限されず、クレイを有機化することが可能な公知の有機化剤を適宜利用することができ、例えば、ヘキシルアンモニウムイオン、オクチルアンモニウムイオン、2-エチルヘキシルアンモニウムイオン、ドデシルアンモニウムイオン、ラウリルアンモニウムイオン、オクタデシルアンモニウムイオン、ジオクチルジメチルアンモニウムイオン、トリオクチルアンモニウムイオン、ジオクタデシルジメチルアンモニウムイオン、トリオクチルアンモニウムイオン、ジオクタデシルジメチルアンモニウムイオン、トリオクタデシルアンモニウムイオン等を用いることができる。
 また、このような有機化クレイとしては、単層分散性の観点から、クレイの4級アンモニウム塩を好適に利用することができる。このような有機化クレイの4級アンモニウム塩としては、特に制限されないが、例えば、トリメチルステアリルアンモニウム塩、オレイルビス(2-ヒドロキシルエチル)の塩、メチルアンモニウム塩、ジメチルステアリルベンジルアンモニウム塩、ジメチルオクタデシルアンモニウム塩、及び、これらのうちの2種以上の混合物を好適に用いることができる。なお、このような有機化クレイの4級アンモニウム塩としては、引張強度、耐熱性向上の観点から、ジメチルステアリルベンジルアンモニウム塩、ジメチルオクタデシルアンモニウム塩、及び、これらの混合物をより好適に利用でき、ジメチルステアリルベンジルアンモニウム塩とジメチルオクタデシルアンモニウム塩との混合物を更に好適に利用できる。
 また、このような有機化クレイとしては、市販のものを利用してもよく、例えば、クニミネ工業社製の商品名「クニフィル-D36」、「クニフィル-B1」、「クニフィル-HY」などの他、ホージュン社製の商品名「エスベンシリーズ(C,E,W,WX,N-400,NX,NX80,NZ,NZ70,NE,NEZ,NO12S,NO12」、「オルガナイトシリーズ(D,T)などを適宜利用することができる。このような市販の有機化クレイの中でも、クニミネ工業社製の商品名「クニフィル-D36」とホージュン社製の商品名「エスベンシリーズWX」を好適に利用できる。
 このように、本発明にかかるクレイとしては、高分散性の観点から、ケイ素及びマグネシウムを主成分とするクレイ、有機化クレイが好ましく、中でも、より高度な引張応力(モジュラス)が得られることから、有機化クレイを用いることが特に好ましい。
 (化学結合性の架橋部位を有さないα-オレフィン系樹脂)
 本発明にかかるα-オレフィン系樹脂は、化学結合性の架橋部位を有さないものである。ここにいう「化学結合性の架橋部位」とは、水素結合、共有結合、金属イオン-極性官能基間のキレーション、金属-不飽和結合(二重結合、三重結合)間のσ-π相互作用により形成される結合等といった化学結合により架橋が形成されている部位をいう。そのため、本発明にいう「化学結合性の架橋部位を有さない」とは、上記に記載の水素結合、共有結合、金属イオン-極性官能基間のキレーション、金属-不飽和結合(二重結合、三重結合)間のσ-π相互作用により形成される結合等によって形成される化学結合を有さない状態であることをいう。このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、化学結合による架橋点を形成するような、官能基(例えば、水酸基、カルボニル基、カルボキシル基、チオール基、アミド基、アミノ基)を含まず、更に、高分子鎖同士を直接架橋する結合部位(共有結合による架橋部位等)を含まないものが好適に用いられる。また、このような化学結合性の架橋部位を有さないα-オレフィン系樹脂は、少なくとも、上述のような側鎖(a)、側鎖(a’)、側鎖(b)、側鎖(c)等を有していないポリマーとなる。
 また、ここにいう「α-オレフィン系樹脂」とは、α-オレフィンの単独重合体、α-オレフィンの共重合体をいう。ここにいう「α-オレフィン」とは、α位に炭素-炭素二重結合を有するアルケン(末端に炭素-炭素二重結合を有するアルケン:なお、かかるアルケンは直鎖状のものであっても分岐鎖状のものであってもよく、炭素数が2~20(より好ましくは2~10)であることが好ましい。)をいい、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン等が挙げられる。
 このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、α-オレフィンの重合体(ポリα-オレフィン:単独重合体であっても共重合体であってもよい。)であればよく、特に制限されないが、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、プロピレン-エチレン-ブテン共重合体等が挙げられる。このような化学結合性の架橋部位を有さないα-オレフィン系樹脂の中でも、母体となるエラストマーに対する相溶性の観点からは、ポリプロピレン、ポリエチレン、エチレン-ブテン共重合体、エチレン-プロピレン共重合体が好ましく、ポリプロピレン、ポリエチレン、エチレン-プロピレン共重合体がより好ましい。なお、このような化学結合性の架橋部位を有さないα-オレフィン系樹脂は1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。
 このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、結晶化度が10%以上のものが好ましく、10~80%のものがより好ましく、10~75%のものが更に好ましい。このような結晶化度が前記下限未満では樹脂的な性質が希薄になるため、機械特性、流動性をより高度なものとすることが困難となる傾向にあり、他方、前記上限を超えると樹脂的な性質が強くなるため、機械特性をより高い水準でバランスよく発揮させることが困難となる傾向にある。なお、このような結晶化度は、測定装置としてX線回折装置(例えば、リガク社製の商品名「MiniFlex300」を用い、回折ピークを測定し、結晶性/非晶性由来の散乱ピークの積分比を計算することにより求めることができる。
 また、このような化学結合性の架橋部位を有さないα-オレフィン系樹脂としては、JIS K6922-2(2010年発行)に準拠して測定される、190℃、2.16kg荷重におけるメルトフローレート(MFR)が40g/10分以上であることが好ましい。このようなメルトフローレート(MFR)が前記下限未満ではエラストマー組成物中に配合しても流動性を向上させることが困難となる傾向にある。なお、このようなメルトフローレート(MFR)は、JIS K6922-2(2010年発行)に記載のB法に準拠して測定される値であり、メルトフローレート測定装置として東洋精機製作所製の商品名「Melt Indexer G-01」を用いて、該装置の炉体内に前記α-オレフィン系樹脂を3g添加した後、温度を190℃にして5分間保持した後、190℃に維持しつつ2.16kgに荷重する条件で、前記炉体の下部に接続されている直径1mm、長さ8mmの筒状のオリフィス部材の開口部から、10分の間に流出するエラストマーの質量(g)を測定(前記炉体内において温度を190℃にして5分間保持した後に荷重を開始してから、流出するエラストマーの質量の測定を開始する。)することにより求めることができる。
 さらに、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の重量平均分子量(Mw)は、1万以上200万以下であることが好ましく、3万以上150万以下であることがより好ましく、5万以上125万以下であることが更に好ましい。このような重量平均分子量が前記下限未満では機械強度が低下する傾向にあり、他方、前記上限を超えるとエラストマー成分に対する相溶性が低下してしまい、相分離しやすくなる傾向にある。
 また、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の数平均分子量(Mn)は、1万以上200万以下であることが好ましく、3万以上150万以下であることがより好ましく、5万以上125万以下であることが更に好ましい。このような数平均分子量が前記下限未満では機械強度が低下する傾向にあり、他方、前記上限を超えるとエラストマー成分に対する相溶性が低下してしまい、相分離しやすくなる傾向にある。
 また、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の分子量分布の分散度(Mw/Mn)は5以下であることが好ましく、1~3であることがより好ましい。このような分子量分布の分散度(Mw/Mn)の値が前記下限未満では流動性が低下する傾向にあり、他方、前記上限を超えるとエラストマーに対する相溶性が低下する傾向にある。
 なお、上述のようなα-オレフィン系樹脂の重量平均分子量(Mw)や前記数平均分子量(Mn)および分子量分布の分散度(Mw/Mn)は、いわゆるゲルパーミエーションクロマトグラフィー(GPC)法により求めることができる。また、このような分子量等の測定の具体的な装置や条件としては、島津製作所製「Prominence GPCシステム」を利用できる。
 また、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂のガラス転移点は、-150~5℃であることが好ましく、-125~0℃であることがより好ましい。このようなガラス転移点が前記下限未満では融点が低くなるため耐熱性が低下する傾向にあり、他方、前記上限を超えるとエラストマー配合後のゴム弾性が低下しやすい傾向にある。なお、ここにいう「ガラス転移点」は、前述のように、示差走査熱量測定(DSC-Differential Scanning Calorimetry)により測定したガラス転移点である。このようなDSC測定に際しては、昇温速度は10℃/minにするのが好ましい。
 このような化学結合性の架橋部位を有さないα-オレフィン系樹脂の製造するための方法は特に制限されず、公知の方法を適宜採用することができる。また、このようなα-オレフィン系樹脂としては、市販品を用いてもよく、例えば、三井化学社製の商品名「タフマー」;日本ポリエチレン社製の商品名「ノバテックHD」「ノバテックLD」「ノバテックLL」「カーネル」;プライムポリマー社製の商品名「ハイネックス」「ネオゼックス」「ウルトゼックス」「エボリュー」「プライムポリプロ」「ポリファイン」「モストロンーL」;サンアロマー社製のPP等を適宜用いてもよい。
 (組成物)
 本発明の熱可塑性エラストマー組成物は、前記エラストマー成分と、前記クレイと、前記化学結合性の架橋部位を有さないα-オレフィン樹脂とを含有するものである。
 なお、本発明の熱可塑性エラストマー組成物によって、十分に高度な耐熱性及び破断強度を有することが可能となる理由は必ずしも明らかではないが、本発明者らは以下のように推察する。
 すなわち、先ず、本発明において、エラストマー成分は、少なくとも水素結合性架橋部位を有する側鎖を含むエラストマー性ポリマー(側鎖に、側鎖(a);側鎖(a’)及び側鎖(b);並びに、側鎖(c)のうちの少なくとも1種を含むポリマー)を含有している。先ず、このようなエラストマー性ポリマーとクレイとを組み合わせると、クレイと水素結合性架橋部位との間で相互作用(新たな水素結合が形成される等)して、クレイの表面を利用してエラストマー成分が面架橋される。そして、このような面架橋が形成されると、その構造に由来して十分に高い耐熱性を発現させることが可能となる。また、このような面架橋が形成されると、架橋点への応力集中を抑えることが可能となり、クレイを含有させなかった場合と比較して、より高い破断強度(破断されるまでの引張強度)を発現させることが可能となるものと本発明者らは推察する。特に、水素結合性架橋部位が側鎖(a)において説明するような、「カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位(より好ましくは、カルボニル含有基および含窒素複素環を有する水素結合性架橋部位)」である場合には、より多点での水素結合が可能となり、エラストマー同士において、より多点で水素結合するのに加え、クレイとの間においても、より多点で水素結合するため、より強固に面架橋させることが可能であり、引張強度(破断強度)や耐熱性の点でより高い効果が得られる傾向にある。
 一方、水素結合性の架橋部位を側鎖に有する、エラストマー性ポリマー(A)及び(B)のうちの少なくとも1種をエラストマー成分として利用せず、他のエラストマー成分のみを用いた場合には、例えクレイと組み合わせて利用したとしても、上述のような効果を得ることができない。この点に関して検討すると、先ず、一般的な熱可塑性エラストマーは、高分子分子鎖間の物理的な相互作用による擬似的架橋を利用したタイプ(高分子の分子間力等による相互作用によって物理的に弱い結合が形成されているタイプ)と、熱可塑性樹脂のマトリックスにゴムを分散させたタイプの2つに大別される。このような擬似的架橋を利用したタイプの熱可塑性エラストマーは、代表的なものとして、ブロックポリマーやウレタンエラストマー等のソフトセグメントとハードセグメントを持つポリマーが挙げられる。ここで、上述のような側鎖を有するポリマーを導入することなく、単に、擬似的架橋を利用したタイプの熱可塑性エラストマーにクレイ等のフィラーを配合すると、擬似的架橋点における相互作用(高分子分子鎖間の物理的な相互作用)がクレイにより阻害されて、却って高分子の機械的な強度が低下してしまい、ゴム製品として実使用に耐えられないものとなってしまう。このように、擬似的架橋を利用したタイプの熱可塑性エラストマーのみからなるような従来の熱可塑性のエラストマーは、これを単にクレイと組み合わせた場合に、その組成物中において、却って擬似的架橋の形成が阻害され、組成物の機械的な強度(引張応力等)が低下してしまう。また、熱可塑性樹脂のマトリックスにゴムを分散させたタイプの熱可塑性エラストマーでは、その組成からも明らかなように、クレイ等のフィラーは、マトリックス相にしか導入されないこととなる。ここにおいて、上記側鎖を有していないような熱可塑性樹脂からなるマトリクスにおいては、マトリクスにおいてクレイとの相互作用が形成されることがない。そのため、単純にフィラーを導入しても、ある部分に高濃度にフィラーが導入され、また、ある部分にはまったくフィラーが導入されないといった状態となってしまう。その結果、かかるフィラーの濃度の差に起因して、エラストマーの内部において硬度の差が生まれ、機械的強度等が低下する。そのため、熱可塑性樹脂のマトリックスにゴムを分散させたタイプの熱可塑性エラストマーにおいて、水素結合性の架橋部位を側鎖を含まないポリマーを用いている場合においては、単純にクレイを導入したとしても、クレイを十分に分散させることができず、組成物の機械的な強度(破断強度等)が低下してしまう。このような観点で、エラストマー性ポリマー(A)及び(B)を、母体となるエラストマー成分に利用しなかった場合には、クレイとの間に相互作用を形成することができないばかりか、クレイの存在により、却って機械的な強度が低下してしまい、エラストマー(ゴム)として必ずしも十分な特性を有するものとすることができないものと本発明者らは推察する。
 また、本発明においては、前記クレイの含有量は前記エラストマー成分100質量部に対して20質量部以下となっているが、このような含有比率(十分に低い比率)であっても、耐熱性等において十分に高い効果が得られる。この点については、上述のように、組成物中にクレイが十分に均一に分散されて、面架橋を十分に形成することが可能であることから(なお、単層で分散している割合をより高くした場合には、エラストマー内で面架橋をより多く形成することが可能な傾向にあり、より好ましい形態であるといえる。)、これにより含有量が20質量部以下と微量であっても、十分に高度な引張応力と十分に高い耐熱性とを発揮させることも可能になるためであると本発明者らは推察する。
 また、本発明の熱可塑性エラストマー組成物においては、前記熱可塑性エラストマー組成物及びクレイと共に、化学結合性の架橋部位を有さないα-オレフィン樹脂を含有している。このような化学結合性の架橋部位を有さないα-オレフィン樹脂を組成物中に含有させた場合には、母体となるエラストマー成分の架橋構造の中に分散するため、α-オレフィン樹脂固有の物性を発現することが可能となる。そのため、本発明の熱可塑性エラストマー組成物においては、化学結合性の架橋部位を有さないα-オレフィン樹脂に由来して、優れた流動性、機械特性を付与することも可能となるものと本発明者らは推察する。また、本発明においては、α-オレフィン樹脂とエラストマー成分とは高い相溶性を有する組合せとなるため、α-オレフィン樹脂とエラストマー成分は互いに組成物中に十分に均一に分散される。そして、このように十分に分散されたエラストマー成分と、クレイとが相互作用(水素結合等)するため、クレイも十分に分散されることとなる。そのため、α-オレフィン樹脂を用いることにより得られる効果(例えば優れた流動性、機械特性を付与する効果等)を十分に維持しながら、クレイが十分に分散されて、耐熱性や破断強度等を十分に高い水準のものとすることができるものと本発明者らは推察する。また、本発明においては、エラストマー成分の全体の構造等にもよるが、エラストマー成分の種類によっては、そのエラストマー成分に含まれる側鎖中の水素結合性架橋部位によって形成される水素結合によっても、ゴム特性や流動性(成形性)を十分に発揮させることも可能とし得る。これは、その構造によっては、加熱加工時に水素結合が一度消失しても、硬化時に再度水素結合が形成されて、ゴム特性や流動性(成形性)を十分に保持させることが可能となり得るためである。また、本発明の組成物においては、上記各成分を含有することで、ゴム製品として利用可能な十分な硬度等も併せて発現させることも可能である。
 更に、本発明において、側鎖に共有結合性架橋部位を含むエラストマー成分を含有する場合(例えば、エラストマー性ポリマー(B)を含む場合)には、共有結合性架橋部位を含む側鎖により、より高い水準の耐圧縮永久歪性を発現させることも可能となるものと本発明者らは推察する。また、エラストマー成分中に、水素結合性架橋部位と共有結合性架橋部位とが存在する場合(エラストマー性ポリマー(B)を含有する場合、エラストマー性ポリマー(B)と他のエラストマー性ポリマーの混合物を含有する場合、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)との混合物を含有する場合、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)以外の側鎖(b)を有するエラストマー性ポリマーとの混合物を利用する場合等)には、水素結合性架橋部位と共有結合性架橋部位の存在に起因して、使用時に、共有結合による、より高度な機械的強度と、水素結合による加熱時の開裂による、より高度な流動性(成形性)を同時に発現させることも可能となる。そのため、側鎖の種類に応じて組成を適宜変更して、用途に応じた特性を適宜発揮させることも可能となるものと本発明者らは推察する。なお、上述のようなエラストマー性ポリマー(B)以外の側鎖(b)を有するエラストマー性ポリマーは、官能基(例えば環状酸無水物基)を側鎖に有するエラストマー性ポリマーを用いて、該エラストマー性ポリマーを、前記官能基と反応して共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)と反応させて、前記側鎖(b)を有する前記エラストマー性ポリマーを製造する方法により得ることが可能である。なお、この場合においても、共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)としては、前述の「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」を利用することができる。
 以上、本発明の熱可塑性エラストマー組成物によって、上述のような本発明の効果が得られる理由等について検討したが、以下、本発明の熱可塑性エラストマー組成物の好適な実施形態(各成分の含有比率の好適な条件等)について更に説明する。
 本発明の熱可塑性エラストマー組成物は、前記エラストマー成分と、前記クレイと、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂とを含有するものであり、前記クレイの含有量は、前記エラストマー成分100質量部に対して20質量部以下である。このようなクレイの含有量が前記上限を超えると、耐熱性及び破断強度が低下する。このような熱可塑性エラストマー組成物におけるクレイの含有量としては、前記エラストマー成分100質量部に対して0.1~10質量部であることがより好ましく、0.5~5質量部であることが更に好ましく、1~3質量部であることが特に好ましい。このようなクレイの含有量が前記下限未満では、クレイの含有量が少なすぎて十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると架橋が強くなり過ぎて、却って伸びや強度が低下してしまい、各種用途に利用することが困難となる(実用性が低下する)傾向にある。
 また、このようなクレイとしては、単層の形態のクレイ(単層のクレイ)が組成物中に存在することが好ましい。このような単層状の形態のクレイの存在は、組成物の表面を透過型電子顕微鏡(TEM)により測定することにより確認できる。
 さらに、本発明の熱可塑性エラストマー組成物においては、前記熱可塑性エラストマー組成物の表面上の任意の3点以上の5.63μmの大きさの測定点を透過型電子顕微鏡(TEM)により測定した場合において、全測定点において、個数を基準として、全クレイのうちの50%以上(より好ましくは70%以上、更に好ましくは80~100%、特に好ましくは85~100%)が単層のクレイとして存在することが好ましい。単層のクレイの存在率が前記下限未満では破断伸び、破断強度が低下する傾向にある。なお、このような単層のクレイの存在率(割合)の測定に際しては、透過型電子顕微鏡(例えば、日本電子社製の商品名「JEM-2010」)を用いて、試料として前記熱可塑性エラストマー組成物10gを準備し、前記熱可塑性エラストマー組成物の表面上の5.63μmの大きさの測定点を3点以上それぞれ測定し、かかる測定により得られる各TEM画像において、単層のクレイの個数と、多層状のクレイの個数とをそれぞれ求めて、各測定点(各TEM画像)に関して、個数を基準として、全クレイのうちの単層のクレイの存在率(割合)を計算することで求めることができる。なお、単層の形態になる前の多層構造の場合に、モンモリロナイトの層間距離は9.8オングストローム程度であり、一般的な有機化クレイの層間距離は20~40オングストローム(2~4nm)程度である。また、一般的な有機化クレイを有機溶剤に分散させて単層にした場合、それらの層間距離は50オングストローム(>5nm)以上となることから、TEM画像により確認できる各層の層間距離がそのような層間距離よりも広くなっていることに基づいて、単層と判断してもよい。このように、クレイの種類にもよるが、例えば、5nm以上層の間隔があることをもって単層の状態であると判断してもよく、場合によっては、数10nm以上の層の間隔があることをもって単層の状態であると判断してもよい。
 なお、組成物中に、上述のような割合(存在率)で単層のクレイが含有されている場合、多層状のクレイがそのまま分散されているよりも、クレイがより分散して含有された状態となるため(多層状のクレイが分解されて単層のクレイが形成されるためである。)、より高い分散性でクレイを組成物中に分散させることが可能となる。このように、前記クレイは、組成物中において多層状のまま存在するよりも、単層状のものが前記割合で存在する場合に、より高い分散性が得られ、耐熱性や破断強度をより高度なものとすることが可能である。そのため、上述のような割合で、単層の状態のクレイを含有させることがより好ましく、これによりクレイがより分散されて耐熱性や破断強度の向上をより効率よく図ることが可能となる。また、上述のような割合(存在率)で単層のクレイを含有させる方法としては、特に制限されないが、後述の本発明の熱可塑性エラストマー組成物の製造方法を採用して熱可塑性エラストマー組成物を製造することで、より効率よく、単層のクレイを上記割合で含有させることが可能となる。
 また、本発明の熱可塑性エラストマー組成物においては、前記熱可塑性エラストマー組成物の表面上の任意の3点以上の5.63μmの大きさの測定点を透過型電子顕微鏡により測定した場合において、全測定点において、1μmあたり、1~100個(より好ましくは3~80個、更に好ましくは5~50個)分散されていることが好ましい。このような単層のクレイの個数が前記下限未満ではクレイの量が少なすぎて、十分な効果が得られなくなる傾向にある。なお、このような単層のクレイの個数は、単層のクレイの存在率(割合)の測定と同様の方法でTEM画像を確認することにより求めることができる。
 上記本発明の熱可塑性エラストマー組成物としては、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の含有量(含有比率)が、前記エラストマー成分100質量部に対して250質量部以下であることが好ましく、5~250質量部であることがより好ましく、10~225質量部であることが更に好ましく、25~200質量部であることが特に好ましく、35~175質量部であることが最も好ましい。このような化学結合性の架橋部位を有さないα-オレフィン系樹脂の含有量が前記下限未満では、流動性が低下する傾向にあり、他方、前記上限を超えると、機械特性(破断強度、圧縮永久歪)が低下する傾向にある。
 また、本発明の熱可塑性エラストマー組成物において、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂の含有量は、熱可塑性エラストマー組成物の総量に対して1~50質量%であることが好ましく、3~45質量%であることがより好ましく、5~40質量%であることが更に好ましい。このような化学結合性の架橋部位を有さないα-オレフィン系樹脂の含有量が前記下限未満では、流動性が低下する傾向にあり、他方、前記上限を超えると、機械特性(破断強度、圧縮永久歪)が低下する傾向にある。
 なお、本発明の熱可塑性エラストマー組成物においては用いるエラストマー成分の種類に応じて、用途に応じた特性を適宜付与することもできる。例えば、エラストマー性ポリマー(A)をエラストマー成分とする熱可塑性エラストマー組成物においては、組成物中に側鎖(a)に由来する特性を付与できるため、特に破断伸び、破断強度、流動性を向上させることが可能となる。また、エラストマー性ポリマー(B)をエラストマー成分とする熱可塑性エラストマー組成物においては、組成物中に、側鎖中の共有結合性架橋部位に由来する特性を付与できるため、特に圧縮永久歪に対する耐性(耐圧縮永久歪性)を向上させることが可能となる。なお、エラストマー性ポリマー(B)をエラストマー成分として含有する熱可塑性エラストマー組成物においては、組成物中において、共有結合性架橋部位に由来する特性の他に、水素結合性架橋部位(側鎖(a’)において説明した水素結合性架橋部位)に由来する特性をも付与できるため、流動性(成形性)を保持した状態で、耐圧縮永久歪性をより向上させることも可能となり、その側鎖の種類やポリマー(B)の種類等を適宜変更することで、用途に応じた所望の特性を、より効率よく発揮させることも可能となる。
 また、本発明の熱可塑性エラストマー組成物においては、エラストマー性ポリマー(A)をエラストマー成分とする熱可塑性エラストマー組成物と、エラストマー性ポリマー(B)をエラストマー成分とする熱可塑性エラストマー組成物とをそれぞれ別々に製造した後、これを混合して、エラストマー成分としてエラストマー性ポリマー(A)及び(B)を含有する熱可塑性エラストマー組成物としてもよい。また、本発明においては、エラストマー成分は、エラストマー性ポリマー(A)及び(B)を少なくとも含有していればよいが、組成物中に共有結合性架橋部位を存在せしめて、より効率よく共有結合性架橋部位の特性を利用するといった観点から、エラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマーを混合して用いてもよい。例えば、エラストマー成分として、エラストマー性ポリマー(A)を用いる場合に、エラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマーを組み合わせて用いた場合には、組成物中に含まれる側鎖に由来して、側鎖に水素結合性架橋部位及び共有結合性架橋部位を含有するエラストマー性ポリマー(B)を利用した熱可塑性エラストマー組成物と、ほぼ同様の特性を付与することも可能となる。また、エラストマー成分としてエラストマー性ポリマー(A)及び(B)を含有する熱可塑性エラストマー組成物を製造する場合や、エラストマー性ポリマー(A)及びエラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマーを含有する熱可塑性エラストマー組成物を製造する場合には、各成分(例えばエラストマー性ポリマー(A)とエラストマー性ポリマー(B)の各成分)の比率を適宜変更することで、所望の特性を適宜発揮させることも可能となる。
 また、本発明の熱可塑性エラストマー組成物がエラストマー成分として、エラストマー性ポリマー(A)及び(B)を含有する場合には、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)の含有比率は質量比([ポリマー(A)]:[ポリマー(B)])で1:9~9:1とすることが好ましく、2:8~8:2とすることがより好ましい。このようなポリマー(A)の含有比率が前記下限未満では流動性(成形性)、機械的強度が不十分となる傾向にあり、他方、前記上限を超えると圧縮永久歪に対する耐性が低下する傾向にある。
 さらに、本発明の熱可塑性エラストマー組成物がエラストマー成分として、エラストマー性ポリマー(A)と、エラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマー(以下、場合により「エラストマー性ポリマー(C)」と称する。)とを含有する場合には、エラストマー性ポリマー(A)とエラストマー性ポリマー(C)の含有比率は質量比([エラストマー性ポリマー(A)]:[エラストマー性ポリマー(C)])で1:9~9:1とすることが好ましく、2:8~8:2とすることがより好ましい。このようなポリマー(A)の含有比率が前記下限未満では流動性(成形性)、機械的強度が不十分となる傾向にあり、他方、前記上限を超えると圧縮永久歪に対する耐性が低下する傾向にある。
 また、本発明の熱可塑性エラストマー組成物においては、組成物中に側鎖(a’)と側鎖(b)の双方が存在する場合には、その側鎖(a’)の全量と側鎖(b)の全量とが、質量比を基準として、1:9~9:1となっていることが好ましく、2:8~8:2となっていることがより好ましい。このような側鎖(a’)の全量が前記下限未満では流動性(成形性)、機械的強度が不十分となる傾向にあり、他方、前記上限を超えると圧縮永久歪に対する耐性が低下する傾向にある。なお、このような側鎖(a’)は、側鎖(a)を含む概念である。そのため、側鎖(a’)として側鎖(a)のみが含まれるような場合においても、上記質量比で、組成物中に側鎖(a)と側鎖(b)の双方が存在することが好ましい。
 また、このような本発明の熱可塑性エラストマー組成物においては、前記エラストマー成分、前記クレイ及び前記化学結合性の架橋部位を有さないα-オレフィン系樹脂以外にも、更なる添加成分(他の成分:添加剤)を適宜含有させてもよい。
 このように、本発明の熱可塑性エラストマー組成物に更に含有させる添加成分(他の成分:添加剤)としては、諸物性を低下させることなく、流動性をより向上させることが可能となるといった観点からは、パラフィンオイルが好ましい。なお、このようなパラフィンオイルを用いた場合には、後述するスチレン系ブロックポリマーと併用した場合、オイル成分をブロックポリマー内に吸収させることが可能となり、オイル添加による加工性改善(流動性の向上)とスチレン系ブロックポリマー添加による機械特性向上とを十分に高度な水準で両立することが可能となるため、機械的特性や耐熱性をより十分に維持しつつ、押し出し加工性や射出成型性などの生産加工性をより高度なものとすることができる。また、パラフィンオイルを用いた場合には、例えば、加熱してオリフィス(例えば直径1mmの開口部を有するようなもの等)から押し出した場合に、オリフィスの開口部から押し出された紐状の熱可塑性エラストマー組成物の形状(ストランド形状)が十分に均一の太さを有するものとなり、その表面に毛羽立ちが見られない状態となるような、優れた押し出し加工性が得られる傾向にある。このようなパラフィンオイルとしては特に制限されず、公知のパラフィンオイルを適宜利用することができる。
 また、このようなパラフィンオイルとしては、そのオイルに対して、ASTM D3238-85に準拠した相関環分析(n-d-M環分析)を行って、パラフィン炭素数の全炭素数に対する百分率(パラフィン部:C)、ナフテン炭素数の全炭素数に対する百分率(ナフテン部:C)、及び、芳香族炭素数の全炭素数に対する百分率(芳香族部:C)をそれぞれ求めた場合において、パラフィン炭素数の全炭素数に対する百分率(C)が60%以上であることが好ましい。
 また、このようなパラフィンオイルとしては、JIS K 2283(2000年発行)に準拠して測定される、40℃における動粘度が50mm/s~700mm/sのものが好ましく、150~600mm/sのものがより好ましく、300~500mm/sのものが更に好ましい。このような動粘度(ν)が前記下限未満ではオイルのブリードが起こりやすくなる傾向にあり、他方、前記上限を超えると充分な流動性を付与できなくなる傾向にある。なお、このようなパラフィンオイルの動粘度は、40℃の温度条件下において、JIS K 2283(2000年発行)に準拠して測定される値を採用するが、例えば、JIS K 2283(2000年発行)に準拠したキャノン・フェンスケ式粘度計(例えば柴田科学社製の商品名「SOシリーズ」)を利用して、40℃の温度条件で自動測定した値を採用してもよい。
 さらに、このようなパラフィンオイルは、JIS K2256(2013年発行)に準拠したU字管法により測定されるアニリン点が80℃~145℃であることが好ましく、100~145℃であることがより好ましく、105~145℃であることが更に好ましい。なお、このようなパラフィンオイルのアニリン点は、JIS K2256(2013年発行)に準拠したU字管法により測定される値を採用するが、例えば、JIS K2256(2013年発行)に準拠したアニリン点測定装置(例えば田中科学機器社製の商品名「aap-6」)を利用して測定した値を採用してもよい。
 また、このようなパラフィンオイルとしては、適宜市販のものを利用することができ、例えば、JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P200」、「スーパーオイルMシリーズ P400」、「スーパーオイルMシリーズ P500S」;出光興産社製の商品名「ダイアナプロセスオイルPW90」、「ダイアナプロセスオイルPW150」、「ダイアナプロセスオイルPW380」;日本サン石油社製の商品名「SUNPARシリーズ(110、115、120、130、150、2100、2280など)」;モービル社製の商品名「ガーゴイルアークティックシリーズ(1010、1022、1032、1046、1068、1100など)」;等を適宜利用してもよい。
 また、本発明の熱可塑性エラストマー組成物において前記パラフィンオイルを更に含有させる場合、前記パラフィンオイルの含有量は、前記エラストマー成分100質量部に対して10~1500質量部であることが好ましく、10~1400質量部であることがより好ましく、50~1200質量部であることが更に好ましく、75~1100質量部であることが特に好ましく、100~1000質量部であることが最も好ましい。さらに、前記パラフィンオイルの含有量としては、前記エラストマー成分100質量部に対して600質量部以下であることがより好ましく、この場合、10~600質量部であることが好ましく、50~550質量部であることがより好ましく、75~500質量部であることが更に好ましく、100~400質量部であることが特に好ましい。このようなパラフィンオイルの含有量が前記下限未満では、パラフィンオイルの含有量が少なすぎて、パラフィンオイルを添加することにより得られる効果(特に流動性及び加工性を向上せしめる効果)が必ずしも十分なものではなくなる傾向にあり、他方、前記上限を超えると、パラフィンオイルのブリードが誘発されやすくなる傾向にある。なお、JIS-A硬度をより低い値(好ましくは10以下)に調整するといった観点からは、前記パラフィンオイルの含有量は500~1500質量部であることが好ましく、600~1400質量部であることがより好ましく、800~1200質量部であることが更に好ましい。
 また、本発明の熱可塑性エラストマー組成物において前記パラフィンオイルを更に含有させる場合、前記パラフィンオイルの含有量は、熱可塑性エラストマー組成物の総量に対して20~80質量%であることが好ましく、20~60質量%であることが好ましく、25~55質量%であることがより好ましく、35~55質量%であることが更に好ましい。このようなパラフィンオイルの含有量が前記下限未満では、パラフィンオイルの含有量が少なすぎて、特に流動性及び加工性の点で十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると、パラフィンオイルのブリードが誘発されやすくなる傾向にある。なお、JIS-A硬度をより低い値(好ましくは10以下)に調整するといった観点からは、前記パラフィンオイルの含有量は50~80質量%であることが好ましく、55~75質量%であることがより好ましく、60~70質量%であることが更に好ましい。
 また、本発明の熱可塑性エラストマー組成物に更に含有させる前記添加成分(他の成分:添加剤)としては、母体となるエラストマーの架橋反応に干渉しない成分であるとの観点からは、化学結合性の架橋部位を有さないスチレンブロック共重合体が好ましい。なお、このようなスチレンブロック共重合体を用いた場合、基本的に、母体となるエラストマー性ポリマー(前記エラストマー成分)の架橋構造や製造時の架橋反応に干渉しないため、架橋した母体となるエラストマー構造固有の物性が阻害されないことから、前記エラストマー成分に由来する特性を十分に維持しつつ、スチレンブロック共重合体に由来する優れた機械特性(特に引張特性、圧縮永久歪等)を、本発明の熱可塑性エラストマー組成物に反映させること(付与すること)ができ、より高度な特性を有するものとすることが可能であるものと本発明者らは推察する。
 このような本発明の熱可塑性エラストマー組成物に好適に用いられる成分である前記スチレンブロック共重合体は、化学結合性の架橋部位を有さないものである。ここにいう「化学結合性の架橋部位を有さない」とは、前述のα-オレフィン系樹脂において説明したものと同義である。従って、化学結合性の架橋部位を有さないスチレンブロック共重合体としては、化学結合による架橋点を形成するような、官能基(例えば、水酸基、カルボニル基、カルボキシル基、チオール基、アミド基、アミノ基)を含まず、更に、高分子鎖同士を直接架橋する結合部位(共有結合による架橋部位等)を含まないものが好適に用いられる。また、このような化学結合性の架橋部位を有さないスチレンブロック共重合体は、少なくとも、上述のような側鎖(a)、側鎖(a’)、側鎖(b)、側鎖(c)等を有していないポリマーとなる。
 また、ここにいう「スチレンブロック共重合体」とは、いずれかの部位にスチレンブロック構造を有するポリマーであればよい。なお、一般に、スチレンブロック共重合体は、スチレンブロック構造を有し、常温では、そのスチレンブロック構造の部位が凝集して物理的架橋点(物理的な疑似架橋点)が形成され、加熱した場合にはかかる物理的な疑似架橋点が崩壊することに基づいて、熱可塑性を有しかつ常温でゴムのような特性(弾性等)を有するものとして利用可能なものである。
 また、このような化学結合性の架橋部位を有さないスチレンブロック共重合体としてはゴム弾性と熱可塑性の両立の観点から、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン‐エチレン‐プロピレン-スチレンブロック共重合体(SEPS)、スチレン‐エチレン‐エチレン‐プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-ブタジエン-スチレンブロック共重合体(SIBS)、これらの水素添加物(いわゆる水添物)が好ましく、SEBS、SEEPSがより好ましい。このようなスチレンブロック共重合体は1種を単独で用いてもよく、あるいは、2種以上を組み合わせて利用してもよい。
 また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体としては、スチレン含有量が20~40質量%(より好ましくは25~37質量%)のスチレンブロック共重合体であることが好ましい。このようなスチレン含有量が前記下限未満ではスチレンブロック成分の減少により熱可塑性が低下する傾向にあり、他方、前記上限を超えるとオレフィン成分の減少によりゴム弾性が低下する傾向にある。なお、このようなスチレンブロックスチレンブロック共重合体中のスチレン含有量は、JIS K6239(2007年発行)に記載のIR法に準拠した方法により測定できる。
 さらに、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の重量平均分子量(Mw)は、20万以上70万以下であることが好ましく、30万以上60万以下であることがより好ましく、35万以上55万以下であることが更に好ましい。このような重量平均分子量が前記下限未満では耐熱性が低下する傾向にあり、他方、前記上限を超えるとエラストマー性ポリマーとの相溶性が低下する傾向にある。
 また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の数平均分子量(Mn)は、10万以上60万以下であることが好ましく、15万以上55万以下であることがより好ましく、20万以上50万以下であることが更に好ましい。このような数平均分子量が前記下限未満では耐熱性が低下する傾向にあり、他方、前記上限を超えるとエラストマー性ポリマー(前記エラストマー成分)との相溶性が低下する傾向にある。
 また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の分子量分布の分散度(Mw/Mn)は5以下であることが好ましく、1~3であることがより好ましい。なお、このような重量平均分子量(Mw)や前記数平均分子量(Mn)および分子量分布の分散度(Mw/Mn)は、いわゆるゲルパーミエーションクロマトグラフィー(GPC)法により求めることができる。また、このような分子量等の測定の具体的な装置や条件としては、島津製作所製の「Prominence GPCシステム」を利用できる。
 また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体のガラス転移点は、-80~-40℃であることが好ましく、-70~-50であることがより好ましい。このようなガラス転移点が前記下限未満では融点が低くなるため耐熱性が低下する傾向にあり、他方、前記上限を超えるとゴム弾性が低下する傾向にある。なお、ここにいう「ガラス転移点」は、前述のように、示差走査熱量測定(DSC-Differential Scanning Calorimetry)により測定したガラス転移点である。このようなDSC測定に際しては、昇温速度は10℃/minにするのが好ましい。
 前記化学結合性の架橋部位を有さないスチレンブロック共重合体の製造するための方法は特に制限されず、公知の方法を適宜採用することができる。また、このようなスチレンブロック共重合体としては、市販品を用いてもよく、例えば、クレイトン社製の商品名「G1633」「G1640」「G1641」「G1642」「G1643」「G1645」「G1650」「G1651」「G1652」「G1654」「G1657」「G1660」;クラレ社製の商品名「S4055」「S4077」「S4099」「S8006」「S4044」「S8006」「S4033」「S8004」「S8007」「S8076」;旭化成社製の商品名「タフテックH1041」「タフテックN504」「タフテックH1272」「タフテックM1911」「タフテックM1913」「タフテックMP10」;アロン化成社製の商品名「AR-710」「AR-720」「AR-731」「AR-741」「AR-750」「AR-760」「AR-770」「AR-781」「AR-791」;等を適宜用いてもよい。
 また、本発明の熱可塑性エラストマー組成物において前記化学結合性の架橋部位を有さないスチレンブロック共重合体を更に含有させる場合、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の含有量(含有比率)は、前記エラストマー成分100質量部に対して10~400質量部以下であることが好ましく、15~350質量部であることがより好ましく、20~300質量部であることが更に好ましく、30~250質量部であることが特に好ましい。このような化学結合性の架橋部位を有さないスチレンブロック共重合体の含有量が前記下限未満では、化学結合性の架橋部位を有さないスチレンブロック共重合体の含有量が少なすぎて、特に流動性及び加工性の点で十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると、架橋したエラストマーによる母体構造の特性(前記エラストマー成分に由来する特性)が希薄になる傾向にある。
 さらに、本発明の熱可塑性エラストマー組成物において前記化学結合性の架橋部位を有さないスチレンブロック共重合体を更に含有させる場合、前記化学結合性の架橋部位を有さないスチレンブロック共重合体の含有量は、熱可塑性エラストマー組成物の総量に対して5~60質量%であることが好ましく、7~45質量%であることがより好ましく、10~30質量%であることが更に好ましい。このような化学結合性の架橋部位を有さないスチレンブロック共重合体の含有量が前記下限未満では、前記スチレンブロック共重合体の含有量が少なすぎて、特に流動性及び加工性の点で十分な効果が得られなくなる傾向にあり、他方、前記上限を超えると、架橋したエラストマーによる母体構造の特性(前記エラストマー成分に由来する特性)が希薄になる傾向にある。
 本発明において、前記添加成分としては、流動性、機械特性改善の観点から、前記パラフィンオイル及び前記化学結合性の架橋部位を有さないスチレンブロック共重合体の双方を更に含有させることが好ましい。すなわち、本発明の熱可塑性エラストマー組成物としては、前記エラストマー成分、前記クレイ、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂、前記パラフィンオイル及び前記化学結合性の架橋部位を有さないスチレンブロック共重合体を含有しているものがより好ましい。
 このように、前記エラストマー成分、前記クレイ、前記α-オレフィン系樹脂、前記パラフィンオイル及び前記スチレンブロック共重合体を含有する場合においては、耐熱性や破断強度、更には耐圧縮永久歪性等といった特性をより高度な水準でバランスよく発揮できる傾向にある。このような効果が達成される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、先ず、前記パラフィンオイルと前記スチレンブロック共重合体とを組み合わせて利用した場合、これらの相溶性が十分に高いため、前記スチレンブロック共重合体が含まれる系中にパラフィンオイルが十分に均一に分散する。また、前記スチレンブロック共重合体と前記α-オレフィン系樹脂とは相溶性が高いため、系中で均一に分散する。また、このような前記スチレンブロック共重合体と前記α-オレフィン系樹脂とを含む系において、前記エラストマー成分が両者に対して高い相溶性を有するため、やはり組成物中において前記エラストマー成分も十分に均一に分散したものとなる。そして、前述のように、前記エラストマー成分と前記クレイとが相互作用して面架橋を形成するため、エラストマー成分の分散に伴ってクレイも十分に分散した状態で存在することとなる。このように、前記エラストマー成分、前記クレイ、前記α-オレフィン系樹脂、前記パラフィンオイル及び前記スチレンブロック共重合体を含有する場合においては、各成分がより十分に分散した状態で含有される。そのため、熱可塑性エラストマー組成物の特性に強く影響を与える前記エラストマー成分の状態が、前記クレイと相互作用した状態(面架橋により強い結合を形成した状態)で十分に分散されたものとなるため、より高度な機械的強度や耐熱性をバランスよく発揮することが可能となる。また、熱可塑性エラストマー組成物の流動性に強く影響を与える成分であるα-オレフィン系樹脂やパラフィンオイルもやはり十分に分散した状態となっているため、より高度な流動性(加熱時の流動性)を達成することが可能である。更に、前記スチレンブロック共重合体は、添加量によって機械強度を調節可能であるため、所望の機械物性に調節することも可能である。そのため、前記エラストマー成分、前記クレイ、前記α-オレフィン系樹脂、前記パラフィンオイル及び前記スチレンブロック共重合体を含有する場合においては、耐熱性や破断強度、更には耐圧縮永久歪性等といった特性をより高度な水準でバランスよく発揮できるといった効果が得られるものと本発明者らは推察する。
 また、本発明の熱可塑性エラストマー組成物は、更に、必要に応じて、本発明の目的を損わない範囲で、前記エラストマー成分、前記α-オレフィン系樹脂及び前記スチレンブロック共重合体)以外の他のポリマー、補強剤(充填剤)、水素結合性の補強剤(充填剤)、アミノ基を導入してなる充填剤(以下、単に「アミノ基導入充填剤」という。)、該アミノ基導入充填剤以外のアミノ基含有化合物、金属元素を含む化合物(以下、単に「金属塩」という。)、無水マレイン酸変性ポリマー、老化防止剤、酸化防止剤、顔料(染料)、前記パラフィンオイル以外の可塑剤(いわゆる軟化剤も含む。)、揺変性付与剤、紫外線吸収剤、難燃剤、溶剤、界面活性剤(レベリング剤を含む)、分散剤、脱水剤、防錆剤、接着付与剤、帯電防止剤、フィラーなどの各種添加剤等を含有することができる。このような添加剤等は、特に制限されず、一般に用いられるもの(公知のもの)を適宜使用することができる。例えば、老化防止剤、酸化防止剤、顔料(染料)、可塑剤としては、以下に記載のようなものを適宜利用することができる。
 前記エラストマー成分以外のポリマーとしては、熱可塑性エラストマーの分野において、硬度の調整や機械物性の保持の観点等から適宜用いられるような公知のポリマーを適宜利用でき、特に制限されるものではないが、エラストマー性ポリマー(B)以外の側鎖(b)を有する他のエラストマー性ポリマーを好適に利用することができる。
 また、このような補強剤(充填剤)としては、カーボンブラック、シリカ、炭酸カルシウム等を上げることができる。カーボンブラックとしては、シリカとしては湿式シリカ、炭酸カルシウムとしてはが好適に用いられる。
 このような老化防止剤としては、例えば、ヒンダードフェノール系、脂肪族および芳香族のヒンダードアミン系等の化合物を適宜利用することができる。また、前記酸化防止剤としては、例えば、ブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)等を適宜利用することができる。また、前記顔料としては、例えば、二酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩等の無機顔料、アゾ顔料、銅フタロシアニン顔料等の有機顔料、およびこれらのマスターバッチ品等を適宜利用することができ(これらのカラーマスターバッチとしては市販品(例えば、日本ピグメント社製の商品名「Nippisun Colour」、東洋インキ社製カラーマスターバッチ、トーヨーカラー社製カラーマスターバッチ等を利用してもよい。)、また、前記可塑剤としては、例えば、安息香酸、フタル酸、トリメリット酸、ピロメリット酸、アジピン酸、セバチン酸、フマル酸、マレイン酸、イタコン酸、クエン酸等の誘導体をはじめ、ポリエステル、ポリエーテル、エポキシ系等を適宜利用することができる。また、前記可塑剤(軟化剤)としては、流動性をより向上させるといった観点から、熱可塑性エラストマーに用いることが可能なものを適宜利用でき、例えば、オイル類を用いることもできる。なお、このような添加剤等としては、特開2006-131663号公報に例示されているようなものを適宜利用してもよい。
 なお、本発明の熱可塑性エラストマー組成物が、前記エラストマー成分、前記クレイ、前記化学結合性の架橋部位を有さないα-オレフィン系樹脂、前記パラフィンオイル及び前記化学結合性の架橋部位を有さないスチレンブロック共重合体以外の他の成分(例えば、前記添加剤等)を含有する場合において、前記他の成分の含有量は特に制限されるものではないが、ポリマー類、補強材(充填剤)の場合は、それぞれ、前記エラストマー成分100質量部に対して400質量部以下であることが好ましく、20~300質量部であることがより好ましい。このような他の成分の含有量が前記下限未満では他の成分を利用することによる効果が十分に発現しなくなる傾向にあり、他方、前記上限を超えると、利用する成分の種類にもよるが、基質のエラストマーの効果が薄まって、物性が低下してしまう傾向にある。
 前述の他の成分が、その他の添加剤の場合(ポリマー類、補強材(充填剤)以外のものである場合)は、前記他の成分の含有量は、それぞれ、前記エラストマー成分100質量部に対して20質量部以下であることが好ましく、0.1~10質量部であることがより好ましい。このような他の成分の含有量が前記下限未満では他の成分を利用することによる効果が十分に発現しなくなる傾向にあり、他方、前記上限を超えると、基質のエラストマーの反応に悪影響を及ぼし、却って物性が低下してしまう傾向にある。
 本発明の熱可塑性エラストマー組成物は、加熱(例えば100~250℃に加熱)することにより、水素結合性架橋部位において形成されていた水素結合や、他の架橋構造(スチレンブロック共重合体を含む場合にはその物理架橋等)が解離する等して軟化し、流動性を付与することができる。これは、主に、加熱により分子間または分子内で形成されている側鎖同士の相互作用(主に水素結合による相互作用)が弱まるためであると考えられる。なお、本発明においては、側鎖に、少なくとも水素結合性架橋部位を含むエラストマー成分が含有されていること等から、加熱により流動性が付与された後、放置した場合に、解離した水素結合が再び結合して硬化するため、その組成によっては、熱可塑性エラストマー組成物に、より効率よくリサイクル性を発現させることも可能となる。
 また、本発明の熱可塑性エラストマー組成物は、JIS K6922-2(2010年発行)に準拠して測定される230℃、10kg荷重におけるメルトフローレート(MFR)が2g/10分以上であることが好ましく、4g/10分以上であることがより好ましく、8g/10分以上であることが更に好ましい。このようなメルトフローレート(MFR)が前記下限未満では必ずしも充分な加工性を発現できない場合も生じ得る傾向にある。なお、このようなメルトフローレート(MFR)は、JIS K6922-2(2010年発行)に記載のB法に準拠して測定される値であり、メルトフローレート測定装置として東洋精機製作所製の商品名「Melt Indexer G-01」を用いて、該装置の炉体内に熱可塑性エラストマー組成物を3g添加した後、温度を230℃にして5分間保持した後、230℃に維持しつつ10kgに荷重する条件で、前記炉体の下部に接続されている直径1mm、長さ8mmの筒状のオリフィス部材の開口部から、10分の間に流出するエラストマーの質量(g)を測定(前記炉体内において温度を230℃にして5分間保持した後に荷重を開始してから、流出するエラストマーの質量の測定を開始する。)することにより求めることができる。
 さらに、本発明の熱可塑性エラストマー組成物は、5%重量減少温度が320℃以上であることが好ましく、325℃以上であることがより好ましい。このような5%重量減少温度が前記下限未満では耐熱性に劣る傾向にある。なお、このような5%重量減少温度は、測定試料として10mgの熱可塑性エラストマー組成物を準備し、測定装置として熱重量測定装置(TGA)を用い、昇温速度10℃/minで加熱して、初期の重量(10mg)から5%重量が減少した際の温度を測定することにより求めることができる。
 本発明の熱可塑性エラストマー組成物は、その用途に応じて、組成を適宜変更することで硬度等の特性を適宜変更して用いることができる。例えば、ガスケット、パッキン、ストッパー、3Dプリンター用資材に利用する場合、硬度がより低いことが望ましいことから、組成物中のα-オレフィン樹脂の含有量をより少なくしたり、組成物中に好適な成分として利用可能なパラフィンオイルを多量に添加する等してJIS-A硬度を0~20に調整してもよく、あるいは、ウェザーストリップ等の自動車用ゴム部品に利用する場合、硬度がより高いことが望ましいことから、樹脂を増やすもしくはオイルを減量する等してJIS-A硬度を60~90に調整してもよい。このように、本発明の熱可塑性エラストマー組成物のJIS-A硬度は、用途に応じて組成を適宜変更して最適な値に調整して利用することが望ましく、その値は特に制限されるものではないが、0~90であることが好ましく、10~80であることがより好ましい。このようなJIS-A硬度が前記下限未満ではオイルがブリードしやすくなる傾向にあり、他方、前記上限を超えるとゴム弾性が低下する傾向にある。
 本発明の熱可塑性エラストマー組成物は、例えば、ゴム弾性を活用して種々のゴム用途に使用することができる。またホットメルト接着剤として、またはこれに含ませる添加剤として使用すると、耐熱性およびリサイクル性を向上させることができるので好ましい。本発明の熱可塑性エラストマー組成物は、自動車用ゴム部品、ホース、ベルト、シート、防振ゴム、ローラー、ライニング、ゴム引布、シール材、手袋、防舷材、医療用ゴム(シリンジガスケット、チューブ、カテーテル)、ガスケット(家電用、建築用)、アスファルト改質剤、ホットメルト接着剤、ブーツ類、グリップ類、玩具、靴、サンダル、キーパッド、ギア、ペットボトルキャプライナー等の用途に好適に用いられる。
 上記自動車用ゴム部品としては、具体的には、例えば、タイヤのトレッド、カーカス、サイドウォール、インナーライナー、アンダートレッド、ベルト部などのタイヤ各部;外装のラジエータグリル、サイドモール、ガーニッシュ(ピラー、リア、カウルトップ)、エアロパーツ(エアダム、スポイラー)、ホイールカバー、ウェザーストリップ、カウベルトグリル、エアアウトレット・ルーバー、エアスクープ、フードバルジ、換気口部品、防触対策部品(オーバーフェンダー、サイドシールパネル、モール(ウインドー、フード、ドアベルト))、マーク類;ドア、ライト、ワイパーのウェザーストリップ、グラスラン、グラスランチャンネルなどの内装窓枠用部品;エアダクトホース、ラジエターホース、ブレーキホース;クランクシャフトシール、バルブステムシール、ヘッドカバーガスケット、A/Tオイルクーラーホース、ミッションオイルシール、P/Sホース、P/Sオイルシールなどの潤滑油系部品;燃料ホース、エミッションコントロールホース、インレットフィラーホース、ダイヤフラム類などの燃料系部品;エンジンマウント、インタンクポンプマウントなどの防振用部品;CVJブーツ、ラック&ピニオンブーツ等のブーツ類;A/Cホース、A/Cシール等のエアコンデショニング用部品;タイミングベルト、補機用ベルトなどのベルト部品;ウィンドシールドシーラー、ビニルプラスチゾルシーラー、嫌気性シーラー、ボディシーラー、スポットウェルドシーラーなどのシーラー類;等が挙げられる。
 またゴムの改質剤として、例えば、流れ防止剤として、室温でコールドフローを起こす樹脂あるいはゴムに含ませると、押出し時の流れやコールドフローを防止することができる。
 本発明の熱可塑性エラストマー組成物は、より高度な耐熱性を有するものとすることが可能であるとともに、破断強度を基準とした引張特性をより高度なものとすることができる。なお、このような熱可塑性エラストマー組成物においては、組成を適宜変更することで、用途に応じて必要となる特性(例えば、自己修復性等の特性)も適宜発揮させることが可能である。このように、組成を適宜変更することで熱可塑性エラストマー組成物の用途に応じて、必要となる特性をバランスよく適宜発揮させることが可能であるため、上述のような各種用途に用いる場合には、その用途に応じて必要となる特性を考慮して、組成物中の成分の種類(組成)を適宜変更して利用することが好ましい。
 以上、本発明の熱可塑性エラストマー組成物について説明したが、以下において、そのような本発明の熱可塑性エラストマー組成物を製造するための方法としても好適に利用することが可能な本発明の熱可塑性エラストマー組成物の製造方法について説明する。
 [熱可塑性エラストマー組成物の製造方法]
 本発明の熱可塑性エラストマー組成物の製造方法は、環状酸無水物基を側鎖に有するエラストマー性ポリマーと、クレイと、化学結合性の架橋部位を有さないα-オレフィン系樹脂とを混合して混合物を得る第一工程と、
 前記混合物に、前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(I)、並びに、前記化合物(I)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(II)の混合原料のうちの少なくとも1種の原料化合物を添加し、前記ポリマーと前記原料化合物とを反応させることにより、熱可塑性エラストマー組成物を得る第二工程と、
を含み、
 前記第二工程において得られる前記熱可塑性エラストマー組成物が、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 前記エラストマー成分100質量部に対して20質量部以下の含有比率の前記クレイと、
 前記α-オレフィン系樹脂と、
を含有してなる組成物であり、
 前記第一工程において、前記熱可塑性エラストマー組成物中の前記クレイの含有量が前記エラストマー成分100質量部に対して20質量部以下となるような割合で前記クレイを用いて、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーと、前記クレイと、前記α-オレフィン系樹脂とを混合する、方法である。以下、第一工程と第二工程とを分けて説明する。
 (第一工程)
 第一工程は、環状酸無水物基を側鎖に有するエラストマー性ポリマーと、クレイと、化学結合性の架橋部位を有さないα-オレフィン系樹脂とを混合して混合物を得る工程である。
 ここで、「環状酸無水物基を側鎖に有するエラストマー性ポリマー」とは、ポリマーの主鎖を形成する原子に環状酸無水物基が化学的に安定な結合(共有結合)をしているエラストマー性ポリマーのことをいい、例えば、前記エラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーと、環状酸無水物基を導入し得る化合物とを反応させることにより得られるものを好適に利用することができる。
 なお、このような主鎖部分を形成することが可能なポリマーとしては、一般的に公知の天然高分子または合成高分子であって、そのガラス転移点が室温(25℃)以下のポリマーからなるものであればよく(いわゆるエラストマーからなるものであればよく)、特に限定されるものではない。
 このようなエラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーとしては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、1,2-ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、エチレン-プロピレン-ジエンゴム(EPDM)などのジエン系ゴムおよびこれらの水素添加物;エチレン-プロピレンゴム(EPM)、エチレン-アクリルゴム(AEM)、エチレン-ブテンゴム(EBM)、クロロスルホン化ポリエチレン、アクリルゴム、フッ素ゴム、ポリエチレンゴム、ポリプロピレンゴムなどのオレフィン系ゴム;エピクロロヒドリンゴム;多硫化ゴム;シリコーンゴム;ウレタンゴム;等が挙げられる。
 また、このようなエラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーとしては、樹脂成分を含むエラストマー性のポリマーであってもよく、例えば、水添されていてもよいポリスチレン系エラストマー性ポリマー(例えば、SBS、SIS、SEBS等)、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、ポリアミド系エラストマー性ポリマー等が挙げられる。
 さらに、このようなエラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーとしては、ジエン系ゴム、ジエン系ゴムの水素添加物、オレフィン系ゴム、水添されていてもよいポリスチレン系エラストマー性ポリマー、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、及び、ポリアミド系エラストマー性ポリマーの中から選択される少なくとも1種からなることが好ましい。また、このようなポリマーとしては、環状酸無水物基として好適な無水マレイン酸基の導入のし易さといった観点からは、ジエン系ゴムが好ましく、耐老化性の観点からは、オレフィン系ゴムが好ましい。
 また、前記環状酸無水物基を導入し得る化合物としては、例えば、無水コハク酸、無水マレイン酸、無水グルタル酸、無水フタル酸およびこれらの誘導体等の環状酸無水物が挙げられる。
 また、第一工程に用いられる環状酸無水物基を側鎖に有するエラストマー性ポリマーの前記環状酸無水物基としては、無水コハク酸基、無水マレイン酸基、無水グルタル酸基、無水フタル酸基が好ましく、中でも、原料の反応性が高く、しかも工業的に原料の入手が容易であるといった観点からは、無水マレイン酸基がより好ましい。
 さらに、第一工程に用いられる環状酸無水物基を側鎖に有するエラストマー性ポリマーは、通常行われる方法、例えば、エラストマー性ポリマー(A)~(B)の主鎖部分を形成することが可能なポリマーに、通常行われる条件、例えば、加熱下での撹拌等により環状酸無水物をグラフト重合させる方法で製造してもよい。また、第一工程に用いられる環状酸無水物基を側鎖に有するエラストマー性ポリマーとしては、市販品を用いてもよい。
 このような環状酸無水物基を側鎖に有するエラストマー性ポリマーの市販品としては、例えば、LIR-403(クラレ社製)、LIR-410A(クラレ社試作品)などの無水マレイン酸変性イソプレンゴム;LIR-410(クラレ社製)などの変性イソプレンゴム;クライナック110、221、231(ポリサー社製)などのカルボキシ変性ニトリルゴム;CPIB(日石化学社製)、HRPIB(日石化学社ラボ試作品)などのカルボキシ変性ポリブテン;ニュクレル(三井デュポンポリケミカル社製)、ユカロン(三菱化学社製)、タフマーM(例えば、MP0610(三井化学社製)、MP0620(三井化学社製))などの無水マレイン酸変性エチレン-プロピレンゴム;タフマーM(例えば、MA8510、MH7010、MH7020(三井化学社製)、MH5010、MH5020(三井化学社製)、MH5040(三井化学社製))などの無水マレイン酸変性エチレン-ブテンゴム;アドテックスシリーズ(無水マレイン酸変性EVA、無水マレイン酸変性EMA(日本ポリオレフィン社製))、HPRシリーズ(無水マレイン酸変性EEA、無水マレイン酸変性EVA(三井・ジュポンポリオレフィン社製))、ボンドファストシリーズ(無水マレイン酸変性EMA(住友化学社製))、デュミランシリーズ(無水マレイン酸変性EVOH(武田薬品工業社製))、ボンダイン(エチレン・アクリル酸エステル・無水マレイン酸三元共重合体(アトフィナ社製))、タフテック(無水マレイン酸変性SEBS、M1943(旭化成社製))、クレイトン(無水マレイン酸変性SEBS、FG1901,FG1924(クレイトンポリマー社製))、タフプレン(無水マレイン酸変性SBS、912(旭化成社製))、セプトン(無水マレイン酸変性SEPS(クラレ社製))、レクスパール(無水マレイン酸変性EVA、ET-182G、224M、234M(日本ポリオレフィン社製))、アウローレン(無水マレイン酸変性EVA、200S、250S(日本製紙ケミカル社製))などの無水マレイン酸変性ポリエチレン;アドマー(例えば、QB550、LF128(三井化学社製))などの無水マレイン酸変性ポリプロピレン;等が挙げられる。
 また、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーとしては、無水マレイン酸変性エラストマー性ポリマーが好ましく、高分子量で高強度であるといった観点から、無水マレイン酸変性エチレン-プロピレンゴム、無水マレイン酸変性エチレン-ブテンゴムがより好ましい。
 さらに、第一工程に用いられる前記クレイは、上記本発明の熱可塑性エラストマー組成物において説明したクレイと同様のものである(その好適なものも同様である)。また、第一工程に用いられる前記化学結合性の架橋部位を有さないα-オレフィン系樹脂は、上記本発明の熱可塑性エラストマー組成物において説明した化学結合性の架橋部位を有さないα-オレフィン系樹脂と同様のものである(その好適なものも同様である)。
 また、第一工程においては、環状酸無水物基を側鎖に有するエラストマー性ポリマーと、クレイと、化学結合性の架橋部位を有さないα-オレフィン系樹脂とを混合して混合物を得る。このような混合物の調製工程においては、環状酸無水物基を側鎖に有するエラストマー性ポリマーと、クレイと、前記α-オレフィン系樹脂の添加順序は特に制限されるものではないが、クレイの分散性をより向上させるといった観点から、前記α-オレフィン系樹脂と環状酸無水物基を側鎖に有するエラストマー性ポリマーとを含む混合物の前駆体を調製した後、該前駆体中にクレイを添加することが好ましい。
 また、前記混合物を得るためにクレイを添加する際には、クレイが十分に分散するように、予め環状酸無水物基を側鎖に有するエラストマー性ポリマーを可塑化した後に、クレイを添加することが好ましく、前記混合物前駆体を可塑化して、そこにクレイを添加することがより好ましい。
 このように、環状酸無水物基を側鎖に有するエラストマー性ポリマーや前記混合物前駆体を可塑化する方法としては特に制限されず、例えば、これらを可塑化することが可能となるような温度(例えば100~250℃程度)でロール、ニーダー、押出し機、万能攪拌機等を用いて素練りする方法等を適宜採用できる。このような環状酸無水物基を側鎖に有するエラストマー性ポリマーや前記混合物前駆体の可塑化を行う際の温度等の条件は特に制限されず、含有している成分の種類(例えば環状酸無水物基を側鎖に有するエラストマー性ポリマーの種類)等に応じて適宜設定すればよい。
 また、このような混合物の調製工程においては、最終的に得られる熱可塑性エラストマー組成物中のクレイの含有量が前記エラストマー成分100質量部に対して20質量部以下(より好ましくは0.1~10質量部、更に好ましくは0.5~5質量部、特に好ましくは1~3質量部)となるような割合で前記クレイを用いて、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーと前記クレイと前記化学結合性の架橋部位を有さないα-オレフィン系樹脂とを混合することが好ましい。このようなクレイの含有量が前記上限を超えると架橋が強すぎて、却って伸びや強度が低下する傾向にあり、他方、前記下限未満では、クレイの量が少なすぎて、クレイを用いることにより得られる効果が低下してしまう傾向にある。
 また、このような混合物中のクレイの含有量としては、環状酸無水物基を側鎖に有するエラストマー性ポリマー100質量部に対して20質量部以下であることが好ましく、0.5~5質量部であることがより好ましく、1~3質量部であることが更に好ましい。このような含有量が前記下限未満では、クレイの量が少なすぎて、クレイを用いることにより得られる効果が低下してしまう傾向にあり、他方、前記上限を超えると、架橋が強すぎて、却って伸びや強度が低下する傾向にある。なお、このような含有量でクレイを用いることで、最終的に得られる熱可塑性エラストマー組成物中のクレイの含有量が前記範囲内の値となる。
 更に、このような混合物の形成の際に用いるクレイの量としては、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー中の環状酸無水物基1mmolに対して、クレイが0.01g~2.0g(より好ましくは0.02~1.0g)となるような割合で含有することが好ましい。このような酸無水物基に対するクレイの割合が前記下限未満では少なすぎて効果が低下してしまう傾向にあり、他方、前記上限を超えると架橋が強すぎて、却って伸びや強度が低下する傾向にある。なお、このような割合の範囲内でクレイを含有させることで、混合物中に含有せしめたクレイが効率よく分解されて、単層のクレイを効率よく製造することができ、クレイの分散性をより高度のものとすることができる傾向にある。
 また、このような混合物の調製工程においては、最終的に得られる熱可塑性エラストマー組成物中の前記α-オレフィン系樹脂(化学結合性の架橋部位を有さないα-オレフィン系樹脂)の含有量が前記エラストマー成分100質量部に対して250質量部以下(より好ましくは5~250質量部、更に好ましくは10~225質量部、特に好ましくは25~200質量部、最も好ましくは35~175質量部)となるような割合で前記α-オレフィン系樹脂を用いて、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーと前記クレイと前記α-オレフィン系樹脂とを混合することが好ましい。このようなα-オレフィン系樹脂の含有量が前記上限を超えると機械特性(破断強度、圧縮永久歪)が低下する傾向にあり、他方、前記下限未満では、流動性が低下する傾向にある。
 また、このような混合物中の前記α-オレフィン系樹脂の含有量としては、環状酸無水物基を側鎖に有するエラストマー性ポリマー100質量部に対して250質量部以下(より好ましくは5~250質量部、更に好ましくは10~225質量部、特に好ましくは25~200質量部、最も好ましくは35~175質量部)とすることが好ましい。このような含有量が前記下限未満では、機械特性(破断強度、圧縮永久歪)が低下する傾向にあり、他方、前記下限未満では、流動性が低下する傾向にある。
 また、このような混合物を得るための混合の方法は特に制限されず、公知の方法等を適宜採用することができ、例えば、ロール、ニーダー、押出し機、万能攪拌機等により混合する方法を採用することができる。
 なお、このような混合物には、更に、流動性、機械強度の増加の観点から、パラフィンオイル及び/又は化学結合性の架橋部位を有さないスチレンブロック共重合体を更に含有させてもよい。このようなパラフィンオイル及び化学結合性の架橋部位を有さないスチレンブロック共重合体は、それぞれ、上記本発明の熱可塑性エラストマー組成物において説明したパラフィンオイル及び化学結合性の架橋部位を有さないスチレンブロック共重合体と同様のものである(それぞれ、その好適なものも同様である)。
 また、このように、パラフィンオイル及び/又は化学結合性の架橋部位を有さないスチレンブロック共重合体を更に含有させる場合において、環状酸無水物基を側鎖に有するエラストマー性ポリマーと、クレイと、前記α-オレフィン系樹脂、パラフィンオイル及び/又は化学結合性の架橋部位を有さないスチレンブロック共重合体の添加順序は特に制限されるものではないが、クレイの分散性をより向上させるといった観点から、前記α-オレフィン系樹脂と、環状酸無水物基を側鎖に有するエラストマー性ポリマーと、前記パラフィンオイル及び/又は前記化学結合性の架橋部位を有さないスチレンブロック共重合体とを含む混合物の前駆体を調製した後、該前駆体中にクレイを添加することが好ましい。
 また、前記パラフィンオイルを前記混合物中に含有させる場合、パラフィンオイル含有量は、前記エラストマー成分100質量部に対して1500質量部以下であることが好ましく、この場合、前記エラストマー成分100質量部に対して10~1500質量部であることが好ましく、10~1400質量部であることがより好ましく、50~1200質量部であることが更に好ましく、75~1100質量部であることが特に好ましく、100~1000質量部であることが最も好ましい。また、前記パラフィンオイルの含有量としては、前記エラストマー成分100質量部に対して600質量部以下であることがより好ましく、この場合、10~600質量部であることがより好ましく、50~550質量部であることが更に好ましく、75~500質量部であることが特に好ましく、100~400質量部であることが最も好ましい。このようなパラフィンオイルの含有量が前記下限未満では、パラフィンオイルの含有量が少なすぎて、パラフィンオイルを添加することにより得られる効果(特に最終的に得られる熱可塑性エラストマー組成物の流動性及び加工性を向上せしめる効果)が必ずしも十分なものではなくなる傾向にあり、他方、前記上限を超えると、最終的に得られる熱可塑性エラストマー組成物においてパラフィンオイルのブリードが誘発されやすくなる傾向にある。また、前記化学結合性の架橋部位を有さないスチレンブロック共重合体を前記混合物中に含有させる場合、前記エラストマー成分100質量部に対して400質量部以下であることが好ましく、10~400質量部であることがより好ましく、15~350質量部であることが更に好ましく、20~300質量部であることが特に好ましく、30~250質量部であることが最も好ましい。
 また、最終的に得られる熱可塑性エラストマー組成物の用途等に応じ、前記混合物に対して、本発明の目的を損わない範囲で、前記エラストマー成分、前記α-オレフィン系樹脂および前記スチレンブロック共重合体以外のポリマー、補強剤(充填剤)、アミノ基を導入してなる充填剤(以下、単に「アミノ基導入充填剤」という。)、該アミノ基導入充填剤以外のアミノ基含有化合物、金属元素を含む化合物(以下、単に「金属塩」という。)、無水マレイン酸変性ポリマー、老化防止剤、酸化防止剤、顔料(染料)、可塑剤、揺変性付与剤、紫外線吸収剤、難燃剤、溶剤、界面活性剤(レベリング剤を含む)、分散剤、脱水剤、防錆剤、接着付与剤、帯電防止剤、フィラーなどの各種添加剤等の他の成分を更に含有することができる。このように、前記混合物に対して他の成分を含有せしめることにより、最終的に得られる熱可塑性エラストマー組成物中に、かかる成分を適宜含有せしめることが可能となる。なお、このような添加剤等は、特に制限されず、一般に用いられるものを適宜使用することができる。また、このような添加剤等としては、上記本発明の熱可塑性エラストマー組成物において説明したものを適宜利用できる。
 また、このような他の成分の含有量は、前記他の成分がポリマー類、補強材(充填剤)の場合は、前記エラストマー成分100質量部に対して500質量部以下とすることが好ましく、20~400質量部とすることがより好ましい。このような他の成分の含有量が前記下限未満では他の成分を利用することによる効果が十分に発現しなくなる傾向にあり、他方、前記上限を超えると、利用する成分の種類にもよるが、基質のエラストマーの効果が薄まって、物性が低下してしまう傾向にある。
 また、他の成分が、その他の添加剤の場合(ポリマー類、補強材(充填剤)以外のものである場合)は、前記他の成分の含有量は前記エラストマー成分100質量部に対して20質量部以下とすることが好ましく、0.1~10質量部とすることがより好ましい。このような他の成分の含有量が前記下限未満では他の成分を利用することによる効果が十分に発現しなくなる傾向にあり、他方、前記上限を超えると、基質のエラストマーの反応に悪影響を及ぼし、却って物性が低下してしまう傾向にある。
 (第二工程)
 第二工程は、前記混合物に、前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(I)、並びに、前記化合物(I)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(II)の混合原料のうちの少なくとも1種の原料化合物を添加し、前記ポリマーと前記原料化合物とを反応させることにより、熱可塑性エラストマー組成物を得る工程である。
 前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(I)としては、上記本発明の熱可塑性エラストマー組成物において説明した水素結合性架橋部位を形成する化合物(含窒素複素環を導入し得る化合物)と同様のものを好適に利用することができ、例えば、上記本発明の熱可塑性エラストマー組成物において説明した含窒素複素環そのものであってもよく、あるいは、前記含窒素複素環に無水マレイン酸等の環状酸無水物基と反応する置換基(例えば、水酸基、チオール基、アミノ基等)が結合した化合物(前記置換基を有する含窒素複素環)であってもよい。なお、このような化合物(I)としては、水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を同時に導入することが可能な化合物)を利用してもよい(なお、水素結合性架橋部位及び共有結合性架橋部位の双方を有する側鎖は、水素結合性架橋部位を有する側鎖の好適な一形態といえる。)。
 また、このような化合物(I)としては、特に制限されず、目的とするポリマー中の側鎖の種類(側鎖(a)又は側鎖(a’))に応じて、上述のような化合物(I)の中から好適な化合物を適宜選択して用いることができる。このような化合物(I)としては、より高い反応性が得られるといった観点からは、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよい、トリアゾール、ピリジン、チアジアゾール、イミダゾール、イソシアヌレート、トリアジンおよびヒダントインであることが好ましく、前記置換基を有している、トリアゾール、ピリジン、チアジアゾール、イミダゾール、イソシアヌレート、トリアジンおよびヒダントインであることがより好ましく、前記置換基を有しているトリアゾール、イソシアヌレート、トリアジンであることが更に好ましく、前記置換基を有しているトリアゾールが特に好ましい。なお、このような置換基を有していてもよいトリアゾール、ピリジン、チアジアゾール、イミダゾールおよびヒダントインとしては、例えば、4H-3-アミノ-1,2,4-トリアゾール、アミノピリジン、アミノイミダゾール、アミノトリアジン、アミノイソシアヌレート、ヒドロキシピリジン、ヒドロキシエチルイソシアヌレート等が挙げられる。
 また、前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(II)としては、上記本発明の熱可塑性エラストマー組成物において説明した「共有結合性架橋部位を形成する化合物(共有結合を生成する化合物)」と同様のものを好適に利用することができる(その化合物として好適なものも同様である。)。また、このような化合物(II)としては、水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を同時に導入することが可能な化合物)を利用してもよい(なお、水素結合性架橋部位及び共有結合性架橋部位の双方を有する側鎖は、共有結合性架橋部位を有する側鎖の好適な一形態といえる。)。
 このような化合物(II)としては、耐圧縮永久歪性の観点から、トリスヒドロキシエチルイソシアヌレート、スルファミド、ポリエーテルポリオールが好ましく、トリスヒドロキシエチルイソシアヌレート、スルファミドがより好ましく、トリスヒドロキシエチルイソシアヌレートが更に好ましい。
 また、前記化合物(I)及び/又は(II)としては、水素結合性架橋部位を導入する観点から、水酸基、チオール基、アミノ基及びイミノ基のうちの少なくとも1種の置換基を有する化合物を利用することが好ましい。さらに、前記化合物(I)及び/又は(II)としては、より効率よく組成物中に水素結合性架橋部位及び共有結合性架橋部位の双方を導入することが可能となることから、前記環状酸無水物基と反応して、水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物(水素結合性架橋部位及び共有結合性架橋部位の双方を同時に導入することが可能な化合物)を利用することが好ましい。このような水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物としては、前記複素環含有ポリオール、前記複素環含有ポリアミン、前記複素環含有ポリチオールを好適に利用することができ、中でも、トリスヒドロキシエチルイソシアヌレートが特に好ましい。
 また、前記原料化合物(化合物(I)及び/又は(II))としては、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいピリジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいチアジアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイミダゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイソシアヌレート、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいヒダントイン、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する炭化水素化合物、トリスヒドロキシエチルイソシアヌレート、スルファミド、並びに、ポリエーテルポリオールのうちの少なくとも1種の化合物が好ましい。また、このような水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する炭化水素化合物としては、ペンタエリスリトール、エタンジチオール、エタンジアミンが好ましく、ペンタエリスリトールがより好ましい。
 また、化合物(I)及び化合物(II)の添加量(これらの総量:一方の化合物のみを利用する場合には、その一方の化合物の量となる。)は、特に制限されないが、該化合物中にアミン、アルコール等の活性水素が含まれる場合においては、環状酸無水物基100モル%に対して、該化合物中のアミン、アルコール等の活性水素が20~250モル%となる量であることが好ましく、50~150モル%となる量であることがより好ましく、80~120モル%となる量であることが更に好ましい。このような添加量が前記下限未満では、導入される側鎖の量が少なくなって、架橋密度を十分に高度なものとすることが困難となり、引張強度等の物性が低下する傾向にあり、他方、前記上限を超えると、用いる化合物の量が多すぎて、ブランチが多くなり、却って架橋密度が下がってしまう傾向にある。
 また、化合物(I)及び化合物(II)の添加量は、これらの総量が(一方の化合物のみを利用する場合には、その一方の化合物の量となる。)、前記混合物中の前記ポリマー(環状酸無水物基を側鎖に有するエラストマー性ポリマー)100質量部に対して0.1~10質量部であることが好ましく、0.3~7質量部であることがより好ましく、0.5~5.0質量部であることが更に好ましい。このような化合物(I)及び化合物(II)の添加量(質量部に基づく量)が前記下限未満では少なすぎて架橋密度が上がらず所望の物性が発現しない傾向にあり、他方、前記上限を超えると多すぎてブランチが多くなり架橋密度が下がってしまう傾向にある。
 化合物(I)及び化合物(II)の双方を利用する場合において、化合物(I)及び化合物(II)を添加する順序は特に制限されず、どちらを先に加えても良い。また、化合物(I)及び化合物(II)の双方を利用する場合において、化合物(I)を、環状酸無水物基を側鎖に有するエラストマー性ポリマーの、環状酸無水物基の一部と反応させてもよい。これにより、未反応の環状酸無水物基(反応させていない環状酸無水物基)に、化合物(II)を反応させて共有結合性架橋部位を形成させることも可能となる。ここにいう一部とは、環状酸無水物基100モル%に対して1モル%以上50モル%以下であることが好ましい。この範囲であれば、得られるエラストマー性ポリマー(B)において、化合物(I)に由来した基(例えば含窒素複素環等)を導入した効果が十分に発現され、リサイクル性がより向上する傾向にある。なお、化合物(II)は、共有結合による架橋が適当な個数(例えば、1分子中に1~3個)となるように前記環状酸無水物基と反応させることが好ましい。
 前記ポリマーと前記原料化合物(化合物(I)及び/又は化合物(II))とを反応させると、前記ポリマーが有する環状酸無水物基が開環されて、環状酸無水物基と前記原料化合物(前記化合物(I)及び/又は化合物(II))とが化学結合される。このような前記ポリマーと前記原料化合物(前記化合物(I)及び/又は化合物(II))とを反応(環状酸無水物基を開環)させる際の温度条件は特に制限されず、前記化合物と環状酸無水物基との種類に応じて、これらが反応可能な温度に調整すればよいが、軟化させて反応を瞬時に進める観点からは、100~250℃とすることが好ましく、120~230℃とすることがより好ましい。
 このような反応により、前記化合物(I)と環状酸無水物基とが反応した箇所においては、少なくとも水素結合性架橋部位が形成されるため、前記ポリマーの側鎖に水素結合性架橋部位(カルボニル含有基および/または含窒素複素環を有する部位、より好ましくはカルボニル含有基および含窒素複素環を有する部位)を含有させることが可能となる。このような反応により、形成(導入)される側鎖を、上記式(2)または(3)で表される構造を含有するものとすることができる。
 また、このような反応により、前記化合物(II)と環状酸無水物基とが反応した箇所においては、少なくとも、共有結合性架橋部位が形成されるため、前記ポリマーの側鎖を共有結合性架橋部を含有するもの(側鎖(b)又は側鎖(c))とすることが可能となる。そして、このような反応により、形成される側鎖を、上記式(7)~(9)で表される構造を含有するものとすることもできる。
 なお、このようなポリマー中の側鎖の各基(構造)、すなわち、未反応の環状酸無水物基、上記式(2)、(3)および(7)~(9)で表される構造等は、NMR、IRスペクトル等の通常用いられる分析手段により確認することができる。
 このようにして反応させることで、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
 前記エラストマー成分100質量部に対して20質量部以下の含有比率のクレイと、
 前記α-オレフィン系樹脂と、
を含有してなる組成物を得ることができる。なお、このようにして得られる熱可塑性エラストマー組成物中のエラストマー性ポリマー(A)、エラストマー性ポリマー(B)は、各ポリマー中の側鎖(a)、側鎖(a’)、側鎖(b)、側鎖(c)がそれぞれ環状酸無水物基との反応に由来するもの(例えば、上記式(2)、(3)および(7)~(9)で表される構造を含有する側鎖等)となる以外は、上記本発明の熱可塑性エラストマー組成物において説明したエラストマー性ポリマー(A)、エラストマー性ポリマー(B)と同様のものである。
 なお、本発明においては、環状酸無水物基を側鎖に有するエラストマー性ポリマーが無水マレイン酸変性エラストマー性ポリマーであり、かつ、
 前記エラストマー成分が、無水マレイン酸変性エラストマー性ポリマーと、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいピリジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいチアジアゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイミダゾール、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいイソシアヌレート、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいトリアジン、水酸基、チオール基及びアミノ基のうちの少なくとも1種の置換基を有していてもよいヒダントイン、水酸基、チオール基及びアミノ基の中から選択される少なくとも1種の置換基を2つ以上有する炭化水素化合物、トリスヒドロキシエチルイソシアヌレート、スルファミド、並びに、ポリエーテルポリオールのうちの少なくとも1種の化合物との反応物であること、
が好ましい。
 なお、本発明によれば、十分に高度な耐熱性及び破断強度を有することが可能な熱可塑性エラストマー組成物を効率よく製造することが可能となる。本発明により、このような効果が達成される理由は必ずしも定かではないが、本発明者らは、以下のように推察する。すなわち、先ず、本発明においては、熱可塑性エラストマー組成物が、前記環状酸無水物基を側鎖に有するエラストマー性ポリマー(以下、場合により「酸無水物含有ポリマー」と称する。)を変性して製造される。このようにして、クレイと酸無水物ポリマーとを混合して予め酸無水物ポリマー中にクレイを分散させることにより、酸無水物基とクレイとが相互作用して、クレイの層間が剥離され易くなる。特にクレイが、本発明において好適に用いられる有機化されたクレイ(有機化クレイ)の場合には、層間に存在するアンモニウム塩等の有機物が、酸無水物とより効率よく相互作用するため、より層が剥離され易い傾向にある。そして、クレイが分散した後に、前記原料化合物(架橋を形成する架橋剤として機能する。以下、場合により、「架橋剤」と称する。)を入れることにより、架橋剤と酸無水物基とが反応して、少なくとも、水素結合性架橋部位(例えばカルボン酸基等)が系中で発生する。そのため、クレイとの間で、水素結合による相互作用が引き起こされ、さらにクレイがエラストマー中に分散される。従って、本発明により得られる熱可塑性エラストマー組成物は、クレイが十分に分散されたものとなり、また、かかるクレイと水素結合性架橋部位とが相互作用して均一に面架橋部位が形成されることから、十分な耐熱性が得られるものと本発明者らは推察する。また、本発明においては、得られる熱可塑性エラストマー組成物中に、前記クレイと前記エラストマー成分とともに前記α-オレフィン系樹脂が含有されている。このようなα-オレフィン系樹脂は、結晶性の高い物質であるため、加熱により結晶構造が変化することに由来して、高い流動性を示すことができるものと本発明者らは推察する。そのため、本発明においては、得られる熱可塑性エラストマー組成物が、十分に高度な耐熱性及び破断強度を有するとともに、ゴム製品として十分に利用可能な耐圧縮永久歪性や硬度を有し、更には、加熱時の流動性を付与することも可能となるものと本発明者らは推察する。
 また、このようにして、本発明により得られる熱可塑性エラストマー組成物においては、組成物中において、単層のクレイを含有するものとすることができる。また、このようにして得られる熱可塑性エラストマー組成物においては、前記熱可塑性エラストマー組成物の表面上の任意の3点以上の5.63μmの大きさの測定点を透過型電子顕微鏡(TEM)により測定した場合において、全測定点において、個数を基準として、全クレイのうちの50%以上(より好ましくは70%以上、更に好ましくは80~100%、特に好ましくは85~100%)が単層のクレイとして存在するものとすることも可能である。このような単層のクレイの存在率が前記下限未満では破断伸び、破断強度が低下する傾向にある。
 なお、本発明の熱可塑性エラストマー組成物の製造方法においては、より効率よく、熱可塑性エラストマー組成物中の単層の形態のクレイ(単層のクレイ)の存在割合を上記好適な割合とすることが可能である。この点に関しては、上述の第一工程において、クレイが環状酸無水物基とが相互作用して、より効率よく、多層構造のクレイの層間を剥離することが可能となり、クレイを単層の状態で分散(微分散)させることが可能となるため、より高い割合で、単層の形態のクレイ(単層のクレイ)が組成物中に存在することとなって、上記好適な割合で単層のクレイを含有させることが可能となるものと本発明者らは推察する。なお、このような単層状の形態のクレイの存在は、得られた組成物の表面を透過型電子顕微鏡(TEM)により測定することにより確認できる。
 また、本発明により、例えば、エラストマー性ポリマー(A)をエラストマー成分とする熱可塑性エラストマー組成物と、エラストマー性ポリマー(B)をエラストマー成分とする熱可塑性エラストマー組成物とをそれぞれ別々に製造した後、これを混合して、エラストマー成分としてエラストマー性ポリマー(A)及び(B)を含有する熱可塑性エラストマー組成物としてもよい。また、エラストマー成分としてエラストマー性ポリマー(A)及び(B)を組み合わせて含有する熱可塑性エラストマー組成物を製造する場合には、エラストマー性ポリマー(A)とエラストマー性ポリマー(B)の比率を適宜変更して、組成物中に存在する水素結合性架橋部位と共有結合性架橋部位の比率等を適宜変更することで、所望の特性を発揮させることも可能である。
 このようにして得られる熱可塑性エラストマー組成物は、例えば、そのゴム弾性を活用して種々のゴム用途に好適に使用することができ、例えば、ホットメルト接着剤又はこれに含ませる添加剤、自動車用ゴム部品、ホース、ベルト、シート、防振ゴム、ローラー、ライニング、ゴム引布、シール材、手袋、防舷材、医療用ゴム(シリンジガスケット、チューブ、カテーテル)、ガスケット(家電用、建築用)、アスファルト改質剤、ホットメルト接着剤、ブーツ類、グリップ類、玩具、靴、サンダル、キーパッド、ギア、ペットボトルキャプライナー等の用途に好適に用いることができる。
 このように、本発明の熱可塑性エラストマー組成物は、例えば、電気・電子、家電、化学、医薬品、ガラス、土石、鉄鋼、非鉄金属、機械、精密機器、化粧品、繊維、鉱業、パルプ、紙、建築・土木・建設、食料・飲料、一般消費財・サービス、運送用機器、建機、電気機器、設備(産業、空調、給湯、エネファーム)、金属、メディア、情報、通信機器、照明、ディスプレイ、農業、漁業、林業、水産業、アグリビジネス、バイオテクノロジー、ナノテクノロジー、等の分野において利用する各種ゴム部品を製造するための材料等として有用である。
 以上、本発明の熱可塑性エラストマー組成物を製造するために好適に利用することが可能な方法の一つとして、上記第一工程及び上記第二工程を含む本発明の熱可塑性エラストマー組成物の製造方法について説明したが、本発明の熱可塑性エラストマー組成物を製造するために好適に利用することが可能な方法は、これに限定されない。例えば、上記本発明の熱可塑性エラストマー組成物の製造方法は、前記エラストマー成分が上記反応物(I)である場合等に好適に利用できるが、例えば、前記エラストマー成分を反応物(II)をエラストマー成分とする熱可塑性エラストマー組成物を製造する場合、上記第一工程に用いる環状酸無水物基を側鎖に有するエラストマー性ポリマーの代わりに水酸基含有エラストマー性ポリマーを用い、かつ、上記第二工程に用いる原料化合物の代わりにカルボキシ基及びアルコキシシリル基の中から選択される少なくとも1種の置換基を2つ以上有する化合物を用いる以外は、上記本発明の熱可塑性エラストマー組成物の製造方法と同様の方法を採用してもよい。このように、目的とするエラストマー成分の種類に応じて、第一工程に用いるエラストマー性ポリマーの種類と、原料化合物の種類を適宜変更する以外は上記本発明の熱可塑性エラストマー組成物の製造方法と同様の方法を採用することにより、例えば、上記反応物(II)~(VI)をエラストマー成分とする熱可塑性エラストマー組成物を適宜製造することが可能である。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 先ず、各実施例及び各比較例で得られた熱可塑性エラストマー組成物の特性の評価方法について説明する。
 <メルトフローレート(MFR)>
 各実施例及び各比較例で得られた熱可塑性エラストマー組成物をそれぞれ用いて、JIS K6922-2(2010年発行)に記載のB法に準拠してメルトフローレート(MFR、単位:g/10分)を測定した。すなわち、各実施例及び各比較例で得られた熱可塑性エラストマー組成物をそれぞれ用い、メルトフローレート測定装置として東洋精機製作所製の商品名「Melt Indexer G-01」を用いて、該装置の炉体内に熱可塑性エラストマー組成物を3g添加した後、温度を230℃にして5分間保持した後、230℃に維持しつつ10kgに荷重する条件(なお、実施例47及び実施例51~54並びに比較例17及び比較例21~24については荷重条件を5Kgに変更し、実施例48~50並びに比較例18~20については荷重条件を2.16Kgに変更した。)で、前記炉体の下部に接続されている直径1mm、長さ8mmの筒状のオリフィス部材の開口部(直径1mmの開口部)から、10分の間に流出するエラストマーの質量(g)を測定(前記炉体内において温度を230℃にして5分間保持した後に荷重を開始してから、流出するエラストマーの質量の測定を開始する。)することにより求めた。
 また、各実施例及び各比較例で用いたα-オレフィン系樹脂(PP,PE、EBM)のメルトフローレート(MFR、単位:g/10分)を、温度を230℃から190℃に変更するとともに、荷重を10kgから2.16kgに変更する以外は、上記熱可塑性エラストマー組成物のメルトフローレート(MFR、単位:g/10分)の測定方法と同様の方法を採用して測定した。
 <圧縮永久歪(C-Set)>
 各実施例及び各比較例で得られた熱可塑性エラストマー組成物をそれぞれ用い、先ず、該熱可塑性エラストマー組成物を200℃で10分間熱プレスし、厚みが約2mmとなるようにシートを調製した。このようにして得られたシートを直径29mmの円盤状に打ち抜いて7枚重ね合わせ、高さ(厚み)が12.5±0.5mmになるようにサンプルを調製した。このようにして得られたサンプルを用い、専用治具で25%圧縮し、70℃で22時間放置した後の圧縮永久歪(単位:%)をJIS K6262(2013年発行)に準拠して測定した。なお、圧縮装置としてはダンベル社製の商品名「加硫ゴム圧縮永久歪試験器 SCM-1008L」を用いた。
 <5%重量減少温度>
 各実施例及び各比較例で得られた熱可塑性エラストマー組成物をそれぞれ用い、測定装置として熱重量測定装置(TGA)を用い、昇温速度10℃/minで測定し、初期の重量から5%重量が減少した温度(単位:℃)を測定した。なお、測定試料は約10mgを使用した。
 <引張特性>
 各実施例及び各比較例で得られた熱可塑性エラストマー組成物をそれぞれ用い、先ず、該熱可塑性エラストマー組成物を200℃で10分間熱プレスし、2mm厚のシートを調製した。このようにして得られたシートから3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251(2010年発行)に準拠して行い、破断強度(T)[単位:MPa]、および、破断伸び(E)[単位:%]を室温(25℃)にて測定した。
 <JIS-A硬度>
 各実施例及び各比較例で得られた熱可塑性エラストマー組成物をそれぞれ用い、先ず、該熱可塑性エラストマー組成物を200℃で10分間熱プレスし、厚みが約2mmとなるようにシートを調製した。次に、このようにして得られたシートを直径29mmの円盤状に打ち抜いて、7枚重ね合わせ、高さ(厚み)が12.5±0.5mmになるようにサンプルを調製した。このようにして得られたサンプルを用い、JIS K6253(2012年発行)に準拠して、JIS-A硬度を測定した。
 (実施例1)
 先ず、スチレンブロック共重合体(スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS):クレイトン社製の商品名「G1633」、分子量:40万~50万、スチレン含有量:30質量%)50gを加圧ニーダーに投入して、200℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P500S」、動粘度:472mm/s、Cp値:68.7%、アニリン点:123℃)100gを滴下し、スチレン-エチレン-ブチレン-スチレンブロック共重合体とパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM:三井化学社製の商品名「タフマーMH5040」、結晶化度:4%)100g、α-オレフィン系樹脂であるポリプロピレン(PP:サンアロマー社製の商品名「PWH00N」、結晶化度:62%、MFR:500g/10分(2.16kg、190℃)、重量平均分子量(Mw):200000)100gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.3gを更に投入し、温度を200℃として2分間素練りして第一の混合物(PPとマレイン化EBMとを含む混合物)を得た。なお、かかる素練り工程により、前記第一の混合物は可塑化された。次に、前記加圧ニーダー中の前記第一の混合物に対して、有機化クレイ(クニミネ工業社製の商品名「クニフィルD-36」)2gを更に加えて、200℃で4分間混練して第二の混合物を得た。
 次に、前記加圧ニーダー中の前記第二の混合物にトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を2.62g加え、200℃で8分間混合し、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の特性の評価結果等を表1に示す。
 なお、このような組成物においては、用いた原料化合物の赤外分光分析の結果から、無水マレイン酸変性エチレン-ブテン共重合体中の無水マレイン酸基とトリスヒドロキシエチルイソシアヌレートとが反応して、下記式(26)で表される構造を含有する側鎖(以下、場合により単に「側鎖(i)」と称する。)、下記式(27)で表される構造を含有する側鎖(以下、場合により単に「側鎖(ii)」と称する。)、及び、下記式(28)で表される構造を含有する側鎖(以下、場合により単に「側鎖(iii)」と称する。)のうちの、前記側鎖(iii)を主として有するエラストマー性ポリマーが形成されたことが分かる(なお、このような側鎖(i)~(iii)に関して、用いた原料から化学量論的に考慮すれば、主として側鎖(iii)が形成されていることが明らかであるが、ポリマーの側鎖の位置等によっては、側鎖(i)及び/又は側鎖(ii)が形成され得る。以下、用いた原料に基づいて、反応により形成される側鎖の種類が主として側鎖(iii)となると考えられるエラストマー性ポリマーについては、場合により、単に「側鎖(iii)を主として有するエラストマー性ポリマー」と称する。)。また、このようなエラストマー性ポリマーは、主鎖がエチレンとブテンからなっているため、ガラス転移点は25℃以下のものであることが分かった。
Figure JPOXMLDOC01-appb-C000018
[式(26)~(28)中、α及びβで示される炭素は、それらの炭素の位置(α位又はβ位)のいずれかにおいてエラストマー性ポリマーの主鎖に結合していることを示す。]
 (実施例2~4)
 α-オレフィン系樹脂の種類を変更し、ポリプロピレン(PP)の代わりに後述のα-オレフィン系樹脂をそれぞれ用いた以外は、実施例1と同様にして熱可塑性エラストマー組成物を得た。なお、このような製造方法の記載からも明らかなように、実施例1~4で得られた熱可塑性エラストマー組成物は、α-オレフィン系樹脂の種類が異なる以外は組成が同一のものである。このようにして各実施例において得られた熱可塑性エラストマー組成物の特性の評価結果等を表1に示す。
〈実施例2で用いたα-オレフィン系樹脂〉
ポリエチレン(PE:日本ポリエチレン社製の商品名「HJ590N」、結晶化度:74%、MFR:40g/10分(2.16kg、190℃)、Mw:70000)
〈実施例3で用いたα-オレフィン系樹脂〉
ポリエチレン(PE:日本ポリエチレン社製の商品名「UJ790」、結晶化度:74%、MFR:50g/10分(2.16kg、190℃)、Mw:120000)
〈実施例4で用いたα-オレフィン系樹脂〉
エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」、結晶化度:10%、MFR:35g/10分(2.16kg、190℃)、Mw:100000)。
 (比較例1)
 前記第一の混合物に対して有機化クレイ(クニミネ工業社製の商品名「クニフィルD-36」)を添加することなく、前記第一の混合物に対してトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を2.62g加えて、200℃で8分間混合した以外(有機化クレイを用いなかった以外)は、実施例1と同様にして熱可塑性エラストマー組成物を得た。得られた熱可塑性エラストマー組成物の特性の評価結果等を表1に示す。
Figure JPOXMLDOC01-appb-T000019
 [熱可塑性エラストマー組成物(実施例1~4及び比較例1)の特性評価]
 表1に示す結果からも明らかなように、実施例4で得られた熱可塑性エラストマー組成物の組成と、比較例1で得られた熱可塑性エラストマー組成物の組成とは、有機化クレイの有無のみが異なっている。かかる組成の相違点と組成物同士の特性評価の結果とを併せ勘案すると、熱可塑性エラストマー組成物中に有機化クレイを含有する場合(実施例4)には、有機化クレイを用いなかった場合(比較例1)よりも、5%重量減少温度がより高い温度となっていることから、本発明の熱可塑性エラストマー組成物(実施例4)においては、より高度な耐熱性が得られることが確認された。
 また、実施例4で得られた熱可塑性エラストマー組成物と、比較例1で得られた熱可塑性エラストマー組成物の特性の評価結果から、本発明の熱可塑性エラストマー組成物(実施例4)においては、有機化クレイを用いなかった場合(比較例1)よりも、破断強度がより高度な水準のものとなることが確認された。更に、実施例4で得られた熱可塑性エラストマー組成物と、比較例1で得られた熱可塑性エラストマー組成物の特性の評価結果から、本発明の熱可塑性エラストマー組成物(実施例4)においては、流動性(MFR)及び圧縮永久歪に対する耐性もより向上することが確認された。
 このように、実施例4で得られた熱可塑性エラストマー組成物と、比較例1で得られた熱可塑性エラストマー組成物の特性の評価結果から、本発明の熱可塑性エラストマー組成物(実施例4)においてはクレイを用いることにより耐熱性、流動性、耐圧縮永久歪性、及び、機械的特性(破断強度)をいずれも、より高度なものとすることができ、これらの特性を十分に高度な水準でバランスよく有する組成物とすることが可能であることが分かった。
 また、本発明の熱可塑性エラストマー組成物(実施例1~4)はいずれも、比較例1で得られた熱可塑性エラストマー組成物と比較して、5%重量減少温度を基準とした耐熱性が向上し、更に、破断強度もより高い値を有するものとなることが確認された。特に、表1に示す結果から、α-オレフィン樹脂の種類を変更することにより、破断強度をより向上させることも可能となることが確認された。また、表1に示す結果から、実施例1~3で得られた熱可塑性エラストマー組成物においても、圧縮永久歪の値や硬度の値はゴム製品として利用するのに十分な水準にあることが分かる。また、表1に示す結果から、実施例1~4で得られた熱可塑性エラストマー組成物はいずれも流動性があることが確認されており、十分な加工性を有するものであることも分かった。
 このように、本発明(実施例1~4)によれば、より高度な耐熱性と破断強度とを有するとともに、十分な加工性(流動性)及び耐圧縮永久歪性を有する熱可塑性エラストマー組成物が得られることが確認された。
 (実施例5)
 先ず、スチレンブロック共重合体(スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS):クレイトン社製の商品名「G1633」、分子量:40万~50万、スチレン含有量:30質量%)50gを加圧ニーダーに投入して、200℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P500S」、動粘度:472mm/s、Cp値:68.7%、アニリン点:123℃)100gを滴下し、スチレン-エチレン-ブチレン-スチレンブロック共重合体とパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM:三井化学社製の商品名「タフマーMH5020」、結晶化度:4%)100g、α-オレフィン系樹脂であるエチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」、結晶化度:10%、MFR:35g/10分(2.16kg、190℃)、Mw:100000)100gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.3gを更に投入し、温度を200℃として2分間素練りして第一の混合物(EBMとマレイン化EBMとを含む混合物)を得た。なお、かかる素練り工程により、前記第一の混合物は可塑化された。次に、前記加圧ニーダー中の前記第一の混合物に対して、有機化クレイ(クニミネ工業社製の商品名「クニフィルD-36」)2gを更に加えて、200℃で4分間混練して第二の混合物を得た。
 次に、前記加圧ニーダー中の前記第二の混合物にトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を1.31g加え、200℃で8分間混合し、熱可塑性エラストマー組成物を調製した。なお、このような組成物においては、用いた原料化合物の赤外分光分析の結果から、無水マレイン酸変性エチレン-ブテン共重合体中の無水マレイン酸基とトリスヒドロキシエチルイソシアヌレートとが反応して、上記側鎖(iii)を主として有するエラストマー性ポリマー(上記側鎖(i)~(iii)が含まれ得る。)が形成されて含有されていることが分かる。また、このようなエラストマー性ポリマーは、主鎖がエチレンとブテンからなっているため、ガラス転移点は25℃以下のものであることが分かった。得られた熱可塑性エラストマー組成物の特性の評価結果等を表2に示す。
 (実施例6~8)
 α-オレフィン系樹脂(EBM:三井化学社製の商品名「タフマーDF7350」、結晶化度:10%、MFR:35g/10分(2.16kg、190℃)、Mw:100000)の使用量を100gから、それぞれ、75g(実施例6)、50g(実施例7)、25g(実施例8)に変更した以外は、実施例5と同様にして熱可塑性エラストマー組成物を得た。なお、このような製造方法の記載からも明らかなように、実施例5~8で得られた熱可塑性エラストマー組成物は、α-オレフィン系樹脂の含有量が異なる以外は組成が同一のものである。このようにして各実施例において得られた熱可塑性エラストマー組成物の特性の評価結果等を表2に示す。
Figure JPOXMLDOC01-appb-T000020
 [熱可塑性エラストマー組成物(実施例5~8)の特性評価]
 表2に示す結果からも明らかなように、前記エラストマー成分(上記側鎖(iii)を主として有するエラストマー性ポリマー)と、前記α-オレフィン系樹脂(EBM)と、クレイ(有機化クレイ)とを含有する本発明の熱可塑性エラストマー組成物(実施例5~8)においては、5%重量減少温度が340℃以上となるような十分に高度な耐熱性を有するものとなることが確認された。また、本発明の熱可塑性エラストマー組成物(実施例5~8)においては、5.1MPa以上の十分に高い水準の破断強度を有するものとなることが確認された。このように、本発明の熱可塑性エラストマー組成物(実施例5~8)によれば、十分に高度な耐熱性及び破断強度が得られることが確認された。また、表2に示す結果から、本発明の熱可塑性エラストマー組成物(実施例5~8)によれば、十分に高度な耐熱性及び破断強度が得られるとともに、加熱時の流動性と耐圧縮永久歪性も十分なものとなり、各種特性をバランスよく有する組成物が得られることが分かった。
 このように、表2に示す結果を考慮すれば、本発明の熱可塑性エラストマー組成物(実施例5~8)によれば、耐熱性、流動性、耐圧縮永久歪性、及び、機械的特性(破断強度)をいずれも十分な水準のものとすることができ、これらの特性を十分に高度な水準でバランスよく有するものとすることが可能となることが分かった。
 なお、上述のように、実施例5~8で得られた熱可塑性エラストマー組成物においては、α-オレフィン系樹脂であるエチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」、結晶化度:10%、MFR:35g/10分(2.16kg、190℃)、Mw:100000)の使用量が異なるが、いずれの例においても、耐熱性、流動性、耐圧縮永久歪性、及び、機械的特性(破断強度)の特性を十分に高度な水準でバランスよく有するものとなっていた。そして、このような実施例5~8の中でも、例えば、α-オレフィン系樹脂(EBM)の使用量が100gの場合(実施例5:EBMの使用量をマレイン化EBM100質量部に対して100質量部とした場合)には、流動性(MFR)及び硬度をより高いものとすることができ、また、α-オレフィン系樹脂(EBM)の使用量を25g、50g又は75gとした場合(実施例6~8:EBMの使用量をマレイン化EBM100質量部に対して25~75質量部とした場合)には破断強度をより高いものとすることができ、更には、α-オレフィン系樹脂(EBM)の使用量を50g又は75gとした場合(実施例6~7:EBMの使用量をマレイン化EBM100質量部に対して50~75質量部とした場合)には、圧縮永久歪の値をより高度な水準のものとすることができることが確認された。このように、本発明の熱可塑性エラストマー組成物においては、耐熱性、流動性、耐圧縮永久歪性、及び、機械的特性(破断強度)を十分に高度な水準のものとしつつ、目的の用途等に応じた特性がより高いものとなるように、α-オレフィン系樹脂(EBM)の使用量を適宜変更する等、設計を適宜変更して使用することが可能であることが分かった。
 (実施例9)
 先ず、スチレンブロック共重合体(スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS):クレイトン社製の商品名「G1633」、分子量:40万~50万、スチレン含有量:30質量%)200gを加圧ニーダーに投入して、200℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P500S」)400gを滴下し、スチレン-エチレン-ブチレン-スチレンブロック共重合体とパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM:三井化学社製の商品名「タフマーMH5040」、結晶化度:4%)100g、α-オレフィン系樹脂であるポリエチレン(PE:日本ポリエチレン社製の商品名「HJ590N」、結晶化度:74%、MFR:40g/10分(2.16kg、190℃)、Mw:70000)200gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.3gを更に投入し、温度を200℃として2分間素練りして第一の混合物(PEとマレイン化EBMとを含む混合物)を得た。なお、かかる素練り工程により、前記第一の混合物は可塑化された。次に、前記加圧ニーダー中の前記第一の混合物に対して、有機化クレイ(クニミネ工業社製の商品名「クニフィルD-36」)0.1gを更に加えて、200℃で4分間混練して第二の混合物を得た。
 次に、前記加圧ニーダー中の前記第二の混合物にトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を2.62g加え、200℃で8分間混合し、熱可塑性エラストマー組成物を調製した。なお、このような組成物においては、用いた原料化合物の赤外分光分析の結果から、無水マレイン酸変性エチレン-ブテン共重合体中の無水マレイン酸基とトリスヒドロキシエチルイソシアヌレートとが反応して、上記側鎖(iii)を主として有するエラストマー性ポリマー(上記側鎖(i)~(iii)が含まれ得る。)が形成されて含有されていることが分かる。また、このようなエラストマー性ポリマーは、主鎖がエチレンとブテンからなっているため、ガラス転移点は25℃以下のものであることが分かった。得られた熱可塑性エラストマー組成物の特性の評価結果等を表3に示す。
 (実施例10~13)
 α-オレフィン系樹脂(PE:日本ポリエチレン社製の商品名「HJ590N」、結晶化度:74%、MFR:40g/10分(2.16kg、190℃)、Mw:70000)の使用量を200gから、各実施例においてそれぞれ、150g(実施例10)、100g(実施例11)、75g(実施例12)、50g(実施例13)に変更した以外は、実施例9と同様にして熱可塑性エラストマー組成物を得た。なお、このような製造方法の記載からも明らかなように、実施例9~13で得られた熱可塑性エラストマー組成物は、α-オレフィン系樹脂の含有量が異なる以外は組成が同一のものである。このようにして各実施例において得られた熱可塑性エラストマー組成物の特性の評価結果等を表3に示す。
 なお、実施例9~13で得られた熱可塑性エラストマー組成物に関して、以下のようにして赤外吸収スペクトルを測定した。すなわち、先ず、実施例9~13で得られた熱可塑性エラストマー組成物40gを表面が平滑になるように厚さ2mmでプレス成形して測定用の試料を調製し、測定装置として全反射型ユニットを備えたIR測定装置(Thermo社製の「NICOLET380」)を用いて、全反射測定(ATR)法により、400~4000cm-1の波数レンジで赤外吸収スペクトル(赤外減衰全反射(FTIR-ATR)スペクトル)の測定を行った。このようにして得られた赤外吸収スペクトルのグラフから、オレフィン系樹脂(組成物中に含まれるα-オレフィン系樹脂(PE)並びにエラストマー成分の主鎖のオレフィン系共重合体)のC-H伸縮振動に由来する波長2920cm-1付近のピークの吸収強度(A)と、前記イソシアヌレート環中のカルボニル基に由来する波長1695cm-1付近のピークの吸収強度(B)とを求めて、これらの強度比([吸収強度(B)]/[吸収強度(A)])を求めた。得られた結果を表3に併せて示す。
Figure JPOXMLDOC01-appb-T000021
 [熱可塑性エラストマー組成物(実施例9~13)の特性評価]
 表3に示す結果からも明らかなように、前記エラストマー成分(上記側鎖(iii)を主として有するエラストマー性ポリマー)と、前記α-オレフィン系樹脂(PE)と、クレイ(有機化クレイ)とを含有する本発明の熱可塑性エラストマー組成物(実施例9~13)においては、5%重量減少温度が335℃以上となっており、十分に高度な耐熱性が達成されることが分かった。また、本発明の熱可塑性エラストマー組成物(実施例9~13)においては、破断強度が4.7MPa以上となるような十分に高い水準のものとなっていた。また、本発明の熱可塑性エラストマー組成物(実施例9~13)においては、ゴム製品として十分に高い水準の耐圧縮永久歪性が得られることも確認された。更に、本発明の熱可塑性エラストマー組成物(実施例9~13)においてはいずれも加熱時に流動性が得られており、十分な加工性を有するものであることも確認された。さらに、本発明の熱可塑性エラストマー組成物(実施例9~13)においては、ゴム製品として十分に利用可能な硬度を有していることも確認された。
 このような結果から、本発明の熱可塑性エラストマー組成物(実施例9~13)によれば、十分に高度な耐熱性及び破断強度が得られることが分かった。なお、本発明の熱可塑性エラストマー組成物(実施例9~13)によれば、上述のように、十分に高度な耐熱性及び破断強度が得られるとともに、加熱時の流動性と耐圧縮永久歪性も十分なものとすることが可能となっており、これらの各性能を十分にバランスよく有するものとすることが可能であることも分かった。
 このように、表3に示す結果から、本発明の熱可塑性エラストマー組成物(実施例9~13)によれば、耐熱性、流動性、耐圧縮永久歪性、及び、機械的特性(破断強度)をいずれも十分な水準のものとすることができ、これらの特性を十分に高度な水準でバランスよく有するものとすることが可能となることが分かった。
 さらに、実施例9~13で得られた熱可塑性エラストマー組成物においては、α-オレフィン系樹脂であるポリエチレン(PE:日本ポリエチレン社製の商品名「HJ590N」、結晶化度:74%、MFR:40g/10分(2.16kg、190℃)、Mw:70000)の使用量が異なるが、上述のように、いずれの例においても、耐熱性、流動性、耐圧縮永久歪性、及び、機械的特性(破断強度)の特性を十分に高度な水準でバランスよく有するものとなっていた。なお、このような実施例9~13の中でも、例えば、α-オレフィン系樹脂(PE)の使用量を100gよりも少なくした場合(マレイン化EBM100質量部に対して100質量部未満とした場合)には、圧縮永久歪が20%よりも小さくなっており、圧縮永久歪に対する耐性が更に高度なものとなることが確認され、また、α-オレフィン系樹脂(PE)の使用量を100g以上とした場合(マレイン化EBM100質量部に対して100質量部以上とした場合)には、MFRが20g/10分以上となっており、更に高度な流動性が得られることが確認された。また、実施例9~13で得られた熱可塑性エラストマー組成物においては、α-オレフィン系樹脂(PE)の使用量をより多くした場合に、破断強度及び硬度をより高い値とすることができることも分かった。このように、本発明の熱可塑性エラストマー組成物においては、耐熱性、流動性、耐圧縮永久歪性、及び、機械的特性(破断強度)を十分に高度な水準のものとしつつ、目的の用途等に応じた特性がより高いものとなるように、α-オレフィン系樹脂(EBM)の使用量を適宜変更する等して、用途に応じて設計を適宜変更して使用することが可能であることが分かった。
 (実施例14)
 先ず、スチレンブロック共重合体(スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS):クレイトン社製の商品名「G1633」)50gを加圧ニーダーに投入して、200℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(JX日鉱日石エネルギー社製の商品名「P200」、動粘度:75mm/s、Cp値:67.9%、アニリン点:109℃)100gを滴下し、スチレン-エチレン-ブチレン-スチレンブロック共重合体とパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM:三井化学社製の商品名「タフマーMH5040」、結晶化度:4%)100g、ポリプロピレン(PP:サンアロマー社製の商品名「VMD81M」、結晶化度:60%)100gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.3gを更に投入し、温度を200℃として2分間素練りして第一の混合物(SEBS、パラフィンオイル、マレイン化EBM、PPおよび老化防止剤の混合物)を得た。なお、かかる素練り工程により、前記第一の混合物は可塑化された。次に、前記加圧ニーダー中の前記第一の混合物に対して、有機化クレイ(クニミネ工業社製の商品名「クニフィルD-36」)2gを更に加えて、200℃で4分間混練して第二の混合物を得た。
 次に、前記第二の混合物にトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を2.62g加え、200℃で8分間混合し、熱可塑性エラストマー組成物を調製した。なお、このような組成物においては、用いた原料化合物の赤外分光分析の結果から、無水マレイン酸変性エチレン-ブテン共重合体中の無水マレイン酸基とトリスヒドロキシエチルイソシアヌレートとが反応して、上記側鎖(iii)を主として有するエラストマー性ポリマー(上記側鎖(i)~(iii)が含まれ得る。)となることが分かる。また、このようなエラストマー性ポリマーは、主鎖がエチレンとブテンからなっているため、ガラス転移点は25℃以下のものであることが分かった。得られた熱可塑性エラストマー組成物の特性の評価結果等を表4に示す。
 (実施例15~17)
 パラフィンオイルの種類を変更して、各実施例において、後述のパラフィンオイルをそれぞれ用いた以外は、実施例14と同様にして熱可塑性エラストマー組成物を得た。なお、このような製造方法の記載からも明らかなように、実施例14~17で得られた熱可塑性エラストマー組成物は、パラフィンオイルの種類が異なる以外は組成が同一のものである。得られた熱可塑性エラストマー組成物の特性の評価結果等を表4に示す。
〈実施例15で用いたパラフィンオイル〉
JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P400」、動粘度:156mm/s、Cp値:68.1%、アニリン点:113℃
〈実施例16で用いたパラフィンオイル〉
出光興産社製の商品名「ダイアナプロセスオイルPW380」、動粘度:380mm/s、Cp値:68.0%、アニリン点:143℃
〈実施例17で用いたパラフィンオイル〉
JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P500S」、動粘度:472mm/s、Cp値:68.7%、アニリン点:123℃。
 (実施例18)
 先ず、スチレンブロック共重合体(スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS):クレイトン社製の商品名「G1633」)50gを加圧ニーダーに投入して、200℃の条件で練りながら、無水マレイン酸変性エチレン-ブテン共重合体(三井化学社製の商品名「タフマーMH5040」、結晶化度:4%)100g、α-オレフィン系樹脂であるポリプロピレン(PP:サンアロマー社製の商品名「VMD81M」、結晶化度:60%)100gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.3gを投入した後、温度を200℃として2分間素練りして、混合物の前駆体を得た。なお、かかる素練り工程により、前記混合物の前駆体が可塑化された。次に、前記加圧ニーダー中の前記混合物の前駆体に対して、有機化クレイ(クニミネ工業社製の商品名「クニフィルD-36」)2gを更に加えて、200℃で4分間混練して混合物を得た。
 次に、前記混合物にトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を2.62g加え、200℃で8分間混合し、パラフィンオイルを含んでいないタイプの熱可塑性エラストマー組成物を調製した。このように、パラフィンオイルを利用しなかった以外は実施例14と同様にして熱可塑性エラストマー組成物を得た。このような製造方法の記載からも明らかなように、実施例18で得られた熱可塑性エラストマー組成物と、実施例14~17で得られた熱可塑性エラストマー組成物とは、パラフィンオイルを含有していない点以外は組成が同一のものである。得られた熱可塑性エラストマー組成物の特性の評価結果等を表4に示す。
Figure JPOXMLDOC01-appb-T000022
 [熱可塑性エラストマー組成物(実施例14~18)の特性評価]
 表4に示す結果からも明らかなように、前記エラストマー成分(上記側鎖(iii)を主として有するエラストマー性ポリマー)と、前記α-オレフィン系樹脂(PP)と、クレイ(有機化クレイ)とを含有する本発明の熱可塑性エラストマー組成物(実施例14~18)においてはいずれも、5%重量減少温度が337℃以上となっており、十分に高度な耐熱性が達成されることが分かった。また、本発明の熱可塑性エラストマー組成物(実施例14~18)においては、破断強度が3.5MPa以上となるような十分に高い水準のものとなっていた。さらに、本発明の熱可塑性エラストマー組成物(実施例14~18)においては、ゴム製品として十分な耐圧縮永久歪性や硬度が得られることが確認された。更に、本発明の熱可塑性エラストマー組成物(実施例14~18)においてはいずれも加熱時に流動性が得られ、十分な加工性を有するものであることが確認された。
 このような結果から、本発明の熱可塑性エラストマー組成物(実施例14~18)によれば、十分に高度な耐熱性及び破断強度が得られることが確認された。
 また、実施例14~18で得られた熱可塑性エラストマー組成物の特性評価の結果から、パラフィンオイルを用いた場合(実施例14~17)にはMFRの値が飛躍的に向上し、更に高度な流動性が達成できることが分かった。さらに、実施例14~18で得られた熱可塑性エラストマー組成物の特性評価の結果から、パラフィンオイルを用いた場合(実施例14~17)には、圧縮永久歪の値をより小さな値とすることができることも分かった。また、実施例14~17で得られた熱可塑性エラストマー組成物の特性評価の結果から、添加するパラフィンオイルの動粘度がより高い値となるほど、圧縮永久歪がより小さくなり、より高度な耐圧縮永久歪性を有するものとなることも分かった。このように、本発明の熱可塑性エラストマー組成物においては、目的の用途等に応じて必要となる特性がより高度なものとなるように、添加成分の使用の有無やその種類(パラフィンオイルの種類等)を適宜変更する等して、用途に応じて設計を適宜変更して使用することが可能であることが分かった。
 (実施例19~21)
 パラフィンオイルの種類を変更して、それぞれ、後述のパラフィンオイルを用いた以外は、実施例4と同様にして熱可塑性エラストマー組成物を得た。なお、このような製造方法の記載からも明らかなように、実施例19~21で得られた熱可塑性エラストマー組成物は、パラフィンオイルの種類が異なる以外は実施例4で得られた熱可塑性エラストマー組成物と組成が同一のものである。得られた熱可塑性エラストマー組成物の特性の評価結果等を表5に示す。
〈実施例19で用いたパラフィンオイル〉
JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P200」、動粘度:75mm/s、Cp値:67.9%、アニリン点:109℃
〈実施例20で用いたパラフィンオイル〉
JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P400」、動粘度:156mm/s、Cp値:68.1%、アニリン点:113℃
〈実施例21で用いたパラフィンオイル〉
出光興産社製の商品名「ダイアナプロセスオイルPW380」、動粘度:380mm/s、Cp値:68.0%、アニリン点:143℃。
 (実施例22)
 パラフィンオイルを用いる代わりにアロマオイル(JX日鉱日石エネルギー社製の商品名「T-DAE」、動粘度:32mm/s)を用いた以外は、実施例4と同様にして熱可塑性エラストマー組成物を得た。なお、このような製造方法の記載からも明らかなように、実施例22で得られた熱可塑性エラストマー組成物は、オイルの種類が異なる以外は実施例4で得られた熱可塑性エラストマー組成物と組成が同一のものである。得られた熱可塑性エラストマー組成物の特性の評価結果等を表5に示す。
 (実施例23)
 パラフィンオイルを用いる代わりにナフテンオイル(JX日鉱日石エネルギー社製の商品名「グレード200」、動粘度:1.56mm/s)を用いた以外は、実施例4と同様にして熱可塑性エラストマー組成物を得た。なお、このような製造方法の記載からも明らかなように、実施例23で得られた熱可塑性エラストマー組成物は、オイルの種類が異なる以外は実施例4で得られた熱可塑性エラストマー組成物と組成が同一のものである。得られた熱可塑性エラストマー組成物の特性の評価結果等を表5に示す。
 なお、表5には、実施例4及び比較例1で得られた熱可塑性エラストマー組成物の特性の評価結果を併せて示す。
Figure JPOXMLDOC01-appb-T000023
 [熱可塑性エラストマー組成物(実施例4、19~23及び比較例1)の特性評価]
 表5に示す結果からも明らかなように、前記エラストマー成分(上記側鎖(iii)を主として有するエラストマー性ポリマー)と、前記α-オレフィン系樹脂(PP)と、クレイ(有機化クレイ)とを含有する本発明の熱可塑性エラストマー組成物(実施例4及び19~23)においてはいずれも、5%重量減少温度が334℃以上となっており、十分に高度な耐熱性が達成されることが分かった。また、本発明の熱可塑性エラストマー組成物(実施例4及び19~23)においては、破断強度が4.2MPa以上となっており、十分に高い水準のものとなっていた。また、本発明の熱可塑性エラストマー組成物(実施例14~18)においては、ゴム製品として十分な耐圧縮永久歪性や硬度が得られることも確認された。更に、本発明の熱可塑性エラストマー組成物(実施例4及び19~23)においてはいずれも加熱時に流動性が得られ、十分な加工性を有するものであることが確認された。
 このような結果から、本発明の熱可塑性エラストマー組成物(実施例4及び19~23)によれば、十分に高度な耐熱性及び破断強度が得られることが確認されるとともに、ゴム製品として利用可能な十分な耐圧縮永久歪性及び硬度が得られることも分かった。
 また、実施例4及び19~23で得られた熱可塑性エラストマー組成物の特性評価の結果から、オイルとしてパラフィンオイルを用いた場合(実施例4及び実施例19~21)には、他のオイル類を用いた場合(実施例22~23)と比べて、MFRの値がより高いものとなり、更に高度な流動性が達成できるとともに、耐圧縮歪性をより高度なものとすることも可能となることが確認された。また、実施例4及び実施例19~21で得られた熱可塑性エラストマー組成物の特性評価の結果から、添加するパラフィンオイルの動粘度がより高い値となるほど、圧縮永久歪がより小さくなり、より高度な耐圧縮永久歪性を有するものとなることも分かった。
 (実施例24)
 先ず、スチレンブロック共重合体(スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS):クレイトン社製の商品名「G1633」)50gを加圧ニーダーに投入して、200℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P200」、動粘度:75mm/s、Cp値:67.9%、アニリン点:109℃)100gを滴下し、スチレン-エチレン-ブチレン-スチレンブロック共重合体とパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM:三井化学社製の商品名「タフマーMH5040」、結晶化度:4%)100g、エチレン-プロピレン共重合体(EPM:三井化学社製の商品名「タフマーPN20300」、結晶化度:12%)100gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.3gを更に投入し、温度を200℃として2分間素練りして第一の混合物(SEBS、パラフィンオイル、マレイン化EBM、EPMおよび老化防止剤の混合物)を得た。なお、かかる素練り工程により、前記第一の混合物は可塑化された。次に、前記加圧ニーダー中の前記第一の混合物に対して、有機化クレイ(クニミネ工業社製の商品名「クニフィルD-36」)2gを更に加えて、200℃で4分間混練して第二の混合物を得た。
 次に、前記第二の混合物にトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を2.62g加え、200℃で8分間混合し、パラフィンオイルを含んでいないタイプの熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の特性の評価結果等を表4に示す。なお、このような組成物は、用いた原料化合物の赤外分光分析の結果から、前述のような、側鎖(iii)を主として有するエラストマー性ポリマーを含むものであることが分かる。また、このようなエラストマー性ポリマーは、主鎖がエチレンとブテンからなっているため、ガラス転移点は25℃以下のものであることが分かった。得られた熱可塑性エラストマー組成物の特性の評価結果等を表6に示す。
 (実施例25~27)
 パラフィンオイルの種類を変更して、各実施例において、後述のパラフィンオイルをそれぞれ用いた以外は、実施例24と同様にして熱可塑性エラストマー組成物を得た。得られた熱可塑性エラストマー組成物の特性の評価結果等を表6に示す。
〈実施例25で用いたパラフィンオイル〉
JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P400」、動粘度:156mm/s、Cp値:68.1%、アニリン点:113℃
〈実施例26で用いたパラフィンオイル〉
出光興産社製の商品名「ダイアナプロセスオイルPW380」、動粘度:380mm/s、Cp値:68.0%、アニリン点:143℃
〈実施例27で用いたパラフィンオイル〉
JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P500S」、動粘度:472mm/s、Cp値:68.7%、アニリン点:123℃
Figure JPOXMLDOC01-appb-T000024
 [熱可塑性エラストマー組成物(実施例24~27)の特性評価]
 表6に示す結果からも明らかなように、前記エラストマー成分(上記側鎖(iii)を主として有するエラストマー性ポリマー)と、前記α-オレフィン系樹脂(EPM)と、クレイ(有機化クレイ)とを含有する本発明の熱可塑性エラストマー組成物(実施例24~27)においてはいずれも、5%重量減少温度が337℃以上となっており、十分に高度な耐熱性が達成されることが分かった。また、本発明の熱可塑性エラストマー組成物(実施例24~27)においては、破断強度も4.0MPa以上となっており、十分に高い破断強度が得られることが確認された。更に、本発明の熱可塑性エラストマー組成物(実施例24~27)においては、ゴム製品として利用可能な十分な耐圧縮永久歪性及び硬度が得られることが確認された。更に、本発明の熱可塑性エラストマー組成物(実施例24~27)においてはいずれも加熱時に流動性が得られ、十分な加工性を有するものであることが確認された。
 このような結果から、本発明の熱可塑性エラストマー組成物(実施例24~27)によれば、十分に高度な耐熱性及び破断強度が得られることが確認された。また、本発明の熱可塑性エラストマー組成物(実施例24~27)においては、十分に高度な耐熱性及び破断強度が得られるとともに、加熱時の流動性と耐圧縮永久歪性を十分にバランスよく有するものとなることも分かった。
 また、実施例24~27で得られた熱可塑性エラストマー組成物の特性評価の結果から、添加するパラフィンオイルの動粘度がより高い値となるほど、圧縮永久歪がより小さくなり、より高度な耐圧縮永久歪性を有するものとなることも分かった。このように、本発明の熱可塑性エラストマー組成物においては、添加成分としてパラフィンオイルを適宜利用する等して、用途に応じて必要となる特性をより高度なものとすることも可能であることが分かった。
 (実施例28)
 先ず、スチレンブロック共重合体(スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS):クレイトン社製の商品名「G1633」、分子量:40万~50万、スチレン含有量:30質量%)50gを加圧ニーダーに投入して、200℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P500S」)100gを滴下し、スチレン-エチレン-ブチレン-スチレンブロック共重合体とパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM:三井化学社製の商品名「タフマーMH5040」、結晶化度:4%)100g、エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」、結晶化度:10%)75gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.3gを更に投入し、温度を200℃として2分間素練りして第一の混合物(EBMとマレイン化EBMとを含む混合物)を得た。なお、かかる素練り工程により、前記第一の混合物は可塑化された。次に、前記加圧ニーダー中の前記第一の混合物に対して、有機化クレイ(クニミネ工業社製の商品名「クニフィルD-36」)1gを更に加えて、200℃で4分間混練して第二の混合物を得た。
 次に、前記加圧ニーダー中の前記第二の混合物にトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を2.62g加え、200℃で8分間混合し、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の特性の評価結果等を表1に示す。なお、このような組成物は、用いた原料化合物の赤外分光分析の結果から、前述のような、側鎖(iii)を主として有するエラストマー性ポリマーを含むものであることが分かる。また、このようなエラストマー性ポリマーは、主鎖がエチレンとブテンからなっているため、ガラス転移点は25℃以下のものであることが分かった。得られた熱可塑性エラストマー組成物の特性の評価結果等を表7に示す。
 (実施例29~32)
 スチレンブロック共重合体の種類を変更して、各実施例において、後述のスチレンブロック共重合体をそれぞれ用いた以外は、実施例28と同様にして熱可塑性エラストマー組成物を得た。なお、このような製造方法の記載からも明らかなように、実施例28~32で得られた熱可塑性エラストマー組成物は、スチレンブロック共重合体の種類が異なる以外は組成が同一のものである。このようにして各実施例において得られた熱可塑性エラストマー組成物の特性の評価結果等を表7に示す。
〈実施例29で用いたスチレンブロック共重合体〉
SEBS:クレイトン社製の商品名「G1641」、分子量:25万~35万、スチレン含有量:33質量%
〈実施例30で用いたスチレンブロック共重合体〉
SEBS:クレイトン社製の商品名「G1651」、分子量:25万~35万、スチレン含有量:33質量%
〈実施例31で用いたスチレンブロック共重合体〉
SEEPS:クラレ社製の商品名「4077」、分子量:40万~50万、スチレン含有量:30質量%
〈実施例32で用いたスチレンブロック共重合体〉
SEEPS:クラレ社製の商品名「4099」、分子量:50万~60万、スチレン含有量:30質量%。
 (比較例2)
 先ず、スチレンブロック共重合体(スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS):クレイトン社製の商品名「G1633」、分子量:40万~50万、スチレン含有量:30質量%)50gを加圧ニーダーに投入して、200℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P500S」)100gを滴下し、スチレン-エチレン-ブチレン-スチレンブロック共重合体とパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM:三井化学社製の商品名「タフマーMH5040」、結晶化度:4%)100g、エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」、結晶化度:10%)75gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.3gを更に投入し、温度を200℃として2分間素練りして混合物(EBMとマレイン化EBMとを含む混合物)を得た。なお、かかる素練り工程により、前記混合物は可塑化された。次に、前記混合物にトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を2.62g加え、200℃で8分間混合し、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の特性の評価結果等を表7に示す。
Figure JPOXMLDOC01-appb-T000025
 [熱可塑性エラストマー組成物(実施例28~32及び比較例2)の特性評価]
 表7に示す結果からも明らかなように、前記エラストマー成分(上記側鎖(iii)を主として有するエラストマー性ポリマー)と、前記α-オレフィン系樹脂(EBM)と、クレイ(有機化クレイ)とを含有する本発明の熱可塑性エラストマー組成物(実施例28~32)においてはいずれも、5%重量減少温度が340℃以上となっていた。一方、クレイ(有機化クレイ)を含んでいない熱可塑性エラストマー組成物(比較例2)においては、5%重量減少温度が319℃となっていた。このような結果から、本発明の熱可塑性エラストマー組成物(実施例28~32)によれば、5%重量減少温度を基準とした耐熱性がより高度なものとなることが分かった。
 また、前記エラストマー成分(上記側鎖(iii)を主として有するエラストマー性ポリマー)と、前記α-オレフィン系樹脂(EBM)と、クレイ(有機化クレイ)とを含有する本発明の熱可塑性エラストマー組成物(実施例28~32)においてはいずれも、破断強度が4.0MPa以上となっており、クレイ(有機化クレイ)を含んでいない熱可塑性エラストマー組成物(比較例2)よりも、更に高度な破断強度が得られることが確認された。また、本発明の熱可塑性エラストマー組成物(実施例28~32)においてはいずれも、ゴム製品として利用可能な十分な耐圧縮永久歪性も得られるとともに十分な硬度を有することも確認された。更に、本発明の熱可塑性エラストマー組成物(実施例28~32)においてはいずれも加熱時に流動性が得られ、十分な加工性を有することが確認された。
 このような結果から、本発明の熱可塑性エラストマー組成物(実施例28~32)によれば、十分に高度な耐熱性及び破断強度が得られることが確認された。また、本発明の熱可塑性エラストマー組成物(実施例28~32)においては、十分に高度な耐熱性及び破断強度が得られるとともに、加熱時の流動性と耐圧縮永久歪性を十分にバランスよく有するものとなることも分かった。すなわち、表7に示す結果から、本発明の熱可塑性エラストマー組成物(実施例28~32)によれば、耐熱性、流動性、耐圧縮永久歪性、及び、機械的特性(破断強度)をいずれも十分な水準のものとすることができ、これらの特性を十分に高度な水準でバランスよく有するものとすることが可能となることが分かった。
 なお、実施例28で得られた熱可塑性エラストマー組成物と、比較例2で得られた熱可塑性エラストマー組成物との組成を比較すると、組成としては有機化クレイの有無のみが異なっているが、このような組成の相違点と表7に示す結果とを併せ勘案すれば、熱可塑性エラストマー組成物中に有機化クレイを含有する場合(実施例28)には、有機化クレイを用いなかった場合(比較例2)よりも、破断強度及び破断伸びの値がより高度なものとなり、より高い引張特性が得られること(より伸びやすく、伸びに対する耐性がより高い組成物が得られること)も分かった。
 また、表7に示す結果からも明らかなように、スチレンブロック共重合体を用いている系(実施例28~32)においては、スチレンブロック共重合体の重量平均分子量(Mw)を40万~60万とした場合(実施例1及び実施例4~5)に、より高度な耐永久圧縮歪性が得られることも分かった。
 このように、本発明の熱可塑性エラストマー組成物においては、十分に高度な耐熱性及び破断強度を有することが可能であることが確認された。また、本発明の熱可塑性エラストマー組成物においては、目的の用途等に応じて、組成を適宜変更する等(例えばα-オレフィン系樹脂の含有量を適宜変更したり、添加成分(スチレンブロック共重合体等)の種類や使用量を適宜変更する等)して、その用途に必要となる特性をより高度なものとして使用することが可能であることも分かった。
 (実施例33)
 先ず、スチレンブロック共重合体(スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS):クレイトン社製の商品名「G1633」、分子量:40万~50万、スチレン含有量:30質量%)20gを加圧ニーダーに投入して、200℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(JX日鉱日石エネルギー社製の商品名「スーパーオイルMシリーズ P500S」、動粘度:472mm/s、Cp値:68.7%、アニリン点:123℃)40gを滴下し、スチレン-エチレン-ブチレン-スチレンブロック共重合体とパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM:三井化学社製の商品名「タフマーMH5040」、結晶化度:4%)10g、α-オレフィン系樹脂であるエチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」、結晶化度:10%、MFR:35g/10分(2.16kg、190℃)、Mw:100000)7.5gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.0778gを更に投入し、温度を200℃として2分間混練して第一の混合物(EBMとマレイン化EBMとを含む混合物)を得た。なお、かかる素練り工程により、前記第一の混合物は可塑化された。次に、前記加圧ニーダー中の前記第一の混合物に対して、有機化クレイ(株式会社ホージュン製の商品名「エスベンWX」)0.01gを更に加えて、200℃で4分間混練して第二の混合物を得た。
 次に、前記加圧ニーダー中の前記第二の混合物にペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.102g加え、200℃で8分間混合し、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記無水マレイン酸変性エチレン-ブテン共重合体と、ペンタエリスリトールとの反応物となり、側鎖は無水マレイン酸変性エチレン-ブテン共重合体中の酸無水物基と、ペンタエリストール中の水酸基との反応により形成されたものとなる。そのため、側鎖にカルボン酸エステル基を含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例34)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10g用いる代わりに水酸基両末端ポリブタジエン(出光興産社製の商品名「Polybd R-45HT」、水酸基当量:1400)を10g用い、ペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.102g用いる代わりに2,6-ピリジンジカルボン酸(エア・ウォーター社製の商品名「2,6-ピリジンジカルボン酸」)を0.597g用い、老化防止剤(アデカ社製の商品名「AO-50」)の使用量を0.0778gから0.0782gに変更した以外は、実施例33と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記水酸基両末端ポリブタジエンと、2,6-ピリジンジカルボン酸との反応物となり、側鎖はポリブタジエンの末端の水酸基と、2,6-ピリジンジカルボン酸中のカルボニル基との反応により形成されたものとなる。そのため、側鎖にピリジン環とカルボン酸エステル基とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例35)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10g用いる代わりにカルボキシ基含有ポリイソプレン(クラレ社製の商品名「LIR-410」、カルボキシ当量:4000)を10g用い、ペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.102g用いる代わりにトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.218g用い、エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g用いる代わりに、高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15g用い、老化防止剤(アデカ社製の商品名「AO-50」)の使用量を0.0778gから0.0853gに変更した以外は、実施例33と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記カルボキシ基含有ポリイソプレンと、トリスヒドロキシエチルイソシアヌレートとの反応物となり、側鎖はポリイソプレンのカルボキシ基と、トリスヒドロキシエチルイソシアヌレート中の水酸基との反応により形成されたものとなる。そのため、側鎖にイソシアヌレート環とカルボン酸エステル基とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例36)
 トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.218g用いる代わりに、ペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.085g用い、老化防止剤(アデカ社製の商品名「AO-50」)の使用量を0.0853gから0.0852gに変更した以外は、実施例35と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記カルボキシ基含有ポリイソプレンと、ペンタエリスリトールとの反応物となり、側鎖はポリイソプレンのカルボキシ基と、ペンタエリスリトール中の水酸基との反応により形成されたものとなる。そのため、側鎖にカルボン酸エステル基と水酸基とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例37)
 トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.218g用いる代わりに、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン(日本触媒社製の商品名「ベンゾグアナミン」)を0.234g用いた以外は、実施例35と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記カルボキシ基含有ポリイソプレンと、2,4-ジアミノ-6-フェニル-1,3,5-トリアジンとの反応物となり、側鎖はポリイソプレンのカルボキシ基と、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン中のアミノ基(-NH)との反応により形成されたものとなる。そのため、側鎖にトリアジン環と、アミド結合(式:-CONH-)で表される結合部位とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例38)
 トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.218g用いる代わりに、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート(SC有機化学社製)を0.438g用い、高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15g用いる代わりに、エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g用い、老化防止剤(アデカ社製の商品名「AO-50」)の使用量を0.0853gから0.078gに変更した以外は、実施例35と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記カルボキシ基含有ポリイソプレンと、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートとの反応物となり、側鎖はポリイソプレンのカルボキシ基と、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート中のチオール基(-SH)との反応により形成されたものとなる。そのため、側鎖にイソシアヌレート環と、チオエステル(式:-CO-S-で表される基)とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例39)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10g用いる代わりにアミノ基含有ポリエチレンイミン(日本触媒社製の商品名「エポミンSP-200」、アミン価:18mmol/g)を10g用い、ペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.102g用いる代わりに2,6-ピリジンジカルボン酸(エア・ウォーター社製の商品名「2,6-ピリジンジカルボン酸」)を1.504g用い、エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g用いる代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15g用い、老化防止剤(アデカ社製の商品名「AO-50」)の使用量を0.0778gから0.0866gに変更した以外は、実施例33と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記アミノ基含有ポリエチレンイミンと、2,6-ピリジンジカルボン酸との反応物となり、側鎖はポリエチレンイミンのアミノ基と、2,6-ピリジンジカルボン酸中のカルボキシ基との反応により形成されたものとなる。そのため、側鎖にピリジン環とアミド結合(式:-CONH-)で表される結合部位とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例40)
 2,6-ピリジンジカルボン酸(エア・ウォーター社製の商品名「2,6-ピリジンジカルボン酸」)を1.504g用いる代わりに、トリス-(2,3-エポキシプロピル)-イソシアヌレート(日産化学製)を1.784g用い、高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15g用いる代わりに、エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g用い、老化防止剤(アデカ社製の商品名「AO-50」)の使用量を0.0866gから0.0794gに変更した以外は、実施例39と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記アミノ基含有ポリエチレンイミンと、トリス-(2,3-エポキシプロピル)-イソシアヌレートとの反応物となり、側鎖はポリエチレンイミンのアミノ基と、トリス-(2,3-エポキシプロピル)-イソシアヌレート中のエポキシ基との反応により形成されたものとなる。そのため、側鎖にイソシアヌレート環と水酸基(-OH基)とイミノ基とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例41)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10g用いる代わりにアルコキシシリル基含有ポリエチレン(三菱化学社製の商品名「リンクロン」、アルコキシ基当量:10000)を10g用い、ペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.102g用いる代わりにトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.087g用い、エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g用いる代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15g用い、老化防止剤(アデカ社製の商品名「AO-50」)の使用量を0.0778gから0.0852gに変更した以外は、実施例33と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記アルコキシシリル基含有ポリエチレンと、トリスヒドロキシエチルイソシアヌレートとの反応物となり、側鎖はポリエチレンが含むアルコキシシリル基と、トリスヒドロキシエチルイソシアヌレート中の水酸基との反応により形成されたものとなる。そのため、側鎖にイソシアヌレート環とシリルオキシ結合(-O-Si-O-)とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例42)
 トリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.087g用いる代わりにペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.034g用い、老化防止剤(アデカ社製の商品名「AO-50」)の使用量を0.0852gから0.0851gに変更した以外は、実施例41と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記アルコキシシリル基含有ポリエチレンと、ペンタエリスリトールとの反応物となり、側鎖はポリエチレンが含むアルコキシシリル基と、ペンタエリスリトール中の水酸基との反応により形成されたものとなる。そのため、側鎖にシリルオキシ結合(-O-Si-O-)と水酸基とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例43)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10g用いる代わりにアルコキシシリル基含有ポリエチレン(三菱化学社製の商品名「リンクロン」)を10g用い、ペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.102g用いる代わりに2,4-ジアミノ-6-フェニル-1,3,5-トリアジン(日本触媒社製の商品名「ベンゾグアナミン」)を0.094g用い、老化防止剤(アデカ社製の商品名「AO-50」)の使用量を0.0778gから0.0777gに変更した以外は、実施例33と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記アルコキシシリル基含有ポリエチレンと、2,4-ジアミノ-6-フェニル-1,3,5-トリアジンとの反応物となり、側鎖は前記ポリエチレンが含むアルコキシシリル基と、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン中のアミノ基との反応により形成されたものとなる。そのため、側鎖にイソシアヌレート環と、シリルアミノ結合とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例44)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10g用いる代わりにスチレン-ブタジエンブロック共重合体のエポキシ化物(ダイセル社製の商品名「エポフレンド」、エポキシ当量:1000)を10g用い、ペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.102g用いる代わりに2,4-ジアミノ-6-フェニル-1,3,5-トリアジン(日本触媒社製の商品名「ベンゾグアナミン」)を0.936g用い、エチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」)を7.5g用いる代わりに高密度ポリエチレン(HDPE:日本ポリエチレン製の商品名「HJ590N」)を15g用い、老化防止剤(アデカ社製の商品名「AO-50」)の使用量を0.0778gから0.086gに変更した以外は、実施例33と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記スチレン-ブタジエンブロック共重合体のエポキシ化物と、2,4-ジアミノ-6-フェニル-1,3,5-トリアジンとの反応物となり、側鎖は前記エポキシ化物が含むエポキシ基と、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン中のアミノ基との反応により形成されたものとなる。そのため、側鎖にトリアジン環と水酸基とイミノ結合とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例45)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10g用いる代わりにスチレン-ブタジエンブロック共重合体のエポキシ化物(ダイセル社製の商品名「エポフレンド」)を10g用い、ペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.102g用いる代わりにトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート(SC有機化学社製)を1.75g用い、老化防止剤(アデカ社製の商品名「AO-50」)の使用量を0.0778gから0.0793gに変更した以外は、実施例33と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記スチレン-ブタジエンブロック共重合体のエポキシ化物と、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートとの反応物となり、側鎖は前記エポキシ化物が含むエポキシ基と、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート中のアミノ基との反応により形成されたものとなる。そのため、側鎖に水酸基とチオエーテル結合とイソシアヌレート環とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例46)
 無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM)を10g用いる代わりに水酸基両末端ポリブタジエン(出光興産社製の商品名「Polybd R-45HT」、水酸基当量:1400)を10g用い、ペンタエリスリトール(日本合成化学社製の商品名「ノイライザーP」)を0.102g用いる代わりにm-キシリレンジイソシアネート(三井化学社製)を0.672g用い、老化防止剤(アデカ社製の商品名「AO-50」)の使用量を0.0778gから0.0783gに変更した以外は、実施例33と同様にして、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成を表8に示し、その特性の評価結果等を表10に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記水酸基両末端ポリブタジエンと、m-キシリレンジイソシアネートとの反応物となり、側鎖はポリブタジエンの末端の水酸基と、m-キシリレンジイソシアネート中のイソシアネート基との反応により形成されたものとなる。そのため、側鎖にベンゼン環とウレタン結合とを含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (比較例3~16)
 有機化クレイを利用しなかった以外は、それぞれ実施例33~46と同様にして、比較のための熱可塑性エラストマー組成物をそれぞれ調製した。得られた熱可塑性エラストマー組成物の組成を表9に示し、その特性の評価結果等を表10に示す。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 [熱可塑性エラストマー組成物(実施例33~46及び比較例3~16)の特性評価]
 表10に示す結果からも明らかなように、エラストマー成分とα-オレフィン系樹脂(EBM又はHDPE)と有機化クレイとを含有する本発明の熱可塑性エラストマー組成物(実施例33~46)と、有機化クレイを含有しなかった以外は同じ組成の比較のための熱可塑性エラストマー組成物(比較例3~16)とを比較すると、本発明の熱可塑性エラストマー組成物(実施例33~46)においては、5%重量減少温度が337℃以上となっているのに対して、有機化クレイを含んでいない熱可塑性エラストマー組成物(比較例3~16)においては、5%重量減少温度が322℃以下(325℃未満)となっていた。このような結果から、本発明の熱可塑性エラストマー組成物(実施例33~46)によれば、5%重量減少温度を基準とした耐熱性がより高度なものとなることが分かった。
 また、エラストマー成分とα-オレフィン系樹脂(EBM又はHDPE)と有機化クレイとを含有する本発明の熱可塑性エラストマー組成物(実施例33~46)と、有機化クレイを含有しなかった以外は同じ組成の比較のための熱可塑性エラストマー組成物(比較例3~16)とをそれぞれ比較すると、本発明の熱可塑性エラストマー組成物(実施例33~46)においては、有機化クレイを含んでいない熱可塑性エラストマー組成物(比較例3~16)よりも、更に高度な破断強度が得られることが確認された。また、表10に示す結果からも明らかなように、本発明の熱可塑性エラストマー組成物(実施例33~46)においてはいずれも、ゴム製品として利用可能な十分な耐圧縮永久歪性が得られるとともに十分な硬度を有することも確認された。更に、本発明の熱可塑性エラストマー組成物(実施例33~46)においてはいずれも加熱時に流動性が得られ、十分な加工性を有することが確認された。
 このような結果から、本発明の熱可塑性エラストマー組成物(実施例33~46)は、十分に高度な耐熱性及び破断強度を有するものとすることが可能であることが確認された。
 (実施例47)
 先ず、スチレンブロック共重合体(スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS):クレイトン社製の商品名「G1633」、分子量:40万~50万、スチレン含有量:30質量%)20gを加圧ニーダーに投入して、180℃の条件で練りながら、前記加圧ニーダー中にパラフィンオイル(出光興産社製の商品名「ダイアナプロセスオイルPW380」、動粘度:380mm/s、Cp値:68.0%、アニリン点:143℃)40gを滴下し、スチレン-エチレン-ブチレン-スチレンブロック共重合体とパラフィンオイルとを1分間混合した。次いで、前記加圧ニーダー中に、無水マレイン酸変性エチレン-ブテン共重合体(マレイン化EBM:三井化学社製の商品名「タフマーMH5040」、結晶化度:4%)10g、α-オレフィン系樹脂であるエチレン-ブテン共重合体(EBM:三井化学社製の商品名「タフマーDF7350」、結晶化度:10%、MFR:35g/10分(2.16kg、190℃)、Mw:100000)7.5gおよび老化防止剤(アデカ社製の商品名「AO-50」)0.078gを更に投入し、温度を180℃として2分間混練して第一の混合物(EBMとマレイン化EBMとを含む混合物)を得た。なお、かかる素練り工程により、前記第一の混合物は可塑化された。次に、前記加圧ニーダー中の前記第一の混合物に対して、有機化クレイ(株式会社ホージュン製の商品名「エスベンWX」)0.01gを更に加えて、200℃で4分間混練して第二の混合物を得た。
 次に、前記加圧ニーダー中の前記第二の混合物にトリスヒドロキシエチルイソシアヌレート(日星産業社製の商品名「タナック」)を0.262g加え、180℃で8分間混合し、熱可塑性エラストマー組成物を調製した。得られた熱可塑性エラストマー組成物の組成及び特性の評価結果等を表11に示す。
 なお、このようにして形成されるエラストマー性ポリマーは、前記無水マレイン酸変性エチレン-ブテン共重合体と前記トリスヒドロキシエチルイソシアヌレートとの反応物となり、側鎖は無水マレイン酸変性エチレン-ブテン共重合体中の酸無水物基と、トリスヒドロキシエチルイソシアヌレート中の水酸基との反応により形成されたものとなる。そのため、側鎖にカルボン酸エステル基を含む架橋構造が形成される(側鎖が水素結合性架橋部位と共有結合性架橋部位との双方を含む側鎖となる。)。
 (実施例48~49)
 老化防止剤の使用量及びパラフィンオイルの使用量をそれぞれ表11に示す量に変更した以外は、実施例47と同様にして、熱可塑性エラストマー組成物を調製した。なお、熱可塑性エラストマー組成物の組成及び特性の評価結果等を表11に示す。
 (実施例50)
 老化防止剤の使用量、パラフィンオイルの使用量及びスチレンブロック共重合体(SEBS)の使用量を表11に示す量に変更した以外は、実施例47と同様にして、熱可塑性エラストマー組成物を調製した。なお、熱可塑性エラストマー組成物の組成及び特性の評価結果等を表11に示す。
 (実施例51)
 α-オレフィン系樹脂としてエチレン-ブテン共重合体(EBM)7.5gを用いる代わりにポリエチレン(PE(高密度ポリエチレン:HDPE):日本ポリエチレン製の商品名「HJ590N」、結晶化度:74%、MFR:40g/10分(2.16kg、190℃)、Mw:70000)2.5gを用い、スチレンブロック共重合体(SEBS)の使用量を20gから30gに変更し、パラフィンオイルの使用量を40gから100gに変更し、老化防止剤の使用量を0.078gから0.143gに変更した以外は、実施例47と同様にして熱可塑性エラストマー組成物を調製した。なお、熱可塑性エラストマー組成物の組成及び特性の評価結果等を表11に示す。
 (実施例52)
 老化防止剤の使用量及びポリエチレンの使用量を表11に示す量に変更した以外は、実施例51と同様にして、熱可塑性エラストマー組成物を調製した。なお、熱可塑性エラストマー組成物の組成及び特性の評価結果等を表11に示す。
 (実施例53)
 老化防止剤の使用量及びポリエチレンの使用量を表11に示す量に変更し、黒色のカラーマスターバッチ(日本ピグメント社製の商品名「Nippisun」)0.3gをトリスヒドロキシエチルイソシアヌレート添加の4分後に添加した以外は、実施例51と同様にして、熱可塑性エラストマー組成物を調製した。なお、熱可塑性エラストマー組成物の組成及び特性の評価結果等を表11に示す。
 (実施例54)
 老化防止剤の使用量、ポリエチレンの使用量、スチレンブロック共重合体(SEBS)及びパラフィンオイルの使用量を表11に示す量に変更し、黒色のカラーマスターバッチ(日本ピグメント社製の商品名「Nippisun」)0.3gをトリスヒドロキシエチルイソシアヌレート添加の4分後に添加した以外は、実施例51と同様にして、熱可塑性エラストマー組成物を調製した。なお、熱可塑性エラストマー組成物の組成及び特性の評価結果等を表11に示す。
 (比較例17~24)
 有機化クレイを利用しなかった以外は、それぞれ実施例47~54と同様にして、比較のための熱可塑性エラストマー組成物をそれぞれ調製した(これにより、有機化クレイの有無以外は、実施例47と比較例17とが、実施例48と比較例18とが、実施例49と比較例19とが、実施例50と比較例20とが、実施例51と比較例21とが、実施例52と比較例22とが、実施例53と比較例23とが、実施例54と比較例24とが、それぞれ組成が共通するものとなる。)。なお、比較のための熱可塑性エラストマー組成物の組成及び特性の評価結果等を表12に示す。
Figure JPOXMLDOC01-appb-T000030
 [熱可塑性エラストマー組成物(実施例47~54及び比較例17~24)の特性評価]
 表11及び12に示す結果からも明らかなように、エラストマー成分とα-オレフィン系樹脂(EBM又はHDPE)と有機化クレイとを含有する本発明の熱可塑性エラストマー組成物(実施例47~54)と、有機化クレイを含有しなかった以外は同じ組成の比較のための熱可塑性エラストマー組成物(比較例17~24)とをそれぞれ比較すると、本発明の熱可塑性エラストマー組成物(実施例47~54)においては、5%重量減少温度が344℃以上となっているのに対して、有機化クレイを含んでいない熱可塑性エラストマー組成物(比較例17~24)においては、5%重量減少温度が329℃以下となっていた。このような結果から、本発明の熱可塑性エラストマー組成物(実施例47~54)によれば、5%重量減少温度を基準とした耐熱性がより高度なものとなることが分かった。
 また、エラストマー成分とα-オレフィン系樹脂(EBM又はHDPE)と有機化クレイとを含有する本発明の熱可塑性エラストマー組成物(実施例47~54)と、有機化クレイを含有しなかった以外は同じ組成の比較のための熱可塑性エラストマー組成物(比較例17~24)とをそれぞれ比較すると、本発明の熱可塑性エラストマー組成物(実施例47~54)においては、有機化クレイを含んでいない熱可塑性エラストマー組成物(比較例17~24)よりも、より高い破断強度が得られることが確認された。また、表11に示す結果からも明らかなように、本発明の熱可塑性エラストマー組成物(実施例47~54)においてはいずれも十分な耐圧縮永久歪性が得られることも確認された。更に、本発明の熱可塑性エラストマー組成物(実施例47~54)においてはいずれも加熱時に流動性が得られ、十分な加工性を有することが確認された。また、実施例48~51で得られた熱可塑性エラストマー組成物においては、硬度を10以下としながらも非常に高度な耐熱性が得られていることから、例えば、ガスケット、パッキン、ストッパー、3Dプリンター用資材等に好適に利用することも可能である。このように、表11及び12に示す結果から、本発明の熱可塑性エラストマー組成物は、その組成を変更することにより硬度などの特性を変更して利用することが可能であることも分かった。
 以上説明したように、本発明によれば、十分に高度な耐熱性及び破断強度を有することを可能とする熱可塑性エラストマー組成物、並びに、その製造方法を提供することが可能となる。
 したがって、本発明の熱可塑性エラストマー組成物は、上述のような各種特性をバランスよく発揮することが可能であるため、例えば、電気・電子、家電、化学、医薬品、ガラス、土石、鉄鋼、非鉄金属、機械、精密機器、化粧品、繊維、鉱業、パルプ、紙、建築・土木・建設、食料・飲料、一般消費財・サービス、運送用機器、建機、電気機器、設備(産業、空調、給湯、エネファーム)、金属、メディア、情報、通信機器、照明、ディスプレイ、農業、漁業、林業、水産業、アグリビジネス、バイオテクノロジー、ナノテクノロジー、工業、等の分野において利用する各種ゴム部品(より具体的には、自動車周りの商品、ホース、ベルト、シート、防振ゴム、ローラー、ライニング、ゴム引布、シール材、手袋、防舷材、医療用ゴム(シリンジガスケット、チューブ、カテーテル)、ガスケット(家電用、建築用)、アスファルト改質剤、ホットメルト接着剤、ブーツ類、グリップ類、玩具、靴、サンダル、キーパッド、ギア、ペットボトルキャプライナー、プリンター用のゴム部品、シーリング材、塗料・コーティング材、印刷用インク等の用途に用いる商品等)を製造するための材料等として有用である。

Claims (20)

  1.  カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
     前記エラストマー成分100質量部に対して20質量部以下の含有比率のクレイと、
     化学結合性の架橋部位を有さないα-オレフィン系樹脂と、
    を含有してなる熱可塑性エラストマー組成物。
  2.  前記α-オレフィン系樹脂の含有比率が、前記エラストマー成分100質量部に対して5~250質量部である、請求項1に記載の熱可塑性エラストマー組成物。
  3.  前記α-オレフィン系樹脂が、ポリプロピレン、ポリエチレン、エチレン-ブテン共重合体及びエチレン-プロピレン共重合体からなる群から選択される少なくとも1種である、請求項1又は2に記載の熱可塑性エラストマー組成物。
  4.  前記α-オレフィン系樹脂のJIS K6922-2(2010年発行)に準拠して測定される、190℃、2.16kg荷重におけるメルトフローレート(MFR)が40g/10分以上である、請求項1~3のうちのいずれか一項に記載の熱可塑性エラストマー組成物。
  5.  前記エラストマー性ポリマー(B)の側鎖に含有される水素結合性架橋部位が、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位である、請求項1~4のうちのいずれか一項に記載の熱可塑性エラストマー組成物。
  6.  前記クレイが、ケイ素及びマグネシウムを主成分とするクレイ、並びに、有機化クレイからなる群から選択される少なくとも1種である、請求項1~5のうちのいずれか一項に記載の熱可塑性エラストマー組成物。
  7.  前記クレイが有機化クレイである、請求項1~6のうちのいずれか一項に記載の熱可塑性エラストマー組成物。
  8.  前記エラストマー性ポリマー(B)の側鎖に含有される前記共有結合性架橋部位における架橋が、アミド、エステル、ラクトン、ウレタン、エーテル、チオウレタンおよびチオエーテルからなる群より選択される少なくとも1つの結合からなる、請求項1~7のうちのいずれか一項に記載の熱可塑性エラストマー組成物。
  9.  前記側鎖(a)の前記水素結合性架橋部位が下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Aは含窒素複素環であり、Bは単結合;酸素原子、式:NR’(R'は水素原子又は炭素数1~10のアルキル基である。)で表されるアミノ基又はイオウ原子;或いはこれらの原子又は基を含んでもよい有機基である。]
    で表される構造部分を含有する、請求項1~8のうちのいずれか一項に記載の熱可塑性エラストマー組成物。
  10.  前記含窒素複素環が5員環及び/又は6員環である、請求項1~9のうちのいずれか一項に記載の熱可塑性エラストマー組成物。
  11.  前記含窒素複素環がトリアゾール環、チアジアゾール環、ピリジン環、イミダゾール環、トリアジン環、イソシアヌレート環及びヒダントイン環の中から選択される少なくとも1種である、請求項1~10のうちのいずれか一項に記載の熱可塑性エラストマー組成物。
  12.  前記エラストマー性ポリマー(A)~(B)の主鎖がそれぞれ、ジエン系ゴム、ジエン系ゴムの水素添加物、オレフィン系ゴム、水添されていてもよいポリスチレン系エラストマー性ポリマー、ポリオレフィン系エラストマー性ポリマー、ポリ塩化ビニル系エラストマー性ポリマー、ポリウレタン系エラストマー性ポリマー、ポリエステル系エラストマー性ポリマー、及び、ポリアミド系エラストマー性ポリマーの中から選択される少なくとも1種からなる、請求項1~11のうちのいずれか一項に記載の熱可塑性エラストマー組成物。
  13.  前記エラストマー成分として含有されるポリマーの主鎖がオレフィン系共重合体でありかつ該ポリマーの側鎖がイソシアヌレート環を有する、請求項1~12のうちのいずれか一項に記載の熱可塑性エラストマー組成物。
  14.  前記熱可塑性エラストマー組成物の赤外吸収スペクトルにおいて、オレフィン系樹脂のC-H伸縮振動に由来する波長2920cm-1付近のピークの吸収強度(A)と、イソシアヌレート環中のカルボニル基に由来する波長1695cm-1付近のピークの吸収強度(B)との比([吸収強度(B)]/[吸収強度(A)])が0.01以上である、請求項13に記載の熱可塑性エラストマー組成物。
  15.  パラフィンオイルを更に含有してなる、請求項1~14のうちのいずれか一項に記載の熱可塑性エラストマー組成物。
  16.  化学結合性の架橋部位を有さないスチレンブロック共重合体を更に含有してなる、請求項1~15のうちのいずれか一項に記載の熱可塑性エラストマー組成物。
  17.  環状酸無水物基を側鎖に有するエラストマー性ポリマーと、クレイと、化学結合性の架橋部位を有さないα-オレフィン系樹脂とを混合して混合物を得る第一工程と、
     前記混合物に、前記環状酸無水物基と反応して水素結合性架橋部位を形成する化合物(I)、並びに、前記化合物(I)及び前記環状酸無水物基と反応して共有結合性架橋部位を形成する化合物(II)の混合原料のうちの少なくとも1種の原料化合物を添加し、前記ポリマーと前記原料化合物とを反応させることにより、熱可塑性エラストマー組成物を得る第二工程と、
    を含み、
     前記第二工程において得られる前記熱可塑性エラストマー組成物が、カルボニル含有基および/または含窒素複素環を有する水素結合性架橋部位を含有する側鎖(a)を有しかつガラス転移点が25℃以下であるエラストマー性ポリマー(A)、並びに、側鎖に水素結合性架橋部位及び共有結合性架橋部位が含有されておりかつガラス転移点が25℃以下であるエラストマー性ポリマー(B)からなる群から選択される少なくとも1種のエラストマー成分と、
     前記エラストマー成分100質量部に対して20質量部以下の含有比率の前記クレイと、
     前記α-オレフィン系樹脂と、
    を含有してなる組成物であり、
     前記第一工程において、前記熱可塑性エラストマー組成物中の前記クレイの含有量が前記エラストマー成分100質量部に対して20質量部以下となるような割合で前記クレイを用いて、前記環状酸無水物基を側鎖に有するエラストマー性ポリマーと、前記クレイと、前記α-オレフィン系樹脂とを混合する、熱可塑性エラストマー組成物の製造方法。
  18.  前記環状酸無水物基を側鎖に有するエラストマー性ポリマーが無水マレイン酸変性エラストマー性ポリマーである、請求項17に記載の熱可塑性エラストマー組成物の製造方法。
  19.  前記化合物(I)及び/又は(II)として、前記環状酸無水物基と反応して水素結合性架橋部位及び共有結合性架橋部位の双方を形成する化合物を利用する、請求項17又は18に記載の熱可塑性エラストマー組成物の製造方法。
  20.  前記化合物(I)及び/又は(II)として、水酸基、チオール基、アミノ基及びイミノ基のうちの少なくとも1種の置換基を有する化合物を利用する、請求項17~19のうちのいずれか一項に記載の熱可塑性エラストマー組成物の製造方法。
PCT/JP2016/073002 2015-09-17 2016-08-04 熱可塑性エラストマー組成物及びその製造方法 WO2017047274A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/759,702 US10995207B2 (en) 2015-09-17 2016-08-04 Thermoplastic elastomer composition and method for producing the same
JP2017539765A JP6991065B2 (ja) 2015-09-17 2016-08-04 熱可塑性エラストマー組成物及びその製造方法
KR1020187006705A KR102506817B1 (ko) 2015-09-17 2016-08-04 열 가소성 엘라스토머 조성물 및 그 제조 방법
EP16846147.3A EP3351595B1 (en) 2015-09-17 2016-08-04 Thermoplastic elastomer composition and method for preparing same
CN201680053894.8A CN108026377B (zh) 2015-09-17 2016-08-04 热塑性弹性体组合物及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015184491 2015-09-17
JP2015-184491 2015-09-17
JP2016-098268 2016-05-16
JP2016098268 2016-05-16

Publications (1)

Publication Number Publication Date
WO2017047274A1 true WO2017047274A1 (ja) 2017-03-23

Family

ID=58288976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073002 WO2017047274A1 (ja) 2015-09-17 2016-08-04 熱可塑性エラストマー組成物及びその製造方法

Country Status (8)

Country Link
US (1) US10995207B2 (ja)
EP (1) EP3351595B1 (ja)
JP (1) JP6991065B2 (ja)
KR (1) KR102506817B1 (ja)
CN (1) CN108026377B (ja)
MA (1) MA42836A (ja)
TW (1) TWI728993B (ja)
WO (1) WO2017047274A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159786A1 (ja) * 2016-03-17 2017-09-21 Jxエネルギー株式会社 発泡体用組成物、発泡体及びそれらの製造方法、並びに、発泡成形体
WO2017199806A1 (ja) * 2016-05-16 2017-11-23 Jxtgエネルギー株式会社 熱可塑性エラストマー組成物及びその製造方法
WO2018097311A1 (ja) * 2016-11-28 2018-05-31 クラレトレーディング株式会社 コンパウンド樹脂及び人体模型
WO2019027022A1 (ja) 2017-08-02 2019-02-07 Jxtgエネルギー株式会社 ゴム組成物、架橋ゴム組成物、タイヤ及び工業用ゴム部品
CN110612217A (zh) * 2017-05-11 2019-12-24 株式会社普利司通 轮胎
WO2021220884A1 (ja) * 2020-04-28 2021-11-04 Eneos株式会社 ポリマー組成物
WO2021261406A1 (ja) * 2020-06-24 2021-12-30 Eneos株式会社 ゴム組成物及び架橋ゴム組成物

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5918878B1 (ja) * 2015-03-31 2016-05-18 Jxエネルギー株式会社 熱可塑性エラストマー組成物及びその製造方法
KR20190140577A (ko) * 2018-06-12 2019-12-20 대일소재(주) 올레핀계 열가소성 실리콘 엘라스토머 조성물 및 이로부터 형성된 성형품
WO2020137710A1 (ja) * 2018-12-27 2020-07-02 三井化学株式会社 医療用器具用環状オレフィン共重合体、医療用器具用環状オレフィン共重合体組成物、および成形体
CN113260668A (zh) * 2019-01-24 2021-08-13 丰田纺织株式会社 热塑性树脂组合物和其制造方法、成型体和其制造方法、以及改质剂和改质方法
CN110655595B (zh) * 2019-09-12 2022-03-22 暨南大学 一种可用于医用粘合剂及敷料的液体天然橡胶及其制备方法与应用
CN110680992A (zh) * 2019-10-30 2020-01-14 中国科学院长春应用化学研究所 一种静脉留置针
JP7352466B2 (ja) * 2019-12-27 2023-09-28 Eneos株式会社 発泡成形用組成物及び発泡成形体
JP2022020433A (ja) * 2020-07-20 2022-02-01 Eneos株式会社 導電性熱可塑性エラストマー組成物
CN113117153B (zh) * 2021-05-22 2022-04-15 深圳市炫丽塑胶科技有限公司 一种医用导管表面用亲水润滑涂料
CN113771326B (zh) * 2021-09-16 2022-12-20 安徽省阳明达新材料科技有限公司 一种阻燃夹层玻璃用eva胶片的生产工艺方法
CN115011005A (zh) * 2022-07-27 2022-09-06 华侨大学 一种氨基改性氧化石墨烯/天然橡胶复合材料及其制备方法
CN117430920B (zh) * 2023-12-20 2024-04-16 山东万亿体育健康服务有限公司 一种高弹性、高耐久性的体育运动垫材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307576A (ja) * 2003-04-03 2004-11-04 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物
JP2005532449A (ja) * 2002-07-05 2005-10-27 エクソンモービル・ケミカル・パテンツ・インク 官能化されたエラストマーナノ複合物
JP2007056145A (ja) * 2005-08-25 2007-03-08 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物
JP5918878B1 (ja) * 2015-03-31 2016-05-18 Jxエネルギー株式会社 熱可塑性エラストマー組成物及びその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3014724B2 (ja) * 1990-06-27 2000-02-28 日産自動車株式会社 射出成形体
JP3635567B2 (ja) 1999-11-12 2005-04-06 積水化学工業株式会社 ポリオレフィン系樹脂組成物
JP4307155B2 (ja) 2002-12-03 2009-08-05 横浜ゴム株式会社 熱可塑性エラストマー組成物
JP4011057B2 (ja) 2004-11-02 2007-11-21 横浜ゴム株式会社 熱可塑性エラストマー
US20060189755A1 (en) * 2005-02-24 2006-08-24 The Yokohama Rubber Co., Ltd. Thermoplastic elastomer composition
JP2006232983A (ja) 2005-02-24 2006-09-07 Yokohama Rubber Co Ltd:The 熱可塑性エラストマーの製造方法
JP5690470B2 (ja) 2005-12-16 2015-03-25 エクソンモービル・ケミカル・パテンツ・インク エラストマー組成物の加工助剤
JP2007167973A (ja) 2005-12-19 2007-07-05 Yokohama Rubber Co Ltd:The 熱可塑性エラストマーを用いた吸着パッド
JP4163219B2 (ja) * 2006-04-27 2008-10-08 横浜ゴム株式会社 熱可塑性エラストマーおよび熱可塑性エラストマー組成物
JP2008258273A (ja) * 2007-04-02 2008-10-23 Yokohama Rubber Co Ltd:The 電解コンデンサの封口体及びそれを用いた電解コンデンサ
JP5415956B2 (ja) * 2007-11-09 2014-02-12 バンドー化学株式会社 伝動ベルト
JP5871299B2 (ja) 2009-12-14 2016-03-01 内山工業株式会社 アクリルゴム組成物及びその成形品
KR101180874B1 (ko) * 2010-06-17 2012-09-07 호남석유화학 주식회사 발포 성형성이 향상된 열가소성 가교 탄성체 조성물, 및 상기 조성물에 의해 형성된 성형품
CN101899183B (zh) 2010-09-02 2012-05-23 中国科学技术大学 一种辐照交联耐水阻燃聚烯烃纳米复合材料及其制备方法
JP5755092B2 (ja) 2011-09-15 2015-07-29 日東電工株式会社 樹脂成形品用補強シート、樹脂成形品の補強構造および補強方法
EP2757131B1 (en) * 2011-09-15 2016-12-14 Asahi Kasei Kabushiki Kaisha Cross-linked composition, method for producing cross-linked composition, and molding
CN103450544B (zh) 2013-08-07 2016-03-30 安徽合聚阻燃新材料股份有限公司 一种辐照交联低烟无卤阻燃聚烯烃复合材料及其制备方法
CN103756121B (zh) 2014-01-14 2016-03-02 中国科学技术大学 一种耐温耐油低烟无卤阻燃辐照交联聚烯烃复合材料及其制备方法
CN103865146B (zh) 2014-02-12 2016-03-30 安徽合聚阻燃新材料股份有限公司 一种过氧化物预交联低烟无卤阻燃辐照交联聚烯烃复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532449A (ja) * 2002-07-05 2005-10-27 エクソンモービル・ケミカル・パテンツ・インク 官能化されたエラストマーナノ複合物
JP2004307576A (ja) * 2003-04-03 2004-11-04 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物
JP2007056145A (ja) * 2005-08-25 2007-03-08 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物
JP5918878B1 (ja) * 2015-03-31 2016-05-18 Jxエネルギー株式会社 熱可塑性エラストマー組成物及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351595A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017159786A1 (ja) * 2016-03-17 2019-02-14 Jxtgエネルギー株式会社 発泡体用組成物、発泡体及びそれらの製造方法、並びに、発泡成形体
WO2017159786A1 (ja) * 2016-03-17 2017-09-21 Jxエネルギー株式会社 発泡体用組成物、発泡体及びそれらの製造方法、並びに、発泡成形体
WO2017199806A1 (ja) * 2016-05-16 2017-11-23 Jxtgエネルギー株式会社 熱可塑性エラストマー組成物及びその製造方法
WO2018097311A1 (ja) * 2016-11-28 2018-05-31 クラレトレーディング株式会社 コンパウンド樹脂及び人体模型
US11499045B2 (en) 2016-11-28 2022-11-15 Kuraray Trading Co., Ltd. Compound resin and human body model
US11225108B2 (en) 2017-05-11 2022-01-18 Bridgestone Corporation Tire
CN110612217A (zh) * 2017-05-11 2019-12-24 株式会社普利司通 轮胎
CN110997791A (zh) * 2017-08-02 2020-04-10 Jxtg能源株式会社 橡胶组合物、交联橡胶组合物、轮胎和工业用橡胶部件
JPWO2019027022A1 (ja) * 2017-08-02 2020-06-18 Jxtgエネルギー株式会社 ゴム組成物、架橋ゴム組成物、タイヤ及び工業用ゴム部品
CN110997791B (zh) * 2017-08-02 2022-03-01 Jxtg能源株式会社 橡胶组合物、交联橡胶组合物、轮胎和工业用橡胶部件
JP7055808B2 (ja) 2017-08-02 2022-04-18 Eneos株式会社 ゴム組成物、架橋ゴム組成物、タイヤ及び工業用ゴム部品
WO2019027022A1 (ja) 2017-08-02 2019-02-07 Jxtgエネルギー株式会社 ゴム組成物、架橋ゴム組成物、タイヤ及び工業用ゴム部品
WO2021220884A1 (ja) * 2020-04-28 2021-11-04 Eneos株式会社 ポリマー組成物
WO2021261406A1 (ja) * 2020-06-24 2021-12-30 Eneos株式会社 ゴム組成物及び架橋ゴム組成物

Also Published As

Publication number Publication date
CN108026377B (zh) 2021-09-07
TWI728993B (zh) 2021-06-01
MA42836A (fr) 2021-05-12
US20190048178A1 (en) 2019-02-14
JP6991065B2 (ja) 2022-01-12
KR102506817B1 (ko) 2023-03-07
CN108026377A (zh) 2018-05-11
JPWO2017047274A1 (ja) 2018-07-05
EP3351595A1 (en) 2018-07-25
EP3351595B1 (en) 2022-01-12
TW201726817A (zh) 2017-08-01
US10995207B2 (en) 2021-05-04
EP3351595A4 (en) 2019-06-26
KR20180054594A (ko) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2017047274A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP5918878B1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP6949830B2 (ja) 熱可塑性エラストマー組成物及びその製造方法、並びに、エラストマー成形体
JP2017057323A (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2017057322A (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2017057393A (ja) 熱可塑性エラストマー組成物、その製造方法及び積層体
JP4073452B2 (ja) 熱可塑性エラストマー組成物
WO2017199805A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
WO2017199806A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP3998690B2 (ja) 熱可塑性エラストマー組成物
JP2017206589A (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2008088194A (ja) 熱可塑性エラストマー組成物
JP2006232983A (ja) 熱可塑性エラストマーの製造方法
JP6453803B2 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP7320005B2 (ja) 熱可塑性エラストマー組成物、及び熱可塑性エラストマー組成物の製造方法
JP2017197637A (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2020114902A (ja) 熱可塑性エラストマー組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539765

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006705

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846147

Country of ref document: EP