WO2018235949A1 - 平坦化性が改善されたレジスト下層膜形成組成物 - Google Patents

平坦化性が改善されたレジスト下層膜形成組成物 Download PDF

Info

Publication number
WO2018235949A1
WO2018235949A1 PCT/JP2018/023849 JP2018023849W WO2018235949A1 WO 2018235949 A1 WO2018235949 A1 WO 2018235949A1 JP 2018023849 W JP2018023849 W JP 2018023849W WO 2018235949 A1 WO2018235949 A1 WO 2018235949A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
resist underlayer
underlayer film
formula
Prior art date
Application number
PCT/JP2018/023849
Other languages
English (en)
French (fr)
Inventor
裕和 西巻
貴文 遠藤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2019525709A priority Critical patent/JP7475140B2/ja
Priority to CN201880041969.XA priority patent/CN110809738B/zh
Priority to KR1020197038432A priority patent/KR102568212B1/ko
Priority to US16/625,957 priority patent/US11287742B2/en
Publication of WO2018235949A1 publication Critical patent/WO2018235949A1/ja
Priority to JP2022198082A priority patent/JP7545122B2/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G10/00Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only
    • C08G10/02Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/18Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or their halogen derivatives only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers

Definitions

  • the present invention is a resist underlayer film formed by coating on the upper surface of a semiconductor substrate having a portion having a step and a portion having no step in a lithography process of a semiconductor manufacturing process, and a portion having no step and a portion having the step And a method of reducing the step (Iso-dense bias) of the resist underlayer film.
  • the characteristics of a resist underlayer film used in a lithography process of a semiconductor manufacturing process are heat resistance, etching resistance, and a portion having a step on a semiconductor substrate. It is required to reduce the step (Iso-dense bias) of the resist underlayer film in the portion having no step.
  • An underlayer film forming composition for lithography containing a polymer having an arylene group is disclosed (Patent Document 1). Also, a resist underlayer film forming composition containing a long chain alkyl group-containing novolak is disclosed (Patent Document 2). In addition, a resist underlayer film forming composition containing a novolak polymer having a secondary amino group is disclosed (Patent Document 3). Also, a resist underlayer film containing a diarylamine novolac resin is disclosed (Patent Document 4).
  • the step of the resist underlayer film in the portion having a step and the portion having no step on the semiconductor substrate usually does not have the step in the maximum film thickness from the upper surface of the substrate of the resist underlayer film in the portion having the step.
  • the maximum film thickness is larger than the minimum film thickness due to the component in the resist underlayer film forming composition, for example, a polymer structure, although the partial film thickness is smaller than the minimum film thickness from the upper surface of the substrate , Sometimes called reverse step).
  • the Iso-dense bias is large particularly in the lithography process in semiconductor manufacturing, there is a problem that a defect such as defocusing occurs in the later lithography process.
  • the present invention includes the following.
  • a method for reducing the step (Iso-dense bias) of a resist underlayer film by 5 nm or more which method further comprises adding a resist underlayer film forming composition containing (A) a polymer and (D) a solvent (C) B) adding a fluorine-based surfactant, and (C) applying the composition to which the fluorine-based surfactant is added to the upper surface of a semiconductor substrate having a portion having a step and a portion not having a step And further including the step of applying the resist underlayer film forming composition before addition of the (C) fluorine-based surfactant onto the upper surface of the semiconductor substrate, thereby forming the resist underlayer film in the portion having the step.
  • the maximum film thickness of the resist underlayer film from the upper surface of the substrate is larger than the minimum film thickness of the resist underlayer film of the portion not having the step difference from the upper surface of the substrate.
  • the difference in film thickness obtained by subtracting the value of the film thickness of the portion having the step from the value of the film thickness of the portion having no step is (C) a resist underlayer film forming composition to which a fluorine-based surfactant is added.
  • the method wherein the difference between the film thickness difference in the resist underlayer film and the film thickness difference in the resist underlayer film formed of the resist underlayer film forming composition before addition of the (C) fluorine-based surfactant is 5 nm or more.
  • the method according to [1], wherein the resist underlayer film forming composition further comprises (B) a crosslinkable compound.
  • the above-mentioned (A) polymer has the following formula (2): [In Formula (2), A 1 represents a phenylene group or a naphthylene group. A 2 is a phenylene group, a naphthylene group, or a formula (3): (In formula (3), A 3 and A 4 each independently represent a phenylene group or a naphthylene group. A dotted line represents a bond.) Represents an organic group represented by the formula: The dotted line represents a bond. ] The method as described in [1] including the partial structure represented by these.
  • the above-mentioned (A) polymer has the following formula (1): (In formula (1), R 1 to R 4 each independently represent a hydrogen atom or a methyl group. X 1 contains at least one arylene group which may be substituted with an alkyl group, an amino group or a hydroxyl group The method according to [1], which comprises a unit structure represented by:). [5] The method according to [4], wherein in the formula (1), X 1 is an organic group represented by the formula (2).
  • the polymer (A) includes an aromatic compound (A1) and an aldehyde (B1) having a formyl group bonded to a secondary carbon atom or a tertiary carbon atom of an alkyl group having 2 to 26 carbon atoms
  • the method according to [1] comprising a novolak resin which is a reactant of [7]
  • the method according to [1], wherein the (A) polymer comprises a novolak polymer obtained by the reaction of an aromatic compound having a secondary amino group and an aldehyde compound.
  • the above-mentioned (A) polymer is represented by the following formula (4):
  • Ar 1 and Ar 2 each represent a benzene ring or a naphthalene ring
  • R 1 ′ and R 2 ′ each represent a substituent of a hydrogen atom on these rings, and a halogen atom, a nitro group
  • It is selected from the group consisting of an amino group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 40 carbon atoms, and a combination thereof
  • the alkyl group, the alkenyl group and the aryl group represent an organic group which may contain an ether bond, a ketone bond or an ester bond
  • R 3 ' is selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an an
  • n 1 and n 2 are each an integer of 0 to 3.
  • the (B) crosslinkable compound is (B) a compound represented by the following formula (11-1) or (12-1):
  • Q 1 represents a single bond or m 1 monovalent organic group, having an alkoxy group of R 1 "and R 4" are each an alkyl group having 2 to 10 carbon atoms or a carbon atom number of 1 to 10, It represents an alkyl group having 2 to 10 carbon atoms, R 2 "and R 5 'each represent a hydrogen atom or a methyl group, R 3" alkyl group and R 6 are each 1 to 10 carbon atoms, or a carbon atom 6 represents an aryl group of 6 to 40.
  • n 1 ′ is an integer of 1 ⁇ n 1 ′ ⁇ 3
  • n 2 ′ is an integer of 2 ⁇ n 2 ′ ⁇ 5
  • n 3 is an integer of 0 ⁇ n 3 ⁇ 3
  • n 4 is 0 ⁇ n 4 ⁇ 3 This represents an integer of 3 ⁇ (n 1 ′ + n 2 ′ + n 3 + n 4 ) ⁇ 6.
  • n 5 is an integer of 1 ⁇ n 5 ⁇ 3
  • n 6 is an integer of 1 ⁇ n 6 ⁇ 4
  • n 7 is an integer of 0 ⁇ n 7 ⁇ 3
  • n 8 is an integer of 0 ⁇ n 8 ⁇ 3
  • 2 ⁇ Indicates an integer of (n 5 + n 6 + n 7 + n 8 ) ⁇ 5.
  • m 1 represents an integer of 2 to 10;
  • the method according to [1], wherein the step (Iso-dense bias) is 5 nm to 55 nm.
  • the step pattern width of the portion having a step on the upper surface of the semiconductor substrate is 50 nm or less.
  • the method of the present invention is a method of reducing the step (Iso-dense bias) of the resist underlayer film by 5 nm or more, and the method comprises forming a resist underlayer film forming composition containing (A) polymer and (D) solvent.
  • the step of forming the resist underlayer film formed by including the step of including the step of applying the composition for forming a resist underlayer film before the addition of the (C) fluorine-based surfactant on the upper surface of the semiconductor substrate The maximum film thickness of the part of the resist underlayer film from the top surface of the substrate is larger than the minimum film thickness of the part of the resist underlayer film from the top surface of the substrate without the step.
  • the difference in film thickness obtained by subtracting the value of the film thickness of the portion having the step from the value of the film thickness of the portion having no step is (C) a resist underlayer film forming composition to which a fluorine-based surfactant is added
  • the method is a method wherein the difference between the film thickness difference in the resist underlayer film and the film thickness difference in the resist underlayer film formed of the resist underlayer film forming composition before addition of the (C) fluorine-based surfactant is 5 nm or more. According to this method, when the resist underlayer film formed by applying the resist underlayer film forming composition on the upper surface of the semiconductor substrate has a so-called reverse level difference, it is an effective solution for reducing the level difference.
  • the method of the present invention is a method of reducing the step (Iso-dense bias) of the resist underlayer film by 5 nm or more, and the method comprises forming a resist underlayer film forming composition containing (A) polymer and (D) solvent.
  • the step of forming the resist underlayer film formed by including the step of including the step of applying the composition for forming a resist underlayer film before the addition of the (C) fluorine-based surfactant on the upper surface of the semiconductor substrate The maximum film thickness of the part of the resist underlayer film from the top surface of the substrate is larger than the minimum film thickness of the part of the resist underlayer film from the top surface of the substrate without the step.
  • the difference in film thickness obtained by subtracting the value of the film thickness of the portion having the step from the value of the film thickness of the portion having no step is (C) a resist underlayer film forming composition to which a fluorine-based surfactant is added
  • the method is a method wherein the difference between the film thickness difference in the resist underlayer film and the film thickness difference in the resist underlayer film formed of the resist underlayer film forming composition before addition of the (C) fluorine-based surfactant is 5 nm or more.
  • the difference between the maximum film thickness and the minimum film thickness is 5 nm to 100 nm, for example, 5 nm to 50 nm.
  • the step (Iso-dense bias) is reduced by 5 nm or more, for example, 10 nm or more, for example, 20 nm or more, for example, 30 nm or more, for example, 40 nm or more. For example, it is a method of reducing 50 nm or more.
  • the level difference (Iso-dense bias) is preferably 5 nm to 55 nm.
  • the width of the step pattern (for example, trench pattern and / or via pattern) of the portion having the step on the upper surface of the semiconductor substrate is 50 nm or less, for example 5 nm to 50 nm, for example 10 nm to 40 nm, for example 5 nm to 30 nm, for example 5 nm to 20 nm For example, 2 nm to 10 nm.
  • the depth of the step pattern (for example, the trench pattern and / or the via pattern) is, for example, 500 nm to 50 nm, for example, 300 nm to 100 nm.
  • the (A) polymer used in the method of the present invention is not particularly limited as long as it is a polymer used in a resist underlayer film forming composition used in a lithography process of a semiconductor manufacturing process.
  • polymer for example, known novolak polymers, acrylic polymers or methacrylic polymers are used, but novolak polymers are preferred.
  • a polymer As a preferable (A) polymer, the following formula (2) described in International Publication WO 2016/072316 Pamphlet: [In Formula (2), A 1 represents a phenylene group or a naphthylene group. A 2 is a phenylene group, a naphthylene group, or a formula (3): (In formula (3), A 3 and A 4 each independently represent a phenylene group or a naphthylene group. A dotted line represents a bond.) Represents an organic group represented by the formula: The dotted line represents a bond. Including the partial structure represented by
  • the (A) polymer has the following formula (1): (In formula (1), R 1 to R 4 each independently represent a hydrogen atom or a methyl group. X 1 contains at least one arylene group which may be substituted with an alkyl group, an amino group or a hydroxyl group It includes a unit structure represented by:).
  • the resist underlayer film forming composition of the present invention contains, for example, a polymer containing a unit structure represented by the formula (1) and a solvent.
  • the polymer having a unit structure represented by the formula (1) used in the present invention has a weight average molecular weight of 600 to 1,000,000, or 600 to 200,000, or 1,500 to 15,000 of the polymer.
  • the arylene group is preferably an arylene group derived from an aryl group having 6 to 40 carbon atoms.
  • Examples of the arylene group include phenylene group, biphenylene group, terphenylene group, fluorenylene group, naphthylene group, anthrylene group, pyrenylene group, carbazolylene group and the like.
  • alkyl group examples include alkyl groups having 1 to 10 carbon atoms, such as methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i-butyl group, s- Butyl group, t-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group , Cyclopentyl, 1-methyl-cyclobutyl, 2-methyl-cyclobutyl, 3-methyl-cyclobutyl, 1,2-dimethyl-cyclopropyl
  • amino group examples include primary amino group, secondary amino group and tertiary amino group, but secondary amino group can be preferably used.
  • X 1 can use the organic group represented by Formula (2).
  • a 1 represents a phenylene group or a naphthylene group.
  • a 2 represents a phenylene group, a naphthylene group, or an organic group represented by the formula (3).
  • a dotted line represents a bond.
  • a 3 and A 4 each independently represent a phenylene group or a naphthylene group.
  • a dotted line represents a bond.
  • the polymer used in the present invention is a polymer of an aromatic methylene compound formed by a condensation reaction between a hydroxymethyl group- or methoxymethyl group-containing aromatic compound and the aromatic compound.
  • the polymers used in the present invention can be exemplified below.
  • the formyl in which the above (A) polymer is bonded to an aromatic compound (A1) and a secondary carbon atom or a tertiary carbon atom of an alkyl group having 2 to 26 carbon atoms as described in International Publication WO 2017/069063 Pamphlet It may also contain a novolak resin obtained by the reaction with an aldehyde (B1) having a group.
  • the weight average molecular weight of the resin is 500 to 1,000,000, or 600 to 200,000.
  • the novolak resin used in the present invention comprises an aromatic compound (A1) and an aldehyde (B1) having a formyl group bonded to a secondary carbon atom or a tertiary carbon atom of an alkyl group having 2 to 26 carbon atoms. It contains novolak resin obtained by the reaction.
  • the novolak resin used in the present invention can contain a unit structure represented by formula (11).
  • a 11 represents a divalent group derived from an aromatic compound having 6 to 40 carbon atoms.
  • b 1 represents an alkyl group having 1 to 16 or 1 to 9 carbon atoms
  • b 2 represents a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
  • b 1 and b 2 are carbon atoms 1 to 16 together or the case having 1 to an alkyl group having 9 branched alkyl group, b 1 is an alkyl group of 1 to 16 or 1 to 9, carbon atoms
  • b 2 there is a case where a linear alkyl group which is a hydrogen atom.
  • a 11 can be a divalent group derived from an aromatic compound containing an amino group, a hydroxyl group, or both. Then, A 11 can be a divalent group derived from an aromatic compound including an arylamine compound, a phenol compound, or both of them. More specifically, A 11 is derived from aniline, diphenylamine, phenylnaphthylamine, hydroxydiphenylamine, carbazole, phenol, N, N'-diphenylethylenediamine, N, N'-diphenyl-1,4-phenylenediamine, or polynuclear phenol Can be a divalent group.
  • polynuclear phenol examples include dihydroxybenzene, trihydroxybenzene, hydroxynaphthalene, dihydroxynaphthalene, trihydroxynaphthalene, tris (4-hydroxyphenyl) methane, tris (4-hydroxyphenyl) ethane, 2,2′-biphenol, or And 1,2,2-tetrakis (4-hydroxyphenyl) ethane.
  • the novolac resin may include a unit structure represented by Formula (21) which is a more specific embodiment of the unit structure represented by Formula (11).
  • the feature of the unit structure represented by the formula (11) is reflected in the unit structure represented by the formula (21).
  • the reaction with an aldehyde (B1) having a formyl group bonded thereto gives a novolac resin having a unit structure represented by the formula (21).
  • the aromatic compound (A1 ′) corresponding to the (a 1 -R 13 -a 2 ) moiety is, for example, diphenylamine, phenylnaphthylamine, hydroxydiphenylamine, tris (4-hydroxyphenyl) ethane, N, N′-diphenylethylenediamine, 2 , 2′-biphenol, N, N′-diphenyl-1,4-phenylenediamine and the like.
  • a 1 and a 2 each represent a benzene ring or a naphthalene ring which may be substituted, and R 13 represents a secondary amino group or a tertiary amino group, a carbon atom which may be substituted.
  • a divalent hydrocarbon group having one to ten carbon atoms, one to six carbon atoms, or one or two carbon atoms, an arylene group, or a divalent group in which these groups are optionally bonded.
  • these arylene groups include organic groups such as phenylene group and naphthylene group.
  • a hydroxyl group can be mentioned as a substituent in a 1 and a 2 .
  • b 3 is an alkyl group of 1 to 16 or 1 to 9, carbon atoms
  • b 4 represents a hydrogen atom or an alkyl group having a carbon number of 1 to 9.
  • b 3 and b 4 carbon atoms 1 to 16 together or the case having 1 to an alkyl group having 9 branched alkyl group
  • b 3 is an alkyl group of 1 to 16 or 1 to 9, carbon atoms
  • b 4 there is a case where a linear alkyl group which is a hydrogen atom.
  • a secondary amino group and a tertiary amino group can be mentioned as R 13 .
  • an alkyl group can be substituted.
  • secondary amino groups can be preferably used.
  • a divalent hydrocarbon group having 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 2 carbon atoms which may be substituted in the definition of R 13 is methylene
  • a group or an ethylene group is mentioned,
  • a phenyl group, a naphthyl group, a hydroxyphenyl group, a hydroxynaphthyl group can be mentioned as a substituent.
  • examples of the alkyl group having 1 to 16 and 1 to 9 carbon atoms include methyl, ethyl, n-propyl, i-propyl, cyclopropyl, n-butyl and i-butyl , S-butyl group, t-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group Butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, 1,2-dimethyl-n-propyl, 2,2-dimethyl-n-propyl, 1-ethyl-n -Propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 1-methyl
  • examples of the alkyl group having 1 to 16 carbon atoms or 1 to 9 carbon atoms include the above-mentioned examples, and in particular, methyl group, ethyl group, n-propyl group, i-propyl group, n -Butyl group, i-butyl group, s-butyl group, t-butyl group and the like can be mentioned, and these can also be used in combination.
  • the aldehyde (B1) used in the present invention can be exemplified below.
  • the reaction of the aromatic compound (A1) with the aldehyde (B1) is preferably carried out by reacting the A1 with the B1 at a molar ratio of 1: 0.5 to 2.0, or 1: 1.
  • the weight average molecular weight Mw of the polymer obtained as described above is usually 500 to 1,000,000, or 600 to 200,000.
  • the (A) polymer may include a novolac polymer obtained by the reaction of an aromatic compound having a secondary amino group described in International Publication WO 2015/098594 and an aldehyde compound.
  • the resist underlayer film of this invention is a resist underlayer film forming composition used for the lithography process containing the novolak resin containing the unit structure shown by Formula (31).
  • the resist underlayer film forming composition for lithography described above contains the polymer and a solvent. And, a crosslinking agent and an acid can be contained, and if necessary, additives such as an acid generator and a surfactant can be contained.
  • the solid content of this composition is 0.1 to 70% by mass, or 0.1 to 60% by mass.
  • the solid content is the content ratio of all components excluding the solvent from the resist underlayer film forming composition. Containing 1 to 100% by mass, or 1 to 99.9% by mass, or 50 to 99.9% by mass, or 50 to 95% by mass, or 50 to 90% by mass of the above polymer in solid content Can.
  • the novolak resin containing the unit structure represented by the formula (31) used in the present invention has a weight average molecular weight of 600 to 1,000,000, or 600 to 200,000.
  • R 21 is a hydrogen atom substituent, and is a halogen atom, a nitro group, an amino group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, An aryl group having 6 to 40 carbon atoms, or a combination thereof which may contain an ether bond, a ketone bond, or an ester bond
  • R 22 is an alkyl group having 1 to 10 carbon atoms, or 2 to carbon atoms 10 alkenyl group, aryl group having 6 to 40 carbon atoms, or a combination thereof which may contain an ether bond, a ketone bond, or an ester bond
  • R 23 represents a hydrogen atom, a halogen atom, a nitro group, An amino group, a formyl group, a carboxyl group, a carboxylic acid alkyl ester group, a hydroxy group optionally having 6 to 6 carbon atoms 0 ary
  • examples of the alkyl group having 1 to 10 carbon atoms include the alkyl groups described in the above paragraph [0022].
  • alkenyl group having 2 to 10 carbon atoms examples include ethenyl group, 1-propenyl group, 2-propenyl group, 1-methyl-1-ethenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 2 -Methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-n-propylethenyl group, 1-methyl-1-butenyl group, 1-methyl-2-butenyl group, 1-methyl-3-butenyl group, 2-ethyl- 2-propenyl group, 2-methyl-1-butenyl group, 2-methyl-2-butenyl group, 2-methyl-3-butenyl group, 3-methyl-1-butenyl group, 3-methyl-2-butenyl
  • aryl group having 6 to 40 carbon atoms examples include phenyl group, o-methylphenyl group, m-methylphenyl group, p-methylphenyl group, o-chlorophenyl group, m-chlorophenyl group and p-chlorophenyl group O-fluorophenyl group, p-fluorophenyl group, o-methoxyphenyl group, p-methoxyphenyl group, p-nitrophenyl group, p-cyanophenyl group, ⁇ -naphthyl group, ⁇ -naphthyl group, o-biphenylyl Group, m-biphenylyl group, p-biphenylyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group And
  • the heterocyclic group is preferably an organic group consisting of a 5- to 6-membered heterocyclic ring containing nitrogen, sulfur and oxygen, such as pyrrole, furan, thiophene, imidazole, oxazole, oxazole, thiazole or pyrazole, Isoxazole group, isothiazole group, pyridine group and the like can be mentioned.
  • Examples of the above-mentioned aryl group having 6 to 40 carbon atoms which may be substituted by hydroxy group include phenol, dihydroxybenzene, trihydroxybenzene, naphthol, dihydroxynaphthalene, trihydroxynaphthalene, hydroxyanthracene, dihydroxyanthracene, trihydroxyanthracene and the like Can be mentioned.
  • R 22 can select an aralkyl group depending on the combination of the alkyl group and the aryl group. Examples of the aralkyl group include benzyl and phenethyl groups.
  • R 23 is a phenyl group, a naphthyl group, an anthryl group or a pyrenyl group and R 24 is a hydrogen atom
  • the ring formed together with the carbon atom to which they are attached includes, for example, a fluorene ring.
  • the novolak resin in the present invention is obtained by forming a unit structure represented by the formula (31) by a condensation reaction between an aromatic compound having a secondary amino group and an aldehyde or ketone.
  • aromatic compound which has a 2nd amino group they are a benzene derivative and a naphthalene derivative, and can have a substituent illustrated above.
  • Aldehydes used in the preparation of the polymer of the present invention include formaldehyde, paraformaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, isobutyraldehyde, valeraldehyde, capronaldehyde, 2-methylbutyraldehyde, hexyl aldehyde, undecanealdehyde, 7-methoxy Saturated aliphatic aldehydes such as -3, 7-dimethyloctylaldehyde, cyclohexanealdehyde, 3-methyl-2-butyraldehyde, glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, adipinaldehyde, acrolein, methacrolein and the like Heterocyclic aldehydes such as saturated aliphatic aldehydes, furf
  • ketones used for producing the polymer of the present invention are diaryl ketones, and examples thereof include diphenyl ketone, phenyl naphthyl ketone, dinaphthyl ketone, phenyl tolyl ketone, ditolyl ketone, 9-fluorenone and the like.
  • aldehydes or ketones can be used in a ratio of 0.1 to 10 moles relative to an aromatic compound having one mole of secondary amino group.
  • 0.001 to 10000 parts by mass, preferably 0.01 to 1000 parts by mass, more preferably 0.1 to 100 parts by mass of the acid catalyst is used per 100 parts by mass of the aromatic compound having a second amino group.
  • the weight average molecular weight Mw of the polymer obtained as described above is usually 500 to 1,000,000, or 600 to 200,000.
  • the polymer containing the unit structure represented by the formula (1) can be represented by the following formulas (32-1) to (32-12) and formulas (33-1) to (33-12). it can.
  • Said (A) polymer is following Formula (4) as described in international publication WO2013 / 047516 pamphlet.
  • Ar 1 and Ar 2 each represent a benzene ring or a naphthalene ring
  • R 1 ′ and R 2 ′ each represent a substituent of a hydrogen atom on these rings, and a halogen atom, a nitro group
  • It is selected from the group consisting of an amino group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 40 carbon atoms, and a combination thereof
  • the alkyl group, the alkenyl group and the aryl group represent an organic group which may contain an ether bond, a ketone bond or an ester bond
  • R 3 ' is selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10
  • R 5 in the above formula (4) may be a hydrogen atom
  • R 4 ′ may be a substituted or unsubstituted phenyl, naphthyl, anthryl or pyrenyl group. It may be a polymer in which R 3 ′ in the above formula (4) is a hydrogen atom or a phenyl group
  • Ar 1 and Ar 2 may be a polymer containing a unit structure (a1) in which either one is a benzene ring and the other is a naphthalene ring
  • Ar 1 and Ar 2 may both be a polymer containing a unit structure (a2) as a benzene ring
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
  • alkyl group having 1 to 10 carbon atoms examples include the alkyl groups described in the above paragraph [0022].
  • alkenyl group having 2 to 10 carbon atoms examples include the alkenyl group described in the above paragraph [0048].
  • the alkoxy group having 1 to 10 carbon atoms is, for example, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n -Pentoxy group, 1-methyl-n-butoxy group, 2-methyl-n-butoxy group, 3-methyl-n-butoxy group, 1,1-dimethyl-n-propoxy group, 1,2-dimethyl-n- group Propoxy group, 2,2-dimethyl-n-propoxy group, 1-ethyl-n-propoxy group, n-hexyloxy group, 1-methyl-n-pentyloxy group, 2-methyl-n-pentyloxy group, 3 -Methyl-n-pentyloxy group, 4-methyl-n-pentyloxy group, 1,1-dimethyl-n-butoxy group, 1,2-dimethyl-n-butoxy group, 1,3-dimethyl-n-buto group , 2,2-d
  • Examples of the aryl group having 6 to 40 carbon atoms include the aryl groups described in the above paragraph [0049].
  • the heterocyclic group is preferably an organic group consisting of a 5- to 6-membered heterocyclic ring containing nitrogen, sulfur and oxygen, such as pyrrole, furan, thiophene, imidazole, oxazole, oxazole, thiazole or pyrazole, An isoxazole group, an isothiazole group, a pyridine group and the like can be mentioned.
  • the polymers used in the present invention can be exemplified by the compounds of the following formulas (4-1) to (4-21).
  • carbazoles are used in the present invention, for example, carbazole, N-methylcarbazole, N-ethylcarbazole, 1,3,6,8-tetranitrocarbazole, 3,6-diaminocarbazole, 3,6-dibromo-9.
  • triphenylamines When triphenylamines are used in the present invention, triphenylamine and substituted triphenylamine are exemplified, and as the substituent, the above-mentioned halogen atom, nitro group, amino group, hydroxy group, 1 to 10 carbon atoms are exemplified. Examples thereof include an alkyl group, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 40 carbon atoms, and a combination thereof which may contain an ether bond, a ketone bond or an ester bond.
  • aldehydes used for producing the polymer of the formula (4) of the present invention include the aldehydes described in the above paragraph [0056].
  • ketones used for manufacture of the polymer of Formula (4) of this invention the ketones described in said stage [0057] are mentioned.
  • the polymer used in the present invention is a novolac resin (corresponding to the formula (4)) obtained by condensation of an amine such as diarylamine and an aldehyde or ketone.
  • aldehydes or ketones can be used in a ratio of 0.1 to 10 equivalents based on 1 equivalent of the phenyl group of amines such as diarylamines.
  • the weight average molecular weight Mw of the polymer obtained as described above is usually 600 to 1,000,000, or 600 to 200,000.
  • the resist underlayer film forming composition used in the present invention may further contain (B) a crosslinkable compound.
  • the crosslinkable compound is not particularly limited as long as it is a compound having reactivity at the reaction site of the polymer (A) and capable of bonding the polymers (A).
  • the crosslinking agent examples include melamines, substituted ureas, and polymer systems thereof.
  • it is a crosslinking agent having at least two crosslinking substituents, and is methoxymethylated glycoluril, butoxymethylated glycoluril, methoxymethylated melamine, butoxymethylated melamine, methoxymethylated benzogguanamine, butoxymethylated benzogguanamine, Compounds such as methoxymethylated urea, butoxymethylated urea, methoxymethylated thiourea, or methoxymethylated thiourea. In addition, condensation products of these compounds can also be used.
  • a highly heat-resistant crosslinking agent can be used as said crosslinking agent.
  • a compound containing a crosslinking forming substituent having an aromatic ring for example, a benzene ring or a naphthalene ring
  • an aromatic ring for example, a benzene ring or a naphthalene ring
  • the (B) crosslinkable compound is (B) the following formula (11-1) or the formula (12-1) described in International Publication WO 2014/208542 pamphlet:
  • Q 1 represents a single bond or m 1 monovalent organic group, having an alkoxy group of R 1 "and R 4" are each an alkyl group having 2 to 10 carbon atoms or a carbon atom number of 1 to 10, It represents an alkyl group having 2 to 10 carbon atoms, R 2 "and R 5 'each represent a hydrogen atom or a methyl group, R 3" alkyl group and R 6 are each 1 to 10 carbon atoms, or a carbon atom 6 represents an aryl group of 6 to 40.
  • n 1 ′ is an integer of 1 ⁇ n 1 ′ ⁇ 3
  • n 2 ′ is an integer of 2 ⁇ n 2 ′ ⁇ 5
  • n 3 is an integer of 0 ⁇ n 3 ⁇ 3
  • n 4 is 0 ⁇ n 4 ⁇ 3 This represents an integer of 3 ⁇ (n 1 ′ + n 2 ′ + n 3 + n 4 ) ⁇ 6.
  • n 5 is an integer of 1 ⁇ n 5 ⁇ 3
  • n 6 is an integer of 1 ⁇ n 6 ⁇ 4
  • n 7 is an integer of 0 ⁇ n 7 ⁇ 3
  • n 8 is an integer of 0 ⁇ n 8 ⁇ 3
  • 2 ⁇ Indicates an integer of (n 5 + n 6 + n 7 + n 8 ) ⁇ 5.
  • m 1 represents an integer of 2 to 10; It is preferable that it is a crosslinkable compound shown by these.
  • Q 1 is a single bond, or an m 1 monovalent organic group selected from a linear hydrocarbon group having 1 to 10 carbon atoms, an aromatic group having 6 to 40 carbon atoms, or a combination thereof be able to.
  • the chain hydrocarbon group can include the following alkyl groups.
  • the following aryl groups can be mentioned as the aromatic group.
  • the crosslinkable compound represented by the above formula (11-1) or the formula (12-1) is a compound represented by the following formula (13) or the formula (14), and a hydroxyl group-containing ether compound or 2 to 10 carbon atoms Or the reaction product with alcohol.
  • Q 2 represents a single bond or an m 2 -valent organic group.
  • R 8 , R 9 , R 11 and R 12 each represent a hydrogen atom or a methyl group
  • R 7 and R 10 each represent the number of carbon atoms 1 to 10 alkyl group or aryl group having 6 to 40 carbon atoms is shown.
  • n 9 is an integer of 1 ⁇ n 9 ⁇ 3
  • n 10 is an integer of 2 ⁇ n 10 ⁇ 5
  • n 11 is an integer of 0 ⁇ n 11 ⁇ 3
  • n 12 is an integer of 0 ⁇ n 12 ⁇ 3, 3 ⁇
  • This represents an integer of (n 9 + n 10 + n 11 + n 12 ) ⁇ 6.
  • n 13 is an integer of 1 ⁇ n 13 ⁇ 3
  • n 14 is an integer of 1 ⁇ n 14 ⁇ 4
  • n 15 is an integer of 0 ⁇ n 15 ⁇ 3
  • n 16 is an integer of 0 ⁇ n 16 ⁇ 3, 2 ⁇ Indicates an integer of (n 13 + n 14 + n 15 + n 16 ) ⁇ 5.
  • m 2 represents an integer of 2 to 10; )
  • alkyl group having 1 to 10 carbon atoms examples include the above-mentioned alkyl groups having 1 to 10 carbon atoms.
  • the alkyl group having 2 to 10 carbon atoms is an alkyl group having 2 to 10 carbon atoms among the above-mentioned alkyl groups having 1 to 10 carbon atoms.
  • the alkoxy group having 1 to 10 carbon atoms includes the alkoxy group described in the above paragraph [0067].
  • Examples of the above-mentioned hydroxyl group-containing ether compounds include propylene glycol monomethyl ether and propylene glycol monoethyl ether.
  • Examples of the alcohol having 2 to 10 carbon atoms include ethanol, 1-propanol, 2-methyl-1-propanol, butanol, 2-methoxyethanol and 2-ethoxyethanol.
  • the crosslinkable compound represented by the formula (11-1) or the formula (12-1) is a compound represented by the formula (13) or the formula (14), the above-mentioned hydroxyl group-containing ether compound or the above-mentioned carbon atom number It can be obtained by reaction with 2 to 10 alcohols.
  • a compound represented by the formula (11-1) or the formula (12-1) in which the compound represented by the formula (11-1) or the formula (12-1) is trisubstituted, similarly substituted with 4 moles is a tetrasubstituted .
  • Q 2 represents a single bond or an m 2 -valent organic group. That is, the above Q 2 is a single bond, or a m 2 divalent organic group selected from a linear hydrocarbon group having 1 to 10 carbon atoms, an aromatic group having 6 to 40 carbon atoms, or a combination thereof It can be done.
  • a chain hydrocarbon group can mention the said alkyl group.
  • An aromatic group can mention the said aryl group.
  • R 8 , R 9 , R 11 and R 12 each represent a hydrogen atom or a methyl group
  • R 7 and R 10 each represent an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 40 carbon atoms
  • n 9 is an integer of 1 ⁇ n 9 ⁇ 3
  • n 10 is an integer of 2 ⁇ n 10 ⁇ 5
  • n 11 is an integer of 0 ⁇ n 11 ⁇ 3
  • n 12 is an integer of 0 ⁇ n 12 ⁇ 3, 3 ⁇ ( This represents an integer of n 9 + n 10 + n 11 + n 12 ) ⁇ 6.
  • n 13 is an integer of 1 ⁇ n 13 ⁇ 3
  • n 14 is an integer of 1 ⁇ n 14 ⁇ 4
  • n 15 is an integer of 0 ⁇ n 15 ⁇ 3
  • n 16 is an integer of 0 ⁇ n 16 ⁇ 3
  • 2 ⁇ Indicates an integer of (n 13 + n 14 + n 15 + n 16 ) ⁇ 5.
  • m 2 represents an integer of 2 to 10;
  • the reaction of the compound represented by the formula (13) or the formula (14) with the hydroxyl group-containing ether compound or the alcohol having 2 to 10 carbon atoms is performed in the presence of an acid catalyst.
  • crosslinkable compounds represented by the formulas (11-1) and (12-1) used in the present invention can be exemplified as follows.
  • the compounds represented by the formulas (13) and (14) used in the present invention can be exemplified as follows.
  • the compound of the formula (c-23) has a trade name TMOM-BP (made by Honshu Chemical Industry Co., Ltd.)
  • the compound of the formula (c-24) has a trade name TM-BIP-A (Asahi) It can be obtained as Organic Material Industry Co., Ltd.).
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisopropyl ether, ethylene glycol methyl ether acetate
  • Ethylene glycol ethyl ether acetate methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monoethyl ether acetate
  • propylene glycol propylene glycol monomethyl ether
  • Propylene glycol monobutyl ether propylene glycol monomethyl ether acetate
  • propylene glycol monoethyl ether propylene glycol monomethyl ether
  • fluorosurfactant As fluorosurfactants used in the present invention, F-Top (registered trademark) EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronic Chemicals, Ltd.), Megafuck (registered trademark) F171, F173, and the like R-30, R-30N, R-40, R-40LM (manufactured by DIC Corporation), Florard FC430, FC431 (manufactured by Sumitomo 3M Corporation), Asahi Guard (registered trademark) AG 710, Surflon [ Registered Trademarks] S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.) and the like.
  • One type selected from these surfactants may be added, or two or more types may be added in combination.
  • the content ratio of the surfactant is, for example, 0.01% by mass to 5% by mass with respect to the solid content excluding the solvent described later from the resist underlayer film forming composition of the present invention.
  • the resist underlayer film forming composition of the present invention can further contain an acidic compound.
  • the above acidic compounds act as catalysts promoting the crosslinking reaction, for example, p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium-p-toluenesulfonate, salicylic acid, camphorsulfonic acid, 5-sulfosalicylic acid, 4-chlorobenzenesulfonic acid, Sulfonic acid compounds such as 4-hydroxybenzenesulfonic acid, benzenedisulfonic acid, 1-naphthalenesulfonic acid, citric acid, benzoic acid, hydroxybenzoic acid and carboxylic acid compounds; inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid be able to.
  • thermal acid generator for example, K-PURE TAG-2689 (manufactured by King Industries) which is a trifluoromethanesulfonic acid compound
  • a thermal acid generator can be contained instead of the above-mentioned acidic compound or with the above-mentioned acidic compound.
  • the thermal acid generator also works as a catalyst for accelerating the crosslinking reaction, and examples thereof include quaternary ammonium salts of trifluoromethanesulfonic acid.
  • One type selected from these acidic compounds and thermal acid generators may be added, or two or more types may be added in combination.
  • the content ratio of the above-mentioned acidic compound and / or thermal acid generator is, for example, 0.1% by mass to 20% by mass with respect to the solid content excluding the above-mentioned solvent from the resist underlayer film forming composition of the present invention.
  • the resist underlayer film which concerns on this invention can be manufactured by apply
  • Substrates used for manufacturing semiconductor devices are coated on a coated substrate or the like by a suitable coating method such as a spinner or a coater, and then baked to form a resist underlayer film.
  • the firing conditions are appropriately selected from a firing temperature of 80 ° C. to 250 ° C. and a firing time of 0.3 minutes to 60 minutes.
  • the baking temperature is 150 ° C. to 250 ° C.
  • the baking time is 0.5 minutes to 2 minutes.
  • the film thickness of the lower layer film to be formed is, for example, 10 nm to 1000 nm, 20 nm to 500 nm, 30 nm to 300 nm, 50 nm to 300 nm, or 50 nm to 200 nm.
  • an inorganic resist lower layer film (hard mask) can be formed on the organic resist lower layer film according to the present invention.
  • a Si-based inorganic material film is formed by CVD method or the like.
  • a resist underlayer film forming composition according to the present invention is applied onto a semiconductor substrate (a so-called step substrate) having a portion having a step and a portion having no step, and firing is performed to obtain a portion having the step It is possible to form a resist underlayer film in which the step with the portion having no step is, for example, in the range of 3 nm to 50 nm.
  • a layer of photoresist for example, is formed on the resist underlayer film.
  • the formation of a layer of photoresist can be performed by a known method, that is, application of a photoresist composition solution on an underlying film and baking.
  • the film thickness of the photoresist is, for example, 50 nm to 10000 nm, or 100 nm to 2000 nm, or 200 nm to 1000 nm.
  • the photoresist formed on the resist underlayer film is not particularly limited as long as it is sensitive to the light used for exposure. Both negative and positive photoresists can be used. Positive-working photoresist consisting of novolac resin and 1,2-naphthoquinone diazide sulfonic acid ester, chemically amplified photoresist consisting of a binder having a group which is decomposed by an acid to increase alkali dissolution rate, and a photo-acid generator, acid A chemically amplified photoresist comprising a low molecular weight compound which decomposes to increase the alkali dissolution rate of the photoresist, an alkali soluble binder and a photoacid generator, and a binder having a group which is decomposed by an acid to increase the alkali dissolution rate There is a chemically amplified photoresist comprising a low molecular weight compound which is decomposed by an acid to increase the alkali dissolution rate of the
  • exposure is performed through a predetermined mask.
  • near ultraviolet light, far ultraviolet light, or extreme ultraviolet light for example, EUV (wavelength 13.5 nm)
  • EUV extreme ultraviolet light
  • a KrF excimer laser (wavelength 248 nm), an ArF excimer laser (wavelength 193 nm), an F 2 excimer laser (wavelength 157 nm) or the like can be used.
  • ArF excimer laser wavelength 193 nm
  • EUV wavelength 13.5 nm
  • post exposure baking may be performed. Post-exposure heating is performed under conditions appropriately selected from a heating temperature of 70 ° C. to 150 ° C. and a heating time of 0.3 minutes to 10 minutes.
  • a resist for electron beam lithography can be used instead of a photoresist as the resist.
  • the electron beam resist either negative or positive type can be used.
  • Chemically amplified resist comprising a binder having a group that changes the alkali dissolution rate by being decomposed by an acid generator and an acid, a low molecular weight compound that changes the alkali dissolution rate of the resist by being decomposed by an alkali soluble binder, an acid generator and an acid
  • a chemically amplified resist comprising a acid generator and a binder having a group capable of changing an alkali dissolution rate by an acid generator and an acid, and a chemically amplified resist comprising a low molecular compound capable of changing an alkali dissolution rate of the resist by being decomposed by an acid and an acid
  • a non-chemically amplified resist comprising a binder having a group which is decomposed by an electron beam to change an alkali dissolution rate
  • photoresist in the exposed portion is removed to form a photoresist pattern.
  • Examples of the developer include aqueous solutions of alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, aqueous solutions of quaternary ammonium hydroxides such as choline, ethanolamine, propylamine, An alkaline aqueous solution such as an aqueous amine solution such as ethylene diamine can be mentioned as an example. Furthermore, surfactants and the like can also be added to these developers.
  • the conditions for development are suitably selected from a temperature of 5 ° C. to 50 ° C. and a time of 10 seconds to 600 seconds.
  • the inorganic lower layer film (intermediate layer) is removed using the pattern of the photoresist (upper layer) thus formed as a protective film, and then it is composed of the patterned photoresist and the inorganic lower layer film (intermediate layer)
  • the organic lower layer film (lower layer) is removed using the film as a protective film.
  • the semiconductor substrate is processed using the patterned inorganic lower layer film (intermediate layer) and the organic lower layer film (lower layer) as a protective film.
  • the inorganic underlayer film (intermediate layer) in the portion where the photoresist is removed is removed by dry etching.
  • dry etching of inorganic underlayer film tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, carbon monoxide, argon, oxygen, nitrogen, six Gases such as sulfur fluoride, difluoromethane, nitrogen trifluoride and chlorine trifluoride, chlorine, trichloroborane and dichloroborane can be used.
  • a halogen-based gas for dry etching of the inorganic lower layer film, and more preferable to use a fluorine-based gas.
  • a fluorine-based gas for example, tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, difluoromethane (CH 2 F 2 ), etc. It can be mentioned.
  • the organic lower layer film is removed using a film made of the patterned photoresist and the inorganic lower layer film as a protective film.
  • the organic lower layer film (lower layer) is preferably performed by dry etching using an oxygen-based gas. This is because the inorganic underlayer film containing a large amount of silicon atoms is difficult to be removed by dry etching with an oxygen-based gas.
  • processing of the semiconductor substrate is performed.
  • the processing of the semiconductor substrate is preferably performed by dry etching with a fluorine-based gas.
  • fluorine-based gas for example, tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, difluoromethane (CH 2 F 2 ), etc. It can be mentioned.
  • an organic antireflective film can be formed on the upper layer of the resist lower layer film before the formation of the photoresist.
  • the antireflective film composition to be used there, and any one of those conventionally used in the lithography process can be optionally selected and used, and a commonly used method, for example, a spinner
  • the antireflective film can be formed by coating with a coater and baking.
  • an inorganic lower layer film can be formed thereon, and a photoresist can be further coated thereon. This narrows the pattern width of the photoresist, and even when the photoresist is thinly coated to prevent pattern collapse, the substrate can be processed by selecting an appropriate etching gas.
  • a fluorine-based gas with a sufficiently high etching rate to the photoresist is used as the etching gas, processing of the resist underlayer film is possible, and a fluorine-based gas with a sufficiently high etching rate to the inorganic underlayer film
  • the substrate can be processed by using as an etching gas, and the substrate can be processed by using, as an etching gas, an oxygen-based gas having a sufficiently high etching rate to the organic lower layer film.
  • the resist underlayer film formed from the resist underlayer film forming composition may also have absorption for the light depending on the wavelength of light used in the lithography process. And in such a case, it can function as an anti-reflective film which has the effect of preventing the reflected light from a board
  • the underlayer film of the present invention has a layer for preventing interaction between the substrate and the photoresist, and a function of preventing adverse effects on the substrate of a material used for the photoresist or a substance generated upon exposure to the photoresist.
  • the layer a layer having a function of preventing the diffusion of a substance generated from the substrate to the upper layer photoresist during heating and firing, and a barrier layer for reducing the poisoning effect of the photoresist layer by the semiconductor substrate dielectric layer, etc. It is possible.
  • the lower layer film formed of the resist lower layer film forming composition is applied to a substrate having a via hole used in a dual damascene process, and can be used as a filling material capable of filling holes without gaps. Moreover, it can also be used as a planarizing material for planarizing the surface of a semiconductor substrate with unevenness.
  • the weight average molecular weight and polydispersity shown in the following synthesis example 1 are based on the measurement results by gel permeation chromatography (hereinafter, abbreviated as GPC in the present specification).
  • the measurement conditions are as follows using GPC apparatus by Tosoh Co., Ltd. for measurement.
  • GPC column TSKgel SuperMultipore (registered trademark) Hz-N (Tosoh Corp.) Column temperature: 40 ° C Solvent: Tetrahydrofuran (THF) Flow rate: 0.35 mL / min Standard sample: polystyrene (Tosoh Corp.)
  • composition example 2 N-phenyl-2-naphthylamine (80.00 g, 0.3648 mol, manufactured by Tokyo Chemical Industry Co., Ltd.), 2-ethylhexyl aldehyde (46.78 g, 0.3649 mol, Tokyo Chemical Industry Co., Ltd. in a 300 mL three-necked flask under nitrogen And metalnesulfonic acid (21.04 g, 0.2189 mol, manufactured by Tokyo Chemical Industry Co., Ltd.), and further charged with propylene glycol monomethyl ether (36.95 g) and stirred under heating and reflux. After 22 hours, the reaction solution was allowed to cool to room temperature and reprecipitated into methanol (1 L, manufactured by Kanto Chemical Co., Ltd.).
  • the resulting precipitate was filtered and dried at 60 ° C. for 67 hours in a vacuum dryer to obtain 64.97 g of a polymer represented by formula (S-2).
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,200, and the polydispersity Mw / Mn was 1.57.
  • Example 1 In 1.227 g of the polymer obtained in Synthesis Example 1, 0.368 g of PGME-BIP-A described in Synthesis Example 10 of International Publication WO 2014/208542 pamphlet as a crosslinking agent, 0.055 g of pyridinium-p-phenolsulfonate as an acid catalyst, A surfactant is mixed with 0.0025 g of Megafac R-40 (manufactured by DIC Corporation), dissolved in 6.92 g of propylene glycol monomethyl ether, 4.40 g of ethyl lactate, 13.18 g of propylene glycol monomethyl ether acetate, and did.
  • Megafac R-40 manufactured by DIC Corporation
  • the resultant was filtered using a polyethylene microfilter with a pore diameter of 0.10 ⁇ m, and further filtered using a polyethylene microfilter with a pore diameter of 0.05 ⁇ m to prepare a resist underlayer film forming composition used for a lithography process.
  • Example 2 In 1.227 g of the polymer obtained in Synthesis Example 1, 0.368 g of PGME-BIP-A described in Synthesis Example 10 of International Publication WO 2014/208542 pamphlet as a crosslinking agent, 0.055 g of pyridinium-p-phenolsulfonate as an acid catalyst, A surfactant is mixed with 0.0061 g of Megafac R-40 (manufactured by DIC Corporation), dissolved in 6.93 g of propylene glycol monomethyl ether, 4.40 g of ethyl lactate, 13.22 g of propylene glycol monomethyl ether acetate, and did.
  • Megafac R-40 manufactured by DIC Corporation
  • the resultant was filtered using a polyethylene microfilter with a pore diameter of 0.10 ⁇ m, and further filtered using a polyethylene microfilter with a pore diameter of 0.05 ⁇ m to prepare a resist underlayer film forming composition used for a lithography process.
  • Example 3 To 0.906 g of the polymer obtained in Synthesis Example 2, 3,3 ', 5,5'-tetrakis (methoxymethyl) -4,4'-dihydroxybiphenyl (product name: TMOM-BP, Honshu Chemical Industry Co., Ltd.) as a crosslinking agent 0.222 g, K-PURE TAG-2689 (King Industries Ltd.) 0.014 g as an acid catalyst, and 0.009 g of MegaFac R-40 (DIC Corporation) as a surfactant, A solution was dissolved in 5.640 g of propylene glycol monomethyl ether and 13.160 g of propylene glycol monomethyl ether acetate. Thereafter, the resultant was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to prepare a resist underlayer film forming composition to be used for a lithography process.
  • PURE TAG-2689 (King Industries Co., Ltd.) as an acid catalyst and dissolved in 5.640 g of propylene glycol monomethyl ether and 13.160 g of propylene glycol monomethyl ether acetate to obtain a solution And Thereafter, the resultant was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to prepare a resist underlayer film forming composition to be used for a lithography process.
  • the resist underlayer film forming compositions prepared in Examples 1 to 2 and Comparative Example 1 were each coated on a silicon wafer using a spin coater. The resultant was baked on a hot plate at 240 ° C. for 1 minute and further at 400 ° C. for 1 minute to form a resist underlayer film (film thickness of 0.15 ⁇ m).
  • the resist underlayer film was immersed in ethyl lactate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and cyclohexanone, which are solvents used for the resist, and it was confirmed that they were insoluble in these solvents.
  • the resist underlayer film forming compositions prepared in Example 3 and Comparative Example 2 were each coated on a silicon wafer using a spin coater. Bake on a hot plate at 250 ° C. for 1 minute to form a resist underlayer film (film thickness 0.10 ⁇ m).
  • the resist underlayer film was immersed in propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, which are solvents used for the resist, and it was confirmed that they were insoluble in these solvents.
  • the resist underlayer film forming composition of Example 3 and Comparative Example 2 was applied on the above substrate at a film thickness of 150 nm, and then baked at 250 ° C. for 1 minute.
  • the step coverage of this substrate is observed using a scanning electron microscope (S-4800) manufactured by Hitachi High-Technologies Corporation, and from the upper surface of the substrate in the dense area (pattern portion) and the open area (non-pattern portion) of the step substrate.
  • the flatness of the film was evaluated by measuring the film thickness difference of each other and measuring the film thickness difference between them (the application step between the dense area and the open area, which is called Bias). Table 2 shows the film thickness and the coating step difference in each area. In the evaluation of flatness, the smaller the value of Bias, the higher the flatness.
  • the results of Examples 1 to 3 show that the application step between the pattern area and the open area is smaller than the results of Comparative Examples 1 and 2. It can be said that the resist underlayer film obtained from the resist underlayer film forming composition of Example 3 has a favorable planarizing property.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Paints Or Removers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】 段差を有する部分と段差を有しない部分とを有する半導体基板上面に塗布する工程を含み、形成したレジスト下層膜において、当該段差を有する部分と当該段差を有しない部分のレジスト下層膜の段差(Iso-denseバイアス)(逆段差)を5nm以上低減する方法の提供。 【解決手段】 (A)ポリマー及び(D)溶媒を含むレジスト下層膜形成組成物に、さらに(C)フッ素系界面活性剤を添加する工程、並びに (C)フッ素系界面活性剤が添加された該組成物を、段差を有する部分と段差を有しない部分とを有する半導体基板上面に塗布する工程 を含むレジスト下層膜の段差(Iso-denseバイアス)を低減する方法であって、当該段差を有する部分と段差を有しない部分のレジスト下層膜の段差(逆段差)を5nm以上低減する。

Description

平坦化性が改善されたレジスト下層膜形成組成物
 本発明は、半導体製造工程のリソグラフィープロセスにおいて、段差を有する部分と段差を有しない部分とを有する半導体基板上面に塗布して形成したレジスト下層膜の、当該段差を有する部分と段差を有しない部分のレジスト下層膜の段差(Iso-denseバイアス)を低減する方法に関する。
 近年、半導体製造工程のリソグラフィープロセスにおいて使用されるレジスト下層膜、特にはシリコンハードマスクの下層として使用されるレジスト下層膜の特性として、耐熱性、エッチング耐性、さらには半導体基板上の段差を有する部分と段差を有しない部分のレジスト下層膜の段差(Iso-denseバイアス)を低減することが求められている。
 アリーレン基を有するポリマーを含むリソグラフィー用下層膜形成組成物が開示されている(特許文献1)。また、長鎖アルキル基含有ノボラックを含むレジスト下層膜形成組成物が開示されている(特許文献2)。また、第二アミノ基を有するノボラックポリマーを含むレジスト下層膜形成組成物が開示されている(特許文献3)。また、ジアリールアミンノボラック樹脂を含むレジスト下層膜が開示されている(特許文献4)。
国際公開WO2016/072316号パンフレット 国際公開WO2017/069063号パンフレット 国際公開WO2015/098594号パンフレット 国際公開WO2013/047516号パンフレット
 半導体基板上の段差を有する部分と段差を有しない部分のレジスト下層膜の段差は、通常、当該段差を有する部分の該レジスト下層膜の該基板上面からの最大膜厚は、当該段差を有しない部分の該レジスト下層膜の該基板上面からの最小膜厚より小さいが、レジスト下層膜形成組成物中の構成成分、例えばポリマー構造により、上記最大膜厚が上記最小膜厚より大きくなる場合(以降、逆段差と呼ぶことがある)がある。このような場合、特に半導体製造におけるリソグラフィー工程においてIso-denseバイアスが大きいため、後のリソグラフィー工程において焦点ずれ等の不具合を生じる問題があった。
 発明者らが鋭意検討した結果、上記Iso-denseバイアス特性(逆段差)を有するレジスト下層膜形成組成物に、フッ素系界面活性剤を添加することにより、半導体基板上の段差を有する部分と段差を有しない部分のレジスト下層膜の段差(Iso-denseバイアス、逆段差)を低減又は解消(すなわち、なるべく段差をゼロに近くする)できることを見出し、本発明を完成させた。
 すなわち本発明は以下を包含する。
[1]レジスト下層膜の段差(Iso-denseバイアス)を5nm以上低減する方法であって、該方法は、(A)ポリマー及び(D)溶媒を含むレジスト下層膜形成組成物に、さらに(C)フッ素系界面活性剤を添加する工程、並びに
(C)フッ素系界面活性剤が添加された該組成物を、段差を有する部分と段差を有しない部分とを有する半導体基板上面に塗布する工程
を含み、さらに該(C)フッ素系界面活性剤添加前の該レジスト下層膜形成組成物を該半導体基板上面に塗布する工程を含むことにより、形成したレジスト下層膜において、当該段差を有する部分の該レジスト下層膜の該基板上面からの最大膜厚が、当該段差を有しない部分の該レジスト下層膜の該基板上面からの最小膜厚より大きくなることを特徴とし、
当該段差を有しない部分の膜厚の値から当該段差を有する部分の膜厚の値を引いた膜厚差ついて、(C)フッ素系界面活性剤が添加されたレジスト下層膜形成組成物からなるレジスト下層膜における前記膜厚差と、(C)フッ素系界面活性剤添加前のレジスト下層膜形成組成物からなるレジスト下層膜における前記膜厚差との差分が5nm以上である方法。
[2]上記レジスト下層膜形成組成物が、さらに(B)架橋性化合物を含む、[1]に記載の方法。
[3]上記(A)ポリマーが、下記式(2):
Figure JPOXMLDOC01-appb-C000006
〔式(2)中、Aはフェニレン基又はナフチレン基を表す。Aはフェニレン基、ナフチレン基、又は式(3):
Figure JPOXMLDOC01-appb-C000007
(式(3)中、A及びAはそれぞれ独立にフェニレン基又はナフチレン基を表す。点線は結合を表す。)で示される有機基を表す。点線は結合を表す。〕で表される部分構造を含む、[1]に記載の方法。
[4]上記(A)ポリマーが下記式(1):
Figure JPOXMLDOC01-appb-C000008
(式(1)中、R乃至Rはそれぞれ独立に水素原子又はメチル基を示す。Xはアルキル基、アミノ基、又はヒドロキシル基で置換されていても良い少なくとも一つのアリーレン基を含む二価の有機基を示す。)で表される単位構造を含む、[1]に記載の方法。
[5]式(1)中、Xが式(2)で表される有機基である[4]に記載の方法。
[6]上記(A)ポリマーが、芳香族化合物(A1)と炭素原子数2乃至26のアルキル基の第2級炭素原子又は第3級炭素原子に結合したホルミル基を有するアルデヒド(B1)との反応物であるノボラック樹脂を含む、[1]に記載の方法。
[7]上記(A)ポリマーが、第二アミノ基を有する芳香族化合物とアルデヒド化合物との反応により得られるノボラックポリマーを含む、[1]に記載の方法。
[8]上記(A)ポリマーが、下記式(4):
Figure JPOXMLDOC01-appb-C000009
(式(4)中、Ar、及びArはそれぞれベンゼン環、又はナフタレン環を表し、R′及びR′はそれぞれこれら環上の水素原子の置換基でありハロゲン原子、ニトロ基、アミノ基、ヒドロキシ基、炭素原子数1乃至10のアルキル基、炭素原子数2乃至10のアルケニル基、炭素原子数6乃至40のアリール基、及びそれらの組み合わせからなる群より選択され、かつ、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合、若しくはエステル結合を含んでいてもよい有機基を表し、
′は水素原子、炭素原子数1乃至10のアルキル基、炭素原子数2乃至10のアルケニル基、炭素原子数6乃至40のアリール基、及びそれらの組み合わせからなる群より選択され、かつ、該アルキル基、該アルケニル基及びアリール基は、エーテル結合、ケトン結合、若しくはエステル結合を含んでいてもよい有機基を表し、
′は炭素原子数6乃至40のアリール基及び複素環基からなる群より選択され、かつ、該アリール基及び該複素環基は、ハロゲン原子、ニトロ基、アミノ基、炭素原子数1乃至10のアルキル基、炭素原子数1乃至10のアルコキシ基、炭素原子数6乃至40のアリール基、ホルミル基、カルボキシル基、又は水酸基で置換されていてもよい有機基を表し、
は水素原子、炭素原子数1乃至10のアルキル基、炭素原子数6乃至40のアリール基、及び複素環基からなる群より選択され、かつ、該アルキル基、該アリール基及び該複素環基は、ハロゲン原子、ニトロ基、アミノ基、若しくは水酸基で置換されていてもよい有機基を表し、そしてR′とRはそれらが結合する炭素原子と一緒になって環を形成していてもよい。n及びnはそれぞれ0乃至3の整数である。)で表される単位構造(A2)を含むポリマーである、[1]に記載の方法。
[9]上記(B)架橋性化合物が、(B)下記式(11-1)又は式(12-1):
Figure JPOXMLDOC01-appb-C000010
(式中、Qは単結合又はm価の有機基を示し、R″及びR″はそれぞれ炭素原子数2乃至10のアルキル基、又は炭素原子数1乃至10のアルコキシ基を有する炭素原子数2乃至10のアルキル基を示し、R″及びR′はそれぞれ水素原子又はメチル基を示し、R″及びRはそれぞれ炭素原子数1乃至10のアルキル基、又は炭素原子数6乃至40のアリール基を示す。
′は1≦n′≦3の整数、n′は2≦n′≦5の整数、nは0≦n≦3の整数、nは0≦n≦3の整数、3≦(n′+n′+n+n)≦6の整数を示す。
は1≦n≦3の整数、nは1≦n≦4の整数、nは0≦n≦3の整数、nは0≦n≦3の整数、2≦(n+n+n+n)≦5の整数を示す。mは2乃至10の整数を示す。)で示される架橋性化合物である、[2]に記載の方法。
[10]上記段差(Iso-denseバイアス)が、5nm乃至55nmである、[1]に記載の方法。
[11]半導体基板上面の段差を有する部分の、段差パターン幅が50nm以下である、[1]に記載の方法、である。
 本発明の方法は、レジスト下層膜の段差(Iso-denseバイアス)を5nm以上低減する方法であって、該方法は、(A)ポリマー及び(D)溶媒を含むレジスト下層膜形成組成物に、さらに(C)フッ素系界面活性剤を添加する工程、並びに
(C)フッ素系界面活性剤が添加された該組成物を、段差を有する部分と段差を有しない部分とを有する半導体基板上面に塗布する工程
を含み、さらに該(C)フッ素系界面活性剤添加前の該レジスト下層膜形成組成物を該半導体基板上面に塗布する工程を含むことにより、形成したレジスト下層膜において、当該段差を有する部分の該レジスト下層膜の該基板上面からの最大膜厚が、当該段差を有しない部分の該レジスト下層膜の該基板上面からの最小膜厚より大きくなることを特徴とし、
当該段差を有しない部分の膜厚の値から当該段差を有する部分の膜厚の値を引いた膜厚差ついて、(C)フッ素系界面活性剤が添加されたレジスト下層膜形成組成物からなるレジスト下層膜における前記膜厚差と、(C)フッ素系界面活性剤添加前のレジスト下層膜形成組成物からなるレジスト下層膜における前記膜厚差との差分が5nm以上である方法、である。この方法によれば、レジスト下層膜形成組成物を該半導体基板上面に塗布して形成したレジスト下層膜がいわゆる逆段差を生じる場合、段差を低減させるための有効な解決手段となる。
 本発明の方法は、レジスト下層膜の段差(Iso-denseバイアス)を5nm以上低減する方法であって、該方法は、(A)ポリマー及び(D)溶媒を含むレジスト下層膜形成組成物に、さらに(C)フッ素系界面活性剤を添加する工程、並びに
(C)フッ素系界面活性剤が添加された該組成物を、段差を有する部分と段差を有しない部分とを有する半導体基板上面に塗布する工程
を含み、さらに該(C)フッ素系界面活性剤添加前の該レジスト下層膜形成組成物を該半導体基板上面に塗布する工程を含むことにより、形成したレジスト下層膜において、当該段差を有する部分の該レジスト下層膜の該基板上面からの最大膜厚が、当該段差を有しない部分の該レジスト下層膜の該基板上面からの最小膜厚より大きくなることを特徴とし、
当該段差を有しない部分の膜厚の値から当該段差を有する部分の膜厚の値を引いた膜厚差ついて、(C)フッ素系界面活性剤が添加されたレジスト下層膜形成組成物からなるレジスト下層膜における前記膜厚差と、(C)フッ素系界面活性剤添加前のレジスト下層膜形成組成物からなるレジスト下層膜における前記膜厚差との差分が5nm以上である方法、である。
 大きくなるとは、例えば5nm以上大きい。例えば上記最大膜厚と上記最小膜厚の差が5nm乃至100nmであり、例えば5nm乃至50nmである。
 上記段差(Iso-denseバイアス)を5nm以上低減する方法であるが、例えば10nm以上低減する方法であり、例えば20nm以上低減する方法であり、例えば30nm以上低減する方法であり、例えば40nm以上低減する方法であり、例えば50nm以上低減する方法である。
 上記段差(Iso-denseバイアス)は、好ましくは5nm乃至55nm、である。
 上記半導体基板上面の段差を有する部分の、段差パターン(例えばトレンチパターン、及び/又はビアパターン)の幅は50nm以下、例えば5nm乃至50nm、例えば10nm乃至40nm、例えば5nm乃至30nm、例えば5nm乃至20nm、例えば2nm乃至10nmである。
 段差パターン(例えばトレンチパターン、及び/又はビアパターン)の深さは、例えば500nm乃至50nm、例えば300nm乃至100nmである。
<(A)ポリマー>
 本発明の方法において使用される(A)ポリマーは、半導体製造工程のリソグラフィープロセスにおいて使用されるレジスト下層膜形成組成物に使用されるポリマーであれば特に制限は無い。
 ポリマーとしては、例えば公知のノボラックポリマー、アクリルポリマー又はメタクリルポリマーが用いられるが、ノボラックポリマーが好ましい。
 好ましい(A)ポリマーとしては、国際公開WO2016/072316号パンフレットに記載の、下記式(2):
Figure JPOXMLDOC01-appb-C000011
〔式(2)中、Aはフェニレン基又はナフチレン基を表す。Aはフェニレン基、ナフチレン基、又は式(3):
Figure JPOXMLDOC01-appb-C000012
(式(3)中、A及びAはそれぞれ独立にフェニレン基又はナフチレン基を表す。点線は結合を表す。)で示される有機基を表す。点線は結合を表す。〕で表される部分構造を含む。
 さらに好ましくは、上記(A)ポリマーが下記式(1):
Figure JPOXMLDOC01-appb-C000013
(式(1)中、R乃至Rはそれぞれ独立に水素原子又はメチル基を示す。Xはアルキル基、アミノ基、又はヒドロキシル基で置換されていても良い少なくとも一つのアリーレン基を含む二価の有機基を示す。)で表される単位構造を含む。
 本発明のレジスト下層膜形成組成物は、例えば式(1)で表される単位構造を含むポリマーと溶剤とを含む。
 本発明に用いられる式(1)で表される単位構造を含むポリマーは、該ポリマーの重量平均分子量が600乃至1000000、又は600乃至200000、又は1500乃至15000である。
 アリーレン基は炭素原子数6乃至40のアリール基から誘導されるアリーレン基が好ましく用いられる。アリーレン基としては例えばフェニレン基、ビフェニレン基、ターフェニレン基、フルオレニレン基、ナフチレン基、アントリレン基、ピレニレン基、又はカルバゾリレン基等が例示される。
 アルキル基としては炭素原子数1乃至10のアルキル基が挙げられ、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
 アミノ基としては1級アミノ基、2級アミノ基、3級アミノ基が挙げられるが、2級アミノ基を好ましく用いることができる。
 式(1)中、Xが式(2)で表される有機基を用いることができる。
 式(2)中、Aはフェニレン基又はナフチレン基を表す。Aはフェニレン基、ナフチレン基、又は式(3)で示される有機基を表す。なお、式(2)中、点線は結合を表す。
 式(3)中、A及びAはそれぞれ独立にフェニレン基又はナフチレン基を表す。なお、式(3)中、点線は結合を表す。
 本発明に用いられるポリマーは、ヒドロキシメチル基又はメトキシメチル基含有芳香族化合物と、芳香族化合物との間の縮合反応により形成された、芳香族メチレン化合物のポリマーである。本発明に用いられるポリマーは例えば以下に例示することができる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 上記(A)ポリマーが、国際公開WO2017/069063号パンフレットに記載の、芳香族化合物(A1)と炭素原子数2乃至26のアルキル基の第2級炭素原子又は第3級炭素原子に結合したホルミル基を有するアルデヒド(B1)との反応により得られるノボラック樹脂を含んでもよい。
 本発明に用いられる上記ノボラック樹脂は、該樹脂の重量平均分子量が500乃至1000000、又は600乃至200000である。
 本発明に用いられるノボラック樹脂は、芳香族化合物(A1)と炭素原子数2乃至26のアルキル基の第2級炭素原子又は第3級炭素原子に結合したホルミル基を有するアルデヒド(B1)との反応により得られるノボラック樹脂を含む。
 本発明に用いられるノボラック樹脂は式(11)で表される単位構造を含むことができる。
Figure JPOXMLDOC01-appb-C000016
式(11)中、A11は炭素原子数6乃至40の芳香族化合物から誘導される二価基を示す。bは炭素原子数1乃至16、又は1乃至9のアルキル基を示し、bは水素原子又は炭素原子数1乃至9のアルキル基を示す。bとbが共に炭素原子数1乃至16、又は1乃至9のアルキル基である分岐型アルキル基を有する場合と、bが炭素原子数1乃至16、又は1乃至9のアルキル基でありbが水素原子である直鎖型アルキル基を有する場合がある。
 A11がアミノ基、ヒドロキシル基、又はその両者を含む芳香族化合物から誘導される二価基とすることができる。そして、A11がアリールアミン化合物、フェノール化合物、又はその両者を含む芳香族化合物から誘導される二価基とすることができる。より具体的にはA11がアニリン、ジフェニルアミン、フェニルナフチルアミン、ヒドロキシジフェニルアミン、カルバゾール、フェノール、N,N’-ジフェニルエチレンジアミン、N,N’-ジフェニル-1,4-フェニレンジアミン、又は多核フェノールから誘導される二価基とすることができる。
 上記多核フェノールとしては、ジヒドロキシベンゼン、トリヒドロキシベンゼン、ヒドロキシナフタレン、ジヒドロキシナフタレン、トリヒドロキシナフタレン、トリス(4-ヒドロキシフェニル)メタン、トリス(4-ヒドロキシフェニル)エタン、2,2’-ビフェノール、又は1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン等が挙げられる。
 上記ノボラック樹脂は式(11)で表される単位構造をより具体化した式(21)で表される単位構造を含むことができる。式(11)で表される単位構造の特徴は式(21)で表される単位構造に反映される。
Figure JPOXMLDOC01-appb-C000017
式(21)中の(a-R13-a)部分に相当する芳香族化合物(A1′)と、炭素原子数2乃至26のアルキル基の第2級炭素原子又は第3級炭素原子に結合したホルミル基を有するアルデヒド(B1)との反応により式(21)で表される単位構造を有するノボラック樹脂が得られる。
 (a-R13-a)部分に相当する芳香族化合物(A1′)は、例えばジフェニルアミン、フェニルナフチルアミン、ヒドロキシジフェニルアミン、トリス(4-ヒドロキシフェニル)エタン、N,N’-ジフェニルエチレンジアミン、2,2’-ビフェノール、N,N’-ジフェニル-1,4-フェニレンジアミン等が挙げられる。
 式(21)中、a及びaはそれぞれ置換されていても良いベンゼン環又はナフタレン環を示し、R13は第2級アミノ基もしくは第3級アミノ基、置換されていても良い炭素原子数1乃至10、又は炭素原子数1乃至6、又は炭素原子数1乃至2の二価炭化水素基、アリーレン基、又はこれらの基が任意に結合した二価の基を示す。これらのアリーレン基としてはフェニレン基、ナフチレン基等の有機基を挙げることができる。a及びaにおいて置換基としてはヒドロキシル基を挙げることができる。
 bは炭素原子数1乃至16、又は1乃至9のアルキル基を示し、bは水素原子又は炭素原子数1乃至9のアルキル基を示す。bとbが共に炭素原子数1乃至16、又は1乃至9のアルキル基である分岐型アルキル基を有する場合と、bが炭素原子数1乃至16、又は1乃至9のアルキル基でありbが水素原子である直鎖型アルキル基を有する場合がある。
 式(21)中、R13として第2級アミノ基、第3級アミノ基が挙げられる。第3級アミノ基の場合はアルキル基が置換した構造をとることができる。これらアミノ基は第2級アミノ基が好ましく用いることができる。
 また、式(21)中、R13の定義における置換されていても良い炭素原子数1乃至10、又は炭素原子数1乃至6、又は炭素原子数1乃至2の二価炭化水素基は、メチレン基又はエチレン基が挙げられ、置換基としてフェニル基、ナフチル基、ヒドロキシフェニル基、ヒドロキシナフチル基を挙げることができる。
 上記式において、炭素原子数1乃至16、及び1乃至9のアルキル基としては例えばメチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-トリデカニル基、n-ヘキサデカニル基等が挙げられる。
 また、上記式において、炭素原子数1乃至16、又は1乃至9のアルキル基としては、上述の例示が挙げられるが、特に、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基等が挙げられ、これらを組み合わせて用いることもできる。
 本発明に用いられる上記アルデヒド(B1)は例えば以下に例示することができる。
Figure JPOXMLDOC01-appb-C000018
 上記芳香族化合物(A1)と、上記アルデヒド(B1)との反応は、上記A1と上記B1を1:0.5乃至2.0、又は1:1のモル比で反応させることが好ましい。
 以上のようにして得られるポリマーの重量平均分子量Mwは、通常500乃至1000000、又は600乃至200000である。
 上記芳香族化合物(A1)と上記アルデヒド(B1)との反応により得られるノボラック樹脂としては、以下の単位構造を含むノボラック樹脂が挙げられる。  
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 上記(A)ポリマーが、国際公開WO2015/098594号パンフレットに記載の第二アミノ基を有する芳香族化合物とアルデヒド化合物との反応により得られるノボラックポリマーを含んでもよい。
 また、本発明のレジスト下層膜は、式(31)で示される単位構造を含むノボラック樹脂を含むリソグラフィー工程に用いるレジスト下層膜形成組成物である。
Figure JPOXMLDOC01-appb-C000022
本発明において上記のリソグラフィー用レジスト下層膜形成組成物は上記ポリマーと溶剤を含む。そして、架橋剤と酸を含むことができ、必要に応じて酸発生剤、界面活性剤等の添加剤を含むことができる。この組成物の固形分は0.1乃至70質量%、または0.1乃至60質量%である。ここで、固形分はレジスト下層膜形成組成物から溶剤を除いた全成分の含有割合である。固形分中に上記ポリマーを1乃至100質量%、または1乃至99.9質量%、または50乃至99.9質量%、または50乃至95質量%、または50乃至90質量%の割合で含有することができる。
 本発明に用いられる式(31)で示される単位構造を含むノボラック樹脂は、重量平均分子量が600乃至1000000、又は600乃至200000である。
 式(31)中、R21は水素原子の置換基であって、ハロゲン原子、ニトロ基、アミノ基、ヒドロキシ基、炭素原子数1乃至10のアルキル基、炭素原子数2乃至10のアルケニル基、炭素原子数6乃至40のアリール基、又はエーテル結合、ケトン結合、若しくはエステル結合を含んでいても良いそれらの組み合わせであり、R22は炭素原子数1乃至10のアルキル基、炭素原子数2乃至10のアルケニル基、炭素原子数6乃至40のアリール基、又はエーテル結合、ケトン結合、若しくはエステル結合を含んでいても良いそれらの組み合わせであり、R23は水素原子、又はハロゲン原子、ニトロ基、アミノ基、ホルミル基、カルボキシル基、カルボン酸アルキルエステル基、ヒドロキシ基で置換されていても良い炭素原子数6乃至40のアリール基、又は複素環基であり、R24は水素原子、又はハロゲン原子、ニトロ基、アミノ基、ホルミル基、カルボキシル基、カルボン酸アルキルエステル基、ヒドロキシ基で置換されていても良い炭素原子数1乃至10のアルキル基、炭素原子数6乃至40のアリール基、又は複素環基であり、R23とR24はそれらが結合する炭素原子と一緒になって環を形成していても良い。nは0又は1の整数であり、mはnが0のとき0から3までの整数であり、nが1のとき0から5までの整数である。
 ここで、上記炭素原子数1乃至10のアルキル基としては上記の段落[0022]で記載したアルキル基が挙げられる。
 上記炭素原子数2乃至10のアルケニル基としてはエテニル基、1-プロペニル基、2-プロペニル基、1-メチル-1-エテニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-n-プロピルエテニル基、1-メチル-1-ブテニル基、1-メチル-2-ブテニル基、1-メチル-3-ブテニル基、2-エチル-2-プロペニル基、2-メチル-1-ブテニル基、2-メチル-2-ブテニル基、2-メチル-3-ブテニル基、3-メチル-1-ブテニル基、3-メチル-2-ブテニル基、3-メチル-3-ブテニル基、1,1-ジメチル-2-プロペニル基、1-i-プロピルエテニル基、1,2-ジメチル-1-プロペニル基、1,2-ジメチル-2-プロペニル基、1-シクロペンテニル基、2-シクロペンテニル基、3-シクロペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、1-メチル-1-ペンテニル基、1-メチル-2-ペンテニル基、1-メチル-3-ペンテニル基、1-メチル-4-ペンテニル基、1-n-ブチルエテニル基、2-メチル-1-ペンテニル基、2-メチル-2-ペンテニル基、2-メチル-3-ペンテニル基、2-メチル-4-ペンテニル基、2-n-プロピル-2-プロペニル基、3-メチル-1-ペンテニル基、3-メチル-2-ペンテニル基、3-メチル-3-ペンテニル基、3-メチル-4-ペンテニル基、3-エチル-3-ブテニル基、4-メチル-1-ペンテニル基、4-メチル-2-ペンテニル基、4-メチル-3-ペンテニル基、4-メチル-4-ペンテニル基、1,1-ジメチル-2-ブテニル基、1,1-ジメチル-3-ブテニル基、1,2-ジメチル-1-ブテニル基、1,2-ジメチル-2-ブテニル基、1,2-ジメチル-3-ブテニル基、1-メチル-2-エチル-2-プロペニル基、1-s-ブチルエテニル基、1,3-ジメチル-1-ブテニル基、1,3-ジメチル-2-ブテニル基、1,3-ジメチル-3-ブテニル基、1-i-ブチルエテニル基、2,2-ジメチル-3-ブテニル基、2,3-ジメチル-1-ブテニル基、2,3-ジメチル-2-ブテニル基、2,3-ジメチル-3-ブテニル基、2-i-プロピル-2-プロペニル基、3,3-ジメチル-1-ブテニル基、1-エチル-1-ブテニル基、1-エチル-2-ブテニル基、1-エチル-3-ブテニル基、1-n-プロピル-1-プロペニル基、1-n-プロピル-2-プロペニル基、2-エチル-1-ブテニル基、2-エチル-2-ブテニル基、2-エチル-3-ブテニル基、1,1,2-トリメチル-2-プロペニル基、1-t-ブチルエテニル基、1-メチル-1-エチル-2-プロペニル基、1-エチル-2-メチル-1-プロペニル基、1-エチル-2-メチル-2-プロペニル基、1-i-プロピル-1-プロペニル基、1-i-プロピル-2-プロペニル基、1-メチル-2-シクロペンテニル基、1-メチル-3-シクロペンテニル基、2-メチル-1-シクロペンテニル基、2-メチル-2-シクロペンテニル基、2-メチル-3-シクロペンテニル基、2-メチル-4-シクロペンテニル基、2-メチル-5-シクロペンテニル基、2-メチレン-シクロペンチル基、3-メチル-1-シクロペンテニル基、3-メチル-2-シクロペンテニル基、3-メチル-3-シクロペンテニル基、3-メチル-4-シクロペンテニル基、3-メチル-5-シクロペンテニル基、3-メチレン-シクロペンチル基、1-シクロヘキセニル基、2-シクロヘキセニル基及び3-シクロヘキセニル基等が挙げられる。
 上記炭素原子数6乃至40のアリール基としてはフェニル基、o-メチルフェニル基、m-メチルフェニル基、p-メチルフェニル基、o-クロルフェニル基、m-クロルフェニル基、p-クロルフェニル基、o-フルオロフェニル基、p-フルオロフェニル基、o-メトキシフェニル基、p-メトキシフェニル基、p-ニトロフェニル基、p-シアノフェニル基、α-ナフチル基、β-ナフチル基、o-ビフェニリル基、m-ビフェニリル基、p-ビフェニリル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、及びピレニル基が挙げられる。
 上記複素環基としては窒素、硫黄、酸素を含む5乃至6員環の複素環からなる有機基が好ましく、例えばピロール基、フラン基、チオフェン基、イミダゾール基、オキサゾール基、チアゾール基、ピラゾール基、イソオキサゾール基、イソチアゾール基、ピリジン基等が挙げられる。
 上記ヒドロキシ基で置換されていても良い炭素原子数6乃至40のアリール基としては例えばフェノール、ジヒドロキシベンゼン、トリヒドロキシベンゼン、ナフトール、ジヒドロキシナフタレン、トリヒドロキシナフタレン、ヒドロキシアントラセン、ジヒドロキシアントラセン、トリヒドロキシアントラセン等が挙げられる。
 上記カルボン酸アルキルエステル基のアルキル基としては上記炭素原子数1乃至10のアルキル基が挙げられる。
 式(31)において、n及びmがゼロであり、R22がメチル基又はベンジル基である場合の単位構造を用いることができる。また、式(31)において、R22が上記アルキル基とアリール基の組み合わせによりアラルキル基を選択することができる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。
 そして、R23がフェニル基、ナフチル基、アントリル基、又はピレニル基であり、R24が水素原子である場合の単位構造を用いることができる。さらに、R23とR24において、それらが結合する炭素原子と一緒になって形成する環は、例えばフルオレン環が挙げられる。
 本発明におけるノボラック樹脂は、第二アミノ基を有する芳香族化合物と、アルデヒド類又はケトン類との間の縮合反応により、式(31)で示される単位構造が形成されて得られる。
 第二アミノ基を有する芳香族化合物としては、ベンゼン誘導体、ナフタレン誘導体であり、上述に例示される置換基を有することができる。
 本発明のポリマーの製造に用いられるアルデヒド類としてはホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、バレルアルデヒド、カプロンアルデヒド、2-メチルブチルアルデヒド、ヘキシルアルデヒド、ウンデカンアルデヒド、7-メトキシ-3、7-ジメチルオクチルアルデヒド、シクロヘキサンアルデヒド、3-メチル-2-ブチルアルデヒド、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジピンアルデヒド等の飽和脂肪族アルデヒド類、アクロレイン、メタクロレイン等の不飽和脂肪族アルデヒド類、フルフラール、ピリジンアルデヒド、チオフェンアルデヒド等のヘテロ環式アルデヒド類、ベンズアルデヒド、ナフチルアルデヒド、アントリルアルデヒド、フェニルベンズアルデヒド、フェナントリルアルデヒド、サリチルアルデヒド、フェニルアセトアルデヒド、3-フェニルプロピオンアルデヒド、トリルアルデヒド、(N,N-ジメチルアミノ)ベンズアルデヒド、アセトキシベンズアルデヒド、1-ピレンカルボキシアルデヒド、アニスアルデヒド、テレフタルアルデヒド等の芳香族アルデヒド類等が挙げられる。特に芳香族アルデヒドを好ましく用いることができる。
 また、本発明のポリマーの製造に用いられるケトン類としてはジアリールケトン類であり、例えばジフェニルケトン、フェニルナフチルケトン、ジナフチルケトン、フェニルトリルケトン、ジトリルケトン、9-フルオレノン等が挙げられる。
 この縮合反応では1モルの第二アミノ基を有する芳香族化合物に対して、アルデヒド類又はケトン類を0.1乃至10モルの割合で用いることができる。
 通常、第二アミノ基を有する芳香族化合物100質量部に対して、酸触媒を0.001乃至10000質量部、好ましくは、0.01乃至1000質量部、より好ましくは0.1乃至100質量部の割合で加えることができる。
 以上のようにして得られるポリマーの重量平均分子量Mwは、通常500乃至1000000、又は600乃至200000である。
式(1)で示される単位構造を含むポリマーは例えば以下に例示する式(32-1)乃至式(32-12)、及び式(33-1)乃至式(33-12)に示すことができる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 上記(A)ポリマーが、国際公開WO2013/047516号パンフレットに記載の、下記式(4):
Figure JPOXMLDOC01-appb-C000027
(式(4)中、Ar、及びArはそれぞれベンゼン環、又はナフタレン環を表し、R′及びR′はそれぞれこれら環上の水素原子の置換基でありハロゲン原子、ニトロ基、アミノ基、ヒドロキシ基、炭素原子数1乃至10のアルキル基、炭素原子数2乃至10のアルケニル基、炭素原子数6乃至40のアリール基、及びそれらの組み合わせからなる群より選択され、かつ、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合、若しくはエステル結合を含んでいてもよい有機基を表し、
 R′は水素原子、炭素原子数1乃至10のアルキル基、炭素原子数2乃至10のアルケニル基、炭素原子数6乃至40のアリール基、及びそれらの組み合わせからなる群より選択され、かつ、該アルキル基、該アルケニル基及びアリール基は、エーテル結合、ケトン結合、若しくはエステル結合を含んでいてもよい有機基を表し、
 R′は炭素原子数6乃至40のアリール基及び複素環基からなる群より選択され、かつ、該アリール基及び該複素環基は、ハロゲン原子、ニトロ基、アミノ基、炭素原子数1乃至10のアルキル基、炭素原子数1乃至10のアルコキシ基、炭素原子数6乃至40のアリール基、ホルミル基、カルボキシル基、又は水酸基で置換されていてもよい有機基を表し、
 Rは水素原子、炭素原子数1乃至10のアルキル基、炭素原子数6乃至40のアリール基、及び複素環基からなる群より選択され、かつ、該アルキル基、該アリール基及び該複素環基は、ハロゲン原子、ニトロ基、アミノ基、若しくは水酸基で置換されていてもよい有機基を表し、そしてR′とRはそれらが結合する炭素原子と一緒になって環を形成していてもよい。n及びnはそれぞれ0乃至3の整数である。)で表される単位構造(A2)を含むポリマーであってもよい。
 上記式(4)のRが水素原子であり、R′が置換されていてもよいフェニル基、ナフチル基、アントリル基、又はピレニル基である上記のポリマーであってもよく、
 上記式(4)のR′が水素原子又はフェニル基であるポリマーであってもよく、
 上記単位構造(A2)においてArとArは、いずれか一方がベンゼン環であり他方がナフタレン環である単位構造(a1)を含むポリマーであってもよく、
 上記単位構造(A2)においてArとArは、共にベンゼン環となる単位構造(a2)を含むポリマーであってもよく、
 上記の単位構造(a1)と上記の単位構造(a2)を含む共重合体であるポリマーであってもよく、
 上記式(1)の単位構造(A2)と下記式(5)の単位構造(B2):
Figure JPOXMLDOC01-appb-C000028
(式(5)中、R16は炭素原子数6乃至40のアリール基及び複素環基からなる群より選択され、かつ、該アリール基及び該複素環基は、ハロゲン原子、ニトロ基、アミノ基、炭素原子数1乃至10のアルキル基、炭素原子数1乃至10のアルコキシ基、炭素原子数6乃至40のアリール基、ホルミル基、カルボキシル基、又はヒドロキシ基で置換されていてもよい有機基を表し、R17は水素原子、炭素原子数1乃至10のアルキル基、炭素原子数6乃至40のアリール基、及び複素環基からなる群より選択され、かつ、該アルキル基、該アリール基及び該複素環基は、ハロゲン原子、ニトロ基、アミノ基、若しくはヒドロキシ基で置換されていてもよい有機基を表し、そしてR16とR17はそれらが結合する炭素原子と一緒になって環を形成していてもよい。)を含む共重合体であるポリマーであってもよく、
 本発明の(A)ポリマーは、上記の単位構造(a1)と上記の単位構造(B2)を含む共重合体であるポリマーであってもよい。
 上記ハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 上記炭素原子数1乃至10のアルキル基としては上記の段落[0022]で記載したアルキル基が挙げられる。
 上記炭素原子数2乃至10のアルケニル基としては上記の段落[0048]で記載したアルケニル基等が挙げられる。
 上記炭素原子数1乃至10のアルコキシ基は、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペントキシ基、1-メチル-n-ブトキシ基、2-メチル-n-ブトキシ基、3-メチル-n-ブトキシ基、1,1-ジメチル-n-プロポキシ基、1,2-ジメチル-n-プロポキシ基、2,2-ジメチル-n-プロポキシ基、1-エチル-n-プロポキシ基、n-ヘキシルオキシ基、1-メチル-n-ペンチルオキシ基、2-メチル-n-ペンチルオキシ基、3-メチル-n-ペンチルオキシ基、4-メチル-n-ペンチルオキシ基、1,1-ジメチル-n-ブトキシ基、1,2-ジメチル-n-ブトキシ基、1,3-ジメチル-n-ブトキシ基、2,2-ジメチル-n-ブトキシ基、2,3-ジメチル-n-ブトキシ基、3,3-ジメチル-n-ブトキシ基、1-エチル-n-ブトキシ基、2-エチル-n-ブトキシ基、1,1,2-トリメチル-n-プロポキシ基、1,2,2,-トリメチル-n-プロポキシ基、1-エチル-1-メチル-n-プロポキシ基、及び1-エチル-2-メチル-n-プロポキシ基等が挙げられる。
 上記炭素原子数6乃至40のアリール基としては上記の段落[0049]で記載したアリール基が挙げられる。
 上記複素環基としては窒素、硫黄、酸素を含む5乃至6員環の複素環からなる有機基が好ましく、例えばピロール基、フラン基、チオフェン基、イミダゾール基、オキサゾール基、チアゾール基、ピラゾール基、イソオキサゾール基、イソチアゾール基、ピリジン基等が挙げられる。
 本発明に用いられるポリマーは例えば以下の式(4-1)乃至(4-21)の化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 本発明にカルバゾール類を用いる場合には、例えばカルバゾール、N-メチルカルバゾール、N-エチルカルバゾール、1,3,6,8-テトラニトロカルバゾール、3,6-ジアミノカルバゾール、3,6-ジブロモ-9-エチルカルバゾール、3,6-ジブロモ-9-フェニルカルバゾール、3,6-ジブロモカルバゾール、3,6-ジクロロカルバゾール、3-アミノ-9-エチルカルバゾール、3-ブロモ-9-エチルカルバゾール、4,4’ビス(9H-カルバゾール-9-イル)ビフェニル、4-グリシジルカルバゾール、4-ヒドロキシカルバゾール、9-(1H-ベンゾトリアゾール-1-イルメチル)-9H-カルバゾール、9-アセチル-3,6-ジヨードカルバゾール、9-ベンゾイルカルバゾール、9-ベンゾイルカルバゾール-6-ジカルボキシアルデヒド、9-ベンジルカルバゾール-3-カルボキシアルデヒド、9-メチルカルバゾール、9-フェニルカルバゾール、9-ビニルカルバゾール、カルバゾールカリウム、カルバゾール-N-カルボニルクロリド、N-エチルカルバゾール-3-カルボキシアルデヒド、N-((9-エチルカルバゾール-3-イル)メチレン)-2-メチル-1-インドリニルアミン等が挙げられ、これらを単独で用いることも2種以上組み合わせて用いることもできる。
 本発明でトリフェニルアミン類を用いる場合には、トリフェニルアミンや置換トリフェニルアミンが例示され、置換基としては上述のハロゲン原子、ニトロ基、アミノ基、ヒドロキシ基、炭素原子数1乃至10のアルキル基、炭素原子数2乃至10のアルケニル基、炭素原子数6乃至40のアリール基、又はエーテル結合、ケトン結合、若しくはエステル結合を含んでいてもよいそれらの組み合わせが挙げられる。
 本発明の式(4)のポリマーの製造に用いられるアルデヒド類としては上記の段落[0056]で記載したアルデヒド類が挙げられる。
 また、本発明の式(4)のポリマーの製造に用いられるケトン類としては、上記の段落[0057]で記載したケトン類が挙げられる。
 本発明に用いられるポリマーはジアリールアミン等のアミン類と、アルデヒド類又はケトン類とを縮合して得られるノボラック樹脂(式(4)に相当)である。
 この縮合反応ではジアリールアミン等のアミン類のフェニル基1当量に対して、アルデヒド類又はケトン類を0.1乃至10当量の割合で用いることができる。
 以上のようにして得られるポリマーの重量平均分子量Mwは、通常600乃至1000000、又は600乃至200000である。
<(B)架橋性化合物>
 本発明に使用されるレジスト下層膜形成組成物は、さらに(B)架橋性化合物を含んでもよい。
 架橋性化合物は、上記(A)ポリマーの反応部位に反応性を有し、(A)ポリマー同士を結合することができる化合物であれば特に制限は無い。
 その架橋剤としては、メラミン系、置換尿素系、またはそれらのポリマー系等が挙げられる。好ましくは、少なくとも2個の架橋形成置換基を有する架橋剤であり、メトキシメチル化グリコールウリル、ブトキシメチル化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メトキシメチル化ベンゾグワナミン、ブトキシメチル化ベンゾグワナミン、メトキシメチル化尿素、ブトキシメチル化尿素、メトキシメチル化チオ尿素、またはメトキシメチル化チオ尿素等の化合物である。また、これらの化合物の縮合体も使用することができる。
 また、上記架橋剤としては耐熱性の高い架橋剤を用いることができる。耐熱性の高い架橋剤としては分子内に芳香族環(例えば、ベンゼン環、ナフタレン環)を有する架橋形成置換基を含有する化合物を好ましく用いることができる。
 上記(B)架橋性化合物は、国際公開WO2014/208542号パンフレットに記載の(B)下記式(11-1)又は式(12-1):
Figure JPOXMLDOC01-appb-C000033
(式中、Qは単結合又はm価の有機基を示し、R″及びR″はそれぞれ炭素原子数2乃至10のアルキル基、又は炭素原子数1乃至10のアルコキシ基を有する炭素原子数2乃至10のアルキル基を示し、R″及びR′はそれぞれ水素原子又はメチル基を示し、R″及びRはそれぞれ炭素原子数1乃至10のアルキル基、又は炭素原子数6乃至40のアリール基を示す。
′は1≦n′≦3の整数、n′は2≦n′≦5の整数、nは0≦n≦3の整数、nは0≦n≦3の整数、3≦(n′+n′+n+n)≦6の整数を示す。
は1≦n≦3の整数、nは1≦n≦4の整数、nは0≦n≦3の整数、nは0≦n≦3の整数、2≦(n+n+n+n)≦5の整数を示す。mは2乃至10の整数を示す。)で示される架橋性化合物であることが好ましい。
 上記Qは単結合であるか、又は炭素原子数1乃至10の鎖状炭化水素基、炭素原子数6乃至40の芳香族基、又はそれらの組み合わせから選ばれるm価の有機基とすることができる。ここで、鎖状炭化水素基は下記アルキル基を挙げることができる。芳香族基は下記アリール基を挙げることができる。
 上記式(11-1)又は式(12-1)で示される架橋性化合物が、下記式(13)又は式(14)で示される化合物と、ヒドロキシル基含有エーテル化合物又は炭素原子数2乃至10のアルコールとの反応物であってもよい。
Figure JPOXMLDOC01-appb-C000034
(式中、Qは単結合又はm価の有機基を示す。R、R、R11及びR12はそれぞれ水素原子又はメチル基を示し、R及びR10はそれぞれ炭素原子数1乃至10のアルキル基、又は炭素原子数6乃至40のアリール基を示す。
は1≦n≦3の整数、n10は2≦n10≦5の整数、n11は0≦n11≦3の整数、n12は0≦n12≦3の整数、3≦(n+n10+n11+n12)≦6の整数を示す。
13は1≦n13≦3の整数、n14は1≦n14は≦4の整数、n15は0≦n15≦3の整数、n16は0≦n16≦3の整数、2≦(n13+n14+n15+n16)≦5の整数を示す。mは2乃至10の整数を示す。)
 炭素原子数1乃至10のアルキル基は上記 炭素原子数1乃至10のアルキル基のアルキル基が挙げられる。
 炭素原子数2乃至10のアルキル基は、上記炭素原子数1乃至10のアルキル基の中で炭素原子数が2乃至10のアルキル基である。
 炭素原子数1乃至10のアルコキシ基としては上記の段落[0067]で記載したアルコキシ基が挙げられる。
 上記ヒドロキシル基含有エーテル化合物はプロピレングリコールモノメチルエーテル、又はプロピレングリコールモノエチルエーテルが挙げられる。
 上記炭素原子数2乃至10のアルコールはエタノール、1-プロパノール、2-メチル-1-プロパノール、ブタノール、2-メトキシエタノール又は2-エトキシエタノールが挙げられる。
 炭素原子数6乃至40のアリール基としては上記の段落[0049]で記載したアリール基が挙げられる。上記式(11-1)又は式(12-1)で示される架橋性化合物は、式(13)又は式(14)で示される化合物と、上記のヒドロキシル基含有エーテル化合物又は上記の炭素原子数2乃至10のアルコールとの反応によって得ることができる。
 式(13)又は式(14)で示される化合物1モルに、上記のヒドロキシル基含有エーテル化合物又は上記の炭素原子数2乃至10のアルコールが1モルの割合で置換した式(11-1)又は式(12-1)で示される化合物を1置換体、同様に2モル置換した式(11-1)又は式(12-1)で示される化合物を2置換体、同様に3モル置換した式(11-1)又は式(12-1)で示される化合物を3置換体、同様に4モル置換した式(11-1)又は式(12-1)で示される化合物を4置換体とする。
 式(13)及び式(14)において、Qは単結合又はm価の有機基を示す。すなわち、上記Qは単結合であるか、又は炭素原子数1乃至10の鎖状炭化水素基、炭素原子数6乃至40の芳香族基、又はそれらの組み合わせから選ばれるm価の有機基とすることができる。ここで、鎖状炭化水素基は上記アルキル基を挙げることができる。芳香族基は上記アリール基を挙げることができる。
 R、R、R11及びR12はそれぞれ水素原子又はメチル基を示し、R及びR10はそれぞれ炭素原子数1乃至10のアルキル基、又は炭素原子数6乃至40のアリール基を示す。nは1≦n≦3の整数、n10は2≦n10≦5の整数、n11は0≦n11≦3の整数、n12は0≦n12≦3の整数、3≦(n+n10+n11+n12)≦6の整数を示す。
 n13は1≦n13≦3の整数、n14は1≦n14≦4の整数、n15は0≦n15≦3の整数、n16は0≦n16≦3の整数、2≦(n13+n14+n15+n16)≦5の整数を示す。mは2乃至10の整数を示す。
 式(13)又は式(14)で示される化合物と、ヒドロキシル基含有エーテル化合物又は炭素原子数2乃至10のアルコールとの反応は酸触媒の存在下で行われる。
 本発明に用いられる式(11-1)及び式(12-1)で示される架橋性化合物は例えば以下に例示することができる。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 
 また、本発明に用いられる式(13)及び式(14)で示される化合物は例えば以下に例示することができる。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 例えば上記架橋剤の中で式(c-23)の化合物は、商品名TMOM-BP(本州
化学工業(株)製)、式(c-24)の化合物は商品名TM-BIP-A(旭有機材工業
(株)製)として入手することができる。
<(D)溶媒>
 本発明で、上記のポリマー及び架橋剤成分、架橋触媒等を溶解させる溶剤としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコ-ルモノブチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、トルエン、キシレン、スチレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトシキ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、1-オクタノール、エチレングリコール、ヘキシレングリコール、トリメチレングリコール、1-メトキシ-2-ブタノール、シクロヘキサノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、プロピレングリコール、ベンジルアルコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、γ-ブチルラクトン、アセトン、メチルイソプロピルケトン、ジエチルケトン、メチルイソブチルケトン、メチルノーマルブチルケトン、酢酸イソプロピルケトン、酢酸ノーマルプロピル、酢酸イソブチル、メタノール、エタノール、イソプロパノール、tert-ブタノール、アリルアルコール、ノーマルプロパノール、2-メチル-2-ブタノール、イソブタノール、ノーマルブタノール、2-メチル-1-ブタノール、1-ペンタノール、2-メチル-1-ペンタノール、2-エチルヘキサノール、イソプロピルエーテル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、N-シクロヘキシル-2-ピロリジノン等を用いることができる。これらの有機溶剤は単独で、または2種以上の組合せで使用される。
<(C)フッ素系界面活性剤>
 本発明で使用されるフッ素系界面活性剤としては、エフトップ〔登録商標〕EF301、同EF303、同EF352(三菱マテリアル電子化成(株)製)、メガファック〔登録商標〕F171、同F173、同R-30、同R-30N、同R-40、同R-40LM(DIC(株)製)、フロラードFC430、同FC431(住友スリーエム(株)製)、アサヒガード〔登録商標〕AG710、サーフロン〔登録商標〕S-382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(旭硝子(株)製)等を挙げることができる。これらの界面活性剤から選択された1種類を添加してもよいし、2種以上を組合せて添加することもできる。上記界面活性剤の含有割合は、本発明のレジスト下層膜形成組成物から後述する溶剤を除いた固形分に対して、例えば0.01質量%乃至5質量%である。
<その他の成分>
 本発明のレジスト下層膜形成組成物は、さらに酸性化合物を含有することができる。上記酸性化合物は架橋反応を促進する触媒としてはたらき、例えば、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウム-p-トルエンスルホネート、サリチル酸、カンファースルホン酸、5-スルホサリチル酸、4-クロロベンゼンスルホン酸、4-ヒドロキシベンゼンスルホン酸、ベンゼンジスルホン酸、1-ナフタレンスルホン酸、クエン酸、安息香酸、ヒドロキシ安息香酸等のスルホン酸化合物及びカルボン酸化合物、塩酸、硫酸、硝酸、リン酸等の無機酸を挙げることができる。さらに市販の熱酸発生剤(例えばトリフルオロメタンスルホン酸系化合物であるK-PURE TAG-2689(キングインダストリーズ社製)等)を使用することができる。上記酸性化合物に代えて、又は上記酸性化合物と共に、熱酸発生剤を含有することができる。上記熱酸発生剤も架橋反応を促進する触媒としてはたらき、例えばトリフルオロメタンスルホン酸の第4級アンモニウム塩を挙げることができる。これらの酸性化合物及び熱酸発生剤から選択された1種類を添加してもよいし、2種以上を組合せて添加することもできる。上記酸性化合物及び/又は熱酸発生剤の含有割合は、本発明のレジスト下層膜形成組成物から前述した溶剤を除いた固形分に対して、例えば0.1質量%乃至20質量%である。
<レジスト下層膜及び半導体装置の製造方法>
 以下、本発明に係るレジスト下層膜形成組成物を用いたレジスト下層膜及び半導体装置の製造方法について説明する。
 本発明に係るレジスト下層膜は、上記したレジスト下層膜形成組成物を半導体基板上に塗布し、焼成することにより製造することができる。
 半導体装置の製造に使用される基板(半導体基板、例えば、シリコンウエハー基板、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、ガラス基板、ITO基板、ポリイミド基板、及び低誘電率材料(low-k材料)被覆基板等)の上に、スピナー、コーター等の適当な塗布方法により本発明のレジスト下層膜形成組成物が塗布され、その後、焼成することによりレジスト下層膜が形成される。焼成する条件としては、焼成温度80℃乃至250℃、焼成時間0.3分間乃至60分間の中から適宜、選択される。好ましくは、焼成温度150℃乃至250℃、焼成時間0.5分間乃至2分間である。ここで、形成される下層膜の膜厚としては、例えば、10nm乃至1000nmであり、又は20nm乃至500nmであり、又は30nm乃至300nmであり、又は50nm乃至300nmであり、又は50nm乃至200nmである。
 また、本発明に係る有機レジスト下層膜上に無機レジスト下層膜(ハードマスク)を形成することもできる。例えば、国際公開WO2009/104552号パンフレットに記載のシリコン含有レジスト下層膜(無機レジスト下層膜)形成組成物をスピンコートで形成する方法の他、Si系の無機材料膜をCVD法などで形成することができる。
 また、本発明に係るレジスト下層膜形成組成物を、段差を有する部分と段差を有しない部分とを有する半導体基板(いわゆる段差基板)上に塗布し、焼成することにより、当該段差を有する部分と段差を有しない部分との段差が、例えば3nm乃至50nmの範囲内である、レジスト下層膜を形成することができる。
 次いでそのレジスト下層膜の上に、例えばフォトレジストの層が形成される。フォトレジストの層の形成は、周知の方法、すなわち、フォトレジスト組成物溶液の下層膜上への塗布及び焼成によって行なうことができる。フォトレジストの膜厚としては例えば50nm乃至10000nmであり、または100nm乃至2000nmであり、または200nm乃至1000nmである。
 レジスト下層膜の上に形成されるフォトレジストとしては露光に使用される光に感光するものであれば特に限定はない。ネガ型フォトレジスト及びポジ型フォトレジストのいずれも使用できる。ノボラック樹脂と1,2-ナフトキノンジアジドスルホン酸エステルとからなるポジ型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと光酸発生剤からなる化学増幅型フォトレジスト、酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物とアルカリ可溶性バインダーと光酸発生剤とからなる化学増幅型フォトレジスト、及び酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物と光酸発生剤からなる化学増幅型フォトレジストなどがある。例えば、シプレー社製商品名APEX-E、住友化学工業(株)製商品名PAR710、及び信越化学工業(株)製商品名SEPR430等が挙げられる。また、例えば、Proc.SPIE,Vol.3999,330-334(2000)、Proc.SPIE,Vol.3999,357-364(2000)、やProc.SPIE,Vol.3999,365-374(2000)に記載されているような、含フッ素原子ポリマー系フォトレジストを挙げることができる。
 次に、所定のマスクを通して露光が行なわれる。露光には、近紫外線、遠紫外線、又は極端紫外線(例えば、EUV(波長13.5nm))等が用いられる。具体的には、KrFエキシマレーザー(波長248nm)、ArFエキシマレーザー(波長193nm)及びFエキシマレーザー(波長157nm)等を使用することができる。これらの中でも、ArFエキシマレーザー(波長193nm)及びEUV(波長13.5nm)が好ましい。露光後、必要に応じて露光後加熱(Post Exposure Bake)を行なうこともできる。露光後加熱は、加熱温度70℃乃至150℃、加熱時間0.3分間乃至10分間から適宜、選択された条件で行われる。
 また、本発明ではレジストとしてフォトレジストに変えて電子線リソグラフィー用レジストを用いることができる。電子線レジストとしてはネガ型、ポジ型いずれも使用できる。酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーからなる化学増幅型レジスト、アルカリ可溶性バインダーと酸発生剤と酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーと酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、電子線によって分解してアルカリ溶解速度を変化させる基を有するバインダーからなる非化学増幅型レジスト、電子線によって切断されアルカリ溶解速度を変化させる部位を有するバインダーからなる非化学増幅型レジストなどがある。これらの電子線レジストを用いた場合も照射源を電子線としてフォトレジストを用いた場合と同様にレジストパターンを形成することができる。
 次いで、現像液によって現像が行なわれる。これにより、例えばポジ型フォトレジストが使用された場合は、露光された部分のフォトレジストが除去され、フォトレジストのパターンが形成される。
 現像液としては、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物の水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、コリンなどの水酸化四級アンモニウムの水溶液、エタノールアミン、プロピルアミン、エチレンジアミンなどのアミン水溶液等のアルカリ性水溶液を例として挙げることができる。さらに、これらの現像液に界面活性剤などを加えることもできる。現像の条件としては、温度5℃乃至50℃、時間10秒乃至600秒から適宜選択される。
 そして、このようにして形成されたフォトレジスト(上層)のパターンを保護膜として無機下層膜(中間層)の除去が行われ、次いでパターン化されたフォトレジスト及び無機下層膜(中間層)からなる膜を保護膜として、有機下層膜(下層)の除去が行われる。最後に、パターン化された無機下層膜(中間層)及び有機下層膜(下層)を保護膜として、半導体基板の加工が行なわれる。
 まず、フォトレジストが除去された部分の無機下層膜(中間層)をドライエッチングによって取り除く。無機下層膜のドライエッチングにはテトラフルオロメタン(CF)、パーフルオロシクロブタン(C)、パーフルオロプロパン(C)、トリフルオロメタン、一酸化炭素、アルゴン、酸素、窒素、六フッ化硫黄、ジフルオロメタン、三フッ化窒素及び三フッ化塩素、塩素、トリクロロボラン及びジクロロボラン等のガスを使用することができる。無機下層膜のドライエッチングにはハロゲン系ガスを使用することが好ましく、フッ素系ガスによることがより好ましい。フッ素系ガスとしては、例えば、テトラフルオロメタン(CF)、パーフルオロシクロブタン(C)、パーフルオロプロパン(C)、トリフルオロメタン、及びジフルオロメタン(CH)等が挙げられる。
 その後、パターン化されたフォトレジストおよび無機下層膜から成る膜を保護膜として有機下層膜の除去が行われる。有機下層膜(下層)は酸素系ガスによるドライエッチングによって行なわれることが好ましい。シリコン原子を多く含む無機下層膜は、酸素系ガスによるドライエッチングでは除去されにくいからである。
 最後に、半導体基板の加工が行なわれる。半導体基板の加工はフッ素系ガスによるドライエッチングによって行なわれることが好ましい。
 フッ素系ガスとしては、例えば、テトラフルオロメタン(CF)、パーフルオロシクロブタン(C)、パーフルオロプロパン(C)、トリフルオロメタン、及びジフルオロメタン(CH)等が挙げられる。
 また、レジスト下層膜の上層には、フォトレジストの形成前に有機系の反射防止膜を形成することができる。そこで使用される反射防止膜組成物としては特に制限はなく、これまでリソグラフィープロセスにおいて慣用されているものの中から任意に選択して使用することができ、また、慣用されている方法、例えば、スピナー、コーターによる塗布及び焼成によって反射防止膜の形成を行なうことができる。
 本発明では基板上に有機下層膜を成膜した後、その上に無機下層膜を成膜し、更にその上にフォトレジストを被覆することができる。これによりフォトレジストのパターン幅が狭くなり、パターン倒れを防ぐためにフォトレジストを薄く被覆した場合でも、適切なエッチングガスを選択することにより基板の加工が可能になる。
例えば、フォトレジストに対して十分に早いエッチング速度となるフッ素系ガスをエッチングガスとして用いればレジスト下層膜の加工が可能であり、また無機下層膜に対して十分に早いエッチング速度となるフッ素系ガスをエッチングガスとして用いれば基板の加工が可能であり、更に有機下層膜に対して十分に早いエッチング速度となる酸素系ガスをエッチングガスとして用いれば基板の加工を行うことができる。
 レジスト下層膜形成組成物より形成されるレジスト下層膜は、また、リソグラフィープロセスにおいて使用される光の波長によっては、その光に対する吸収を有することがある。そして、そのような場合には、基板からの反射光を防止する効果を有する反射防止膜として機能することができる。さらに、本発明のレジスト下層膜形成組成物で形成された下層膜はハードマスクとしても機能し得るものである。本発明の下層膜は、基板とフォトレジストとの相互作用の防止するための層、フォトレジストに用いられる材料又はフォトレジストへの露光時に生成する物質の基板への悪作用を防ぐ機能とを有する層、加熱焼成時に基板から生成する物質の上層フォトレジストへの拡散を防ぐ機能を有する層、及び半導体基板誘電体層によるフォトレジスト層のポイズニング効果を減少させるためのバリア層等として使用することも可能である。
 また、レジスト下層膜形成組成物より形成される下層膜は、デュアルダマシンプロセスで用いられるビアホールが形成された基板に適用され、ホールを隙間なく充填することができる埋め込み材として使用できる。また、凹凸のある半導体基板の表面を平坦化するための平坦化材として使用することもできる。
 以下に実施例等を参照しつつ本発明を更に詳細に説明するが、本発明は下記の態様に限定されるものではない。
下記合成例1に示す重量平均分子量及び多分散度は、ゲルパーミエーションクロマトグラフィー(以下、本明細書ではGPCと略称する。)による測定結果に基づく。測定には、東ソー(株)製GPC装置を用い、測定条件は下記のとおりである。
GPCカラム:TSKgel SuperMultipore〔登録商標〕Hz-N(東ソー(株))
カラム温度:40℃
溶媒:テトラヒドロフラン(THF)
流量:0.35mL/分
標準試料:ポリスチレン(東ソー(株))
(合成例1)
 窒素下、500mL四口フラスコにα,α’-ジヒドロキシ-1,3-ジイソプロピルベンゼン(37.33g、0.1921mol東京化成工業(株)製)、N,N’-ジフェニル-1,4-フェニレンジアミン(50.00g、0.1921mol、東京化成工業(株)製)、パラトルエンスルホン酸一水和物(1.53g、0.008mol、東京化成工業(株)製)を加え、さらにプロピレングリコールモノメチルエーテルアセテート(以下本明細書ではPGMEAと略称する。)(207.33g、関東化学(株)製)を仕込み、撹拌し、リフラックスが確認されるまで昇温し溶解させ、重合を開始した。16時間後60℃まで放冷後、メタノール(1600g、関東化学(株)製)へ再沈殿させた。得られた沈殿物をろ過し、減圧乾燥機で50℃、16時間乾燥させ、式(S-1)で表される構造単位を有するポリマー(56.04g)を得た。得られたポリマーのGPCによるポリスチレン換算で測定される重量平均分子量は2700であった。
Figure JPOXMLDOC01-appb-C000042
(合成例2)
窒素下、300mL三口フラスコにN-フェニル-2-ナフチルアミン(80.00g、0.3648mol、東京化成工業(株)製)、2-エチルヘキシルアルデヒド(46.78g、0.3649mol、東京化成工業(株)製)及びメタルンスルホン酸(21.04g、0.2189mol、東京化成工業(株)製)を加え、さらにプロピレングリコールモノメチルエーテル(36.95g)を仕込み、加熱還流撹拌した。22時間後室温まで放冷し、メタノール(1L、関東化学(株)製)中へ再沈殿させた。得られた沈殿物をろ過し、減圧乾燥機で60℃、67時間乾燥し、式(S-2)で表されるポリマー64.97gを得た。GPCによるポリスチレン換算で測定される重量平均分子量Mwは1,200、多分散度Mw/Mn1.57であった。
Figure JPOXMLDOC01-appb-C000043
(実施例1)
 合成例1で得たポリマー1.227gに、架橋剤として国際公開WO2014/208542号パンフレットの合成例10に記載のPGME-BIP-A0.368g、酸触媒としてピリジニウム-p-フェノールスルホネート0.055g、界面活性剤としてメガファックR-40(DIC(株)製)0.0025gを混合し、プロピレングリコールモノメチルエーテル6.92g、エチルラクテート4.40g、プロピレングリコールモノメチルエーテルアセテート13.18gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いて濾過して、リソグラフィープロセスに用いるレジスト下層膜形成組成物を調製した。
(実施例2)
合成例1で得たポリマー1.227gに、架橋剤として国際公開WO2014/208542号パンフレットの合成例10に記載のPGME-BIP-A0.368g、酸触媒としてピリジニウム-p-フェノールスルホネート0.055g、界面活性剤としてメガファックR-40(DIC(株)製)0.0061gを混合し、プロピレングリコールモノメチルエーテル6.93g、エチルラクテート4.40g、プロピレングリコールモノメチルエーテルアセテート13.22gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いて濾過して、リソグラフィープロセスに用いるレジスト下層膜形成組成物を調製した。
(実施例3)
 合成例2で得たポリマー0.906gに、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業(株)製)0.272g、酸触媒としてK-PURE TAG-2689(キングインダストリーズ社製)0.014g、界面活性剤としてメガファックR-40(DIC(株)製)0.009gを混合し、プロピレングリコールモノメチルエーテル5.640g、プロピレングリコールモノメチルエーテルアセテート13.160gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、リソグラフィープロセスに用いるレジスト下層膜形成組成物を調製した。
(比較例1)
 合成例1で得たポリマー1.228gに、プロピレングリコールモノメチルエーテル1.44g、プロピレングリコールモノメチルエーテルアセテート13.16gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いて濾過して、リソグラフィープロセスに用いるレジスト下層膜形成組成物を調製した。
(比較例2)
 合成例2で得たポリマー0.913gに、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業(株)製)0.274g、酸触媒としてK-PURE TAG-2689(キングインダストリーズ社製)0.014gを混合し、プロピレングリコールモノメチルエーテル5.640g、プロピレングリコールモノメチルエーテルアセテート13.160gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、リソグラフィープロセスに用いるレジスト下層膜形成組成物を調製した。
(フォトレジスト溶剤への溶出試験)
 実施例1乃至実施例2並びに比較例1で調製したレジスト下層膜形成組成物を、それぞれスピンコーターを用いてシリコンウェハー上に塗布した。ホットプレート上で240℃,1分間、さらに400℃,1分間ベークし、レジスト下層膜(膜厚0.15μm)を形成した。このレジスト下層膜を、レジストに使用する溶剤である乳酸エチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート及びシクロヘキサノンに浸漬し、それらの溶剤に不溶であることを確認した。
 また、実施例3並びに比較例2で調製したレジスト下層膜形成組成物を、それぞれスピンコーターを用いてシリコンウェハー上に塗布した。ホットプレート上で250℃,1分間ベークし、レジスト下層膜(膜厚0.10μm)を形成した。このレジスト下層膜を、レジストに使用する溶剤であるプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートに浸漬し、それらの溶剤に不溶であることを確認した。
(段差基板への被覆試験)
 段差被覆性の評価として、幅50nm、ピッチ幅100nm、深さ200nmのトレンチパターンが形成されたSiO基板を用いた。トレンチ幅50nm、ピッチ100nmのパターンが密集したデンスパターンエリア(DENSE)とパターンが形成されていないオープンエリア(OPEN)の被覆膜厚の比較を行った。実施例1乃至実施例3並びに比較例1及び比較例2のレジスト下層膜形成組成物を上記基板上に150nmの膜厚で塗布後、240℃で1分間、さらに400℃で1分間焼成した。また、実施例3及び比較例2のレジスト下層膜形成組成物を上記基板上に150nmの膜厚で塗布後、250℃で1分間焼成した。この基板の段差被覆性を日立ハイテクノロジーズ(株)製走査型電子顕微鏡(S-4800)を用いて観察し、段差基板のデンスエリア(パターン部)とオープンエリア(パターンなし部)の基板上面からの膜厚を測定し、それらの膜厚差(デンスエリアとオープンエリアとの塗布段差でありBiasと呼ぶ)を測定することで平坦化性を評価した。各エリアでの膜厚と塗布段差の値を表2に示した。平坦化性評価はBiasの値が小さいほど、平坦化性が高い。
Figure JPOXMLDOC01-appb-T000044







 段差基板への被覆性を比較すると、実施例1乃至実施例3の結果はパターンエリアとオープンエリアとの塗布段差が、比較例1及び比較例2の結果よりも小さいことから、実施例1乃至実施例3のレジスト下層膜形成組成物から得られたレジスト下層膜は平坦化性が良好と言える。
 

Claims (11)

  1. レジスト下層膜の段差(Iso-denseバイアス)を5nm以上低減する方法であって、該方法は、(A)ポリマー及び(D)溶媒を含むレジスト下層膜形成組成物に、さらに(C)フッ素系界面活性剤を添加する工程、並びに
    (C)フッ素系界面活性剤が添加された該組成物を、段差を有する部分と段差を有しない部分とを有する半導体基板上面に塗布する工程
    を含み、さらに該(C)フッ素系界面活性剤添加前の該レジスト下層膜形成組成物を該半導体基板上面に塗布する工程を含むことにより、形成したレジスト下層膜において、当該段差を有する部分の該レジスト下層膜の該基板上面からの最大膜厚が、当該段差を有しない部分の該レジスト下層膜の該基板上面からの最小膜厚より大きくなることを特徴とし、
    当該段差を有しない部分の膜厚の値から当該段差を有する部分の膜厚の値を引いた膜厚差ついて、(C)フッ素系界面活性剤が添加されたレジスト下層膜形成組成物からなるレジスト下層膜における前記膜厚差と、(C)フッ素系界面活性剤添加前のレジスト下層膜形成組成物からなるレジスト下層膜における前記膜厚差との差分が5nm以上である方法。
  2. 前記レジスト下層膜形成組成物が、さらに(B)架橋性化合物を含む、請求項1に記載の方法。
  3. 前記(A)ポリマーが、下記式(2):
    Figure JPOXMLDOC01-appb-C000001
    〔式(2)中、Aはフェニレン基又はナフチレン基を表す。Aはフェニレン基、ナフチレン基、又は式(3):
    Figure JPOXMLDOC01-appb-C000002
    (式(3)中、A及びAはそれぞれ独立にフェニレン基又はナフチレン基を表す。点線は結合を表す。)で示される有機基を表す。点線は結合を表す。〕で表される部分構造を含む、請求項1に記載の方法。
  4. 前記(A)ポリマーが下記式(1):
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、R乃至Rはそれぞれ独立に水素原子又はメチル基を示す。Xはアルキル基、アミノ基、又はヒドロキシル基で置換されていても良い少なくとも一つのアリーレン基を含む二価の有機基を示す。)で表される単位構造を含む、請求項1に記載の方法。
  5. 式(1)中、Xが式(2)で表される有機基である請求項4に記載の方法。
  6. 前記(A)ポリマーが、芳香族化合物(A1)と炭素原子数2乃至26のアルキル基の第2級炭素原子又は第3級炭素原子に結合したホルミル基を有するアルデヒド(B1)との反応物であるノボラック樹脂を含む、請求項1に記載の方法。
  7. 前記(A)ポリマーが、第二アミノ基を有する芳香族化合物とアルデヒド化合物との反応により得られるノボラックポリマーを含む、請求項1に記載の方法。
  8. 上記(A)ポリマーが、下記式(4):
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、Ar、及びArはそれぞれベンゼン環、又はナフタレン環を表し、R′及びR′はそれぞれこれら環上の水素原子の置換基でありハロゲン原子、ニトロ基、アミノ基、ヒドロキシ基、炭素原子数1乃至10のアルキル基、炭素原子数2乃至10のアルケニル基、炭素原子数6乃至40のアリール基、及びそれらの組み合わせからなる群より選択され、かつ、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合、若しくはエステル結合を含んでいてもよい有機基を表し、
    ′は水素原子、炭素原子数1乃至10のアルキル基、炭素原子数2乃至10のアルケニル基、炭素原子数6乃至40のアリール基、及びそれらの組み合わせからなる群より選択され、かつ、該アルキル基、該アルケニル基及びアリール基は、エーテル結合、ケトン結合、若しくはエステル結合を含んでいてもよい有機基を表し、
    ′は炭素原子数6乃至40のアリール基及び複素環基からなる群より選択され、かつ、該アリール基及び該複素環基は、ハロゲン原子、ニトロ基、アミノ基、炭素原子数1乃至10のアルキル基、炭素原子数1乃至10のアルコキシ基、炭素原子数6乃至40のアリール基、ホルミル基、カルボキシル基、又は水酸基で置換されていてもよい有機基を表し、
    は水素原子、炭素原子数1乃至10のアルキル基、炭素原子数6乃至40のアリール基、及び複素環基からなる群より選択され、かつ、該アルキル基、該アリール基及び該複素環基は、ハロゲン原子、ニトロ基、アミノ基、若しくは水酸基で置換されていてもよい有機基を表し、そしてR′とRはそれらが結合する炭素原子と一緒になって環を形成していてもよい。n及びnはそれぞれ0乃至3の整数である。)で表される単位構造(A2)を含むポリマーである、請求項1に記載の方法。
  9. 上記(B)架橋性化合物が、(B)下記式(11-1)又は式(12-1):
    Figure JPOXMLDOC01-appb-C000005
    (式中、Qは単結合又はm価の有機基を示し、R″及びR″はそれぞれ炭素原子数2乃至10のアルキル基、又は炭素原子数1乃至10のアルコキシ基を有する炭素原子数2乃至10のアルキル基を示し、R″及びR′はそれぞれ水素原子又はメチル基を示し、R″及びRはそれぞれ炭素原子数1乃至10のアルキル基、又は炭素原子数6乃至40のアリール基を示す。
    ′は1≦n′≦3の整数、n′は2≦n′≦5の整数、nは0≦n≦3の整数、nは0≦n≦3の整数、3≦(n′+n′+n+n)≦6の整数を示す。
    は1≦n≦3の整数、nは1≦n≦4の整数、nは0≦n≦3の整数、nは0≦n≦3の整数、2≦(n+n+n+n)≦5の整数を示す。mは2乃至10の整数を示す。)で示される架橋性化合物である、請求項2に記載の方法。
  10. 上記段差(Iso-denseバイアス)が、5nm乃至55nmである、請求項1に記載の方法。
  11. 半導体基板上面の段差を有する部分の、段差パターン幅が50nm以下である、請求項1に記載の方法。
     
PCT/JP2018/023849 2017-06-23 2018-06-22 平坦化性が改善されたレジスト下層膜形成組成物 WO2018235949A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019525709A JP7475140B2 (ja) 2017-06-23 2018-06-22 平坦化性が改善されたレジスト下層膜形成組成物
CN201880041969.XA CN110809738B (zh) 2017-06-23 2018-06-22 改善了平坦化性的抗蚀剂下层膜形成用组合物
KR1020197038432A KR102568212B1 (ko) 2017-06-23 2018-06-22 평탄화성이 개선된 레지스트 하층막 형성 조성물
US16/625,957 US11287742B2 (en) 2017-06-23 2018-06-22 Composition for forming resist underlayer film having improved flattening properties
JP2022198082A JP7545122B2 (ja) 2017-06-23 2022-12-12 平坦化性が改善されたレジスト下層膜形成組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017123629 2017-06-23
JP2017-123629 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018235949A1 true WO2018235949A1 (ja) 2018-12-27

Family

ID=64735946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023849 WO2018235949A1 (ja) 2017-06-23 2018-06-22 平坦化性が改善されたレジスト下層膜形成組成物

Country Status (6)

Country Link
US (1) US11287742B2 (ja)
JP (2) JP7475140B2 (ja)
KR (1) KR102568212B1 (ja)
CN (1) CN110809738B (ja)
TW (1) TWI770204B (ja)
WO (1) WO2018235949A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10394124B2 (en) * 2014-11-04 2019-08-27 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition containing polymer having arylene group
JP2021071660A (ja) * 2019-10-31 2021-05-06 東京応化工業株式会社 ハードマスク形成用組成物及び電子部品の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102155115B1 (ko) * 2012-12-14 2020-09-11 닛산 가가쿠 가부시키가이샤 카르보닐기함유 폴리하이드록시 방향환 노볼락수지를 포함하는 레지스트 하층막 형성조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115044A1 (ja) * 2005-04-19 2006-11-02 Nissan Chemical Industries, Ltd. 光架橋硬化のレジスト下層膜を形成するためのレジスト下層膜形成組成物
WO2016072316A1 (ja) * 2014-11-04 2016-05-12 日産化学工業株式会社 アリーレン基を有するポリマーを含むレジスト下層膜形成組成物
WO2017069063A1 (ja) * 2015-10-19 2017-04-27 日産化学工業株式会社 長鎖アルキル基含有ノボラックを含むレジスト下層膜形成組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263286B2 (en) * 2011-09-29 2016-02-16 Nissan Chemical Industries, Ltd. Diarylamine novolac resin
JP5894106B2 (ja) * 2012-06-18 2016-03-23 信越化学工業株式会社 レジスト下層膜形成用化合物、これを用いたレジスト下層膜材料、レジスト下層膜形成方法、パターン形成方法
CN104508558B (zh) * 2012-08-10 2016-07-06 日产化学工业株式会社 抗蚀剂下层膜形成用组合物
JP2014137546A (ja) * 2013-01-18 2014-07-28 Nissan Chem Ind Ltd レジスト下層膜形成組成物
WO2014185335A1 (ja) * 2013-05-13 2014-11-20 日産化学工業株式会社 ビスフェノールアルデヒドを用いたノボラック樹脂含有レジスト下層膜形成組成物
JP2016145849A (ja) * 2013-06-17 2016-08-12 日産化学工業株式会社 トリヒドロキシナフタレンノボラック樹脂を含むレジスト下層膜形成組成物
CN105874386B (zh) 2013-12-26 2019-12-06 日产化学工业株式会社 含有具有仲氨基的酚醛清漆聚合物的抗蚀剂下层膜形成用组合物
KR102515840B1 (ko) * 2014-02-12 2023-03-30 닛산 가가쿠 가부시키가이샤 불소함유 계면활성제를 포함하는 막형성 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115044A1 (ja) * 2005-04-19 2006-11-02 Nissan Chemical Industries, Ltd. 光架橋硬化のレジスト下層膜を形成するためのレジスト下層膜形成組成物
WO2016072316A1 (ja) * 2014-11-04 2016-05-12 日産化学工業株式会社 アリーレン基を有するポリマーを含むレジスト下層膜形成組成物
WO2017069063A1 (ja) * 2015-10-19 2017-04-27 日産化学工業株式会社 長鎖アルキル基含有ノボラックを含むレジスト下層膜形成組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10394124B2 (en) * 2014-11-04 2019-08-27 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition containing polymer having arylene group
JP2021071660A (ja) * 2019-10-31 2021-05-06 東京応化工業株式会社 ハードマスク形成用組成物及び電子部品の製造方法
JP7349887B2 (ja) 2019-10-31 2023-09-25 東京応化工業株式会社 ハードマスク形成用組成物及び電子部品の製造方法

Also Published As

Publication number Publication date
JP7475140B2 (ja) 2024-04-26
CN110809738B (zh) 2021-04-20
JPWO2018235949A1 (ja) 2020-04-23
JP7545122B2 (ja) 2024-09-04
KR102568212B1 (ko) 2023-08-18
JP2023051942A (ja) 2023-04-11
TWI770204B (zh) 2022-07-11
US11287742B2 (en) 2022-03-29
KR20200022395A (ko) 2020-03-03
TW201920344A (zh) 2019-06-01
US20200174370A1 (en) 2020-06-04
CN110809738A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
JP6094767B2 (ja) フェニルインドール含有ノボラック樹脂を含むレジスト下層膜形成組成物
JP6066092B2 (ja) ジアリールアミンノボラック樹脂
US10437150B2 (en) Composition for forming resist underlayer film with reduced outgassing
JP6583630B2 (ja) 第二アミノ基を有するノボラックポリマーを含むレジスト下層膜形成組成物
JP6703308B2 (ja) 芳香族メチロール化合物が反応したノボラック樹脂を含むレジスト下層膜形成組成物
TWI770055B (zh) 含有含三芳基二胺之酚醛清漆樹脂的阻劑下層膜形成組成物
JP7545122B2 (ja) 平坦化性が改善されたレジスト下層膜形成組成物
TW201518867A (zh) 含有具含氮環化合物之聚合物的光阻下層膜形成組成物
US20190086806A1 (en) Resist underlayer film forming composition which contains compound having glycoluril skeleton as additive
TWI844674B (zh) 包含脂環式化合物末端之聚合物的阻劑下層膜形成組成物、經圖型化之基板的製造方法、及半導體裝置之製造方法
JP7265225B2 (ja) 芳香族ビニル化合物が付加したトリアリールジアミン含有ノボラック樹脂を含むレジスト下層膜形成組成物
WO2022196495A1 (ja) レジスト下層膜形成組成物
WO2022138454A1 (ja) レジスト下層膜形成組成物
WO2023162653A1 (ja) レジスト下層膜形成組成物
TW202433187A (zh) 包含脂環式化合物末端之聚合物的阻劑下層膜形成組成物、經圖型化之基板的製造方法、及半導體裝置之製造方法
CN117043679A (zh) 具有被保护了的碱性的有机基的抗蚀剂下层膜形成用组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197038432

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18820841

Country of ref document: EP

Kind code of ref document: A1