WO2018092744A1 - 発泡用熱可塑性ポリウレタン樹脂およびその製造方法、ならびに、成形品 - Google Patents

発泡用熱可塑性ポリウレタン樹脂およびその製造方法、ならびに、成形品 Download PDF

Info

Publication number
WO2018092744A1
WO2018092744A1 PCT/JP2017/040836 JP2017040836W WO2018092744A1 WO 2018092744 A1 WO2018092744 A1 WO 2018092744A1 JP 2017040836 W JP2017040836 W JP 2017040836W WO 2018092744 A1 WO2018092744 A1 WO 2018092744A1
Authority
WO
WIPO (PCT)
Prior art keywords
foaming
thermoplastic polyurethane
polyurethane resin
less
polyol
Prior art date
Application number
PCT/JP2017/040836
Other languages
English (en)
French (fr)
Inventor
大輔 長谷川
正和 景岡
航 青木
益巳 猿渡
山崎 聡
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to EP17871310.3A priority Critical patent/EP3543273B1/en
Priority to CN201780027713.9A priority patent/CN109071766B/zh
Priority to US16/099,383 priority patent/US10633483B2/en
Priority to ES17871310T priority patent/ES2907349T3/es
Priority to KR1020197009643A priority patent/KR102021270B1/ko
Priority to JP2018513894A priority patent/JP6338809B1/ja
Publication of WO2018092744A1 publication Critical patent/WO2018092744A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • A43B13/122Soles with several layers of different materials characterised by the outsole or external layer
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • A43B13/125Soles with several layers of different materials characterised by the midsole or middle layer
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/42Filling materials located between the insole and outer sole; Stiffening materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/12Sandals; Strap guides thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/12Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
    • B29D35/122Soles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/14Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/227Catalysts containing metal compounds of antimony, bismuth or arsenic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0066≥ 150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2410/00Soles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products

Definitions

  • the present invention relates to a foaming thermoplastic polyurethane resin, a method for producing a foaming thermoplastic polyurethane resin, and a molded article containing the foaming thermoplastic polyurethane resin.
  • Thermoplastic polyurethane resin is generally a rubber elastic body obtained by reaction of polyisocyanate, high molecular weight polyol and low molecular weight polyol, and comprises a hard segment formed by reaction of polyisocyanate and low molecular weight polyol, And a soft segment formed by the reaction of an isocyanate and a high molecular weight polyol.
  • MDI 4,4′-diphenylmethane diisocyanate
  • polyester polyol composed of adipic acid and 1,4-butanediol as high molecular weight polyol
  • 1 low molecular weight polyol
  • thermoplastic polyurethane resin of Patent Document 1 has insufficient mechanical properties such as tear strength, and further improvement of the mechanical properties is desired.
  • an object of the present invention is to provide a foaming thermoplastic polyurethane resin having excellent mechanical properties.
  • the present invention is a foaming thermoplastic polyurethane resin which is a reaction product of a polyisocyanate component containing bis (isocyanatomethyl) cyclohexane and a polyol component, and the foaming thermoplastic polyurethane resin is gel permeated.
  • the area of the high molecular weight component having a weight average molecular weight of 400,000 or more is 25% or more and 60% or less with respect to the total area of the peak.
  • a foaming thermoplastic polyurethane resin is a reaction product of a polyisocyanate component containing bis (isocyanatomethyl) cyclohexane and a polyol component, and the foaming thermoplastic polyurethane resin is gel permeated.
  • the area of the high molecular weight component having a weight average molecular weight of 400,000 or more is 25% or more and 60% or less with respect to the total area of the peak.
  • a foaming thermoplastic polyurethane resin is a reaction product of a polyis
  • the present invention [2] is characterized in that the foaming thermoplastic polyurethane resin has an aggregation temperature measured by a differential scanning calorimeter of 90 ° C. or higher and 180 ° C. or lower. Contains foaming thermoplastic polyurethane resin.
  • the present invention [3] is characterized in that the bis (isocyanatomethyl) cyclohexane is 1,4-bis (isocyanatomethyl) cyclohexane, Contains foaming thermoplastic polyurethane resin.
  • the present invention [4] is characterized in that the 1,4-bis (isocyanatomethyl) cyclohexane contains a trans isomer at a ratio of 70 mol% to 96 mol%. It includes the thermoplastic polyurethane resin for foaming described.
  • the present invention [5] includes a reaction step of reacting a polyisocyanate component containing bis (isocyanatomethyl) cyclohexane and a polyol component to obtain a primary product, and the primary product at 50 ° C to 100 ° C.
  • a method for producing a foaming thermoplastic polyurethane resin comprising a heat treatment step of heat treatment for 3 days or more and 10 days or less is included.
  • the present invention [6] includes a molded product characterized by including the foaming thermoplastic polyurethane resin according to any one of [1] to [4].
  • the present invention [7] includes the molded article according to the above [6], which is a midsole.
  • the present invention [8] includes the molded article according to the above [7], which is a shock absorber.
  • the present invention [9] includes the molded article according to the above [6], which is a chemical mechanical polishing pad.
  • the present invention [10] includes the molded article according to the above [6], which is an automobile interior member.
  • the foaming thermoplastic polyurethane resin of the present invention contains a polymer component having a specific range of weight average molecular weight in a specific ratio. Therefore, bubble breakage at the time of foaming can be reduced, and uniform fine cells can be obtained. As a result, it has excellent mechanical properties.
  • the foaming thermoplastic polyurethane resin of the present invention since the heat treatment step for a relatively long time is included, the foaming thermoplastic polyurethane resin can contain a high molecular weight component at a specific ratio. Therefore, a foaming thermoplastic polyurethane resin having excellent mechanical properties can be obtained.
  • the molded product of the present invention is molded from the foaming thermoplastic polyurethane resin of the present invention, it has excellent mechanical properties.
  • FIG. 1 is a chromatogram when the foaming thermoplastic polyurethane resins of Example 2 and Comparative Example 1 are measured by gel permeation chromatography.
  • thermoplastic polyurethane resin for foaming of the present invention can be obtained by reacting a polyisocyanate component and a polyol component.
  • the foaming thermoplastic polyurethane resin of the present invention is a reaction product of a polyisocyanate component and a polyol component.
  • the polyisocyanate component contains bis (isocyanatomethyl) cyclohexane as an essential component.
  • Examples of bis (isocyanatomethyl) cyclohexane include 1,3-bis (isocyanatomethyl) cyclohexane and 1,4-bis (isocyanatomethyl) cyclohexane, and preferably have a symmetrical structure, and a thermoplastic polyurethane for foaming From the viewpoint of improving the rigidity of the resin, 1,4-bis (isocyanatomethyl) cyclohexane may be mentioned.
  • 1,4-bis (isocyanatomethyl) cyclohexane includes cis-1,4-bis (isocyanatomethyl) cyclohexane (hereinafter referred to as cis 1,4 isomer), and trans- , 4-bis (isocyanatomethyl) cyclohexane (hereinafter referred to as trans 1,4), and in the present invention, 1,4-bis (isocyanatomethyl) cyclohexane is trans 1,4.
  • the body is, for example, 60 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 85 mol% or more, such as 99 mol% or less, preferably 96 mol% or less.
  • the cis 1,4 is converted to, for example, 1 mol% or more.
  • the content ratio of the transformers 1 and 4 is not less than the above lower limit, the mechanical properties of the obtained polyurethane foam molded article (described later) can be improved. Further, when the content ratio of the transformers 1, 4 is not more than the above upper limit, the hardness, breaking strength, and tear strength of the obtained polyurethane foam molded article (described later) can be improved.
  • Bis (isocyanatomethyl) cyclohexane is, for example, commercially available bis (aminomethyl) cyclohexane or bis (aminomethyl) cyclohexane obtained by the method described in JP2011-6382A. No. -309827 and Japanese Patent Application Laid-Open No. 2014-55229, a cold two-stage phosgenation method (direct method) and a salt formation method, or Japanese Patent Application Laid-Open No. 2004-244349 and Japanese Patent Application Laid-Open No. 2003-212835 The non-phosgene method can be used.
  • bis (isocyanatomethyl) cyclohexane can be prepared as a modified product as long as the excellent effects of the present invention are not inhibited.
  • modified bis (isocyanatomethyl) cyclohexane examples include, for example, multimers of bis (isocyanatomethyl) cyclohexane (eg, dimer (eg, uretdione-modified product), trimer (eg, isocyanurate-modified product, iminooxadiazinedione).
  • dimer eg, uretdione-modified product
  • trimer eg, isocyanurate-modified product, iminooxadiazinedione
  • biuret modified products for example, biuret modified products produced by the reaction of bis (isocyanatomethyl) cyclohexane and water
  • allophanate modified products for example, bis (isocyanatomethyl) cyclohexane and monovalent Allophanate modified products produced by reaction with alcohol or dihydric alcohol
  • polyol modified products for example, polyol modified product produced by reaction of bis (isocyanatomethyl) cyclohexane and trihydric alcohol (adduct), etc.
  • Oxadia Modified by tritonone for example, oxadiazinetrione produced by reaction of bis (isocyanatomethyl) cyclohexane and carbon dioxide
  • carbodiimide for example, by decarboxylation condensation reaction of bis (isocyanatomethyl) cyclohexane Carbodiimide modified products, etc.
  • polyisocyanate component contains other polyisocyanates such as aliphatic polyisocyanate, aromatic polyisocyanate, araliphatic polyisocyanate, etc. as optional components as long as the excellent effects of the present invention are not impaired. Can do.
  • aliphatic polyisocyanate examples include ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), octamethylene diisocyanate, nonamethylene diisocyanate, and 2,2′-dimethylpentane diisocyanate.
  • 2,2,4-trimethylhexane diisocyanate decamethylene diisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-undecamethylene Triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate-4-isocyanatomethi Octane, 2,5,7-trimethyl-1,8-diisocyanate-5-isocyanatomethyloctane, bis (isocyanatoethyl) carbonate, bis (isocyanatoethyl) ether, 1,4-butylene glycol dipropyl ether- ⁇ , ⁇ '-diisocyanate, lysine isocyanatomethyl ester, lysine triisocyanate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate
  • the aliphatic polyisocyanate includes alicyclic polyisocyanates (excluding bis (isocyanatomethyl) cyclohexane).
  • Alicyclic polyisocyanates include, for example, isophorone diisocyanate (IPDI), trans, trans-, trans, cis-, and cis, cis-dicyclohexylmethane diisocyanate and mixtures thereof.
  • aromatic polyisocyanates examples include 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, and isomer mixtures of these tolylene diisocyanates (TDI), 4,4′-diphenylmethane diisocyanate, 2,4 Examples include '-diphenylmethane diisocyanate and 2,2'-diphenylmethane diisocyanate, and any isomer mixture of these diphenylmethane diisocyanates (MDI), toluidine diisocyanate (TODI), paraphenylene diisocyanate, naphthalene diisocyanate (NDI), and the like.
  • MDI diphenylmethane diisocyanates
  • TODI toluidine diisocyanate
  • NDI naphthalene diisocyanate
  • araliphatic polyisocyanate examples include 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), etc. Is mentioned.
  • These other polyisocyanates can be used alone or in combination of two or more.
  • polyisocyanates can be prepared as modified products within a range that does not impair the excellent effects of the present invention.
  • polyisocyanate modified products examples include other polyisocyanate multimers (dimers, trimers, etc.), biuret modified products, allophanate modified products, polyol modified products, oxadiazine trione modified products, carbodiimide modified products, and the like. Can be mentioned.
  • the content ratio when other polyisocyanate is contained is, for example, 50% by mass or less, preferably 30% by mass or less, more preferably 20% by mass or less, with respect to the total amount of the polyisocyanate component.
  • polyisocyanate component can contain monoisocyanate as an optional component as long as the excellent effects of the present invention are not impaired.
  • Examples of the monoisocyanate include methyl isocyanate, ethyl isocyanate, n-hexyl isocyanate, cyclohexyl isocyanate, 2-ethylhexyl isocyanate, phenyl isocyanate, and benzyl isocyanate.
  • the content ratio is, for example, 20% by mass or less, preferably 10% by mass or less, based on the total amount of the polyisocyanate component.
  • polyisocyanate component preferably, bis (isocyanatomethyl) cyclohexane is used alone.
  • the polyol component a component having a molecular weight of 60 or more and 5000 or less containing a compound containing two or more hydroxyl groups in the molecule (hereinafter referred to as a hydroxyl group-containing compound) is usually used.
  • a first polyol component having a molecular weight of 400 or more and 5000 or less and a second polyol component having a molecular weight of 60 or more and less than 400 are used in combination.
  • the number average molecular weight is adopted as the molecular weight of the polymer.
  • the number average molecular weight can be determined by the measurement by GPC method, the hydroxyl value of each component for polymerizing the polymer, and the formulation (the same applies hereinafter).
  • the first polyol component is, for example, a compound having a molecular weight within the above range and having two or more hydroxyl groups in the molecule, and preferably having a number average molecular weight within the above range and having two or more hydroxyl groups in the molecule.
  • a polymer is mentioned.
  • first polyol component examples include polyether polyol, polyester polyol, polycarbonate polyol, vegetable oil polyol, polyolefin polyol, and acrylic polyol.
  • polyether polyol examples include polyoxyalkylene polyol and polytetramethylene ether polyol.
  • the polyoxyalkylene polyol is, for example, an addition polymer of alkylene oxide starting from a low molecular weight polyol or a low molecular weight polyamine.
  • Examples of the low molecular weight polyol include a second polyol described later.
  • alkylene oxide examples include propylene oxide, ethylene oxide, and butylene oxide. These alkylene oxides can be used alone or in combination of two or more. Of these, propylene oxide and ethylene oxide are preferable.
  • polyoxyalkylene polyol examples include polyethylene glycol, polypropylene glycol, and random and / or block copolymers of propylene oxide and ethylene oxide.
  • polytetramethylene ether polyol examples include a ring-opening polymer (polytetramethylene ether glycol) obtained by cationic polymerization of tetrahydrofuran, and a polymer unit such as tetrahydrofuran and an alkyl-substituted tetrahydrofuran or a dihydric alcohol (described later).
  • polytetramethylene ether glycol obtained by cationic polymerization of tetrahydrofuran
  • polymer unit such as tetrahydrofuran and an alkyl-substituted tetrahydrofuran or a dihydric alcohol (described later).
  • examples thereof include polymerized amorphous (noncrystalline) polytetramethylene ether glycol.
  • amorphous (non-crystalline) means being liquid at normal temperature (25 ° C.) (the same applies hereinafter).
  • polyester polyol examples include polycondensates obtained by reacting the above-described low molecular weight polyol and polybasic acid under known conditions.
  • polybasic acid examples include oxalic acid, malonic acid, succinic acid, methyl succinic acid, glutaric acid, adipic acid, 1,1-dimethyl-1,3-dicarboxypropane, 3-methyl-3-ethylglutaric acid , Azelaic acid, sebacic acid, other saturated aliphatic dicarboxylic acids (C11-13) such as maleic acid, fumaric acid, itaconic acid, other unsaturated aliphatic dicarboxylic acids such as orthophthalic acid, isophthalic acid, terephthalic acid , Toluene dicarboxylic acid, naphthalene dicarboxylic acid, other aromatic dicarboxylic acids such as hexahydrophthalic acid, other alicyclic dicarboxylic acids such as dimer acid, hydrogenated dimer acid, het acid and other carboxylic acids, And acid anhydrides derived from these carboxylic acids, such as oxalic an
  • polyester polyol for example, a plant-derived polyester polyol, specifically, a hydroxyl group-containing vegetable oil fatty acid (for example, castor oil fatty acid containing ricinoleic acid, 12-hydroxystearic acid, using the above-described low molecular weight polyol as an initiator, And vegetable oil-based polyester polyols obtained by subjecting a hydroxycarboxylic acid such as hydrogenated castor oil fatty acid and the like to a condensation reaction under known conditions.
  • a hydroxycarboxylic acid such as hydrogenated castor oil fatty acid and the like
  • polyester polyol for example, the above-described low molecular weight polyol (preferably dihydric alcohol (described later)) is used as an initiator, for example, lactones such as ⁇ -caprolactone and ⁇ -valerolactone, and for example, L-lactide.
  • lactones such as ⁇ -caprolactone and ⁇ -valerolactone
  • L-lactide lactones
  • lactone-based polyester polyols such as those obtained by copolymerizing a dihydric alcohol (described later) Is mentioned.
  • polycarbonate polyol examples include, for example, a ring-opening polymer of ethylene carbonate using the above-described low molecular weight polyol (preferably a dihydric alcohol (described later)) as an initiator, for example, 1,4-butanediol, 1,5- Examples thereof include amorphous polycarbonate polyols obtained by copolymerizing a dihydric alcohol (described later) such as pentanediol, 3-methyl-1,5-pentanediol and 1,6-hexanediol with a ring-opening polymer.
  • a ring-opening polymer of ethylene carbonate using the above-described low molecular weight polyol preferably a dihydric alcohol (described later)
  • 1,4-butanediol 1,5- Examples thereof include amorphous polycarbonate polyols obtained by copolymerizing a dihydric alcohol (described later) such as pentanediol
  • Examples of the vegetable oil polyol include hydroxyl group-containing vegetable oils such as castor oil and palm oil.
  • castor oil polyol, or ester-modified castor oil polyol obtained by reaction of castor oil fatty acid and polypropylene polyol can be used.
  • polystyrene resin examples include polybutadiene polyol, partially saponified ethylene-vinyl acetate copolymer, and the like.
  • acrylic polyol examples include a copolymer obtained by copolymerizing a hydroxyl group-containing acrylate and a copolymerizable vinyl monomer copolymerizable with the hydroxyl group-containing acrylate.
  • hydroxyl group-containing acrylates examples include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2,2-dihydroxymethylbutyl (meth) acrylate, polyhydroxyalkyl maleate, Examples thereof include polyhydroxyalkyl fumarate.
  • Preferable examples include 2-hydroxyethyl (meth) acrylate.
  • Examples of the copolymerizable vinyl monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl ( Alkyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, isononyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl acrylate, etc.
  • (Meth) acrylate (having 1 to 12 carbon atoms), for example, aromatic vinyl such as styrene, vinyltoluene and ⁇ -methylstyrene, vinyl cyanide such as (meth) acrylonitrile, Vinyl monomers containing carboxyl groups such as (meth) acrylic acid, fumaric acid, maleic acid, itaconic acid, or alkyl esters thereof such as ethylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, hexanediol di ( Alkane polyol poly (meth) acrylates such as (meth) acrylate and oligoethylene glycol di (meth) acrylate, for example, vinyl monomers containing isocyanate groups such as 3- (2-isocyanato-2-propyl) - ⁇ -methylstyrene Can be mentioned.
  • aromatic vinyl such as styrene, vinyltoluene and ⁇ -methylsty
  • the acrylic polyol can be obtained by copolymerizing these hydroxyl group-containing acrylate and copolymerizable vinyl monomer in the presence of a suitable solvent and a polymerization initiator.
  • the acrylic polyol includes, for example, silicone polyol and fluorine polyol.
  • silicone polyol examples include an acrylic polyol in which a silicone compound containing a vinyl group such as ⁇ -methacryloxypropyltrimethoxysilane is blended as the copolymerizable vinyl monomer in the copolymerization of the acrylic polyol described above. .
  • the fluorine polyol for example, in the copolymerization of the acrylic polyol described above, as the copolymerizable vinyl monomer, for example, an acrylic polyol in which a fluorine compound containing a vinyl group such as tetrafluoroethylene or chlorotrifluoroethylene is blended may be mentioned. .
  • These first polyol components can be used alone or in combination of two or more.
  • the first polyol component preferably includes polyether polyol and polyester polyol, more preferably includes polyethylene glycol, polytetramethylene ether glycol, and polycaprolactone polyol, and more preferably includes polycaprolactone polyol.
  • the first polyol component is as described above, a polyurethane foam molded article (described later) having excellent mechanical properties such as breaking strength and tear strength can be obtained.
  • the number average molecular weight of the first polyol component is, for example, 400 or more, preferably 500 or more, more preferably 1000 or more, still more preferably 2000 or more, for example, 5000 or less, preferably 4000 or less, more preferably. Is 3000 or less.
  • the molecular weight of the first polyol component is within the above range, good mechanical properties can be exhibited even when the expansion ratio is increased.
  • Examples of the second polyol component include a compound (monomer) having two or more hydroxyl groups in the molecule and having a molecular weight of 60 or more and less than 400.
  • the second polyol component include, for example, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol (1,4-butanediol, 1,4-BD).
  • These second polyol components can be used alone or in combination of two or more.
  • the second polyol component is preferably a dihydric alcohol, more preferably 1,4-butanediol.
  • the second polyol component is as described above, a polyurethane foam molded article (described later) having excellent mechanical properties such as breaking strength can be obtained.
  • the number average molecular weight of the second polyol component is, for example, 60 or more, preferably 80 or more, for example, less than 400, preferably less than 300.
  • the foaming magnification can be increased to obtain a lightweight polyurethane foam molded product (described later).
  • the content ratio of the first polyol component and the second polyol component is such that the first polyol component is, for example, 5 mol% or more with respect to the total amount of the first polyol component and the second polyol component, 7 mol% or more, more preferably 10 mol% or more, further preferably 20 mol% or more, for example, 75 mol% or less, preferably 65 mol% or less, more preferably 50 mol% or less.
  • the second polyol component is, for example, 25 mol% or more, preferably 35 mol% or more, more preferably 50 mol% or more, for example, 95 mol% or less, preferably 93 mol% or less, more Preferably, it is 90 mol% or less, More preferably, it is 80 mol% or less.
  • the content ratio of the first polyol component and the second polyol component is within the above range, the mechanical properties of the obtained polyurethane foam molded article (described later) can be improved.
  • thermoplastic polyurethane resin for foaming of this invention can be obtained with a manufacturing method provided with a reaction process and a heat treatment process.
  • the reaction step is a step of obtaining a primary product (reaction product before heat treatment) by reacting the polyisocyanate component and the polyol component.
  • each of the above components polyisocyanate component, polyol component
  • a known method such as a one-shot method or a prepolymer method is employed.
  • a prepolymer method is employed.
  • a polyurethane foam molded article (described later) having excellent mechanical properties can be obtained by reacting the above components by a prepolymer method.
  • prepolymer synthesis step first, a polyisocyanate component and a first polyol component are reacted to synthesize an isocyanate group-terminated polyurethane prepolymer (prepolymer synthesis step).
  • the polyisocyanate component and the first polyol component are reacted by a polymerization method such as bulk polymerization or solution polymerization.
  • the polyisocyanate component and the first polyol component are reacted at a reaction temperature of, for example, 50 ° C. or higher, for example, 250 ° C. or lower, preferably 200 ° C. or lower.
  • the reaction is performed for a period of time or more, for example, 15 hours or less.
  • a polyisocyanate component and a first polyol component are added to an organic solvent, and the reaction temperature is, for example, 50 ° C. or higher, for example, 120 ° C. or lower, preferably 100 ° C. or lower, for example, 0.5 hours.
  • the reaction is performed for 15 hours or less.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, nitriles such as acetonitrile, alkyl esters such as methyl acetate, ethyl acetate, butyl acetate, and isobutyl acetate, such as n- Aliphatic hydrocarbons such as hexane, n-heptane and octane, for example, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, for example, aromatic hydrocarbons such as toluene, xylene and ethylbenzene, such as methyl cellosolve acetate , Ethyl cellosolve acetate, methyl carbitol acetate, ethyl carbitol acetate, ethylene glycol ethyl ether acetate, propy
  • a known urethanization catalyst such as amines and organometallic compounds can be added as necessary.
  • amines include tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine, and quaternary ammonium salts such as tetraethylhydroxylammonium, such as imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
  • tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine
  • quaternary ammonium salts such as tetraethylhydroxylammonium, such as imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
  • organometallic compounds include tin acetate, tin octylate (tin octylate), tin oleate, tin laurate, dibutyltin diacetate, dimethyltin dilaurate, dibutyltin dilaurate, dibutyltin dimercaptide, dibutyltin maleate, dibutyl Organic tin compounds such as tin dilaurate, dibutyltin dineodecanoate, dioctyltin dimercaptide, dioctyltin dilaurate, dibutyltin dichloride, for example, organic lead compounds such as lead octoate, lead naphthenate, for example, nickel naphthenate Organic nickel compounds, for example, organic cobalt compounds such as cobalt naphthenate, for example, organic copper compounds such as copper octenoate, for example, organic bismuth compounds such as bis
  • examples of the urethanization catalyst include potassium salts such as potassium carbonate, potassium acetate, and potassium octylate.
  • urethanization catalysts can be used alone or in combination of two or more.
  • the addition ratio of the urethanization catalyst is, for example, 0.001 part by mass or more, preferably 0.01 part by mass or more, for example, 1 part by mass with respect to a total amount of 10,000 parts by mass of the polyisocyanate component and the first polyol component. Part or less, preferably 0.5 part by weight or less.
  • the catalyst or the organic solvent can be removed by a known removal means such as distillation or extraction.
  • the mixing ratio of each component is such that the equivalent ratio of the isocyanate group in the polyisocyanate component (isocyanate group / hydroxyl group) to the hydroxyl group in the first polyol component is, for example, 2.0 or more, preferably For example, it is 20 or less, preferably 15 or less, more preferably 10 or less, and still more preferably 6.0 or less.
  • the blending ratio of each component in the prepolymer synthesis step is such that the polyisocyanate component is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, with respect to 100 parts by mass of the first polyol component.
  • the amount is preferably 15 parts by mass or more, for example, 100 parts by mass or less, preferably 70 parts by mass or less, more preferably 50 parts by mass or less, and further preferably 30 parts by mass or less.
  • the isocyanate group content is, for example, 1.0% by mass or more, preferably 3.0% by mass or more, more preferably 4.0% by mass or more, for example, 30.0% by mass or less.
  • it is 19.0 mass% or less, More preferably, it is 16.0 mass% or less, More preferably, it is 12.0 mass% or less, More preferably, it is 10.0 mass% or less, Especially preferably, 5.
  • the above components are allowed to react until reaching 0% by weight or less. Thereby, an isocyanate group-terminated polyurethane prepolymer can be obtained.
  • the isocyanate group content (isocyanate group content) can be determined by a known method such as titration with di-n-butylamine or FT-IR analysis.
  • the isocyanate group-terminated polyurethane prepolymer obtained above is reacted with the second polyol component to obtain a primary product of the polyisocyanate component and the polyol component (chain extension step).
  • the second polyol component is a chain extender.
  • the isocyanate group-terminated polyurethane prepolymer and the second polyol component are reacted by a polymerization method such as the above-described bulk polymerization or the above-described solution polymerization.
  • the reaction temperature is, for example, room temperature or more, preferably 50 ° C. or more, such as 200 ° C. or less, preferably 150 ° C. or less, and the reaction time is, for example, 5 minutes or more, preferably 1 hour or more, for example, 72 hours or less, preferably 48 hours or less.
  • the mixing ratio of each component is such that the equivalent ratio of the isocyanate group in the isocyanate group-terminated polyurethane prepolymer (isocyanate group / hydroxyl group) to the hydroxyl group in the second polyol component is, for example, 0.75 or more, preferably 0. .9 or more, for example, 1.3 or less, preferably 1.1 or less.
  • the mixing ratio of each component in the chain extension step is such that the second polyol component is, for example, 1.0 part by mass or more with respect to 100 parts by mass of the isocyanate group-terminated polyurethane prepolymer, preferably 2. 0 parts by mass or more, more preferably 3.0 parts by mass or more, for example, 30 parts by mass or less, preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and further preferably 10 parts by mass or less. Particularly preferably, it is 6.0 parts by mass or less.
  • a first polyol component in order to adjust the hard segment concentration (described later) of the obtained thermoplastic polyurethane resin for foaming, a first polyol component can be blended in addition to the second polyol component.
  • the blending ratio of the first polyol component when blending the first polyol component is such that the first polyol component is, for example, 5 parts by mass or more with respect to 100 parts by mass of the isocyanate group-terminated polyurethane prepolymer.
  • it is 10 parts by mass or more, more preferably 50 parts by mass or more, for example, 120 parts by mass or less, preferably 100 parts by mass or less, and for 1 part by mass of the second polyol component, for example, 10 parts by mass or more, preferably 20 parts by mass or more, for example, 100 parts by mass or less, preferably 50 parts by mass or less, more preferably 30 parts by mass or less.
  • a urethanization catalyst can be added as necessary.
  • a urethanization catalyst can be mix
  • a polyisocyanate component and a polyol component are combined with a hydroxyl group in the polyol component.
  • the equivalent ratio of isocyanate groups in the polyisocyanate component is, for example, 0.9 or more, preferably 0.95 or more, more preferably 0.98 or more, for example 1.2 or less.
  • they are blended at the same time in a ratio of 1.1 or less, more preferably 1.08 or less, and mixed with stirring.
  • the stirring and mixing is performed, for example, in an inert gas (for example, nitrogen) atmosphere at a reaction temperature of, for example, 40 ° C. or higher, preferably 100 ° C. or higher, for example, 280 ° C. or lower, preferably 260 ° C. or lower.
  • the reaction time is, for example, 30 seconds or longer and 1 hour or shorter.
  • the stirring and mixing method is not particularly limited.
  • Examples of the method include stirring and mixing using a known mixing device such as a rotary extruder and a belt conveyor type.
  • the above-mentioned urethanization catalyst and organic solvent can be added at an appropriate ratio as necessary.
  • the heat treatment step is a step of heat-treating the primary product to obtain a secondary product (a reaction product after the heat treatment, that is, a foaming thermoplastic polyurethane resin which is a reaction product).
  • the primary product obtained in the above reaction step is heat-treated by allowing it to stand at a predetermined heat treatment temperature for a predetermined heat treatment period, and then at a temperature of 50 ° C. to 100 ° C. for 6 hours to 3 days. Let dry below.
  • the heat treatment temperature is 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 70 ° C. or higher, 100 ° C. or lower, preferably 90 ° C. or lower.
  • the heat treatment temperature is not less than the above lower limit, a high proportion of the high molecular weight component can be efficiently contained, and if the heat treatment temperature is not more than the above upper limit, UV resistance (UV) of the resulting polyurethane foam molded article (described later) ) The discoloration can be improved.
  • UV resistance UV resistance
  • the heat treatment period is 3 days or more, preferably 4 days or more, more preferably 5 days or more, still more preferably 6 days or more, 10 days or less, preferably 9 days or less, more preferably 8 days. Less than a day.
  • the foaming thermoplastic polyurethane resin can contain a predetermined amount or more of a high molecular weight component, so that the mechanical properties of the resulting polyurethane foam molded article (described later) can be improved. If the heat treatment period is not more than the above upper limit, the content of the high molecular weight component in the obtained thermoplastic polyurethane resin for foaming can be suppressed to a predetermined amount or less. ) Mechanical properties and ultraviolet (UV) discoloration resistance can be improved.
  • UV ultraviolet
  • the foaming thermoplastic polyurethane resin may be added to known additives, for example, antioxidants, heat stabilizers, ultraviolet absorbers, light stabilizers, plasticizers, antiblocking agents, release agents, if necessary. Molding agents, pigments, dyes, lubricants, fillers, hydrolysis inhibitors, rust inhibitors, fillers, bluing agents and the like can be added. These additives can be added at the time of mixing each component, at the time of synthesis, or after the synthesis.
  • the heat stabilizer is not particularly limited, and may be a known heat stabilizer (for example, described in the catalog made by BASF Japan). More specifically, for example, phosphorus-based processing heat stabilizer, lactone-based processing heat stability. Agents, sulfur processing heat stabilizers and the like.
  • the ultraviolet absorber is not particularly limited, and includes known ultraviolet absorbers (for example, described in the catalog made by BASF Japan). More specifically, for example, benzotriazole ultraviolet absorbers, triazine ultraviolet absorbers. And benzophenone ultraviolet absorbers.
  • the light-resistant stabilizer is not particularly limited, and examples thereof include known light-resistant stabilizers (for example, described in the catalog made by ADEKA), and more specifically, for example, benzoate-based light stabilizers, hindered amine-based light stabilizers, and the like. Can be mentioned.
  • additives are each, for example, 0.01% by mass or more, preferably 0.1% by mass or more, for example, 3.0% by mass or less, preferably 2.0% by mass relative to the thermoplastic polyurethane resin for foaming. It is added at a ratio of not more than mass%.
  • the foaming thermoplastic polyurethane resin of the present invention obtained by such a production method contains a high molecular weight component (a component having a weight average molecular weight of 400,000 or more, preferably 500,000 or more) at a specific ratio. To do. Therefore, the mechanical properties of the obtained polyurethane foam molded article (described later) can be improved.
  • a high molecular weight component a component having a weight average molecular weight of 400,000 or more, preferably 500,000 or more
  • the content ratio of the high-molecular-weight component of the foaming thermoplastic polyurethane resin is relative to the total area of the peak in the peak of the chromatogram obtained by measuring the foaming thermoplastic polyurethane resin by gel permeation chromatography.
  • a high molecular weight component having a weight average molecular weight of 400,000 or more 25% or more, preferably 30% or more, more preferably 36% or more, still more preferably 40% or more, particularly preferably 44 % Or more, 60% or less, preferably 55% or less, more preferably 50% or less, still more preferably 46% or less, and particularly preferably 45% or less.
  • the peak of the chromatogram is a molecular weight distribution curve derived from the foaming thermoplastic polyurethane resin, and the peak due to impurities such as a solvent is excluded.
  • the content ratio of the high molecular weight component of the thermoplastic polyurethane resin for foaming is measured by gel permeation chromatography equipped with a differential refractometer under specific conditions (see Examples described later) ( GPC measurement).
  • the obtained foaming thermoplastic polyurethane resin is immersed in, for example, N-methylpyrrolidone, and, for example, at 80 ° C. or more and 120 ° C. or less (preferably about 100 ° C.), for example, A sample solution is prepared by stirring for 2 hours or more and 8 hours or less for dissolution and cooling the resulting solution to room temperature (25 ° C.) and filtering.
  • the sample solution is subjected to GPC measurement using gel permeation chromatography equipped with a differential refractometer according to the conditions of Examples described later.
  • the high molecular weight component of the foaming thermoplastic polyurethane resin is equal to or higher than the above lower limit, the elongational viscosity can be increased, and the foam breakage during foaming can be reduced, so that the uniformity of fine cells can be maintained. As a result, the mechanical properties of the obtained polyurethane foam molded article (described later) can be improved.
  • thermoplastic polyurethane resin for foaming is not more than the above upper limit, it is possible to suppress the elongation viscosity from becoming too high, and it becomes easy to control foaming. As a result, the resulting polyurethane foam molded article (described later) ) Due to heat and shearing can be suppressed, and ultraviolet (UV) discoloration resistance can be improved.
  • the hard segment concentration of the foaming thermoplastic polyurethane resin is, for example, 3% by mass or more, preferably 5% by mass or more, more preferably 8% by mass or more, for example, 55% by mass or less, preferably It is 50 mass% or less, More preferably, it is 45 mass% or less, More preferably, it is 35 mass% or less, Most preferably, it is 20 mass% or less.
  • the hard segment concentration of the thermoplastic polyurethane resin for foaming is within the above range, the uniformity of the cells constituting the resulting polyurethane foam molded article (described later) can be improved.
  • the hard segment (hard segment formed by reaction of the polyisocyanate component and the second polyol component) concentration of the thermoplastic polyurethane resin for foaming can be calculated from, for example, the blending ratio (preparation) of each component (See Examples below).
  • the aggregation temperature of the foaming thermoplastic polyurethane resin corresponds to the aggregation temperature of the hard segment phase in the foaming thermoplastic polyurethane resin, and is, for example, 75 ° C or higher, preferably 90 ° C or higher, more preferably 100 ° C. More preferably, it is 110 ° C. or more, particularly preferably 130 ° C. or more, for example, 200 ° C. or less, preferably 180 ° C. or less, more preferably 170 ° C. or less, more preferably 150 ° C. or less, particularly Preferably, it is 140 degrees C or less.
  • the breaking strength and tear strength of the resulting polyurethane foam molded article (described later) can be improved, and the agglomeration temperature of the foaming thermoplastic polyurethane resin can be improved. If it is below the said upper limit, the improvement of the resilience of a polyurethane foam molded article (after-mentioned) obtained and suppression of a compression set can be aimed at.
  • the aggregation temperature of the foaming thermoplastic polyurethane resin can be measured, for example, by differential scanning calorimetry (DSC measurement) based on the conditions of the examples.
  • the hardness (ASKER A (conforming to JIS K7311 (1995)), ASKER D (conforming to JIS K7311 (1995))) of the foaming thermoplastic polyurethane resin is, for example, 50 A or more, preferably 70 A or more, more preferably.
  • the present invention includes a molded article containing the above-described foaming thermoplastic polyurethane resin of the present invention, specifically, a foam molded article.
  • the foam molded product is molded from a foaming thermoplastic polyurethane resin.
  • the foamed molded product can be obtained, for example, by molding the above foaming thermoplastic polyurethane resin by a known foam molding method such as an extrusion foaming method, an injection foaming method, or a bead foaming method.
  • the above-mentioned foaming thermoplastic polyurethane resin is melted, kneaded with a known foaming agent (for example, supercritical carbon dioxide gas), and then extruded to form polyurethane foam. Goods can be obtained.
  • a known foaming agent for example, supercritical carbon dioxide gas
  • the above-mentioned foaming thermoplastic polyurethane resin is melted, kneaded with a known foaming agent (for example, supercritical carbon dioxide gas), and then injected and molded in a mold.
  • a known foaming agent for example, supercritical carbon dioxide gas
  • the foamed thermoplastic polyurethane resin is melted and kneaded with a known foaming agent (for example, supercritical carbon dioxide gas), and then the discharged foam strand is appropriately sized.
  • foaming agent for example, supercritical carbon dioxide gas
  • Polyurethane foam-molded products can be obtained by obtaining foam beads by cutting them into pieces and melt-molding the foam beads with a mold.
  • the uniformity of the cells in the obtained foamed molded product is, for example, 4 or more, preferably more than 4, for example, 5 or less.
  • the core density (based on the Example mentioned later) of a foaming molded article is 0.01 g / cm ⁇ 3 > or more, for example, Preferably, it is 0.05 g / cm ⁇ 3 > or more, More preferably, it is 0.10 g / cm ⁇ 3 > or more. More preferably, it is 0.20 g / cm 3 or more, for example, 0.5 g / cm 3 or less, preferably 0.4 g / cm 3 or less, more preferably 0.30 g / cm 3 or less.
  • the hardness of the foamed molded product is, for example, 1C or more, preferably 10C or more, more preferably 30C or more, and further preferably 35C or more.
  • it is 80 C or less, preferably 70 C or less, more preferably 50 C or less, still more preferably 45 C or less, and particularly preferably 42 C or less.
  • the rebound resilience of the foamed molded product is, for example, 5% or more, preferably 30% or more, more preferably 40% or more, still more preferably 50% or more, and particularly preferably. , 70% or more, particularly preferably 73% or more, for example, 85% or less, preferably 83% or less.
  • the compression set of the foamed molded product is, for example, 0.1% or more, preferably 1% or more, for example, 40% or less, preferably 25% or less. Preferably, it is 20% or less, more preferably 13% or less, further preferably 11% or less, more preferably 10% or less, and particularly preferably 9% or less.
  • the breaking strength of the foamed molded product is, for example, 1.0 MPa or more, preferably 1.5 MPa or more, more preferably 1.8 MPa or more, and further preferably 2.1 MPa or more. Especially preferably, it is 2.4 MPa or more, for example, 5.0 MPa or less, preferably 4.5 MPa or less.
  • the tear strength of the foamed molded product is, for example, 2 kN / m or more, preferably 3 kN / m or more, more preferably 4 kN / m or more, and further preferably 6 kN / m or more. More preferably, it is 7 kN / m or more, particularly preferably 10 kN / m or more, for example, 30 kN / m or less, preferably 20 kN / m or less.
  • the ultraviolet-resistant (UV) discoloration property (based on the Example mentioned later) of a foaming molding is 0.1 or more, for example, Preferably, it is 0.3 or more, for example, 5 or less, Preferably, 3. It is 5 or less, more preferably 2.5 or less, still more preferably 2.3 or less, still more preferably 2.0 or less, and particularly preferably 1.9 or less.
  • the molded article of the present invention is molded from the thermoplastic polyurethane resin for foaming of the present invention, the obtained molded article is a polyurethane foam molded article and has excellent mechanical properties.
  • the molded article of the present invention includes furniture items such as mattresses and sofas, clothing items such as bras and shoulder pads, medical items such as paper diapers, napkins, and medical tape cushions, and sanitary items such as cosmetics, facial puffs and pillows.
  • furniture items such as mattresses and sofas
  • clothing items such as bras and shoulder pads
  • medical items such as paper diapers, napkins, and medical tape cushions
  • sanitary items such as cosmetics, facial puffs and pillows.
  • Shoe soles outer sole
  • shoes such as midsole, footwear products (sandals, etc.) for various uses such as medical use, body pressure dispersal products such as pads and cushions for vehicles, and door trims
  • Instruments such as instrument panels and gear knobs, heat-insulating materials for electric refrigerators and buildings, shock absorbers such as shock absorbers, fillers, vehicle handles, vehicle interior parts, vehicle exterior members such as automobile exterior members, Semiconductor manufacturing products such as chemical mechanical polishing (CMP) pads, bats, grip cores, etc. Sporting goods, can be used in
  • the molded article of the present invention is suitably used as a midsole, shock absorber, chemical mechanical polishing (CMP) pad, sports equipment, automobile interior member, etc., which require high mechanical properties.
  • CMP chemical mechanical polishing
  • the purity of the obtained 1,4-BIC (1) as measured by gas chromatography was 99.9%, the hue as measured by APHA was 5, and the trans isomer / cis isomer ratio as determined by 13 C-NMR was 98/2. .
  • the hydrolyzable chlorine concentration (hereinafter referred to as HC concentration) was 18 ppm.
  • 1,4-BIC (2) 1,4-bis (isocyanatomethyl) cyclohexane (2) (hereinafter referred to as 1,4-BIC (2)))
  • 1,4-BIC (2) 1,4-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Co., Inc.) having a trans isomer / cis isomer ratio of 93/7 by 13 C-NMR measurement as a raw material
  • 1,4-BIC (2) 1,4-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Co., Inc.) having a trans isomer / cis isomer ratio of 93/7 by 13 C-NMR measurement
  • the purity of the obtained 1,4-BIC (2) as measured by gas chromatography was 99.9%, the hue as measured by APHA was 5, and the trans isomer / cis isomer ratio as determined by 13 C-NMR was 93/7. .
  • the HC concentration was 19 ppm.
  • Production Example 3 (Production of 1,4-bis (isocyanatomethyl) cyclohexane (3) (hereinafter referred to as 1,4-BIC (3))) 200 parts by mass of 1,4-BIC (1) obtained in Production Example 1 was obtained in Production Example 2 in a four-necked flask equipped with a stirrer, thermometer, reflux tube and nitrogen introduction tube. , 4-BIC (2) was charged in an amount of 800 parts by mass and stirred at room temperature for 1 hour in a nitrogen atmosphere to obtain 1000 parts by mass of 1,4-BIC (3).
  • the purity of the obtained 1,4-BIC (3) as measured by gas chromatography was 99.9%, the hue as measured by APHA was 5, and the trans isomer / cis isomer ratio as determined by 13 C-NMR was 94/6. .
  • the HC concentration was 19 ppm.
  • Production Example 4 (Production of 1,4-bis (isocyanatomethyl) cyclohexane (4) (hereinafter referred to as 1,4-BIC (4)))
  • 1,4-BIC (4) 1,4-bis (isocyanatomethyl) cyclohexane (4)
  • 1,4-BIC (4) 1,4-bis (isocyanatomethyl) cyclohexane (4)
  • the purity of the obtained 1,4-BIC (4) as measured by gas chromatography was 99.9%, the hue as measured by APHA was 5, and the trans isomer / cis isomer ratio as determined by 13 C-NMR was 86/14. .
  • the HC concentration was 19 ppm.
  • Production Example 5 Production of 1,4-bis (isocyanatomethyl) cyclohexane (5) (hereinafter referred to as 1,4-BIC (5))
  • 1,4-BIC (5) 1,4-bis (isocyanatomethyl) cyclohexane (5)
  • 1,4-BIC (5) 1,4-bis (isocyanatomethyl) cyclohexane (5)
  • 615 parts by mass of 1,4-BIC (2) obtained in Production Example 2 was obtained in Production Example 7 described later.
  • 385 parts by mass of 1,4-BIC (7) was charged and stirred at room temperature for 1 hour in a nitrogen atmosphere to obtain 1000 parts by mass of 1,4-BIC (5).
  • the purity of the obtained 1,4-BIC (5) as measured by gas chromatography was 99.9%, the hue as measured by APHA was 5, and the trans isomer / cis isomer ratio as determined by 13 C-NMR was 73/27. .
  • the HC concentration was 21 ppm.
  • 1,4-BIC (6) Production Example 6 (Production of 1,4-bis (isocyanatomethyl) cyclohexane (6) (hereinafter referred to as 1,4-BIC (6)))
  • 1,4-BIC (2) obtained in Production Example 2
  • 1,4-BIC (7) was charged and stirred at room temperature for 1 hour under a nitrogen atmosphere to obtain 1000 parts by mass of 1,4-BIC (6).
  • the purity of the obtained 1,4-BIC (6) as measured by gas chromatography was 99.9%, the hue as measured by APHA was 5, and the trans isomer / cis isomer ratio as determined by 13 C-NMR was 65/35. .
  • the HC concentration was 20 ppm.
  • 1,4-BIC (7) Production Example 7 (Production of 1,4-bis (isocyanatomethyl) cyclohexane (7) (hereinafter referred to as 1,4-BIC (7))) Using 1,4-bis (aminomethyl) cyclohexane (manufactured by Tokyo Chemical Industry Co., Ltd.) having a trans isomer / cis isomer ratio of 41/59 by 13 C-NMR measurement as a raw material, the production example 1 of JP 2014-55229 A Based on the description, 388 parts by mass of 1,4-BIC (7) was obtained.
  • the isocyanate group content was determined by a titration method with di-n-butylamine based on the isocyanate group content test described in JIS K7301.
  • 1,4-BIC 1,4-bis (isocyanatomethyl) cyclohexane 1,3-BIC produced in each production example 1,3-bis (isocyanatomethyl) cyclohexane (trade name: Takenate 600, Mitsui Chemicals, Inc.) Made)
  • MDI Diphenylmethane diisocyanate (trade name: Cosmonate PH, manufactured by Mitsui Chemicals, SKC Polyurethane)
  • PLACEL 230N polycaprolactone diol (trade name: PLACEL 230N, hydroxyl value: 37.4 mgKOH / g, number average molecular weight: 3000, manufactured by Daicel)
  • PTG3000SN Polytetramethylene ether glycol (trade name: PTG-3000SN, hydroxyl value: 37.5 mgKOH / g, number average molecular weight: 3000, manufactured by Hodogaya Chemical Co., Ltd.)
  • the mixture was added to the prepared prepolymer, and stirred and mixed for about 3 minutes under stirring at 500 to 1500 rpm using a high-speed disper.
  • the second polyol component (when the first polyol component was blended, the first polyol component and the second polyol component) that had been temperature-controlled at 80 ° C. was blended, and 500 to 1500 rpm was used using a high-speed disper. The mixture was stirred and mixed for about 10 minutes.
  • reaction mixture was poured into a Teflon vat preliminarily adjusted to 120 ° C. and reacted at 120 ° C. for 24 hours to obtain primary products (A) to (O) and (R) to (W).
  • the primary products (A) to (O) and (R) to (W) were removed from the Teflon bat, cut into dice with a bale cutter, and pulverized into pulverized pellets with a pulverizer.
  • the pulverized pellets were allowed to stand at the heat treatment temperatures listed in Tables 2 to 6 for a heat treatment period, and then dried at 80 ° C. for 24 hours under a nitrogen stream. Thereafter, the strand is extruded at a cylinder temperature in the range of 150 to 270 ° C.
  • thermoplastic polyurethane resin (A) to (O ) And (R)-(W) pellets were obtained.
  • the obtained pellets were further dried overnight at 80 ° C. under a nitrogen stream.
  • thermoplastic polyurethane resin for foaming The obtained foaming thermoplastic polyurethane resins (A) to (O) and (R) to (W) were evaluated by the following evaluation methods. The results are shown in Tables 2 to 6.
  • thermoplastic polyurethane resin (Hardness measurement of thermoplastic polyurethane resin for foaming)
  • NEX-140 manufactured by Nissei Plastic Industry Co., Ltd.
  • Injection molding was performed in the form of a sheet under the conditions of a screw speed of 80 rpm, a barrel temperature of 150 to 270 ° C., a mold temperature of 20 ° C., an injection time of 10 seconds, an injection speed of 60 mm / s, and a cooling time of 20 to 60 seconds.
  • the obtained sheet having a thickness of 2 mm was annealed in an oven at 80 ° C. for 3 days, and then cured for 7 days under a constant temperature and humidity condition at a room temperature of 23 ° C. and a relative humidity of 55%.
  • Examples 1 to 15 33 and Comparative Examples 1 to 5 were obtained as foamed thermoplastic polyurethane resin elastomer sheets.
  • the melt viscosity and the outflow start temperature (flow start temperature) of the foaming thermoplastic polyurethane resin were measured as follows. (Measurement of melt viscosity and flow start temperature) Using a Koka type flow tester (manufactured by Shimadzu Corporation, model: Shimadzu flow tester CFT-500), the flow start temperature was measured, and the temperature was 20 ° C. lower than the flow start temperature, and the load was 196 N, The melt viscosity was measured at a heating rate of 2.5 ° C./min. The foaming thermoplastic polyurethane resin used for the measurement was dried overnight at 80 ° C. in a nitrogen stream.
  • a tandem extruder equipped with a circular die (lip diameter (diameter): 40 mm, gap between lip and core: 0.46 mm) at the tip of the extruder (second stage) was used.
  • the barrel temperature of the single-screw extruder with a diameter of 30 mm in the first stage is set to a temperature at which the melt viscosity of the thermoplastic polyurethane resin for foaming shows 1000 Pa ⁇ s, and the set temperature of the extruder with a diameter of 40 mm in the second stage is set to foam.
  • the flow start temperature of the thermoplastic polyurethane resin was set.
  • thermoplastic polyurethane resin for foaming which was dried overnight in an oven at 80 ° C. under a nitrogen stream, was sufficiently melted using a single screw extruder (screw rotation speed: 30 rpm) having a diameter of 30 mm in the first stage, and then melted.
  • Supercritical carbon dioxide obtained by increasing the pressure to 30 MPa from a liquefied carbon dioxide cylinder through a pressure increasing device (SCF-Get manufactured by JASCO Corporation) to the foamed thermoplastic polyurethane resin was supplied at a flow rate of 25 g / hour.
  • SCF-Get manufactured by JASCO Corporation
  • the kneaded material was fed into a second stage 40 mm diameter extruder (screw rotation speed: 4 pm) through the connection, and the state of the kneaded material (foam) discharged from the circular die was stabilized.
  • air was sent to the inside of the cylindrical foam and cooled to obtain a cylindrical foam having a thickness of 2 mm.
  • the circumference of this foam was cut and expanded in the discharge direction to obtain sheet-like polyurethane foam molded articles (A) to (O) and (R) to (W) having a thickness of 2 mm.
  • Example 31 (Molding by injection foaming method using supercritical carbon dioxide) A polyurethane foam molded article (P) was molded from the foaming thermoplastic polyurethane resin (B) by an injection foaming method using supercritical carbon dioxide.
  • the barrel temperature is set to a temperature at which the melt viscosity of the foaming thermoplastic polyurethane resin is 1000 Pa ⁇ s.
  • Supercritical carbon dioxide obtained by filling with foaming thermoplastic polyurethane resin (B) dried in an oven at 80 ° C. for 24 hours and increasing the pressure to 30 MPa through a pressure increasing device (SCF-Get manufactured by JASCO Corp.) was sent to the foaming thermoplastic polyurethane resin at a ratio of 0.8% by mass and kneaded.
  • Example 32 (Molding by Bead Foaming Method) A polyurethane foam (Q) was molded from the foaming thermoplastic polyurethane resin (B) by a bead foaming method using supercritical carbon dioxide.
  • a tandem extruder equipped with a single-hole (hole diameter: 1.5 mm) die in the part was used.
  • the barrel temperature of the single-screw extruder with a diameter of 30 mm in the first stage is set to a temperature at which the melt viscosity of the thermoplastic polyurethane resin for foaming shows 1000 Pa ⁇ s, and the set temperature of the extruder with a diameter of 40 mm in the second stage is set to foam.
  • the flow start temperature of the thermoplastic polyurethane resin was set.
  • thermoplastic polyurethane resin (B) After the foaming thermoplastic polyurethane resin (B) dried in an oven at 80 ° C. under a nitrogen stream for a whole day and night is sufficiently melted using a single screw extruder (screw rotation number: 30 rpm) having a diameter of 30 mm in the first stage. Then, supercritical carbon dioxide obtained by increasing the pressure to 30 MPa from a liquefied carbon dioxide cylinder through a pressure increasing device (SCF-Get manufactured by JASCO Corporation) is supplied to the molten thermoplastic polyurethane resin for foaming at a flow rate of 25 g / hour. Then, the mixture was sufficiently kneaded and dissolved to prepare a kneaded product.
  • SCF-Get pressure increasing device
  • the kneaded product is fed through a connection to a second stage 40 mm diameter extruder (screw rotation speed: 4 pm), and the kneaded product (foam strand) discharged from the die is cooled and foamed.
  • the foam was cut into an appropriate size (about 2 mm size) to obtain foam beads.
  • Evaluation 3 Although there are few coarse cells, the cell sizes are not uniform. Evaluation 2: There are many coarse cells, and the cell sizes are not uniform. Evaluation 1: Most of the cells are coarse, and their sizes are not uniform. (Core density (unit: kg / m 3 )) A rectangular parallelepiped having a size of 10 cm ⁇ 10 cm was cut out from the obtained polyurethane foam molded article to prepare a measurement sample.
  • the apparent density of the measurement sample was measured according to JIS K7222 (2005). This was evaluated as the core density (apparent core density) of the polyurethane foam molded article.
  • Hardness (ASKER C) The obtained polyurethane foam-molded articles were stacked to have a thickness of 12 mm, and C hardness was measured in accordance with a hardness test (type C) of JIS K7312 (1996). (Rebound resilience (unit:%)) After cutting out from the obtained polyurethane foam molded article into a rectangular parallelepiped having a size of 10 cm ⁇ 10 cm, the rectangular parallelepiped was stacked so as to have a thickness of 12 mm to obtain a measurement sample.
  • the rebound resilience of the measurement sample was measured according to JIS K6400-3 (2004). (Compression set (unit:%))
  • the obtained polyurethane foam-molded product was cut into a cylindrical shape having a diameter of 29 mm, and then a measurement sample was prepared so as to have a thickness of 12 mm.
  • the compression set of the measurement sample was measured according to JIS K6262 under the conditions of 23 ° C. and 25% compression.
  • Breaking strength unit: MPa
  • a measurement sample was prepared using a JIS-1 dumbbell, and then the breaking strength of the measurement sample was measured according to JIS K6400-5 (2012).
  • Tear strength unit: kN / m
  • a measurement sample was prepared from the obtained polyurethane foam molded article using a JIS-B type dumbbell, and then the tear strength of the measurement sample was measured according to method B of JIS K6400-5 (2012).
  • the measurement sample was irradiated with ultraviolet rays having a short wavelength (wavelength of 270 to 720 nm) for 24 hours using a QUV weathering tester (Suga Test Instruments Co., Ltd., UV fluorescent weather meter FUV) equipped with an ultraviolet fluorescent lamp. .
  • ⁇ b change amount of b value of the polyurethane foamed molded product before and after UV irradiation was measured using a color difference meter (manufactured by Tokyo Denshoku Co., Ltd., Color Ace Model TC-1). Note that ⁇ b is generally used as an index of UV discoloration resistance of a foam molded article.
  • a strip-shaped test piece having a width of 10 mm and a length of 12 cm was punched out from this foam molded product, and a dematcher bending test was repeatedly performed under the conditions of 23 ° C. and a frequency of 5 Hz.
  • This foam-molded product was punched into a circle (thickness 3 mm) with a diameter of 50 mm, and immersed in butyl acetate and methyl ethyl ketone at 23 ° C. for 7 days.
  • Volume change rate ((V1 (volume after immersion) ⁇ V0 (volume before immersion)) )) / V0 ⁇ 100 (%)) were 55% and 70%, respectively.
  • Reference Example 4 Using the foaming thermoplastic polyurethane resin (B), in the same manner as in Example 31, it was molded into a polyurethane foam molded article for automobile interior members having a density of 0.15 g / cm 3 by injection foaming. This foam-molded product is punched into a 50 mm diameter circle (thickness 3 mm) and immersed in oleic acid at 23 ° C. for 7 days, and the volume change rate (((V1 (volume after immersion) ⁇ V0 (volume before immersion)) ) / V0) ⁇ 100 (%)) was 7%.
  • the foaming thermoplastic polyurethane resin, the production method thereof, and the molded product are suitably used in midsoles, shock absorbers, chemical mechanical polishing (CMP) pads, sports equipment, automobile interior members, and the like.
  • CMP chemical mechanical polishing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

発泡用熱可塑性ポリウレタン樹脂は、ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分とポリオール成分との反応生成物であり、ゲルパーミエーションクロマトグラフィーにより測定して得られるクロマトグラムのピークにおいて、重量平均分子量400,000以上の高分子量成分の面積が、ピークの総面積に対して、25%以上60%以下である。

Description

発泡用熱可塑性ポリウレタン樹脂およびその製造方法、ならびに、成形品
 本発明は、発泡用熱可塑性ポリウレタン樹脂、発泡用熱可塑性ポリウレタン樹脂の製造方法、および、発泡用熱可塑性ポリウレタン樹脂を含む成形品に関する。
 熱可塑性ポリウレタン樹脂(TPU)は、一般に、ポリイソシアネート、高分子量ポリオールおよび低分子量ポリオールの反応により得られるゴム弾性体であって、ポリイソシアネートおよび低分子量ポリオールの反応により形成されるハードセグメントと、ポリイソシアネートおよび高分子量ポリオールの反応により形成されるソフトセグメントとを備えている。
 このような熱可塑性ポリウレタン樹脂を発泡剤とともに溶融成形することにより、発泡成形品を得ることが知られている。
 具体的には、例えば、ポリイソシアネートとしての4,4’-ジフェニルメタンジイソシアネート(MDI)、高分子量ポリオールとしてのアジピン酸と1,4-ブタンジオールとからなるポリエステルポリオール、および、低分子量ポリオールとしての1,4-ブタンジオールから熱可塑性ポリウレタン樹脂のペレットを作製し、そのペレットを発泡剤とともに溶融成形することにより発泡成形品を得ることが提案されている(特許文献1参照。)。
米国特許出願公開第2012/0329892号明細書
 しかし、上記特許文献1の熱可塑性ポリウレタン樹脂では、引裂強度などの機械物性が不十分であり、その機械物性のさらなる向上が望まれている。
 そこで、本発明の目的は、優れた機械物性を有する発泡用熱可塑性ポリウレタン樹脂を提供することにある。
 本発明[1]は、ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、ポリオール成分との反応生成物である発泡用熱可塑性ポリウレタン樹脂であって、前記発泡用熱可塑性ポリウレタン樹脂をゲルパーミエーションクロマトグラフィーにより測定して得られるクロマトグラムのピークにおいて、重量平均分子量400,000以上の高分子量成分の面積が、前記ピークの総面積に対して、25%以上60%以下であることを特徴とする、発泡用熱可塑性ポリウレタン樹脂を含んでいる。
 また、本発明[2]は、前記発泡用熱可塑性ポリウレタン樹脂の、示差走査熱量計により測定した凝集温度が、90℃以上180℃以下であることを特徴とする、上記[1]に記載の発泡用熱可塑性ポリウレタン樹脂を含んでいる。
 また、本発明[3]は、前記ビス(イソシアナトメチル)シクロヘキサンが、1,4-ビス(イソシアナトメチル)シクロヘキサンであることを特徴とする、上記[1]または上記[2]に記載の発泡用熱可塑性ポリウレタン樹脂を含んでいる。
 また、本発明[4]は、前記1,4-ビス(イソシアナトメチル)シクロヘキサンが、70モル%以上96モル%以下の割合でトランス体を含有することを特徴とする、上記[3]に記載の発泡用熱可塑性ポリウレタン樹脂を含んでいる。
 また、本発明[5]は、ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、ポリオール成分とを反応させて一次生成物を得る反応工程と、前記一次生成物を、50℃以上100℃以下で、3日以上10日以下、熱処理する熱処理工程とを備えることを特徴とする、発泡用熱可塑性ポリウレタン樹脂の製造方法を含んでいる。
 また、本発明[6]は、上記[1]~[4]のいずれか一項に記載の発泡用熱可塑性ポリウレタン樹脂を含むことを特徴とする、成形品を含んでいる。
 また、本発明[7]は、ミッドソールであることを特徴とする、上記[6]に記載の成形品を含んでいる。
 また、本発明[8]は、ショックアブソーバーであることを特徴とする、上記[7]に記載の成形品を含んでいる。
 また、本発明[9]は、化学機械研磨パッドであることを特徴とする、上記[6]に記載の成形品を含んでいる。
 また、本発明[10]は、自動車内装部材であることを特徴とする、上記[6]に記載の成形品を含んでいる。
 本発明の発泡用熱可塑性ポリウレタン樹脂は、特定範囲の重量平均分子量を有する高分子成分を特定比率で含有する。そのため、発泡時の破泡を低減することができ、均一な微細セルを得ることができる。その結果、優れた機械物性を有する。
 また、本発明の発泡用熱可塑性ポリウレタン樹脂の製造方法によれば、比較的長時間の熱処理工程を含むため、発泡用熱可塑性ポリウレタン樹脂に高分子量成分を特定の割合で含有させることができる。そのため、優れた機械物性を有する発泡用熱可塑性ポリウレタン樹脂を得ることができる。
 また、本発明の成形品は、本発明の発泡用熱可塑性ポリウレタン樹脂から成形されるため、優れた機械物性を有する。
図1は、実施例2および比較例1の発泡用熱可塑性ポリウレタン樹脂を、ゲルパーミエーションクロマトグラフィーにより測定したときのクロマトグラムである。
 本発明の発泡用熱可塑性ポリウレタン樹脂は、ポリイソシアネート成分と、ポリオール成分とを反応させることにより得られる。
 すなわち、本発明の発泡用熱可塑性ポリウレタン樹脂は、ポリイソシアネート成分と、ポリオール成分との反応生成物である。
 本発明において、ポリイソシアネート成分は、ビス(イソシアナトメチル)シクロヘキサンを、必須成分として含んでいる。
 ビス(イソシアナトメチル)シクロヘキサンとしては、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサンが挙げられ、好ましくは、対称構造であり、発泡用熱可塑性ポリウレタン樹脂の剛直性の向上を図る観点から、1,4-ビス(イソシアナトメチル)シクロヘキサンが挙げられる。
 1,4-ビス(イソシアナトメチル)シクロヘキサンには、シス-1,4-ビス(イソシアナトメチル)シクロヘキサン(以下、シス1,4体とする。)、および、トランス-
,4-ビス(イソシアナトメチル)シクロヘキサン(以下、トランス1,4体とする。)の立体異性体があり、本発明では、1,4-ビス(イソシアナトメチル)シクロヘキサンは、トランス1,4体を、例えば、60モル%以上、好ましくは、70モル%以上、より好ましくは、80モル%以上、さらに好ましくは、85モル%以上、例えば、99モル%以下、好ましくは、96モル%以下、より好ましくは、90モル%以下の割合で、含有している。換言すると、1,4-ビス(イソシアナトメチル)シクロヘキサンは、トランス1,4体およびシス1,4体の総量が100モル%であるため、シス1,4体を、例えば、1モル%以上、好ましくは、4モル%以上、より好ましくは、10モル%以上、例えば、40モル%以下、好ましくは、30モル%以下、より好ましくは、20モル%以下、さらに好ましくは、15モル%以下の割合で、含有している。
 トランス1,4体の含有割合が上記下限以上であれば、得られるポリウレタン発泡成形品(後述)の機械物性を向上することができる。また、トランス1,4体の含有割合が上記上限以下であれば、得られるポリウレタン発泡成形品(後述)の硬度や破断強度、引裂強度を向上することができる。
 ビス(イソシアナトメチル)シクロヘキサンは、例えば、市販のビス(アミノメチル)シクロヘキサンや、特開2011-6382号公報に記載の方法により得られたビス(アミノメチル)シクロヘキサンなどから、例えば、特開平7-309827号公報や特開2014-55229号公報に記載される冷熱2段ホスゲン化法(直接法)や造塩法、あるいは、特開2004-244349号公報や特開2003-212835号公報に記載されるノンホスゲン法などにより、製造することができる。
 また、ビス(イソシアナトメチル)シクロヘキサンは、本発明の優れた効果を阻害しない範囲において、変性体として調製することもできる。
 ビス(イソシアナトメチル)シクロヘキサンの変性体としては、例えば、ビス(イソシアナトメチル)シクロヘキサンの多量体(ダイマー(例えば、ウレトジオン変性体など)、トリマー(例えば、イソシアヌレート変性体、イミノオキサジアジンジオン変性体など)など)、ビウレット変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと水との反応により生成するビウレット変性体など)、アロファネート変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと1価アルコールまたは2価アルコールとの反応より生成するアロファネート変性体など)、ポリオール変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと3価アルコールとの反応より生成するポリオール変性体(付加体)など)、オキサジアジントリオン変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと炭酸ガスとの反応により生成するオキサジアジントリオンなど)、カルボジイミド変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンの脱炭酸縮合反応により生成するカルボジイミド変性体など)などが挙げられる。
 また、ポリイソシアネート成分は、本発明の優れた効果を阻害しない範囲で、その他のポリイソシアネート、例えば、脂肪族ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートなどを、任意成分として含有することができる。
 脂肪族ポリイソシアネートとしては、例えば、エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、2,2’-ジメチルペンタンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、デカメチレンジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6,11-ウンデカメチレントリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、1,8-ジイソシアネート-4-イソシアナトメチルオクタン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアナトメチルオクタン、ビス(イソシアナトエチル)カーボネート、ビス(イソシアナトエチル)エーテル、1,4-ブチレングリコールジプロピルエーテル-ω、ω’-ジイソシアネート、リジンイソシアナトメチルエステル、リジントリイソシアネート、2-イソシアナトエチル-2,6-ジイソシアネートヘキサノエート、2-イソシアナトプロピル-2,6-ジイソシアネートヘキサノエート、ビス(4-イソシアネート-n-ブチリデン)ペンタエリスリトール、2,6-ジイソシアネートメチルカプロエートなどが挙げられる。
 また、脂肪族ポリイソシアネートには、脂環族ポリイソシアネート(ビス(イソシアナトメチル)シクロヘキサンを除く。)が含まれる。
 脂環族ポリイソシアネート(ビス(イソシアナトメチル)シクロヘキサンを除く。)としては、例えば、イソホロンジイソシアネート(IPDI)、トランス,トランス-、トランス,シス-、およびシス,シス-ジシクロヘキシルメタンジイソシアネートおよびこれらの混合物(水添MDI)、1,3-または1,4-シクロヘキサンジイソシアネートおよびこれらの混合物、1,3-または1,4-ビス(イソシアナトエチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、2,2’-ジメチルジシクロヘキシルメタンジイソシアネート、ダイマー酸ジイソシアネート、2,5-ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン、その異性体である2,6-ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン(NBDI)、2-イソシアナトメチル2-(3-イソシアナトプロピル)-5-イソシアナトメチルビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル-2-(3-イソシアナトプロピル)-6-イソシアナトメチルビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル3-(3-イソシアナトプロピル)-5-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル3-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル2-(3-イソシアナトプロピル)-5-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル2-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタンなどが挙げられる。
 芳香族ポリイソシアネートとしては、例えば、2,4-トリレンジイソシアネートおよび2,6-トリレンジイソシアネート、ならびに、これらトリレンジイソシアネートの異性体混合物(TDI)、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネートおよび2,2’-ジフェニルメタンジイソシアネート、ならびに、これらジフェニルメタンジイソシアネートの任意の異性体混合物(MDI)、トルイジンジイソシアネート(TODI)、パラフェニレンジイソシアネート、ナフタレンジイソシアネート(NDI)などが挙げられる。
 芳香脂肪族ポリイソシアネートとしては、例えば、1,3-または1,4-キシリレンジイソシアネートもしくはその混合物(XDI)、1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物(TMXDI)などが挙げられる。
 これらその他のポリイソシアネートは、単独使用または2種類以上併用することができる。
 また、その他のポリイソシアネートは、本発明の優れた効果を阻害しない範囲において、変性体として調製することもできる。
 その他のポリイソシアネートの変性体としては、例えば、その他のポリイソシアネートの多量体(ダイマー、トリマーなど)、ビウレット変性体、アロファネート変性体、ポリオール変性体、オキサジアジントリオン変性体、カルボジイミド変性体などが挙げられる。
 その他のポリイソシアネートを含有する場合の含有割合は、ポリイソシアネート成分の総量に対して、例えば、50質量%以下、好ましくは、30質量%以下、より好ましくは、20質量%以下である。
 また、ポリイソシアネート成分は、本発明の優れた効果を阻害しない範囲でモノイソシアネートを、任意成分として含有することができる。
 モノイソシアネートとしては、例えば、メチルイソシアネート、エチルイソシアネート、n-ヘキシルイソシアネート、シクロヘキシルイソシアネート、2-エチルヘキシルイソシアネート、フェニルイソシアネート、ベンジルイソシアネートなどが挙げられる。
 モノイソシアネートを含有する場合の含有割合は、ポリイソシアネート成分の総量に対して、例えば、20質量%以下、好ましくは、10質量%以下である。
 ポリイソシアネート成分として、好ましくは、ビス(イソシアナトメチル)シクロヘキサンを単独で用いる。
 本発明において、ポリオール成分は、分子中に水酸基を2つ以上含有する化合物(以下、水酸基含有化合物と称する。)を含有する分子量60以上5000以下の成分が、通常、用いられる。ポリオール成分として、好ましくは、分子量400以上5000以下の第1ポリオール成分と、分子量60以上400未満の第2ポリオール成分とが併用される。
 なお、ポリオール成分に重合体が含まれる場合には、その重合体の分子量として、数平均分子量が採用される。また、このような場合において、数平均分子量は、GPC法による測定や、重合体を重合する各成分の水酸基価および処方により決定することができる(以下同様)。
 第1ポリオール成分としては、例えば、分子量が上記範囲内であり分子中に水酸基を2つ以上有する化合物であり、好ましくは、数平均分子量が上記範囲内であり分子中に水酸基を2つ以上有する重合体が挙げられる。
 第1ポリオール成分として、具体的には、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、植物油ポリオール、ポリオレフィンポリオール、アクリルポリオールなどが挙げられる。
 ポリエーテルポリオールとしては、例えば、ポリオキシアルキレンポリオール、ポリテトラメチレンエーテルポリオールなどが挙げられる。
 ポリオキシアルキレンポリオールは、例えば、低分子量ポリオールなどや、低分子量ポリアミンなどを開始剤とする、アルキレンオキサイドの付加重合物である。
 低分子量ポリオールとしては、例えば、後述する第2ポリオールなどが挙げられる。
 アルキレンオキサイドとしては、例えば、プロピレンオキサイド、エチレンオキサイド、ブチレンオキサイドなどが挙げられる。また、これらアルキレンオキサイドは、単独使用または2種類以上併用することができる。また、これらのうち、好ましくは、プロピレンオキサイド、エチレンオキサイドが挙げられる。また、ポリオキシアルキレンポリオールとして、例えば、ポリエチレングリコール、ポリプロピレングリコール、プロピレンオキサイドとエチレンオキサイドとのランダムおよび/またはブロック共重合体などが含まれる。
 ポリテトラメチレンエーテルポリオールとしては、例えば、テトラヒドロフランのカチオン重合により得られる開環重合物(ポリテトラメチレンエーテルグリコール)や、テトラヒドロフランなどの重合単位に、アルキル置換テトラヒドロフランや、2価アルコール(後述)を共重合した非晶性(非結晶性)ポリテトラメチレンエーテルグリコールなどが挙げられる。
 なお、非晶性(非結晶性)とは、常温(25℃)において液状であることを示す(以下同様)。
 ポリエステルポリオールとしては、例えば、上記した低分子量ポリオールと多塩基酸とを、公知の条件下、反応させて得られる重縮合物が挙げられる。
 多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタール酸、アジピン酸、1,1-ジメチル-1,3-ジカルボキシプロパン、3-メチル-3-エチルグルタール酸、アゼライン酸、セバシン酸、その他の飽和脂肪族ジカルボン酸(C11~13)、例えば、マレイン酸、フマル酸、イタコン酸、その他の不飽和脂肪族ジカルボン酸、例えば、オルソフタル酸、イソフタル酸、テレフタル酸、トルエンジカルボン酸、ナフタレンジカルボン酸、その他の芳香族ジカルボン酸、例えば、ヘキサヒドロフタル酸、その他の脂環族ジカルボン酸、例えば、ダイマー酸、水添ダイマー酸、ヘット酸などのその他のカルボン酸、および、それらカルボン酸から誘導される酸無水物、例えば、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水2-アルキル(C12~C18)コハク酸、無水テトラヒドロフタル酸、無水トリメリット酸、さらには、これらのカルボン酸などから誘導される酸ハライド、例えば、シュウ酸ジクロライド、アジピン酸ジクロライド、セバシン酸ジクロライドなどが挙げられる。
 また、ポリエステルポリオールとして、例えば、植物由来のポリエステルポリオール、具体的には、上記した低分子量ポリオールを開始剤として、ヒドロキシル基含有植物油脂肪酸(例えば、リシノレイン酸を含有するひまし油脂肪酸、12-ヒドロキシステアリン酸を含有する水添ひまし油脂肪酸など)などのヒドロキシカルボン酸を、公知の条件下、縮合反応させて得られる植物油系ポリエステルポリオールなどが挙げられる。
 また、ポリエステルポリオールとして、例えば、上記した低分子量ポリオール(好ましくは、2価アルコール(後述))を開始剤として、例えば、ε-カプロラクトン、γ-バレロラクトンなどのラクトン類や、例えば、L-ラクチド、D-ラクチドなどのラクチド類などを開環重合して得られる、ポリカプロラクトンポリオール、ポリバレロラクトンポリオール、さらには、それらに2価アルコール(後述)を共重合したものなどのラクトンベースポリエステルポリオールなどが挙げられる。
 ポリカーボネートポリオールとしては、例えば、上記した低分子量ポリオール(好ましくは、2価アルコール(後述))を開始剤とするエチレンカーボネートの開環重合物や、例えば、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオールや1,6-ヘキサンジオールなどの2価アルコール(後述)と、開環重合物とを共重合した非晶性ポリカーボネートポリオールなどが挙げられる。
 植物油ポリオールとしては、例えば、ひまし油、やし油などのヒドロキシル基含有植物油などが挙げられる。例えば、ひまし油ポリオール、または、ひまし油脂肪酸とポリプロピレンポリオールとの反応により得られるエステル変性ひまし油ポリオールなどが挙げられる。
 ポリオレフィンポリオールとしては、例えば、ポリブタジエンポリオール、部分ケン価エチレン-酢酸ビニル共重合体などが挙げられる。
 アクリルポリオールとしては、例えば、ヒドロキシル基含有アクリレートと、ヒドロキシル基含有アクリレートと共重合可能な共重合性ビニルモノマーとを、共重合させることによって得られる共重合体が挙げられる。
 ヒドロキシル基含有アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2,2-ジヒドロキシメチルブチル(メタ)アクリレート、ポリヒドロキシアルキルマレエート、ポリヒドロキシアルキルフマレートなどが挙げられる。好ましくは、2-ヒドロキシエチル(メタ)アクリレートなどが挙げられる。
 共重合性ビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシルアクリレートなどのアルキル(メタ)アクリレート(炭素数1~12)、例えば、スチレン、ビニルトルエン、α-メチルスチレンなどの芳香族ビニル、例えば、(メタ)アクリロニトリルなどのシアン化ビニル、例えば、(メタ)アクリル酸、フマル酸、マレイン酸、イタコン酸などのカルボキシル基を含むビニルモノマー、または、そのアルキルエステル、例えば、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、オリゴエチレングリコールジ(メタ)アクリレートなどのアルカンポリオールポリ(メタ)アクリレート、例えば、3-(2-イソシアネート-2-プロピル)-α-メチルスチレンなどのイソシアネート基を含むビニルモノマーなどが挙げられる。
 そして、アクリルポリオールは、これらヒドロキシル基含有アクリレート、および、共重合性ビニルモノマーを、適当な溶剤および重合開始剤の存在下において共重合させることにより得ることができる。
 また、アクリルポリオールには、例えば、シリコーンポリオールやフッ素ポリオールが含まれる。
 シリコーンポリオールとしては、例えば、上記したアクリルポリオールの共重合において、共重合性ビニルモノマーとして、例えば、γ-メタクリロキシプロピルトリメトキシシランなどのビニル基を含むシリコーン化合物が配合されたアクリルポリオールが挙げられる。
 フッ素ポリオールとしては、例えば、上記したアクリルポリオールの共重合において、共重合性ビニルモノマーとして、例えば、テトラフルオロエチレン、クロロトリフルオロエチレンなどのビニル基を含むフッ素化合物が配合されたアクリルポリオールが挙げられる。
 これら第1ポリオール成分は、単独使用または2種類以上併用することができる。
 第1ポリオール成分として、好ましくは、ポリエーテルポリオール、ポリエステルポリオールが挙げられ、より好ましくは、ポリエチレングリコール、ポリテトラメチレンエーテルグリコール、ポリカプロラクトンポリオールが挙げられ、さらに好ましくは、ポリカプロラクトンポリオールが挙げられる。
 第1ポリオール成分が上記のものであれば、破断強度や、引裂強度などの機械物性に優れたポリウレタン発泡成形品(後述)を得ることができる。
 第1ポリオール成分の数平均分子量は、例えば、400以上、好ましくは、500以上、より好ましくは、1000以上、さらに好ましくは、2000以上であり、例えば、5000以下、好ましくは、4000以下、より好ましくは、3000以下である。
 第1ポリオール成分の分子量が上記範囲内であれば、発泡倍率を増加させた場合でも良好な機械物性を発現させることができる。
 第2ポリオール成分としては、例えば、分子中に水酸基を2つ以上有し、分子量60以上400未満の化合物(単量体)が挙げられる。
 第2ポリオール成分として、具体的には、例えば、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,4-ブチレングリコール(1,4-ブタンジオール、1,4-BD)、1,3-ブチレングリコール、1,2-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2,2-トリメチルペンタンジオール、3,3-ジメチロールヘプタン、アルカン(C7~11)ジオール、シクロヘキサンジメタノール(1,3-または1,4-シクロヘキサンジメタノールおよびそれらの混合物)、シクロヘキサンジオール(1,3-または1,4-シクロヘキサンジオールおよびそれらの混合物)、1,4-ジヒドロキシ-2-ブテン、2,6-ジメチル-1-オクテン-3,8-ジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,2-ベンゼンジオール(別名カテコール)、1,3-ベンゼンジオール、1,4-ベンゼンジオール、ビスフェノールAおよびその水添物などの2価アルコール、例えば、グリセリン、トリメチロールプロパン、トリイソプロパノールアミンなどの3価アルコール、例えば、テトラメチロールメタン(ペンタエリスリトール)、ジグリセリンなどの4価アルコールなどの多価アルコールなどが挙げられる。
 これら第2ポリオール成分は、単独使用または2種類以上併用することができる。
 第2ポリオール成分として、好ましくは、2価アルコール、より好ましくは、1,4-ブタンジオールが挙げられる。
 第2ポリオール成分が上記のものであれば、破断強度などの機械物性に優れたポリウレタン発泡成形品(後述)を得ることができる。
 第2ポリオール成分の数平均分子量は、例えば、60以上、好ましくは、80以上であり、例えば、400未満、好ましくは、300未満である。
 第2ポリオール成分の分子量が上記範囲内であれば、発泡倍率を増加させて、軽量なポリウレタン発泡成形品(後述)を得ることができる。
 ポリオール成分において、第1ポリオール成分および第2ポリオール成分の含有割合は、それら第1ポリオール成分および第2ポリオール成分の総量に対して、第1ポリオール成分が、例えば、5モル%以上、好ましくは、7モル%以上、より好ましくは、10モル%以上、さらに好ましくは、20モル%以上であり、例えば、75モル%以下、好ましくは、65モル%以下、より好ましくは、50モル%以下である。また、第2ポリオール成分が、例えば、25モル%以上、好ましくは、35モル%以上、より好ましくは、50モル%以上であり、例えば、95モル%以下、好ましくは、93モル%以下、より好ましくは、90モル%以下、さらに好ましくは、80モル%以下である。
 第1ポリオール成分および第2ポリオール成分の含有割合が上記範囲内であれば、得られるポリウレタン発泡成形品(後述)の機械物性を向上することができる。
 そして、本発明の発泡用熱可塑性ポリウレタン樹脂は、反応工程と熱処理工程とを備える製造方法により得ることができる。
 反応工程は、上記のポリイソシアネート成分と、上記のポリオール成分とを反応させて一次生成物(熱処理前の反応生成物)を得る工程である。
 上記各成分(ポリイソシアネート成分、ポリオール成分)を反応させるには、例えば、ワンショット法やプレポリマー法などの公知の方法が採用される。好ましくは、プレポリマー法が採用される。
 プレポリマー法により上記各成分を反応させれば、優れた機械物性を有するポリウレタン発泡成形品(後述)を得ることができる。
 具体的には、プレポリマー法では、まず、ポリイソシアネート成分と第1ポリオール成分とを反応させて、イソシアネート基末端ポリウレタンプレポリマーを合成する(プレポリマー合成工程)。
 プレポリマー合成工程では、ポリイソシアネート成分と、第1ポリオール成分とを、例えば、バルク重合や溶液重合などの重合方法により反応させる。
 バルク重合では、例えば、窒素気流下において、ポリイソシアネート成分および第1ポリオール成分を、反応温度が、例えば、50℃以上、例えば、250℃以下、好ましくは、200℃以下で、例えば、0.5時間以上、例えば、15時間以下反応させる。
 溶液重合では、有機溶剤に、ポリイソシアネート成分および第1ポリオール成分を加えて、反応温度が、例えば、50℃以上、例えば、120℃以下、好ましくは、100℃以下で、例えば、0.5時間以上、例えば、15時間以下反応させる。
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、例えば、アセトニトリルなどのニトリル類、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのアルキルエステル類、例えば、n-ヘキサン、n-ヘプタン、オクタンなどの脂肪族炭化水素類、例えば、シクロヘキサン、メチルシクロヘキサンなどの脂環族炭化水素類、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、メチルカルビトールアセテート、エチルカルビトールアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネートなどのグリコールエーテルエステル類、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、例えば、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、臭化メチル、ヨウ化メチレン、ジクロロエタンなどのハロゲン化脂肪族炭化水素類、例えば、N-メチルピロリドン、ジメチルホルムアミド、N,N’-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミドなどの極性非プロトン類などが挙げられる。
 さらに、上記重合反応においては、必要に応じて、例えば、アミン類や有機金属化合物などの公知のウレタン化触媒を添加することができる。
 アミン類としては、例えば、トリエチルアミン、トリエチレンジアミン、ビス-(2-ジメチルアミノエチル)エーテル、N-メチルモルホリンなどの3級アミン類、例えば、テトラエチルヒドロキシルアンモニウムなどの4級アンモニウム塩、例えば、イミダゾール、2-エチル-4-メチルイミダゾールなどのイミダゾール類などが挙げられる。
 有機金属化合物としては、例えば、酢酸錫、オクチル酸錫(オクチル酸スズ)、オレイン酸錫、ラウリル酸錫、ジブチル錫ジアセテート、ジメチル錫ジラウレート、ジブチル錫ジラウレート、ジブチル錫ジメルカプチド、ジブチル錫マレエート、ジブチル錫ジラウレート、ジブチル錫ジネオデカノエート、ジオクチル錫ジメルカプチド、ジオクチル錫ジラウリレート、ジブチル錫ジクロリドなどの有機錫化合物、例えば、オクタン酸鉛、ナフテン酸鉛などの有機鉛化合物、例えば、ナフテン酸ニッケルなどの有機ニッケル化合物、例えば、ナフテン酸コバルトなどの有機コバルト化合物、例えば、オクテン酸銅などの有機銅化合物、例えば、オクタン酸ビスマス(オクチル酸ビスマス)、ネオデカン酸ビスマスなどの有機ビスマス化合物などが挙げられ、好ましくは、オクチル酸スズ、オクチル酸ビスマスが挙げられる。
 さらに、ウレタン化触媒として、例えば、炭酸カリウム、酢酸カリウム、オクチル酸カリウムなどのカリウム塩が挙げられる。
 これらウレタン化触媒は、単独使用または2種類以上併用することができる。
 ウレタン化触媒の添加割合は、ポリイソシアネート成分および第1ポリオール成分の総量10000質量部に対して、例えば、0.001質量部以上、好ましくは、0.01質量部以上であり、例えば、1質量部以下、好ましくは、0.5質量部以下である。
 また、上記重合反応においては、未反応のポリイソシアネート成分や、触媒や有機溶剤を用いた場合には触媒や有機溶剤を、例えば、蒸留や抽出などの公知の除去手段により除去することができる。
 プレポリマー合成工程において、各成分の配合割合は、第1ポリオール成分中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比(イソシアネート基/水酸基)が、例えば、2.0以上、好ましくは、2.5以上であり、例えば、20以下、好ましくは、15以下、より好ましくは、10以下、さらに好ましくは、6.0以下である。
 より具体的には、プレポリマー合成工程における各成分の配合割合は、第1ポリオール成分100質量部に対して、ポリイソシアネート成分が、例えば、5質量部以上、好ましくは、10質量部以上、より好ましくは、15質量部以上であり、例えば、100質量部以下、好ましくは、70質量部以下、より好ましくは、50質量部以下、さらに好ましくは、30質量部以下である。
 そして、この方法では、イソシアネート基含有率が、例えば、1.0質量%以上、好ましくは、3.0質量%以上、より好ましくは、4.0質量%以上、例えば、30.0質量%以下、好ましくは、19.0質量%以下、より好ましくは、16.0質量%以下、さらに好ましくは、12.0質量%以下、さらに好ましくは、10.0質量%以下、特に好ましくは、5.0質量%以下に達するまで上記成分を反応させる。これにより、イソシアネート基末端ポリウレタンプレポリマーを得ることができる。
 なお、イソシアネート基含有量(イソシアネート基含有率)は、ジ-n-ブチルアミンによる滴定法や、FT-IR分析などの公知の方法によって求めることができる。
 次いで、この方法では、上記により得られたイソシアネート基末端ポリウレタンプレポリマーと、第2ポリオール成分とを反応させて、ポリイソシアネート成分と、ポリオール成分との一次生成物を得る(鎖伸長工程)。
 すなわち、この方法において、第2ポリオール成分は、鎖伸長剤である。
 そして、鎖伸長工程では、イソシアネート基末端ポリウレタンプレポリマーと、第2ポリオール成分とを、例えば、上記したバルク重合や上記した溶液重合などの重合方法により反応させる。
 反応温度は、例えば、室温以上、好ましくは、50℃以上、例えば、200℃以下、好ましくは、150℃以下であり、反応時間が、例えば、5分以上、好ましくは、1時間以上、例えば、72時間以下、好ましくは、48時間以下である。
 また、各成分の配合割合は、第2ポリオール成分中の水酸基に対する、イソシアネート基末端ポリウレタンプレポリマー中のイソシアネート基の当量比(イソシアネート基/水酸基)が、例えば、0.75以上、好ましくは、0.9以上、例えば、1.3以下、好ましくは、1.1以下である。
 より具体的には、鎖伸長工程における各成分の配合割合は、イソシアネート基末端ポリウレタンプレポリマー100質量部に対して、第2ポリオール成分が、例えば、1.0質量部以上、好ましくは、2.0質量部以上、より好ましくは、3.0質量部以上であり、例えば、30質量部以下、好ましくは、20質量部以下、より好ましくは、15質量部以下、さらに好ましくは、10質量部以下、特に好ましくは、6.0質量部以下である。
 また、鎖伸長工程において、得られる発泡用熱可塑性ポリウレタン樹脂のハードセグメント濃度(後述)を調整するために、第2ポリオール成分の他に、第1ポリオール成分を配合することもできる。
 鎖伸長工程において、第1ポリオール成分を配合する場合における、第1ポリオール成分の配合割合は、イソシアネート基末端ポリウレタンプレポリマー100質量部に対して、第1ポリオール成分が、例えば、5質量部以上、好ましくは、10質量部以上、より好ましくは、50質量部以上であり、例えば、120質量部以下、好ましくは、100質量部以下であり、また、第2ポリオール成分1質量部に対して、例えば、10質量部以上、好ましくは、20質量部以上であり、例えば、100質量部以下、好ましくは、50質量部以下、より好ましくは、30質量部以下である。
 さらに、この反応においては、必要に応じて、上記したウレタン化触媒を添加することができる。ウレタン化触媒は、イソシアネート基末端ポリウレタンプレポリマーおよび/または第2ポリオール成分に配合することができ、また、それらの混合時に別途配合することもできる。
 また、上記の一次生成物を得る方法として、ワンショット法を採用する場合には、ポリイソシアネート成分と、ポリオール成分(第1ポリオール成分および第2ポリオール成分を含む)とを、ポリオール成分中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比(イソシアネート基/水酸基)が、例えば、0.9以上、好ましくは、0.95以上、より好ましくは、0.98以上、例えば、1.2以下、好ましくは、1.1以下、より好ましくは、1.08以下となる割合で、同時に配合して攪拌混合する。
 また、この攪拌混合は、例えば、不活性ガス(例えば、窒素)雰囲気下、反応温度が、例えば、40℃以上、好ましくは、100℃以上、例えば、280℃以下、好ましくは、260℃以下で、反応時間が、例えば、30秒以上1時間以下で実施する。
 攪拌混合の方法としては、特に制限されないが、例えば、ディスパー、ディゾルバー、タービン翼を備えた混合槽、循環式の低圧または高圧衝突混合装置、高速攪拌ミキサー、スタティックミキサー、ニーダー、単軸または二軸回転式の押出機、ベルトコンベアー式など、公知の混合装置を用いて攪拌混合する方法が挙げられる。
 また、攪拌混合時には、必要により、上記したウレタン化触媒や有機溶剤を、適宜の割合で添加することができる。
 熱処理工程は、上記の一次生成物を熱処理して二次生成物(熱処理後の反応生成物、すなわち、反応生成物である発泡用熱可塑性ポリウレタン樹脂)を得る工程である。
 熱処理工程では、上記の反応工程で得られた一次生成物を、所定の熱処理温度で、所定の熱処理期間静置することにより熱処理した後、50℃以上100℃以下の温度で6時間以上3日間以下乾燥させる。
 熱処理温度としては、50℃以上、好ましくは、60℃以上、より好ましくは、70℃以上であり、100℃以下、好ましくは、90℃以下である。
 熱処理温度が上記下限以上であれば、効率よく高分子量成分を所定割合含ませることができ、また、熱処理温度が上記上限以下であれば、得られるポリウレタン発泡成形品(後述)の耐紫外線(UV)変色性を向上させることができる。
 熱処理期間としては、3日以上、好ましくは、4日以上、より好ましくは、5日以上、さらに好ましくは、6日以上であり、10日以下、好ましくは、9日以下、より好ましくは、8日以下である。
 熱処理期間が上記下限以上であれば、得られる発泡用熱可塑性ポリウレタン樹脂に高分子量成分を所定量以上含ませることができるため、得られるポリウレタン発泡成形品(後述)の機械物性を向上させることができ、また、熱処理期間が上記上限以下であれば、得られる発泡用熱可塑性ポリウレタン樹脂への高分子量成分の含有量を所定量以下に抑制することができるため、得られるポリウレタン発泡成形品(後述)の機械物性および耐紫外線(UV)変色性を向上させることができる。
 これにより、発泡用熱可塑性ポリウレタン樹脂を得ることができる。
 なお、発泡用熱可塑性ポリウレタン樹脂には、必要に応じて、公知の添加剤、例えば、酸化防止剤、耐熱安定剤、紫外線吸収剤、耐光安定剤、さらには、可塑剤、ブロッキング防止剤、離型剤、顔料、染料、滑剤、フィラー、加水分解防止剤、防錆剤、充填剤、ブルーイング剤などを添加することができる。これら添加剤は、各成分の混合時、合成時または合成後に添加することができる。
 耐熱安定剤としては、特に制限されず、公知の耐熱安定剤(例えば、BASFジャパン製カタログに記載)が挙げられ、より具体的には、例えば、リン系加工熱安定剤、ラクトン系加工熱安定剤、イオウ系加工熱安定剤などが挙げられる。
 紫外線吸収剤としては、特に制限されず、公知の紫外線吸収剤(例えば、BASFジャパン製カタログに記載)が挙げられ、より具体的には、例えば、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤などが挙げられる。
 耐光安定剤としては、特に制限されず、公知の耐光安定剤(例えば、ADEKA製カタログに記載)が挙げられ、より具体的には、例えば、ベンゾエート系光安定剤、ヒンダードアミン系光安定剤などが挙げられる。
 これら添加剤は、それぞれ発泡用熱可塑性ポリウレタン樹脂に対して、例えば、0.01質量%以上、好ましくは、0.1質量%以上、例えば、3.0質量%以下、好ましくは、2.0質量%以下となる割合で、添加される。
 そして、このような製造方法により得られる本発明の発泡用熱可塑性ポリウレタン樹脂は、高分子量成分(重量平均分子量が、400,000以上、好ましくは、500,000以上の成分)を特定割合で含有する。そのため、得られるポリウレタン発泡成形品(後述)の機械物性を向上することができる。
 具体的には、発泡用熱可塑性ポリウレタン樹脂の高分子量成分の含有割合は、発泡用熱可塑性ポリウレタン樹脂をゲルパーミエーションクロマトグラフィーにより測定して得られるクロマトグラムのピークにおいて、そのピークの総面積に対する、重量平均分子量400,000以上の高分子量成分の面積に相当し、25%以上、好ましくは、30%以上、より好ましくは、36%以上、さらに好ましくは、40%以上、特に好ましくは、44%以上であり、60%以下、好ましくは、55%以下、より好ましくは、50%以下、さらに好ましくは、46%以下、特に好ましくは、45%以下である。なお、クロマトグラムのピークは、発泡用熱可塑性ポリウレタン樹脂に由来する分子量分布曲線であり、溶媒などの不純物によるピークは除かれる。
 なお、発泡用熱可塑性ポリウレタン樹脂の高分子量成分の含有割合は、本発明では、特定の条件下(後述する実施例を参照。)における、示差屈折計を装備したゲルパーミエーションクロマトグラフィーにより測定(GPC測定)することができる。
 具体的には、本発明では、得られた発泡用熱可塑性ポリウレタン樹脂を、例えば、N-メチルピロリドンに浸漬し、例えば、80℃以上120℃以下(好ましくは、100℃程度)において、例えば、2時間以上8時間以下の時間攪拌して溶解させ、得られた溶液を室温(25℃)まで冷却後に濾過し、試料溶液を調製する。そして、その試料溶液は示差屈折計を装備したゲルパーミエーションクロマトグラフィーを用いて、後述する実施例の条件に従って、GPC測定される。
 発泡用熱可塑性ポリウレタン樹脂の高分子量成分が上記下限以上であれば、伸長粘度を上昇でき、発泡時の破泡を低減することができるため、微細セルの均一性を保持することができ、その結果、得られるポリウレタン発泡成形品(後述)の機械物性を向上させることができる。
 また、発泡用熱可塑性ポリウレタン樹脂の高分子量成分が上記上限以下であれば、伸長粘度が高くなりすぎるのを抑制できるため、発泡を制御しやすくなり、その結果、得られるポリウレタン発泡成形品(後述)の熱およびせん断による劣化を抑制でき、また、耐紫外線(UV)変色性を向上させることができる。
 また、発泡用熱可塑性ポリウレタン樹脂のハードセグメント濃度は、例えば、3質量%以上、好ましくは、5質量%以上、より好ましくは、8質量%以上であり、例えば、55質量%以下、好ましくは、50質量%以下、より好ましくは、45質量%以下、さらに好ましくは、35質量%以下、特に好ましくは、20質量%以下である。
 発泡用熱可塑性ポリウレタン樹脂のハードセグメント濃度が上記範囲内であれば、得られるポリウレタン発泡成形品(後述)を構成するセルの均一性を向上させることができる。
 なお、発泡用熱可塑性ポリウレタン樹脂のハードセグメント(ポリイソシアネート成分と第2ポリオール成分との反応により形成されるハードセグメント)濃度は、例えば、各成分の配合割合(仕込)から算出することができる(後述する実施例を参照。)。
 また、発泡用熱可塑性ポリウレタン樹脂の凝集温度は、発泡用熱可塑性ポリウレタン樹脂中のハードセグメント相の凝集温度に相当し、例えば、75℃以上、好ましくは、90℃以上、より好ましくは、100℃以上、さらに好ましくは、110℃以上、特に好ましくは、130℃以上であり、例えば、200℃以下、好ましくは、180℃以下、より好ましくは、170℃以下、さらに好ましくは、150℃以下、特に好ましくは、140℃以下である。
 発泡用熱可塑性ポリウレタン樹脂の凝集温度が上記下限以上であれば、得られるポリウレタン発泡成形品(後述)の破断強度や引裂強度を向上させることができ、また、発泡用熱可塑性ポリウレタン樹脂の凝集温度が上記上限以下であれば、得られるポリウレタン発泡成形品(後述)の反発弾性の向上や圧縮永久歪の抑制を図ることができる。
 なお、発泡用熱可塑性ポリウレタン樹脂の凝集温度は、例えば、実施例の条件に準拠した示差走査熱量測定(DSC測定)により測定することができる。
 また、発泡用熱可塑性ポリウレタン樹脂の硬度(ASKER A(JIS K7311(1995)に準拠)、ASKER D(JIS K7311(1995)に準拠))は、例えば、50A以上、好ましくは、70A以上、より好ましくは、72A以上、さらに好ましくは、75A以上、特に好ましくは、78A以上であり、例えば、60D以下、好ましくは、55D以下、より好ましくは、50D以下、さらに好ましくは、95A以下、特に好ましくは、90A以下、とりわけ好ましくは、85A以下である。
 そして、本発明は、上記した本発明の発泡用熱可塑性ポリウレタン樹脂を含む成形品、具体的には、発泡成形品を含んでいる。発泡成形品は、発泡用熱可塑性ポリウレタン樹脂から成形される。
 発泡成形品は、例えば、上記の発泡用熱可塑性ポリウレタン樹脂を、押出発泡法、射出発泡法、ビーズ発泡法などの公知の発泡成形方法により成形することにより得ることができる。
 具体的には、押出発泡法では、例えば、上記の発泡用熱可塑性ポリウレタン樹脂を溶融し、公知の発泡剤(例えば、超臨界二酸化炭素ガス)を混錬した後、押し出すことにより、ポリウレタン発泡成形品を得ることができる。
 また、射出発泡法では、例えば、上記の発泡用熱可塑性ポリウレタン樹脂を溶融し、公知の発泡剤(例えば、超臨界二酸化炭素ガス)を混錬した後、射出して金型で成形することにより、ポリウレタン発泡成形品を得ることができる。
 また、ビーズ発泡法では、例えば、上記の発泡用熱可塑性ポリウレタン樹脂を溶融し、公知の発泡剤(例えば、超臨界二酸化炭素ガス)を混錬した後、吐出された発泡体ストランドを適当な大きさにカットすることにより発泡ビーズを得て、その発泡ビーズを金型により溶融成形することにより、ポリウレタン発泡成形品を得ることができる。
 得られる発泡成形品中のセルの均一性(後述する実施例に準拠)は、例えば、4以上、好ましくは、4を超過し、例えば、5以下である。
 また、発泡成形品のコア密度(後述する実施例に準拠)は、例えば、0.01g/cm以上、好ましくは、0.05g/cm以上、より好ましくは、0.10g/cm以上、さらに好ましくは、0.20g/cm以上であり、例えば、0.5g/cm以下、好ましくは、0.4g/cm以下、より好ましくは、0.30g/cm以下である。
 また、発泡成形品の硬度(後述する実施例に準拠、JIS K7312(1996年)に準拠)は、例えば、1C以上、好ましくは、10C以上、より好ましくは、30C以上、さらに好ましくは、35C以上であり、例えば、80C以下、好ましくは、70C以下、より好ましくは、50C以下、さらに好ましくは、45C以下、特に好ましくは、42C以下である。
 また、発泡成形品の反発弾性(後述する実施例に準拠)は、例えば、5%以上、好ましくは、30%以上、より好ましくは、40%以上、さらに好ましくは、50%以上、特に好ましくは、70%以上、とりわけ好ましくは、73%以上であり、例えば、85%以下、好ましくは、83%以下である。
 また、発泡成形品の圧縮永久歪(後述する実施例に準拠)は、例えば、0.1%以上、好ましくは、1%以上であり、例えば、40%以下、好ましくは、25%以下、より好ましくは、20%以下、さらに好ましくは、13%以下、さらに好ましくは、11%以下、さらに好ましくは、10%以下、特に好ましくは、9%以下である。
 また、発泡成形品の破断強度(後述する実施例に準拠)は、例えば、1.0MPa以上、好ましくは、1.5MPa以上、より好ましくは、1.8MPa以上、さらに好ましくは、2.1MPa以上、特に好ましくは、2.4MPa以上であり、例えば、5.0MPa以下、好ましくは、4.5MPa以下である。
 また、発泡成形品の引裂強度(後述する実施例に準拠)は、例えば、2kN/m以上、好ましくは、3kN/m以上、より好ましくは、4kN/m以上、さらに好ましくは、6kN/m以上、さらに好ましくは、7kN/m以上、特に好ましくは、10kN/m以上であり、例えば、30kN/m以下、好ましくは、20kN/m以下である。
 また、発泡成形品の耐紫外線(UV)変色性(後述する実施例に準拠)は、例えば、0.1以上、好ましくは、0.3以上であり、例えば、5以下、好ましくは、3.5以下、より好ましくは、2.5以下、さらに好ましくは、2.3以下、さらに好ましくは、2.0以下、特に好ましくは、1.9以下である。
 そして、本発明の成形品は、本発明の発泡用熱可塑性ポリウレタン樹脂から成形されているため、得られた成形品は、ポリウレタン発泡成形品であり、機械物性に優れる。
 そのため、本発明の成形品は、マットレスやソファーなどの家具用品、ブラジャーや肩パッドなどの衣料用品、紙おむつ、ナプキン、メディカルテープの緩衝材などの医療用品、化粧品、洗顔パフや枕などのサニタリー用品、靴底(アウトソール、インナーソール)、ミッドソールなどの靴用品、医療用途などの各種用途におけるフットウェア製品(サンダルなど)、さらには、車両用のパッドやクッションなどの体圧分散用品、ドアトリム、インスツルメントパネル、ギアノブなどの手で触れる部材、電気冷蔵庫や建築物の断熱材、ショックアブソーバーなどの衝撃吸収材、充填材、車両のハンドル、自動車内装部材、自動車外装部材などの車両用品、化学機械研磨(CMP)パッドなどの半導体製造用品、バット、グリップの芯材などのスポーツ用品、ポールなどの幅広い分野において用いることができる。
 とりわけ、本発明の成形品は、高い機械物性が要求される、ミッドソール、ショックアブソーバー、化学機械研磨(CMP)パッド、スポーツ用品、自動車内装部材などとして、好適に用いられる。
 次に、本発明を、製造例、合成例、実施例および比較例に基づいて説明するが、本発明は、これらによって限定されるものではない。なお、「部」および「%」は、特に言及がない限り、質量基準である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
<ビス(イソシアナトメチル)シクロヘキサンの製造>
  製造例1(1,4-ビス(イソシアナトメチル)シクロヘキサン(1)(以下、1,4-BIC(1)とする。)の製造)
 特開2014-55229号公報の製造例6の記載に準拠して、純度99.5%以上のトランス体/シス体比98/2の1,4-ビス(アミノメチル)シクロヘキサンを92%の収率で得た。
 その後、特開2014-55229号公報の製造例1の記載に準拠して、この1,4-ビス(アミノメチル)シクロヘキサンを原料として、冷熱2段ホスゲン化法を加圧下で実施して、1,4-BIC(1)を382質量部得た。
 得られた1,4-BIC(1)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス体/シス体比は98/2であった。加水分解性塩素濃度(以下、HC濃度とする。)は18ppmであった。
  製造例2(1,4-ビス(イソシアナトメチル)シクロヘキサン(2)(以下、1,4-BIC(2)とする。)の製造)
 13C-NMR測定によるトランス体/シス体比が93/7の1,4-ビス(アミノメチル)シクロヘキサン(三菱瓦斯化学社製)を原料として、特開2014-55229号公報の製造例1の記載に準拠して、385質量部の1,4-BIC(2)を得た。
 得られた1,4-BIC(2)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス体/シス体比は93/7であった。HC濃度は19ppmであった。
  製造例3(1,4-ビス(イソシアナトメチル)シクロヘキサン(3)(以下、1,4-BIC(3)とする。)の製造)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例1で得られた1,4-BIC(1)を200質量部、製造例2で得られた1,4-BIC(2)を800質量部装入し、窒素雰囲気下、室温にて1時間攪拌して、1000質量部の1,4-BIC(3)を得た。
 得られた1,4-BIC(3)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス体/シス体比は94/6であった。HC濃度は19ppmであった。
  製造例4(1,4-ビス(イソシアナトメチル)シクロヘキサン(4)(以下、1,4-BIC(4)とする。)の製造)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例2で得られた1,4-BIC(2)を865質量部、後述の製造例7で得られた1,4-BIC(7)を135質量部装入し、窒素雰囲気下、室温にて1時間攪拌して、1000質量部の1,4-BIC(4)を得た。
 得られた1,4-BIC(4)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス体/シス体比は86/14であった。HC濃度は19ppmであった。
  製造例5(1,4-ビス(イソシアナトメチル)シクロヘキサン(5)(以下、1,4-BIC(5)とする。)の製造)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例2で得られた1,4-BIC(2)を615質量部、後述の製造例7で得られた1,4-BIC(7)を385質量部装入し、窒素雰囲気下、室温にて1時間攪拌して、1000質量部の1,4-BIC(5)を得た。
 得られた1,4-BIC(5)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス体/シス体比は73/27であった。HC濃度は21ppmであった。
  製造例6(1,4-ビス(イソシアナトメチル)シクロヘキサン(6)(以下、1,4-BIC(6)とする。)の製造)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例2で得られた1,4-BIC(2)を462質量部、後述の製造例7で得られた1,4-BIC(7)を538質量部装入し、窒素雰囲気下、室温にて1時間攪拌して、1000質量部の1,4-BIC(6)を得た。
 得られた1,4-BIC(6)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス体/シス体比は65/35であった。HC濃度は20ppmであった。
  製造例7(1,4-ビス(イソシアナトメチル)シクロヘキサン(7)(以下、1,4-BIC(7)とする。)の製造)
 13C-NMR測定によるトランス体/シス体比が41/59の1,4-ビス(アミノメチル)シクロヘキサン(東京化成工業社製)を原料として、特開2014-55229号公報の製造例1の記載に準拠して、388質量部の1,4-BIC(7)を得た。
 得られた1,4-BIC(7)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス体/シス体比は41/59であった。HC濃度は22ppmであった。
<イソシアネート基末端ポリウレタンプレポリマーの合成>
  合成例1~13
 表1に記載した種類および質量割合でポリイソシアネート成分および第1ポリオール成分を、攪拌機、温度計、還流管および窒素導入管を備えた4つ口フラスコに仕込み、窒素雰囲気下、80℃にて1時間攪拌した。その後、合成例1、2、4~11および13(イソシアネート基末端ポリウレタンプレポリマー(以下、プレポリマーとする。)(a)、(b)、(d)~(k)および(m))においては、予めジイソノニルアジペート(ジェイ・プラス社製)により4質量%に希釈したオクチル酸スズ(商品名:スタノクト、エーピーアイコーポレーション社製)を、合成例3(プレポリマー(c))においては、予めジイソノニルアジペート(ジェイ・プラス社製、DINA)により4質量%に希釈したオクチル酸ビスマス(商品名:ネオスタンU-600、日東化成社製)を、ポリイソシアネート成分および第1ポリオール成分の総量に対して、触媒量として10ppm(ポリイソシアネート成分および第1ポリオール成分の総量10000質量部に対して、0.10質量部)添加し、合成例12(プレポリマー(l))においては、触媒を添加せずに、80℃の温調下、窒素気流下で攪拌混合しながら、プレポリマー(a)~(l)を得た。
 また、プレポリマー(a)~(l)それぞれのイソシアネート基濃度を、80℃に温調して測定した。その結果を表1に示す。
 なお、イソシアネート基含有量は、JIS K7301に記載のイソシアネート基含有率試験に準拠して、ジ-n-ブチルアミンによる滴定法により求めた。
Figure JPOXMLDOC01-appb-T000001
<表1中の略号の説明>
1,4-BIC:各製造例で製造した1,4-ビス(イソシアナトメチル)シクロヘキサン
1,3-BIC:1,3-ビス(イソシアナトメチル)シクロヘキサン(商品名:タケネート600、三井化学社製)
MDI:ジフェニルメタンジイソシアネート(商品名:コスモネートPH、三井化学SKCポリウレタン社製)
PLACCEL 230N:ポリカプロラクトンジオール(商品名:PLACCEL 230N、水酸基価:37.4mgKOH/g、数平均分子量:3000、ダイセル社製)
PTG3000SN:ポリテトラメチレンエーテルグリコール(商品名:PTG-3000SN、水酸基価:37.5mgKOH/g、数平均分子量:3000、保土ヶ谷化学工業社製)
PEG#4000:ポリエチレングリコール(商品名:PEG#4000、水酸基価:36.9mgKOH/g、数平均分子量:3000、日油社製)
<発泡用熱可塑性ポリウレタン樹脂の製造>
  実施例1~15、33および比較例1~5
 第2ポリオール成分(第1ポリオール成分を配合する場合は、第1ポリオール成分および第2ポリオール成分)中のヒドロキシ基(OH基)に対するプレポリマー中のイソシアネート基(NCO基)の割合(NCO基/OH基、NCOインデックス)が、実施例1~3、5~15、33および比較例1~5(発泡用熱可塑性ポリウレタン樹脂(A)~(C)および(E)~(W))においては、1.01となるように、実施例4(発泡用熱可塑性ポリウレタン樹脂(D))においては、1.03となるように、第2ポリオール成分(第1ポリオール成分を配合する場合は、第1ポリオール成分および第2ポリオール成分)をステンレスカップに計量し、80℃に温調した。プレポリマーおよび第2ポリオール成分(第1ポリオール成分を配合する場合は、第1ポリオール成分および第2ポリオール成分)の総量に対して、イルガノックス245(BASF社製、耐熱安定剤)0.3質量%、チヌビン234(BASF社製、紫外線吸収剤)0.25質量%およびアデカスタブLA-72(ADEKA社製、耐光安定剤(HALS))0.15質量%を、ステンレス容器中で80℃に温調したプレポリマー中に添加し、高速ディスパーを使用して、500~1500rpmの攪拌下、約3分間攪拌混合した。次いで、80℃に温調していた、第2ポリオール成分(第1ポリオール成分を配合する場合は、第1ポリオール成分および第2ポリオール成分)を配合し、高速ディスパーを使用して、500~1500rpmの攪拌下、約10分間攪拌混合した。
 次いで、予め120℃に温調したテフロン製バットに反応混合液を流し込み、120℃にて24時間反応させ、一次生成物(A)~(O)および(R)~(W)を得た。
 その後、一次生成物(A)~(O)および(R)~(W)を、それぞれ、テフロン製バットから取り外し、ベールカッターによりサイコロ状に切断し、粉砕機にて粉砕ペレットに粉砕した。この粉砕ペレットを、表2~6に記載した熱処理温度で熱処理期間静置した後、窒素気流下、80℃にて一昼夜乾燥した。その後、単軸押出機(型式:SZW40-28MG、テクノベル社製)によりシリンダー温度150~270℃の範囲でストランドを押出し、それをカットすることによって、発泡用熱可塑性ポリウレタン樹脂(A)~(O)および(R)~(W)のペレットを得た。得られたペレットをさらに窒素気流下、80℃にて一昼夜乾燥した。
 なお、実施例1~15、33および比較例1~5における、プレポリマーおよび第2ポリオール成分(第1ポリオール成分を配合する場合は、第1ポリオール成分および第2ポリオール成分)の種類および質量割合、熱処理温度および熱処理期間を表2~6に示す。
<発泡用熱可塑性ポリウレタン樹脂の評価>
 得られた発泡用熱可塑性ポリウレタン樹脂(A)~(O)および(R)~(W)について、以下の評価方法により評価した。なお、その結果を表2~表6に示す。
(ゲルパーミエーションクロマトグラフィー(GPC)による発泡用熱可塑性ポリウレタン樹脂の重量平均分子量測定)
 発泡用熱可塑性ポリウレタン50mg(サンプル)を、三角フラスコ中で10mLのN-メチルピロリドン中に浸漬し、100℃に温調し、サンプルが溶解するまでスターラーを用いて攪拌した。その後、この溶液を室温まで冷却した後、0.45μmの濾過フィルターを用いて濾過後、濾液を下記の分析条件でGPC測定した。そして、測定されたクロマトグラムから、クロマトグラムにおけるピークにおいて、ピークの総面積に対する、重量平均分子量が400,000以上となる高分子量成分に相当する面積の割合を算出した。なお、実施例2および比較例1のGPC測定より得られたクロマトグラムを図1に示す。
装置:東ソー HLC-8220GPC
カラム:Shodex KF-805L×2本 + KF-G4A(ガードカラム)
カラム温度:40℃
溶離液:N-メチルピロリドン(臭化リチウム50mM含有)
流量:0.7mL/min
試料濃度:0.5wt%
注入量:100μl
検出器:RI検出器(示差屈折計)
分子量マーカー:ポリスチレン(TSKゲル標準ポリスチレン)
(発泡用熱可塑性ポリウレタン樹脂のハードセグメント濃度)
 ハードセグメント(ポリイソシアネート成分と第2ポリオール成分との反応により形成されるハードセグメント)濃度は、各成分の配合割合(仕込)から下記式により算出した。
式:[第2ポリオール成分の質量(g)+(第2ポリオール成分の質量(g)/第2ポリオール成分の平均分子量(g/mol))×ポリイソシアネート成分の平均分子量(g/mol)]÷(第1ポリオール成分の質量(g)+ポリイソシアネート成分(g)+第2ポリオール成分の質量(g))×100
(示差走査熱計(DSC)による発泡用熱可塑性ポリウレタン樹脂の凝集温度測定)
 示差走査熱量計(エスアイアイ・ナノテクノロジー社製、商品名:EXSTAR6000 PCステーション、および、DSC220C)を使用して測定した。発泡用熱可塑性ポリウレタン約8mgを、アルミニウム製パンにできるだけ密着可能な形状となるように薄く切断して採取した。このアルミニウム製パンにカバーを被せてクリンプしたものを測定用試料(サンプル)とした。同様にアルミナを採取したものをリファレンス試料とした。サンプルおよびリファレンスをセル内の所定位置にセットした後、流量40NmL/minの窒素気流下、試料を10℃/minの速度で-100℃まで冷却し、同温度で5分間保持後、次いで、10℃/minの速度で270℃まで昇温した。さらに270℃で5分間保持した後、-70℃まで10℃/minの速度で冷却した。この冷却の間に現れる発熱ピークの温度を発泡用熱可塑性ポリウレタン樹脂の凝集温度とした。
(発泡用熱可塑性ポリウレタン樹脂の硬度測定)
 実施例1~15、33および比較例1~5で得られた発泡用熱可塑性ポリウレタン樹脂のペレットを、それぞれ、射出成型機(型式:NEX-140、日精樹脂工業社製)を使用して、スクリュー回転数80rpm、バレル温度150~270℃の設定にて、金型温度20℃、射出時間10秒、射出速度60mm/sおよび冷却時間20~60秒の条件で、シート状に射出成形した。得られた2mm厚みのシートを、80℃のオーブン中で3日間アニール処理をした後、室温23℃、相対湿度55%の恒温恒湿条件下にて、7日間養生し、実施例1~15、33および比較例1~5それぞれの発泡用熱可塑性ポリウレタン樹脂のエラストマーシートを得た。
 そして、「JIS K-7311 ポリウレタン系熱可塑性エラストマーの試験方法」(1995年)に準じて、得られたそれぞれのエラストマーシートの硬さ(ASKER AおよびASKER D)を測定した。
<ポリウレタン発泡成形品の製造>
 以下のようにして、実施例1~15、33および比較例1~5の発泡用熱可塑性ポリウレタン樹脂からポリウレタン発泡成形品(A)~(W)を得た。
 なお、発泡用熱可塑性ポリウレタン樹脂の溶融粘度および流出開始温度(流動開始温度)は、以下のようにして測定した。
(溶融粘度および流動開始温度の測定)
 高化式フローテスター(島津製作所社製、型式:島津フローテスターCFT-500)を用いて、流動開始温度を測定し、その流動開始温度より20℃低い温度を測定開始温度として、荷重を196N、昇温速度を2.5℃/minとして溶融粘度を測定した。なお、測定に用いた発泡用熱可塑性ポリウレタン樹脂は、窒素気流下、80℃で一昼夜乾燥したものを使用した。
  実施例16~30、34および比較例6~10(超臨界二酸化炭素を用いた押出発泡法による成形)
 発泡用熱可塑性ポリウレタン樹脂(A)~(O)および(R)~(W)から、超臨界二酸化炭素を用いた押出発泡法により、ポリウレタン発泡成形品(A)~(O)および(R)~(W)を成形した。
 具体的には、一段目の直径30mmの単軸押出機(有限会社サン・エンジニアリング製、L/D=32、L/D=17.5の位置に逆流防止タイプの超臨界二酸化炭素ガス注入部を設置)と、二段目の直径40mmの押出機(有限会社サン・エンジニアリング製、L/D=42)とを直径10mmの短管(以下、コネクションとする。)により連結し、直径40mmの押出機(二段目)の先端部にサーキュラーダイ(リップ径(直径):40mm、リップと中子との間隙:0.46mm)を装着したタンデム押出機を使用した。
 一段目の直径30mmの単軸押出機のバレル温度は、発泡用熱可塑性ポリウレタン樹脂の溶融粘度が1000Pa・sを示す温度に設定し、二段目の直径40mmの押出機の設定温度は、発泡用熱可塑性ポリウレタン樹脂の流動開始温度に設定した。
 窒素気流下、80℃のオーブン中で一昼夜乾燥させた発泡用熱可塑性ポリウレタン樹脂を、一段目の直径30mmの単軸押出機(スクリュー回転数:30rpm)を用いて十分に溶融させた後、溶融した発泡用熱可塑性ポリウレタン樹脂に、液化二酸化炭素ボンベから昇圧装置(日本分光社製SCF-Get)を通して30MPaまで昇圧して得られた超臨界二酸化炭素を、25g/時間の流速で供給し、それらを十分に混錬溶解させ、混練物を作製した。
 続いて、その混練物を、コネクションを通して、二段目の直径40mmの押出機(スクリュー回転数:4pm)へと送入し、サーキュラーダイから吐出される混練物(発泡体)の状態が安定したところで、円筒状の発泡体の内側へ空気を送り込んで冷却し、厚み2mmの円筒状の発泡体を得た。この発泡体の円周を吐出方向にカットして広げ、厚み2mmのシート状のポリウレタン発泡成形品(A)~(O)および(R)~(W)を得た。
  実施例31(超臨界二酸化炭素を用いた射出発泡法による成形)
 発泡用熱可塑性ポリウレタン樹脂(B)から、超臨界二酸化炭素を用いた射出発泡法により、ポリウレタン発泡成形品(P)を成形した。
 具体的には、バレル温度を発泡用熱可塑性ポリウレタン樹脂の溶融粘度が1000Pa・sを示す温度に設定した射出成型機(型式:JSW MuCell 110H/J85AD、日本製鋼所社製)に、窒素気流下、80℃のオーブン中で一昼夜乾燥させた発泡用熱可塑性ポリウレタン樹脂(B)を充填し、計量時に昇圧装置(日本分光社製SCF-Get)を通して30MPaまで昇圧して得られた超臨界二酸化炭素を0.8質量%の比率で、発泡用熱可塑性ポリウレタン樹脂に、送入し混錬させた。
 60℃に設定した1.5mm厚みの金型に、射出速度60mm/min、保圧50MPa、保圧時間5秒で射出した後、金型コアを4.5mm後退させ、60秒冷却した後に脱型し、厚み6mmのポリウレタン発泡成形品(P)を得た。
  実施例32(ビーズ発泡法による成形)
 発泡用熱可塑性ポリウレタン樹脂(B)から、超臨界二酸化炭素を用いたビーズ発泡法により、ポリウレタン発泡体(Q)を成形した。
 具体的には、一段目の直径30mmの単軸押出機(有限会社サン・エンジニアリング製、L/D=32、L/D=17.5の位置に逆流防止タイプの超臨界二酸化炭素ガス注入部を設置)と、二段目の直径40mmの押出機(有限会社サン・エンジニアリング製、L/D=42)とを直径10mmのコネクションにより連結し、直径40mmの押出機(二段目)の先端部に単孔(孔の直径:1.5mm)のダイスを装着したタンデム押出機を使用した。
 一段目の直径30mmの単軸押出機のバレル温度は、発泡用熱可塑性ポリウレタン樹脂の溶融粘度が1000Pa・sを示す温度に設定し、二段目の直径40mmの押出機の設定温度は、発泡用熱可塑性ポリウレタン樹脂の流動開始温度に設定した。
 窒素気流下、80℃のオーブン中で一昼夜乾燥させた発泡用熱可塑性ポリウレタン樹脂(B)を一段目の直径30mmの単軸押出機(スクリュー回転数:30rpm)を用いて十分に溶融させた後、溶融した発泡用熱可塑性ポリウレタン樹脂に、液化二酸化炭素ボンベから昇圧装置(日本分光社製SCF-Get)を通して30MPaまで昇圧して得られた超臨界二酸化炭素を、25g/時間の流速で供給して、十分に混錬溶解させ、混練物を作製した。
 続いて、その混練物を、コネクションを通して、二段目の直径40mmの押出機(スクリュー回転数:4pm)へと送入し、ダイスから吐出される混練物(発泡体ストランド)が冷却され、発泡体ストランドの状態が安定したところで、その発泡体を適当な大きさ(約2mmサイズ)にカットすることにより発泡ビーズを得た。
 その後、金型に発泡ビーズを充填し、圧力1MPa、180℃の蒸気で温調した後、冷却して、厚み6mmのポリウレタン発泡成形品(Q)を得た。
<ポリウレタン発泡成形品の評価>
 得られたポリウレタン発泡成形品(A)~(W)について、以下の評価方法により評価した。その結果を表2~6に示す。
(セルの均一性)
 得られたポリウレタン発泡成形品のセルの均一性を目視で観察し、以下のように、評価5~1を設定し、5段階で評価した。
評価5:ほとんどのセルが微細で、セルの大きさはほぼ均一である。
評価4:粗大なセルは少なく、セルの大きさはほぼ均一である。
評価3:粗大なセルは少ないが、セルの大きさはそろっていない。
評価2:粗大なセルが多く、セルの大きさはそろっていない。
評価1:粗大なセルがほとんどであり、その大きさはそろっていない。
(コア密度(単位:kg/m))
 得られたポリウレタン発泡成形品から10cm×10cmのサイズの直方体を切り出して、測定試料を作製した。
 その後、測定試料の見かけ密度をJIS K7222(2005)に従って測定した。これをポリウレタン発泡成形品のコア密度(見かけのコア密度)として評価した。
(硬度(ASKER C)
 得られたポリウレタン発泡成形品を重ねて、厚みを12mmとし、JIS K7312(1996年)の硬さ試験(タイプC)に準拠して、C硬度を測定した。
(反発弾性(単位:%))
 得られたポリウレタン発泡成形品から10cm×10cmのサイズの直方体に切り出した後、厚みが12mmになるようにその直方体を重ねて測定試料とした。
 その測定試料の反発弾性をJIS K6400-3(2004)に従って測定した。
(圧縮永久歪(単位:%))
 得られたポリウレタン発泡成形品を直径29mmサイズの円柱状に切り出した後、厚みが12mmになるように測定試料を作製した。
 その後、測定試料の圧縮永久歪をJIS K6262に従って、23℃、25%圧縮の条件で測定した。
(破断強度(単位:MPa))
 得られたポリウレタン発泡成形品から、JIS-1号ダンベルを用いて測定試料を作製し、その後、測定試料の破断強度をJIS K6400-5(2012)に従って測定した。
(引裂強度(単位:kN/m))
 得られたポリウレタン発泡成形品から、JIS-B型ダンベルを用いて測定試料を作製し、その後、測定試料の引裂強度をJIS K6400-5(2012)のB法に従って測定した。
(初期色相:b、耐紫外線(UV)変色性:Δb)
 ポリウレタン発泡成形品から30mm×40mmのサイズの直方体を切り出して、測定試料を作製し、色差計(東京電色社製、カラーエースMODEL TC-1)を用いて、黄色度bを測定した。なお、bは、一般に、ポリウレタンの色相の指標とされる。
 その後、測定試料に、紫外線蛍光灯が取り付けられたQUVウェザリングテスター(スガ試験機社製、紫外線蛍光灯ウェザーメーターFUV)を使用して24時間にわたり短波長(波長270~720nm)の紫外線を照射した。
 紫外線照射前後におけるポリウレタン発泡成形品のΔb(b値の変化量)を、色差計(東京電色社製、カラーエースMODEL TC-1)を用いて測定した。なお、Δbは、一般に、発泡成形品の耐UV変色性の指標とされる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
<表2~6中の略号の説明>
プレポリマー:イソシアネート基末端ポリウレタンプレポリマー 
1,4-BD:1,4-ブタンジオール(三菱化学社製)
PLACCEL 230N:ポリカプロラクトンポリオール(商品名:PLACCEL 230N、水酸基価:37.4mgKOH/g、数平均分子量:3000、ダイセル社製)
<ポリウレタン発泡成形品の用途>
  参考実施例1
 発泡用熱可塑性ポリウレタン樹脂(B)を用いて、実施例31と同様にして、射出発泡により密度0.25g/cmのミッドソール用のポリウレタン発泡成形品に成形した。
 この発泡成形品から幅10mm、長さ12cmの短冊形状の試験片を打ち抜き、23℃、周波数5Hzの条件で、繰り返しデマッチャ屈曲試験を行った結果、15万回以上で亀裂無しであった。
  参考実施例2
 発泡用熱可塑性ポリウレタン樹脂(B)を用いて、実施例31と同様にして、射出発泡により密度0.50g/cmのショックアブソーバー用のポリウレタン発泡成形品に成形した。
 直径29mm、高さ30mmの円柱状にした発泡成形品の試験片を、23℃、周波数0.22Hzの条件で、圧縮率75%の繰り返し圧縮試験を行った結果、2500回以上で亀裂無しであった。
  参考実施例3
 発泡用熱可塑性ポリウレタン樹脂(B)を用いて、実施例31と同様にして、射出発泡により密度0.30g/cmの化学機械研磨(Chemical Mechanical Polishing、CMP)パッド用のポリウレタン発泡成形品に成形した。
 この発泡成形品を、直径50mmの円状(厚み3mm)に打ち抜き、23℃の酢酸ブチルおよびメチルエチルケトンへ7日間浸漬し、体積変化率((V1(浸漬後の体積)-V0(浸漬前の体積))/V0×100(%))を算出した結果、それぞれ、55%および70%であった。
  参考実施例4
 発泡用熱可塑性ポリウレタン樹脂(B)を用いて、実施例31と同様にして、射出発泡により密度0.15g/cmの自動車内装部材用のポリウレタン発泡成形品に成形した。この発泡成形品を、直径50mmの円状(厚み3mm)に打ち抜き、23℃のオレイン酸へ7日間浸漬し、体積変化率(((V1(浸漬後の体積)-V0(浸漬前の体積))/V0)×100(%))を算出した結果、7%であった。
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれる。
 本発明の発泡用熱可塑性ポリウレタン樹脂およびその製造方法、ならびに、成形品は、ミッドソール、ショックアブソーバー、化学機械研磨(CMP)パッド、スポーツ用品、自動車内装部材などにおいて、好適に用いられる。

Claims (10)

  1.  ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、ポリオール成分との反応生成物である発泡用熱可塑性ポリウレタン樹脂であって、
     前記発泡用熱可塑性ポリウレタン樹脂をゲルパーミエーションクロマトグラフィーにより測定して得られるクロマトグラムのピークにおいて、重量平均分子量400,000以上の高分子量成分の面積が、前記ピークの総面積に対して、25%以上60%以下であることを特徴とする、発泡用熱可塑性ポリウレタン樹脂。
  2.  前記発泡用熱可塑性ポリウレタン樹脂の、示差走査熱量計により測定した凝集温度が、90℃以上180℃以下であることを特徴とする、請求項1に記載の発泡用熱可塑性ポリウレタン樹脂。
  3.  前記ビス(イソシアナトメチル)シクロヘキサンが、1,4-ビス(イソシアナトメチル)シクロヘキサンであることを特徴とする、請求項1に記載の発泡用熱可塑性ポリウレタン樹脂。
  4.  前記1,4-ビス(イソシアナトメチル)シクロヘキサンが、70モル%以上96モル%以下の割合でトランス体を含有することを特徴とする、請求項3に記載の発泡用熱可塑性ポリウレタン樹脂。
  5.  ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、ポリオール成分とを反応させて一次生成物を得る反応工程と、
     前記一次生成物を、50℃以上100℃以下で、3日以上10日以下、熱処理する熱処理工程と
    を備えることを特徴とする、発泡用熱可塑性ポリウレタン樹脂の製造方法。
  6.  請求項1に記載の発泡用熱可塑性ポリウレタン樹脂を含むことを特徴とする、成形品。
  7.  ミッドソールであることを特徴とする、請求項6に記載の成形品。
  8.  ショックアブソーバーであることを特徴とする、請求項6に記載の成形品。
  9.  化学機械研磨パッドであることを特徴とする、請求項6に記載の成形品。
  10.  自動車内装部材であることを特徴とする、請求項6に記載の成形品。
PCT/JP2017/040836 2016-11-17 2017-11-14 発泡用熱可塑性ポリウレタン樹脂およびその製造方法、ならびに、成形品 WO2018092744A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17871310.3A EP3543273B1 (en) 2016-11-17 2017-11-14 Thermoplastic polyurethane resin for foaming and production method thereof, and molded article
CN201780027713.9A CN109071766B (zh) 2016-11-17 2017-11-14 发泡用热塑性聚氨酯树脂及其制造方法、以及成型品
US16/099,383 US10633483B2 (en) 2016-11-17 2017-11-14 Foaming thermoplastic polyurethane resin, producing method thereof, and molded article
ES17871310T ES2907349T3 (es) 2016-11-17 2017-11-14 Resina de poliuretano termoplástica para espumación y método de producción de la misma, y artículo moldeado
KR1020197009643A KR102021270B1 (ko) 2016-11-17 2017-11-14 발포용 열가소성 폴리유레테인 수지 및 그의 제조 방법, 및 성형품
JP2018513894A JP6338809B1 (ja) 2016-11-17 2017-11-14 発泡用熱可塑性ポリウレタン樹脂およびその製造方法、ならびに、成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016224421 2016-11-17
JP2016-224421 2016-11-17

Publications (1)

Publication Number Publication Date
WO2018092744A1 true WO2018092744A1 (ja) 2018-05-24

Family

ID=62146190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040836 WO2018092744A1 (ja) 2016-11-17 2017-11-14 発泡用熱可塑性ポリウレタン樹脂およびその製造方法、ならびに、成形品

Country Status (8)

Country Link
US (1) US10633483B2 (ja)
EP (1) EP3543273B1 (ja)
JP (1) JP6338809B1 (ja)
KR (1) KR102021270B1 (ja)
CN (1) CN109071766B (ja)
ES (1) ES2907349T3 (ja)
TW (1) TWI738922B (ja)
WO (1) WO2018092744A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097662A (ja) * 2018-12-17 2020-06-25 三井化学株式会社 熱可塑性ポリウレタン樹脂、成形品、および、熱可塑性ポリウレタン樹脂の製造方法
JP2020164570A (ja) * 2019-03-28 2020-10-08 三井化学株式会社 発泡ポリウレタンエラストマーの製造方法
WO2021072665A1 (zh) * 2019-10-16 2021-04-22 加久企业股份有限公司 Tpu发泡鞋底制程及其成品
JPWO2021177175A1 (ja) * 2020-03-05 2021-09-10
JP2022056411A (ja) * 2020-09-29 2022-04-08 エスケーシー ソルミックス カンパニー,リミテッド 研磨パッドおよびこれを用いた半導体素子の製造方法
WO2023153398A1 (ja) * 2022-02-09 2023-08-17 三井化学株式会社 プレポリマー組成物、ポリウレタン樹脂、弾性成形品およびプレポリマー組成物の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6912317B2 (ja) * 2017-08-03 2021-08-04 株式会社ジェイエスピー ウレタン系熱可塑性エラストマー発泡粒子
TW202033590A (zh) * 2018-12-28 2020-09-16 德商巴斯夫歐洲公司 具有高韌性之發泡熱塑性聚胺甲酸酯(eTPU)
CN110183843B (zh) * 2019-05-16 2021-12-14 美瑞新材料股份有限公司 一种耐黄变的热塑性聚氨酯发泡材料及其制备方法
BR112021023552A2 (pt) * 2019-06-14 2022-01-04 Basf Polyurethanes Gmbh Material de pélete em espuma, artigo moldado, usos de um material de pélete em espuma e material híbrido
CN111534081B (zh) * 2020-06-02 2021-12-24 安踏(中国)有限公司 一种具有自然透光性的鞋中底材料及其制备方法
CN111602925B (zh) * 2020-06-02 2021-10-15 安踏(中国)有限公司 一种具有自然透光性的鞋中底材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504843A (ja) * 2002-10-31 2006-02-09 ダウ グローバル テクノロジーズ インコーポレイティド ポリウレタン化合物及びそれから製造した物品
WO2009051114A1 (ja) * 2007-10-15 2009-04-23 Mitsui Chemicals Polyurethanes, Inc. ポリウレタン樹脂
WO2010038724A1 (ja) * 2008-09-30 2010-04-08 Dic株式会社 研磨パッド用2液型ウレタン樹脂組成物、それを用いてなるポリウレタン研磨パッド、及びポリウレタン研磨パッドの製造方法
JP2011105812A (ja) * 2009-11-13 2011-06-02 Mitsui Chemicals Inc 架橋型熱可塑性エラストマー組成物および該組成物の製造方法
JP2011518898A (ja) * 2008-04-09 2011-06-30 ダウ グローバル テクノロジーズ エルエルシー ポリウレタンエラストマー
JP2012046700A (ja) * 2010-08-30 2012-03-08 Toyo Kohan Co Ltd 分子量回復機能を有するウレタン樹脂及び分子量回復方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA980490A (en) * 1971-04-03 1975-12-23 Yutaka Matsui Adhesive compositions
US4627178A (en) 1983-02-28 1986-12-09 Sullivan James B Molded shoe innersole
DE60000314T2 (de) 1999-01-26 2003-05-22 Huntsman Int Llc Geschäumte thermoplastische polyurethane
EP1266928A4 (en) 2000-10-18 2003-06-11 Mitsui Chemicals Inc FOAM BASED ON A THERMOPLASTIC URETHANE ELASTOMER COMPOSITION AND PROCESS FOR PREPARING SAME
JP2007238958A (ja) 2000-10-18 2007-09-20 Mitsui Chemicals Inc ウレタン系熱可塑性エラストマー組成物発泡体及びその製造方法
US6376567B1 (en) 2000-12-07 2002-04-23 Bayer Corporation Polyisocyanate compositions and a process for the production of low-density flexible foams with low humid aged compression sets from these polyisocyanate compositions
BR0315067B1 (pt) * 2002-10-31 2014-07-29 Dow Global Technologies Inc Dispersão de poliuretano, método para produzi-la e revestimento, película, elastômero ou espuma microcelular preparados a partir da dispersão
DE10342857A1 (de) 2003-09-15 2005-04-21 Basf Ag Expandierbare thermoplastische Polyurethan-Blends
US8137754B2 (en) * 2004-08-06 2012-03-20 Lubrizol Advanced Materials, Inc. Hydroxyl-terminated thiocarbonate containing compounds, polymers, and copolymers, and polyurethanes and urethane acrylics made therefrom
JP3769581B1 (ja) * 2005-05-18 2006-04-26 東洋ゴム工業株式会社 研磨パッドおよびその製造方法
JP4943004B2 (ja) * 2005-12-28 2012-05-30 三井化学株式会社 アロファネート基含有ポリイソシアネートの製造方法、ならびにウレタンプレポリマーおよびポリウレタン樹脂組成物
ATE482991T1 (de) 2006-01-18 2010-10-15 Basf Se Schaumstoffe auf basis thermoplastischer polyurethane
US8445556B2 (en) 2006-12-29 2013-05-21 Rubberlite, Inc. Cellular elastomer compositions
JP5386144B2 (ja) 2007-11-27 2014-01-15 三井化学株式会社 ポリウレタンフォームおよびポリウレタンフォーム用ポリイソシアネート
JP5832401B2 (ja) 2011-09-16 2015-12-16 三井化学株式会社 低反発性ポリウレタンフォームおよびその製造方法
KR101351432B1 (ko) 2011-12-27 2014-01-15 에스케이씨 주식회사 초미세 발포 폴리우레탄 탄성체의 제조방법
JP5832651B2 (ja) * 2012-07-31 2015-12-16 三井化学株式会社 ポリイソシアネート組成物、太陽電池部材被覆材、被覆層付太陽電池部材、マイクロカプセルおよびインキ用バインダー
US9611370B2 (en) * 2013-03-15 2017-04-04 Mitsui Chemicals, Inc. Low-resilience polyurethane foam and production method thereof
US9926423B2 (en) 2013-08-02 2018-03-27 Nike, Inc. Low density foam, midsole, footwear, and methods for making low density foam
US9963566B2 (en) 2013-08-02 2018-05-08 Nike, Inc. Low density foamed articles and methods for making
US9919458B2 (en) 2013-08-02 2018-03-20 Nike, Inc. Method and thermoplastic foamed article
CN104781229B (zh) * 2013-09-26 2017-03-01 三井化学株式会社 1,4-双(异氰酸甲酯基)环己烷、多异氰酸酯组合物、聚氨酯树脂、成型品、眼镜材料、眼镜框以及镜片
WO2017010422A1 (ja) * 2015-07-10 2017-01-19 三井化学株式会社 ポリウレタンゲルおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504843A (ja) * 2002-10-31 2006-02-09 ダウ グローバル テクノロジーズ インコーポレイティド ポリウレタン化合物及びそれから製造した物品
WO2009051114A1 (ja) * 2007-10-15 2009-04-23 Mitsui Chemicals Polyurethanes, Inc. ポリウレタン樹脂
JP2011518898A (ja) * 2008-04-09 2011-06-30 ダウ グローバル テクノロジーズ エルエルシー ポリウレタンエラストマー
WO2010038724A1 (ja) * 2008-09-30 2010-04-08 Dic株式会社 研磨パッド用2液型ウレタン樹脂組成物、それを用いてなるポリウレタン研磨パッド、及びポリウレタン研磨パッドの製造方法
JP2011105812A (ja) * 2009-11-13 2011-06-02 Mitsui Chemicals Inc 架橋型熱可塑性エラストマー組成物および該組成物の製造方法
JP2012046700A (ja) * 2010-08-30 2012-03-08 Toyo Kohan Co Ltd 分子量回復機能を有するウレタン樹脂及び分子量回復方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543273A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097662A (ja) * 2018-12-17 2020-06-25 三井化学株式会社 熱可塑性ポリウレタン樹脂、成形品、および、熱可塑性ポリウレタン樹脂の製造方法
JP7246910B2 (ja) 2018-12-17 2023-03-28 三井化学株式会社 熱可塑性ポリウレタン樹脂、成形品、および、熱可塑性ポリウレタン樹脂の製造方法
JP2020164570A (ja) * 2019-03-28 2020-10-08 三井化学株式会社 発泡ポリウレタンエラストマーの製造方法
JP7257843B2 (ja) 2019-03-28 2023-04-14 三井化学株式会社 発泡ポリウレタンエラストマーの製造方法
WO2021072665A1 (zh) * 2019-10-16 2021-04-22 加久企业股份有限公司 Tpu发泡鞋底制程及其成品
JPWO2021177175A1 (ja) * 2020-03-05 2021-09-10
WO2021177175A1 (ja) * 2020-03-05 2021-09-10 三井化学株式会社 発泡ポリウレタン樹脂組成物および発泡ポリウレタンエラストマー
JP7364780B2 (ja) 2020-03-05 2023-10-18 三井化学株式会社 発泡ポリウレタン樹脂組成物および発泡ポリウレタンエラストマー
JP2022056411A (ja) * 2020-09-29 2022-04-08 エスケーシー ソルミックス カンパニー,リミテッド 研磨パッドおよびこれを用いた半導体素子の製造方法
JP7286227B2 (ja) 2020-09-29 2023-06-05 エスケー エンパルス カンパニー リミテッド 研磨パッドおよびこれを用いた半導体素子の製造方法
WO2023153398A1 (ja) * 2022-02-09 2023-08-17 三井化学株式会社 プレポリマー組成物、ポリウレタン樹脂、弾性成形品およびプレポリマー組成物の製造方法

Also Published As

Publication number Publication date
CN109071766A (zh) 2018-12-21
US10633483B2 (en) 2020-04-28
CN109071766B (zh) 2019-09-27
EP3543273A1 (en) 2019-09-25
KR102021270B1 (ko) 2019-09-11
US20190211136A1 (en) 2019-07-11
TW201829523A (zh) 2018-08-16
ES2907349T3 (es) 2022-04-22
EP3543273B1 (en) 2022-01-26
JP6338809B1 (ja) 2018-06-06
EP3543273A4 (en) 2020-06-03
KR20190041018A (ko) 2019-04-19
TWI738922B (zh) 2021-09-11
JPWO2018092744A1 (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
JP6338809B1 (ja) 発泡用熱可塑性ポリウレタン樹脂およびその製造方法、ならびに、成形品
JP7184760B2 (ja) ポリウレタンエラストマー、ポリウレタンエラストマーの製造方法、および、成形品
CN109906241B (zh) 聚氨酯树脂的制造方法、聚氨酯树脂及成型品
JP6159036B1 (ja) 発泡ポリウレタン材料、成形品、および、発泡ポリウレタン材料の製造方法
WO2018155372A1 (ja) 発泡ポリウレタンエラストマー原料、発泡ポリウレタンエラストマーおよび発泡ポリウレタンエラストマーの製造方法
US6596820B2 (en) Light-resistant thermoplastic polyurethanes, a process for their preparation and their use
JP5832392B2 (ja) ポリウレタンエラストマーの製造方法、ポリウレタンエラストマーおよび成形品
JP2009537668A (ja) 強化された耐加水分解性を備えるポリウレタンエラストマー
EP3409705A1 (en) Composition for polyurethane foam containing polyrotaxane, polyurethane foam derived from composition, and method for producing polyurethane foam
KR101726700B1 (ko) 가교 사이트가 부여된 열가소성 폴리우레탄 및 이를 이용한 가교 발포 방법
JP2020525606A (ja) 熱可塑性ポリウレタン
JPH06228258A (ja) 熱可塑性ポリウレタンおよびその製造方法
JP7257843B2 (ja) 発泡ポリウレタンエラストマーの製造方法
JP7458250B2 (ja) 微発泡ポリウレタンエラストマー組成物および微発泡ポリウレタンエラストマー
JP7296249B2 (ja) 熱可塑性ポリウレタン樹脂
CN114222792A (zh) 含热塑性多异氰酸酯加成聚合产物的制剂、其制备方法和用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018513894

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197009643

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017871310

Country of ref document: EP

Effective date: 20190617