WO2018084075A1 - フィラー含有フィルム - Google Patents

フィラー含有フィルム Download PDF

Info

Publication number
WO2018084075A1
WO2018084075A1 PCT/JP2017/038851 JP2017038851W WO2018084075A1 WO 2018084075 A1 WO2018084075 A1 WO 2018084075A1 JP 2017038851 W JP2017038851 W JP 2017038851W WO 2018084075 A1 WO2018084075 A1 WO 2018084075A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
resin layer
containing film
anisotropic conductive
film
Prior art date
Application number
PCT/JP2017/038851
Other languages
English (en)
French (fr)
Inventor
三宅 健
生子 久我
怜司 塚尾
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201780064897.6A priority Critical patent/CN109996837A/zh
Priority to US16/344,489 priority patent/US11001686B2/en
Priority to KR1020227003492A priority patent/KR102513747B1/ko
Priority to KR1020197010975A priority patent/KR102359094B1/ko
Publication of WO2018084075A1 publication Critical patent/WO2018084075A1/ja
Priority to US17/315,788 priority patent/US20210261743A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0207Particles made of materials belonging to B32B25/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • B32B2264/0235Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/025Acrylic resin particles, e.g. polymethyl methacrylate or ethylene-acrylate copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/408Matt, dull surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/706Anisotropic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with monohydric phenols
    • C08J2361/10Phenol-formaldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2461/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2461/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with monohydric phenols
    • C08J2461/10Phenol-formaldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2461/00Presence of condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin

Definitions

  • the present invention relates to a filler-containing film such as an anisotropic conductive film.
  • Filler-containing films in which filler is dispersed in the resin layer are used in a wide variety of applications such as matte films, condenser films, optical films, label films, anti-static films, anisotropic conductive films ( Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4).
  • the conductive particles are identified in the anisotropic conductive film in order to suppress variations in the number of conductive particles captured by the terminal.
  • the number of conductive particles spaced apart from each other in the anisotropic conductive film in order to achieve both the securing of connection reliability between opposing terminals and the suppression of short-circuits between adjacent terminals has been proposed (Patent Document 6) and the like.
  • JP 2006-15680 A JP2015-138904A JP2013-103368A JP 2014-183266 A Japanese Patent No. 4887700 JP 2015-167106 A
  • the pressing jig for anisotropic conductive connection.
  • the thrust required for the pressing jig to push the conductive particles into the terminal increases, and the conventional pressing jig may not be able to cope with it. In this case, the pressing jig is modified. And there is concern about an increase in costs.
  • the present invention improves the trapping property of the conductive particles at the terminal and improves the conduction characteristics. It is an object of the present invention to improve and prevent the thrust required for a pressing jig for pressing a filler-containing film such as an anisotropic conductive film against an electronic component from becoming excessively high.
  • the characteristics of the filler-containing film are controlled using the relationship between the filler particle size of the filler-containing film and the thickness of the layer holding the filler as an index (necessary for the pressing jig in the anisotropic conductive film described above.
  • the problem of thrust to be used is an example).
  • the present inventor has a specific range of the ratio of the particle diameter of the filler and the thickness of the layer holding the filler when the filler-containing film is pressure-bonded to the article, or the filler is dispersed regularly.
  • the inventors have found that the properties of the filler-containing film can be adjusted by increasing the ratio of the number of fillers present in a non-contact manner and adjusting the area occupancy of the filler, thereby completing the present invention.
  • the anisotropic conductive film will be described in detail. When the anisotropic conductive film is thermocompression bonded to an electronic component, it is necessary for the pressing jig to improve the capturing property of fillers such as conductive particles in the terminal.
  • a filler such as conductive particles is regularly dispersed in a resin layer (preferably an insulating resin layer), and the ratio of the number of fillers such as conductive particles existing in a non-contact manner is increased. It has been found that it is effective to set the ratio of the layer thickness to the average particle diameter of the filler within a specific range, and to adjust the area occupancy of the filler in the filler-containing film such as an anisotropic conductive film. Was completed.
  • the present invention is a filler-containing film having a filler dispersion layer in which fillers are regularly arranged in a resin layer, The area occupation ratio of the filler in plan view is 25% or less, The ratio La / D of the resin layer thickness La to the filler particle size D is 0.3 to 1.3, Provided is a filler-containing film in which the number ratio of fillers in non-contact with each other is 95% or more with respect to the whole filler.
  • the present invention provides, as a preferred embodiment of the filler-containing film, a filler-containing film used as an anisotropic conductive film, wherein the filler is conductive particles, the resin layer of the filler dispersion layer is an insulating resin layer. .
  • the present invention provides a film bonded body in which the above-mentioned filler-containing film is bonded to an article, a connection structure in which the first article and the second article are connected via the above-mentioned filler-containing film, particularly Provided is a connection structure in which a first electronic component and a second electronic component are anisotropically conductively connected via a filler-containing film used as an anisotropic conductive film. Furthermore, the present invention provides a connection structure manufacturing method in which the first article and the second article are pressure-bonded via the filler-containing film described above, and the first article and the second article are the first electronic component and the second electronic, respectively.
  • the first electronic component and the second electronic component were anisotropically conductively connected by thermocompression bonding of the first electronic component and the second electronic component through a filler-containing film used as an anisotropic conductive film as a component.
  • a method for manufacturing a connection structure is provided for manufacturing the connection structure.
  • fillers such as conductive particles are regularly dispersed in a resin layer (preferably an insulating resin layer), and the filler is in total. Since the number ratio of fillers in non-contact with each other is 95% or more, each filler is pressed evenly when a filler-containing film such as an anisotropic conductive film is thermocompression bonded to an electronic component. Since the ratio La / D between the layer thickness La of the layer and the average particle diameter D of the filler is 0.3 or more and 1.3 or less, when a thermo-compression bonding of a filler-containing film such as an anisotropic conductive film to an electronic component is performed.
  • the displacement of the filler is less likely to occur, the arrangement and dispersion state of the filler at the crimping site can be maintained in the state before the crimping. Therefore, the filler of the anisotropic conductive film is easily captured by the terminal. The same tendency can be obtained for connections other than the anisotropic conductive film.
  • the area occupancy of the filler such as conductive particles is 25% or less.
  • a filler-containing film such as an anisotropic conductive film is pressure-bonded to an electronic component, the thrust required for the pressing jig can be prevented from becoming excessively high.
  • there is an optical film but the optical performance of the filler can be adjusted by adjusting the independent number ratio in the thickness direction in the resin layer of the filler and in non-contact in a plan view. . The same can be said for materials that are directly connected to the appearance, such as a matte film.
  • FIG. 1A is a plan view showing the arrangement of fillers (conductive particles) in a filler-containing film (an anisotropic conductive film which is one mode) 10A of an example.
  • FIG. 1B is a cross-sectional view of a filler-containing film (an anisotropic conductive film which is one embodiment) 10A of an example.
  • FIG. 2 is a cross-sectional view of a filler-containing film (an anisotropic conductive film which is one embodiment) 10B of the example.
  • FIG. 3 is a cross-sectional view of a filler-containing film (an anisotropic conductive film which is one embodiment) 10C of the example.
  • FIG. 1A is a plan view showing the arrangement of fillers (conductive particles) in a filler-containing film (an anisotropic conductive film which is one mode) 10A of an example.
  • FIG. 1B is a cross-sectional view of a filler-containing film (an anisotropic conductive film which is one
  • FIG. 4 is a cross-sectional view of a filler-containing film (an anisotropic conductive film which is one embodiment) 10D of an example.
  • FIG. 5 is a cross-sectional view of a filler-containing film (an anisotropic conductive film which is one embodiment) 10E of the example.
  • FIG. 6 is a cross-sectional view of a filler-containing film (an anisotropic conductive film which is one embodiment) 10F of the example.
  • FIG. 7 is a cross-sectional view of a filler-containing film (an anisotropic conductive film which is one embodiment) 10G of the example.
  • FIG. 8 is a cross-sectional view of a filler-containing film (an anisotropic conductive film which is one embodiment) 10H of the example.
  • FIG. 9 is a cross-sectional view of a filler-containing film (an anisotropic conductive film which is one embodiment) 10I of the example.
  • anisotropic conductive film which is one embodiment of the filler-containing film of the present invention will be mainly described in detail with reference to the drawings.
  • symbol represents the same or equivalent component.
  • FIG. 1A is a plan view for explaining the arrangement of fillers (or conductive particles) 1 in a filler-containing film (an anisotropic conductive film which is one embodiment) 10A of the present invention.
  • FIG. 1B is an XX cross-sectional view of the filler-containing film 10A.
  • the filler 1 is ordered on one side of the resin layer 2 (or insulating resin layer) formed from a resin having a relatively low minimum melt viscosity. Distributed in a typical array.
  • Filler 1 includes known inorganic fillers (metals, metal oxides, metal nitrides, etc.), organic fillers (resin particles, rubber particles, etc.), organic materials and inorganic materials, depending on the use of the filler-containing film.
  • inorganic fillers metal, metal oxides, metal nitrides, etc.
  • organic fillers resin particles, rubber particles, etc.
  • organic materials and inorganic materials depending on the use of the filler-containing film.
  • a silica filler for example, in an optical film or a matte film, a silica filler, a titanium oxide filler, a styrene filler, an acrylic filler, a melamine filler, various titanates, and the like can be used.
  • titanium oxide, magnesium titanate, zinc titanate, bismuth titanate, lanthanum oxide, calcium titanate, strontium titanate, barium titanate, barium zirconate titanate, lead zirconate titanate and mixtures thereof Etc. can be used.
  • the adhesive film can contain polymer rubber particles, silicone rubber particles, and the like.
  • the anisotropic conductive film contains conductive particles.
  • the conductive particles include metal particles such as nickel, cobalt, silver, copper, gold, and palladium, alloy particles such as solder, metal-coated resin particles, and metal-coated resin particles having insulating fine particles attached to the surface. .
  • metal particles such as nickel, cobalt, silver, copper, gold, and palladium
  • alloy particles such as solder
  • metal-coated resin particles are preferable in that the resin particles repel after being connected, so that the contact with the terminal is easily maintained and the conduction performance is stabilized.
  • the surface of the conductive particles may be subjected to an insulation treatment that does not hinder the conduction characteristics by a known technique.
  • the filler mentioned according to the above-mentioned use is not limited to the use, and may be contained in a filler-containing film for other use as required. Moreover, in the filler-containing film for each application, two or more kinds of fillers can be used in combination as required.
  • the shape of the filler is determined by appropriately selecting from a spherical shape, an elliptical sphere, a columnar shape, a needle shape, a combination thereof, and the like according to the use of the filler-containing film.
  • a spherical shape is preferable because it is easy to confirm the filler arrangement and it is easy to maintain a uniform state.
  • the conductive particles that are fillers are preferably substantially spherical.
  • substantially spherical particles as the conductive particles, for example, in producing an anisotropic conductive film in which conductive particles are arranged using a transfer mold as described in JP-A-2014-60150, Since the conductive particles roll smoothly on the mold, the conductive particles can be filled into a predetermined position on the transfer mold with high accuracy. Therefore, the conductive particles can be accurately arranged.
  • the particle diameter D of the filler 1 is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 3 ⁇ m or more and 9 ⁇ m, in order to be able to cope with variations in wiring height, to suppress increase in conduction resistance, and to suppress short circuit. It is as follows.
  • the particle size of the filler before being dispersed in the resin layer 2 can be measured by a general particle size distribution measuring device, and the average particle size can also be obtained by using the particle size distribution measuring device.
  • An example of the measuring apparatus is FPIA-3000 (Malvern).
  • the particle diameter D of the filler such as conductive particles in the filler-containing film such as an anisotropic conductive film can be obtained from observation with an electron microscope such as SEM.
  • the number of samples for measuring the particle diameter D of the filler is desirably 200 or more.
  • the diameter of the shape imitating the maximum length or a sphere based on the planar image or cross-sectional image of the filler-containing film can be used as the particle diameter D of the filler.
  • fillers 1 such as conductive particles are not randomly arranged in a plan view of the film but regularly arranged. It is preferable that the fillers 1 exist without contacting each other in a plan view of the film, and the fillers 1 exist without overlapping each other in the film thickness direction. Therefore, the ratio of the number of fillers 1 that are in non-contact with each other is 95% or more, preferably 98% or more, and more preferably 99.5% or more with respect to the whole filler. Moreover, it is preferable that the position of each filler 1 in the film thickness direction is also aligned. For example, as shown in FIG.
  • the fillers 1 can be arranged in a hexagonal lattice, and the filling amount Lb of the fillers 1 in the film thickness direction can be made uniform as will be described later.
  • the filler in the dispersion state of the filler in which the number ratio of fillers existing in non-contact with each other is 95% or more, there may be a portion Px where the filler is missing with respect to a predetermined regular arrangement of the filler (FIG. 1A). ). This missing filler can be confirmed by the regular presence of the filler in a predetermined direction of the film within the allowable range of the characteristics.
  • examples of the regular arrangement of the filler include a lattice arrangement such as a rectangular lattice, an oblique lattice, a square lattice, and other rectangular lattices.
  • particle rows in which fillers are linearly arranged at predetermined intervals may be arranged in parallel at predetermined intervals.
  • the regular arrangement is not particularly limited as long as it is repeated in the longitudinal direction of the film.
  • the fillers when the fillers are arranged in a hexagonal lattice, a tetragonal lattice, or an oblique lattice (that is, a rhombic lattice), the three fillers P1 are arranged in order of increasing distance from the arbitrary filler P0.
  • the ratio (Lmax / Lmin) is preferably 1 or more and 1.2 or less, more preferably 1.1 or less, and even more preferably 1.05 or less (FIG. 1A).
  • the fillers are arranged in a hexagonal lattice, five fillers P1, P2, P3, P4, and P5 are selected in order of increasing distance from an arbitrary filler P0, and the maximum distance is the same as described above.
  • the ratio (Lmax / Lmin) between (Lmax) and the minimum distance (Lmin) is determined, the ratio is preferably 1 or more and 1.1 or less.
  • the ratio of the maximum distance to the minimum distance (Lmax / Lmin) is 1 in design, but in practice A slight misalignment occurs during the production of a filler-containing film such as an anisotropic conductive film, and when the filler-containing film is used as a wound body, a slight misalignment occurs due to tightening depending on the thickness of the filler-containing film. There is a fear.
  • the upper limit of the above ratio (Lmax / Lmin) is an allowable range of filler displacement in the present invention.
  • the fillers are arranged in a non-contact and even manner. Therefore, when the filler-containing film is configured as an anisotropic conductive film, it is possible to apply pressure uniformly to the conductive particles that are the fillers 1 during anisotropic conductive connection, and to actually reduce the variation in conduction resistance.
  • a method of disposing the filler while suppressing such a slight positional deviation when a filler-containing film such as an anisotropic conductive film is manufactured as described later, there is a portion where the filler should be disposed in advance. It is preferable to prepare a prescribed mold, place a filler at the site, and transfer the filler to the resin layer.
  • the lattice axis or the array axis may be parallel to the longitudinal direction of the filler-containing film or may intersect with the longitudinal direction of the filler-containing film.
  • the filler-containing film is an anisotropic conductive film
  • it can be determined according to the terminal width to be connected, the terminal pitch, and the like.
  • the filler-containing film is an anisotropic conductive film for fine pitch, as shown in FIG. 1A, at least one lattice axis A of the filler 1 is skewed with respect to the longitudinal direction of the filler-containing film 10A.
  • the angle ⁇ formed between the longitudinal direction of the terminal 20 connected by the filler-containing film 10A and the lattice axis A is preferably set to 16 ° to 74 °. Even in applications other than anisotropic conductive films, the effect of stabilizing the capture state is expected by inclining in this way.
  • the interparticle distance of the filler 1 such as conductive particles is such that the area occupancy of the filler 1 in the filler-containing film such as an anisotropic conductive film is 25% or less, preferably 0.5% or more and 23% as described later.
  • it is more preferably set to be 1.4% or more and less than 20%.
  • the number density of the filler is preferably set to 30 to 32000 / mm 2 .
  • the interparticle distance of the filler 1 is appropriately determined according to the size and terminal pitch of the terminals connected by the filler-containing film.
  • the filler-containing film is configured as an anisotropic conductive film
  • the anisotropic conductive film is made to correspond to fine pitch COG (Chip-On-Glass)
  • the distance between the closest particles is reduced from the point of suppressing short circuit.
  • the particle diameter D is preferably 0.5 times or more, more preferably 0.7 times or more.
  • the distance between the closest particles is preferably 4 times or less, more preferably 3 times or less of the particle diameter D of the filler.
  • the closest distance between the fillers is 0.5 ⁇ m or more regardless of the particle diameter of the filler.
  • the number density of the filler is obtained by arbitrarily setting a plurality of rectangular regions (5 or more, preferably 10 or more) rectangular regions each having a side of 100 ⁇ m or more, and obtaining the total area of the measurement regions as 2 mm 2 or more. it can. What is necessary is just to adjust suitably the magnitude
  • the number density was measured using 200 images of an area of 100 ⁇ m ⁇ 100 ⁇ m area arbitrarily selected from the filler-containing film 10A using an observation image by a metal microscope, etc. Can be obtained by averaging.
  • the area of 100 ⁇ m ⁇ 100 ⁇ m area is an area where one or more bumps exist in a connection object having a space between bumps of 50 ⁇ m or less.
  • the number density of fillers such as conductive particles can be obtained by observing with a metal microscope as described above, or by measuring an observation image with image analysis software (for example, WinROOF, Mitani Corporation, etc.). Good.
  • the number density of fillers such as conductive particles depends on the particle diameter, hardness, etc. of the filler as long as the area occupancy of the filler is 25% or less. Is set. That is, in the case of an anisotropic conductive film, if the number density of the filler is too small, it cannot cope with the connection of fine pitch electronic components, and if it is too large, a short circuit is caused. 30 to 32000 / mm 2 is preferable, and 280 to 28000 / mm 2 is more preferable.
  • a filler such as conductive particles is used so that the thrust required for the pressing jig at the time of anisotropic conductive connection or the like is not excessively increased. Is less than 25%, preferably less than 23%, more preferably less than 20%. Moreover, 0.5% or more is preferable from the point of ensuring conduction
  • the area occupancy in the filler-containing film may be appropriately selected depending on the application, and is not limited as long as it does not interfere with the production, but it can be said that the above-mentioned stability is also obtained in connections other than anisotropic conductive connections. Therefore, a range similar to the above is preferable.
  • the number density of the filler is obtained by the above-described method, and the average of the planar view area of one filler is obtained by measurement from an observation image of the film surface with a metal microscope or the like.
  • the above-described image analysis software (WinROOF, Mitani Corporation) may be used.
  • the area occupancy of the filler is used as an index of the thrust required for the pressing jig when thermocompression bonding to the electronic component, and the area of the filler
  • the particle diameter of the filler, the number density of fillers, and the like are set so that the occupation ratio is 25% or less.
  • the interparticle distance of fillers and the number density have been determined according to the terminal width of electronic parts, the distance between terminals, the particle diameter of filler, the arrangement of fillers, etc. The interparticle distance and number density of the filler are determined so that the rate is 25% or less.
  • an anisotropic conductive film is crimped
  • the optical performance of a filler can be adjusted by adjusting the area occupation rate etc. of a filler as mentioned above. The same can be said for materials that are directly connected to the appearance, such as a matte film.
  • ⁇ Resin layer> (Viscosity of resin layer)
  • the manufacturing method of a filler containing film, etc. it can determine suitably.
  • the thickness can be set to about 1000 Pa ⁇ s depending on the method for producing the filler-containing film.
  • a method for producing a filler-containing film when the filler is held on the surface of the resin layer in a predetermined arrangement and the filler is pushed into the resin layer, the resin layer is formed from the point that the resin layer can be formed into a film.
  • the minimum melt viscosity is preferably 1100 Pa ⁇ s or more.
  • a dent 2b is formed around the exposed portion of the filler 1 pushed into the resin layer 2 as shown in FIG. 1B, or a resin as shown in FIG. From the point of forming a dent 2c on the surface of the resin layer 2 immediately above the filler 1 pushed into the layer 2, it is preferably 1500 Pa ⁇ s or more, more preferably 2000 Pa ⁇ s or more, further preferably 3000 to 15000 Pa ⁇ s, Even more preferably, it is 3000 to 10,000 Pa ⁇ s.
  • This minimum melt viscosity can be obtained using a rotary rheometer (manufactured by TA Instruments Inc.) as an example, kept constant at a measurement pressure of 5 g, and using a measurement plate having a diameter of 8 mm, and more specifically in the temperature range. At 30 to 200 ° C., it can be obtained by setting the temperature rising rate 10 ° C./min, the measurement frequency 10 Hz, and the load fluctuation 5 g with respect to the measurement plate.
  • the minimum melt viscosity of the resin layer 2 By setting the minimum melt viscosity of the resin layer 2 to a high viscosity of 1500 Pa ⁇ s or more, unnecessary movement of the filler can be suppressed when the filler-containing film is pressure-bonded to an article, and in particular, the filler-containing film is an anisotropic conductive film. In this case, it is possible to prevent the conductive particles to be sandwiched between the terminals during anisotropic conductive connection from flowing due to resin flow.
  • the resin layer 2 when the filler 1 is pressed is such that the filler 1 is exposed from the resin layer 2.
  • the resin layer 2 is plastically deformed to form a highly viscous viscous material that forms a recess 2 b (FIG. 1B) in the resin layer 2 around the filler 1, or
  • a dent 2 c (FIG. 6) is formed on the surface of the resin layer 2 immediately above the filler 1.
  • the lower limit of the viscosity of the resin layer 2 at 60 ° C. is preferably 3000 Pa ⁇ s or more, more preferably 4000 Pa ⁇ s or more, further preferably 4500 Pa ⁇ s or more, and the upper limit is preferably 20000 Pa ⁇ s or less. Preferably it is 15000 Pa.s or less, More preferably, it is 10000 Pa.s or less. This measurement is performed by the same measurement method as that for the minimum melt viscosity, and can be obtained by extracting a value at a temperature of 60 ° C.
  • the specific viscosity of the resin layer 2 when the filler 1 is pushed into the resin layer 2 is preferably at least 3000 Pa ⁇ s, more preferably 4000 Pa, depending on the shape and depth of the recesses 2b and 2c to be formed.
  • S or more, more preferably 4500 Pa ⁇ s or more, and the upper limit is preferably 20000 Pa ⁇ s or less, more preferably 15000 Pa ⁇ s or less, and even more preferably 10000 Pa ⁇ s or less.
  • such a viscosity is preferably obtained at 40 to 80 ° C., more preferably 50 to 60 ° C.
  • the depression 2b (FIG. 1B) is formed around the filler 1 exposed from the resin layer 2, thereby preventing the filler 1 from being flattened when the filler-containing film is bonded to the article.
  • the resistance received from the resin is reduced compared to the case where there is no dent 2b.
  • the filler-containing film is an anisotropic conductive film
  • the conductive particles are easily sandwiched between the terminals at the time of anisotropic conductive connection, whereby the conduction performance is improved and the trapping property is improved.
  • the filler-containing film is compared with the case where there is no dent 2c.
  • the pressure at the time of pressure bonding to the article is easily concentrated on the filler 1. Therefore, when the filler-containing film is an anisotropic conductive film, the conductive particles are easily sandwiched between the terminals at the time of anisotropic conductive connection, so that the trapping property is improved and the conduction performance is improved.
  • Such improvement in trapping properties is not limited to anisotropic conductive films, and similar effects can be expected for filler-containing films other than anisotropic conductive films.
  • a filler-containing film (an anisotropic conductive film which is one embodiment thereof) 10A is composed of a filler dispersion layer 3 (FIG. 1B).
  • the filler 1 is regularly dispersed with the filler 1 exposed on one side of the resin layer 2.
  • the fillers 1 are not in contact with each other in the plan view of the film, the fillers 1 are regularly dispersed in the film thickness direction without overlapping each other, and the single layer filler layer in which the positions of the fillers 1 in the film thickness direction are aligned. Is configured.
  • an inclination 2b is formed with respect to the tangential plane 2p of the resin layer 2 at the center between adjacent fillers.
  • undulations 2c may be formed on the surface of the resin layer immediately above the filler 1 embedded in the resin layer 2 (FIG. 6).
  • inclination means a state in which the flatness of the surface of the resin layer is impaired in the vicinity of the filler 1 and a part of the resin layer is missing from the tangential plane 2p to reduce the amount of resin. means. In other words, in the inclination, the surface of the resin layer around the filler is missing with respect to the tangential plane.
  • “undulation” means a state in which the surface of the resin layer immediately above the filler has undulations, and the resin is reduced due to the presence of a portion having a height difference such as undulations. In other words, the amount of resin in the resin layer immediately above the filler is smaller than when the surface of the resin layer directly above the filler is in a tangential plane.
  • the filler-containing film is formed as an anisotropic conductive film by forming the slope 2b (FIG. 1B) around the filler 1 exposed from the resin layer 2, the anisotropic conductive Since the resistance received from the resin against the flattening of the filler 1 that occurs when the filler 1 is clamped between the terminals at the time of connection is reduced as compared to the case where there is no inclination 2b, the filler is easily clamped at the terminal. As a result, the conduction performance is improved and the trapping property is improved. This inclination is preferably along the outer shape of the filler.
  • the filler-containing films such as anisotropic conductive films.
  • the inclination and undulation may be partially lost by heat pressing the resin layer, and the present invention includes this.
  • the filler may be exposed at one point on the surface of the resin layer.
  • the filler-containing film is configured as an anisotropic conductive film, there are a variety of electronic parts to be connected. As long as tuning is performed according to these, it is desired that the degree of freedom in design is high so that various requirements can be satisfied. Therefore, it can be used even if the inclination or undulation is reduced or partially disappeared.
  • the undulation 2c (FIG. 6) is formed on the surface of the resin layer 2 immediately above the filler 1 that is buried without being exposed from the resin layer 2, the filler-containing film is different from the case of the inclination.
  • the filler-containing film is different from the case of the inclination.
  • the maximum depth Le of the slope 2b from the viewpoint of easily obtaining the effect of the slope 2b (FIG. 1B) of the resin layer 2 around the exposed portion of the filler and the undulation 2c (FIG. 6) of the resin layer immediately above the filler.
  • the particle diameter D of the filler 1 (Le / D) is preferably less than 50%, more preferably less than 30%, still more preferably 20 to 25%, and the maximum diameter Ld of the slope 2b or the undulation 2c
  • the ratio (Ld / D) of the filler 1 to the particle diameter D is preferably 100% or more, more preferably 100 to 150%, and the ratio of the maximum depth Lf of the undulation 2c to the particle diameter D of the filler 1 ( Lf / D) is greater than 0, preferably less than 10%, more preferably 5% or less.
  • the diameter Lc of the exposed (immediately above) portion of the filler 1 in the slope 2b or the undulation 2c can be made equal to or less than the particle diameter D of the filler 1, and is preferably 10 to 90% of the particle diameter D. Further, it may be exposed at one point on the top of the filler 1, or the particle diameter D may be completely embedded in the resin layer 2 and the diameter Lc may be zero.
  • the presence of the slope 2b and undulation 2c on the surface of the resin layer 2 can be confirmed by observing the cross section of a filler-containing film such as an anisotropic conductive film with a scanning electron microscope, This can also be confirmed in surface field observation.
  • the tilt 2b and the undulation 2c can be observed even with an optical microscope or a metal microscope.
  • the size of the slope 2b and the undulation 2c can be confirmed by adjusting the focus during image observation. The same applies even after the inclination or undulation is reduced by heat pressing as described above. This is because traces may remain.
  • the resin layer 2 may be conductive or insulating depending on the use of the filler-containing film, and may be plastic or curable, but can preferably be formed from an insulating curable resin composition.
  • it can be formed from an insulating thermopolymerizable composition containing a thermopolymerizable compound and a thermal polymerization initiator. You may make a thermopolymerizable composition contain a photoinitiator as needed.
  • An anisotropic conductive film is mentioned as what is formed from an insulating curable resin composition.
  • thermopolymerizable compound When a thermal polymerization initiator and a photopolymerization initiator are used in combination, one that also functions as a photopolymerizable compound may be used as the thermopolymerizable compound, and a photopolymerizable compound is contained separately from the thermopolymerizable compound. May be. Preferably, a photopolymerizable compound is contained separately from the thermally polymerizable compound.
  • a thermal cationic curing initiator is used as the thermal polymerization initiator
  • an epoxy resin is used as the thermal polymerizable compound
  • a radical photopolymerization initiator is used as the photopolymerization initiator
  • an acrylate compound is used as the photopolymerizable compound.
  • the photopolymerization initiator As the photopolymerization initiator, a plurality of types that react to light having different wavelengths may be contained. As a result, during the production of a filler-containing film such as an anisotropic conductive film, the primary photocuring of the resin constituting the resin layer and the photocuring of the resin for bonding electronic components to each other during anisotropic conductive connection, etc. The wavelength used for the secondary photocuring can be properly used. You may apply to uses other than an anisotropic conductive film.
  • photocuring during the production of the anisotropic conductive film, all or part of the photopolymerizable compound contained in the insulating resin layer can be photocured.
  • this photocuring the arrangement of the conductive particles 1 in the insulating resin layer 2 is maintained or fixed, and it is expected that the short circuit is suppressed and the trapping of the conductive particles is improved.
  • this photocuring is preferably performed when the ratio (La / D) between the layer thickness La of the insulating resin layer 2 and the average particle diameter D of the conductive particles 1 is less than 0.6.
  • the insulating resin layer 2 can more reliably hold or fix the arrangement of the conductive particles and adjust the viscosity of the insulating resin layer 2. This is in order to suppress a decrease in yield in the connection between electronic components using an anisotropic conductive film.
  • the amount of the photopolymerizable compound in the resin layer is preferably 30% by mass or less, more preferably 10% by mass or less, and still more preferably less than 2% by mass. This is because when the amount of the photopolymerizable compound is too large, the thrust applied to the pushing at the time of connection increases.
  • thermally polymerizable composition examples include a thermal radical polymerizable acrylate composition containing a (meth) acrylate compound and a thermal radical polymerization initiator, and a thermal cationic polymerizable epoxy system containing an epoxy compound and a thermal cationic polymerization initiator.
  • thermal cationic polymerizable epoxy composition containing a thermal cationic polymerization initiator examples include compositions.
  • a thermal anionic polymerizable epoxy composition containing a thermal anionic polymerization initiator may be used.
  • a plurality of kinds of polymerizable compounds may be used in combination as long as they do not cause any trouble. Examples of combined use include combined use of a thermal cationic polymerizable compound and a thermal radical polymerizable compound.
  • the (meth) acrylate compound a conventionally known thermal polymerization type (meth) acrylate monomer can be used.
  • a monofunctional (meth) acrylate monomer or a bifunctional or higher polyfunctional (meth) acrylate monomer can be used.
  • thermal radical polymerization initiator examples include organic peroxides and azo compounds.
  • organic peroxides that does not generate nitrogen that causes bubbles can be preferably used.
  • the amount of the thermal radical polymerization initiator used is preferably 2 to 60 parts by weight, more preferably 100 parts by weight of the (meth) acrylate compound. 5 to 40 parts by mass.
  • the epoxy compound examples include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a novolac type epoxy resin, a modified epoxy resin thereof, an alicyclic epoxy resin, and the like. it can.
  • an oxetane compound may be used in combination.
  • thermal cationic polymerization initiator those known as thermal cationic polymerization initiators for epoxy compounds can be employed.
  • thermal cationic polymerization initiators for epoxy compounds.
  • iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, etc. that generate an acid by heat are used.
  • an aromatic sulfonium salt showing a good potential with respect to temperature can be preferably used.
  • the amount of the thermal cationic polymerization initiator used is preferably 2 to 60 mass relative to 100 parts by mass of the epoxy compound. Part, more preferably 5 to 40 parts by weight.
  • the thermopolymerizable composition preferably contains a film-forming resin and a silane coupling agent.
  • the film-forming resin include phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin resin, and the like. be able to.
  • a phenoxy resin can be preferably used from the viewpoint of film forming property, workability, and connection reliability.
  • the weight average molecular weight is preferably 10,000 or more.
  • the silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are mainly alkoxysilane derivatives.
  • an insulating filler may be contained in the thermopolymerizable composition in order to adjust the melt viscosity.
  • examples of this include silica powder and alumina powder.
  • a fine filler having an insulating filler particle size of 20 to 1000 nm is preferable, and the blending amount is preferably 5 to 50 parts by mass with respect to 100 parts by mass of a thermally polymerizable compound (photopolymerizable compound) such as an epoxy compound.
  • the insulating filler contained separately from the filler 1 is preferably used when the use of the filler-containing film is an anisotropic conductive film, but may not be insulating depending on the use. For example, a conductive fine filler may be used.
  • the resin layer forming the filler dispersion layer appropriately contains a finer insulating filler (so-called nanofiller) different from the filler 1 as necessary. be able to.
  • the filler-containing film of the present invention includes a filler, a softening agent, an accelerator, an anti-aging agent, a colorant (pigment, dye), an organic solvent, an ion catcher agent, etc. in addition to the above-described insulating or conductive filler. You may make it contain.
  • the ratio (La / D) between the layer thickness La of the resin layer 2 and the particle diameter D of the filler 1 is 0.3 or more and 1.3 or less. is there.
  • the particle diameter D of the filler 1 means the average particle diameter.
  • this ratio (La / D) is preferably greater than 0.3, more preferably 0.4 or more. Further, it is preferably 1 or less from the viewpoint of suppressing excessive resin flow during anisotropic conductive connection and realizing low-pressure mounting.
  • the ratio (La / D) is preferably less than 1, more preferably less than 0.6, Preferably it is 0.5 or less. In this case, the filler 1 may penetrate the resin layer 2.
  • the filler 1 has an embedding rate (Lb / D) of 30% or more and 100% or less, as shown in FIG.
  • the filler 1 is embedded so as to protrude from one surface of the resin layer 2.
  • the filler-containing film of the present invention as in the filler-containing film (an anisotropic conductive film which is one embodiment) 10B shown in FIG. A mode in which the film surface is exposed from one side of the layer 2 and embedded so that the film surface and the top portion 1a of the filler 1 are substantially flush with each other, a filler-containing film shown in FIG.
  • the filler 1 is exposed from the resin layer 2 at one point of the top 1a, and the filler 1 is from the resin layer 2 as in the filler-containing film (an anisotropic conductive film which is one embodiment) 10F shown in FIG.
  • the surface of the resin layer 2 immediately above the filler 1 is not exposed and has a recess (a portion recessed from the surface of the surrounding resin layer) 2c.
  • the embedding rate is the surface 2a of the resin layer 2 in which the filler 1 is embedded (the surface on the side where the filler 1 is exposed, of the front and back surfaces of the resin layer 2, or the filler is the resin layer 2).
  • the distance between the tangent plane 2p at the center between adjacent fillers and the deepest part of the filler 1 is the amount of filling Lb.
  • it is the ratio (Lb / D) of the embedding amount Lb to the particle diameter D of the filler 1 (FIG. 1B). Therefore, as shown in FIG. 4, when the filler 1 is embedded deeper than the film surface, the embedding rate (Lb / D) is greater than 100%, and an example is 105% or less. .
  • the filling rate (Lb / D) when the filler 1 just penetrates the resin layer 2 is 100%.
  • the filler 1 can be maintained in a predetermined particle dispersion state or a predetermined arrangement by the resin layer 2, and the embedding rate is 100% or less, preferably 70. % Or less, more preferably less than 60%, when the filler-containing film of the resin constituting the resin layer 2 is configured as an anisotropic conductive film, the filler is flowed and captured during anisotropic conductive connection.
  • the amount of resin that acts to reduce the rate can be reduced. Moreover, since the unnecessary resin layer 2 is reduced, the filler is easily pushed.
  • the filler 1 tends to roll on the resin layer 2 during anisotropic conductive connection, and it is difficult to maintain the filler 1 in a predetermined position, so that the capture rate is lowered. . Further, when the embedding rate exceeds 100% and the filler is completely buried in the resin layer 2, the filler 1 is caused to flow by the resin flow of the resin layer 2 at the time of anisotropic conductive connection, and the trapping property is reduced. A short circuit may occur. Moreover, the effect which the characteristic improves by aligning the grade which the filler is exposed from the resin layer 2 can be anticipated.
  • an embedding rate (Lb / D) is 99% or more of the total number of fillers contained in the anisotropic conductive film which is one aspect
  • the resin layer 2 and the top portion 1a of the filler 1 are substantially flush with each other.
  • the filler-containing film is configured as an anisotropic conductive film as compared to the filler-containing film 10A (FIG. 1B) in which the filler 1 protrudes from 2, the film thickness direction around each filler 1 during anisotropic conductive connection
  • the advantage is that the amount of resin in is uniform.
  • the filler-containing film 10E (FIG.
  • the filler when the filler is pushed into the terminal or the bump in the anisotropic conductive connection, the amount of resin around the top 1a of the filler 1 is uniform, so that the filler 1 is difficult to move. In addition, it is possible to expect an effect of increasing the capturing property and suppressing the short circuit. This is particularly effective when the fine pitch and the space between the bumps are narrow.
  • the surface in which the filler 1 is embedded among the front and back surfaces of the resin layer 2 are recessed as compared with the surrounding flat surface 2a.
  • the dent 2b may be formed when the filler 1 is pushed into the resin layer 2 during the production of the filler-containing film and the viscosity of the resin layer at the time of pushing is in the above-described preferred viscosity range.
  • the filler-containing film When the filler-containing film is configured as an anisotropic conductive film due to the depression 2b on the surface of the resin layer 2, the filler 1 is flattened when the filler 1 is sandwiched between terminals during anisotropic conductive connection. On the other hand, the resistance received from the resin layer 2 is reduced as compared with the case where there is no recess 2b, and the effect that the pushing of the filler into the terminal tends to be uniform can be expected. In this way, the filler-containing film has characteristics in performance and quality because the filler and the resin are more specific than those obtained by simply applying a kneaded binder ( Performance improvement and quality stabilization can be expected.
  • the dent 2c in the filler-containing film (an anisotropic conductive film which is one aspect thereof) 10F (FIG. 6) is also used when the filler 1 is pushed into the resin layer 2 during the production of the filler-containing film. Is in the preferred viscosity range described above. Since the recess 2c is formed on the surface of the resin layer 2, when the filler-containing film is configured as an anisotropic conductive film as compared with the case where there is no recess 2c, the pressure at the time of anisotropic conductive connection is filler. 1 can be easily concentrated, and the effect that the push-in of the filler in the terminal tends to be uniform can be expected. Thus, as a filler containing film, the difference from what was obtained by apply
  • dents 2b and 2c on the surface of the resin layer 2 can be confirmed by observing a cross section of the filler-containing film with a scanning electron microscope, and can also be confirmed with surface field observation with a scanning electron microscope. It can also be observed with an optical microscope or a metal microscope.
  • the second resin layer 4 having a lower minimum melt viscosity than the resin constituting the resin layer 2 can be laminated on the filler dispersion layer 3 (FIGS. 7 to 9). . Since the second resin layer 4 has a lower melt viscosity than the resin layer 2, when the filler-containing film is configured as an anisotropic conductive film, it is formed by terminals such as bumps of electronic components during anisotropic conductive connection. It is possible to improve the adhesiveness between the electronic components facing each other by filling the space.
  • the second resin layer 4 having a viscosity lower than that of the resin layer 2 at the time of anisotropic conductive connection, the adhesion between the electronic components can be improved, and the flow of the second resin layer 4 can be improved. Because of its high performance, it is possible to make it difficult to prevent the filler from being pinched or pushed.
  • the second resin layer 4 is laminated on the filler dispersion layer 3
  • the second resin layer is applied to the electronic component pressed by the tool regardless of whether the second resin layer 4 is on the formation surface of the recess 2b. 4 is preferably applied (the resin layer 2 is applied to an electronic component placed on the stage).
  • the minimum melt viscosity ratio between the resin layer 2 and the second resin layer 4 is that the space formed by the electrodes and bumps of the electronic component is more easily filled with the second resin layer 4 as the difference is increased. Adhesiveness can be improved. In addition, as the difference is increased, the amount of movement of the resin present in the filler dispersion layer 3 is relatively reduced, and the filler 1 between the terminals is less likely to be caused to flow by the resin flow, thereby improving the filler capturing property at the terminals. This is preferable. Practically, the minimum melt viscosity ratio between the resin layer 2 and the second resin layer 4 is preferably 2 or more, more preferably 5 or more, and still more preferably 8 or more.
  • the preferable minimum melt viscosity of the second resin layer 4 more specifically satisfies the above-mentioned ratio and is 3000 Pa ⁇ s or less, more preferably 2000 Pa ⁇ s or less, and particularly 100 to 2000 Pa ⁇ s.
  • the second resin layer 4 can be formed by adjusting the viscosity in the same resin composition as the resin layer 2.
  • the layer thickness of the second resin layer 4 is preferably 4 to 20 ⁇ m. Alternatively, it is preferably 1 to 8 times the particle diameter of the filler.
  • the minimum melt viscosity of the filler-containing films 10G, 10H, and 10I combined with the resin layer 2 and the second resin layer 4 is preferably 200 to 4000 Pa ⁇ s.
  • the second resin layer 4 can be laminated on one side of the filler dispersion layer 3 like a filler-containing film 10 ⁇ / b> G shown in FIG. 7.
  • the relationship between the particle diameter D of the filler 1 and the layer thickness La of the resin layer 2 is such that La / D is 0.3 or more and 1.3 or less as described above.
  • the second resin layer 4 is laminated on the protruding surface, and the second resin layer 4 The filler 1 may be bitten.
  • the resin layer 4 is preferably laminated as described above, and more preferably 90% or less.
  • the second resin layer 4 may be laminated on the surface opposite to the surface of the resin layer 2 in which the filler 1 is embedded.
  • a third resin layer may be provided on the opposite side across the second resin layer 4 and the resin layer 2.
  • the third resin layer can function as a tack layer.
  • it may be provided to fill a space formed by the electrodes and bumps of the electronic component.
  • the resin composition, viscosity, and thickness of the third resin layer may be the same as or different from those of the second resin layer.
  • the minimum melt viscosity of the filler-containing film obtained by combining the resin layer 2, the second resin layer 4, and the third resin layer is not particularly limited, but can be 200 to 4000 Pa ⁇ s.
  • a plurality of filler dispersion layers may be laminated, and a layer that does not contain a filler like the second resin layer may be interposed between the laminated filler dispersion layers, A second resin layer or a third resin layer may be provided on the outermost layer.
  • the filler 1 is held in a predetermined arrangement on the surface of the resin layer 2, and the filler 1 is formed on the resin layer 2 with a flat plate or a roller. Push in.
  • the embedding amount Lb of the filler 1 in the resin layer 2 can be adjusted by the pressing force, temperature, etc. when the filler 1 is pushed in, and the presence / absence, shape and depth of the recesses 2b and 2c are It can be adjusted according to the viscosity, indentation speed, temperature, etc. of the resin layer 2 at the time.
  • the method for holding the filler 1 on the resin layer 2 is not particularly limited.
  • the filler 1 is held on the resin layer 2 using a transfer mold.
  • a transfer mold for example, a known opening forming method such as a photolithographic method is used for an inorganic material such as silicon, various ceramics, glass, and stainless steel, and an organic transfer material such as various resins. Can be used.
  • the transfer mold can take a plate shape, a roll shape, or the like.
  • the anisotropic conductive film that is a filler-containing film has a certain length in order to economically connect electronic components using the anisotropic conductive film. It is preferable that Therefore, the anisotropic conductive film is manufactured to have a length of preferably 5 m or more, more preferably 10 m or more, and further preferably 25 m or more. On the other hand, if the anisotropic conductive film is excessively long, it becomes impossible to use a conventional connection device used when an electronic component is manufactured using the anisotropic conductive film, and the handleability is also poor.
  • the length of the anisotropic conductive film is preferably 5000 m or less, more preferably 1000 m or less, and even more preferably 500 m or less.
  • Such a long body of the anisotropic conductive film is preferably a wound body wound around a core from the viewpoint of excellent handleability. Even for applications other than anisotropic conductive films, the upper limit is considered to be the same as above for the same or similar reasons.
  • the filler-containing film of the present invention can be used in the same manner as the conventional filler-containing film, and the article is not particularly limited as long as the filler-containing film can be bonded. It can be attached to various articles according to the use of the filler-containing film by pressure bonding, preferably by heat pressure bonding. At the time of bonding, light irradiation may be used, and heat and light may be used in combination. For example, when the resin layer of the filler-containing film has sufficient adhesiveness to the article to which the filler-containing film is bonded, the filler-containing film is a single article by lightly pressing the resin layer of the filler-containing film against the article. The film sticking body stuck on the surface can be obtained.
  • the surface of the article is not limited to a flat surface, and may be uneven, or may be bent as a whole.
  • the filler-containing film may be bonded to the article using a pressure roller. Thereby, the filler of a filler containing film and articles
  • a filler-containing film may be interposed between two facing articles, the two facing articles may be joined with a thermocompression roller or a pressing tool, and the filler may be sandwiched between the articles. Further, the filler-containing film may be sandwiched between the articles so that the filler and the article are not in direct contact with each other.
  • the filler-containing film is an anisotropic conductive film
  • a first electronic component such as an IC chip, an IC module, or an FPC, an FPC, a glass substrate through the anisotropic conductive film
  • a second electronic component such as a plastic substrate, a rigid substrate, or a ceramic substrate.
  • IC chips and wafers may be stacked using an anisotropic conductive film to form a multilayer.
  • the electronic component connected with the anisotropic conductive film of this invention is not limited to the above-mentioned electronic component. It can be used for various electronic parts that have been diversified in recent years.
  • the present invention includes a connection structure in which the filler-containing film of the present invention is attached to various articles by pressure bonding, and a method for producing the connection structure.
  • the filler-containing film is an anisotropic conductive film
  • a method for manufacturing a connection structure for anisotropic conductive connection between electronic components using the anisotropic conductive film, and a connection obtained thereby A structure, that is, a connection structure in which electronic components are anisotropically conductively connected by the anisotropic conductive film of the present invention is also included.
  • the anisotropic conductive film is used for second electronic components such as various substrates.
  • the first electronic component such as an IC chip on the side where the conductive particles 1 of the anisotropic conductive film temporarily bonded and temporarily bonded from the side where the conductive particles 1 are embedded in the surface is not embedded in the surface. And can be manufactured by thermocompression bonding.
  • the insulating resin layer of the anisotropic conductive film contains not only a thermal polymerization initiator and a thermal polymerizable compound, but also a photopolymerization initiator and a photopolymerizable compound (may be the same as the thermal polymerizable compound), A pressure bonding method using both light and heat may be used. In this way, unintentional movement of the conductive particles can be minimized. Further, the side on which the conductive particles are not embedded may be temporarily attached to the second electronic component for use. Note that the anisotropic conductive film may be temporarily attached to the first electronic component instead of the second electronic component.
  • the anisotropic conductive film is formed of a laminate of the conductive particle dispersion layer 3 and the second insulating resin layer 4, the conductive particle dispersion layer 3 is temporarily attached to a second electronic component such as various substrates. Then, the first electronic component such as an IC chip is aligned and placed on the second insulating resin layer 4 side of the anisotropic conductive film that has been temporarily pressure-bonded, and thermocompression-bonded.
  • the second insulating resin layer 4 side of the anisotropic conductive film may be temporarily attached to the first electronic component.
  • the conductive particle dispersion layer 3 side can be temporarily attached to the first electronic component for use.
  • anisotropic conductive film which is one embodiment of the filler-containing film of the present invention will be specifically described with reference to examples.
  • Examples 1 to 5 Comparative Example 1 (1) Production of anisotropic conductive film
  • an insulating resin layer forming resin composition for forming a conductive particle dispersion layer and a second insulating resin layer forming resin composition were respectively prepared. Prepared.
  • the minimum melt viscosity of the insulating resin layer was 3000 Pa ⁇ s or more, and the ratio of the minimum melt viscosity of the insulating resin layer to the minimum melt viscosity of the second insulating resin layer was 2 or more.
  • a resin composition for forming an insulating resin layer (high viscosity resin layer) was coated on a PET film having a film thickness of 50 ⁇ m with a bar coater, dried in an oven at 80 ° C. for 5 minutes, and shown in Table 2 on the PET film. An insulating resin layer having a thickness was formed. Similarly, a second insulating resin layer was formed on the PET film with the thickness shown in Table 2.
  • the conductive particles (average particle diameter 3.5 ⁇ m) 1 have a hexagonal lattice arrangement shown in FIG. 1A in a plan view so that the distance between the conductive particles is 3.5 ⁇ m and the number density is 23600 particles / mm 2.
  • a mold was produced. A well-known transparent resin pellet was poured into this mold in a molten state, and cooled and hardened to form a resin mold having recesses arranged as shown in FIG. 1A.
  • This resin mold was filled with conductive particles (Sekisui Chemical Co., Ltd., Ni / Au plated resin particles, average particle size 3.5 ⁇ m), and the above-mentioned insulating resin layer was covered thereon, It stuck by pressing at 0.5 MPa. Then, the insulating resin layer is peeled from the mold, and the conductive particles on the insulating resin layer are pressed into the insulating resin layer (pressing conditions: 60 to 70 ° C., 0.5 MPa) to form a conductive particle dispersion layer. (Examples 1 to 5).
  • conductive resin was mixed with the resin composition forming the insulating resin layer shown in Table 1, and an insulating resin layer (number density of 50000 / mm 2 ) in which the conductive particles were randomly dispersed in a single layer was obtained. Formed.
  • the embedment rate (Lb / D) of each example and comparative example and the embedded state of conductive particles in the insulating resin layer (whether or not the conductive particles are exposed from the insulating resin layer) were observed with a metal microscope, and the conductive particles The area occupancy of was determined.
  • the number ratio (non-contact ratio of the conductive particles) in which the conductive particles exist in non-contact with each other with respect to the entire conductive particles was determined by observing 10 locations of 50 ⁇ m ⁇ 50 ⁇ m with a metal microscope. It shows in Table 2.
  • a two-layer type anisotropic conductive film was produced by laminating a second insulating resin layer on the surface of the conductive particle dispersion layer (Examples 1 to 5, Comparative Example 1).
  • the second insulating resin layer was laminated on the surface of the conductive particle dispersion layer on the side where the conductive particles were pushed.
  • the conduction resistance of the obtained connection for evaluation was measured by a four-terminal method.
  • the initial conduction resistance is preferably 2 ⁇ or less in practice, and more preferably 0.6 ⁇ or less.
  • (B) Conductivity reliability Conductivity after the connected object for evaluation obtained in (a) was placed in a constant temperature bath at a temperature of 85 ° C. and a humidity of 85% RH for 500 hours was measured in the same manner as the initial conductivity resistance.
  • the conduction resistance is preferably 5 ⁇ or less practically.
  • (C) Average number of particles captured The same evaluation IC as in (a) was used, and this evaluation IC and the ITO pattern glass substrate corresponding to the terminal pattern were heated and pressurized under the same conditions as in (a) and heated. The number of trapped conductive particles was measured for 100 terminal pairs after pressurization, and the average was obtained. The average number of particles captured is preferably 3 or more per terminal for practical use.
  • IC for short-circuit rate evaluation (comb tooth TEG (test element group of 7.5 ⁇ m space)) Outline 15 x 13mm Thickness 0.5mm Bump specifications Size 25 ⁇ 140 ⁇ m, distance between bumps 7.5 ⁇ m, bump height 15 ⁇ m
  • Short-circuit rate evaluation criteria A Less than 50 ppm B: 50 ppm or more and less than 200 ppm C: 200 ppm or more
  • the anisotropic conductive films of Examples 1 to 5 have a ratio La / D between the layer thickness La of the insulating resin layer 2 and the average particle diameter D of the conductive particles of 0.3 to 1.3.
  • the initial conduction resistance, conduction reliability, and average particle trapping number were all good, and the measured values were stable and stable.
  • La / D is preferably larger than 0.3
  • Example 2 with La / D of 0.5 has both initial conduction resistance, conduction reliability, and average particle capture number. It turns out that it was excellent.
  • the range of 0.3 to 1.3 is allowed as the numerical value of La / D.
  • the thickness of the insulating resin layer 2 is a predetermined value at the time of design. This means that the thickness may vary from the thickness, which is advantageous in terms of the manufacturing cost of the anisotropic conductive film, and particularly advantageous when the anisotropic conductive film is long and there is a concern about fluctuations in the thickness of the resin layer. Become. In Example 3, as in Examples 4 and 5, there were some portions where the insulating resin layer and the conductive particles were flush with each other.
  • Comparative Example 1 the number density of the conductive particles was high, the area occupation ratio exceeded 25%, the thrust by the pressing jig was insufficient, and the conduction reliability was inferior. There was a large variation in the average number of particles captured. Also, the short rate was inferior.
  • the heating and pressurizing conditions were set to a temperature of 180 ° C., a pressure of 30 MPa, and the pressure was lowered.
  • the initial conduction resistance was 0.2 ⁇
  • Comparative Example 1 it was 1.2 ⁇ .
  • the pressure was increased under the heating and pressurizing conditions, the temperature was 180 ° C., the pressure was 90 MPa, and the time was 5 seconds, the initial conduction resistance of all of Example 1, Example 2, and Comparative Example 1 was 0.2 ⁇ .
  • Comparative Example 1 it was found that a pressure of 90 MPa was necessary to achieve the initial conduction resistance of 0.2 ⁇ , but in Examples 1 and 2, it was found that the pressure could be achieved at 30 MPa. According to the anisotropic conductive film, it was confirmed that low-pressure mounting was possible.
  • Filler (conductive particles) 2 Resin layer (insulating resin layer) 2b dent (tilt) 2c Dent (undulation) 3 Filler dispersion layer (conductive particle dispersion layer) 4 Second resin layer 10A, 10B, 10C, 10D, 10E, 10F, 10G, 10H, 10I Filler-containing film (an anisotropic conductive film which is one embodiment thereof) La Layer thickness of the resin layer Lb Distance between the tangent plane at the center between adjacent fillers and the deepest part of the filler Lc Diameter of the exposed (immediately above) portion of the filler in the inclination or undulation Ld Inclination of the resin layer around or immediately above the filler Or the maximum undulation diameter Le The maximum depth of inclination in the resin layer around the filler Lf The maximum undulation depth in the resin layer immediately above the filler

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

電子部品に、より低い推力で精密に押し付けることのできるフィラー含有フィルムは、樹脂層にフィラーが規則的に配置されているフィラー分散層を有し、平面視におけるフィラーの面積占有率が25%以下、樹脂層の層厚(La)とフィラーの平均径(D)との比(La/D)が0.3以上1.3以下、フィラー全体に対し、フィラー同士が互いに非接触で存在する個数割合が95%以上となるフィルムである。フィラー全体に対し、フィラー同士が互いに非接触で存在する個数割合は、好ましくは99.5%以上である。

Description

フィラー含有フィルム
 本発明は、異方性導電フィルム等のフィラー含有フィルムに関する。
 フィラーが樹脂層に分散しているフィラー含有フィルムは、艶消しフィルム、コンデンサー用フィルム、光学フィルム、ラベル用フィルム、耐電防止用フィルム、異方性導電フィルムなど多種多様の用途で使用されている(特許文献1、特許文献2、特許文献3、特許文献4)。
 例えば、フィラー含有フィルムの一態様である異方性導電フィルムを用いて異方性導電接続を行うにあたり、端子が捕捉する導電粒子数のばらつきを抑えるため、異方性導電フィルムにおいて導電粒子を特定の配列にすること(特許文献5)、対向する端子の接続信頼性の確保と、隣り合う端子間でのショートの抑制を両立させるために、異方性導電フィルムにおいて互いに離間した導電粒子の数を所定の割合以上とすること(特許文献6)等が提案されている。
特開2006-15680号公報 特開2015-138904号公報 特開2013-103368号公報 特開2014-183266号公報 特許4887700号公報 特開2015-167106号公報
 しかしながら、従来、押圧治具を用いて異方性導電フィルムを電子部品に熱圧着するにあたり、異方性導電フィルムに含有させる導電粒子の個数密度と、押圧治具に必要とされる推力との関係について詳細には検討されていない。
 そのため、端子の接続信頼性の確保とショートの抑制の点から異方性導電フィルムにおける導電粒子の個数密度を定めても、それを実際に押圧治具にセットして異方性導電接続のために熱圧着をすると、導電粒子を端子に押し込むために押圧治具に必要とされる推力が増加し、従前の押圧治具では対応できない場合があり、この場合に押圧治具の改造などを行うと、コストの増加が懸念される。
 これに対し、本発明は、フィラー含有フィルムを物品に接続する場合に、例えば異方性導電フィルムを使用して電子部品を接続する場合において、端子における導電粒子の捕捉性を高め、導通特性を改善し、かつ異方性導電フィルム等のフィラー含有フィルムを電子部品に押し付ける押圧治具に必要とされる推力が過度に高くならないようにすることを課題とする。また、フィラー含有フィルムのフィラーの粒子径とこれを保持する層の厚みとの間の関係を指標として当該フィラー含有フィルムの特性をコントロール(上述した、異方性導電フィルムにおける押圧治具に必要とされる推力の課題はその一例となる)できるようにすることも課題となる。
 本発明者は、フィラー含有フィルムを物品に圧着する際にその特性をフィラーの粒子径とこれを保持する層の厚みの比を特定の範囲とすることや、フィラーを規則的に分散させること、フィラー同士が非接触で存在する個数割合を高めること、また、フィラーの面積占有率を調整すること等により、フィラー含有フィルムの特性を調整できることを見出し、本発明を完成させた。その一例として異方性導電フィルムで具体的に説明すると、異方性導電フィルムを電子部品に熱圧着する際に端子における導電粒子等のフィラーの捕捉性を高め、かつ押圧治具に必要とされる推力を低減させるには、導電粒子等のフィラーを樹脂層(好ましくは絶縁性樹脂層)に規則的に分散させ、導電粒子等のフィラー同士が非接触で存在する個数割合を高めること、樹脂層の厚みとフィラーの平均粒子径の比を特定の範囲とすること、及び異方性導電フィルム等のフィラー含有フィルムにおけるフィラーの面積占有率を調整することが有効であることを見出し、本発明を完成させた。
 即ち、本発明は、樹脂層にフィラーが規則的に配置されているフィラー分散層を有するフィラー含有フィルムであって、
 平面視におけるフィラーの面積占有率が25%以下、
 樹脂層の層厚Laとフィラーの粒子径Dとの比La/Dが0.3以上1.3以下、
 フィラー全体に対し、フィラー同士が互いに非接触で存在する個数割合が95%以上であるフィラー含有フィルムを提供する。特に本発明は、フィラー含有フィルムの好ましい一態様として、フィラーが導電粒子であり、フィラー分散層の樹脂層が絶縁性樹脂層であり、異方性導電フィルムとして使用されるフィラー含有フィルムを提供する。
 また、本発明は、上述のフィラー含有フィルムが物品に貼着しているフィルム貼着体、上述のフィラー含有フィルムを介して第1物品と第2物品とが接続されている接続構造体、特に、異方性導電フィルムとして使用されるフィラー含有フィルムを介して第1電子部品と第2電子部品とが異方性導電接続されている接続構造体を提供する。更に、本発明は、上述のフィラー含有フィルムを介して第1物品と第2物品を圧着する接続構造体の製造方法、並びに、第1物品、第2物品をそれぞれ第1電子部品、第2電子部品とし、異方性導電フィルムとして使用されるフィラー含有フィルムを介して第1電子部品と第2電子部品を熱圧着することにより第1電子部品と第2電子部品が異方性導電接続された接続構造体を製造する、接続構造体の製造方法を提供する。
 本発明のフィラー含有フィルム(その一態様である異方性導電フィルム)によれば、導電粒子等のフィラーが樹脂層(好ましくは絶縁性樹脂層)に規則的に分散し、フィラー全体に対してフィラー同士が互いに非接触で存在する個数割合が95%以上であるため、異方性導電フィルム等のフィラー含有フィルムを電子部品に熱圧着する際に各フィラーに均等に押圧がかかり、また、樹脂層の層厚Laとフィラーの平均粒子径Dとの比La/Dが0.3以上1.3以下であるため、異方性導電フィルム等のフィラー含有フィルムを電子部品に熱圧着する際にフィラーの位置ずれが起こり難くなるので、圧着部位におけるフィラーの配列や分散状態を圧着前の状態に維持することができる。したがって、異方性導電フィルムのフィラーが端子に捕捉され易くなる。これは異方性導電フィルム以外の接続においても、同様の傾向が得られる。
 さらに、本発明のフィラー含有フィルム(その一態様である異方性導電フィルム)によれば、導電粒子等のフィラーの面積占有率が25%以下であるため、フィラーを低圧で物品(電子部品)に押し付けることを確保でき、異方性導電フィルム等のフィラー含有フィルムを電子部品に圧着する際に、押圧治具に必要とされる推力が過度に高くなることを防止できる。また、他の態様としては例えば光学フィルムがあるが、フィラーの樹脂層における厚み方向および平面視における非接触で独立した個数割合を調整することで、フィラーの光学的な性能を調整することができる。艶消しフィルムなど外観に直結するものにも同様のことが言える。
図1Aは、実施例のフィラー含有フィルム(その一態様である異方性導電フィルム)10Aにおけるフィラー(導電粒子)の配置を示す平面図である。 図1Bは、実施例のフィラー含有フィルム(その一態様である異方性導電フィルム)10Aの断面図である。 図2は、実施例のフィラー含有フィルム(その一態様である異方性導電フィルム)10Bの断面図である。 図3は、実施例のフィラー含有フィルム(その一態様である異方性導電フィルム)10Cの断面図である。 図4は、実施例のフィラー含有フィルム(その一態様である異方性導電フィルム)10Dの断面図である。 図5は、実施例のフィラー含有フィルム(その一態様である異方性導電フィルム)10Eの断面図である。 図6は、実施例のフィラー含有フィルム(その一態様である異方性導電フィルム)10Fの断面図である。 図7は、実施例のフィラー含有フィルム(その一態様である異方性導電フィルム)10Gの断面図である。 図8は、実施例のフィラー含有フィルム(その一態様である異方性導電フィルム)10Hの断面図である。 図9は、実施例のフィラー含有フィルム(その一態様である異方性導電フィルム)10Iの断面図である。
 以下、本発明のフィラー含有フィルムの一態様である異方性導電フィルムを主にして、図面を参照しつつ詳細に説明する。なお、各図中、同一符号は、同一又は同等の構成要素を表している。
<フィラー含有フィルムの全体構成>
 図1Aは、本発明のフィラー含有フィルム(その一態様である異方性導電フィルム)10Aについて、フィラー(又は導電粒子)1の配置を説明する平面図である。また、図1Bは、フィラー含有フィルム10AのX-X断面図である。
 このフィラー含有フィルム10Aのフィラー分散層(又は導電粒子分散層)3では、最低溶融粘度が比較的高粘度の樹脂から形成された樹脂層2(又は絶縁性樹脂層)の片面にフィラー1が規則的な配列状態で分散している。
<フィラー>
 フィラー1は、フィラー含有フィルムの用途に応じて、公知の無機系フィラー(金属、金属酸化物、金属窒化物など)、有機系フィラー(樹脂粒子、ゴム粒子など)、有機系材料と無機系材料が混在したフィラー(例えば、コアが樹脂材料で形成され、表面が金属メッキされている粒子(金属被覆樹脂粒子)、導電粒子の表面に絶縁性微粒子を付着させたもの、導電粒子の表面を絶縁処理したもの等)から、硬さ、光学的性能などの用途に求められる性能に応じて適宜選択される。例えば、光学フィルムや艶消しフィルムでは、シリカフィラー、酸化チタンフィラー、スチレンフィラー、アクリルフィラー、メラミンフィラーや種々のチタン酸塩等を使用することができる。コンデンサー用フィルムでは、酸化チタン、チタン酸マグネシウム、チタン酸亜鉛、チタン酸ビスマス、酸化ランタン、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸鉛及びこれらの混合物等を使用することができる。接着フィルムではポリマー系のゴム粒子、シリコーンゴム粒子等を含有させることができる。異方性導電フィルムでは導電粒子を含有させる。導電粒子としては、ニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、ハンダなどの合金粒子、金属被覆樹脂粒子、表面に絶縁性微粒子が付着している金属被覆樹脂粒子などが挙げられる。2種以上を併用することもできる。中でも、金属被覆樹脂粒子が、接続された後に樹脂粒子が反発することで端子との接触が維持され易くなり、導通性能が安定する点から好ましい。また、導電粒子の表面には公知の技術によって、導通特性に支障を来さない絶縁処理が施されていてもよい。上述の用途別に挙げたフィラーは、当該用途に限定されるものではなく、必要に応じて他の用途のフィラー含有フィルムに含有させてもよい。また、各用途のフィラー含有フィルムでは、必要に応じて2種以上のフィラーを併用することができる。
 フィラーの形状は、フィラー含有フィルムの用途に応じ、球形、楕円球、柱状、針状、それらの組み合わせ等から適宜選択して定められる。フィラー配置の確認が容易になり、均等な状態を維持し易い点から、球形が好ましい。特に、フィラー含有フィルムを異方性導電フィルムとして構成した場合、フィラーである導電粒子が、略真球であることが好ましい。導電粒子として略真球のものを使用することにより、例えば、特開2014-60150号公報に記載のように転写型を用いて導電粒子を配列させた異方性導電フィルムを製造するにあたり、転写型上で導電粒子が滑らかに転がるので、導電粒子を転写型上の所定の位置へ高精度に充填することができる。したがって、導電粒子を精確に配置することができる。
 フィラー1の粒子径Dは、配線高さのばらつきに対応できるようにし、また、導通抵抗の上昇を抑制し、且つショートを抑制するために、好ましくは1μm以上30μm以下、より好ましくは3μm以上9μm以下である。樹脂層2に分散させる前のフィラーの粒子径は、一般的な粒度分布測定装置により測定することができ、また、平均粒子径も粒度分布測定装置を用いて求めることができる。測定装置としては、一例としてFPIA-3000(マルバーン社)を挙げることができる。異方性導電フィルム等のフィラー含有フィルムにおける導電粒子等のフィラーの粒子径Dは、SEMなどの電子顕微鏡観察から求めることができる。この場合、フィラーの粒子径Dを測定するサンプル数を200以上とすることが望ましい。また、フィラーの形状が球形でない場合、フィラー含有フィルムの平面画像又は断面画像に基づき最大長または球形に模した形状の直径をフィラーの粒子径Dとすることができる。
<フィラーの配列>
 本発明のフィラー含有フィルム(その一態様である異方性導電フィルム)においては、導電粒子等のフィラー1がフィルムの平面視にてランダムではなく、規則的に配置されている。フィルムの平面視にてフィラー1は互いに接触することなく存在し、フィルム厚方向にもフィラー1が互いに重なることなく存在していることが好ましい。そのため、フィラー全体に対し、フィラー1同士が互いに非接触で存在する個数割合は95%以上、好ましくは98%以上、より好ましくは99.5%以上である。また、各フィラー1のフィルム厚方向の位置も揃っていることが好ましい。例えば、図1Aに示したようにフィラー1を6方格子配列とし、後述するようにフィラー1のフィルム厚方向の埋込量Lbを揃えることができる。なお、フィラー同士が互いに非接触で存在する個数割合が95%以上のフィラーの分散状態において、フィラーの所定の規則的な配置に対してフィラーが抜けている箇所Pxがあってもよい(図1A)。このフィラーの抜けは、特性が許容できる範囲において、フィルムの所定の方向に規則的に存在することで確認できる。また、フィラーの抜けをフィルムの長手方向に繰り返し存在させること、あるいはフィラーの抜けている箇所をフィルムの長手方向に漸次増加または減少させることにより、ロット管理が可能となり、フィラー含有フィルム及びそれを用いた接続構造体にトレーサビリティ(追跡を可能とする性質)を付与することも可能となる。これは、フィラー含有フィルムやそれを用いた接続構造体の偽造防止、真贋判定、不正利用防止等にも有効となる。
 この他、フィラーの規則的な配置の態様としては、長方格子、斜方格子、正方格子、その他の矩形格子等の格子配列を挙げることができる。また、フィラーが所定間隔で直線状に並んだ粒子列を所定の間隔で並列させてもよい。規則的な配置は、フィルムの長手方向で繰り返されるものであれば特に制限はない。これらの規則配置のなかでも、フィラーが6方格子、正方格子又は斜方格子(即ち、菱形格子)に配置している場合には、任意のフィラーP0との距離が近い順に3個のフィラーP1、P2、P3を選択したときに、その3個のフィラーP1、P2、P3と前記フィラーP0との距離L1、L2、L3のうち、最大の距離(Lmax)と最小の距離(Lmin)との比(Lmax/Lmin)が1以上1.2以下であることが好ましく、1.1以下であることがより好ましく、1.05以下であることが更により好ましい(図1A)。特に、フィラーが6方格子に配列している場合には、任意のフィラーP0との距離が近い順に5個のフィラーP1、P2、P3、P4、P5を選択し、上述と同様に最大の距離(Lmax)と最小の距離(Lmin)との比(Lmax/Lmin)を求めたときに、その比が1以上1.1以下であることが好ましい。フィラーが6方格子、正方格子又は斜方格子(菱形格子)に配置されている場合、最大の距離と最小の距離との比(Lmax/Lmin)は設計上は1となるが、実際には異方性導電フィルム等のフィラー含有フィルムの製造時に微少な位置ずれが発生し、また、フィラー含有フィルムを巻装体とすると、フィラー含有フィルムの厚みによっては巻き締まりによっても微少な位置ずれが生じるおそれがある。したがって、上述の比(Lmax/Lmin)の上限は、本発明におけるフィラーの位置ずれの許容範囲となる。本発明ではこの許容範囲を低く抑えることにより、フィラー同士が互いに非接触に、かつ均等に配置されている。そのため、フィラー含有フィルムを異方性導電フィルムとして構成した場合、異方性導電接続時に各フィラー1である導電粒子に圧力を均等に加え、導通抵抗のばらつきを実際的に低減させることができる。なお、このように微少な位置ずれをも抑制してフィラーを配置する方法としては、後述するように異方性導電フィルム等のフィラー含有フィルムを製造する場合に予めフィラーが配置されるべき部位が規定された型を作製し、その部位にフィラーを配置し、そのフィラーを樹脂層に転写させることが好ましい。
 本発明においてフィラー1の配列に格子軸又は配列軸がある場合に、その格子軸又は配列軸はフィラー含有フィルムの長手方向に対して平行でもよくフィラー含有フィルムの長手方向と交叉してもよい。例えば、フィラー含有フィルムを異方性導電フィルムとした場合においては、接続する端子幅、端子ピッチなどに応じて定めることができる。例えば、フィラー含有フィルムをファインピッチ用の異方性導電フィルムとする場合、図1Aに示したようにフィラー1の少なくとも一つの格子軸Aをフィラー含有フィルム10Aの長手方向に対して斜行させ、フィラー含有フィルム10Aで接続する端子20の長手方向と格子軸Aとのなす角度θを16°~74°にすることが好ましい。異方性導電フィルム以外の用途であっても、このように傾斜させることで捕捉状態を安定させる効果が見込まれる。
 本発明において導電粒子等のフィラー1の粒子間距離は、後述するように異方性導電フィルム等のフィラー含有フィルムにおけるフィラー1の面積占有率が25%以下、好ましくは0.5%以上23%以下、より好ましくは1.4%以上20%未満となるように設定する。また、フィラーの個数密度が好ましくは30~32000個/mm2となるように設定する。
 即ち、面積占有率を25%以下とする限りにおいて、フィラー1の粒子間距離は、フィラー含有フィルムで接続する端子の大きさや端子ピッチに応じて適宜定める。例えば、フィラー含有フィルムを異方性導電フィルムとして構成した場合、異方性導電フィルムをファインピッチのCOG(Chip On Glass)に対応させる場合、ショートを抑制する点から最近接粒子間距離をフィラーの粒子径Dの0.5倍以上にすることが好ましく、0.7倍より大きくすることがより好ましい。一方、フィラー1の捕捉性の点から、最近接粒子間距離をフィラーの粒子径Dの4倍以下とすることが好ましく、3倍以下とすることがより好ましい。さらに、ショート抑制を安定させる点から、フィラーの粒子径によらずフィラー間の最近接距離を0.5μm以上とすることが好ましい。
<フィラーの個数密度>
 本発明において、フィラーの個数密度は、1辺が100μm以上の矩形領域を任意に複数箇所(5箇所以上、好ましくは10箇所以上)設定し、測定領域の合計面積を2mm2以上として求めることができる。個々の領域の大きさや数は、個数密度の状態によって適宜調整すればよい。ファインピッチ用途の比較的個数密度が大きい場合の一例として、フィラー含有フィルム10Aから任意により選択した面積100μm×100μm領域の200箇所について、金属顕微鏡などによる観測画像を用いて個数密度を測定し、それを平均することにより得ることができる。面積100μm×100μm領域は、バンプ間スペース50μm以下の接続対象物において、1個以上のバンプが存在する領域になる。
 導電粒子等のフィラーの個数密度は、上述のように金属顕微鏡を用いて観察して求める他、画像解析ソフト(例えば、WinROOF、三谷商事(株)等)により観察画像を計測して求めてもよい。
 フィラー含有フィルムの一態様である異方性導電フィルムでは、導電粒子等のフィラーの個数密度は、フィラーの面積占有率が25%以下となる限りにおいて、フィラーの粒子径、硬さ等に応じて設定される。即ち、異方性導電フィルムの場合にはフィラーの個数密度が小さすぎるとファインピッチの電子部品の接続に対応することができず、大きすぎるとショートを招くので、粒子径1~30μmの場合に、30~32000個/mm2が好ましく、280~28000個/mm2がより好ましい。
<フィラーの面積占有率>
 本発明のフィラー含有フィルムの一態様である異方性導電フィルムでは、異方性導電接続時等における押圧治具に必要とされる推力が過度に大きくならないようにする点から導電粒子等のフィラーの面積占有率が25%以下、好ましくは23%以下、より好ましくは20%未満である。また、導通信頼性の確保の点から0.5%以上が好ましく、1%以上がより好ましく、2%以上が更に好ましい。フィラーの面積占有率は、「=[平面視におけるフィラーの個数密度]×[フィラー1個の平面視面積の平均]×100」により算出される。フィラー含有フィルムにおける面積占有率はその用途によって適宜選択すればよく、製造に支障を来さない限り制限はないが、異方性導電接続以外の接続においても上記のような安定性のことが言えるため、上記と同様の範囲が好ましくなる。
 式中、フィラーの個数密度は前述の方法で求められ、フィラー1個の平面視面積の平均は、フィルム面の金属顕微鏡などによる観測画像から計測により求められる。前述した画像解析ソフト(WinROOF、三谷商事(株))等を用いてもよい。
 本発明では、フィラーの面積占有率を、フィラー含有フィルムの一態様である異方性導電フィルムにおいて、電子部品に熱圧着するときに押圧治具に必要とされる推力の指標とし、フィラーの面積占有率が25%以下となるように、フィラーの粒子径、フィラーの個数密度などを設定する。従来、電子部品の端子幅、端子間距離、フィラーの粒子径、フィラーの配列などに応じて、フィラーの粒子間距離や、個数密度が定められていたが、本発明では、さらにフィラーの面積占有率が25%以下となるようにフィラーの粒子間距離や個数密度を定める。これにより、異方性導電フィルムを電子部品に圧着するときに、過度に高い推力が必要とされることを解消できる。また、他の態様としては例えば光学フィルムがあるが、フィラーの面積占有率などを上記のように調整することで、フィラーの光学的な性能を調整することができる。艶消しフィルムなど外観に直結するものにも同様のことが言える。
<樹脂層>
(樹脂層の粘度)
 樹脂層2の最低溶融粘度は、特に制限はなく、フィラー含有フィルムの用途や、フィラー含有フィルムの製造方法等に応じて適宜定めることができる。例えば、後述の凹み2b、2cを形成できる限り、フィラー含有フィルムの製造方法によっては1000Pa・s程度とすることもできる。一方、フィラー含有フィルムの製造方法として、フィラーを樹脂層の表面に所定の配置で保持させ、そのフィラーを樹脂層に押し込む方法を行うとき、樹脂層がフィルム成形を可能とする点から樹脂層の最低溶融粘度を1100Pa・s以上とすることが好ましい。
 また、後述のフィラー含有フィルムの製造方法で説明するように、図1Bに示すように樹脂層2に押し込んだフィラー1の露出部分の周りに凹み2bを形成したり、図6に示すように樹脂層2に押し込んだフィラー1の直上の樹脂層2の表面に凹み2cを形成したりする点から、好ましくは1500Pa・s以上、より好ましくは2000Pa・s以上、さらに好ましくは3000~15000Pa・s、さらにより好ましくは3000~10000Pa・sである。この最低溶融粘度は、一例として回転式レオメータ(TA instruments社製)を用い、測定圧力5gで一定に保持し、直径8mmの測定プレートを使用し求めることができ、より具体的には、温度範囲30~200℃において、昇温速度10℃/分、測定周波数10Hz、前記測定プレートに対する荷重変動5gとすることにより求めることができる。
 樹脂層2の最低溶融粘度を1500Pa・s以上の高粘度とすることにより、フィラー含有フィルムの物品への圧着時にフィラーの不用な移動を抑制でき、特に、フィラー含有フィルムを異方性導電フィルムとする場合には、異方性導電接続時に端子間で挟持されるべき導電粒子が樹脂流動により流されてしまうことを防止できる。
 また、樹脂層2にフィラー1を押し込むことによりフィラー含有フィルム10Aのフィラー分散層3を形成する場合において、フィラー1を押し込むときの樹脂層2は、フィラー1が樹脂層2から露出するようにフィラー1を樹脂層2に押し込んだときに、樹脂層2が塑性変形してフィラー1の周囲の樹脂層2に凹み2b(図1B)が形成されるような高粘度な粘性体とするか、あるいは、フィラー1が樹脂層2から露出することなく樹脂層2に埋まるようにフィラー1を押し込んだときに、フィラー1の直上の樹脂層2の表面に凹み2c(図6)が形成されるような高粘度な粘性体とする。そのため、樹脂層2の60℃における粘度は、下限は好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは4500Pa・s以上であり、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、さらに好ましくは10000Pa・s以下である。この測定は最低溶融粘度と同様の測定方法で行い、温度が60℃の値を抽出して求めることができる。
 樹脂層2にフィラー1を押し込むときの該樹脂層2の具体的な粘度は、形成する凹み2b、2cの形状や深さなどに応じて、下限は好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは4500Pa・s以上であり、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、さらに好ましくは10000Pa・s以下である。また、このような粘度を好ましくは40~80℃、より好ましくは50~60℃で得られるようにする。
 上述したように、樹脂層2から露出しているフィラー1の周囲に凹み2b(図1B)が形成されていることにより、フィラー含有フィルムの物品への圧着時に生じるフィラー1の扁平化に対して樹脂から受ける抵抗が、凹み2bが無い場合に比して低減する。このため、フィラー含有フィルムを異方性導電フィルムとした場合には、異方性導電接続時に端子で導電粒子が挟持され易くなることで導通性能が向上し、また捕捉性が向上する。
 また、樹脂層2から露出することなく埋まっているフィラー1の直上の樹脂層2の表面に凹み2c(図6)が形成されていることにより、凹み2cが無い場合に比してフィラー含有フィルムの物品への圧着時の圧力がフィラー1に集中し易くなる。このため、フィラー含有フィルムを異方性導電フィルムとした場合には、異方性導電接続時に端子で導電粒子が挟持され易くなることで捕捉性が向上し、導通性能が向上する。このような捕捉性の向上は、異方性導電フィルムに限定されるものではなく、異方性導電フィルム以外のフィラー含有フィルムにも同様の効果が期待できる。
<凹みに代わる“傾斜”もしくは“起伏”>
 図1B、図6に示すようなフィラー含有フィルム(その一態様である異方性導電フィルム)の 「凹み」2b、2cは、「傾斜」もしくは「起伏」という観点から説明することもできる。以下に、図面を参照しながら説明する。
 フィラー含有フィルム(その一態様である異方性導電フィルム)10Aはフィラー分散層3から構成されている(図1B)。フィラー分散層3では、樹脂層2の片面にフィラー1が露出した状態で規則的に分散している。フィルムの平面視にてフィラー1は互いに接触しておらず、フィルム厚方向にもフィラー1が互いに重なることなく規則的に分散し、フィラー1のフィルム厚方向の位置が揃った単層のフィラー層を構成している。
 個々のフィラー1の周囲の樹脂層2の表面2aには、隣接するフィラー間の中央部における樹脂層2の接平面2pに対して傾斜2bが形成されている。なお後述するように、本発明のフィラー含有フィルムでは、樹脂層2に埋め込まれたフィラー1の直上の樹脂層の表面に起伏2cが形成されていてもよい(図6)。
 本発明において、「傾斜」とは、フィラー1の近傍で樹脂層の表面の平坦性が損なわれ、前記接平面2pに対して樹脂層の一部が欠けて樹脂量が低減している状態を意味する。換言すれば、傾斜では、フィラーの周りの樹脂層の表面が接平面に対して欠けていることになる。一方、「起伏」とは、フィラーの直上の樹脂層の表面にうねりがあり、うねりのように高低差がある部分が存在することで樹脂が低減している状態を意味する。換言すれば、フィラー直上の樹脂層の樹脂量が、フィラー直上の樹脂層の表面が接平面にあるとしたときに比して少なくなる。これらは、フィラーの直上に相当する部位とフィラー間の平坦な表面部分(図1B、図6)とを対比して認識することができる。なお、起伏の開始点が傾斜として存在する場合もある。
 上述したように、樹脂層2から露出しているフィラー1の周囲に傾斜2b(図1B)が形成されていることにより、フィラー含有フィルムを異方性導電フィルムとして構成する場合、異方性導電接続時にフィラー1が端子間で挟持される際に生じるフィラー1の扁平化に対して樹脂から受ける抵抗が、傾斜2bが無い場合に比して低減するため、端子におけるフィラーの挟持がされ易くなることで導通性能が向上し、また捕捉性が向上する。この傾斜は、フィラーの外形に沿っていることが好ましい。接続における効果がより発現しやすくなる以外に、フィラーを認識し易くなることで、異方性導電フィルム等のフィラー含有フィルムの製造における検査などが行い易くなるからである。また、この傾斜および起伏は樹脂層にヒートプレスするなどにより、その一部が消失してしまう場合があるが、本発明はこれを包含する。この場合、フィラーは樹脂層の表面に1点で露出する場合がある。なお、フィラー含有フィルムを異方性導電フィルムとして構成する場合、接続する電子部品が多様であり、これらに合わせてチューニングする以上、種々の要件を満たせるように設計の自由度が高いことが望まれるので、傾斜もしくは起伏を低減させても部分的に消失させても用いることができる。
 また、樹脂層2から露出することなく埋まっているフィラー1の直上の樹脂層2の表面に起伏2c(図6)が形成されていることにより、傾斜の場合と同様に、フィラー含有フィルムを異方性導電フィルムとして構成する場合、異方性導電接続時に端子からの押圧力がフィラーにかかりやすくなる。また、起伏があることにより樹脂が平坦に堆積している場合よりもフィラーの直上の樹脂量が低減しているため、接続時のフィラー直上の樹脂の排除が生じやすくなり、端子とフィラーとが接触し易くなることから、端子におけるフィラーの捕捉性が向上し、導通信頼性などの導通性能が向上する。
 上述したフィラーの露出部分の周りの樹脂層2の傾斜2b(図1B)や、フィラーの直上の樹脂層の起伏2c(図6)の効果を得られ易くする点から傾斜2bの最大深さLeとフィラー1の粒子径Dとの比(Le/D)は、好ましくは50%未満、より好ましくは30%未満、さらに好ましくは20~25%であり、傾斜2bや起伏2cの最大径Ldとフィラー1の粒子径Dとの比(Ld/D)は、好ましくは100%以上、より好ましくは100~150%であり、起伏2cの最大深さLfとフィラー1の粒子径Dとの比(Lf/D)は、0より大きく、好ましくは10%未満、より好ましくは5%以下である。
 なお、傾斜2b又は起伏2cにおけるフィラー1の露出(直上)部分の径Lcは、フィラー1の粒子径D以下とすることができ、好ましくは粒子径Dの10~90%である。また、フィラー1の頂部の1点で露出するようにしてもよく、粒子径Dが樹脂層2内に完全に埋まり、径Lcがゼロとなるようにしてもよい。
 このような本発明において、樹脂層2の表面の傾斜2b、起伏2cの存在は、異方性導電フィルム等のフィラー含有フィルムの断面を走査型電子顕微鏡で観察することにより確認することができ、面視野観察においても確認できる。光学顕微鏡、金属顕微鏡でも傾斜2b、起伏2cの観察は可能である。また、傾斜2b、起伏2cの大きさは画像観察時の焦点調整などで確認することもできる。上述のようにヒートプレスにより傾斜もしくは起伏を減少させた後であっても、同様である。痕跡が残る場合があるからである。
(樹脂層の組成)
 樹脂層2は、フィラー含有フィルムの用途に応じて導電性でも絶縁性でもよく、また、可塑性でも硬化性であってもよいが、好ましくは絶縁性の硬化性樹脂組成物から形成することができ、例えば、熱重合性化合物と熱重合開始剤とを含有する絶縁性の熱重合性組成物から形成することができる。熱重合性組成物には必要に応じて光重合開始剤を含有させてもよい。絶縁性の硬化性樹脂組成物から形成するものとして、異方性導電フィルムが挙げられる。
 熱重合開始剤と光重合開始剤を併用する場合に、熱重合性化合物として光重合性化合物としても機能するものを使用してもよく、熱重合性化合物とは別に光重合性化合物を含有させてもよい。好ましくは、熱重合性化合物とは別に光重合性化合物を含有させる。例えば、熱重合開始剤として熱カチオン系硬化開始剤、熱重合性化合物としてエポキシ樹脂を使用し、光重合開始剤として光ラジカル重合開始剤、光重合性化合物としてアクリレート化合物を使用する。
 光重合開始剤として、波長の異なる光に反応する複数種類を含有させてもよい。これにより、異方性導電フィルム等のフィラー含有フィルムの製造時における、樹脂層を構成する樹脂の一次光硬化と、異方性導電接続時に電子部品同士を接着するための樹脂の光硬化等の二次光硬化とで使用する波長を使い分けることができる。異方性導電フィルム以外の用途に適用してもよい。
 異方性導電フィルムの製造時の光硬化では、絶縁性樹脂層に含まれる光重合性化合物の全部又は一部を光硬化させることができる。この光硬化により、絶縁性樹脂層2における導電粒子1の配置が保持乃至固定化され、ショートの抑制と導電粒子の捕捉の向上が見込まれる。また、この光硬化により、異方性導電フィルムの製造工程における絶縁性樹脂層の粘度を適宜調整してもよい。特にこの光硬化は、絶縁性樹脂層2の層厚Laと導電粒子1の平均粒子径Dとの比(La/D)が0.6未満である場合に行うことが好ましい。導電粒子径に対して絶縁性樹脂層2の層厚が薄い場合にも絶縁性樹脂層2で導電粒子の配置の保持乃至固定化をより確実に行うと共に、絶縁性樹脂層2の粘度調整を行い、異方性導電フィルムを用いた電子部品同士の接続において歩留まりの低下を抑制するためである。
 樹脂層における光重合性化合物の配合量は30質量%以下が好ましく、10質量%以下がより好ましく、2質量%未満がさらにより好ましい。光重合性化合物が多すぎると接続時の押し込みにかかる推力が増加するためである。
 熱重合性組成物の例としては、(メタ)アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合性アクリレート系組成物、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合性エポキシ系組成物等が挙げられる。熱カチオン重合開始剤を含む熱カチオン重合性エポキシ系組成物に代えて、熱アニオン重合開始剤を含む熱アニオン重合性エポキシ系組成物を使用してもよい。また、特に支障を来さなければ、複数種の重合性化合物を併用してもよい。併用例としては、熱カチオン重合性化合物と熱ラジカル重合性化合物の併用などが挙げられる。
 ここで、(メタ)アクリレート化合物としては、従来公知の熱重合型(メタ)アクリレートモノマーを使用することができる。例えば、単官能(メタ)アクリレート系モノマー、二官能以上の多官能(メタ)アクリレート系モノマーを使用することができる。
 熱ラジカル重合開始剤としては、例えば、有機過酸化物、アゾ系化合物等を挙げることができる。特に、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。
 熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、(メタ)アクリレート化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
 エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、それらの変性エポキシ樹脂、脂環式エポキシ樹脂などを挙げることができ、これらの2種以上を併用することができる。また、エポキシ化合物に加えてオキセタン化合物を併用してもよい。
 熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により酸を発生するヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、特に、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。
 熱カチオン重合開始剤の使用量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
 熱重合性組成物は、膜形成樹脂やシランカップリング剤を含有することが好ましい。膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、製膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。重量平均分子量は10000以上であることが好ましい。また、シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を挙げることができる。これらのシランカップリング剤は、主としてアルコキシシラン誘導体である。
 熱重合性組成物には、溶融粘度調整のために、上述のフィラー1とは別に絶縁性フィラーを含有させてもよい。これはシリカ粉やアルミナ粉などが挙げられる。絶縁性フィラー粒径20~1000nmの微小なフィラーが好ましく、また、配合量はエポキシ化合物等の熱重合性化合物(光重合性化合物)100質量部に対して5~50質量部とすることが好ましい。フィラー1とは別に含有させる絶縁性フィラーは、フィラー含有フィルムの用途が異方性導電フィルムの場合に好ましく使用されるが、用途によっては絶縁性でなくともよく、例えば導電性の微小なフィラーを含有させてもよい。フィラー含有フィルムを異方性導電フィルムとして構成する場合、フィラー分散層を形成する樹脂層には、必要に応じて、フィラー1とは異なるより微小な絶縁性フィラー(所謂ナノフィラー)を適宜含有させることができる。
 本発明のフィラー含有フィルムには、上述の絶縁性又は導電性のフィラーとは別に充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを含有させてもよい。
(樹脂層の層厚)
 本発明のフィラー含有フィルムの一態様である異方性導電フィルムでは、樹脂層2の層厚Laとフィラー1の粒子径Dとの比(La/D)が0.3以上1.3以下である。ここで、フィラー1の粒子径Dは、その平均粒子径を意味する。樹脂層2の層厚Laが大き過ぎてこの比が過度に大きくなると、異方性導電接続時にフィラーが端子に押し付けられにくくなると共に、樹脂流動によりフィラーが流されやすくなる。そのためフィラーが位置ずれしやすくなり、端子におけるフィラーの捕捉性が低下する。また、フィラーを端子に押し付けるために押圧治具に必要とされる推力も増大し、低圧実装の妨げになる。反対に樹脂層2の層厚Laが小さすぎてこの比が過度に小さくなると、フィラー1を樹脂層2によって所定の配置に維持することが困難となる。特に、樹脂層2におけるフィラー1の配置の維持の点から、この比(La/D)は、好ましくは0.3より大きく、より好ましくは0.4以上とする。また、異方性導電接続時の過度な樹脂流動の抑制及び低圧実装の実現の点から、好ましくは1以下である。フィラー1を樹脂層2から露出させることを容易とし、低圧実装をより容易にする点からは、この比(La/D)を1未満とすることが好ましく、より好ましくは0.6未満、さらに好ましくは0.5以下である。この場合、フィラー1は樹脂層2を貫通していてもよい。
(樹脂層におけるフィラーの埋込状態)
 本実施例のフィラー含有フィルム(その一態様である異方性導電フィルム)10Aでは、フィラー1は、図1Bに示すように、埋込率(Lb/D)が30%以上100%以下で、フィラー1が樹脂層2の片面から突出するように埋め込まれている。この他、本発明のフィラー含有フィルムとしては、図2に示すフィラー含有フィルム(その一態様である異方性導電フィルム)10Bのように、埋込率100%あるいはその近傍で、フィラー1が樹脂層2の片面から露出し、そのフィルム面とフィラー1の頂部1aとが略面一となるように埋め込まれている態様、図3に示すフィラー含有フィルム(その一態様である異方性導電フィルム)10Cのように、樹脂層2の片面においてフィラー1がそのフィルム面と略面一となり、反対面においてフィラー1がフィルム面から露出せずに突出している態様、図4に示すフィラー含有フィルム(その一態様である異方性導電フィルム)10Dのように樹脂層2の片面においてフィラー1がフィルム面よりも埋め込まれて露出し、反対面からはフィラー1が露出せずにフィルム面から突出している態様、図5に示すフィラー含有フィルム(その一態様である異方性導電フィルム)10Eのように、樹脂層2の表面に凹みがなく、フィラー1がその頂部1aの1点で樹脂層2から露出している態様、図6に示すフィラー含有フィルム(その一態様である異方性導電フィルム)10Fのように、フィラー1が樹脂層2から露出せず、フィラー1の直上の樹脂層2の表面に凹み(周囲の樹脂層の表面よりも凹んでいる部分)2cを有している態様などを挙げることができる。
 ここで、埋込率とは、フィラー1が埋め込まれている樹脂層2の表面2a(樹脂層2の表裏の面のうち、フィラー1が露出している側の表面、又はフィラーが樹脂層2に完全に埋め込まれている場合には、フィラーとの距離が近い表面)であって、隣接するフィラー間の中央部における接平面2pと、フィラー1の最深部との距離を埋込量Lbとした場合に、フィラー1の粒子径Dに対する埋込量Lbの割合(Lb/D)である(図1B)。したがって、図4に示すように、フィラー1がフィルム面よりも深く埋め込まれている場合には、埋込率(Lb/D)は100%より大きくなり、一例として105%以下を挙げることができる。フィラー1が樹脂層2を丁度貫通している場合の埋込率(Lb/D)は、100%となる。
 埋込率を好ましくは30%以上とすることにより、フィラー1を樹脂層2によって所定の粒子分散状態あるいは所定の配列に維持することができ、また、埋込率を100%以下、好ましくは70%以下、より好ましくは60%未満とすることにより、樹脂層2を構成する樹脂のうち、フィラー含有フィルムを異方性導電フィルムとして構成した場合、異方性導電接続時にフィラーを流動させて捕捉率を低下させるように作用する樹脂の量を低減させることができる。また、不用な樹脂層2が少なくなることで、フィラーが押し込まれ易くなる。これに対し、埋込率が30%未満であると、異方性導電接続時に樹脂層2上をフィラー1が転がりやすく、フィラー1を所定の位置に維持させることが難しいため捕捉率が低下する。また、埋込率が100%を超え、フィラーが樹脂層2に完全に埋没していると、異方性導電接続時にフィラー1が樹脂層2の樹脂流動によって流され、捕捉性が低下し、ショートが起こる場合がある。また、フィラーが樹脂層2から露出している程度を揃えることによって、その特性が向上する効果が見込める。一例として、光学フィルムの性能がフィラーに依存する場合、平面視における分散性(独立性)と露出の程度に一定以上の規則性があれば、単純に混練しているバインダーを塗布するなどして得たものよりも、性能の向上や品質の安定性が得られると推察される。
 なお、本発明において、埋込率(Lb/D)の数値は、フィラー含有フィルムの一態様である異方性導電フィルムに含まれる全フィラー数の99%以上、好ましくは99.9%以上、より好ましくは99.99%以上が、当該埋込率(Lb/D)の数値になっていることをいう。したがって、埋込率が30%以上100%以下とは、異方性導電フィルム等のフィラー含有フィルムに含まれる全フィラー数の99%以上、好ましくは99.9%以上、より好ましくは99.99%以上の埋込率が30%以上100%以下であることをいう。このように全フィラーの埋込率(Lb/D)が揃っていることにより、異方性導電フィルムの場合には押圧の加重がフィラーに均一にかかるので、端子におけるフィラーの捕捉状態が良好になり、導通の信頼性が向上する。単純にフィラー含有フィルムを貼着させただけの場合においても、単純に混練しているバインダーを塗布するなどして得たもの以上の、上述したような効果が得られると推察できる。
 上述のフィラー含有フィルム10B(図2)、10C(図3)、10E(図5)では、樹脂層2のフィルム面とフィラー1の頂部1aとが略面一となっていることにより、樹脂層2からフィラー1が突出しているフィラー含有フィルム10A(図1B)に比して、フィラー含有フィルムを異方性導電フィルムとして構成した場合、異方性導電接続時に個々のフィラー1周辺のフィルム厚方向における樹脂量が均一になるという利点がもたらされる。特に、フィラー含有フィルム10E(図5)では、異方性導電接続においてフィラーを端子又はバンプに押し込むときに、フィラー1の頂部1a周辺の樹脂量が均一であるため、フィラー1が移動しにくくなり、捕捉性が高まりショートを抑制できる効果が期待できる。これは、特にファインピッチやバンプ間スペースが狭い場合に有効である。
 また、上述のフィラー含有フィルム10A(図1B)、10B(図2)、10C(図3)、10D(図4)では、樹脂層2の表裏の表面のうち、フィラー1が埋め込まれている面の、フィラー1と接している部分及びその近傍が周囲の平坦な表面2aに比して凹んでいる。この凹み2bは、フィラー含有フィルムの製造時に樹脂層2にフィラー1を押し込む場合に、押し込み時の樹脂層の粘度が上述の好ましい粘度範囲にあるときに形成される場合がある。樹脂層2の表面に凹み2bがあることにより、フィラー含有フィルムを異方性導電フィルムとして構成した場合、異方性導電接続時にフィラー1が端子間で挟持される際に生じるフィラー1の扁平化に対して樹脂層2から受ける抵抗が、凹み2bが無い場合に比して低減し、端子におけるフィラーの押し込みが均一になり易い効果が期待できる。このようにフィラー含有フィルムとしては、単純に混練しているバインダーを塗布するなどして得たものよりも、フィラーと樹脂の状態に特異性があることから、性能や品質に特徴が生じること(性能向上や品質安定化など)が期待できる。
 また、フィラー含有フィルム(その一態様である異方性導電フィルム)10F(図6)における凹み2cも、フィラー含有フィルムの製造時に樹脂層2にフィラー1を押し込む場合に、押し込み時の樹脂層2が上述の好ましい粘度範囲にある場合に形成される。樹脂層2の表面に凹み2cが形成されていることにより、凹み2cが無い場合に比して、フィラー含有フィルムを異方性導電フィルムとして構成した場合、異方性導電接続時の圧力がフィラー1に集中し易くなり、端子におけるフィラーの押し込みが均一になり易い効果が期待できる。このようにフィラー含有フィルムとしては、単純に混練しているバインダーを塗布するなどして得たものとの違いも、上記と同様である。
 なお、樹脂層2の表面の凹み2b、2cの存在は、フィラー含有フィルムの断面を走査型電子顕微鏡で観察することにより確認することができ、走査型電子顕微鏡による面視野観察においても確認できる。また、光学顕微鏡、金属顕微鏡でも観察することができる。
<変形態様>
 本発明のフィラー含有フィルムとしては、フィラー分散層3に、樹脂層2を構成する樹脂よりも好ましくは最低溶融粘度が低い第2の樹脂層4を積層することができる(図7~図9)。この第2の樹脂層4は、樹脂層2よりも最低溶融粘度が低いため、フィラー含有フィルムを異方性導電フィルムとして構成した場合、異方性導電接続時に電子部品のバンプ等の端子によって形成される空間を充填し、対向する電子部品同士の接着性を向上させることができる。即ち、異方性導電フィルムを用いた電子部品の低圧実装を可能とするため、及び異方性導電接続時の樹脂層2の樹脂流動を抑制してフィラー1の粒子捕捉性を向上させるため、樹脂層2の粘度を高くすると共に、フィラー1が位置ずれを起こさない限りで樹脂層2の厚みは薄くすることが望ましいが、樹脂層2の厚みを過度に薄くすると、対向する電子部品同士を接着させる樹脂量の不足を招くことから接着性の低下が懸念される。これに対し、異方性導電接続時に樹脂層2よりも粘度が低い第2の樹脂層4を設けることにより、電子部品同士の接着性も向上させることができ、第2の樹脂層4の流動性が高いことから端子によるフィラーの挟持や押し込みを阻害し難くすることができる。
 フィラー分散層3に第2の樹脂層4を積層する場合、第2の樹脂層4が凹み2bの形成面上にあるか否かに関わらず、ツールで加圧する電子部品に第2の樹脂層4が貼られるようにする(樹脂層2がステージに載置される電子部品に貼られるようにする)ことが好ましい。このようにすることで、フィラーの不本意な移動を避けることができ、捕捉性を向上させることができる。異方性導電フィルム以外であっても、同様になると推察される。
 樹脂層2と第2の樹脂層4との最低溶融粘度比は、差があるほど電子部品の電極やバンプによって形成される空間が第2の樹脂層4で充填されやすくなり、電子部品同士の接着性を向上させることができる。また、この差があるほどフィラー分散層3中に存在する樹脂の移動量が相対的に少なくなり、端子間のフィラー1が樹脂流動により流されにくくなることにより、端子におけるフィラーの捕捉性が向上するので好ましい。実用上は、樹脂層2と第2の樹脂層4との最低溶融粘度比は、好ましくは2以上、より好ましくは5以上、さらに好ましくは8以上である。一方、この比が大きすぎると長尺のフィラー含有フィルムを巻装体にした場合に、樹脂のはみだしやブロッキングの虞があるので、実用上は15以下が好ましい。第2の樹脂層4の好ましい最低溶融粘度は、より具体的には、上述の比を満たし、かつ3000Pa・s以下、より好ましくは2000Pa・s以下であり、特に100~2000Pa・sである。
 なお、第2の樹脂層4は、樹脂層2と同様の樹脂組成物において、粘度を調整することにより形成することができる。
 また、第2の樹脂層4の層厚は、好ましくは4~20μmである。もしくは、フィラーの粒子径に対して、好ましくは1~8倍である。
 また、樹脂層2と第2の樹脂層4を合わせたフィラー含有フィルム10G、10H、10I全体の最低溶融粘度は、好ましくは、200~4000Pa・sである。
 第2の樹脂層4の具体的な積層態様としては、例えば、図7に示すフィラー含有フィルム10Gのように、フィラー分散層3の片面に第2の樹脂層4を積層することができる。この場合、フィラー1の粒子径Dと樹脂層2の層厚Laとの関係は、前述のようにLa/Dを0.3以上1.3以下とする。
 図8に示すフィラー含有フィルム10Hのように、フィラー1が樹脂層2の片面から突出している場合に、その突出している面に第2の樹脂層4を積層し、第2の樹脂層4にフィラー1を食い込ませてもよい。フィラー1の埋込率が95%以下の場合、このように樹脂層4を積層することが好ましく、90%以下の場合はより好ましい。
 図9に示すフィラー含有フィルム10Iのように、フィラー1が埋め込まれている樹脂層2の面と反対側の面に第2の樹脂層4を積層してもよい。
(第3の樹脂層)
 第2の樹脂層4と樹脂層2を挟んで反対側に第3の樹脂層が設けられていてもよい。第3の樹脂層をタック層として機能させることができる。第2の樹脂層4と同様に、電子部品の電極やバンプによって形成される空間を充填させるために設けてもよい。
 第3の樹脂層の樹脂組成、粘度及び厚みは第2の樹脂層と同様でもよく、異なっていても良い。樹脂層2と第2の樹脂層4と第3の樹脂層を合わせたフィラー含有フィルムの最低溶融粘度は特に制限はないが、200~4000Pa・sとすることができる。
(その他の積層態様)
 フィラー含有フィルムの用途によっては、複数のフィラー分散層を積層してもよく、積層したフィラー分散層間に、第2の樹脂層のようにフィラーを含有していない層を介在していてもよく、最外層に第2の樹脂層や第3の樹脂層を設けてもよい。
<フィラー含有フィルムの製造方法>
 フィラー分散層3の単層から形成されている本発明のフィラー含有フィルムは、例えば、樹脂層2の表面にフィラー1を所定の配列で保持させ、そのフィラー1を平板又はローラーで樹脂層2に押し込む。
 ここで、樹脂層2におけるフィラー1の埋込量Lbは、フィラー1の押し込み時の押圧力、温度等により調整することができ、また、凹み2b、2cの有無、形状及び深さは、押し込み時の樹脂層2の粘度、押込速度、温度等により調整することができる。
 また、樹脂層2にフィラー1を保持させる手法としては、特に限定されるものではないが、例えば、転写型を使用して樹脂層2にフィラー1を保持させる。転写型としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチールなどの金属等の無機材料や、各種樹脂等の有機材料の転写型材料に対し、フォトリソグラフ法等の公知の開口形成方法によって開口を形成したものを使用することができる。なお、転写型は、板状、ロール状等の形状をとることができる。
 フィラー含有フィルムを異方性導電フィルムとして構成した場合、その異方性導電フィルムを用いて電子部品の接続を経済的に行うには、フィラー含有フィルムである異方性導電フィルムはある程度の長尺であることが好ましい。そこで異方性導電フィルムは長さを、好ましくは5m以上、より好ましくは10m以上、さらに好ましくは25m以上に製造する。一方、異方性導電フィルムを過度に長くすると、異方性導電フィルムを用いて電子部品の製造を行う場合に使用する従前の接続装置を使用することができなくなり、取り扱い性も劣る。そこで、異方性導電フィルムは長さを好ましくは5000m以下、より好ましくは1000m以下、さらに好ましくは500m以下に製造する。異方性導電フィルムのこのような長尺体は、巻芯に巻かれた巻装体とすることが取り扱い性に優れる点から好ましい。異方性導電フィルム以外の用途であっても、同じもしくは類似した理由により、上限は上記と同様と考える。
<フィラー含有フィルムの使用方法>
 本発明のフィラー含有フィルムは、従前のフィラー含有フィルムと同様に使用することができ、フィラー含有フィルムを貼り合わせることができれば物品に特に制限はない。フィラー含有フィルムの用途に応じた種々の物品に圧着により、好ましくは熱圧着により貼着することができる。この貼り合わせ時には光照射を利用してもよく、熱と光を併用してもよい。例えば、フィラー含有フィルムの樹脂層が、該フィラー含有フィルムを貼り合わせる物品に対して十分な粘着性を有する場合、フィラー含有フィルムの樹脂層を物品に軽く押し付けることによりフィラー含有フィルムが一つの物品の表面に貼着したフィルム貼着体を得ることができる。この場合に、物品の表面は平面に限られず、凹凸があってもよく、全体として屈曲していてもよい。物品がフィルム状又は平板状である場合には、圧着ローラーを用いてフィラー含有フィルムをそれらの物品に貼り合わせてもよい。これにより、フィラー含有フィルムのフィラーと物品を直接的に接合させることもできる。
 また、対向する2つの物品の間にフィラー含有フィルムを介在させ、熱圧着ローラーや圧着ツールで対向する2つの物品を接合し、その物品間でフィラーが挟持されるようにしてもよい。また、フィラーと物品とを直接接触させないようにしてフィラー含有フィルムを物品で挟み込むようにしてもよい。
 特に、フィラー含有フィルムを異方性導電フィルムとする場合、熱圧着ツールを用いて、該異方性導電フィルムを介してICチップ、ICモジュール、FPCなどの第1電子部品と、FPC、ガラス基板、プラスチック基板、リジッド基板、セラミック基板などの第2電子部品とを異方性導電接続する際に好ましく使用することができる。異方性導電フィルムを用いてICチップやウェーハーをスタックして多層化してもよい。なお、本発明の異方性導電フィルムで接続する電子部品は、上述の電子部品に限定されるものではない。近年、多様化している種々の電子部品に使用することができる。
 したがって、本発明は、本発明のフィラー含有フィルムを種々の物品に圧着により貼着した接続構造体や、その製造方法を包含する。特に、フィラー含有フィルムを異方性導電フィルムとする場合には、その異方性導電フィルムを用いて電子部品同士を異方性導電接続する接続構造体の製造方法や、それにより得られた接続構造体、即ち、本発明の異方性導電フィルムにより電子部品同士が異方性導電接続されている接続構造体も包含する。
 異方性導電フィルムを用いた電子部品の接続方法としては、異方性導電フィルムが導電粒子分散層3の単層からなる場合、各種基板などの第2電子部品に対し、異方性導電フィルムの導電粒子1が表面に埋め込まれている側から仮貼りして仮圧着し、仮圧着した異方性導電フィルムの導電粒子1が表面に埋め込まれていない側にICチップ等の第1電子部品を合わせ、熱圧着することにより製造することができる。異方性導電フィルムの絶縁性樹脂層に熱重合開始剤と熱重合性化合物だけでなく、光重合開始剤と光重合性化合物(熱重合性化合物と同一でもよい)が含まれている場合、光と熱を併用した圧着方法でもよい。このようにすれば、導電粒子の不本意な移動は最小限に抑えることができる。また、導電粒子が埋め込まれていない側を第2電子部品に仮貼りして使用してもよい。尚、第2電子部品ではなく、第1電子部品に異方性導電フィルムを仮貼りすることもできる。
 また、異方性導電フィルムが、導電粒子分散層3と第2の絶縁性樹脂層4の積層体から形成されている場合、導電粒子分散層3を各種基板などの第2電子部品に仮貼りして仮圧着し、仮圧着した異方性導電フィルムの第2の絶縁性樹脂層4側にICチップ等の第1電子部品をアライメントして載置し、熱圧着する。異方性導電フィルムの第2の絶縁性樹脂層4側を第1電子部品に仮貼りしてもよい。また、導電粒子分散層3側を第1電子部品に仮貼りして使用することもできる。
 以下、本発明のフィラー含有フィルムの一態様である異方性導電フィルムについて、実施例により具体的に説明する。
 実施例1~5、比較例1
(1)異方性導電フィルムの製造
 表1に示した配合で、導電粒子分散層を形成する絶縁性樹脂層形成用樹脂組成物、及び第2の絶縁性樹脂層形成用樹脂組成物をそれぞれ調製した。絶縁性樹脂層の最低溶融粘度は3000Pa・s以上であり、この絶縁性樹脂層の最低溶融粘度と第2の絶縁性樹脂層の最低溶融粘度の比は2以上であった。
 絶縁性樹脂層(高粘度樹脂層)を形成する樹脂組成物をバーコータ-でフィルム厚み50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させ、PETフィルム上に表2に示す厚みの絶縁性樹脂層を形成した。同様にして、第2の絶縁性樹脂層を表2に示す厚みでPETフィルム上に形成した。
Figure JPOXMLDOC01-appb-T000001
 一方、導電粒子(平均粒子径3.5μm)1が平面視で図1Aに示す6方格子配列となり、導電粒子の粒子間距離が3.5μm、個数密度が23600個/mm2となるように金型を作製した。この金型に、公知の透明性樹脂のペレットを溶融させた状態で流し込み、冷やして固めることで、凹部が図1Aに示す配列パターンの樹脂型を形成した。
 この樹脂型の凹部に導電粒子(積水化学工業(株)製、Ni/Auメッキ樹脂粒子、平均粒子径3.5μm)を充填し、その上に上述の絶縁性樹脂層を被せ、60℃、0.5MPaで押圧することで貼着させた。そして、型から絶縁性樹脂層を剥離し、絶縁性樹脂層上の導電粒子を(押圧条件:60~70℃、0.5MPa)で該絶縁性樹脂層内に押し込み、導電粒子分散層を形成した(実施例1~5)。
 比較例1では表1に示した絶縁性樹脂層を形成する樹脂組成物に導電粒子を混合し、導電粒子が単層でランダムに分散した絶縁性樹脂層(個数密度50000個/mm2)を形成した。
 各実施例及び比較例の埋込率(Lb/D)及び絶縁性樹脂層における導電粒子の埋込状態(絶縁性樹脂層からの導電粒子の露出の有無)を金属顕微鏡により観察し、導電粒子の面積占有率を求めた。また、導電粒子全体に対し、導電粒子同士が互いに非接触で存在する個数割合(導電粒子の非接触割合)を金属顕微鏡で50μm×50μmを10箇所観測することにより求めた。表2に示す。
 さらに、導電粒子分散層の表面に第2の絶縁性樹脂層を積層することにより2層タイプの異方性導電フィルムを作製した(実施例1~5、比較例1)。この場合、実施例1~5では導電粒子を押し込んだ側の導電粒子分散層の表面に第2の絶縁性樹脂層を積層した。
Figure JPOXMLDOC01-appb-T000002
(2)評価
 (1)で作製した実施例及び比較例の異方性導電フィルムについて、接続に十分な面積で裁断し、以下のようにして(a)初期導通抵抗、(b)導通信頼性、(c)平均粒子捕捉数、(d)ショート率を評価した。結果を表2に示す。
(a)初期導通抵抗
 以下に示す評価用ICとガラス基板とを180℃、60MPa、5秒で異方性導電フィルムを介して加熱加圧し、評価用接続物を得た。このとき、押圧治具に必要な推力は125Nであった。
 評価用IC:
 外形 1.8×20.0mm
 厚み 0.5mm
 バンプ仕様 サイズ30×85μm、バンプ間距離50μm、バンプ高さ15μm
 ガラス基板
 ガラス材質 コーニング社製1737F
 外形 30×50mm
 厚み 0.5mm
 電極 ITO配線 
 得られた評価用接続物の導通抵抗を4端子法で測定した。初期導通抵抗は実用上2Ω以下が好ましく、0.6Ω以下であることがより好ましい。
(b)導通信頼性
 (a)で得た評価用接続物を、温度85℃、湿度85%RHの恒温槽に500時間おいた後の導通抵抗を、初期導通抵抗と同様に測定した。導通抵抗は実用上5Ω以下であることが好ましい。
(c)平均粒子捕捉数
 (a)と同様の評価用ICを使用し、この評価用ICと端子パターンが対応するITOパターンガラス基板とを、(a)と同様の条件で加熱加圧し、加熱加圧後の端子対100個について導電粒子の捕捉数を計測し、その平均を求めた。平均粒子捕捉数は、実用上、端子あたり3個以上が好ましい。
(d)ショート率
 ショート率の評価用ICを使用し、(a)初期導通抵抗の評価と同様にして評価用接続物を得、得られた評価用接続物のショート数を計測してショート率(即ちショート発生率)を求め、次の基準で評価した。
ショート率の評価用IC(7.5μmスペースの櫛歯TEG(test element group))
 外形 15×13mm
 厚み 0.5mm
 バンプ仕様 サイズ25×140μm、バンプ間距離7.5μm、バンプ高さ15μm
 ショート率評価基準
 A:50ppm未満
 B:50ppm以上200ppm未満
 C:200ppm以上
 表2から、実施例1~5の異方性導電フィルムは、絶縁性樹脂層2の層厚Laと導電粒子の平均粒子径Dとの比La/Dが0.3~1.3なので、初期導通抵抗、導通信頼性、平均粒子捕捉数のいずれも良好であり、測定値のバラツキも少なく安定していた。特に、実施例1を勘案すると、La/Dは0.3より大きい方が好ましいことがわかり、La/Dが0.5の実施例2は初期導通抵抗も導通信頼性も平均粒子捕捉数も優れていたことがわかる。なお、La/Dの数値として0.3~1.3の範囲が許容されるということは、La/Dがこの範囲となる限り、絶縁性樹脂層2の層厚が、設計時の所定の厚みから変動してもよいことを意味し、異方性導電フィルムの製造コスト上有利であり、特に異方性導電フィルムが長尺で樹脂層の層厚の変動が懸念される場合に有利となる。なお、実施例3では実施例4および5と同様に、絶縁性樹脂層と導電粒子が面一になっている箇所も一部存在した。
 これに対し、比較例1では、導電粒子の個数密度が高く、面積占有率が25%を超えており、押圧治具による推力が不足し、導通信頼性が劣っていた。平均粒子捕捉数では、バラツキが大きかった。また、ショート率も劣っていた。
 初期導通抵抗の評価用接続物を得るために評価用ICとガラス基板とを加熱加圧するにあたり、加熱加圧条件を温度180℃、圧力30MPa、5秒とすることで圧力を下げたところ、実施例1及び実施例2では初期導通抵抗が0.2Ωとなり、比較例1では1.2Ωとなった。また、加熱加圧条件において圧力を上げ、温度180℃、圧力90MPa、5秒としたところ、実施例1、実施例2及び比較例1のいずれも初期導通抵抗が0.2Ωとなった。これにより、比較例1では、初期導通抵抗0.2Ωを達成するために、90MPaの圧力が必要であったが、実施例1及び実施例2では30MPaで達成できたことがわかり、本実施例の異方性導電フィルムによれば、低圧実装が可能になることが確認できた。
 1  フィラー(導電粒子)
 2  樹脂層(絶縁性樹脂層)
  2b 凹み(傾斜)
 2c 凹み(起伏)
 3  フィラー分散層(導電粒子分散層)
 4  第2の樹脂層
10A、10B、10C、10D、10E、10F、10G、10H、10I フィラー含有フィルム(その一態様である異方性導電フィルム)
 La 樹脂層の層厚
 Lb 隣接するフィラー間の中央部における接平面とフィラーの最深部との距離
 Lc 傾斜又は起伏におけるフィラーの露出(直上)部分の径
 Ld フィラーの周り又は直上の樹脂層の傾斜又は起伏の最大径
 Le フィラーの周りの樹脂層における傾斜の最大深さ
 Lf フィラーの直上の樹脂層における起伏の最大深さ

Claims (14)

  1.  樹脂層にフィラーが規則的に配置されているフィラー分散層を有するフィラー含有フィルムであって、
     平面視におけるフィラーの面積占有率が25%以下、
     樹脂層の層厚Laとフィラーの粒子径Dとの比La/Dが0.3以上1.3以下、
     フィラー全体に対し、フィラー同士が互いに非接触で存在する個数割合が95%以上
    であるフィラー含有フィルム。
  2.  フィラー全体に対し、フィラー同士が互いに非接触で存在する個数割合が99.5%以上である請求項1記載のフィラー含有フィルム。
  3.  フィラーが6方格子、正方格子又は斜方格子に配置されており、任意のフィラーP0との距離が近い順に3個のフィラーを選択した場合に、その3個のフィラーとフィラーP0との距離のうち最大の距離と最小の距離との比が1.2以下である請求項1又は2記載のフィラー含有フィルム。
  4.  フィラーが樹脂層から露出している請求項1~3のいずれかに記載のフィラー含有フィルム。
  5.  樹脂層よりも最低溶融粘度が低い第2の樹脂層がフィラー分散層に積層されている請求項1~3のいずれかに記載のフィラー含有フィルム。
  6.  フィラー含有フィルムを構成する樹脂層全体の最低溶融粘度が200~4000Pa・sである請求項1~5のいずれかに記載のフィラー含有フィルム。
  7.  第2の樹脂層にフィラーが食い込んでいる請求項5又は6記載のフィラー含有フィルム。
  8.  フィラー近傍の樹脂層の表面が、隣接するフィラー間の中央部における樹脂層の接平面に対して傾斜もしくは起伏を有し、該傾斜では、フィラーの周りの樹脂層の表面が前記接平面に対して欠けており、該起伏では、フィラー直上の樹脂層の樹脂量が、該フィラー直上の樹脂層の表面が前記接平面にあるとしたときに比して少なくなっている請求項1~7のいずれかに記載のフィラー含有フィルム。
  9.  フィラーが導電粒子であり、フィラー分散層の樹脂層が絶縁性樹脂層であり、異方性導電フィルムとして使用される請求項1~8のいずれかに記載のフィラー含有フィルム。
  10.  請求項1~9のいずれかに記載のフィラー含有フィルムが物品に貼着しているフィルム貼着体。
  11.  請求項1~9のいずれかに記載のフィラー含有フィルムを介して第1物品と第2物品とが接続されている接続構造体。
  12.  請求項9記載のフィラー含有フィルムを介して第1電子部品と第2電子部品とが異方性導電接続されている請求項11記載の接続構造体。
  13.  請求項1~9のいずれかに記載のフィラー含有フィルムを介して第1物品と第2物品を圧着する接続構造体の製造方法。
  14.  第1物品、第2物品をそれぞれ第1電子部品、第2電子部品とし、請求項9記載のフィラー含有フィルムを介して第1電子部品と第2電子部品を熱圧着することにより第1電子部品と第2電子部品が異方性導電接続された接続構造体を製造する請求項13記載の接続構造体の製造方法。
PCT/JP2017/038851 2014-08-22 2017-10-27 フィラー含有フィルム WO2018084075A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780064897.6A CN109996837A (zh) 2016-11-04 2017-10-27 含有填料的膜
US16/344,489 US11001686B2 (en) 2016-11-04 2017-10-27 Filler-containing film
KR1020227003492A KR102513747B1 (ko) 2016-11-04 2017-10-27 필러 함유 필름
KR1020197010975A KR102359094B1 (ko) 2016-11-04 2017-10-27 필러 함유 필름
US17/315,788 US20210261743A1 (en) 2014-08-22 2021-05-10 Filler-containing film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-216233 2016-11-04
JP2016216233 2016-11-04
JP2017-159647 2017-08-22
JP2017159647A JP7052254B2 (ja) 2016-11-04 2017-08-22 フィラー含有フィルム

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/344,489 A-371-Of-International US11001686B2 (en) 2014-08-22 2017-10-27 Filler-containing film
US17/315,788 Continuation US20210261743A1 (en) 2014-08-22 2021-05-10 Filler-containing film

Publications (1)

Publication Number Publication Date
WO2018084075A1 true WO2018084075A1 (ja) 2018-05-11

Family

ID=62198264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038851 WO2018084075A1 (ja) 2014-08-22 2017-10-27 フィラー含有フィルム

Country Status (6)

Country Link
US (2) US11001686B2 (ja)
JP (2) JP7052254B2 (ja)
KR (2) KR102359094B1 (ja)
CN (1) CN109996837A (ja)
TW (1) TWI781119B (ja)
WO (1) WO2018084075A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059927A1 (ja) * 2019-09-27 2021-04-01 パナソニック株式会社 コイン形電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074058A1 (ja) * 2017-10-12 2019-04-18 富士フイルム株式会社 異方性導電フィルムおよび積層体
JP2019214714A (ja) * 2018-06-06 2019-12-19 デクセリアルズ株式会社 フィラー含有フィルム
WO2019235560A1 (ja) * 2018-06-06 2019-12-12 デクセリアルズ株式会社 フィラー含有フィルム
KR20210021544A (ko) * 2018-06-26 2021-02-26 쇼와덴코머티리얼즈가부시끼가이샤 이방성 도전 필름과 그 제조 방법 및 접속 구조체의 제조 방법
US11240918B2 (en) * 2018-08-28 2022-02-01 Research And Business Foundation Sungkyunkwan University Method for flip-chip bonding using anisotropic adhesive polymer
JP7321863B2 (ja) * 2019-09-27 2023-08-07 株式会社フコク 異方性感圧導電膜
KR20210114596A (ko) 2020-03-10 2021-09-24 삼성디스플레이 주식회사 표시장치
KR20210122359A (ko) 2020-03-30 2021-10-12 삼성디스플레이 주식회사 표시 장치 및 표시 장치 제조 방법
KR20240032918A (ko) 2021-09-22 2024-03-12 데쿠세리아루즈 가부시키가이샤 접속 구조체의 제조 방법
WO2023189416A1 (ja) * 2022-03-31 2023-10-05 デクセリアルズ株式会社 導電フィルム、接続構造体及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233202A (ja) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd 回路接続用異方導電性接着フィルム
JP2009074020A (ja) * 2007-03-06 2009-04-09 Tokai Rubber Ind Ltd 異方性導電膜
JP2010033793A (ja) * 2008-07-28 2010-02-12 Tokai Rubber Ind Ltd 粒子転写膜の製造方法
JP2010067360A (ja) * 2008-09-08 2010-03-25 Tokai Rubber Ind Ltd 異方性導電膜およびその使用方法
WO2015076234A1 (ja) * 2013-11-19 2015-05-28 デクセリアルズ株式会社 異方導電性フィルム及び接続構造体
WO2016068168A1 (ja) * 2014-10-28 2016-05-06 デクセリアルズ株式会社 異方性導電フィルム、その製造方法、及び接続構造体
JP2016131152A (ja) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 異方導電性フィルム
JP6187665B1 (ja) * 2016-10-18 2017-08-30 デクセリアルズ株式会社 異方性導電フィルム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015680A (ja) 2004-07-05 2006-01-19 Oike Ind Co Ltd 艶消しフィルム
US8802214B2 (en) * 2005-06-13 2014-08-12 Trillion Science, Inc. Non-random array anisotropic conductive film (ACF) and manufacturing processes
JP4887700B2 (ja) 2005-09-09 2012-02-29 住友ベークライト株式会社 異方導電性フィルムおよび電子・電機機器
JP5181618B2 (ja) * 2007-10-24 2013-04-10 宇部興産株式会社 金属箔積層ポリイミド樹脂基板
KR101156177B1 (ko) 2010-06-16 2012-06-18 한국생산기술연구원 전도성 입자 수용홈이 형성된 이방 도전성 필름, 전도성 입자 수용홈이 형성된 에폭시 수지를 사용한 플립 칩 접합방법 및 이를 이용한 플립 칩 패키지
JP5297418B2 (ja) * 2010-06-21 2013-09-25 デクセリアルズ株式会社 異方性導電材料及びその製造方法、並びに実装体及びその製造方法
US9475963B2 (en) * 2011-09-15 2016-10-25 Trillion Science, Inc. Fixed array ACFs with multi-tier partially embedded particle morphology and their manufacturing processes
US20140141195A1 (en) * 2012-11-16 2014-05-22 Rong-Chang Liang FIXED ARRAY ACFs WITH MULTI-TIER PARTIALLY EMBEDDED PARTICLE MORPHOLOGY AND THEIR MANUFACTURING PROCESSES
JP2013103368A (ja) 2011-11-11 2013-05-30 Sekisui Chem Co Ltd 多層フィルム
TWI547538B (zh) * 2012-08-24 2016-09-01 Dexerials Corp 異向性導電膜之製造方法及異向性導電膜
CN109166649B (zh) 2012-08-24 2021-04-13 迪睿合电子材料有限公司 各向异性导电膜及其制造方法
JP6221285B2 (ja) 2013-03-21 2017-11-01 日立化成株式会社 回路部材の接続方法
KR20140139902A (ko) * 2013-05-28 2014-12-08 삼성디스플레이 주식회사 이방성 도전 필름 적층체, 이를 포함하는 표시 장치 및 표시 장치 제조 방법
JP6119718B2 (ja) 2013-11-19 2017-04-26 デクセリアルズ株式会社 異方導電性フィルム及び接続構造体
JP6264897B2 (ja) 2014-01-23 2018-01-24 トヨタ自動車株式会社 高誘電率フィルム及びフィルムコンデンサ
JP2015167106A (ja) 2014-03-04 2015-09-24 日立化成株式会社 異方導電性フィルム及び接続構造体
JP6331776B2 (ja) * 2014-06-30 2018-05-30 デクセリアルズ株式会社 異方導電性フィルム及び接続構造体
WO2016068083A1 (ja) 2014-10-31 2016-05-06 デクセリアルズ株式会社 異方性導電フィルム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233202A (ja) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd 回路接続用異方導電性接着フィルム
JP2009074020A (ja) * 2007-03-06 2009-04-09 Tokai Rubber Ind Ltd 異方性導電膜
JP2010033793A (ja) * 2008-07-28 2010-02-12 Tokai Rubber Ind Ltd 粒子転写膜の製造方法
JP2010067360A (ja) * 2008-09-08 2010-03-25 Tokai Rubber Ind Ltd 異方性導電膜およびその使用方法
WO2015076234A1 (ja) * 2013-11-19 2015-05-28 デクセリアルズ株式会社 異方導電性フィルム及び接続構造体
WO2016068168A1 (ja) * 2014-10-28 2016-05-06 デクセリアルズ株式会社 異方性導電フィルム、その製造方法、及び接続構造体
JP2016131152A (ja) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 異方導電性フィルム
JP6187665B1 (ja) * 2016-10-18 2017-08-30 デクセリアルズ株式会社 異方性導電フィルム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059927A1 (ja) * 2019-09-27 2021-04-01 パナソニック株式会社 コイン形電池
JP2021057113A (ja) * 2019-09-27 2021-04-08 パナソニック株式会社 コイン形電池
JP7261713B2 (ja) 2019-09-27 2023-04-20 パナソニックホールディングス株式会社 コイン形電池

Also Published As

Publication number Publication date
US11001686B2 (en) 2021-05-11
TW201833267A (zh) 2018-09-16
JP2022093343A (ja) 2022-06-23
JP2018081906A (ja) 2018-05-24
KR20220021011A (ko) 2022-02-21
KR102513747B1 (ko) 2023-03-24
US20210261743A1 (en) 2021-08-26
JP7052254B2 (ja) 2022-04-12
CN109996837A (zh) 2019-07-09
KR102359094B1 (ko) 2022-02-08
JP7307377B2 (ja) 2023-07-12
TWI781119B (zh) 2022-10-21
US20190256675A1 (en) 2019-08-22
TW202305076A (zh) 2023-02-01
KR20190057090A (ko) 2019-05-27

Similar Documents

Publication Publication Date Title
WO2018084075A1 (ja) フィラー含有フィルム
JP7047282B2 (ja) フィラー含有フィルム
KR102314818B1 (ko) 필러 함유 필름
KR102011650B1 (ko) 이방성 도전 필름 및 접속 구조체
JP7315878B2 (ja) フィラー含有フィルム
JP7081097B2 (ja) フィラー含有フィルム
KR102250339B1 (ko) 이방성 도전 필름
KR102652055B1 (ko) 필러 함유 필름
KR102267650B1 (ko) 이방성 도전 필름
JP7087305B2 (ja) フィラー含有フィルム
WO2018101106A1 (ja) 異方性導電フィルム
JP7332956B2 (ja) フィラー含有フィルム
JP7352114B2 (ja) フィラー含有フィルム
JP7319578B2 (ja) フィラー含有フィルム
TWI836624B (zh) 含填料膜

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197010975

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867296

Country of ref document: EP

Kind code of ref document: A1