WO2018070303A1 - アミド基含有ポリエステルを含むレジスト下層膜形成用組成物 - Google Patents
アミド基含有ポリエステルを含むレジスト下層膜形成用組成物 Download PDFInfo
- Publication number
- WO2018070303A1 WO2018070303A1 PCT/JP2017/035967 JP2017035967W WO2018070303A1 WO 2018070303 A1 WO2018070303 A1 WO 2018070303A1 JP 2017035967 W JP2017035967 W JP 2017035967W WO 2018070303 A1 WO2018070303 A1 WO 2018070303A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- underlayer film
- resist underlayer
- resist
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/34—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
- C07C233/42—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
- C07C233/43—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of a saturated carbon skeleton
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/11—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/45—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
- C07C233/53—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
- C07C233/54—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of a saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/02—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C235/04—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C235/16—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/26—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
- C07C317/32—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C317/34—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same non-condensed ring or of a condensed ring system containing that ring
- C07C317/38—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same non-condensed ring or of a condensed ring system containing that ring with the nitrogen atom of at least one amino group being part of any of the groups, X being a hetero atom, Y being any atom, e.g. N-acylaminosulfones
- C07C317/40—Y being a hydrogen or a carbon atom
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/52—Amino carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/68—Polyesters containing atoms other than carbon, hydrogen and oxygen
- C08G63/688—Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
- C08G63/6884—Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/6886—Dicarboxylic acids and dihydroxy compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/091—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/094—Multilayer resist systems, e.g. planarising layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
Definitions
- the present invention relates to a composition for forming a resist underlayer film provided between a substrate and a resist film (resist layer) formed thereon suitable for a lithography process in a semiconductor manufacturing process.
- the resist underlayer film formed for the purpose of suppressing this is also called an antireflection film.
- the resist underlayer film is required to be easily formed by applying and curing a solution-like composition for forming a resist underlayer film. Therefore, the composition needs to contain a compound (polymer) that is easily cured by heating or the like and highly soluble in a predetermined solvent. Further, the resist lower layer film is required to have a higher dry etching rate than the upper layer resist film, that is, a higher selectivity ratio of the dry etching rate. Furthermore, the resist pattern formed on the resist underlayer film preferably has a rectangular cross-sectional shape in a direction perpendicular to the substrate (a straight skirt shape without so-called undercut or skirting). For example, when the resist pattern is undercut or skirted, problems such as collapse of the resist pattern and inability to process a workpiece (substrate, insulating film, etc.) into a desired shape or size during the lithography process occur. .
- Patent Document 1 An antireflection film-forming composition containing a polymer containing sulfur atoms in a predetermined ratio is disclosed in Patent Document 1 below.
- Patent Document 2 An antireflection film-forming composition for lithography containing a reaction product obtained by a polyaddition reaction between an epoxy compound having two glycidyl groups and a nitrogen-containing aromatic compound having two thiol groups is disclosed in Patent Document 2 below. It is disclosed.
- Patent Document 2 An antireflection film-forming composition for lithography containing a reaction product obtained by a polyaddition reaction between an epoxy compound having two glycidyl groups and a nitrogen-containing aromatic compound having two thiol groups is disclosed in Patent Document 2 below. It is disclosed.
- a problem to be solved by the present invention is to provide a composition for forming an antireflection film for photolithography using a KrF excimer laser that satisfies the following characteristics.
- the resist underlayer film formed from the composition has a high antireflection effect and resist pattern shape control ability.
- a resist pattern having a good shape can be formed on the resist underlayer film without causing intermixing with the resist film.
- the resist underlayer film can be removed in a much shorter time than the resist pattern under conditions using a mixed gas of CF 4 or O 2 / N 2 as a dry etching gas.
- the present invention forms a resist underlayer film that has a high selection ratio with respect to a resist film at a dry etching rate, has high solvent resistance, and exhibits a sufficient k value at the wavelength of a KrF excimer laser (about 248 nm). It aims at providing the composition of this. It is another object of the present invention to provide a composition for forming a resist underlayer film in which a resist pattern formed on the resist underlayer film has a desired shape.
- the present invention includes the following. [1] The following formula (1): (Where A represents a benzene ring or a cyclohexane ring, X represents a hydrogen atom, an alkyl or alkoxy group having 1 to 10 carbon atoms which may be substituted with halogen, or an alkoxycarbonyl group having 2 to 11 carbon atoms, Y represents -COOH or -L-NHCO-Z-COOH; Z represents an alkylene group having 3 to 10 carbon atoms which may be interrupted by an oxygen atom, a sulfur atom or a nitrogen atom; L represents a single bond or a spacer group) A compound represented by (however, as well as except for).
- a structural unit (A) derived from a diepoxy compound Following formula (1): (Where A represents a benzene ring or a cyclohexane ring, X represents a hydrogen atom, an alkyl or alkoxy group having 1 to 10 carbon atoms which may be substituted with halogen, or an alkoxycarbonyl group having 2 to 11 carbon atoms, Y represents -COOH or -L-NHCO-Z-COOH; Z represents an alkylene group having 3 to 10 carbon atoms which may be interrupted by an oxygen atom, a sulfur atom or a nitrogen atom; L represents a single bond or a spacer group)
- the diepoxy compound is represented by the following formula (2): [Where: R 6 and R 7 represent the same or different epoxy-containing groups, Q is the following formula (31), formula (32) or formula (33): (In the above formula, R 1
- R 1 and R 2 , R 3 and R 4 may be bonded to each other to form a ring having 3 to 6 carbon atoms
- R 5 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 6 carbon atoms, an alkyl group having 3 to 8 carbon atoms interrupted by an ether oxygen atom, a benzyl group or a phenyl group.
- the diepoxy compound is represented by the following formula (4): [Where: R 5 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 6 carbon atoms, an alkyl group having 3 to 8 carbon atoms interrupted by an ether oxygen atom, a benzyl group or a phenyl group. Represent, R 6 and R 7 represent an epoxy-containing group. ]
- the copolymer according to [4], represented by: [7] A resist underlayer film forming composition comprising the copolymer according to any one of [4] to [6] and a solvent.
- a resist underlayer film-forming composition that includes the copolymer according to any one of [4] to [6] and a solvent, and provides a resist underlayer film that absorbs light having a wavelength of 248 nm.
- a resist underlayer film that includes the copolymer according to any one of [4] to [6] and absorbs light having a wavelength of 248 nm.
- the resist underlayer film formed from the resist underlayer film forming composition according to the present invention has absorption at 248 nm (KrF), which is essential as an antireflection film for photolithography using a KrF excimer laser, and is sufficiently reflected in the KrF process. Demonstrate the prevention function. It also exhibits high solvent resistance and dry etching rate. Furthermore, the photoresist pattern formed using the resist underlayer film forming composition according to the present invention gives a good straight skirt-shaped cross-sectional shape.
- KrF 248 nm
- Copolymer having a structural unit derived from a compound having a bond and two terminal carboxyl groups, a resist underlayer film forming composition containing the copolymer, a resist underlayer film containing the copolymer, and the resist underlayer A method for forming a resist pattern using the film-forming composition and a method for manufacturing a semiconductor device are provided. This will be described in order below.
- the above copolymer has the following formula (1): (Where A represents a benzene ring or a cyclohexane ring, X represents a hydrogen atom, an alkyl or alkoxy group having 1 to 10 carbon atoms which may be substituted with halogen, or an alkoxycarbonyl group having 2 to 11 carbon atoms, Y represents -COOH or -L-NHCO-Z-COOH; Z represents an alkylene group having 3 to 10 carbon atoms which may be interrupted by an oxygen atom, a sulfur atom or a nitrogen atom; L represents a single bond or a spacer group) And a suitable diepoxy compound can be copolymerized by a conventional method.
- a copolymer is a copolymer that is not necessarily limited to a polymer compound. Therefore, monomers are excluded but oligomers are not excluded.
- the compound represented by the said Formula (1) and diepoxy compound may each use 1 type each, one or both can also be used 2 or more types.
- the compound represented by Formula (1) is a compound having at least one amide bond and two terminal carboxyl groups in the molecule.
- A represents a benzene ring or a cyclohexane ring, preferably a benzene ring.
- X represents a hydrogen atom, an alkyl or alkoxy group having 1 to 10 carbon atoms which may be substituted with halogen, or an alkoxycarbonyl group having 2 to 11 carbon atoms.
- alkyl group referred to in the present invention includes a linear, branched or cyclic alkyl group.
- alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i-butyl group, s-butyl group, t- Butyl, cyclobutyl, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n -Butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, 1,1- Diethyl-n-propyl group, cyclopentyl group, 1-methyl-cyclobuty
- An alkyl group having 1 to 8 carbon atoms is preferable, an alkyl group having 1 to 6 carbon atoms is more preferable, and a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and a cyclopropyl group are most preferable.
- Examples of the alkoxy group having 1 to 10 carbon atoms include groups in which an etheric oxygen atom (—O—) is bonded to the terminal carbon atom of the alkyl group.
- the structure of the alkoxy group is preferably linear or branched.
- the alkoxy group preferably has 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, and most preferably 1 to 3 carbon atoms.
- Examples of such alkoxy groups include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, n- A hexyloxy group etc. are mentioned.
- alkoxycarbonyl group having 2 to 11 carbon atoms examples include groups in which a carbonyl group (—CO—) is bonded to the terminal carbon atom of the alkoxy group.
- the structure of the alkoxycarbonyl group is preferably linear or branched.
- the number of carbon atoms in the alkoxycarbonyl group is preferably 2 to 11, more preferably 2 to 7, and most preferably 2 to 4.
- alkoxycarbonyl groups include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group. Group, n-pentyloxycarbonyl group, n-hexyloxycarbonyl group and the like.
- halogen is preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, particularly preferably a fluorine atom or a chlorine atom.
- Y represents —COOH or —L—NHCO—Z—COOH
- Z represents an oxygen atom, a sulfur atom or a nitrogen atom, preferably 3 to 3 carbon atoms which may be interrupted by an oxygen atom.
- 10 represents an alkylene group, preferably 3 to 6, and L represents a single bond or a spacer group.
- the spacer group is preferably of the following formula: (Wherein L 1 represents a single bond, an oxygen atom, a carbonyl group, a sulfonyl group, or an alkylene group having 1 to 6, preferably 1 to 3 carbon atoms that may be substituted with a halogen atom) It is represented by L 1 is preferably a sulfonyl group.
- the compound represented by the formula (1) can be obtained by reacting a diamine having a desired structure and an acid anhydride by a conventional method. Specific examples are shown in the following synthesis examples.
- the diepoxy compound has the following formula (2): [Where: R 6 and R 7 represent the same or different epoxy-containing groups, Q is the following formula (31), formula (32) or formula (33): (In the above formula, R 1 to R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 6 carbon atoms, a benzyl group or a phenyl group, Is at least one group selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a nitro group, a cyano group, and an alkylthio group having 1 to 6 carbon atoms.
- R 1 and R 2 , R 3 and R 4 may be bonded to each other to form a ring having 3 to 6 carbon atoms
- R 5 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 6 carbon atoms, an alkyl group having 3 to 8 carbon atoms interrupted by an ether oxygen atom, a benzyl group or a phenyl group.
- the diepoxy compound has the following formula (4): [Where: R 5 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 6 carbon atoms, an alkyl group having 3 to 8 carbon atoms interrupted by an ether oxygen atom, a benzyl group or a phenyl group. Represent, R 6 and R 7 represent an epoxy-containing group. ]
- the epoxy-containing group refers to a group having oxacyclopropane (oxirane) which is a three-membered ring ether in the structural formula.
- oxirane a group having oxacyclopropane (oxirane) which is a three-membered ring ether in the structural formula.
- T represents a single bond or a group represented by the formula —Q′—X′—
- R ′ represents a hydrogen atom or a linear or branched alkyl group optionally interrupted by an oxygen atom. And may be bonded to a carbon atom adjacent to the carbon atom to which R ′ is bonded to form a ring.) It is group represented by these.
- Q ′ here represents alkylene having 1 to 10, preferably 1 to 6 carbon atoms, provided that it may be mono- or polysubstituted with F, Cl, Br, I or CN, and One or more non-adjacent CH 2 groups are independently of each other —O—, —S—, —NH—, —NR 0 so that the oxygen and / or sulfur atoms are not directly linked to each other.
- X ′ represents —O—, —S—, —CO—, —COO—, —OCO—, —O—COO—, —CO—NR 0 —, —NR 0 —CO—, —NR 0 —CO—.
- R 0 and R 00 each independently represent H or alkyl having 1 to 10 carbon atoms
- Y 2 and Y 3 each independently represent H, F, Cl or CN.
- X ′ is preferably —O—, —S—, —CO—, —COO—, —OCO—, —O—COO—, —CO—NR 0 —, —NR 0 —CO—, —NR 0. -CO-NR 0 -or a single bond.
- Typical Q ′ is, for example, — (CH 2 ) p1 —, — (CH 2 CH 2 O) q1 —CH 2 CH 2 —, —CH 2 CH 2 —S—CH 2 CH 2 —, —CH 2 CH 2 —NH—CH 2 CH 2 — or — (SiR 0 R 00 —O) p1 —, where p1 is an integer from 1 to 10, q1 is an integer from 1 to 3, and R 0 and R 00 Has the above meaning.
- Particularly preferred groups -X'-Q'- is, - (CH 2) p1 - , - O- (CH 2) p1 -, - OCO- (CH 2) p1 -, - OCOO- (CH 2) p1 - in is there.
- Particularly preferred groups Q ′ are, for example, in each case linear ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, ethyleneoxyethylene, methyleneoxybutylene, ethylenethioethylene, ethylene-N. -Methyliminoethylene, ethenylene, propenylene and butenylene.
- linear or branched alkyl group having 1 to 6 carbon atoms examples include, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t -Butyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2 -Dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, 1,1-diethyl-n-propyl group, n-hexyl group, 1-methyl-n- Hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n-pentyl group, 4-methyl-n-pentyl
- alkenyl group having 3 to 6 carbon atoms examples include propenyl group, butenyl group, pentenyl group, cyclopentenyl group, hexenyl group, and cyclohexenyl group.
- alkoxy group having 1 to 6 carbon atoms examples include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, s-butoxy group, t-butoxy group, 2- Examples thereof include a methylbutoxy group, an n-pentoxy group, and an n-hexoxy group.
- alkylthio group having 1 to 6 carbon atoms examples include methylthio group, ethylthio group, n-propylthio group, i-propylthio group, n-butylthio group, i-butylthio group, s-butylthio group, t-butylthio group, 2- Examples thereof include a methylbutylthio group, an n-pentylthio group, and an n-hexylthio group.
- alkyl group having 3 to 8 carbon atoms interrupted by the ether oxygen atom examples include a 2-methoxyethyl group.
- diepoxy compounds include, but are not limited to, 1,4-butanediol diglycidyl ether, 1,2-epoxy-4- (epoxyethyl) cyclohexane, diethylene glycol diglycidyl ether, 1, 2-cyclohexanedicarboxylic acid diglycidyl ester, 4,4′-methylenebis (N, N-diglycidylaniline), 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, bisphenol-A-diglycidyl ether, Bisphenol-S-diglycidyl ether, resorcinol diglycidyl ether, phthalic acid diglycidyl ester, neopentyl glycol diglycidyl ether, polypropylene glycol diglycidyl ether, tetrabromobi Phenol-A-diglycidyl ether, bisphenol hexafluoro
- These can be produced by a conventional method, for example, produced from a compound having two or more hydroxyl groups or carboxyl groups such as a diol compound, a triol compound, a dicarboxylic acid compound and a tricarboxylic acid compound and a glycidyl compound such as epichlorohydrin. can do. Moreover, it is also possible to obtain with a commercial item.
- Catalyst The reaction of the compound represented by formula (1) with the compound represented by formula (2) can be promoted by using an appropriate catalyst.
- a catalyst is a catalyst that activates an epoxy group.
- the catalyst for activating the epoxy group include quaternary phosphonium salts such as ethyltriphenylphosphonium bromide and quaternary ammonium salts such as benzyltriethylammonium chloride.
- the amount of the catalyst used can also be selected as appropriate, but it is, for example, 0.1% by mass to 0.1% by mass relative to the total mass of the compound represented by the above formula (1) and the compound represented by the formula (2) which are raw material monomers. An appropriate amount can be selected from the range of 10% by mass.
- solvent The reaction of the compound represented by Formula (1) and the compound represented by Formula (2) can be promoted by using an appropriate solvent.
- the kind and amount of such a solvent can also be selected as appropriate. Examples include ethoxyethanol, methoxyethanol, 1-methoxy-2-propanol, propylene glycol monomethyl ether, dioxane, N, N-2-trimethylpropionamide, cyclohexanone and the like.
- the weight average molecular weight measured by the GPC (Gel Permeation Chromatography) method of the copolymer varies depending on the coating solvent used, the solution viscosity, etc., but is preferably 1,000 to 50,000, for example, in terms of polystyrene. Is from 2,000 to 20,000.
- a resist underlayer film forming composition according to the present invention can be obtained by adding an additive to the copolymer obtained as described above and dissolving it in an appropriate solvent.
- Copolymer component After isolating the copolymer from the copolymer solution obtained above, it may be used for the preparation of a resist underlayer film forming composition, but the copolymer solution obtained above is used as it is in the resist underlayer. It can also be used in a film-forming composition.
- the resist underlayer film forming composition of the present invention may further contain a crosslinkable compound and a sulfonic acid compound.
- a crosslinkable compound and a sulfonic acid compound.
- the crosslinkable compound is also expressed as a crosslinking agent, and is, for example, a nitrogen-containing compound having 2 to 4 nitrogen atoms substituted with a methylol group or an alkoxymethyl group.
- the ratio of the crosslinkable compound with respect to the copolymer contained in the resist underlayer film forming composition of the present invention is not particularly limited, for example, it is 5% by mass or more and 50% by mass or less.
- Preferred examples of the sulfonic acid compound include p-toluenesulfonic acid, 4-hydroxybenzenesulfonic acid, trifluoromethanesulfonic acid, pyridinium-p-toluenesulfonic acid, pyridinium-4-hydroxybenzenesulfonic acid, camphorsulfonic acid, 5 -Sulfosalicylic acid, 4-chlorobenzenesulfonic acid, 4-hydroxybenzenesulfonic acid, benzenedisulfonic acid, 1-naphthalenesulfonic acid, pyridinium-1-naphthalenesulfonic acid and the like.
- crosslinkable compound examples include hexamethoxymethyl melamine, tetramethoxymethyl glycoluril, tetramethoxymethylbenzoguanamine, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4 4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis (hydroxymethyl) glycoluril, 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxy) Methyl) urea and 1,1,3,3-tetrakis (methoxymethyl) urea and the like, and tetramethoxymethylglycoluril is more preferable.
- the sulfonic acid compound acts as a crosslinking accelerator, and, for example, 4-hydroxybenzenesulfonic acid (also referred to as p-phenolsulfonic acid) suppresses the resist pattern cross section perpendicular to the substrate from becoming a footing shape, It is an additive that contributes to a desired shape (generally rectangular shape).
- the resist underlayer film forming composition of the present invention may contain a phenol derivative. Similar to 4-hydroxybenzenesulfonic acid, the phenol derivative is an additive that suppresses the cross section of the resist pattern perpendicular to the substrate from becoming a footing shape and contributes to a desired shape (generally rectangular shape). . Specific examples of phenol derivatives include 4-methylsulfonylphenol, bisphenol S, bisphenol AF, 4-cyanophenol, 3,4,5-trifluorophenol, 4-hydroxybenzotrifluoride, 2,3,5,6-tetra Examples thereof include fluoro-4- (trifluoromethyl) phenol and 2,6-dichloro-4- (methylsulfonyl) phenol. Although the ratio of the phenol derivative with respect to the copolymer contained in the resist underlayer film forming composition of this invention is not specifically limited, For example, it is 0.1 to 20 mass%.
- the resist underlayer film forming composition of the present invention may contain a surfactant.
- the surfactant is an additive for improving applicability to the substrate.
- Known surfactants such as nonionic surfactants and fluorine-based surfactants can be used.
- the solid content includes a copolymer and various additives as described above that are added as necessary.
- the concentration of the solid content in the resist underlayer film forming composition is, for example, 0.1% by mass to 15% by mass, preferably 0.1% by mass to 10% by mass.
- solvent contained in the resist underlayer film forming composition of the present invention include propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monopropyl ether, methyl ethyl ketone, ethyl lactate, cyclohexanone, N , N-2-trimethylpropionamide, ⁇ -butyrolactone, N-methylpyrrolidone, methyl 2-hydroxyisobutyrate, ethyl 3-ethoxypropionate, a mixture of two or more selected from these solvents, and the like.
- the solvent used at the time of preparation of a copolymer may be included as it is.
- the ratio of the solvent with respect to the resist underlayer film forming composition of this invention is not specifically limited, For example, it is 90 to 99.9 mass%.
- the resist underlayer film forming composition according to the present invention can be applied to a lithography process in the process of manufacturing a semiconductor device.
- a resist underlayer film forming composition according to the present invention is applied on a semiconductor substrate and baked to form a resist underlayer film.
- a resist is applied to the resist underlayer film and baked to form a resist film.
- Forming a resist pattern on the resist underlayer film including exposing the semiconductor substrate coated with the resist underlayer film and the resist film to light having a wavelength of 248 nm, and developing the resist film after exposure. can do.
- the semiconductor substrate is typically a silicon wafer, but an SOI (Silicon on Insulator) substrate or a compound semiconductor wafer such as gallium arsenide (GaAs), indium phosphide (InP), or gallium phosphide (GaP) is used. May be.
- a semiconductor substrate on which an insulating film such as a silicon oxide film, a nitrogen-containing silicon oxide film (SiON film), or a carbon-containing silicon oxide film (SiOC film) is formed may be used.
- the resist underlayer film forming composition is applied.
- coating of the resist underlayer film forming composition which concerns on this invention can be performed by a conventional method, for example, can be apply
- the obtained coating film is baked to form a resist underlayer film.
- Baking conditions are appropriately selected from baking temperatures of 80 to 500 ° C., or 80 ° C. to 250 ° C., and baking times of 0.3 to 60 minutes.
- the baking temperature is 100 ° C. to 500 ° C.
- the baking time is 0.5 to 2 minutes.
- the thickness of the lower layer film to be formed is, for example, 10 to 1000 nm, 20 to 500 nm, 50 to 300 nm, 100 to 200 nm, or 10 to 100 nm.
- a photoresist film for example, is formed on the resist underlayer film obtained above.
- the formation of the photoresist film can be performed by a well-known method, that is, by applying and baking a photoresist composition solution on the lower layer film.
- the resist underlayer film of the present invention after forming an inorganic underlayer film and an organic underlayer film on a substrate, the resist underlayer film of the present invention can be formed thereon, and a photoresist film can be further formed thereon.
- the organic underlayer film can be processed using an oxygen-based gas as an etching gas, and the substrate can be processed using a fluorine-based gas that provides a sufficiently high etching rate for the organic underlayer film as an etching gas.
- the photoresist of the film formed on the resist underlayer film of the present invention is not particularly limited as long as it is sensitive to light used for exposure. Either a negative photoresist or a positive photoresist can be used.
- a positive photoresist comprising a novolac resin and 1,2-naphthoquinonediazide sulfonic acid ester, a chemically amplified photoresist comprising a binder having a group that decomposes with an acid to increase the alkali dissolution rate and a photoacid generator, an acid
- a chemically amplified photoresist comprising a low molecular weight compound that decomposes by an alkali to increase the alkali dissolution rate of the photoresist, an alkali-soluble binder, and a photoacid generator, and a binder that has a group that decomposes by an acid to increase the alkali dissolution rate
- Examples include trade name APEX-E manufactured by Shipley, trade name PAR710 manufactured by Sumitomo Chemical Co., Ltd., and trade name SEPR430 manufactured by Shin-Etsu Chemical Co., Ltd. Also, for example, Proc. SPIE, Vol. 3999, 330-334 (2000), Proc. SPIE, Vol. 3999, 357-364 (2000), Proc. SPIE, Vol. 3999, 365-374 (2000), and fluorine-containing polymer-based photoresists.
- Exposure Exposure Next, exposure is performed through a predetermined mask.
- a KrF excimer laser wavelength 248 nm
- an ArF excimer laser wavelength 193 nm
- EUV wavelength 13.5 nm
- EUV is an abbreviation for extreme ultraviolet light.
- the resist for forming the resist film may be either a positive type or a negative type.
- a chemically amplified resist that is sensitive to ArF, EUV, or an electron beam can also be used.
- post-exposure bake can be performed as necessary. The post-exposure heating is performed under conditions appropriately selected from a heating temperature of 70 to 150 ° C. and a heating time of 0.3 to 10 minutes.
- development is performed with a developer.
- a developer for example, when a positive photoresist is used, the exposed portion of the photoresist film is removed, and a photoresist pattern is formed.
- Developers include aqueous solutions of alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, aqueous solutions of quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline, ethanolamine, propylamine, An alkaline aqueous solution such as an aqueous amine solution such as ethylenediamine can be mentioned as an example. Further, a surfactant or the like can be added to these developers.
- the development conditions are appropriately selected from a temperature of 5 to 50 ° C. and a time of 10 to 600 seconds.
- the resist lower layer film (intermediate layer) of the present invention is partially removed and patterned, and then patterned.
- the semiconductor substrate is processed using the formed photoresist film (upper layer) and the resist lower layer film (intermediate layer) of the present invention as a protective film.
- patterning is performed by removing a part of the resist lower layer film (intermediate layer) of the present invention using the photoresist film (upper layer) thus patterned as a protective film, and then patterning the photoresist.
- Patterning is performed by partially removing the inorganic lower layer film (lower layer) using the film (upper layer) and the film composed of the resist lower layer film (intermediate layer) of the present invention as a protective film. Finally, the semiconductor substrate is processed using the patterned resist underlayer film (intermediate layer) and inorganic underlayer film (lower layer) of the present invention as a protective film. In some cases, an organic underlayer film (amorphous carbon film, organic hard mask, spin-on carbon film, etc.) is further formed under the inorganic underlayer film (lower layer) to process the semiconductor substrate.
- an organic underlayer film amorphous carbon film, organic hard mask, spin-on carbon film, etc.
- the resist underlayer film (intermediate layer) of the present invention in the portion where the photoresist film has been removed is removed by dry etching to expose the inorganic underlayer film (underlayer).
- dry etching of the resist underlayer film of the present invention tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, carbon monoxide, argon, oxygen, Gases such as nitrogen, sulfur hexafluoride, difluoromethane, nitrogen trifluoride and chlorine trifluoride, chlorine, trichloroborane and dichloroborane can be used.
- a halogen-based gas is preferably used, more preferably a fluorine-based gas.
- the fluorine-based gas include tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F). 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, difluoromethane (CH 2 F 2 ) and the like.
- the inorganic lower layer film (lower layer) is preferably performed by dry etching with a fluorine-based gas.
- the processing of the semiconductor substrate is preferably performed by dry etching with a fluorine-based gas.
- fluorine-based gas examples include tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, and difluoromethane (CH 2 F 2 ). Can be mentioned.
- the weight average molecular weight of the compound obtained in the following synthesis example of the present specification is a measurement result by gel permeation chromatography (hereinafter abbreviated as GPC).
- GPC gel permeation chromatography
- the measuring device and measurement conditions are as follows.
- Flow rate 0.6 mL / min
- Eluent DMF Standard sample: Polystyrene
- Synthesis example 2 A flask equipped with a stirrer, a thermometer, and a Dimroth condenser was charged with 10.81 g of 1,3-phenylenediamine, 23.97 g of glutaric anhydride, and 139.32 g of tetrahydrofuran, and heated under reflux for 2 hours in a nitrogen atmosphere. After completion of the reaction, the system was cooled to room temperature, and then the reaction solution was poured into 300 ml of acetone to precipitate the target product. The precipitate was filtered through a Kiriyama funnel, washed with acetone, and then dried under reduced pressure at 40 ° C. for 12 hours to obtain 22.69 g of a white powder (yield 71%).
- Synthesis example 3 A flask equipped with a stirrer, a thermometer and a Dimroth condenser was charged with 10.81 g of 1,2-phenylenediamine, 23.97 g of glutaric anhydride, and 140.00 g of tetrahydrofuran, and heated under reflux for 2 hours in a nitrogen atmosphere. After completion of the reaction, the system was cooled to room temperature, and then the reaction solution was poured into 300 ml of acetone to precipitate the target product. The precipitate was filtered with a Kiriyama funnel, washed with acetone, and then dried under reduced pressure at 40 ° C. for 12 hours to obtain 31.25 g of a white powder (yield 95%).
- Synthesis example 4 A flask equipped with a stirrer, thermometer, and Dimroth condenser was charged with 12.22 g of 2,4-diaminotoluene, 23.97 g of glutaric anhydride, and 146.70 g of tetrahydrofuran, and heated under reflux for 2 hours in a nitrogen atmosphere. After completion of the reaction, the system was cooled to room temperature, and then the reaction solution was poured into 300 ml of acetone to precipitate the target product. The precipitate was filtered with a Kiriyama funnel, washed with acetone, and then dried under reduced pressure at 40 ° C. for 12 hours to obtain 31.25 g of a white powder (yield 93%).
- Synthesis example 5 A flask equipped with a stirrer, thermometer, and Dimroth condenser was charged with 10.27 g of 1,3-phenylenediamine, 24.26 g of glycolic anhydride, and 138.13 g of tetrahydrofuran, and heated under reflux for 2 hours in a nitrogen atmosphere. After completion of the reaction, the system was cooled to room temperature, and then the reaction solution was poured into 300 ml of acetone to precipitate the target product. The precipitate was filtered through a Kiriyama funnel, washed with acetone, and then dried under reduced pressure at 40 ° C. for 12 hours to obtain 29.83 g of a white powder (yield 92%).
- Synthesis example 7 A flask equipped with a stirrer, thermometer, and Dimroth condenser was charged with 11.70 g of 3-amino-4-methoxybenzoic acid, 8.40 g of glutaric anhydride, and 79.60 g of tetrahydrofuran, and heated in a nitrogen atmosphere for 2 hours. Refluxed. After completion of the reaction, the system was cooled to room temperature, and then the reaction solution was poured into 300 ml of acetone to precipitate the target product. The precipitate was filtered through a Kiriyama funnel, washed with acetone, and then dried under reduced pressure at 40 ° C. for 12 hours to obtain 15.63 g of a light gray powder (yield 79%).
- Synthesis example 8 A flask equipped with a stirrer, thermometer, and Dimroth condenser was charged with 10.00 g of 1-methyl-2-aminoterephthalate, 6.14 g of glutaric anhydride, 40.69 g of tetrahydrofuran, and heated under reflux for 2 hours in a nitrogen atmosphere. did. After completion of the reaction, the system was cooled to room temperature, and then the reaction solution was poured into 300 ml of acetone to precipitate the target product. The precipitate was filtered through a Kiriyama funnel, washed with acetone, and then dried under reduced pressure at 40 ° C. for 12 hours to obtain 12.57 g of a pale yellow powder (yield 79.3%).
- Example 1 3.78 g of the solution containing 0.53 g of the copolymer obtained in Synthesis Example 1 (the solvent is a CYH / DMIB mixture having a weight ratio of 8: 2 used at the time of synthesis), 7.71 g of CYH, 1.93 g of DMIB, and propylene 0.07 g of glycol monomethyl ether (hereinafter abbreviated as PGME in the present specification), 0.13 g of tetramethoxymethyl glycoluril (trade name: Powder Link 1174, manufactured by Nippon Cytec Industries Co., Ltd.), 5-sulfosalicylic acid ( Tokyo Chemical Industry Co., Ltd.) 1 mass% PGME solution 1.32 g and surfactant (DIC Co., Ltd., trade name: R-30N) 1 mass% PGME solution 0.05 g were mixed, and 4.5 A mass% solution was obtained. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to
- Example 2 3.12 g of a solution containing 0.53 g of the copolymer obtained in Synthesis Example 2 (solvent is CYH used during synthesis), 4.57 g of CYH, 5.80 g of PGME, tetramethoxymethylglycoluril (trade name: Powder Link) 1174, manufactured by Nippon Cytec Industries Co., Ltd.) 0.13 g, 5-sulfosalicylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 1% by weight PGME solution 1.32 g, and surfactant (manufactured by DIC Corporation, trade name: R-30N) 0.05 g of a 1% by mass PGME solution was mixed to obtain a 4.5% by mass solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
- solvent is CYH used during synthesis
- PGME tetramethoxymethyl
- Example 3 To 3.36 g of the solution containing 0.53 g of the copolymer obtained in Synthesis Example 3 (solvent is CYH used during synthesis), 4.33 g of CYH, 5.80 g of PGME, tetramethoxymethylglycoluril (trade name: Powder Link) 1174, manufactured by Nippon Cytec Industries Co., Ltd.) 0.13 g, 5-sulfosalicylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 1% by weight PGME solution 1.32 g, and surfactant (manufactured by DIC Corporation, trade name: R-30N) 0.05 g of a 1% by mass PGME solution was mixed to obtain a 4.5% by mass solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
- solvent is CYH used during synthesis
- PGME tetramethoxymethyl
- Example 4 To a solution containing 0.53 g of the copolymer obtained in Synthesis Example 4 (solvent is CYH used in the synthesis) 3.01 g, CYH 4.33 g, PGME 5.80 g, tetramethoxymethylglycoluril (trade name: Powder Link) 1174, manufactured by Nippon Cytec Industries Co., Ltd.) 0.13 g, 5-sulfosalicylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 1% by weight PGME solution 1.32 g, and surfactant (manufactured by DIC Corporation, trade name: R-30N) 0.05 g of a 1% by mass PGME solution was mixed to obtain a 4.5% by mass solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
- solvent is CYH used in the synthesis
- Example 5 2.99 g of a solution containing 0.53 g of the copolymer obtained in Synthesis Example 5 (solvent is CYH used during synthesis), 4.70 g of CYH, 5.80 g of PGME, tetramethoxymethylglycoluril (trade name: Powder Link) 1174, manufactured by Nippon Cytec Industries Co., Ltd.) 0.13 g, 5-sulfosalicylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 1% by weight PGME solution 1.32 g, and surfactant (manufactured by DIC Corporation, trade name: R-30N) 0.05 g of a 1% by mass PGME solution was mixed to obtain a 4.5% by mass solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
- solvent is CYH used during synthesis
- PGME tetramethoxymethyl
- Example 6 To 3.26 g of the solution containing 0.53 g of the copolymer obtained in Synthesis Example 6 (solvent is CYH used during synthesis), 4.43 g of CYH, 5.80 g of PGME, tetramethoxymethylglycoluril (trade name: Powder Link) 1174, manufactured by Nippon Cytec Industries Co., Ltd.) 0.13 g, 5-sulfosalicylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 1% by weight PGME solution 1.32 g, and surfactant (manufactured by DIC Corporation, trade name: R-30N) 0.05 g of a 1% by mass PGME solution was mixed to obtain a 4.5% by mass solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
- solvent is CYH used during synthesis
- PGME tetramethoxymethyl
- Example 7 To a solution containing 0.53 g of the copolymer obtained in Synthesis Example 7 (solvent is CYH used during synthesis), 3.11 g, CYH 4.58 g, PGME 5.80 g, tetramethoxymethylglycoluril (trade name: Powder Link) 1174, manufactured by Nippon Cytec Industries Co., Ltd.) 0.13 g, 5-sulfosalicylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 1% by weight PGME solution 1.32 g, and surfactant (manufactured by DIC Corporation, trade name: R-30N) 0.05 g of a 1% by mass PGME solution was mixed to obtain a 4.5% by mass solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
- solvent is CYH used during synthesis
- Example 8 In a solution containing 0.53 g of the copolymer obtained in Synthesis Example 8 (solvent is CYH used during synthesis), CYH 4.62 g, PGME 5.80 g, tetramethoxymethylglycoluril (trade name: Powder Link) 1174, manufactured by Nippon Cytec Industries Co., Ltd.) 0.13 g, 5-sulfosalicylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 1 mass% PGME solution 1.32 g, and surfactant (manufactured by DIC Corporation, trade name: R-30N) 0.05 g of a 1% by mass PGME solution was mixed to obtain a 4.5% by mass solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
- solvent is CYH used during synthesis
- Example 9 To a solution containing 0.53 g of the copolymer obtained in Synthesis Example 9 (solvent is CYH used during synthesis), 3.38 g of CYH, 5.80 g of PGME, tetramethoxymethylglycoluril (trade name: Powder Link) 1174, manufactured by Nippon Cytec Industries Co., Ltd.) 0.13 g, 5-sulfosalicylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 1% by weight PGME solution 1.32 g, and surfactant (manufactured by DIC Corporation, trade name: R-30N) 0.05 g of a 1% by mass PGME solution was mixed to obtain a 4.5% by mass solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
- solvent is CYH used during synthesis
- PGME tetramethoxymethylglycoluri
- Example 10 To a solution containing 0.53 g of the copolymer obtained in Synthesis Example 10 (solvent is CYH used at the time of synthesis), 3.35 g of CYH, 5.80 g of PGME, tetramethoxymethylglycoluril (trade name: Powder Link) 1174, manufactured by Nippon Cytec Industries Co., Ltd.) 0.13 g, 5-sulfosalicylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 1% by weight PGME solution 1.32 g, and surfactant (manufactured by DIC Corporation, trade name: R-30N) 0.05 g of a 1% by mass PGME solution was mixed to obtain a 4.5% by mass solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
- solvent is CYH used at the time of synthesis
- PGME tetrameth
- Example 11 To 2.98 g of the solution containing 0.53 g of the copolymer obtained in Synthesis Example 11 (solvent is CYH used during synthesis), 3.40 g of CYH, 5.80 g of PGME, tetramethoxymethylglycoluril (trade name: Powder Link) 1174, manufactured by Nippon Cytec Industries Co., Ltd.) 0.13 g, 5-sulfosalicylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 1% by weight PGME solution 1.32 g, and surfactant (manufactured by DIC Corporation, trade name: R-30N) 0.05 g of a 1% by mass PGME solution was mixed to obtain a 4.5% by mass solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
- solvent is CYH used during synthesis
- PGME tetramethoxymethyl
- Comparative Example 1 3.42 g of a solution containing 0.53 g of the copolymer obtained in Comparative Synthesis Example 1 (solvent is CYH used during synthesis), 3.42 g of CYH, 5.80 g of PGME, tetramethoxymethylglycoluril (trade name: Powder) Link 1174, Nippon Cytec Industries Co., Ltd. 0.13 g, 5-sulfosalicylic acid (Tokyo Chemical Industry Co., Ltd.) 1% by weight PGME solution 1.32 g, and surfactant (DIC Co., Ltd., trade name) : R-30N) 0.05 g of a 1% by mass PGME solution was mixed to obtain a 4.5% by mass solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
- solvent is CYH used during synthesis
- PGME tetramethoxymethylglycoluri
- Comparative Example 2 To 2.99 g of a solution containing 0.53 g of the copolymer obtained in Comparative Synthesis Example 2 (solvent is CYH used during synthesis), 3.39 g of CYH, 5.80 g of PGME, tetramethoxymethylglycoluril (trade name: Powder) Link 1174, Nippon Cytec Industries Co., Ltd. 0.13 g, 5-sulfosalicylic acid (Tokyo Chemical Industry Co., Ltd.) 1% by weight PGME solution 1.32 g, and surfactant (DIC Co., Ltd., trade name) : R-30N) 0.05 g of a 1% by mass PGME solution was mixed to obtain a 4.5% by mass solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
- solvent is CYH used during synthesis
- PGME tetramethoxymethylglycol
- the resist underlayer film forming compositions prepared in Example 1 to Example 11, Comparative Example 1 and Comparative Example 2 were applied onto a silicon wafer by a spinner. Then, it baked on the hotplate at the temperature of 215 degreeC for 1 minute, and formed the resist underlayer film (film thickness of 0.1 micrometer). These resist underlayer films were measured for a refractive index (n value) and an attenuation coefficient (k value) at a wavelength of 248 nm using a spectroscopic ellipsometer (manufactured by JA Woollam, VUV-VASE VU-302). . The results are shown in Table 1 below. In order for the resist underlayer film to have a sufficient antireflection function, the k value at 248 nm is preferably 0.1 or more.
- the dry etching rate of this photoresist film was measured using the above-mentioned RIE system manufactured by Samco Co., Ltd. under the conditions using N 2 as a dry etching gas.
- the dry etching rate of each resist underlayer film when the dry etching rate of the photoresist film was 1.00 was calculated as “selection ratio”. In order to satisfactorily process using dry etching, the selection ratio is desirably 1.5 or more.
- Table 1 The results are shown in Table 1 below.
- the resulting photoresist pattern was observed with a scanning electron microscope (SEM) for a cross section perpendicular to the substrate, that is, the silicon wafer.
- SEM scanning electron microscope
- the resist underlayer film formed from the resist underlayer film forming composition prepared in Examples 1 to 11 has a k value at 248 nm greater than 0.1, and the KrF process It has shown that it has sufficient antireflection function.
- the resist underlayer film formed from the resist underlayer film forming composition prepared in Comparative Example 1 has a k value smaller than 0.1 and does not have sufficient antireflection ability.
- the resist underlayer film formed from the resist underlayer film forming composition prepared in Examples 1 to 11 has a selectivity significantly higher than 1.5 compared with the dry etching rate of the photoresist film. This shows that the dry etching rate is high.
- the resist underlayer film formed from the resist underlayer film forming composition prepared in Comparative Example 2 shows a small value of 1.35, indicating that the dry etching rate is slow. Furthermore, the cross-sectional shape of the photoresist pattern obtained using the composition for forming a resist underlayer film prepared in Examples 1 to 11 was a good straight skirt shape. On the other hand, when the resist underlayer film forming composition prepared in Comparative Example 1 was used, the disappearance of the pattern was observed after development.
- the resist underlayer film forming composition prepared in Examples 1 to 11 can be a resist underlayer film having a high dry etching rate and an antireflective ability by a KrF process.
- a resist underlayer film that can provide a resist underlayer film that exhibits a sufficient antireflection function, high solvent resistance and dry etching speed, particularly in a KrF process, and can form a photoresist pattern with a good cross-sectional shape.
- a composition is provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials For Photolithography (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polyesters Or Polycarbonates (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
また、レジスト下層膜には、上層のレジスト膜よりもドライエッチング速度が大きい、すなわちドライエッチング速度の選択比が大きいことが求められる。
さらに、レジスト下層膜上に形成されるレジストパターンは、基板に垂直な方向の断面形状が矩形状(いわゆるアンダーカット、裾引き等のないストレートな裾形状)であることが望ましい。例えば、レジストパターンがアンダーカット形状又は裾引き形状になると、レジストパターンの倒壊、リソグラフィー工程の際に被加工物(基板、絶縁膜等)を所望の形状又はサイズに加工できない、という問題が発生する。
しかし依然として、特にKrFエキシマレーザーを用いたフォトリソグラフィーにおいて高性能の反射防止膜を形成するための組成物が待望されている。
(1) 組成物から形成されるレジスト下層膜の反射光防止効果、レジストパターン形状制御能が高い。
(2) そのレジスト下層膜上には、レジスト膜とのインターミキシングを起こさずに良好な形状のレジストパターンを形成することができる。
(3) そのレジスト下層膜は、ドライエッチングガスとしてCF4、またはO2/N2の混合ガスを使用した条件下で、レジストパターンよりもはるかに短時間で除去することができる。
そこで、本発明は、ドライエッチング速度のレジスト膜に対する選択比が大きく、高い耐溶剤性を有し、KrFエキシマレーザーの波長(約248nm)において充分なk値を示す、レジスト下層膜を形成するための組成物を提供することを目的とする。また、レジスト下層膜上に形成されるレジストパターンが、所望の形状となる、レジスト下層膜を形成するための組成物を提供することを目的とする。
[1] 下記式(1):
(式中、
Aはベンゼン環、又はシクロヘキサン環を表し、
Xは水素原子、ハロゲンで置換されていてもよい炭素原子数1乃至10のアルキル若しくはアルコキシ基、又は炭素原子数2乃至11のアルコキシカルボニル基を表し、
Yは-COOH、又は-L-NHCO-Z-COOHを表し、
Zは酸素原子、硫黄原子又は窒素原子で中断されていてもよい炭素原子数3乃至10のアルキレン基を表し、
Lは単結合、又はスペーサー基を表す)
で表される化合物
(但し、
及び
を除く)。
[2] 前記Aがベンゼン環である、[1]に記載の化合物。
[3] 前記スペーサー基-L-が
(式中、L1は単結合、酸素原子、カルボニル基、スルホニル基、又はハロゲン原子で置換されていてもよい炭素原子数1乃至6のアルキレン基を表す)
で表される、[1]又は[2]に記載の化合物。
[4] ジエポキシ化合物に由来する構造単位(A)と、
下記式(1):
(式中、
Aはベンゼン環、又はシクロヘキサン環を表し、
Xは水素原子、ハロゲンで置換されていてもよい炭素原子数1乃至10のアルキル若しくはアルコキシ基、又は炭素原子数2乃至11のアルコキシカルボニル基を表し、
Yは-COOH、又は-L-NHCO-Z-COOHを表し、
Zは酸素原子、硫黄原子又は窒素原子で中断されていてもよい炭素原子数3乃至10のアルキレン基を表し、
Lは単結合、又はスペーサー基を表す)
で表される化合物に由来する構造単位(B)とを含む共重合体。
[5] 前記ジエポキシ化合物が下記式(2):
[式中、
R6及びR7は、同一または異なるエポキシ含有基を表し、
Qは下記式(31)、式(32)又は式(33):
(上記式中、R1乃至R4は各々独立して、水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの基で置換されていてもよく、またR1とR2、R3とR4は互いに結合して炭素原子数3乃至6の環を形成していてもよく、
R5は水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、エーテル酸素原子によって中断されている炭素原子数3乃至8のアルキル基、ベンジル基又はフェニル基を表す)
で表される基を表す]
で表される、[4]に記載の共重合体。
[6] 前記ジエポキシ化合物が下記式(4):
[式中、
R5は水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、エーテル酸素原子によって中断されている炭素原子数3乃至8のアルキル基、ベンジル基又はフェニル基を表し、
R6及びR7は、エポキシ含有基を表す。]
で表される、[4]に記載の共重合体。
[7] [4]乃至[6]のいずれか一項に記載の共重合体と、溶媒とを含む、レジスト下層膜形成組成物。
[8] [4]乃至[6]のいずれか一項に記載の共重合体と、溶媒とを含み、波長248nmの光を吸収する、レジスト下層膜を与えるレジスト下層膜形成組成物。
[9] [7]又は[8]に記載のレジスト下層膜形成組成物を半導体基板上に塗布しベークしてレジスト下層膜を形成する工程、前記レジスト下層膜上にレジストを塗布しベークしてレジスト膜を形成する工程、前記レジスト下層膜と前記レジスト膜で被覆された半導体基板を波長248nmの光に露光する工程、露光後の前記レジスト膜を現像する工程を含む、半導体装置の製造に用いるレジストパターンの形成方法。
[10] [4]乃至[6]のいずれか一項に記載の共重合体を含み、波長248nmの光を吸収するレジスト下層膜。
[11] [7]又は[8]に記載のレジスト下層膜形成組成物を半導体基板上に塗布しベークしてレジスト下層膜を形成する工程、前記レジスト下層膜上にレジストを塗布しベークしてレジスト膜を形成する工程、前記レジスト下層膜と前記レジスト膜で被覆された半導体基板を波長248nmの光に露光する工程、露光後の前記レジスト膜を現像する工程、前記レジスト膜をマスクとして前記半導体基板を加工する工程を含む、半導体装置の製造方法。
上記共重合体は、下記式(1):
(式中、
Aはベンゼン環、又はシクロヘキサン環を表し、
Xは水素原子、ハロゲンで置換されていてもよい炭素原子数1乃至10のアルキル若しくはアルコキシ基、又は炭素原子数2乃至11のアルコキシカルボニル基を表し、
Yは-COOH、又は-L-NHCO-Z-COOHを表し、
Zは酸素原子、硫黄原子又は窒素原子で中断されていてもよい炭素原子数3乃至10のアルキレン基を表し、
Lは単結合、又はスペーサー基を表す)
で表される化合物と適当なジエポキシ化合物とを慣用の方法により共重合させることにより製造することができる。
また、上記式(1)で表される化合物及びジエポキシ化合物は、それぞれ一種ずつを使用してもよいが、一方又は両方を二種以上使用することもできる。
1.1.1.式(1)で表される化合物
上記式(1)で表される化合物は、分子内に少なくとも1つのアミド結合と2つの末端カルボキシル基とを有する化合物である。
式(1)中、Aはベンゼン環、又はシクロヘキサン環を表し、好ましくはベンゼン環を表す。Xは水素原子、ハロゲンで置換されていてもよい炭素原子数1乃至10のアルキル若しくはアルコキシ基、又は炭素原子数2乃至11のアルコキシカルボニル基を表す。
好ましくは炭素原子数1乃至8のアルキル基、より好ましくは炭素原子数1乃至6のアルキル基、最も好ましくはメチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基である。
(式中、L1は単結合、酸素原子、カルボニル基、スルホニル基、又はハロゲン原子で置換されていてもよい炭素原子数1乃至6、好ましくは1乃至3のアルキレン基を表す)
で表される。L1は好ましくはスルホニル基である。
式(2)で表される化合物は、分子内に2つのエポキシ基を有するジエポキシ化合物である。
[式中、
R6及びR7は、同一または異なるエポキシ含有基を表し、
Qは下記式(31)、式(32)又は式(33):
(上記式中、R1乃至R4は各々独立して、水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの基で置換されていてもよく、またR1とR2、R3とR4は互いに結合して炭素原子数3乃至6の環を形成していてもよく、
R5は水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、エーテル酸素原子によって中断されている炭素原子数3乃至8のアルキル基、ベンジル基又はフェニル基を表す)
で表される基を表す]
を有する。
[式中、
R5は水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、エーテル酸素原子によって中断されている炭素原子数3乃至8のアルキル基、ベンジル基又はフェニル基を表し、
R6及びR7は、エポキシ含有基を表す。]
を有する。
例えば、下記式:
(式中、Tは単結合又は式-Q’-X’-で表される基を表し、R’は水素原子、又は酸素原子で中断されていてもよい直鎖又は分岐鎖のアルキル基を表し、R’が結合する炭素原子に隣接する炭素原子とも結合して環を形成してもよい。)
で表される基である。
X’は、-O-、-S-、-CO-、-COO-、-OCO-、-O-COO-、-CO-NR0-、-NR0-CO-、-NR0-CO-NR0-、-OCH2-、-CH2O-、-SCH2-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-SCF2-、-CF2CH2-、-CH2CF2-、-CF2CF2-、-CH=N-、-N=CH-、-N=N-、-CH=CR0-、-CY2=CY3-、-C≡C-、-CH=CH-COO-、-OCO-CH=CH-または単結合を表し、
R0およびR00は、それぞれ互いに独立に、Hまたは1~10個の炭素原子を有するアルキルを表し、および
Y2およびY3は、それぞれ互いに独立に、H、F、ClまたはCNを表す。
式(1)で表される化合物と式(2)で表される化合物との反応は適切な触媒の使用により促進することができる。そのような触媒とは、エポキシ基を活性化させる触媒である。エポキシ基を活性化させる触媒としては、エチルトリフェニルホスホニウムブロミドのような第4級ホスホニウム塩、ベンジルトリエチルアンモニウムクロリドのような第4級アンモニウム塩を例示することができる。触媒の使用量も適宜選択することができるが、原料モノマーである上記式(1)で表される化合物と式(2)で表される化合物の合計質量に対して例えば0.1質量%乃至10質量%の範囲から適量を選択して用いることができる。
式(1)で表される化合物と式(2)で表される化合物との反応は適切な溶剤の使用により促進することができる。そのような溶剤の種類及び使用量も、適宜選択することができる。一例を挙げれば、エトキシエタノール、メトキシエタノール、1-メトキシ-2-プロパノール、プロピレングリコールモノメチルエーテル、ジオキサン、N,N-2-トリメチルプロピオンアミド、シクロヘキサノン等である。
上記式(1)で表される化合物の一種又は二種以上と、上記式(2)で表される化合物の一種又は二種以上とを適切なモル比で適切な溶剤に溶解し、エポキシ基を活性化させる触媒の存在下に共重合させる。
上記式(1)で表される化合物と、上記式(2)で表される化合物との反応時に仕込むモル比は特に限定されないが、通常は式(1):式(2)=85:115~115:85であり、好ましくは90:110~110:90である。
重合反応させる温度及び時間は適宜選択できるが、好ましくは80℃乃至160℃、2時間乃至50時間の範囲である。
ジエポキシ化合物に由来する構造単位(A)と式(1)で表される化合物に由来する構造単位(B)とを含む共重合体の具体的な構造は、後記する合成例に例示する。
以上のようにして得られる共重合体に、添加剤を添加し、適切な溶媒に溶解すれば、本発明に係るレジスト下層膜形成組成物が得られる。
上記で得られる共重合体溶液から共重合体を単離した後、レジスト下層膜形成組成物の調製に使用してもよいが、上記で得られる共重合体溶液をそのままレジスト下層膜形成組成物に使用することもできる。
本発明のレジスト下層膜形成組成物は、架橋性化合物及びスルホン酸化合物をさらに含むことができる。本発明のレジスト下層膜形成組成物に含まれる共重合体に対するスルホン酸化合物の割合は特に限定されないが、例えば0.1質量%以上13質量%以下、好ましくは0.5質量%以上5質量%以下である。架橋性化合物は架橋剤とも表現され、例えばメチロール基またはアルコキシメチル基で置換された窒素原子を2乃至4つ有する含窒素化合物である。本発明のレジスト下層膜形成組成物に含まれる共重合体に対する架橋性化合物の割合は特に限定されないが、例えば5質量%以上50質量%以下である。
前記固形分のレジスト下層膜形成組成物中における濃度は、例えば0.1質量%~15質量%、好ましくは0.1質量%~10質量%である。
本発明のレジスト下層膜形成組成物に含まれる溶媒の具体例として、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノプロピルエーテル、メチルエチルケトン、乳酸エチル、シクロヘキサノン、N,N-2-トリメチルプロピオンアミド、γ-ブチロラクトン、N-メチルピロリドン、2-ヒドロキシイソ酪酸メチル、3-エトキシプロピオン酸エチル、これらの溶媒から選択された2種以上の混合物などが挙げられる。なお、共重合体の調製時に用いた溶剤がそのまま含まれていても良い。
本発明のレジスト下層膜形成組成物に対する溶媒の割合は特に限定されないが、例えば90質量%以上99.9質量%以下である。
本発明に係るレジスト下層膜形成組成物は、半導体装置の製造過程におけるリソグラフィー工程に適用することができる。当該リソグラフィー工程は、本発明に係るレジスト下層膜形成組成物を半導体基板上に塗布しベークしてレジスト下層膜を形成する工程、前記レジスト下層膜上にレジストを塗布しベークしてレジスト膜を形成する工程、前記レジスト下層膜と前記レジスト膜で被覆された半導体基板を波長248nmの光に露光する工程、露光後の前記レジスト膜を現像する工程を含み、前記レジスト下層膜上にレジストパターンを形成することができる。
3.1.1.基板
半導体基板は、代表的にはシリコンウエハーであるが、SOI(Silicon on Insulator)基板、または砒化ガリウム(GaAs)、リン化インジウム(InP)、リン化ガリウム(GaP)などの化合物半導体ウエハーを用いてもよい。酸化珪素膜、窒素含有酸化珪素膜(SiON膜)、炭素含有酸化珪素膜(SiOC膜)などの絶縁膜が形成された半導体基板を用いてもよく、その場合、当該絶縁膜上に本発明に係るレジスト下層膜形成組成物を塗布する。
本発明に係るレジスト下層膜形成組成物の塗布は慣用の方法で行うことができ、例えば、スピナー、コーター等の適当な塗布方法により塗布することができる。
得られた塗布膜をベークすることによりレジスト下層膜が形成される。ベーク条件としては、ベーク温度80乃至500℃、又は80℃乃至250℃、ベーク時間0.3乃至60分間の中から適宜、選択される。好ましくは、ベーク温度100℃乃至500℃、ベーク時間0.5乃至2分間である。ここで、形成される下層膜の膜厚としては、例えば、10乃至1000nmであり、又は20乃至500nmであり、又は50乃至300nmであり、又は100乃至200nm、又は10乃至100nmである。
上記で得られたレジスト下層膜の上に、例えばフォトレジスト膜が形成される。フォトレジスト膜の形成は、周知の方法、すなわち、フォトレジスト組成物溶液の下層膜上への塗布及び焼成によって行うことができる。
次に、所定のマスクを通して露光が行なわれる。本発明の長所を生かすには、露光は、光源としてKrFエキシマレーザー(波長248nm)を用いることが好ましい。KrFエキシマレーザーに代えて、ArFエキシマレーザー(波長193nm)、EUV(波長13.5nm)又は電子線を用いることもできる。“EUV”は極端紫外線の略称である。レジスト膜を形成するためのレジストは、ポジ型、ネガ型いずれでもよい。本発明にはKrFエキシマレーザーの使用が適しているが、ArF、EUV又は電子線に感光する化学増幅型レジストを使用することもできる。露光後、必要に応じて露光後加熱(post exposure bake)を行うこともできる。露光後加熱は、加熱温度70℃乃至150℃、加熱時間0.3乃至10分間から適宜、選択された条件で行われる。
次いで、現像液によって現像が行なわれる。これにより、例えばポジ型フォトレジストが使用された場合は、露光された部分のフォトレジスト膜が除去され、フォトレジストパターンが形成される。
そして、このようにしてパターンの形成されたフォトレジスト膜(上層)を保護膜として本発明のレジスト下層膜(中間層)を一部除去してパターン化が行われ、次いでパターン化されたフォトレジスト膜(上層)及び本発明のレジスト下層膜(中間層)からなる膜を保護膜として半導体基板の加工が行なわれる。
あるいは、このようにしてパターンの形成されたフォトレジスト膜(上層)を保護膜として本発明のレジスト下層膜(中間層)を一部除去してパターン化が行われ、次いでパターン化されたフォトレジスト膜(上層)及び本発明のレジスト下層膜(中間層)からなる膜を保護膜として、無機下層膜(下層)を一部除去してパターン化が行われる。最後に、パターン化された本発明のレジスト下層膜(中間層)及び無機下層膜(下層)を保護膜として、半導体基板の加工が行なわれる。
無機下層膜(下層)の下に、さらに有機下層膜(アモルファスカーボン膜、有機ハードマスク、スピンオンカーボン膜等)を形成して半導体基板の加工を行う場合もある。
装置:日本電子(株)製JNM-ECA500
核種:Proton
温度:23℃
周波数:500MHz
重溶媒:DMSO
装置:東ソー(株)製HLC-8320GPC
GPCカラム:Asahipak〔登録商標〕GF-310HQ、同GF-510HQ、同GF-710HQ
カラム温度:40℃
流量:0.6mL/分
溶離液:DMF
標準試料:ポリスチレン
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、1,4-フェニレンジアミン10.82g、グルタル酸無水物23.96g、テトラヒドロフラン139.02gを、アセトン300mlに反応溶液を投入し、目的物を析出させた。析出物を桐山ロートでろ過し、アセトンで洗浄後、40℃で12時間減圧乾燥し、白色紛体を31.27g得た(収率93%)。
NMR分析より下記に示す構造と推定される化合物が得られていることを確認した(純度>95%)。σ=1.79(4H,quin)、2.26(4H,t)、2.31(4H,t)、7.48(4H,D)、9,80(2H,s)、12.06(2H,br)
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、1,3-フェニレンジアミン10.81g、グルタル酸無水物23.97g、テトラヒドロフラン139.32gを仕込み、窒素雰囲気下、2時間加熱還流した。反応終了後、系内を室温まで冷却したあと、アセトン300mlに反応溶液を投入し、目的物を析出させた。析出物を桐山ロートでろ過し、アセトンで洗浄後、40℃で12時間減圧乾燥し、白色紛体22.69gを得た(収率71%)。
NMR分析より下記に示す構造と推定される化合物が得られていることを確認した(純度>95%)。σ=1.80(4H,quin)、2.27(4H,t)、2.33(4H,t)、7.17(1H,t)、7.25(2H,d)、7.92(1H,s)、9,88(2H,s)、12.07(2H,br)
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、1,2-フェニレンジアミン10.81g、グルタル酸無水物23.97g、テトラヒドロフラン140.00gを仕込み、窒素雰囲気下、2時間加熱還流した。反応終了後、系内を室温まで冷却したあと、アセトン300mlに反応溶液を投入し、目的物を析出させた。析出物を桐山ロートでろ過し、アセトンで洗浄後、40℃で12時間減圧乾燥し、白色紛体31.25gを得た(収率95%)。
NMR分析より下記に示す構造と推定される化合物が得られていることを確認した(純度>95%)。σ=1.82(4H,quin)、2.29(4H,t)、2.38(4H,t)、7.12(2H,t)、7.51(2H,d)9.27(2H,s)、12.08(2H,br)
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、2,4-ジアミノトルエン12.22g、グルタル酸無水物23.97g、テトラヒドロフラン146.70gを仕込み、窒素雰囲気下、2時間加熱還流した。反応終了後、系内を室温まで冷却したあと、アセトン300mlに反応溶液を投入し、目的物を析出させた。析出物を桐山ロートでろ過し、アセトンで洗浄後、40℃で12時間減圧乾燥し、白色紛体31.25gを得た(収率93%)。
NMR分析より下記に示す構造と推定される化合物が得られていることを確認した(純度>95%)。σ=1.80(4H,quin)、2.11(3H,s)、2.31(8H,m)、7.07(1H,d)、7.34(1H,d)、7.62(1H,d)、9,24(1H,s)、9.82(1H,s)、12.07(2H,br)
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、1,3-フェニレンジアミン10.27g、グリコール酸無水物24.26g、テトラヒドロフラン138.13gを仕込み、窒素雰囲気下、2時間加熱還流した。反応終了後、系内を室温まで冷却したあと、アセトン300mlに反応溶液を投入し、目的物を析出させた。析出物を桐山ロートでろ過し、アセトンで洗浄後、40℃で12時間減圧乾燥し、白色紛体を29.83gを得た(収率92%)。
NMR分析より下記に示す構造と推定される化合物が得られていることを確認した(純度>95%)。σ=4.16(4H,s)、4.20(4H,s)、7.24(1H,t)、7.35(2H,d)、7.99(1H,s)、9,90(2H,s)、12.86(2H,br)
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、3,4-ジアミノ安息香酸メチル11.64g、グルタル酸無水物16.78g、テトラヒドロフラン114.00gを仕込み、窒素雰囲気下、2時間加熱還流した。反応終了後、系内を室温まで冷却したあと、アセトン300mlに反応溶液を投入し、目的物を析出させた。析出物を桐山ロートでろ過し、アセトンで洗浄後、40℃で12時間減圧乾燥し、白色紛体16.32gを得た(収率59%)。
NMR分析より下記に示す構造と推定される化合物が得られていることを確認した(純度>95%)。σ=1.83(4H,quin)、2.30(2H,t)、2.42(2H,t)、3.83(3H,s)、7.71(1H,d)、7.83(1H,d)、8.13(1H,s)、9,42(2H,s)、12.10(2H,br)
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、3-アミノ-4-メトキシ安息香酸11.70g、グルタル酸無水物8.40g、テトラヒドロフラン79.60gを仕込み、窒素雰囲気下、2時間加熱還流した。反応終了後、系内を室温まで冷却したあと、アセトン300mlに反応溶液を投入し、目的物を析出させた。析出物を桐山ロートでろ過し、アセトンで洗浄後、40℃で12時間減圧乾燥し、淡い灰色の紛体15.63gを得た(収率79%)。
NMR分析より下記に示す構造と推定される化合物が得られていることを確認した(純度>95%)。σ=1.76(2H,quin)、2.27(2H,t)、2.43(2H,t)、3.89(3H,s)、7.12(1H,d)、7.68(1H,d)、8.55(1H,s)、9,17(1H,s)、12.35(2H,br)
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、1-メチル-2-アミノテレフタレート10.00g、グルタル酸無水物6.14g、テトラヒドロフラン40.69gを仕込み、窒素雰囲気下、2時間加熱還流した。反応終了後、系内を室温まで冷却したあと、アセトン300mlに反応溶液を投入し、目的物を析出させた。析出物を桐山ロートでろ過し、アセトンで洗浄後、40℃で12時間減圧乾燥し、淡黄色紛体12.57gを得た(収率79.3%)。
NMR分析より下記に示す構造と推定される化合物が得られていることを確認した(純度>95%)。:σ=1.78(2H,quin)、2.26(2H,t)、2.43(2H,t)、3.89(3H,s)、7.14(1H,d)、7.68(1H,d)、8.55(1H,s)、9,17(1H,s)、12.35(2H,br)
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、2-アミノ-4-(トリフルオロメチル)安息香酸10.00g、グルタル酸無水物5.84g、テトラヒドロフラン39.20gを仕込み、窒素雰囲気下、12時間加熱還流した。反応終了後、系内を室温まで冷却したあと、アセトニトリル300mlに反応溶液を投入し、目的物を析出させた。析出物を桐山ロートでろ過し、アセトニトリルで洗浄後、40℃で12時間減圧乾燥し、淡黄色紛体10.54gを得た(収率68%)。
NMR分析より下記に示す構造と推定される化合物が得られていることを確認した(純度>95%)。:σ=1.80(2H,quin)、2.27(2H,t)、2.46(2H,t)、7.44(1H,d)、8.10(1H,d)、8.79(1H,s)、11.13(1H,s)、12.30(2H,br)
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、4-アミノ安息香酸13.72g、グルタル酸無水物11.98g、テトラヒドロフラン102.80gを仕込み、窒素雰囲気下、2時間加熱還流した。反応終了後、系内を室温まで冷却したあと、アセトン300mlに反応溶液を投入し、目的物を析出させた。析出物を桐山ロートでろ過し、アセトンで洗浄後、40℃で12時間減圧乾燥し、白色紛体16.55gを得た(収率66%)。
NMR分析より下記に示す構造と推定される化合物が得られていることを確認した(純度>95%)。:σ=1.78(2H,quin)、2.24(2H,t)、2.36(2H,t)、7.67(2H,d)、7.83(2H,d)、10.16(1H,s)、12.33(2H,br)
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、ビス(4-アミノフェニル)スルホン12.40g、グルタル酸無水物11.99g、テトラヒドロフラン97.61gを仕込み、窒素雰囲気下、2時間加熱還流した。反応終了後、系内を室温まで冷却したあと、アセトン300mlに反応溶液を投入し、目的物を析出させた。析出物を桐山ロートでろ過し、アセトンで洗浄後、40℃で12時間減圧乾燥し、白色紛体22.22gを得た(収率93%)。
NMR分析より下記に示す構造と推定される化合物が得られていることを確認した(純度>95%)。:σ=1.76(4H,quin)、2.26(4H,t)、2.35(4H,t)、7.74(4H,d)、7.81(4H,d)、10.29(2H,s)、12.04(2H,br)
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、CYH34.36g、イソフタル酸3.25g、モノアリルジグリシジルイソシアヌレート5.00g、及び触媒としてエチルトリフェニルホスホニウムブロマイド0.33gを添加した後、120℃で24時間反応させ、反応生成物を含む溶液を得た。得られた反応生成物のGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は14700であった。得られた反応生成物は、下記式で表される構造単位を有する共重合体と推定される。
撹拌器、温度計、ジムロート冷却管を装着したフラスコに、CYH38.29g、モノアリルイソシアヌレート3.30g、HP-4032D(DIC(株)社製)5.00g、及び触媒としてエチルトリフェニルホスホニウムブロマイド0.33gを添加した後、120℃で24時間反応させ、反応生成物を含む溶液を得た。得られた反応生成物のGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は14800であった。得られた反応生成物は、下記式で表される構造単位を有する共重合体と推定される。
合成例1で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いた重量比が8:2のCYH、DMIB混合物)3.78gに、CYH7.71g、DMIB1.93g、プロピレングリコールモノメチルエーテル(以下、本明細書ではPGMEと略称する。)0.07g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
合成例2で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いたCYH)3.12gに、CYH4.57g、PGME5.80g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
合成例3で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いたCYH)3.36gに、CYH4.33g、PGME5.80g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
合成例4で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いたCYH)3.01gに、CYH4.33g、PGME5.80g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
合成例5で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いたCYH)2.99gに、CYH4.70g、PGME5.80g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
合成例6で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いたCYH)3.26gに、CYH4.43g、PGME5.80g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
合成例7で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いたCYH)3.11gに、CYH4.58g、PGME5.80g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
合成例8で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いたCYH)3.07gに、CYH4.62g、PGME5.80g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
合成例9で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いたCYH)3.00gに、CYH3.38g、PGME5.80g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
合成例10で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いたCYH)3.04gに、CYH3.35g、PGME5.80g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
合成例11で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いたCYH)2.98gに、CYH3.40g、PGME5.80g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
比較合成例1で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いたCYH)3.42gに、CYH3.42g、PGME5.80g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
比較合成例2で得られた、共重合体0.53gを含む溶液(溶剤は合成時に用いたCYH)2.99gに、CYH3.39g、PGME5.80g、テトラメトキシメチルグリコールウリル(商品名:パウダーリンク1174,日本サイテックインダストリーズ(株)製)0.13g、5-スルホサリチル酸(東京化成工業(株)製)1質量%PGME溶液1.32g、及び界面活性剤(DIC(株)製、商品名:R-30N)1質量%PGME溶液0.05gを混合し、4.5質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
実施例1及至実施例11、比較例1及び比較例2で調製したレジスト下層膜形成組成物を、それぞれ、スピナーにより、シリコンウエハー上に塗布した。その後、ホットプレート上で215℃の温度で1分間ベークし、レジスト下層膜(膜厚0.1μm)を形成した。これらのレジスト下層膜を、フォトレジスト溶液に使用される溶剤であるPGME及びプロピレングリコールモノメチルエーテルアセテートに浸漬し、両溶剤に不溶であることを確認した。また、フォトレジスト現像用のアルカリ現像液(2.38質量%水酸化テトラメチルアンモニウム水溶液)に浸漬し、当該現像液に不溶であることを確認した。不溶である場合を○、溶解した場合を×とした。結果を表1に示す。
実施例1及至実施例11、比較例1及び比較例2で調製したレジスト下層膜形成組成物を、スピナーにより、シリコンウエハー上に塗布した。その後、ホットプレート上で215℃の温度で1分間ベークし、レジスト下層膜(膜厚0.1μm)を形成した。そして、これらのレジスト下層膜を分光エリプソメーター(J.A.Woollam社製、VUV-VASE VU-302)を用い、波長248nmでの屈折率(n値)及び減衰係数(k値)を測定した。その結果を下記表1に示す。上記レジスト下層膜が十分な反射防止機能を有するためには、248nmでのk値は0.1以上であることが望ましい。
実施例1及至実施例11、比較例1及び比較例2で調製したレジスト下層膜形成組成物を用い、上記と同様の方法によって、シリコンウエハー上にレジスト下層膜を形成した。そして、これらのレジスト下層膜のドライエッチング速度を、サムコ(株)製RIEシステムを用い、ドライエッチングガスとしてN2を使用した条件下で測定した。また、フォトレジスト溶液(JSR(株)製、商品名:V146G)を、スピナーにより、シリコンウエハー上に塗布し、ホットプレート上で110℃の温度で1分間ベークし、フォトレジスト膜を形成した。このフォトレジスト膜のドライエッチング速度を、上記サムコ(株)製RIEシステムを用い、ドライエッチングガスとしてN2を使用した条件下で測定した。前記フォトレジスト膜のドライエッチング速度を1.00としたときの、前記各レジスト下層膜のドライエッチング速度を“選択比”として算出した。ドライエッチングを用いて良好に加工するためには、選択比が1.5以上であることが望ましい。下記表1に結果を示す。
実施例1乃至実施例11、比較例1及び比較例2で調製したレジスト下層膜形成用組成物を、スピナーにより、シリコンウエハー上に塗布した。それから、ホットプレート上で215℃1分間ベークし、膜厚0.1μmのレジスト下層膜を形成した。このレジスト下層膜の上に、市販のフォトレジスト溶液(信越化学工業(株)製、商品名:SEPR-430)をスピナーにより塗布し、ホットプレート上で100℃にて60秒間ベークして、フォトレジスト膜(膜厚0.55μm)を形成した。
次いで、(株)ニコン製スキャナー、NSRS205C(波長248nm、NA:0.75,σ:0.43/0.85(ANNULAR))を用い、現像後にフォトレジストのライン幅及びそのフォトレジストのライン間の幅が0.17μmであり、すなわち0.17μmL/S(デンスライン)であって、そのようなラインが9本形成されるように設定されたフォトマスクを通して露光を行った。その後、ホットプレート上、110℃で60秒間露光後加熱(PEB)を行い、冷却後、工業規格の60秒シングルパドル式工程にて、現像液として0.26規定のテトラメチルアンモニウムヒドロキシド水溶液を用いて現像し、得られたフォトレジストパターンについて、基板すなわちシリコンウエハーと垂直方向の断面を、走査型電子顕微鏡(SEM)で観察した。フォトレジストが基板に形成されており、且つ良好なストレートの裾形状のサンプルを○、そうではないサンプルを×とした。結果を表1に示す。
Claims (11)
- 前記Aがベンゼン環である、請求項1に記載の化合物。
- 前記ジエポキシ化合物が下記式(2):
[式中、
R6及びR7は、同一または異なるエポキシ含有基を表し、
Qは下記式(31)、式(32)又は式(33):
(上記式中、R1乃至R4は各々独立して、水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至6のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの基で置換されていてもよく、またR1とR2、R3とR4は互いに結合して炭素原子数3乃至6の環を形成していてもよく、
R5は水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、エーテル酸素原子によって中断されている炭素原子数3乃至8のアルキル基、ベンジル基又はフェニル基を表す)
で表される基を表す]
で表される、請求項4に記載の共重合体。 - 請求項4乃至6のいずれか一項に記載の共重合体と、溶媒とを含む、レジスト下層膜形成組成物。
- 請求項4乃至6のいずれか一項に記載の共重合体と、溶媒とを含み、波長248nmの光を吸収する、レジスト下層膜を与えるレジスト下層膜形成組成物。
- 請求項7又は8に記載のレジスト下層膜形成組成物を半導体基板上に塗布しベークしてレジスト下層膜を形成する工程、前記レジスト下層膜上にレジストを塗布しベークしてレジスト膜を形成する工程、前記レジスト下層膜と前記レジスト膜で被覆された半導体基板を波長248nmの光に露光する工程、露光後の前記レジスト膜を現像する工程を含む、半導体装置の製造に用いるレジストパターンの形成方法。
- 請求項4乃至6のいずれか一項に記載の共重合体を含み、波長248nmの光を吸収するレジスト下層膜。
- 請求項7又は8に記載のレジスト下層膜形成組成物を半導体基板上に塗布しベークしてレジスト下層膜を形成する工程、前記レジスト下層膜上にレジストを塗布しベークしてレジスト膜を形成する工程、前記レジスト下層膜と前記レジスト膜で被覆された半導体基板を波長248nmの光に露光する工程、露光後の前記レジスト膜を現像する工程、前記レジスト膜をマスクとして前記半導体基板を加工する工程を含む、半導体装置の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780062564.XA CN109843852A (zh) | 2016-10-14 | 2017-10-03 | 包含含有酰胺基的聚酯的抗蚀剂下层膜形成用组合物 |
JP2018544969A JPWO2018070303A1 (ja) | 2016-10-14 | 2017-10-03 | アミド基含有ポリエステルを含むレジスト下層膜形成用組成物 |
US16/340,212 US20200041905A1 (en) | 2016-10-14 | 2017-10-03 | Resist underlying film-forming composition containing an amide group-containing polyester |
KR1020197008281A KR20190059274A (ko) | 2016-10-14 | 2017-10-03 | 아미드기함유 폴리에스테르를 포함하는 레지스트 하층막 형성용 조성물 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016202333 | 2016-10-14 | ||
JP2016-202333 | 2016-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018070303A1 true WO2018070303A1 (ja) | 2018-04-19 |
Family
ID=61905466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/035967 WO2018070303A1 (ja) | 2016-10-14 | 2017-10-03 | アミド基含有ポリエステルを含むレジスト下層膜形成用組成物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200041905A1 (ja) |
JP (1) | JPWO2018070303A1 (ja) |
KR (1) | KR20190059274A (ja) |
CN (1) | CN109843852A (ja) |
TW (1) | TW201829371A (ja) |
WO (1) | WO2018070303A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021063982A (ja) * | 2019-10-15 | 2021-04-22 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | オーバーコートされたフォトレジストと共に使用するためのコーティング組成物 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230146910A1 (en) * | 2021-11-11 | 2023-05-11 | Taiwan Semiconductor Manufacturing Co., Ltd. | Methods and compositions for improved patterning of photoresist |
WO2023102364A1 (en) * | 2021-12-02 | 2023-06-08 | Ecole Polytechnique Federale De Lausanne (Epfl) | Antiviral compounds, compositions and uses thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2399600A (en) * | 1943-03-20 | 1946-04-30 | Monsanto Chemicals | Substituted 4, 4'-diaminodiphenyl sulphones and process of making same |
US2520293A (en) * | 1947-01-30 | 1950-08-29 | Endo Products Inc | Mercaptoacetanilide derivatives |
JP2002258447A (ja) * | 2001-02-13 | 2002-09-11 | Eastman Kodak Co | 写真現像組成物 |
US20070099970A1 (en) * | 2005-08-19 | 2007-05-03 | Mackerell Alexander | Immunomodulatory compounds that target and inhibit the pY'binding site of tyrosene kinase p56 LCK SH2 domain |
WO2012036523A2 (ko) * | 2010-09-17 | 2012-03-22 | 건국대학교 산학협력단 | 신규한 항생활성 화합물 및 그 화합물을 포함하는 항생 조성물 |
WO2015019961A1 (ja) * | 2013-08-08 | 2015-02-12 | 日産化学工業株式会社 | 窒素含有環化合物を含むポリマーを含むレジスト下層膜形成組成物 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101163113B1 (ko) | 2004-03-16 | 2012-07-09 | 닛산 가가쿠 고교 가부시키 가이샤 | 유황 원자를 함유하는 반사 방지막 |
JP4697464B2 (ja) | 2004-10-12 | 2011-06-08 | 日産化学工業株式会社 | 含窒素芳香環構造を含むリソグラフィー用反射防止膜形成組成物 |
-
2017
- 2017-10-03 US US16/340,212 patent/US20200041905A1/en not_active Abandoned
- 2017-10-03 CN CN201780062564.XA patent/CN109843852A/zh not_active Withdrawn
- 2017-10-03 JP JP2018544969A patent/JPWO2018070303A1/ja not_active Withdrawn
- 2017-10-03 KR KR1020197008281A patent/KR20190059274A/ko not_active Application Discontinuation
- 2017-10-03 WO PCT/JP2017/035967 patent/WO2018070303A1/ja active Application Filing
- 2017-10-13 TW TW106135103A patent/TW201829371A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2399600A (en) * | 1943-03-20 | 1946-04-30 | Monsanto Chemicals | Substituted 4, 4'-diaminodiphenyl sulphones and process of making same |
US2520293A (en) * | 1947-01-30 | 1950-08-29 | Endo Products Inc | Mercaptoacetanilide derivatives |
JP2002258447A (ja) * | 2001-02-13 | 2002-09-11 | Eastman Kodak Co | 写真現像組成物 |
US20070099970A1 (en) * | 2005-08-19 | 2007-05-03 | Mackerell Alexander | Immunomodulatory compounds that target and inhibit the pY'binding site of tyrosene kinase p56 LCK SH2 domain |
WO2012036523A2 (ko) * | 2010-09-17 | 2012-03-22 | 건국대학교 산학협력단 | 신규한 항생활성 화합물 및 그 화합물을 포함하는 항생 조성물 |
WO2015019961A1 (ja) * | 2013-08-08 | 2015-02-12 | 日産化学工業株式会社 | 窒素含有環化合物を含むポリマーを含むレジスト下層膜形成組成物 |
Non-Patent Citations (55)
Title |
---|
AL-NUZAL, S. M. ET AL.: "Synthesis of multidentate ligands with amido or amino donor groups for the preparation of rhenium and technetium radiopharmaceuticals", JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, vol. 295, no. 3, 2013, pages 1599 - 1604, XP055541353, ISSN: 0236-5731 * |
BARKER, D. ET AL.: "A convenient synthesis of 2-(3-methyl-2, 5-dioxopyrrolidin-1-yl) benzoic acid", SYNTHESIS, 2003, pages 656 - 658, ISSN: 0039-7881 * |
DATABASE CA S [o] 2006, retrieved from STN Database accession no. 900085-03-2 * |
DATABASE CAS [o] 2000, retrieved from STN Database accession no. 303194-96-9 * |
DATABASE CAS [o] 2001, retrieved from STN Database accession no. 332886-00-7 * |
DATABASE CAS [o] 2002, retrieved from STN Database accession no. 459183-87-0 * |
DATABASE CAS [o] 2004, retrieved from STN Database accession no. 685115-85-9 * |
DATABASE CAS [o] 2004, retrieved from STN Database accession no. 685115-89-3 * |
DATABASE CAS [o] 2004, retrieved from STN Database accession no. 690990-09-1 * |
DATABASE CAS [o] 2004, retrieved from STN Database accession no. 690992-13-3 * |
DATABASE CAS [o] 2004, retrieved from STN Database accession no. 692272-94-9 * |
DATABASE CAS [o] 2004, retrieved from STN Database accession no. 693776-74-8 * |
DATABASE CAS [o] 2004, retrieved from STN Database accession no. 701253-49-8 * |
DATABASE CAS [o] 2005, retrieved from STN Database accession no. 826998-55-4 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 882321-98-4 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 884804-51-7 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 885567-55-5 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 885569-34-6 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 890957-38-7 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 892222-04-7 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 892222-10-5 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 892228-84-1 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 894518-30-0 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 895764-43-9 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 900096-21-1 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 904790-50-7 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 904790-57-4 * |
DATABASE CAS [o] 2006, retrieved from STN Database accession no. 904812-13-1 * |
DATABASE CAS [o] 2008, retrieved from STN Database accession no. 1022717-75-4 * |
DATABASE CAS [o] 2009, retrieved from STN Database accession no. 1176693-64-3 * |
DATABASE CAS [o] 2009, retrieved from STN Database accession no. 1178100-86-1 * |
DATABASE CAS [o] 2009, retrieved from STN Database accession no. 1179134-02-1 * |
DATABASE CAS [o] 2009, retrieved from STN Database accession no. 1183466-35-4 * |
DATABASE CAS [o] 2009, retrieved from STN Database accession no. 1183810-24-3 * |
DATABASE CAS [o] 2009, retrieved from STN Database accession no. 1184538-74-6 * |
DATABASE CAS [o] 2011, retrieved from STN Database accession no. 1291471-52-7 * |
DATABASE CAS [o] 2011, retrieved from STN Database accession no. 1292462-80-6 * |
DATABASE CAS [o] 2011, retrieved from STN Database accession no. 1293095-68-7 * |
DATABASE CAS [o] 2013, retrieved from STN Database accession no. 1497075-30-5 * |
DATABASE CAS [o] 2015, retrieved from STN Database accession no. 1789035-17-1 * |
DATABASE CAS [o] 2015, retrieved from STN Database accession no. 1789783-26-1 * |
DATABASE CAS [o] 4 September 2016 (2016-09-04), retrieved from STN Database accession no. 1986111-78-7 * |
DATABASE CAS [o] 8 September 2016 (2016-09-08), retrieved from STN Database accession no. 1989339-42-5 * |
DELIWALA, C. V. ET AL.: "Chemotherapy of tuberculosis. I. synthesis of possible lipophilic chemotherapeuticals of the sulfonamide and sulfone series derived from fatty acids, including those of the chaulmoogra group", PROCEEDINGS- INDIAN ACADEMY OF SCIENCES, SECTION A, vol. 31 A, 1950, pages 21 - 5, ISSN: 0370-0089 * |
GRAY, W. H. ET AL.: "Carboxylic acid derivatives of 4,4'-diaminodiphenyl sulfone", JOURNAL OF THE CHEMICAL SOCIETY, 1942, pages 42 - 45, ISSN: 0368-1769 * |
GUPTA, L. ET AL.: "Thorium(IV) complexes of various 2'-carboxyanilic acids", ASIAN JOURNAL OF CHEMISTRY, vol. 15, no. 3, 2003, pages 1467 - 1472, ISSN: 0970-7077 * |
HAHN, G. E. ET AL.: "Oligoamides from dodecanedioic acid and 4,4'-methylenedicyclohexylamine. (Oligoamides of the ''Qiana'' type", MAKROMOLEKULARE CHEMIE, vol. 186, no. 2, 1985, pages 297 - 316, ISSN: 0025-116X * |
IORDANOV, S. ET AL.: "Synthesis of long-chain w-dicarboxylic compounds as crosslinking reagents of polyvinyl iodoacetate", DOKLADY BOLGARSKOI AKADEMII NAUK, vol. 33, no. 5, 1980, pages 639 - 41, ISSN: 0366-8681 * |
IORDANOV, S.: "Preparation and properties of poly (vinyliodoacetates), crosslinked by bridging groups of various lengths and flexibility", DOKLADY BOLGARSKOI AKADEMII NAUK, vol. 33, no. 8, 1980, pages 1081 - 4, ISSN: 0366-8681 * |
JIANG, H. L. ET AL.: "Synthesis and characterization of new biodegradable fluorescing poly (amide-anhydrides", POLYMER INTERNATIONAL, vol. 50, no. 6, 2001, pages 722 - 727, XP055541349, ISSN: 0959-8103 * |
LEE, S. J. ET AL.: "Self-assembled supramolecular architecture based on an achiral bolaamphiphilic diacid in binary system", BULLETIN OF THE KOREAN CHEMICAL SOCIETY, vol. 28, no. 5, 2007, pages 867 - 870, XP055544547, ISSN: 0253-2964 * |
LI, R. ET AL.: "Control the handedness of the mesoporous silica nanoribbons and the pore channels using anionic gelators", MATERIALS LETTERS, vol. 98, 2013, pages 8 - 11, XP055544552, ISSN: 0167-577X * |
LOMBARDINO, J. G. ET AL.: "The reaction of o-phenylenediamine with 3-methylglutaric anhydride", JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 19, no. 4, 1982, pages 923 - 924, XP055544549, ISSN: 0022-152X * |
SHEMCHUK, L. A. ET AL., THE SEARCH FOR BIOLOGICALLY ACTIVE COMPOUNDS AMONG GLUTARANILIC ACID DERIVATIVES, vol. 41, no. 6, 1992, pages 26 - 30, ISSN: 0367-3014 * |
STASKUN, B.: "Azepino [1,2-a] indole synthesis from a 1,2,3,4-tetrahydro-9(10H)-acridinone and sodium dichloroisocyanurate or singlet oxygen", JOURNAL OF ORGANIC CHEMISTRY, vol. 53, no. 22, 1988, pages 5287 - 5291, XP055541359, ISSN: 0022-3263 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021063982A (ja) * | 2019-10-15 | 2021-04-22 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | オーバーコートされたフォトレジストと共に使用するためのコーティング組成物 |
JP7046140B2 (ja) | 2019-10-15 | 2022-04-01 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | オーバーコートされたフォトレジストと共に使用するためのコーティング組成物 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018070303A1 (ja) | 2019-08-08 |
US20200041905A1 (en) | 2020-02-06 |
CN109843852A (zh) | 2019-06-04 |
KR20190059274A (ko) | 2019-05-30 |
TW201829371A (zh) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5337983B2 (ja) | 多環式脂肪族環を有するポリマーを含むリソグラフィー用レジスト下層膜形成組成物 | |
KR102454445B1 (ko) | 아릴렌기를 갖는 폴리머를 포함하는 레지스트 하층막 형성 조성물 | |
CN106233206B (zh) | 含有包含封端异氰酸酯结构的聚合物的光刻用抗蚀剂下层膜形成用组合物 | |
CN110698331A (zh) | 包含被置换的交联性化合物的抗蚀剂下层膜形成用组合物 | |
WO2018070303A1 (ja) | アミド基含有ポリエステルを含むレジスト下層膜形成用組成物 | |
JP6711397B2 (ja) | グリコールウリル骨格を持つ化合物を添加剤として含むレジスト下層膜形成組成物 | |
WO2022186231A1 (ja) | ベンジリデンシアノ酢酸エステル基を有するレジスト下層膜形成組成物 | |
CN116057103A (zh) | 药液耐性保护膜 | |
TWI844674B (zh) | 包含脂環式化合物末端之聚合物的阻劑下層膜形成組成物、經圖型化之基板的製造方法、及半導體裝置之製造方法 | |
WO2018235949A1 (ja) | 平坦化性が改善されたレジスト下層膜形成組成物 | |
JP2017116803A (ja) | レジスト下層膜形成用組成物及びレジストパターンの形成方法 | |
WO2023100506A1 (ja) | ヒドロキシケイ皮酸誘導体を有するレジスト下層膜形成用組成物 | |
TWI843893B (zh) | 阻劑下層膜形成組成物 | |
CN117321502A (zh) | 抗蚀剂下层膜形成用组合物 | |
CN115398343A (zh) | 抑制了交联剂的改性的抗蚀剂下层膜形成用组合物 | |
TWI834841B (zh) | 阻劑下層膜形成組成物 | |
KR102715144B1 (ko) | 레지스트 하층막형성 조성물 | |
WO2024106454A1 (ja) | クルクミン誘導体を有するレジスト下層膜形成用組成物 | |
WO2023084961A1 (ja) | 薬液耐性保護膜 | |
WO2022039246A1 (ja) | Euvレジスト下層膜形成組成物 | |
US20220356297A1 (en) | Resist underlayer film-forming composition containing heterocyclic compound | |
TW202433187A (zh) | 包含脂環式化合物末端之聚合物的阻劑下層膜形成組成物、經圖型化之基板的製造方法、及半導體裝置之製造方法 | |
CN118215886A (zh) | 含有烷氧基的抗蚀剂下层膜形成用组合物 | |
CN117043679A (zh) | 具有被保护了的碱性的有机基的抗蚀剂下层膜形成用组合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17860032 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018544969 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197008281 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17860032 Country of ref document: EP Kind code of ref document: A1 |