WO2018074425A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2018074425A1
WO2018074425A1 PCT/JP2017/037398 JP2017037398W WO2018074425A1 WO 2018074425 A1 WO2018074425 A1 WO 2018074425A1 JP 2017037398 W JP2017037398 W JP 2017037398W WO 2018074425 A1 WO2018074425 A1 WO 2018074425A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
dummy trench
mesa
semiconductor device
gate
Prior art date
Application number
PCT/JP2017/037398
Other languages
English (en)
French (fr)
Inventor
内藤 達也
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2018546329A priority Critical patent/JP6624300B2/ja
Priority to CN201780020958.9A priority patent/CN109075192B/zh
Publication of WO2018074425A1 publication Critical patent/WO2018074425A1/ja
Priority to US16/136,287 priority patent/US10714603B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0635Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors and diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1087Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors

Definitions

  • the present invention relates to a semiconductor device.
  • Patent Document 1 JP-A-2015-135954
  • Patent Document 2 JP-A-09-270512
  • an n + -type charge storage region is provided in a mesa region between adjacent gate trench portions.
  • the charge storage region is formed, for example, by ion implantation. If the end of the mask used at the time of ion implantation sags, there is a problem that the charge storage region is not formed at a predetermined depth in the mesa region.
  • a semiconductor device may comprise an edge termination and an active part.
  • the edge termination may be provided at the periphery of the semiconductor substrate.
  • the active part may be surrounded by an edge end.
  • the active portion may have a plurality of gate trench portions, a plurality of dummy trench portions, a mesa region, and a storage region.
  • the plurality of gate trench portions may be arranged along a predetermined arrangement direction.
  • the plurality of dummy trench portions may be provided between the gate trench portion closest to the edge termination portion among the plurality of gate trench portions and the edge termination portion.
  • a mesa region may be located between each of the plurality of dummy trench portions.
  • the accumulation region may be provided in at least a part of the mesa region.
  • the accumulation region may be of the first conductivity type.
  • the active portion may further comprise a contact region.
  • the contact region may be provided on the front surface of the mesa region between the plurality of dummy trench portions.
  • the contact region may be of the second conductivity type.
  • the active portion may have no storage region in at least one mesa region.
  • the mesa region may be a mesa region between the plurality of dummy trench portions.
  • the active portion may further have a well region.
  • the well region may cover the bottom of two or more dummy trench portions among the plurality of dummy trench portions.
  • the well region may be of the second conductivity type.
  • the active portion may have a mesa region that does not include a storage region.
  • a mesa region not including the storage region may be provided between the well region and the mesa region including the storage region.
  • the active region may further include a drift region, a collector region, and an inverse semiconductor region.
  • the drift region may be of a first conductivity type of lower concentration than the accumulation region.
  • the collector region may be located behind the drift region.
  • the collector region may be of the second conductivity type.
  • the reverse semiconductor region may be located below the drift region immediately below the plurality of dummy trench portions.
  • the reverse semiconductor region may be a first conductivity type higher in concentration than the drift region.
  • the reverse semiconductor region may be provided in the arrangement direction from the inner end of the well region to the outer end of the mesa region where the storage region is provided.
  • the reverse semiconductor region may be provided in the arrangement direction from the outer end of the well region to the outer end of the mesa region where the storage region is provided.
  • the reverse semiconductor region may be provided from the bottom of the guard ring provided at the edge terminal end through the outer end of the well region to the outer end of the mesa region where the accumulation region is provided in the arrangement direction.
  • the active portion may have storage regions in all mesa regions between the plurality of dummy trench portions.
  • the accumulation region may include the outermost portion of the plurality of dummy trench portions located outside the dummy trench portion closest to the edge termination portion.
  • FIG. 6 is an enlarged view of a region A. It is an aa 'sectional view of FIG. It is bb 'sectional drawing of FIG. It is an enlarged view of field A in semiconductor device 500 of a comparative example. It is cc 'cross section figure of FIG. It is a figure explaining the mask sag in a comparative example. It is an aa 'sectional view of the semiconductor device 200 in a 2nd embodiment.
  • FIG. 25 is a cross-sectional view of a region spanning the active portion 70 and the edge end portion 80 in the semiconductor device 300 of the third embodiment. It is an enlarged view of field A of semiconductor device 400 in a 4th embodiment. It is an aa 'sectional view of the semiconductor device 400 in a 4th embodiment. It is an aa 'sectional view of the semiconductor device 400 in the modification of a 4th embodiment.
  • FIG. 1 is a top view of the semiconductor device 100 according to the first embodiment.
  • the semiconductor device 100 of this example has a semiconductor substrate 10.
  • the semiconductor substrate 10 may be called a semiconductor chip.
  • the semiconductor substrate 10 may have a rectangular shape having outer peripheral end portions in the X direction and the Y direction.
  • the semiconductor substrate 10 may have a top surface in the + Z direction and a back surface in the ⁇ Z direction.
  • the X direction and the Y direction are directions perpendicular to each other.
  • the Z direction is a direction perpendicular to the XY plane.
  • the X, Y and Z directions form a so-called right handed system.
  • the semiconductor substrate 10 of this example has a top surface at the end in the + Z direction and a back surface at the end in the ⁇ Z direction.
  • the expressions “upper” and “lower” are merely convenient expressions for describing the relative positional relationship.
  • the Z direction does not necessarily mean the direction of gravity or the direction perpendicular to the ground.
  • the Z direction may be referred to as the depth direction in the semiconductor substrate 10.
  • the semiconductor substrate 10 has an active portion 70, an edge termination portion 80 and a pad portion 90.
  • the active portion 70 may have a plurality of transistor regions and a plurality of diode regions.
  • the active portion 70 in this example has an IGBT region 72 as a transistor region, an FWD region 74 as a diode region, and a temperature detection diode 76.
  • the IGBT region 72 may comprise one or more IGBTs
  • the FWD region 74 may comprise one or more FWDs.
  • the semiconductor device 100 of this example is an RC-IGBT (Reverse Conducting IGBT) in which the IGBT region 72 and the FWD region 74 are integrated with the semiconductor substrate 10.
  • RC-IGBT Reverse Conducting IGBT
  • a plurality of IGBT regions 72 may be provided apart from each other in the X direction and the Y direction. Also, a plurality of FWD regions 74 may be provided separately from each other in the X and Y directions as well. The FWD region 74 may be arranged to be sandwiched between the two IGBT regions 72 in the X direction. In the Y direction, IGBT regions 72 may be adjacent to each other, and FWD regions 74 may also be adjacent to each other. In FIG. 1, the FWD region 74 is indicated by hatching.
  • a temperature detection diode 76 is provided at the center of the semiconductor substrate 10.
  • the temperature detection diode 76 can be used to detect the temperature of the semiconductor substrate 10.
  • IGBT regions 72 and four FWD regions 74 are provided in the X direction at a position (first row) in the + Y direction relative to the central portion. Further, six IGBT regions 72 and four FWD regions 74 are provided in the X direction at the central portion position (second row) and the position (third row) in the ⁇ Y direction more than the central portion.
  • the two IGBT regions 72 in the second row sandwiching the temperature detection diode 76 in the X direction and the two IGBT regions 72 in the third row adjacent to the IGBT region 72 in the -Y direction The area of the region is smaller than that of the other IGBT regions 72.
  • One of the reasons for the small area may be to provide the temperature sensing diode 76 and a wire that extends the cathode and the anode to the pad portion 90.
  • the active portion 70 has a gate runner 51 on the front surface of the semiconductor substrate 10.
  • Gate runner 51 may be provided to surround the first, second and third rows of IGBT region 72 and FWD region 74, respectively.
  • the gate runner 51 may supply the gate potential supplied from the gate pad 92 of the pad portion 90 to the gate conductive portion of the IGBT region 72.
  • the pad portion 90 in this example is adjacent to the active portion 70 in the -Y direction.
  • the pad portion 90 in this example has a gate pad 92, a sense IGBT (S IGBT ) 93, a sense emitter pad (S E ) 94, an anode pad (T A ) 96 and a cathode pad (T K ) 98.
  • the cathode pad 98, the anode pad 96, the gate pad 92, the sense IGBT 93, and the sense emitter pad 94 are arranged in this order in the X direction.
  • the sense IGBT (S IGBT ) 93 is not a pad but an IGBT.
  • Each pad may be an electrode pad including gold (Au), silver (Ag), copper (Cu) or aluminum (Al) or the like.
  • Sense IGBT 93 is an IGBT provided for the purpose of detecting the main current flowing in IGBT region 72.
  • the main current flowing in the IGBT region 72 can be detected by incorporating the sense current flowing in the sense IGBT 93 into a control circuit provided outside the semiconductor device 100.
  • the sense current has a current value sufficiently smaller than the main current.
  • Sense emitter pad 94 in this example has the same potential as the emitter of sense IGBT 93.
  • the sense current may be taken from the sense emitter pad 94 into the control circuit described above via the sense IGBT 93.
  • the control circuit may detect the main current based on the sense current, and shut off the current flowing to the IGBT region 72 when the overcurrent flows to the IGBT region 72.
  • the anode pad 96 is an anode pad electrically connected to the temperature detection diode 76 and has an anode potential of the temperature detection diode 76.
  • cathode pad 98 is a cathode pad electrically connected to temperature detection diode 76 and has the cathode potential of temperature detection diode 76.
  • the anode pad 96 and the cathode pad 98 can be used to sense the potential difference between the anode and the cathode of the temperature sensing diode 76.
  • the edge termination 80 may be provided on the periphery of the semiconductor substrate 10.
  • the edge termination portion 80 in this example is provided around the edge of the semiconductor substrate 10 so as to surround the active portion 70 and the pad portion 90.
  • the edge termination portion 80 may have a function of alleviating electric field concentration in the vicinity of the front surface of the semiconductor substrate 10 in the active portion 70.
  • the edge termination 80 may have a guard ring, a field plate, a resurf structure and a channel stopper, and a combination of these.
  • FIG. 2 is an enlarged view of the area A.
  • Region A is a region including IGBT region 72 and gate runner 51 of active portion 70.
  • the edge end 80 and the pad 90 are omitted in FIG.
  • the emitter region 12, the base region 14, the contact region 15, the well region 17, and the dummy trench portion 30 are formed on the front surface of the semiconductor substrate 10 and inside the vicinity of the front surface. And a gate trench portion 40.
  • the semiconductor device 100 of this example includes the emitter electrode 52 and the gate metal layer 50 provided above the front surface of the semiconductor substrate 10. Emitter electrode 52 and gate metal layer 50 are provided electrically separated from each other.
  • An interlayer insulating film is formed between the emitter electrode 52 and the gate metal layer 50 and the front surface of the semiconductor substrate 10, but is omitted in FIG.
  • contact holes 54, 55 and 56 are formed penetrating the interlayer insulating film. In FIG. 2, contact holes 54, 55 and 56 are shown.
  • Emitter electrode 52 is in contact with emitter region 12 and contact region 15 on the front surface of semiconductor substrate 10 through contact hole 54.
  • a plug of tungsten or the like may be provided between the emitter electrode 52 and the contact region 15.
  • Emitter electrode 52 is connected to the dummy conductive portion in dummy trench portion 30 through contact hole 56. Between the emitter electrode 52 and the dummy conductive portion in the Z direction, a connection portion 57 formed of a conductive material such as polysilicon doped with an impurity may be provided. The connection portion 57 is formed on the front surface of the semiconductor substrate 10.
  • the gate metal layer 50 contacts the gate runner 51 through the contact hole 55.
  • the gate runner 51 may be formed of polysilicon or the like doped with an impurity. Gate runner 51 is connected to the gate conductive portion in gate trench portion 40 on the front surface of semiconductor substrate 10. That is, the gate runner 51 is formed on the front surface of the semiconductor substrate 10 so as to extend between a portion of the gate trench portion 40 and the contact hole 55.
  • Emitter electrode 52 and gate metal layer 50 are formed of a material containing a metal.
  • each electrode is formed of aluminum or aluminum-silicon alloy.
  • Each electrode may have a barrier metal formed of titanium or a titanium compound or the like in the lower layer of the region formed of aluminum or the like.
  • the IGBT region 72 of this example has a dummy trench region 130, a mixing trench region 140 and a well contact region 150.
  • the dummy trench region 130 is a region having only the dummy trench portion 30 as a trench portion.
  • the dummy trench region 130 is provided between the gate trench portion 40 closest to the edge termination 80 and the edge termination 80.
  • the dummy trench region 130 has a plurality of dummy trench portions 30 spaced apart by a predetermined distance in the X direction.
  • Mixed trench region 140 is a region having dummy trench portion 30 and gate trench portion 40.
  • the mixed trench region 140 is located inside the dummy trench region 130.
  • the inside means a central portion (a portion where the temperature detection diode 76 in FIG. 1 is provided) side of a front surface which is a two-dimensional plane. That is, inside means closer to the center than to the edge end 80.
  • the outer side is used in the opposite sense of the inner side.
  • the outside means that it is close to the end of the semiconductor substrate 10.
  • the mixing trench region 140 is located at the innermost in the X direction
  • the edge termination 80 is located at the outermost in the X direction.
  • the inner and outer sides may be used in the X direction and the Y direction.
  • the mixed trench region 140 has a plurality of gate trench portions 40 and a plurality of dummy trench portions 30 arranged at predetermined intervals along a predetermined arrangement direction.
  • the arrangement direction is the X direction.
  • the dummy trench portions 30 and the gate trench portions 40 are alternately provided in the X direction.
  • the separation distance between dummy trench portions 30 adjacent in the X direction in dummy trench region 130 and the separation distance between dummy trench portion 30 and gate trench portion 40 adjacent in X direction in mixed trench region 140 They are equal to each other.
  • the separation distance is also equal to the separation distance in the X direction between the dummy trench portion 30 located innermost in the dummy trench region 130 and the gate trench portion 40 in the mixed trench region 140.
  • a total of eight dummy trench portions 30 connected at two end portions are arranged in the X direction.
  • one gate trench portion 40 and one dummy trench portion 30 are alternately arranged in the X direction.
  • the mixed trench region 140 of FIG. 1 has three dummy trench portions 30 and four gate trench portions 40 connected at two end portions.
  • a part of the dummy trench portion 30 in the dummy trench region 130 has a linear shape extending in a predetermined extending direction (Y direction in this example) on the front surface of the semiconductor substrate 10.
  • the other part of the dummy trench portion 30 in the dummy trench region 130 has a curved shape in which two straight lines are connected by a curved portion at the end.
  • the other part has a U-shape.
  • dummy trench portion 30 of mixing trench region 140 has only a linear shape extending in a predetermined extending direction.
  • the dummy trench portion 30 of each of the dummy trench region 130 and the mixing trench region 140 may have the same length in the Y direction.
  • the gate trench portion 40 in the present example has the facing portion 41 and the projecting portion 43.
  • the facing portion 41 extends in the Y direction in a range facing the dummy trench portion 30 in the IGBT region 72. That is, the facing portion 41 is provided in parallel to the dummy trench portion 30.
  • the protrusion 43 further extends in the ⁇ Y direction from the facing portion 41 and is provided in a range not facing the dummy trench portion 30.
  • two opposing portions 41 provided on both sides of the dummy trench portion 30 are connected to one projecting portion 43.
  • At least a portion of the protrusion 43 may have a curvilinear shape.
  • the protrusion 43 of this example has a U-shape.
  • the gate conductive portion in the gate trench portion 40 and the gate runner 51 are connected in the Z direction.
  • the gate runner 51 may be connected to the gate conductive portion in a region farthest from the facing portion 41 in the projecting portion 43.
  • the projecting portion 43 in this example has a portion extending in the X direction which is a direction orthogonal to the facing portion 41 in a region farthest from the facing portion 41.
  • the gate runner 51 may be connected to the gate conductor at that portion of the projection 43.
  • Well contact region 150 is provided in the vicinity of the front surface of well region 17.
  • Well contact region 150 has a contact region 15.
  • a contact hole 54 which is an opening of an interlayer insulating film is provided.
  • the contact region 15 is in direct contact with the emitter electrode 52 through the plurality of contact holes 54.
  • the well contact region 150 has a function of extracting holes injected from, for example, a collector region 22 described later to the emitter electrode 52. In the present example, the well contact region 150 is not essential but may be omitted.
  • Emitter electrode 52 is provided above dummy trench region 130, mixing trench region 140 and well contact region 150. Emitter electrode 52 is provided above gate trench portion 40, dummy trench portion 30, well region 17, emitter region 12, base region 14 and contact region 15.
  • the well region 17 is formed in a predetermined range from the outer end of the active portion 70 on the side where the gate metal layer 50 is provided.
  • the inner end of the well region 17 is shown by a dotted line.
  • the depth of well region 17 may be deeper than the bottom of gate trench portion 40 and dummy trench portion 30.
  • a portion of gate trench portion 40 and dummy trench portion 30 on the side of gate metal layer 50 is formed in well region 17.
  • the bottom of the outer end in the extension direction of the dummy trench portion 30 may be covered by the well region 17.
  • the projecting portion 43 of the gate trench portion 40 may be entirely formed in the well region 17.
  • the semiconductor substrate 10 may have a first conductivity type, and the well region 17 may have a second conductivity type different from that of the semiconductor substrate 10.
  • the semiconductor substrate 10 of this example is an n ⁇ -type substrate, and the well region 17 is a p + -type region.
  • the first conductivity type is described as n-type
  • the second conductivity type is described as p-type.
  • the first and second conductivity types may be opposite conductivity types.
  • a mesa region 60 is provided between each of the plurality of dummy trench portions 30 and between the dummy trench portion 30 and the gate trench portion 40.
  • the mesa region 60 does not protrude in the + Z direction more than the respective trench portions.
  • the mesa region 60 can be regarded as a peak which is sandwiched between the trenches which are valleys and protrudes in the + Z direction. Therefore, in the present example, the region between the trenches is referred to as a mesa region 60.
  • a base region 14 is formed in the mesa region 60.
  • the base region 14 is a region of the second conductivity type whose impurity concentration is lower than that of the well region 17.
  • the base region 14 in this example is a p ⁇ -type region. However, a part of the base region 14 is provided below the emitter region 12 and the contact region 15. In the example of FIG. 1, the base region 14 is exposed in a part of the outside of the mesa region 60 (near the connection portion 57).
  • the contact region 15 of the second conductivity type which has a higher impurity concentration than the base region 14, is selectively provided in part of the front surface side of the base region 14.
  • the contact region 15 in this example is a p + -type region.
  • the emitter region 12 of the first conductivity type having the impurity concentration higher than that of the semiconductor substrate 10 is selectively provided in part of the front surface side than the base region.
  • the emitter region 12 in this example is an n + -type region.
  • each of contact region 15 and emitter region 12 is formed from one trench portion adjacent in the X direction to the other trench portion.
  • Contact region 15 and emitter region 12 of mixed trench region 140 are alternately exposed on the front surface of mesa region 60 along the extension direction of the trench portion.
  • the base region 14 is exposed to the front surface of the mesa region 60 further outside the outermost contact region 15 in the Y direction.
  • the well region 17 is exposed to the front surface of the mesa region 60 outside the base region 14 in the Y direction.
  • contact region 15 is formed from one dummy trench portion 30 adjacent in the X direction to the other dummy trench portion 30.
  • contact region 15 is exposed on the front surface of mesa region 60 from the inner side in the Y direction to the Y-direction position of outermost contact region 15 of mixed trench region 140. Further outside the contact region 15, the base region 14 and the well region 17 are exposed to the front surface of the mesa region 60 in the same manner as the mixed trench region 140.
  • the mesa region 60 of the dummy trench region 130 has the contact region 15
  • holes are easily extracted as compared with the case where the contact region 15 is not provided. Therefore, the avalanche breakdown of the p + -type well region 17 (in particular, the curved portion of the well region 17 in the depth direction) and current concentration can prevent the well region 17 from being destroyed. .
  • contact holes 54 are provided on the contact region 15 and emitter region 12, respectively.
  • the contact hole 54 is not provided in the region corresponding to the base region 14 and the well region 17.
  • the storage region 16 of the first conductivity type is provided below the emitter region 12 and the contact region 15 of the mixing trench region 140.
  • the outer end of the accumulation area 16 is indicated by a broken line.
  • the storage area 16 of this example is an n + -type area.
  • the donor may be stored at a higher concentration than the drift region.
  • the accumulation region 16 can enhance the so-called IE effect.
  • storage region 16 may be provided below at least a part of contact region 15 of dummy trench region 130. In the present embodiment, the storage region 16 is provided from the inner side in the X direction in the dummy trench region 130 to the third dummy trench portion 30.
  • the dummy trench region 130 is provided outside the gate trench portion 40, and the storage region 16 is further provided in the mesa region 60 of a part of the dummy trench region 130. Therefore, even if the end of the mask for forming the storage region 16 is drooping by ion implantation, the drooping position can be made on the dummy trench region 130 rather than on the mixed trench region 140. Therefore, even if storage region 16 provided in mesa region 60 of dummy trench region 130 is not formed at a predetermined depth position, storage region 16 provided in mesa region 60 of mixed trench region 140 is formed at a predetermined depth. be able to. Thereby, variations in gate threshold voltage (Vth) between gate trench portions 40 and variations in saturation current can be suppressed.
  • Vth gate threshold voltage
  • FIG. 3 is a cross-sectional view taken along the line aa ′ of FIG.
  • the aa ′ cross section is a cross section parallel to the XZ plane and passing through the range extending from the edge end 80 to the mixing trench area 140.
  • the semiconductor device 100 of this example has the semiconductor substrate 10, the interlayer insulating film 26, the gate metal layer 50, the emitter electrode 52, the collector electrode 24 and the like in the cross section.
  • the gate metal layer 50 and the emitter electrode 52 are formed on the front surface of the semiconductor substrate 10 and the upper surface of the interlayer insulating film 26.
  • the collector electrode 24 is provided in direct contact with the back surface of the semiconductor substrate 10.
  • the gate metal layer 50, the emitter electrode 52 and the collector electrode 24 are formed of a conductive material such as metal. Further, in the present specification, the surface on the emitter electrode 52 side of each member such as the substrate, the layer, and the region is referred to as the front surface, and the surface on the collector electrode 24 side is referred to as the back surface.
  • the semiconductor substrate 10 may be a silicon substrate, a silicon carbide substrate, or a nitride semiconductor substrate such as gallium nitride.
  • the semiconductor substrate 10 of this example is a silicon substrate.
  • a p ⁇ -type base region 14 is formed in the vicinity of the front surface of the semiconductor substrate 10.
  • the n + -type emitter region 12, the p ⁇ -type base region 14 and the n + -type storage region 16 are provided near the front surface of the mesa region 60 of the mixed trench region 140 in the semiconductor substrate 10. It is provided in order in the direction from the front surface to the back surface. In the vicinity of the front surface of the mesa region 60 of the dummy trench region 130, the contact region 15 and the base region 14 are sequentially provided in the direction from the front surface to the back surface.
  • An accumulation region 16 may be provided below at least a part of the mesa region 60 of the dummy trench region 130.
  • the mesa region 60 from the inner side of the innermost dummy trench portion 30 to the third dummy trench portion 30 has the storage region 16 under the base region 14.
  • the storage region 16 may not be provided below at least one of the mesa regions 60 in the dummy trench region 130.
  • the mesa region 60 outside the third innermost dummy trench portion 30 does not have the storage region 16 below the base region 14.
  • the accumulation region 16 has a function of accumulating holes injected from the collector region 22.
  • the storage region 16 is not provided intentionally in the mesa region 60 of a part of the dummy trench region 130. This makes it easier to extract holes from the mesa region 60 as compared to the case where the storage region 16 is provided in all the mesa regions 60. Therefore, the avalanche breakdown of the p + well region 17 (in particular, the curved portion 117 of the well region 17 in the depth direction) and current concentration prevent the well region 17 from being destroyed. it can.
  • the well region 17 may cover the bottom of two or more dummy trench portions 30 among the plurality of dummy trench portions 30.
  • the well region 17 of the present example covers the bottoms of the two dummy trench portions 30 located outermost in the X direction.
  • a mesa region 60 not including the storage region 16 is provided between the well region 17 and the mesa region 60 including the storage region 16.
  • the mesa region 60 not including the storage region 16 functions as a margin region that prevents the n-type impurity region from being erroneously formed in the well region 17 when the n + -type storage region 16 is formed. If the n + -type storage region 16 is formed in the p + -type well region 17 due to misalignment of the mask that prevents the implantation of impurities and mask sag, etc., the high resistance region is formed by charge neutralization. It is formed. It is not desirable to form a high resistance region as holes are difficult to pull out of the high resistance region. In this example, by providing the mesa region 60 not including the storage region 16 adjacent to the well region 17, it is possible to ensure that the high resistance region is not formed in the well region 17.
  • the drift region 18 of the first conductivity type is provided immediately below the dummy trench portion 30 and the gate trench portion 40 and immediately below the well region 17.
  • the drift region 18 in this example is n ⁇ -type and has a lower concentration than the n + -type accumulation region 16.
  • a buffer region 20 of the first conductivity type is formed on the back surface of drift region 18.
  • the impurity concentration of the buffer region 20 may be higher than the impurity concentration of the drift region 18.
  • the buffer area 20 in this example is an n + -type area.
  • the buffer region 20 may function as a field stop layer that prevents the depletion layer extending from the back surface of the base region 14 from reaching the p + -type collector region 22.
  • a collector region 22 of the second conductivity type is provided below the drift region 18 and immediately below the buffer region 20.
  • the collector region 22 in this example is a p + -type region.
  • a collector electrode 24 is provided on the back surface of the collector region 22.
  • a dummy trench portion 30 and a gate trench portion 40 are provided in the vicinity of the front surface of the semiconductor substrate 10. Each trench portion penetrates base region 14 from the front surface of semiconductor substrate 10 to reach drift region 18. In the region where at least one of the emitter region 12, the contact region 15 and the storage region 16 is provided, each trench also penetrates these regions to reach the drift region 18.
  • the gate trench portion 40 has a gate trench 46, a gate insulating film 42 and a gate conductive portion 44 provided in the vicinity of the front surface of the semiconductor substrate 10.
  • the gate insulating film 42 is formed to cover the inner wall of the gate trench 46.
  • the gate insulating film 42 may be formed by oxidizing or nitriding the semiconductor on the inner wall of the gate trench 46.
  • the gate conductive portion 44 is formed on the gate insulating film 42 inside the gate trench 46. That is, the gate insulating film 42 insulates the gate conductive portion 44 and the semiconductor substrate 10.
  • the gate conductive portion 44 is formed of a conductive material such as polysilicon.
  • the gate conductive portion 44 faces at least the adjacent base region 14 in the X direction.
  • the gate trench portion 40 is covered with the interlayer insulating film 26 on the front surface of the semiconductor substrate 10.
  • a predetermined voltage is applied to gate conductive portion 44, a channel is formed in the surface layer of interface in contact with gate trench 46 in base region 14.
  • the gate conductive portion 44 in the protrusion 43 is electrically connected to the gate metal layer 50 via the gate runner 51.
  • the dummy trench portion 30 may have the same structure as the gate trench portion 40 in the cross section.
  • the dummy trench portion 30 has a dummy trench 36, a dummy trench insulating film 32 and a dummy trench conductive portion 34 formed in the vicinity of the front surface of the semiconductor substrate 10.
  • the dummy trench insulating film 32 is formed to cover the inner wall of the dummy trench 36.
  • the dummy trench conductive portion 34 is formed on the dummy trench insulating film 32 inside the dummy trench 36.
  • the dummy trench insulating film 32 insulates the dummy trench conductive portion 34 from the semiconductor substrate 10.
  • the dummy trench conductive portion 34 may be formed of the same material as the gate conductive portion 44.
  • the dummy trench conductive portion 34 may have the same length as the gate conductive portion 44 in the depth direction.
  • the dummy trench portion 30 is covered with the interlayer insulating film 26 on the upper surface of the semiconductor substrate 10.
  • the dummy trench conductive portion 34 is electrically connected to the emitter electrode 52 through the contact hole 56.
  • an insulating film such as a gate insulating film 42 is formed between the gate runner 51 and the semiconductor substrate 10. That is, the gate runner 51 and the semiconductor substrate 10 are insulated by the insulating film.
  • FIG. 4 is a cross-sectional view taken along the line bb 'of FIG.
  • the bb ′ cross section is a plane parallel to the YZ plane.
  • the bb ′ cross section is a cross section passing through the mesa region 60, the connection portion 57 and the gate runner 51 of the mixing trench region 140.
  • the contact holes 54 adjacent in the X direction are indicated by dotted lines.
  • a storage region 16 is provided in the mesa region 60 of the cross section.
  • emitter regions 12 and contact regions 15 are alternately provided along the extension direction of the trench portion. Further, a storage region 16 is provided on the lower surface of the base region 14.
  • the storage region 16 is preferably provided to the outside of the emitter region 12 formed on the outermost side in the Y direction. That is, the outer end position P 1 of the accumulation region 16 is preferably provided outside the outer end position P 3 of the emitter region 12. Thereby, the IE effect in the accumulation region 16 can be enhanced.
  • the contact hole 54 is preferably provided to the outside of the accumulation region 16 in the Y direction. That is, it is preferable that the outer end position P 2 of the contact hole 54 be disposed outside the outer end position P 1 of the accumulation region 16. As a result, when the semiconductor device 100 is turned off, holes can be efficiently extracted from the outside of the storage region 16.
  • the contact region 15 formed on the outermost side in the Y direction be provided to the outside of the contact hole 54.
  • the outer end position P 4 of the contact region 15 is preferably disposed outside the outer end position P 2 of the contact hole 54.
  • the distance from the outer end position P 3 of the emitter region 12 to the outer end position P 1 in the storage area 16 from the outer end position P 1 in the storage area 16 to the outer end position P 4 of the contact region 15 It may be shorter than the distance of.
  • the storage region 16 can suppress inhibition of hole extraction.
  • the concentration of the electric field at the end of the accumulation region 16 can be alleviated.
  • the distance from position P 3 to P 1 is preferably shorter than the distance from position P 1 to P 2 .
  • the distance from the position P 3 of the emitter region 12 to the position P 1 of the storage area 16 is 12 ⁇ m or less.
  • the distance from the position P 1 of the storage area 16 to a position P 2 of the contact hole 54 is 20 ⁇ m or less.
  • the distance from the position P 2 of the contact hole 54 to the position P 4 of the contact region 15 is 1 ⁇ m or less.
  • a base region 14 is formed between the outermost contact region 15 and the well region 17.
  • the length of the base region 14 between the contact region 15 and the well region 17 may be 10 ⁇ m to 50 ⁇ m.
  • FIG. 5 is an enlarged view of a region A in the semiconductor device 500 of the comparative example.
  • the same reference numerals as in the first embodiment denote the same parts as in the first embodiment, and a description thereof will be omitted.
  • the IGBT region 72 of this example unlike the mixed trench region 140 of the first embodiment, includes a gate trench region 145 having only the gate trench portion 40 as a trench portion.
  • the IGBT region 72 in this example does not have the dummy trench region 130 between the gate trench region 145 and the edge termination 80.
  • the point which concerns is the largest difference compared with 1st Embodiment.
  • the well contact region 150 has only one contact hole 54 which is wider in the X direction as compared with the first embodiment.
  • FIG. 6 is a cross-sectional view taken along the line cc 'in FIG.
  • the same reference numerals as in the first embodiment denote the same parts as in the first embodiment, and a description thereof will be omitted.
  • FIG. 6 is a diagram showing an ideal case in which no mask sag occurs at the end of the mask used when forming the n + -type storage region 16. As will be described later, in the actual semiconductor device 500, the depth position at which the storage region 16 is formed by the mask sag deviates from the ideal depth position shown in FIG.
  • FIG. 7 is a view for explaining the mask sag in the comparative example.
  • FIG. 7 shows the variation of the depth position of the storage region 16 caused by the mask sag.
  • the structure on the front surface of the semiconductor substrate 10 is omitted, and the mask 110 is shown above the semiconductor substrate 10.
  • the mask 110 is used in the step of implanting an n-type impurity into a region corresponding to the storage region 16.
  • the mask 110 may be formed by applying a resist or the like and patterning it into a predetermined shape.
  • the storage area 16 is not formed in the area covered by the mask 110, and the storage area 16 is formed in the area not covered by the mask 110.
  • the end of the mask 110 is preferably formed vertically just above the outermost gate trench portion 40.
  • An ideal state in which the end of the mask 110 is formed vertically is indicated by a dotted line in FIG.
  • the mask sag region 112 may be formed immediately above and beyond the outermost gate trench portion 40.
  • the storage area 16 is not formed at a predetermined depth in the mesa area 60 covered by the mask drooping area 112. For example, in the mesa region 60 covered by the mask drooping region 112, the storage region 16 is formed shallower than a predetermined depth.
  • the storage area 16 of this example includes storage areas 16-1 to 16-4.
  • the accumulation region 16-1 is formed in the vicinity of the front surface of the p + -type well region 17.
  • the storage region 16-2 is formed at a deeper position than the storage region 16-1 and between the emitter region 12 and the base region 14.
  • the accumulation region 16-3 is formed in the base region 14 at a deeper position than the accumulation region 16-2.
  • the accumulation region 16-4 is formed at a position deeper than the accumulation region 16-3 and at a predetermined depth position.
  • Each accumulation region 16-1 to 16-4 may be formed gradually deeper as it approaches inside.
  • the accumulation region 16-3 and the accumulation region 16-4 may be formed continuously, and may be formed discontinuously in the depth direction.
  • the gate threshold voltage (Vth) of the mesa region 60 fluctuates with respect to the gate threshold voltage of the other mesa region 60, and the gate threshold voltage There is a problem that the variation of There is also a problem that the variation in saturation current in IGBT region 72 is increased. Also, as described above, the n + -type storage region 16-1 formed in the well region 17 is a high resistance region.
  • the dummy trench region 130 is provided between the gate trench portion 40 and the well region 17.
  • the length at which the resist sag occurs is, for example, two or more and three or less of the width of the mesa region 60 in the X direction.
  • six dummy trench portions 30 are provided between the outermost gate trench portion 40 and the well region 17.
  • FIG. 8 is an aa 'cross-sectional view of the semiconductor device 200 in the second embodiment.
  • FIG. 8 corresponds to FIG. 3 which is a cross section aa 'of the first embodiment.
  • the semiconductor device 200 of this example includes the reverse semiconductor region 23 of the first conductivity type in the same depth range as the collector region 22.
  • the reverse semiconductor region 23 in this example is a semiconductor region of the opposite conductivity type to the collector region 22.
  • the second embodiment is different from the first embodiment in such a point.
  • the other points are the same as those in the first embodiment, and thus redundant description will be omitted.
  • the reverse semiconductor region 23 in this example is an n + -type region having a higher concentration than the drift region 18.
  • the reverse semiconductor region 23 may be provided instead of a partial region in the X and Y directions of the collector region 22 in the same depth range as the collector region 22.
  • the amount of holes injected from the collector region 22 to the well region 17 can be reduced. Thereby, the well region 17 can be prevented from being destroyed due to the avalanche breakdown of the well region 17 and concentration of current.
  • the reverse semiconductor region 23 may be provided continuously from the inner end Px1 of the well region 17 to the central portion Px2 of the bottom of the gate trench portion 40 in the X direction.
  • the reverse semiconductor region 23 of this example is continuously provided in the X direction from the inner end Px1 of the well region 17 to the outer end Px3 of the mesa region 60 in which the storage region 16 is provided.
  • current concentration to the well region 17 can be avoided by the reverse semiconductor region 23 while maintaining the effective area of the collector region 22 contributing to hole injection to the maximum. it can.
  • an insulating film such as a gate insulating film 42 is formed between the gate runner 51 and the semiconductor substrate 10. That is, the gate runner 51 and the semiconductor substrate 10 are insulated by the insulating film.
  • FIG. 9 is a cross-sectional view of a region spanning the active portion 70 and the edge end portion 80 in the semiconductor device 300 of the third embodiment.
  • FIG. 9 also shows the edge termination 80 in this example.
  • the edge termination 80 in this example has a guard ring structure and a channel stopper structure.
  • the guard ring structure may include a plurality of guard rings 82.
  • the guard ring structure of this example includes four guard rings 82.
  • Each guard ring 82 may be provided to surround the active portion 70 and the pad portion 90 on the front surface.
  • the guard ring structure may have a function of spreading the depletion layer generated in the active portion 70 to the outside of the semiconductor substrate 10. Thereby, the electric field concentration in the semiconductor substrate 10 can be prevented. Therefore, the withstand voltage of the semiconductor device 300 can be improved as compared to the case where the guard ring structure is not provided.
  • the guard ring 82 in this example is ap + -type semiconductor region formed by ion implantation in the vicinity of the front surface. Guard ring 82 is electrically connected to electrode layer 84.
  • the electrode layer 84 may be the same material as the gate metal layer 50 or the emitter electrode 52.
  • the plurality of guard rings 82 are electrically isolated by the interlayer insulating film 26.
  • the depth of the bottom of the guard ring 82 may be the same depth as the bottom of the p + -type well region 17. Further, the depth of the bottom of the guard ring 82 in this example is deeper than the depth of the bottom of the gate trench 40 and the dummy trench 30.
  • the channel stopper structure has an n + -type channel stopper region 88 and an electrode layer 84.
  • Channel stopper region 88 is electrically connected to electrode layer 84 through the opening of interlayer insulating film 26.
  • the channel stopper region 88 may be a p-type semiconductor region in another example.
  • the channel stopper region 88 has a function of terminating the depletion layer generated in the active portion 70 at the outer end of the semiconductor substrate 10.
  • the well region 17 may extend beyond the well contact region 150 in the X direction to the outside.
  • the well region 17 in this example may be close to the edge termination 80 such that the distance between the innermost guard ring 82 in the edge termination 80 and the outer end of the well region 17 is several ⁇ m.
  • the p ⁇ -type base region 14 may be extended to the innermost guard ring 82 instead of the well region 17. In this case, the distance between the innermost guard ring 82 and the outer end of the base region 14 may be several ⁇ m.
  • the reverse semiconductor region 23 may be provided from the outer end Px4 of the well region 17 to the outer end Px3 of the mesa region 60 in which the storage region 16 is provided in the X direction.
  • the reverse semiconductor region 23 may be provided from the bottom of the guard ring 82 through the outer end Px4 of the well region 17 to the outer end Px3 of the mesa region 60 where the accumulation region 16 is provided in the X direction.
  • the reverse semiconductor region 23 of this example from the central portion Px5 of the bottom of the second guard ring 82 from the inner side to the outer end Px3 of the mesa region 60 in which the storage region 16 is provided (X from The outer end of the mesa region 60 between the first dummy trench portion 30 and the seventh dummy trench portion 30 is provided.
  • X from The outer end of the mesa region 60 between the first dummy trench portion 30 and the seventh dummy trench portion 30 is provided.
  • an insulating film such as a gate insulating film 42 is formed between the gate runner 51 and the semiconductor substrate 10. That is, the gate runner 51 and the semiconductor substrate 10 are insulated by the insulating film.
  • the semiconductor device 100 etc. may be manufactured appropriately using known techniques such as ion implantation, annealing, film formation, thermal oxidation, sputtering and spin coating. Can.
  • FIG. 10 is an enlarged view of a region A of the semiconductor device 400 in the fourth embodiment.
  • the top view of the semiconductor device 400 may be the same as the semiconductor device 100 shown in FIG.
  • the dummy trench region 130 of the active portion 70 in the present example has the storage region 16 in all the mesa regions 60 between the plurality of dummy trench portions 30.
  • the X-direction outer end of the accumulation region 16 is located outside the X-direction inner end of the well region 17.
  • the storage region 16 in this example may be located outside the outermost dummy trench portion 30.
  • the outermost dummy trench portion 30 is the dummy trench portion 30 closest to the edge termination portion 80.
  • FIG. 11 is an aa 'cross-sectional view of the semiconductor device 400 in the fourth embodiment.
  • Storage region 16 may include a plurality of storage layers 116 spaced apart in the Z direction.
  • the storage region 16 in this example has three storage layers 116-1, 116-2 and 116-3 spaced in the Z direction.
  • the withstand voltage of the semiconductor device 400 can be increased as the number of storage layers 116 is increased.
  • the storage region 16 may have one or two storage layers 116.
  • the storage region 16 of this example includes the outermost portion 115 located outside the dummy trench portion 30 located at the outermost side. Even if storage region 16 has one or two storage layers 116, storage region 16 may have outermost 115. The outermost portion 115 may have one or more storage layers 116. By providing the outermost portion 115, the influence of the sag of the mask 110 can be eliminated not only from the mixed trench region 140 but also from the dummy trench region 130.
  • FIG. 12 is an aa 'cross-sectional view of a semiconductor device 400 in a modification of the fourth embodiment.
  • the well region 17 may cover the bottom of two or more dummy trench portions 30 among the plurality of dummy trench portions 30.
  • the well region 17 in the present example covers the bottoms of the three dummy trench portions 30 located outermost in the X direction.
  • the well region 17 may cover the bottom of three or more or four or more dummy trench portions 30 with the outermost dummy trench portion 30 as the first in order to further facilitate the extraction of holes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

隣接するゲートトレンチ部間のメサ領域にn型の蓄積領域を設ける場合がある。蓄積領域は、例えばイオン注入により形成される。イオン注入時に用いるマスクの端部が垂れると、メサ領域の所定の深さに蓄積領域が形成されないという問題がある。半導体基板の周辺部に設けられたエッジ終端部と、エッジ終端部に囲まれた活性部とを備え、活性部は、予め定められた配列方向に沿って配列された複数のゲートトレンチ部と、複数のゲートトレンチ部のうち最もエッジ終端部に近いゲートトレンチ部とエッジ終端部との間に設けられた複数のダミートレンチ部と、複数のダミートレンチ部の各々の間に位置するメサ領域と、メサ領域の少なくとも一部に設けられた第1導電型の蓄積領域とを有する、半導体装置を提供する。

Description

半導体装置
 本発明は、半導体装置に関する。
 従来、IGBT(Insulated Gate Bipolar Transistor)等のトランジスタと、FWD(Free Wheeling Diode)等のダイオードとが同一チップに形成された半導体装置が知られている(例えば、特許文献1参照)。また、ゲート電極を有するトレンチ部をp型半導体層中に設けることが知られている(例えば、特許文献2参照)。
[先行技術文献]
[特許文献]
 [特許文献1] 特開2015-135954号公報
 [特許文献2] 特開平09-270512号公報
解決しようとする課題
 隣接するゲートトレンチ部間のメサ領域にn型の電荷蓄積領域を設ける場合がある。電荷蓄積領域は、例えばイオン注入により形成される。イオン注入時に用いるマスクの端部が垂れると、メサ領域の所定の深さに電荷蓄積領域が形成されないという問題がある。
一般的開示
 本発明の第1の態様においては、半導体装置を提供する。半導体装置は、エッジ終端部と活性部とを備えてよい。エッジ終端部は、半導体基板の周辺部に設けられてよい。活性部は、エッジ終端部に囲まれてよい。活性部は、複数のゲートトレンチ部と、複数のダミートレンチ部と、メサ領域と、蓄積領域とを有してよい。複数のゲートトレンチ部は、予め定められた配列方向に沿って配列されてよい。複数のダミートレンチ部は、複数のゲートトレンチ部のうち最もエッジ終端部に近いゲートトレンチ部とエッジ終端部との間に設けられてよい。メサ領域は、複数のダミートレンチ部の各々の間に位置してよい。蓄積領域は、メサ領域の少なくとも一部に設けられてよい。蓄積領域は、第1導電型であってよい。
 活性部は、コンタクト領域をさらに有してよい。コンタクト領域は、複数のダミートレンチ部間のメサ領域のおもて面に設けられてよい。コンタクト領域は、第2導電型であってよい。
 活性部は、少なくとも一つのメサ領域には蓄積領域を有しなくてよい。メサ領域は、複数のダミートレンチ部間のメサ領域であってよい。
 活性部は、ウェル領域をさらに有してよい。ウェル領域は、複数のダミートレンチ部のうち2つ以上のダミートレンチ部の底部を覆ってよい。ウェル領域は、第2導電型であってよい。
 活性部は、蓄積領域を含まないメサ領域を有してよい。蓄積領域を含まないメサ領域は、ウェル領域と蓄積領域を含むメサ領域との間に設けられてよい。
 活性領域は、ドリフト領域と、コレクタ領域と、逆型半導体領域とをさらに有してよい。ドリフト領域は、蓄積領域よりも低濃度の第1導電型であってよい。コレクタ領域は、ドリフト領域よりも裏下方に位置してよい。コレクタ領域は、第2導電型であってよい。逆型半導体領域は、複数のダミートレンチ部の直下におけるドリフト領域よりも下方に位置してよい。逆型半導体領域は、ドリフト領域よりも高濃度の第1導電型であってよい。
 逆型半導体領域は、配列方向において、ウェル領域の内側端部から蓄積領域が設けられるメサ領域の外側端部まで設けられてよい。
 逆型半導体領域は、配列方向において、ウェル領域の外側端部から蓄積領域が設けられるメサ領域の外側端部まで設けられてもよい。
 また、逆型半導体領域は、配列方向において、エッジ終端部に設けられたガードリングの底部からウェル領域の外側端部を経て蓄積領域が設けられるメサ領域の外側端部まで設けられてもよい。活性部は、複数のダミートレンチ部間の全てのメサ領域に蓄積領域を有してよい。蓄積領域は、複数のダミートレンチ部のうちエッジ終端部に最も近いダミートレンチ部よりも外側に位置する最外部を含んでもよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
第1実施形態における半導体装置100の上面図である。 領域Aの拡大図である。 図2のa‐a'断面図である。 図2のb‐b'断面図である。 比較例の半導体装置500における領域Aの拡大図である。 図5のc‐c'断面図である。 比較例におけるマスク垂れを説明する図である。 第2実施形態における半導体装置200のa‐a'断面図である。 第3実施形態の半導体装置300において活性部70およびエッジ終端部80にまたがる領域の断面図である。 第4実施形態における半導体装置400の領域Aの拡大図である。 第4実施形態における半導体装置400のa‐a'断面図である。 第4実施形態の変形例における半導体装置400のa‐a'断面図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、第1実施形態における半導体装置100の上面図である。本例の半導体装置100は、半導体基板10を有する。半導体基板10は、半導体チップと呼んでもよい。半導体基板10は、X方向および及びY方向に外周端部を有する矩形形状であってよい。また、半導体基板10は、+Z方向におもて面を有し、-Z方向に裏面を有してよい。
 本例において、X方向とY方向とは互いに垂直な方向である。また、Z方向はX‐Y平面に垂直な方向である。X、YおよびZ方向は、いわゆる右手系を成す。本例の半導体基板10は、+Z方向の端部におもて面を有し、-Z方向端部に裏面を有する。なお、本例において、上および下という表現は相対的な位置関係を説明する便宜的な表現に過ぎない。Z方向は、必ずしも重力方向または地面に垂直な方向を意味しない。なお、本例においては、Z方向を半導体基板10における深さ方向と称する場合がある。
 半導体基板10は、活性部70、エッジ終端部80およびパッド部90を有する。活性部70は、複数のトランジスタ領域と複数のダイオード領域とを有してよい。本例の活性部70は、トランジスタ領域としてのIGBT領域72と、ダイオード領域としてのFWD領域74と、温度検知ダイオード76とを有する。IGBT領域72は1または複数のIGBTを有してよく、FWD領域74は1または複数のFWDを有してよい。本例の半導体装置100は、IGBT領域72およびFWD領域74を半導体基板10に一体化したRC-IGBT(Reverse Conducting IGBT)である。
 複数のIGBT領域72がX方向およびY方向において互いに離間して設けられてよい。また、複数のFWD領域74も同様に、X方向およびY方向において互いに離間して設けられてよい。なお、FWD領域74は、X方向において2つのIGBT領域72に挟まれるように配置されてよい。なお、Y方向においては、IGBT領域72同士が互いに隣り合ってよく、FWD領域74同士も互いに隣り合ってよい。なお、図1では、FWD領域74に斜線を付して示す。
 本例においては、半導体基板10の中央部に温度検知ダイオード76を設ける。温度検知ダイオード76に一定の電流を流した場合に、カソードおよびアノード間の電圧差は半導体基板10の温度に応じて変化し得る。それゆえ、温度検知ダイオード76を用いて、半導体基板10の温度を検知することができる。
 本例では、中央部よりも+Y方向の位置(第1行)において、X方向に5つのIGBT領域72と4つのFWD領域74とを設ける。また、中央部の位置(第2行)および中央部よりも-Y方向の位置(第3行)において、X方向に6つのIGBT領域72と4つのFWD領域74とをそれぞれ設ける。
 なお、本例では、温度検知ダイオード76をX方向において挟む第2行における2つのIGBT領域72と、当該IGBT領域72の-Y方向に隣接する第3行における2つのIGBT領域72とは、これら以外のIGBT領域72よりも領域の面積が小さい。面積が小さい理由の1つは、温度検知ダイオード76とカソードおよびアノードをパッド部90に延伸する配線とを設けるためであってよい。
 活性部70は、半導体基板10のおもて面にゲートランナー51を有する。ゲートランナー51は、IGBT領域72およびFWD領域74の第1行、第2行および第3行の周囲をそれぞれ囲むように設けられてよい。ゲートランナー51は、パッド部90のゲートパッド92から供給されるゲート電位をIGBT領域72のゲート導電部に供給してよい。
 本例のパッド部90は、活性部70の-Y方向に隣接する。本例のパッド部90は、ゲートパッド92、センスIGBT(SIGBT)93、センスエミッタパッド(S)94、アノードパッド(T)96およびカソードパッド(T)98を有する。本例では、カソードパッド98、アノードパッド96、ゲートパッド92、センスIGBT93およびセンスエミッタパッド94がこの順でX方向に並べて設ける。なお、センスIGBT(SIGBT)93は、パッドではなくIGBTである。各パッドは、金(Au)、銀(Ag)、銅(Cu)またはアルミニウム(Al)等を含む電極パッドであってよい。
 センスIGBT93は、IGBT領域72に流れる主電流を検出する目的で設けられたIGBTである。センスIGBT93に流れるセンス電流を、半導体装置100外に設けられた制御回路に取り込むことにより、IGBT領域72に流れる主電流を検出することができる。なお、センス電流は主電流に比べて十分に小さい電流値を有する。本例のセンスエミッタパッド94は、センスIGBT93のエミッタと同じ電位を有する。センス電流は、センスIGBT93を経てセンスエミッタパッド94から上述の制御回路に取り込まれてよい。制御回路はセンス電流に基づいて主電流を検知して、IGBT領域72に過電流が流れている場合にIGBT領域72に流れる電流を遮断してよい。
 アノードパッド96は、温度検知ダイオード76に電気的に接続するアノードパッドであり、温度検知ダイオード76のアノード電位を有する。同様に、カソードパッド98は、温度検知ダイオード76に電気的に接続するカソードパッドであり、温度検知ダイオード76のカソード電位を有する。アノードパッド96およびカソードパッド98を用いて、温度検知ダイオード76のアノード‐カソード間の電位差を検知することができる。
 エッジ終端部80は、半導体基板10の周辺部に設けられてよい。本例のエッジ終端部80は、活性部70およびパッド部90を囲むように半導体基板10の端部周辺に設けられる。エッジ終端部80は、活性部70における半導体基板10のおもて面近傍の電界集中を緩和する機能を有してよい。エッジ終端部80は、ガードリング、フィールドプレート、リサーフ構造およびチャネルストッパーならびにこれらを組み合わせた構造を有してよい。
 図2は、領域Aの拡大図である。領域Aは、活性部70のIGBT領域72およびゲートランナー51を含む領域である。なお、図面の見易さを考慮して、図2においてはエッジ終端部80およびパッド部90を省略する。
 本例の半導体装置100は、半導体基板10のおもて面および当該おもて面近傍の内部に形成された、エミッタ領域12、ベース領域14、コンタクト領域15、ウェル領域17、ダミートレンチ部30およびゲートトレンチ部40を備える。また、本例の半導体装置100は、半導体基板10のおもて面の上方に設けられたエミッタ電極52およびゲート金属層50を備える。エミッタ電極52およびゲート金属層50は互いに電気的に分離して設けられる。
 エミッタ電極52およびゲート金属層50と、半導体基板10のおもて面との間には層間絶縁膜が形成されるが、図2では省略している。本例の層間絶縁膜には、コンタクトホール54、55および56が、当該層間絶縁膜を貫通して形成される。なお、図2においてはコンタクトホール54、55および56を示す。
 エミッタ電極52は、コンタクトホール54を通って、半導体基板10のおもて面におけるエミッタ領域12およびコンタクト領域15と接触する。エミッタ電極52とコンタクト領域15との間には、タングステン等のプラグが設けられてもよい。
 また、エミッタ電極52は、コンタクトホール56を通って、ダミートレンチ部30内のダミー導電部と接続する。Z方向においてエミッタ電極52とダミー導電部との間には、不純物がドープされたポリシリコン等の、導電性を有する材料で形成された接続部57が設けられてよい。接続部57は、半導体基板10のおもて面上に形成される。
 ゲート金属層50は、コンタクトホール55を通って、ゲートランナー51と接触する。ゲートランナー51は、不純物がドープされたポリシリコン等で形成されてよい。ゲートランナー51は、半導体基板10のおもて面においてゲートトレンチ部40内のゲート導電部と接続する。つまり、ゲートランナー51は、半導体基板10のおもて面において、ゲートトレンチ部40の一部分と、コンタクトホール55との間に渡って形成される。
 エミッタ電極52およびゲート金属層50は、金属を含む材料で形成される。例えば、各電極の少なくとも一部の領域は、アルミニウムまたはアルミニウム‐シリコン合金で形成される。各電極は、アルミニウム等で形成された領域の下層にチタンまたはチタン化合物等で形成されたバリアメタルを有してもよい。
 本例のIGBT領域72は、ダミートレンチ領域130、混合トレンチ領域140およびウェルコンタクト領域150を有する。ダミートレンチ領域130は、トレンチ部としてダミートレンチ部30のみを有する領域である。ダミートレンチ領域130は、エッジ終端部80に最も近いゲートトレンチ部40とエッジ終端部80との間に設けられる。ダミートレンチ領域130は、X方向において所定の間隔だけ離間して配置された複数のダミートレンチ部30を有する。
 混合トレンチ領域140は、ダミートレンチ部30およびゲートトレンチ部40を有する領域である。混合トレンチ領域140は、ダミートレンチ領域130よりも内側に位置する。なお、本例において内側とは、二次元平面であるおもて面の中央部(図1の温度検知ダイオード76が設けられる部分)側を意味する。つまり、内側とは、エッジ終端部80よりも中央部に近いことを意味する。外側は内側の反対の意味で用いる。例えば、外側とは、半導体基板10の端部に近いことを意味する。図1においては、混合トレンチ領域140がX方向において最も内側に位置し、エッジ終端部80がX方向において最も外側に位置する。なお、内側および外側は、X方向およびY方向に関して用いてよい。
 混合トレンチ領域140は、予め定められた配列方向に沿って所定の間隔で配列された複数のゲートトレンチ部40および複数のダミートレンチ部30を有する。なお、本例において、配列方向はX方向である。混合トレンチ領域140では、ダミートレンチ部30およびゲートトレンチ部40はX方向において交互に設けられる。
 本例において、ダミートレンチ領域130においてX方向に隣接するダミートレンチ部30間の離間距離と、混合トレンチ領域140にいてX方向に隣接するダミートレンチ部30およびゲートトレンチ部40間の離間距離とは互いに等しい。当該離間距離は、ダミートレンチ領域130において最も内側に位置するダミートレンチ部30と混合トレンチ領域140におけるゲートトレンチ部40とのX方向における離間距離とも等しい。
 図1のダミートレンチ領域130では、2本ずつ端部で連結された計8本のダミートレンチ部30がX方向において配列されている。これに対して、混合トレンチ領域140では、1本のゲートトレンチ部40と1本のダミートレンチ部30とが交互にX方向において配列されている。図1の混合トレンチ領域140では、3本のダミートレンチ部30と2本ずつ端部で連結された4本のゲートトレンチ部40とを有する。
 本例において、ダミートレンチ領域130におけるダミートレンチ部30の一部は、半導体基板10のおもて面において予め定められた延伸方向(本例ではY方向)に延伸する直線形状を有する。また、ダミートレンチ領域130におけるダミートレンチ部30の他の一部は、2本の直線が端部において曲線部で接続される曲線形状を有する。本例において当該他の一部は、U字形状を有する。これに対して、混合トレンチ領域140のダミートレンチ部30は、予め定められた延伸方向に延伸する直線形状のみを有する。ダミートレンチ領域130および混合トレンチ領域140のそれぞれのダミートレンチ部30は、Y方向において同じ長さを有してよい。
 本例のゲートトレンチ部40は、対向部41および突出部43を有する。対向部41は、IGBT領域72におけるダミートレンチ部30と対向する範囲において、Y方向に延伸する。つまり、対向部41は、ダミートレンチ部30と平行に設けられる。突出部43は、対向部41から更に-Y方向に延伸して、ダミートレンチ部30と対向しない範囲に設けられる。本例において、ダミートレンチ部30の両側に設けられた2つの対向部41が、1つの突出部43に接続する。突出部43の少なくとも一部は曲線形状を有してよい。本例の突出部43は、U字形状を有する。
 突出部43において、ゲートトレンチ部40内のゲート導電部と、ゲートランナー51とがZ方向において接続する。ゲートランナー51は、突出部43における対向部41から最も離れた領域において、ゲート導電部と接続してよい。本例の突出部43は、対向部41から最も離れた領域において、対向部41とは直交する方向であるX方向に延伸する部分を有する。ゲートランナー51は、突出部43の当該部分においてゲート導電部と接続してよい。
 ウェルコンタクト領域150は、ウェル領域17のおもて面近傍に設けられる。ウェルコンタクト領域150は、コンタクト領域15を有する。ウェルコンタクト領域150のコンタクト領域15上には、層間絶縁膜の開口であるコンタクトホール54が設けられる。コンタクト領域15は、複数のコンタクトホール54を通じてエミッタ電極52に直接接する。ウェルコンタクト領域150は、例えば後述するコレクタ領域22から注入されたホールをエミッタ電極52へ引き抜く機能を有する。なお、本例においてウェルコンタクト領域150は、必須ではなく省略してもよい。
 エミッタ電極52は、ダミートレンチ領域130、混合トレンチ領域140およびウェルコンタクト領域150の上方に設けられる。エミッタ電極52は、ゲートトレンチ部40、ダミートレンチ部30、ウェル領域17、エミッタ領域12、ベース領域14およびコンタクト領域15の上方に設けられる。
 ウェル領域17は、ゲート金属層50が設けられる側の活性部70の外側端部から、所定の範囲で形成される。ウェル領域17の内側端部を点線にて示す。ウェル領域17の深さは、ゲートトレンチ部40およびダミートレンチ部30の底部よりも深くてよい。ゲートトレンチ部40およびダミートレンチ部30の、ゲート金属層50側の一部の領域はウェル領域17中に形成される。ダミートレンチ部30の延伸方向の外側端部の底部は、ウェル領域17に覆われていてよい。
 ゲートトレンチ部40の突出部43は、全体がウェル領域17に形成されてよい。半導体基板10は第1導電型を有し、ウェル領域17は半導体基板10とは異なる第2導電型を有してよい。本例の半導体基板10はn型の基板であり、ウェル領域17はp型の領域である。本例においては、第1導電型をn型として、第2導電型をp型として説明する。ただし、他の例においては、第1および第2導電型は逆の導電型であってもよい。
 複数のダミートレンチ部30の各々の間、および、ダミートレンチ部30とゲートトレンチ部40との間にはメサ領域60が設けられる。なお、半導体装置100においては、ダミートレンチ部30およびゲートトレンチ部40の内部に導電材料等が充填されているので、メサ領域60は各トレンチ部よりも+Z方向に突出しているわけではない。しかし、トレンチ内の導電材料等を除けば、メサ領域60は、谷であるトレンチ間に挟まれ+Z方向に突出する山と見なすことができる。それゆえ本例では、トレンチ間の領域をメサ領域60と称する。
 メサ領域60には、ベース領域14が形成される。ベース領域14は、ウェル領域17よりも不純物濃度の低い第2導電型の領域である。本例のベース領域14はp型の領域である。ただし、ベース領域14の一部は、エミッタ領域12およびコンタクト領域15よりも下方に設けられる。図1の例において、ベース領域14は、メサ領域60の外側の一部(接続部57近傍)において露出する。
 メサ領域60において、ベース領域14よりもおもて面側の一部には、ベース領域14よりも不純物濃度の高い第2導電型のコンタクト領域15が選択的に設けられる。本例のコンタクト領域15は、p型の領域である。また、混合トレンチ領域140において、ベース領域14よりもおもて面側の一部には、半導体基板10よりも不純物濃度が高い第1導電型のエミッタ領域12が選択的に設けられる。本例のエミッタ領域12はn型の領域である。
 混合トレンチ領域140において、コンタクト領域15およびエミッタ領域12のそれぞれは、X方向において隣接する一方のトレンチ部から、他方のトレンチ部まで形成される。混合トレンチ領域140のコンタクト領域15およびエミッタ領域12は、トレンチ部の延伸方向に沿って交互にメサ領域60のおもて面に露出する。Y方向の最も外側のコンタクト領域15のさらに外側では、ベース領域14がメサ領域60のおもて面に露出する。また、Y方向において、当該ベース領域14よりも外側では、ウェル領域17がメサ領域60のおもて面に露出する。
 ダミートレンチ領域130において、コンタクト領域15は、X方向において隣接する一方のダミートレンチ部30から、他方のダミートレンチ部30まで形成される。ダミートレンチ領域130においては、Y方向の内側から混合トレンチ領域140の最も外側のコンタクト領域15のY方向位置まで、コンタクト領域15がメサ領域60のおもて面に露出する。コンタクト領域15のさらに外側において、ベース領域14およびウェル領域17がメサ領域60のおもて面に露出する点は、混合トレンチ領域140と同じである。
 本例において、ダミートレンチ領域130のメサ領域60は、コンタクト領域15を有するので、コンタクト領域15を有しない場合と比較して、ホールを引き抜き易くなる。それゆえ、p型のウェル領域17(特に、深さ方向におけるウェル領域17の湾曲部分)がアバランシェ降伏して電流が集中することにより、ウェル領域17が破壊されることを防止することができる。
 混合トレンチ領域140およびダミートレンチ領域130において、コンタクトホール54は、コンタクト領域15およびエミッタ領域12の各領域上に設けられる。コンタクトホール54は、ベース領域14およびウェル領域17に対応する領域には設けられない。
 また、本例においては、混合トレンチ領域140のエミッタ領域12およびコンタクト領域15の下方に第1導電型の蓄積領域16が設けられる。蓄積領域16の外側端部を破線にて示す。本例の蓄積領域16は、n型の領域である。本例の蓄積領域16は、ドナーがドリフト領域よりも高濃度に蓄積していてよい。蓄積領域16により、いわゆるIE効果を増強することができる。また、ダミートレンチ領域130のコンタクト領域15のうち少なくとも一部の下方に蓄積領域16が設けられてよい。本例では、ダミートレンチ領域130におけるX方向の内側から3つ目のダミートレンチ部30まで蓄積領域16が設けられる。
 このように、本例においては、ゲートトレンチ部40の外側にダミートレンチ領域130を設けて、さらに、ダミートレンチ領域130の一部のメサ領域60に蓄積領域16を設ける。それゆえ、イオン注入により蓄積領域16を形成するためのマスクの端部が仮に垂れたとしても、その垂れる位置を混合トレンチ領域140上ではなくダミートレンチ領域130上とすることができる。したがって、ダミートレンチ領域130のメサ領域60に設けられる蓄積領域16が所定の深さ位置に形成されないとしても、混合トレンチ領域140のメサ領域60に設けられる蓄積領域16は所定の深さに形成することができる。これにより、ゲートトレンチ部40間におけるゲート閾値電圧(Vth)のばらつき、および、飽和電流のばらつきを抑制することができる。
 図3は、図2のa‐a'断面図である。a-a'断面は、X-Z面と平行で、且つ、エッジ終端部80から混合トレンチ領域140にまたがる範囲を通る断面である。
 本例の半導体装置100は、当該断面において、半導体基板10、層間絶縁膜26、ゲート金属層50、エミッタ電極52およびコレクタ電極24等を有する。ゲート金属層50およびエミッタ電極52は、半導体基板10のおもて面および層間絶縁膜26の上面に形成される。コレクタ電極24は、半導体基板10の裏面に直接接して設けられる。
 ゲート金属層50、エミッタ電極52およびコレクタ電極24は、金属等の導電材料で形成される。また本明細書において、基板、層、領域等の各部材のエミッタ電極52側の面をおもて面と称し、コレクタ電極24側の面を裏面と称する。
 半導体基板10は、シリコン基板であってよく、炭化シリコン基板であってよく、窒化ガリウム等の窒化物半導体基板等であってもよい。なお、本例の半導体基板10はシリコン基板である。半導体基板10のおもて面近傍には、p型のベース領域14が形成される。
 当該断面において、混合トレンチ領域140のメサ領域60のおもて面近傍には、n型のエミッタ領域12、p型のベース領域14およびn型の蓄積領域16が、半導体基板10のおもて面から裏面に向かう方向において順番に設けられる。なお、ダミートレンチ領域130のメサ領域60のおもて面近傍には、コンタクト領域15およびベース領域14が、おもて面から裏面に向かう方向において順番に設けられる。
 ダミートレンチ領域130のメサ領域60のうち少なくとも一部の下方には蓄積領域16が設けられてよい。本例のダミートレンチ領域130においては、最も内側に位置するダミートレンチ部30の内側から3つ目のダミートレンチ部30までのメサ領域60は、ベース領域14の下に蓄積領域16を有する。
 これに対して、ダミートレンチ領域130のメサ領域60のうち少なくとも一つのメサ領域60の下方には蓄積領域16が設けられなくてよい。本例のダミートレンチ領域130においては、最も内側から3つ目に位置するダミートレンチ部30よりも外側のメサ領域60は、ベース領域14の下に蓄積領域16を有しない。蓄積領域16はコレクタ領域22から注入されたホールを蓄積する機能を有する。蓄積領域16を設けることにより、キャリア注入促進効果(IE効果)を高めて、オン電圧を低減することができる。
 本例では、ダミートレンチ領域130の一部のメサ領域60に蓄積領域16をあえて設けない。これにより、全てのメサ領域60に蓄積領域16が設けられる場合と比較して、メサ領域60からホールを引き抜き易くなる。それゆえ、p型のウェル領域17(特に、深さ方向におけるウェル領域17の湾曲部分117)がアバランシェ降伏して電流が集中することにより、ウェル領域17が破壊されることを防止することができる。
 ウェル領域17は、複数のダミートレンチ部30のうち2つ以上のダミートレンチ部30の底部を覆ってよい。本例のウェル領域17は、X方向において最も外側に位置する2つのダミートレンチ部30の底部を覆う。ウェル領域17中においてエミッタ電位を有するダミートレンチ部30を設けることにより、ウェル領域17中にダミートレンチ部30を設けない場合と比較して、ドリフト領域18からウェル領域17を介してエミッタ電極52へホールを引き抜き易くなる。これにより、ターンオフ損失を低減することができる。
 本例では、ウェル領域17と蓄積領域16を含むメサ領域60との間には、蓄積領域16を含まないメサ領域60が設けられる。蓄積領域16を含まないメサ領域60は、n型の蓄積領域16を形成するときにウェル領域17に誤ってn型不純物領域が形成されることを防ぐ、マージン領域として機能する。不純物の注入を防ぐマスクのアライメントずれおよびマスク垂れ等に起因して、p型のウェル領域17中にn型の蓄積領域16が形成された場合には、電荷中和により高抵抗領域が形成される。ホールは高抵抗領域からは引き抜かれにくいので、高抵抗領域を形成することは望ましくない。本例では、ウェル領域17に隣接して蓄積領域16を含まないメサ領域60を設けることにより、ウェル領域17中に高抵抗領域が形成されないことを担保することができる。
 ダミートレンチ部30およびゲートトレンチ部40の直下、および、ウェル領域17の直下には、第1導電型のドリフト領域18が設けられる。本例のドリフト領域18はn型であり、n型の蓄積領域16よりも低濃度である。
 ドリフト領域18の裏面には第1導電型のバッファ領域20が形成される。バッファ領域20の不純物濃度は、ドリフト領域18の不純物濃度よりも高くてよい。本例のバッファ領域20は、n型の領域である。バッファ領域20は、ベース領域14の裏面から広がる空乏層が、p型のコレクタ領域22に到達することを防ぐフィールドストップ層として機能してよい。
 ドリフト領域18の下方であってバッファ領域20の直下には、第2導電型のコレクタ領域22が設けられる。本例のコレクタ領域22は、p型の領域である。また、コレクタ領域22の裏面にはコレクタ電極24が設けられる。
 半導体基板10のおもて面近傍には、ダミートレンチ部30およびゲートトレンチ部40が設けられる。各トレンチ部は、半導体基板10のおもて面からベース領域14を貫通して、ドリフト領域18に到達する。エミッタ領域12、コンタクト領域15および蓄積領域16の少なくともいずれかが設けられている領域においては、各トレンチ部はこれらの領域も貫通して、ドリフト領域18に到達する。
 ゲートトレンチ部40は、半導体基板10のおもて面近傍に設けられたゲートトレンチ46、ゲート絶縁膜42およびゲート導電部44を有する。ゲート絶縁膜42は、ゲートトレンチ46の内壁を覆って形成される。ゲート絶縁膜42は、ゲートトレンチ46の内壁の半導体を酸化または窒化して形成してよい。ゲート導電部44は、ゲートトレンチ46の内部においてゲート絶縁膜42上に形成される。つまりゲート絶縁膜42は、ゲート導電部44と半導体基板10とを絶縁する。ゲート導電部44は、ポリシリコン等の導電材料で形成される。
 ゲート導電部44は、X方向において、少なくとも隣接するベース領域14と対向する。ゲートトレンチ部40は、半導体基板10のおもて面において層間絶縁膜26により覆われる。ゲート導電部44に所定の電圧が印加されると、ベース領域14のうちゲートトレンチ46に接する界面の表層にチャネルが形成される。本例では、図1に示したように突出部43におけるゲート導電部44が、ゲートランナー51を介してゲート金属層50と電気的に接続する。
 ダミートレンチ部30は、当該断面において、ゲートトレンチ部40と同一の構造を有してよい。ダミートレンチ部30は、半導体基板10のおもて面近傍に形成されたダミートレンチ36、ダミートレンチ絶縁膜32およびダミートレンチ導電部34を有する。ダミートレンチ絶縁膜32は、ダミートレンチ36の内壁を覆って形成される。ダミートレンチ導電部34は、ダミートレンチ36の内部においてダミートレンチ絶縁膜32上に形成される。ダミートレンチ絶縁膜32は、ダミートレンチ導電部34と半導体基板10とを絶縁する。ダミートレンチ導電部34は、ゲート導電部44と同一の材料で形成されてよい。ダミートレンチ導電部34は、深さ方向においてゲート導電部44と同一の長さを有してよい。
 ダミートレンチ部30は、半導体基板10の上面において層間絶縁膜26により覆われる。本例では、図2に示したようにコンタクトホール56を介して、ダミートレンチ導電部34がエミッタ電極52と電気的に接続する。なお、当該断面において明示しないが、ゲートランナー51と半導体基板10との間には、ゲート絶縁膜42等の絶縁膜が形成されている。すなわちゲートランナー51と半導体基板10は、絶縁膜で絶縁されている。
 図4は、図2のb‐b'断面図である。b‐b'断面は、Y‐Z面と平行な面である。また、b‐b'断面は、混合トレンチ領域140のメサ領域60、接続部57およびゲートランナー51を通る断面である。なお、X方向において隣接するコンタクトホール54を点線により示す。当該断面のメサ領域60には、蓄積領域16が設けられる。
 図2に示したように、メサ領域60のおもて面においては、トレンチ部の延伸方向に沿ってエミッタ領域12およびコンタクト領域15が交互に設けられる。また、ベース領域14の下面には、蓄積領域16が設けられる。
 蓄積領域16は、Y方向において、最も外側に形成されたエミッタ領域12よりも外側まで設けられることが好ましい。つまり、蓄積領域16の外側端部位置Pは、エミッタ領域12の外端部位置Pよりも外側に設けられることが好ましい。これにより、蓄積領域16におけるIE効果を高めることができる。
 また、コンタクトホール54は、Y方向において、蓄積領域16よりも外側まで設けられることが好ましい。つまり、コンタクトホール54の外側端部位置Pは、蓄積領域16の外側端部位置Pよりも外側に配置されることが好ましい。これにより、半導体装置100のターンオフ時に、蓄積領域16よりも外側から、ホールを効率よく引き抜くことができる。
 また、Y方向において最も外側に形成されたコンタクト領域15は、コンタクトホール54よりも外側まで設けられることが好ましい。つまり、コンタクト領域15の外側端部位置Pは、コンタクトホール54の外側端部位置Pよりも外側に配置されることが好ましい。これにより、半導体装置100のターンオフ時に、蓄積領域16よりも外側から、ホールを効率よく引き抜くことができる。
 また、エミッタ領域12の外側端部位置Pから蓄積領域16の外側端部位置Pまでの距離は、蓄積領域16の外側端部位置Pからコンタクト領域15の外側端部位置Pまでの距離よりも短くてよい。これにより、蓄積領域16により、ホールの引き抜きが阻害されることを抑制できる。また、蓄積領域16の端部における電界集中を緩和できる。位置PからPまでの距離は、位置PからPまでの距離より短いことが好ましい。
 一例として、エミッタ領域12の位置Pから蓄積領域16の位置Pまでの距離は12μm以下である。また、蓄積領域16の位置Pからコンタクトホール54の位置Pまでの距離は20μm以下である。また、コンタクトホール54の位置Pからコンタクト領域15の位置Pまでの距離は1μm以下である。
 また、半導体基板10のおもて面において、最も外側のコンタクト領域15とウェル領域17との間には、ベース領域14が形成される。Y方向において、コンタクト領域15と、ウェル領域17の間のベース領域14の長さは、10μm以上50μm以下であってよい。
 図5は、比較例の半導体装置500における領域Aの拡大図である。第1実施形態と共通する構成については、同じ符号を付して説明を省略する。本例のIGBT領域72は、第1実施形態の混合トレンチ領域140と異なり、トレンチ部としてゲートトレンチ部40のみを有するゲートトレンチ領域145を備える。本例のIGBT領域72は、ゲートトレンチ領域145とエッジ終端部80との間にダミートレンチ領域130を有しない。係る点が、第1実施形態との比較した最大の相違点である。また、ウェルコンタクト領域150は第1実施形態と比較してX方向に幅広のコンタクトホール54を1つだけ有する。
 図6は、図5のc‐c'断面図である。第1実施形態と共通する構成については、同じ符号を付して説明を省略する。図6は、n型の蓄積領域16を形成するときに用いるマスクの端部にマスク垂れが生じなかった理想的な場合を示す図である。後述するように、実際の半導体装置500においては、マスク垂れにより蓄積領域16が形成される深さ位置は、図6に示す理想的な深さ位置からずれる。
 図7は、比較例におけるマスク垂れを説明する図である。図7においては、マスク垂れに起因する蓄積領域16の深さ位置のばらつきを示す。理解を容易にすることを目的として、半導体基板10のおもて面上の構造を省略し、マスク110を半導体基板10の上方に示す。
 マスク110は、蓄積領域16に対応する領域にn型不純物を注入する工程で用いられる。マスク110は、レジスト等を塗布して所定形状にパターニングして形成されてよい。マスク110により覆われた領域には蓄積領域16が形成されず、マスク110に覆われない領域に蓄積領域16が形成される。
 マスク110の端部は、最も外側のゲートトレンチ部40の直上において垂直に形成されることが好ましい。マスク110の端部が垂直に形成された理想的な状態を図7中において点線により示す。しかし、マスク110にレジスト垂れが生じると、最も外側のゲートトレンチ部40の直上および当該直上を超えてマスク垂れ領域112が形成される場合がある。マスク垂れ領域112が形成されると、マスク垂れ領域112に覆われたメサ領域60には、所定の深さに蓄積領域16が形成されない。例えば、マスク垂れ領域112に覆われたメサ領域60には、蓄積領域16が所定の深さよりも浅く形成される。
 本例の蓄積領域16は、蓄積領域16‐1から16‐4を含む。蓄積領域16‐1は、p型のウェル領域17のおもて面近傍に形成される。蓄積領域16‐2は、蓄積領域16‐1よりも深い位置であって、エミッタ領域12とベース領域14との間に形成される。蓄積領域16‐3は、蓄積領域16‐2よりも深い位置であって、ベース領域14中に形成される。蓄積領域16‐4は、蓄積領域16‐3よりも深い位置であって、予め定められた深さ位置に形成される。
 各蓄積領域16‐1から16‐4は、内側に近づくにつれて徐々に深く形成されてよい。蓄積領域16‐3および蓄積領域16‐4は、連続して形成されてよく、深さ方向において不連続に形成されていてもよい。
 蓄積領域16の深さ位置が変化すると、メサ領域60におけるベース領域14の深さ方向における長さが変化する。このため、メサ領域60に隣接してゲートトレンチ部40を設けると、当該メサ領域60のゲート閾値電圧(Vth)が、他のメサ領域60のゲート閾値電圧に対して変動して、ゲート閾値電圧のばらつきが増大する問題がある。また、IGBT領域72における飽和電流のばらつきが増大する問題もある。また、上述のように、ウェル領域17に形成されたn型の蓄積領域16‐1は、高抵抗領域になる。
 これに対して第1実施形態の半導体装置100は、ゲートトレンチ部40とウェル領域17との間にダミートレンチ領域130を設ける。レジスト垂れが生じる長さは、例えばX方向におけるメサ領域60の幅の2つ以上3つ以下の長さである。第1実施形態においては、最も外側のゲートトレンチ部40とウェル領域17との間に6本のダミートレンチ部30(すなわち、5つのメサ領域60)を設ける。これにより、深さ位置がばらついた蓄積領域16は、ゲートのオンオフに寄与しないダミートレンチ領域130にのみに形成されることとなるので、ゲート閾値電圧および飽和電流のばらつき等を低減することができる。
 図8は、第2実施形態における半導体装置200のa‐a'断面図である。図8は、第1実施形態のa‐a'断面である図3に対応する。本例の半導体装置200は、コレクタ領域22と同じ深さ範囲に第1導電型の逆型半導体領域23を備える。本例の逆型半導体領域23は、コレクタ領域22とは逆の導電型の半導体領域である。第2実施形態は、係る点において第1実施形態と異なる。他の点については、第1実施形態と共通するので重複する説明は省略する。本例の逆型半導体領域23は、ドリフト領域18よりも高濃度のn型の領域である。
 逆型半導体領域23は、コレクタ領域22と同じ深さ範囲において、コレクタ領域22のXおよびY方向の一部領域に代えて設けられてよい。コレクタ領域22の一部を逆型半導体領域23とすることにより、コレクタ領域22からウェル領域17へのホールの注入量を低減することができる。これにより、ウェル領域17がアバランシェ降伏して電流が集中することによりウェル領域17が破壊されることを防止することができる。
 逆型半導体領域23は、X方向において、ウェル領域17の内側端部Px1からゲートトレンチ部40の底部の中央部Px2まで連続的に設けられてよい。本例の逆型半導体領域23は、X方向において、ウェル領域17の内側端部Px1から蓄積領域16が設けられるメサ領域60の外側端部Px3まで連続的に設けられる。本例の逆型半導体領域23の配置により、ホール注入に寄与するコレクタ領域22の有効面積を最大限維持しつつ、かつ、逆型半導体領域23によりウェル領域17への電流集中を回避することができる。なお、当該断面において明示しないが、ゲートランナー51と半導体基板10との間には、ゲート絶縁膜42等の絶縁膜が形成されている。すなわちゲートランナー51と半導体基板10は、絶縁膜で絶縁されている。
 図9は、第3実施形態の半導体装置300において活性部70およびエッジ終端部80にまたがる領域の断面図である。図9では、図2のa‐a'断面図に加えて、本例においては、エッジ終端部80を合わせて示す。本例のエッジ終端部80は、ガードリング構造およびチャネルストッパー構造を有する。
 ガードリング構造は、複数のガードリング82を含んでよい。本例のガードリング構造は4つのガードリング82を含む。各ガードリング82は、おもて面において活性部70およびパッド部90を囲むように設けられてよい。
 ガードリング構造は、活性部70において発生した空乏層を半導体基板10の外側へ広げる機能を有してよい。これにより、半導体基板10内部における電界集中を防ぐことができる。それゆえ、ガードリング構造を設けない場合と比較して、半導体装置300の耐圧を向上させることができる。
 本例のガードリング82は、おもて面近傍にイオン注入により形成されたp型の半導体領域である。ガードリング82は、電極層84と電気的に接続する。電極層84は、ゲート金属層50またはエミッタ電極52と同じ材料であってよい。
 複数のガードリング82同士は、層間絶縁膜26により電気的に絶縁される。ガードリング82の底部の深さは、p型のウェル領域17の底部と同じ深さであってよい。また、本例のガードリング82の底部の深さは、ゲートトレンチ部40およびダミートレンチ部30の底部の深さより深い。
 チャネルストッパー構造は、n型のチャネルストッパー領域88および電極層84を有する。チャネルストッパー領域88は、層間絶縁膜26の開口を通じて電極層84に電気的に接続する。なお、チャネルストッパー領域88は、他の例においてはp型の半導体領域であってもよい。チャネルストッパー領域88は、活性部70において発生した空乏層を半導体基板10の外側端部において終端させる機能を有する。
 ウェル領域17は、X方向においてウェルコンタクト領域150超えて、さらに外側まで延伸してよい。本例のウェル領域17は、エッジ終端部80における最も内側のガードリング82とウェル領域17の外側端部との距離が数μmとなるよう、エッジ終端部80に近接してよい。なお、本例の変形例として、ウェル領域17に代えて、p型のベース領域14を最も内側のガードリング82まで拡張して設けてもよい。この場合、最も内側のガードリング82とベース領域14の外側端部との距離が数μmとなってよい。
 逆型半導体領域23は、X方向において、ウェル領域17の外側端部Px4から蓄積領域16が設けられるメサ領域60の外側端部Px3まで設けられてよい。逆型半導体領域23は、X方向において、ガードリング82の底部からウェル領域17の外側端部Px4を経て蓄積領域16が設けられるメサ領域60の外側端部Px3まで設けられてよい。本例の逆型半導体領域23は、X方向において、内側から2つ目のガードリング82の底部の中央部Px5から、蓄積領域16が設けられるメサ領域60の外側端部Px3(外側から6つ目のダミートレンチ部30と7つ目のダミートレンチ部30との間のメサ領域60の外側端部)まで設けられる。本例においては、第2実施形態に比べてより広い範囲に逆型半導体領域23を設けるので、第2実施形態に比べてウェル領域17への電流集中をより効果的に回避することができる。なお、当該断面において明示しないが、ゲートランナー51と半導体基板10との間には、ゲート絶縁膜42等の絶縁膜が形成されている。すなわちゲートランナー51と半導体基板10は、絶縁膜で絶縁されている。
 なお、半導体装置100等の製造方法については、特に明記しないが、半導体装置100等は、既知のイオン注入、アニール、成膜、熱酸化、スパッタリングおよびスピンコーティング等の技術を適宜用いて製造することができる。
 図10は、第4実施形態における半導体装置400の領域Aの拡大図である。なお、半導体装置400の上面図は図示しないが、半導体装置400の上面図は図1で示した半導体装置100と同じであってよい。本例の活性部70のダミートレンチ領域130は、複数のダミートレンチ部30間の全てのメサ領域60に蓄積領域16を有する。蓄積領域16のX方向の外側端部は、ウェル領域17のX方向の内側端部よりも外側に位置する。また、本例の蓄積領域16は、最も外側に位置するダミートレンチ部30よりも外側に位置してよい。本例において、最も外側に位置するダミートレンチ部30とは、エッジ終端部80に最も近いダミートレンチ部30である。
 図11は、第4実施形態における半導体装置400のa‐a'断面図である。蓄積領域16は、Z方向に離間した複数の蓄積層116を含んでよい。本例の蓄積領域16は、Z方向に離間した3つの蓄積層116‐1、116‐2および116‐3を有する。蓄積層116の数が多いほど、マスク110のアライメントずれ(位置ずれ)またはマスク110の垂れの影響を低減することができる。また、蓄積層116の数が多いほど、半導体装置400の耐圧を高くすることができる。ただし、他の例においては、蓄積領域16は、1つまたは2つの蓄積層116を有してもよい。
 本例の蓄積領域16は、最も外側に位置するダミートレンチ部30よりも外側に位置する最外部115を含む。蓄積領域16が1つまたは2つの蓄積層116を有する場合においても、蓄積領域16は最外部115を有してよい。最外部115は1つ以上の蓄積層116を有してよい。最外部115を設けることにより、マスク110の垂れの影響を、混合トレンチ領域140だけでなくダミートレンチ領域130からも排除することができる。
 図12は、第4実施形態の変形例における半導体装置400のa‐a'断面図である。ウェル領域17は、複数のダミートレンチ部30のうち2つ以上のダミートレンチ部30の底部を覆ってよい。本例のウェル領域17は、X方向において最も外側に位置する3つのダミートレンチ部30の底部を覆う。ウェル領域17中にダミートレンチ部30を設けることにより、ウェル領域17を介してエミッタ電極52へホールを引き抜き易くなるので、ターンオフ損失を低減することができる。なお、さらにホールを引き抜き易くするべく、ウェル領域17は、最も外側に位置するダミートレンチ部30を1つ目として、3つ以上または4つ以上のダミートレンチ部30の底部を覆ってもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 10・・半導体基板、12・・エミッタ領域、14・・ベース領域、15・・コンタクト領域、16・・蓄積領域、17・・ウェル領域、18・・ドリフト領域、20・・バッファ領域、22・・コレクタ領域、23・・逆型半導体領域、24・・コレクタ電極、26・・層間絶縁膜、30・・ダミートレンチ部、32・・ダミートレンチ絶縁膜、34・・ダミートレンチ導電部、36・・ダミートレンチ、40・・ゲートトレンチ部、41・・対向部、42・・ゲート絶縁膜、43・・突出部、44・・ゲート導電部、46・・ゲートトレンチ、50・・ゲート金属層、51・・ゲートランナー、52・・エミッタ電極、54、55、56・・コンタクトホール、57・・接続部、60・・メサ領域、70・・活性部、72・・IGBT領域、74・・FWD領域、76・・温度検知ダイオード、80・・エッジ終端部、82・・ガードリング、84・・電極層、88・・チャネルストッパー領域、90・・パッド部、92・・ゲートパッド、93・・センスIGBT、94・・センスエミッタパッド、96・・アノードパッド、98・・カソードパッド、100・・半導体装置、110・・マスク、112・・マスク垂れ領域、115・・最外部、116・・蓄積層、117・・湾曲部分、130・・ダミートレンチ領域、140・・混合トレンチ領域、145・・ゲートトレンチ領域、150・・ウェルコンタクト領域、200、300、400、500・・半導体装置

Claims (11)

  1.  半導体基板の周辺部に設けられたエッジ終端部と、
     前記エッジ終端部に囲まれた活性部と
    を備え、
     前記活性部は、
     予め定められた配列方向に沿って配列された複数のゲートトレンチ部と、
     前記複数のゲートトレンチ部のうち最も前記エッジ終端部に近いゲートトレンチ部と前記エッジ終端部との間に設けられた複数のダミートレンチ部と、
     前記複数のダミートレンチ部の各々の間に位置するメサ領域と、
     前記メサ領域の少なくとも一部に設けられた第1導電型の蓄積領域と
    を有する
    半導体装置。
  2.  前記活性部は、前記複数のダミートレンチ部間の前記メサ領域のおもて面に第2導電型のコンタクト領域をさらに有する
     請求項1に記載の半導体装置。
  3.  前記活性部は、前記複数のダミートレンチ部間の前記メサ領域のうち少なくとも一つの前記メサ領域には前記蓄積領域を有しない
     請求項1または2に記載の半導体装置。
  4.  前記活性部は、前記複数のダミートレンチ部のうち2つ以上のダミートレンチ部の底部を覆う、第2導電型のウェル領域をさらに有する
     請求項1から3のいずれか一項に記載の半導体装置。
  5.  前記活性部は、前記ウェル領域と前記蓄積領域を含む前記メサ領域との間には、前記蓄積領域を含まない前記メサ領域を有する
     請求項4に記載の半導体装置。
  6.  前記活性部は、
     前記蓄積領域よりも低濃度の第1導電型のドリフト領域と、
     前記ドリフト領域よりも下方に位置する第2導電型のコレクタ領域と、
     前記複数のダミートレンチ部の直下における前記ドリフト領域よりも下方に位置し、前記ドリフト領域よりも高濃度の第1導電型の逆型半導体領域と
    をさらに有する
     請求項4または5に記載の半導体装置。
  7.  前記逆型半導体領域は、前記配列方向において、前記ウェル領域の内側端部から前記蓄積領域が設けられる前記メサ領域の外側端部まで設けられる
     請求項6に記載の半導体装置。
  8.  前記逆型半導体領域は、前記配列方向において、前記ウェル領域の外側端部から前記蓄積領域が設けられる前記メサ領域の外側端部まで設けられる
     請求項6に記載の半導体装置。
  9.  前記逆型半導体領域は、前記配列方向において、前記エッジ終端部に設けられたガードリングの底部から前記ウェル領域の外側端部を経て前記蓄積領域が設けられる前記メサ領域の外側端部まで設けられる
     請求項8に記載の半導体装置。
  10.  前記活性部は、前記複数のダミートレンチ部間の全ての前記メサ領域に前記蓄積領域を有する
     請求項1または2に記載の半導体装置。
  11.  前記蓄積領域は、前記複数のダミートレンチ部のうち前記エッジ終端部に最も近いダミートレンチ部よりも外側に位置する最外部を含む
     請求項10に記載の半導体装置。
PCT/JP2017/037398 2016-10-17 2017-10-16 半導体装置 WO2018074425A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018546329A JP6624300B2 (ja) 2016-10-17 2017-10-16 半導体装置
CN201780020958.9A CN109075192B (zh) 2016-10-17 2017-10-16 半导体装置
US16/136,287 US10714603B2 (en) 2016-10-17 2018-09-20 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016203939 2016-10-17
JP2016-203939 2016-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/136,287 Continuation US10714603B2 (en) 2016-10-17 2018-09-20 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2018074425A1 true WO2018074425A1 (ja) 2018-04-26

Family

ID=62019176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037398 WO2018074425A1 (ja) 2016-10-17 2017-10-16 半導体装置

Country Status (4)

Country Link
US (1) US10714603B2 (ja)
JP (1) JP6624300B2 (ja)
CN (1) CN109075192B (ja)
WO (1) WO2018074425A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020072202A (ja) * 2018-10-31 2020-05-07 トヨタ自動車株式会社 半導体装置及びその製造方法
JPWO2019208755A1 (ja) * 2018-04-27 2020-12-10 三菱電機株式会社 半導体装置および電力変換装置
JP2020202224A (ja) * 2019-06-07 2020-12-17 三菱電機株式会社 半導体装置
US10957758B2 (en) 2018-03-15 2021-03-23 Fuji Electric Co., Ltd. Semiconductor device
US10957690B2 (en) 2018-03-15 2021-03-23 Fuji Electric Co., Ltd. Semiconductor device
JPWO2019230851A1 (ja) * 2018-05-30 2021-06-24 ローム株式会社 半導体装置
WO2023002795A1 (ja) * 2021-07-20 2023-01-26 株式会社デンソー 半導体装置
JP7475251B2 (ja) 2020-10-01 2024-04-26 三菱電機株式会社 半導体装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6854654B2 (ja) * 2017-01-26 2021-04-07 ローム株式会社 半導体装置
JP6804379B2 (ja) 2017-04-24 2020-12-23 三菱電機株式会社 半導体装置
WO2019097836A1 (ja) * 2017-11-16 2019-05-23 富士電機株式会社 半導体装置
CN111052393B (zh) * 2018-02-14 2023-11-14 富士电机株式会社 半导体装置
JP7171527B2 (ja) * 2019-09-13 2022-11-15 株式会社 日立パワーデバイス 半導体装置および電力変換装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294649A (ja) * 2004-04-01 2005-10-20 Toshiba Corp 半導体装置
WO2006082618A1 (ja) * 2005-01-31 2006-08-10 Shindengen Electric Manufacturing Co., Ltd. 半導体装置およびその製造方法
JP2013021104A (ja) * 2011-07-11 2013-01-31 Toyota Central R&D Labs Inc 半導体装置
JP2013026534A (ja) * 2011-07-25 2013-02-04 Toyota Central R&D Labs Inc 半導体装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3410286B2 (ja) * 1996-04-01 2003-05-26 三菱電機株式会社 絶縁ゲート型半導体装置
JP3906105B2 (ja) * 2002-03-29 2007-04-18 株式会社東芝 半導体装置
JP2007134625A (ja) * 2005-11-14 2007-05-31 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2008227251A (ja) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp 絶縁ゲート型トランジスタ
JP4840482B2 (ja) * 2008-10-14 2011-12-21 株式会社デンソー 半導体装置
JP5410133B2 (ja) 2009-03-30 2014-02-05 富士電機株式会社 半導体装置およびその制御方法
JP5636808B2 (ja) 2010-08-17 2014-12-10 株式会社デンソー 半導体装置
DE112012007322B3 (de) * 2011-07-27 2022-06-09 Denso Corporation Diode, Halbleitervorrichtung und MOSFET
JP6182875B2 (ja) * 2012-12-05 2017-08-23 サンケン電気株式会社 半導体装置及びその駆動方法
JP6119577B2 (ja) 2013-11-26 2017-04-26 三菱電機株式会社 半導体装置
JP6421570B2 (ja) * 2013-12-20 2018-11-14 株式会社デンソー 半導体装置
JP6459791B2 (ja) * 2014-07-14 2019-01-30 株式会社デンソー 半導体装置およびその製造方法
JP6135636B2 (ja) * 2014-10-17 2017-05-31 トヨタ自動車株式会社 半導体装置
JP6515484B2 (ja) * 2014-10-21 2019-05-22 株式会社デンソー 半導体装置
JP6003961B2 (ja) * 2014-11-04 2016-10-05 トヨタ自動車株式会社 半導体装置
JP6164201B2 (ja) * 2014-11-17 2017-07-19 トヨタ自動車株式会社 半導体装置
KR101745776B1 (ko) * 2015-05-12 2017-06-28 매그나칩 반도체 유한회사 전력용 반도체 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294649A (ja) * 2004-04-01 2005-10-20 Toshiba Corp 半導体装置
WO2006082618A1 (ja) * 2005-01-31 2006-08-10 Shindengen Electric Manufacturing Co., Ltd. 半導体装置およびその製造方法
JP2013021104A (ja) * 2011-07-11 2013-01-31 Toyota Central R&D Labs Inc 半導体装置
JP2013026534A (ja) * 2011-07-25 2013-02-04 Toyota Central R&D Labs Inc 半導体装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10957758B2 (en) 2018-03-15 2021-03-23 Fuji Electric Co., Ltd. Semiconductor device
US10957690B2 (en) 2018-03-15 2021-03-23 Fuji Electric Co., Ltd. Semiconductor device
JP7218359B2 (ja) 2018-04-27 2023-02-06 三菱電機株式会社 半導体装置および電力変換装置
JPWO2019208755A1 (ja) * 2018-04-27 2020-12-10 三菱電機株式会社 半導体装置および電力変換装置
JP7446389B2 (ja) 2018-04-27 2024-03-08 三菱電機株式会社 半導体装置および電力変換装置
US11915988B2 (en) 2018-04-27 2024-02-27 Mitsubishi Electric Corporation Semiconductor device and power converter
JP7286635B2 (ja) 2018-05-30 2023-06-05 ローム株式会社 半導体装置
JPWO2019230851A1 (ja) * 2018-05-30 2021-06-24 ローム株式会社 半導体装置
JP2020072202A (ja) * 2018-10-31 2020-05-07 トヨタ自動車株式会社 半導体装置及びその製造方法
JP7118033B2 (ja) 2019-06-07 2022-08-15 三菱電機株式会社 半導体装置
JP2020202224A (ja) * 2019-06-07 2020-12-17 三菱電機株式会社 半導体装置
JP7475251B2 (ja) 2020-10-01 2024-04-26 三菱電機株式会社 半導体装置
WO2023002795A1 (ja) * 2021-07-20 2023-01-26 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
US10714603B2 (en) 2020-07-14
JP6624300B2 (ja) 2019-12-25
CN109075192A (zh) 2018-12-21
JPWO2018074425A1 (ja) 2019-02-21
CN109075192B (zh) 2021-10-26
US20190019885A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2018074425A1 (ja) 半導体装置
US11735584B2 (en) Semiconductor device
CN107112358B (zh) 半导体装置及半导体装置的制造方法
US10109725B2 (en) Reverse-conducting semiconductor device
US8957502B2 (en) Semiconductor device
US10636877B2 (en) Semiconductor device
CN107210322B (zh) 半导体装置
US10600897B2 (en) Semiconductor device
US20130313570A1 (en) Monolithically integrated sic mosfet and schottky barrier diode
US9793343B2 (en) Semiconductor device
US10297660B2 (en) Semiconductor device
WO2019097836A1 (ja) 半導体装置
US11469318B2 (en) Superjunction semiconductor device having parallel PN structure with column structure and method of manufacturing the same
USRE48259E1 (en) Semiconductor device
JP7028093B2 (ja) 半導体装置
JP7327672B2 (ja) 半導体装置
JP6658955B2 (ja) 半導体装置
US11264491B2 (en) Semiconductor device for improving transistor characteristics during turn-on

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018546329

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861715

Country of ref document: EP

Kind code of ref document: A1