WO2018066592A1 - ポリウレタン弾性繊維の製造方法 - Google Patents

ポリウレタン弾性繊維の製造方法 Download PDF

Info

Publication number
WO2018066592A1
WO2018066592A1 PCT/JP2017/036105 JP2017036105W WO2018066592A1 WO 2018066592 A1 WO2018066592 A1 WO 2018066592A1 JP 2017036105 W JP2017036105 W JP 2017036105W WO 2018066592 A1 WO2018066592 A1 WO 2018066592A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyurethane
polymer
elastic fiber
compound
Prior art date
Application number
PCT/JP2017/036105
Other languages
English (en)
French (fr)
Inventor
吉里 明彦
Original Assignee
三光株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三光株式会社 filed Critical 三光株式会社
Priority to KR1020197012058A priority Critical patent/KR102076103B1/ko
Priority to DE112017005050.2T priority patent/DE112017005050B4/de
Priority to CN201780072940.3A priority patent/CN110036145B/zh
Priority to JP2018543934A priority patent/JP6509449B2/ja
Priority to US16/336,393 priority patent/US11105020B2/en
Publication of WO2018066592A1 publication Critical patent/WO2018066592A1/ja
Priority to US17/386,701 priority patent/US11618979B2/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/72Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyureas
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic

Definitions

  • the present invention relates to a method for producing a polyurethane elastic fiber. That is, the present invention relates to a method for producing a polyurethane elastic fiber that generates as little scum as possible and is excellent in heat setting properties, dyeability and dyeing fastness. Furthermore, in dry spinning using a spinning stock solution in which the aggregation of the inorganic functional agent is suppressed, excellent spinning stability, no scum on the yarn surface, excellent metal abrasion, and easy polyurethane elastic fiber The present invention relates to a manufacturing method. The present application claims priority based on Japanese Patent Application No. 2016-197498 filed in Japan on October 5, 2016 and Japanese Patent Application No. 2016-197499 filed in Japan on October 5, 2016, The contents are incorporated here.
  • Polyurethane elastic fiber is rich in stretchability, and because of its excellent physical and chemical properties, it is widely used in textile products such as foundations, underwear, body suits, legs, pantyhose, swimwear, jeans, sportswear and hygiene materials. ing. Polyurethane elastic fibers are generally used after being knitted or woven with other fiber materials such as nylon fibers. In particular, it is often used in combination with nylon fibers, and the fabric is usually dyed with an acid dye, an acid dye, and a metal-containing dye, which are anionic dyes used as nylon dyes.
  • polyurethane elastic fibers do not have sufficient dyeability and dyeing fastness during washing.
  • examination of processing conditions during dyeing, development of dyes, modification of polyurethane polymer itself, blending of additives into polyurethane Various studies such as these have been made, but it is still not sufficient, and further improvement is desired for the dyeing performance of polyurethane elastic fibers.
  • polyurethane elastic fibers are inferior in elasticity and therefore have poor dimensional stability when made into fabrics, so the fabric curls after the fabric is cut and burdens the operator when sewing the fabric into the product.
  • another problem with polyurethane elastic fibers is that they are inherently sticky, so that thread breakage tends to occur during the knitting process of the fabric due to metal friction with the knitting needles and guides. In addition, when scum is generated, metal wear on the needle and guide is further deteriorated.
  • a compound having a tertiary nitrogen group is built into the main chain of the urethane polymer, or a compound having a tertiary nitrogen group in the side chain of polyacrylic acid is added to the polymer polymer to improve polyurethane dyeing properties.
  • Attempts have been made (see Patent Documents 1 to 4 below).
  • Patent Documents 1 to 4 when a compound having a tertiary nitrogen group is built in the main chain of the polyurethane polymer or a compound having a side chain having a tertiary nitrogen group is added to the main chain, the crystal structure in the polyurethane structure is reduced. Due to the disturbance, there is a problem that the heat resistance of the fiber is lowered by the heat flow and the elastic recoverability which is a physical characteristic of the elastic fiber is lowered.
  • Patent Document 5 attempts to improve the polyurethane resin constituting the polyurethane elastic fiber by using a low molecular weight urea compound having a tertiary nitrogen group at a terminal group having a molecular weight of 300 or more and less than 2,000. Yes. Since this low molecular weight urea compound has a high concentration of tertiary nitrogen groups, which are dyeing groups in one molecule, the dyeing effect is high even when added in a small amount. However, the low molecular weight urea compound has a problem that scum (yarn residue) is likely to occur because of its poor affinity with polyurethane. The scum is generated in this manner because the urea bond has a lower affinity for the polyurethane urea polymer than the urethane bond.
  • Patent Document 6 also proposes to improve the above problems by using a polyurethane polymer having a specific structure in which the end group having a molecular weight of 2,000 to 100,000 is a tertiary nitrogen group.
  • Part of the polyurethane polymer obtained in Patent Document 6 has a relatively high molecular weight and is entangled with the fiber, so that the occurrence of scum as described above is unlikely to occur, but a tertiary nitrogen group is added to the end group of the molecule. Therefore, in the case of a polymer, the concentration as a dyeing group is lowered, and therefore the dyeability is lowered.
  • Patent Document 7 the main constituents of the raw material are polymer diol and diisocyanate, which contains a polymer of a compound having a sulfonic acid group as an anionic functional group, and has dyeability when dyed with a cationic dye.
  • a polyurethane-based elastic yarn is disclosed that is characterized.
  • Patent Document 8 discloses that the dispersibility of inorganic particles is improved by using a polycarboxylic acid copolymer compound as an anionic functional group.
  • a polymer of a compound having an anionic functional group is used alone, the weakly basic dyeing seat in the polyurethane polymer itself is blocked by the anionic functional group. The dye cannot adsorb and bond. For this reason, the dyeing property of a compound in which only a compound having an anionic functional group is added to the polymer is lowered even when compared with an unadded polyurethane polymer.
  • a tertiary nitrogen group-containing compound is effective in improving the dyeability of polyurethane elastic fibers.
  • the amount of functional groups is small, sufficient dyeability cannot be obtained.
  • a low molecular weight urea compound having an increased amount of tertiary nitrogen functional group is used, it bleeds out from the added polyurethane elastic fiber to form a scum, or the elastic characteristics of the polyurethane elastic fiber deteriorate. Due to the different dye adsorption characteristics of polyurethane elastic fibers and other fibers such as nylon that are mixed together, dyeing with three primary dyes causes a color difference between polyurethane and nylon, making it difficult to match colors. there were.
  • polyurethane elastic fiber is originally a soft and sticky material, yarn breakage due to frictional resistance at the guide and rollers in the spinning process is likely to occur.
  • fine powder such as titanium oxide is used.
  • the problem is solved by adding to the polyurethane polymer.
  • the tertiary nitrogen-containing compound has a problem of promoting aggregation of titanium oxide and hydrotalcite in a polyurethane spinning solution, and conversely increasing yarn cracking during spinning.
  • Patent Document 9 a tertiary nitrogen-containing specific polymer having a maleimide structure does not generate scum, does not lower the stretch recovery of polyurethane elastic fibers, and is not extracted with perchlorethylene or the like, Further, it is disclosed that durability is good and the dyeability of polyurethane can be improved.
  • titanium oxide or hydrotalcite promotes aggregation in the polyurethane spinning solution, and conversely increases yarn clearance during spinning.
  • a tertiary nitrogen group-containing compound is effective in improving the dyeability of polyurethane elastic fibers.
  • the tertiary nitrogen group is mainly present in the main chain of the polymer or when the affinity between the tertiary nitrogen group-containing compound and the polyurethane polymer is not good, the performance of the polyurethane elastic fiber is reduced. It had an adverse effect.
  • the object of the present invention is to achieve the above problems, that is, (1) Improving dyeability, vivid color development, and suppressing scum generation of low molecular urea compounds.
  • (2) The use of an anionic copolymer compound as a dyeing auxiliary agent in combination with a terminal tertiary nitrogen-containing compound improves the dyeability of polyurethane elastic fibers.
  • the inventors of the present invention have a polyurethane containing a polyurethane urea polymer having a tertiary nitrogen group at the polymer terminal and a molecular weight controlled in a desired range. It has been found that the elastic fiber simultaneously improves dyeability, heat resistance, heat setting property and spinnability and suppresses the occurrence of scum and yarn breakage. Further, the polyurethane urea polymer production method includes a polyurethane urea polymer and a specific diamino compound having a primary nitrogen group and a tertiary nitrogen group simultaneously in the molecule without undergoing a prepolymer reaction.
  • the present inventors have conducted intensive studies focusing on solving the above-mentioned problems by increasing the dyeing effect by reducing the amount of amines effective for acid dyes, and as a result, anionic functional groups Although the dyeing property is lowered by the compound having a single compound, a surprising synergistic effect is found by using it together with a polyurethane urea polymer containing a tertiary nitrogen compound at the end of this embodiment. It has been found that there is an inhibitory effect and has reached the present invention.
  • the present invention is as follows: [1] (1) With respect to 100 parts by mass of the solid content of the polyurethane urea polymer (B) obtained by reacting the active hydrogen-containing compound with the prepolymer obtained by reacting the polymer diol and diisocyanate, the following general Formula (2):
  • R 1 and R 2 each independently represents an alkyl group having 1 to 5 carbon atoms or a hydroxyalkylene group, or R 1 and R 2 are bonded together with a nitrogen atom to which they are bonded, and a heterocyclic group R 3 is a linear or branched alkyl group having 1 to 5 carbon atoms, a group having 1 to 5 ethyleneoxy repeating units, or a group having 1 to 5 propyleneoxy repeating units.
  • R 1 and R 2 are linear or branched alkyl groups or hydroxyalkyl groups having the same or different carbon number of 1 to 10, or R 1 and R 2 are bonded and they are bonded.
  • R 3 is a linear or branched alkylene group having 1 to 8 carbon atoms, an ethyleneoxy group having 1 to 5 repeating units, or 1 to 5 repeating units.
  • R 4 is a diisocyanate residue
  • X is a urethane bond or urea bond
  • R 5 and R 6 are the same or different diisocyanate residues
  • P is a diol residue
  • Q is A diamine residue
  • UT is a urethane bond
  • UA is a urea bond
  • k, l, m and n are each a positive number, and either m or n may be 0, and l is 0 Good.
  • the polyurethane elastic fiber is a metal salt of a metal selected from the group consisting of magnesium, calcium, aluminum, and zinc; titanium oxide; zinc oxide; metal composite of zinc oxide and silica Hydrotalcite compounds; Huntite compounds; solid solutions of MgO and ZnO; composites of silicon dioxide and zinc oxide; composite salts of silicon dioxide and zinc oxide; composite salts of silicon dioxide, zinc oxide and alumina; Inorganic functional agent selected from the group consisting of synthetic silica; carbon black; colorant; and pigment is included at a ratio of 0.1 to 10 parts by mass with respect to 100 parts by mass of the solid content of the polyurethaneurea polymer (B).
  • the method for producing a polyurethane elastic fiber according to any one of [1] to [4].
  • dyeability, dye fastness in washing and dry cleaning can be improved, heat setability and stable spinning productivity can be ensured without lowering heat resistance, and during spinning and after processes It is possible to provide a method for producing a polyurethane elastic fiber in which occurrence of scum and yarn breakage is suppressed.
  • this embodiment modes for carrying out the present invention (hereinafter simply referred to as “this embodiment”) will be described in detail by dividing them into “first embodiment” and “second embodiment”.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the method for producing a polyurethane elastic fiber according to Embodiment 1 is as follows: (1) With respect to 100 parts by mass of the solid content of the polyurethane urea polymer (B) obtained by reacting the active hydrogen-containing compound with the prepolymer obtained by reacting the polymer diol and diisocyanate, the following general Formula (2):
  • R 1 and R 2 each independently represents an alkyl group having 1 to 5 carbon atoms or a hydroxyalkylene group, or R 1 and R 2 are bonded together with a nitrogen atom to which they are bonded, and a heterocyclic group R 3 is a linear or branched alkyl group having 1 to 5 carbon atoms, a group having 1 to 5 ethyleneoxy repeating units, or a group having 1 to 5 propyleneoxy repeating units.
  • R 1 and R 2 are linear or branched alkyl groups or hydroxyalkyl groups having the same or different carbon number of 1 to 10, or R 1 and R 2 are bonded and they are bonded.
  • R 3 is a linear or branched alkylene group having 1 to 8 carbon atoms, an ethyleneoxy group having 1 to 5 repeating units, or 1 to 5 repeating units.
  • R 4 is a diisocyanate residue
  • X is a urethane bond or urea bond
  • R 5 and R 6 are the same or different diisocyanate residues
  • P is a diol residue
  • Q is A diamine residue
  • UT is a urethane bond
  • UA is a urea bond
  • k, l, m and n are each a positive number, and either m or n may be 0, and l is 0 Good.
  • the polyurethane urea polymer (A) according to the first embodiment which is one of the components of the polyurethane elastic fiber, is, for example, as described later, with respect to 100 parts by mass of the solid content of the polyurethane polymer (B).
  • R 1 and R 1 each independently represents an alkyl group having 1 to 5 carbon atoms or a hydroxyalkylene group, or R 1 and R 2 are bonded together with a nitrogen atom to which they are bonded, and a heterocyclic group R 3 is a linear or branched alkyl group having 1 to 5 carbon atoms, a group having 1 to 5 ethyleneoxy repeating units, or a group having 1 to 5 propyleneoxy repeating units.
  • Can be produced by heating after adding the diamino compound represented by the formula at a ratio of 0.01 to 15 parts by mass.
  • a primary nitrogen group having a tertiary nitrogen group and capable of adjusting the molecular weight of the polyurethaneurea polymer (B) by an amino exchange reaction is contained in the molecule.
  • It is a monoactive hydrogen compound having at the same time, and examples thereof include the following compounds.
  • the diamino compound is added in a ratio of 0.01 to 15 parts by mass with respect to 100 parts by mass of the solid content of the polyurethane urea polymer (B) described later. It is characterized by.
  • the polymer terminal represented by the above formula (1) has the tertiary nitrogen group, and the polystyrene-equivalent number average molecular weight is 12 , 5,000 to 50,000 polyurethaneurea polymer (A) can be produced.
  • the maximum effect of the first embodiment that is, the dyeability, heat resistance, heat setting property and spinnability are improved at the same time, and the occurrence of scum and yarn breakage in the subsequent process.
  • a polyurethane elastic fiber to be suppressed can be obtained.
  • This polyurethane urea polymer (B) used in Embodiment 1 will be described.
  • This polyurethane urea polymer (B) is obtained by a known method in which an active hydrogen-containing compound is reacted with a prepolymer obtained by reacting a polymer diol and diisocyanate.
  • polymer diol examples include polyester diol, polycarbonate diol, and polyether diol.
  • Polyether diols are preferable, and polyalkylene ether diols in which one or two or more linear or branched alkylene groups having 2 to 10 carbon atoms are ether-bonded are particularly preferable.
  • the polyalkylene ether diol is preferably a single or copolymerized polyalkylene ether diol.
  • the number average molecular weight (Mn) of the polyalkylene ether diol used in the present invention is preferably 500 to 6,000, more preferably 1,000 to 3,000. When Mn is smaller than 500, the elastic recovery property is lowered, and when it is larger than 6,000, the spinnability is deteriorated.
  • an alkylene group is ether-bonded in a block shape or a random shape.
  • PTMG polytetramethylene ether glycol
  • a single-polymerized polyalkylene ether diol widely used as a raw material for polyurethane elastic fibers a copolymer polyalkylene ether diol composed of two or more types of alkylene groups.
  • the diol component occupying 65% by mass to 85% by mass of the polyurethane component is amorphous, the dye easily penetrates into the polyurethane polymer, and the diamino compound and the dye in the polyurethane elastic fiber. Are combined efficiently, and vivid color development with better dyeability and hue is obtained.
  • the advantage of using the copolymerized diol is that the elastic function is further improved, so that this polyurethane elastic fiber has excellent elastic function, that is, high elongation at break, small stress fluctuation with respect to strain when stretched, and when stretched Has low hysteresis loss of stress etc. Therefore, pantyhose and outerwear using the same have an excellent elastic function, are excellent in wearing feeling, and have good aesthetic properties.
  • a copolymerized polyalkylene ether diol containing a butylene group that is, a tetramethylene ether unit
  • a butylene group that is, a tetramethylene ether unit
  • a 2,2-dimethylpropylene group that is, a neopentylene ether unit
  • a combination of a tetramethylene ether unit and a 2-methylbutylene group is preferable.
  • the alkylene ether unit other than the tetramethylene group is preferably contained in an amount of 4 mol% to 85 mol%. If the alkylene ether unit is less than 4 mol%, the effect of improving the elastic function of the polyurethaneurea elastic fiber is small, and if it exceeds 85 mol%, the strength or elongation of the elastic fiber is greatly reduced.
  • diisocyanate examples include known aliphatic, alicyclic or aromatic organic diisocyanates having two isocyanate groups in the molecule. Specifically, 4,4′-diphenylmethane diisocyanate, 2,4- or 2,6-tolylene diisocyanate, p-phenylene diisocyanate, 1,5-naphthalene diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 4 An organic diisocyanate such as 4,4'-dicyclohexylmethane diisocyanate is exemplified, and 4,4'-diphenylmethane diisocyanate is preferable. Moreover, you may use the compound which has the blocked isocyanate group converted into a free isocyanate group as organic diisocyanate.
  • the bifunctional active hydrogen-containing compound that reacts with an isocyanate group is a conventional chain extender in polyurethane, that is, a molecular weight of 500 containing at least two hydrogen atoms that can react with isocyanate to form a urea group or a urethane group.
  • the following low molecular weight compounds can be used. Specific examples thereof include diamines such as ethylenediamine, propylenediamine, tolylenediamine, m-xylylenediamine, 1,3-diaminocyclohexane, isophoronediamine, hydrazine, 4,4'-diaminodiphenylmethane, dihydrazide, piperazine, and the like.
  • Examples thereof include diamine compounds disclosed in JP-A-5-155841, diols such as ethylene glycol, propylene glycol, and 1,4-butanediol, preferably ethylenediamine, 1,2-propylenediamine, and Examples thereof include diamine compounds disclosed in JP-A-5-155841. These compounds may be used alone or in admixture of two or more. Moreover, you may use together with the compound containing one active hydrogen which can react with isocyanate depending on the case.
  • the following compounds can be given as examples of monoactive hydrogen compounds having a tertiary nitrogen group that reacts with an isocyanate group that can be used as a terminal terminator during the polyurethane polymerization used in the present invention.
  • Examples of alcohol compounds having a tertiary nitrogen group and simultaneously having a hydroxyl group that reacts with an isocyanate group in one molecular structure include diethylaminopropyl alcohol, diethylaminoisopropyl alcohol, dimethylaminoethyl alcohol, dipropylaminoethyl alcohol, Examples include dimethylaminoethoxypropyl alcohol.
  • the mono-active hydrogen group that reacts with the isocyanate group the compound having an active amino group is more quickly completed with the isocyanate group than the compound having an active hydroxyl group, and there is less cross-linking of side reactions, It is more preferable from the viewpoints of elastic recovery and heat resistance of the polyurethane elastic fiber.
  • monoactive hydrogen compound in addition to the above monoactive hydrogen compound, it may be used by mixing with another monoactive hydrogen-containing compound that reacts with the following isocyaninate group used in the polymerization reaction of polyurethane. If the fiber is spun, the polyurethane elastic fiber of the present invention is obtained.
  • Monoalcohols such as methanol, ethanol, 2-propanol, 2-methyl-2-propanol, 1-butanol, 2-ethyl-1-hexanol, 3-methyl-1-butanol, isopropylamine, n-butylamine, t- Examples thereof include monoalkylamines such as butylamine and 2-ethylhexylamine, and dialkylamines such as diethylamine, dimethylamine, di-n-butylamine, di-t-butylamine, diisobutylamine, di-2-ethylhexylamine and diisopropylamine. These can be used alone or in combination.
  • a monoalkylamine or dialkylamine which is a monofunctional amine is preferable to a monoalcohol, and diethylamine is preferable in that the amine exchange reaction between the end group of the polyurethaneurea polymer (B) and the diamine compound (2) usable in the present invention is easy. Particularly preferred.
  • a known urethanization technique can be employed as a method for producing polyurethane urea using a diisocyanate compound, a polymer diol and an active hydrogen-containing compound.
  • the stoichiometric ratio of various compounds used in the present invention is such that the sum of the hydroxyl groups of the polymer diol and the active hydrogens of the active hydrogen-containing compound is 1.00 or more and 1.07 equivalents relative to the isocyanate group of the diisocyanate compound. Less than is preferable.
  • the diisocyanate of an excess equivalent will be previously reacted with respect to a polyol, the prepolymer of a terminal isocyanate group will be obtained, and the obtained prepolymer This is to react a bifunctional active hydrogen-containing compound, a monoactive hydrogen compound having a tertiary nitrogen group and / or a monoactive hydrogen-containing compound.
  • the specific viscosity ( ⁇ sp / c ) of the polyurethane urea polymer (B) constituting the polyurethane urea elastic fiber of the present invention is preferably 1.1 to 3.5 dl / g. By setting it as this range, it becomes an elastic fiber excellent in elastic recovery property.
  • the specific viscosity ( ⁇ sp / c ) is a value calculated by ( ⁇ / ⁇ 0 ⁇ 1) / C in a N, N-dimethylacetamide (DMAc) solvent (where C is the polymer 0 0.5 g / DMAC 99.5 g (0.5% by mass) solution viscosity, ⁇ is the number of seconds dropped in a dilute solution by an Ostwald viscometer, and ⁇ 0 is the number of seconds of DMAc only dropped by a viscometer ).
  • DMAc N, N-dimethylacetamide
  • Embodiment 1 The method for producing the polyurethaneurea elastic fiber of Embodiment 1 will be described in further detail.
  • First step ⁇ Mixed heating of polyurethane urea polymer (B) and diamino compound>
  • the diamino compound represented by the general formula (2) is added at a ratio of 0.01 to 15 parts by mass with respect to 100 parts by mass of the polyurethane urea polymer (B) described above.
  • the mixed composition containing the diamino compound represented is heated by heating, and the following general formula (1):
  • R 1 and R 2 are linear or branched alkyl groups or hydroxyalkyl groups having the same or different carbon number of 1 to 10, or R 1 and R 2 are bonded and they are bonded.
  • R 3 is a linear or branched alkylene group having 1 to 8 carbon atoms, an ethyleneoxy group having 1 to 5 repeating units, or 1 to 5 repeating units.
  • a propyleneoxy group R 4 is a diisocyanate residue
  • X is a urethane or urea bond
  • R 5 and R 6 are the same or different diisocyanate residues
  • P is a diol residue
  • Q is a diamine A residue
  • UT is a urethane bond
  • UA is a urea bond
  • k, l, m and n are positive numbers, and either m or n may be 0, and l is 0 But .
  • a polyurethane urea polymer (A) having a tertiary nitrogen group at the terminal group and having a polystyrene-equivalent number average molecular weight of 12,000 to 50,000 is produced.
  • the polyurethane urea polymer is heated under the following heating conditions.
  • the diamino compound (2) undergoes an amino exchange reaction at the urea binding site of the union (B) and reacts with the urea group site of the terminal group or main chain, and the number average molecular weight is 12,000 to 50,000 in terms of polystyrene. It is possible to obtain a polyurethaneurea polymer (A) having a molecular weight adjusted to have a tertiary nitrogen group at the terminal group.
  • a more preferable addition amount of the diamino compound (2) is a ratio of 1 to 10 parts by mass, and more preferably 2 to 8 parts by mass with respect to 100 parts by mass of the solid content of the polyurethaneurea polymer (B).
  • the heating and stirring temperature at the time of mixing and heating the polyurethane urea polymer (B) and the diamino compound according to Embodiment 1 in the presence of a solvent is preferably 50 ° C. to 150 ° C. More preferably, it is 70 ° C to 100 ° C.
  • a heating and stirring temperature of 50 ° C. to 150 ° C. is preferred because the desired polyurethane urea polymer (A) can be obtained without causing side reactions in a relatively short time.
  • the heating and mixing time of the polyurethane urea polymer (B) and the diamino compound is preferably 30 minutes to 40 hours. Preferably, it is 2 hours to 30 hours. More preferably, it is 15 hours to 25 hours. When the mixing time is within 30 minutes to 40 hours, the polyurethane urea polymer (A) having a desired molecular weight can be obtained at a predetermined mixing temperature.
  • the mixed composition containing the polyurethane urea polymer (B) and the diamino compound may be used in the absence of a solvent or a solvent, but the mixed state of the polyurethane urea polymer (B) and the diamino compound is more homogeneous. In terms of progress, it is preferably carried out under a solvent.
  • Suitable solvents include solvents inert to isocyanate groups such as N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), dimethyl sulfoxide and the like. Since DMAc or DMF is usually used as a preferred solvent for the production of polyurethane fibers, it is particularly preferable to use DMAc or DMF also when mixing with a diamino compound.
  • the polyurethane urea polymer (A) is produced using the polyurethane urea polymer (A) as the solvent and the same solvent as used in (B), the polyurethane urea polymer (B) Since the combination (A) can be directly mixed and used as a stock solution for spinning, the production process becomes simple and easy.
  • the molecular weight of the polyurethane urea polymer (A) according to Embodiment 1 can be adjusted to a desired range.
  • the number average molecular weight of the polyurethane urea polymer (A) obtained under the above mixed heating conditions is preferably adjusted to 12,000 to 50,000 in terms of polystyrene (the measurement method will be described in Examples). More preferably, it is 15,000 to 45,000, and still more preferably 20,000 to 40,000.
  • the molecular weight of the polyurethane urea polymer (A) is in the range of 12,000 to 50,000, the polyurethane elastic fiber obtained by spinning the spinning solution containing the polyurethane urea polymer (A) having the molecular weight adjusted as described above.
  • the occurrence of scum and yarn breakage in the subsequent process is suppressed, and heat resistance does not decrease. Also does not happen.
  • the solid content of the polyurethane urea polymer (A) is contained in a ratio of 0.01 to 20 parts by mass with respect to 100 parts by mass of the solid content of the other polyurethane urea polymer (B). . If the amount is less than 0.01 part, the effect is small, and if it exceeds 20 parts by weight, the elastic properties of the polyurethane elastic fiber deteriorate.
  • the amount is preferably 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass.
  • the reason why the polyurethane urea polymer (A) represented by the general formula (1) is generated by the diamino compound (2) according to the first embodiment is described in the polyurethane urea polymer (B) of the first embodiment. This is because of the transamination reaction caused by heating between the main chain and terminal urea groups of the contained polymer and the primary amino group in the amino compound (2). Thus, when the amino exchange reaction occurs between the urea group of the polyurethane urea polymer (B) and the primary amino group of the diamino compound (2), the amino exchange reaction also occurs in the main chain of the polyurethane urea polymer (B). The so-called “medium molecular weight” polyurethane urea polymer (A) in which the tertiary nitrogen group in the diamino compound (2) is bonded to the terminal group of the polymer after the cleavage occurs.
  • the produced polyurethane urea polymer (A) can secure a sufficient concentration of tertiary nitrogen groups due to its medium molecular weight and has a small amount of low molecular weight urea compounds, so that not only satisfactory dyeability can be obtained but also other polyurethane urea polymers can be obtained.
  • the coalescence (B) can be entangled at the molecular level, and scum is unlikely to occur even during spinning or in the post-process.
  • the specific compound proposed in Patent Document 5 and having a tertiary nitrogen group at the terminal group having a molecular weight of 300 or more and less than 2000 has a low k corresponding to 0 in the general formula (1).
  • Step (Process for preparing stock solution for spinning)
  • the polyurethaneurea polymer (A) solid is added in a ratio of 0.01 to 20 parts by mass with respect to 100 parts by mass of the solid content of the polyurethaneurea polymer (B), and the solvent is added.
  • a more preferable addition amount is 1 to 15 parts by mass. If the addition amount of the polyurethane urea polymer (A) is within such a predetermined range, the maximum effect in the first embodiment can be exhibited.
  • the solid concentration of the polyurethane urea polymers (A) and (B) is preferably 20% by mass or more and 50% by mass or less with respect to 100% by mass of the stock solution for spinning, and yarn breakage occurs during high-speed spinning of fine yarns. It is preferable because it is not. More preferably, it is 30 to 40% by mass.
  • the polyurethane urea polymer solution thus obtained is added with a known organic compound or inorganic compound heat stabilizer, antioxidant, ultraviolet light inhibitor, yellowing inhibitor, heat discoloration stabilizer and the like. It may be added.
  • the polyurethane urea elastic fiber of the present invention may contain various known polyurethane stabilizers, pigments, and the like as required as long as the effects of the present invention are not impaired.
  • phenolic antioxidants include 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 3,9-bis [2- [3- [3- Tert-butyl-4-hydroxy-5-methylphenyl] propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5 ⁇ 5] undecane, triethylene glycol-bis (3 -T-butyl-4-hydroxy-5-methylphenyl) propionate, a hindered phenol compound having a molecular weight of at least about 300 and having a molecular weight of at least one hindered hydroxyphenyl group, a polymer of p-cresol and divinylbenzene, Polymer of p-cresol and dicyclopentadiene, polymerization of p-chloromethylstyrene and p-cresol And the like.
  • Benzotriazole and benzophenone drugs such as “Tinubin” manufactured by Ciba Geigy, Inc.
  • Phosphorus drugs such as “Sumilyzer” P-16 manufactured by Sumitomo Chemical Co., Ltd., various hindered amine drugs, inorganics such as titanium oxide and carbon black Pigments, fluorine-based resin powders or silicone-based resin powders, metal soaps such as magnesium stearate, bactericides and deodorants containing silver, zinc, and these compounds, and lubricants such as silicone and mineral oil
  • Various antistatic agents such as barium sulfate, cerium oxide, betaine, and phosphoric acid are added, and it may be present by reacting with a polymer.
  • a nitric oxide scavenger such as HN-150 manufactured by Nippon Finechem Co., Ltd., a thermal oxidation stabilizer, a light stabilizer such as Sumitomo Chemical It is preferable to contain a light stabilizer such as “SUMISOB” 300 # 622 manufactured by Kogyo Co., Ltd.
  • the spinning method is preferably a dry spinning method capable of stably producing fine yarns during high-speed spinning.
  • a polyalkylsiloxane having a kinematic viscosity at 25 ° C. of 5 to 50 centistokes and a mineral oil having a kinematic viscosity at 25 ° C. of 30 to 70 centistokes Treating the yarn with a fiber treating agent comprising an oil component, a fatty acid metal salt, a polycarboxylic acid copolymer and a polyether-modified silicone, wherein the ratio (polyalkylsiloxane / mineral oil) is 100/0 to 50/50 Can do.
  • a polyalkylsiloxane having a kinematic viscosity at 25 ° C. of 5 to 50 centistokes and a kinematic viscosity at 25 ° C. of 30 to 70 centistokes are used.
  • the yarn can be treated with a fiber treating agent containing 0.001 to 5 parts by mass of a copolymer and 0.00001 to 5 parts by mass of a polyether-modified silicone.
  • Fiber treatment agents include modified silicone, phosphate compounds, mineral particles such as talc, silica, colloidal alumina, higher aliphatic alcohols, paraffin, polyethylene, solid wax at room temperature, colorants, rosin, pigments, Carbon black or the like may be further added as long as the effects of the present invention are not impaired.
  • the fiber treatment agent comprising these mixed compositions can be uniformly dispersed by a known method using a ball mill device, a bead mill device, or a homomixer device. It is preferable to uniformly disperse with a wet bead mill.
  • the amount of the fiber treatment agent attached to the polyurethane elastic fiber is preferably 0.5 to 10 parts by mass, more preferably 2 to 8 parts by mass, with respect to 100 parts by mass of the polyurethane elastic fiber to which no treatment agent is applied. It is.
  • the method for producing a polyurethane elastic fiber according to Embodiment 2 is as follows: (1) A step of producing the polyurethane urea polymer (A); (2) The solid content of the polyurethane urea polymer (A) is added at a ratio of 0.01 to 20 parts by mass with respect to 100 parts by mass of the solid content of the polyurethane urea polymer (B), Preparing a spinning stock solution comprising a polymer of a group-containing compound and a solvent; and (3) including a step of spinning polyurethane elastic fiber using the stock solution for spinning.
  • the polyurethane urea polymer (A) used in this embodiment has a number average molecular weight of 12,000 to 50,000, and a polyurethane having a tertiary nitrogen group at the terminal group represented by the general formula (1). It is a urea polymer.
  • the polyurethane urea polymer (A) according to the second embodiment and a polymer of a compound having an anionic functional group, which will be described later, the dyeing characteristics of the polyurethane elastic fiber, which is also a problem of the second embodiment
  • the dyeing fastness is improved at the same time, and the aggregation of the inorganic functional agent is suppressed, and the occurrence of scum and yarn breakage during spinning and in subsequent processes is suppressed.
  • the polyurethane polymer (B) used in Embodiment 2 is obtained by a known method in which an active hydrogen-containing compound is reacted with a prepolymer obtained by reacting a polymer diol and diisocyanate.
  • the polymer diol include polyester diol, polycarbonate diol, and polyether diol.
  • Polyether diols are preferable, and polyalkylene ether diols in which one or two or more linear or branched alkylene groups having 2 to 10 carbon atoms are ether-bonded are particularly preferable.
  • the polyalkylene ether diol is preferably a single or copolymerized polyalkylene ether diol.
  • the number average molecular weight (Mn) of the polyalkylene ether diol used in Embodiment 2 is preferably 500 to 6,000, more preferably 1,000 to 3,000. When Mn is smaller than 500, the elastic recovery property is lowered, and when it is larger than 6,000, the spinnability is deteriorated.
  • an alkylene group is ether-bonded in a block shape or a random shape.
  • PTMG polytetramethylene ether glycol
  • a single-polymerized polyalkylene ether diol widely used as a raw material for polyurethane elastic fibers a copolymer polyalkylene ether diol composed of two or more types of alkylene groups.
  • the diol component occupying 65% by mass to 85% by mass of the polyurethane component is amorphous, the dye easily penetrates into the polyurethane polymer, and the diamino compound and the dye in the polyurethane elastic fiber. Are combined efficiently, and vivid color development with better dyeability and hue is obtained.
  • the advantage of using the copolymerized diol is that the elastic function is further improved, so that this polyurethane elastic fiber has excellent elastic function, that is, high elongation at break, small stress fluctuation with respect to strain when stretched, and when stretched Has low hysteresis loss of stress etc. Therefore, pantyhose and outerwear using the same have an excellent elastic function, are excellent in wearing feeling, and have good aesthetic properties.
  • a copolymerized polyalkylene ether diol containing a butylene group that is, a tetramethylene ether unit
  • a butylene group that is, a tetramethylene ether unit
  • a 2,2-dimethylpropylene group that is, a neopentylene ether unit
  • a combination of a tetramethylene ether unit and a 2-methylbutylene group is preferable.
  • the alkylene ether unit other than the tetramethylene group is preferably contained in an amount of 4 mol% to 85 mol%. If the alkylene ether unit is less than 4 mol%, the effect of improving the elastic function of the polyurethane elastic fiber is small, and if it exceeds 85 mol%, the strength or elongation of the elastic fiber is greatly reduced.
  • diisocyanate examples include known aliphatic, alicyclic or aromatic organic diisocyanates having two isocyanate groups in the molecule. Specifically, 4,4′-diphenylmethane diisocyanate, 2,4- or 2,6-tolylene diisocyanate, p-phenylene diisocyanate, 1,5-naphthalene diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 4 An organic diisocyanate such as 4,4'-dicyclohexylmethane diisocyanate is exemplified, and 4,4'-diphenylmethane diisocyanate is preferable. Moreover, you may use the compound which has the blocked isocyanate group converted into a free isocyanate group as organic diisocyanate.
  • the active hydrogen-containing compound that reacts with an isocyanate group is a conventional chain extender in polyurethane, that is, a low molecular weight of 500 or less containing at least two hydrogen atoms that can react with isocyanate to form a urea group or a urethane group.
  • Molecular compounds can be used. Specific examples thereof include diamines such as ethylenediamine, propylenediamine, tolylenediamine, m-xylylenediamine, 1,3-diaminocyclohexane, isophoronediamine, hydrazine, 4,4'-diaminodiphenylmethane, dihydrazide, piperazine, and the like.
  • Examples thereof include diamine compounds disclosed in JP-A-5-155841, diols such as ethylene glycol, propylene glycol, and 1,4-butanediol, preferably ethylenediamine, 1,2-propylenediamine, and Examples thereof include diamine compounds disclosed in JP-A-5-155841. These compounds may be used alone or in admixture of two or more. Moreover, you may use together with the compound containing one active hydrogen which can react with isocyanate depending on the case.
  • a known urethanization technique can be employed as a method for producing polyurethane using diisocyanate, polymer diol and active hydrogen-containing compound.
  • the stoichiometric ratio of the various compounds used in the second embodiment is such that the sum of the hydroxyl groups of the polymer diol and the active hydrogens of the active hydrogen-containing compound is 1.00 or more with respect to the isocyanate groups of the diisocyanate compound. Less than 07 equivalents are preferred.
  • a more preferable polyurethane urea polymer (A) is a polyurethane urea polymer having a number average molecular weight of 12,000 to 50,000, in which UA and X in the general formula (1) are urea bonds.
  • the polyurethane polymer (B) is reacted with a diamino compound having a primary nitrogen group and a tertiary nitrogen group in the molecule as represented by the following general formula (2).
  • a polymer (A) having a molecular weight controlled to 12,000 to 50,000 and having a tertiary nitrogen group as a terminal group can be obtained.
  • the diamino compound used in this embodiment include the following general formula (2):
  • R 1 and R 2 are linear or branched alkyl groups or hydroxyalkyl groups having the same or different carbon number of 1 to 10, or R 1 and R 2 are bonded and they are bonded.
  • R 3 is a linear or branched alkylene group having 1 to 8 carbon atoms, an ethyleneoxy group having 1 to 5 repeating units, or 1 to 5 repeating units. Propyleneoxy group.
  • the amine compound represented by these is mentioned. That is, a monoactive hydrogen compound having a tertiary nitrogen group in the molecule and simultaneously having in the molecule a primary nitrogen group capable of adjusting the molecular weight of the polyurethaneurea polymer (A) by an amino exchange reaction.
  • a more preferable polyurethane urea polymer (A) according to Embodiment 2 is obtained by replacing the above diamino compound (2) with the solid content of the polyurethane polymer (B) by 100 mass with respect to the polyurethane polymer (B) as described above.
  • the following general formula (1) By adding at a ratio of 0.01 to 15 parts by mass with respect to parts and then heating, the following general formula (1):
  • UA and X can be obtained as a polyurethane urea polymer.
  • the diamino compound (2) is within this range, the molecular weight of the polyurethane urea polymer can be adjusted to 12,000 to 50,000 in terms of polystyrene by heating as described later. The effect can be exhibited without adversely affecting the fiber.
  • a more preferable amount of the diamino compound is 0.5 to 6 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the solid content of the polyurethane polymer (B).
  • the heating temperature at the time of mixing and heating the polyurethane polymer (B) and the diamino compound (2) according to Embodiment 2 in the presence of a solvent is preferably 50 ° C. to 150 ° C. More preferably, it is 70 ° C to 100 ° C. A heating temperature of 50 ° C. to 150 ° C. is preferred because the desired molecular weight of the polyurethane urea polymer can be obtained in a relatively short time.
  • the mixing time of the polyurethane polymer (B) and the diamino compound is preferably 30 minutes to 30 hours. More preferably, it is 1 hour to 15 hours. A mixing time of 30 minutes to 30 hours or less is preferable because a polyurethane urea polymer (A) having a desired molecular weight can be obtained at a predetermined mixing temperature.
  • the heat mixing of the polyurethane polymer (B) and the diamino compound (2) is preferably carried out in a solvent, but suitable solvents include N, N-dimethylacetamide (DMAc), N, N-dimethylformamide ( DMF), dimethyl sulfoxide, and the like include solvents inert to isocyanate groups. Since DMAc or DMF is usually used as a preferred solvent for the production of polyurethane elastic fibers, it is particularly preferable to use DMAc or DMF also during the heat mixing of the polyurethane polymer (B) and the diamino compound. When the polyurethane urea polymer (A) is produced using DMAc as a solvent, it can be directly mixed into the spinning dope, and the production process is simplified accordingly.
  • suitable solvents include N, N-dimethylacetamide (DMAc), N, N-dimethylformamide ( DMF), dimethyl sulfoxide, and the like include solvents inert to isocyanate groups
  • the molecular weight of the polyurethaneurea polymer (A) according to Embodiment 2 can be adjusted to a desired range.
  • the molecular weight of the polyurethane urea polymer (A) obtained under the above mixed heating conditions is preferably adjusted to 12,000 to 50,000 as the number average molecular weight in terms of polystyrene (the measurement method will be described in Examples). ). More preferably, it is 15,000 to 45,000, and still more preferably 20,000 to 40,000.
  • the molecular weight of the polyurethane urea polymer is from 12,000 to 50,000, the dyeability of the polyurethane elastic fiber obtained by spinning the spinning stock solution containing the polyurethane urea polymer (A) having the molecular weight adjusted in this way.
  • the solid content of the polyurethane urea polymer (A) is contained in an amount of 0.01 to 20 parts by mass with respect to 100 parts by mass of the solid content of the other polyurethane polymer (B). It is.
  • the amount is preferably 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass.
  • aggregation of inorganic functional agents such as titanium oxide and hydrotalcite is suppressed by combining the polyurethane urea polymer (A) according to Embodiment 2 with a polymer of a compound having an anionic functional group described later.
  • the polyurethane elastic fiber obtained by dry spinning using the raw solution for spinning is excellent in stable spinning productivity, does not generate scum, has good heat setting property, and is more surprising. In particular, it exhibits a synergistic effect and is excellent in dyeability and dyeing fastness.
  • UA and X in the general formula (1) are urea bonds, that is, a polyurethane urea polymer (A) having a tertiary nitrogen group at the end group is formed, and
  • the reason why the molecular weight can be adjusted to the desired range is because of the transamination reaction occurring between the urea bond contained in the polyurethane polymer (B) in Embodiment 2 and the primary nitrogen group in the diamino compound. .
  • the amino exchange reaction occurs between the urea group of the polyurethane polymer (B) and the diamino compound
  • the main chain of the polyurethane polymer (B) is cleaved, and the diamino group is added to the end group of the polymer after the cleaving.
  • a polyurethane urea polymer having a so-called “medium molecular weight” in which a tertiary nitrogen group in the compound is bonded is formed. Since the polyurethane urea polymer (A) having a tertiary nitrogen group at the end group can be entangled with other polyurethane polymers at the molecular level because of its medium molecular weight, scum is generated during spinning and in the subsequent process.
  • Patent Document 6 also discloses a polyurethaneurea polymer having a specific structure having a molecular weight of 2,000 to 100,000 and a terminal group of a tertiary nitrogen group. Polyurethane urea polymers produced with a low molecular weight contain a large amount of low molecular weight urea compounds that inevitably cause scum from the production process because the unreacted raw diisocyanate compound remains in the prepolymer. It is.
  • a more preferable production method is the production method of the above-described amino exchange reaction.
  • an anionic polymer a polymer of a compound having an anionic functional group according to Embodiment 2 (hereinafter referred to as an anionic polymer) will be described.
  • an anionic compound for example, an acetic acid aqueous solution
  • the pH is set to about 4.
  • an anionic polymer is added and mixed in advance in the fiber to activate the alkali metal base present in the acid dye. It has a feature that it strongly adsorbs and reacts with terminal tertiary nitrogen to improve the dyeability of polyurethane elastic fibers.
  • the functional group of the anionic polymer used in Embodiment 2 is selected from the group consisting of a carboxyl group, a sulfonic acid group, a nitro group, and a phosphoric acid group, and among them, it is a carboxyl group. Those are particularly preferred.
  • the anionic polymer used in the second embodiment is described in detail in, for example, Patent Document 8 by the present applicant as a functional group having a carboxyl group.
  • Specific examples of the anionic polymer include the product names Mariarim AKM-0531, AFB-0561, AFB-1521, AAB-0851, AEM3511, AWS-0851, and the like manufactured by NOF Corporation.
  • Preferred compounds are AKM-0531, AAB-0851.
  • the anionic polymer is preferably 10 mmol / kg or more and 200 mmol / kg or less with respect to the polyurethane elastic fiber. More preferably, it is 20 mmol / kg to 180 mmol / kg, and further preferably 30 mmol / kg to 150 mmol / kg.
  • This anionic polymer is contained in an amount of 10 mmol / kg or more and 200 mmol / kg or less with respect to the polyurethane elastic fiber, and combined with the polyurethane urea polymer (A) according to Embodiment 2 to suppress aggregation of the inorganic functional agent and low molecular weight. Suppression of urea compound scum and dyeing characteristics and fastness of fiber are remarkably improved.
  • Embodiment 2 an anionic polymer (particularly, a polycarboxylic acid-based copolymer compound); A polyurethane urea polymer (A) having a tertiary nitrogen-containing alkylamine bonded to the terminal is used in combination.
  • the anionic polymer described in Patent Document 7 is used alone, the weakly basic dyeing seat in the polyurethane polymer itself is used as described in the section of [Background Art]. Since it is blocked by an anionic functional group, the acid dye cannot be adsorbed and bonded to the polyurethane polymer.
  • the dyeing property of an anionic polymer added alone is lower than that of an unadded polyurethane polymer.
  • the chemical property of the acid dye by the anionic functional group is obtained by using the polymer of the compound having an anionic functional group and the polyurethane polymer (A) containing tertiary nitrogen.
  • the metal salt in the structure (for example, sulfonic acid Na salt) is changed to a free anionic functional group (sulfonic acid group).
  • the acid dye is efficiently adsorbed and bonded to the tertiary nitrogen-containing compound in the polyurethane polymer (B). And exhibit an excellent dyeing effect.
  • Dyes are expensive raw materials, and some dyes are not used in the dyeing bath, but are present in the waste liquid and discarded.
  • the present invention is also advantageous from the viewpoint of waste liquid treatment costs and environmental pollution.
  • polyurethane elastic fibers are originally a soft and sticky material, so yarn breakage is likely to occur due to frictional resistance with guides and rollers in the spinning process. Improvements have been made by adding the powdered material to the fiber.
  • Patent Document 8 attempts to solve the problem by adding a fine powder such as hydrotalcite to the fiber.
  • Embodiment 2 it is preferable to contain a compound (referred to as an inorganic functional agent) that improves the thread breakage and chlorine resistance of the polyurethane elastic fiber as described above.
  • a compound referred to as an inorganic functional agent
  • a fatty acid metal salt having 5 to 40 carbon atoms wherein the metal in the metal salt is selected from the group consisting of magnesium, calcium, aluminum, and zinc; titanium oxide; zinc oxide; Metal composite salt of zinc oxide and silica; hydrotalcite compound; huntite compound; solid solution of MgO and ZnO; composite of silicon dioxide and zinc oxide; composite salt of silicon dioxide and zinc oxide; silicon dioxide, zinc oxide and alumina And a compound selected from the group consisting of a porous synthetic silica, carbon black, a colorant, and a pigment.
  • the metal in the metal salt is selected from the group consisting of magnesium, calcium, aluminum, and zinc; titanium oxide; zinc oxide; Metal composite salt of zinc oxide and silica; hydrotalcite compound; huntite compound; solid solution of MgO and ZnO; composite of silicon dioxide and zinc oxide; composite salt of silicon dioxide and zinc oxide; silicon dioxide, zinc oxide and alumina And a compound selected from the group consisting of a porous synthetic silica, carbon black, a colorant,
  • the content of the inorganic functional agent with respect to 100 parts by mass of the polyurethane polymer (B) is preferably 0.1 to 10 parts by mass. When the content of the inorganic functional agent is within this range, the polyurethane elastic fiber is not broken and the chlorine resistance of the fiber is good.
  • the inorganic functional agent is used in combination with the polyurethane urea polymer (A) containing a tertiary nitrogen group at the terminal and the polymer of the compound having an anionic functional group according to the second embodiment.
  • This powder can maintain a stable dispersed state without causing aggregation even when finely dispersed in an amide solvent.
  • an unexpected and surprising effect of improving dyeability at the same time was found.
  • the polyurethane urea polymer (A) thus obtained may be added to the polyurethane polymer (B) separately or in advance from the polymer of the compound having an anionic functional group.
  • known organic or inorganic compound smoothing agents, thermal stabilizers, antioxidants, UV inhibitors, yellowing inhibitors, thermal discoloration inhibitors and anti-pooling chlorine-resistant agents useful for polyurethane elastic fibers, if desired. Etc. are added to prepare a stock solution for spinning.
  • the stock solution for spinning prepared by adding the additives as described above is formed into a slender flat fiber shape by a conventionally known dry spinning method, melt spinning method, etc., through a spinning tube spinneret and by a fibrous or extrusion molding method. Thereafter, the polyurethane elastic fiber is obtained by being wound around a cylinder. A polyurethane elastic fiber obtained by dry spinning is preferable.
  • a known oil agent for polyurethane elastic fibers may be further adhered as an oil agent from the outside using an oiling device during spinning.
  • the oil component used here is polyester-modified silicone, polyether-modified silicone, polyamino-modified silicone, polyorganosiloxane, mineral oil, talc, silica, colloidal alumina and other mineral fine particles, magnesium stearate
  • various fatty acid metal salt powders such as calcium stearate, higher aliphatic carboxylic acids, higher aliphatic alcohols, waxes that are solid at room temperature such as paraffin polyethylene, and the like may be used in combination.
  • the polyurethane elastic fiber according to Embodiment 2 may contain various stabilizers, pigments, and the like as necessary as long as the effects of the present invention are not impaired.
  • benzotriazoles such as “Tinuvin” manufactured by Ciba Geigy
  • benzophenone drugs such as “Sumilyzer” P-16 manufactured by Sumitomo Chemical Co., Ltd.
  • phosphorus-based drugs such as “Sumilyzer” P-16 manufactured by Sumitomo Chemical Co., Ltd.
  • various hindered amines such as “Sumilyzer” P-16 manufactured by Sumitomo Chemical Co., Ltd.
  • inorganic pigments such as titanium oxide and carbon black, fluorine resin powders or silicone resin powders, metal soaps such as magnesium stearate, bactericides containing silver, zinc and their compounds, deodorants
  • a lubricant such as silicone and mineral oil, various antistatic agents such as barium sulfate, cerium oxide, betaine, and phosphoric acid are added, and it may be present by reacting with a polymer.
  • a nitric oxide scavenger such as HN-150 manufactured by Nippon Finechem Co., Ltd., a thermal oxidation stabilizer, a light stabilizer such as Sumitomo Chemical It is preferable to contain a light stabilizer such as “SUMISOB” 300 # 622 manufactured by Kogyo Co., Ltd.
  • the polyurethane elastic fiber obtained by the production method of the present invention may be practically used as a bare yarn as it is, and other fibers such as polyamide fiber, wool, cotton, recycled fiber, polyester fiber, cellulose fiber.
  • other fibers such as polyamide fiber, wool, cotton, recycled fiber, polyester fiber, cellulose fiber.
  • it can be coated with a conventionally known fiber and used as a coated elastic fiber.
  • it is preferably used in combination with a fiber material selected from the group consisting of nylon, ester, acrylic, natural fiber and cellulose derivative.
  • the polyurethane elastic fiber obtained by the production method of the present invention can be used for foundations, socks, mouth rubber, corsets, surgical bandages, string, woven fabrics and knitted swimsuits.
  • it is preferably used for textiles selected from the group consisting of inner, outer, legs, sportswear, jeans, swimwear and sanitary materials.
  • the same method as the dyeing method of ordinary synthetic fiber and natural fiber may be used. That is, dyeing methods such as a dip dyeing method, a pad steam method, a pad thermofix method, a textile printing method, and a spray method can be applied.
  • dyeing machine ordinary dyeing machines such as a liquid dyeing machine, a Wins dyeing machine, and an airflow dyeing machine can be used.
  • the yarn sample length was 5 cm and measured at a strain rate of 1000% for 1 minute. The obtained breaking strength and elongation showed good physical properties.
  • the mixture was put into a liquid dyeing machine, and 2 g / L of a scouring agent (score roll FC-250 manufactured by Kao Corporation) was added in the solution for scouring, followed by scouring in an acidic bath at 70 ° C. for 20 minutes. After draining, rinsing and re-watering, a black acidic dye adjusted to pH 4 was added and dyed at 95 ° C. for 60 minutes.
  • a scouring agent core roll FC-250 manufactured by Kao Corporation
  • the fabric After rinsing, fix processing (natural tannin S 6% owf, tartar stone L 3% owf, 80 ° C./40 minutes treatment), the fabric is removed from the dyeing machine, processed with a flexible resin, and further 170 ° C. with a pin tenter. Finished the set.
  • the dyeability when dyed black was determined according to the following criteria. Grade 5 dark black, 4th grade black, 3rd class light black, 2nd grade gray, Grade 1 light gray
  • the liquid contamination is preferably third or higher.
  • the dry cleaning fastness of the fiber material obtained by dyeing the mixed fabric of polyurethane elastic fiber and disperse dyeable fiber with the disperse dye is obtained. It may not be possible.
  • Heat set rate measuring method The heat set rate was calculated
  • required with the following measurements and numerical formula. After stretching and fixing the elastic yarn of length Ld0 in a non-tensioned and straight state to 2.0 times the length, it passes through a tenter box adjusted to 185 ⁇ 1 ° C. as it is, and the tenter box passage time is 30 Second, immediately take out the elastic yarn, let it twist at a length of Ld0 or less, relax sufficiently, and leave it at room temperature for 16 hours. Again, when the elastic yarn was in a non-tensioned and linear state, and the length at that time was Ld1, the set rate was defined by the following formula. The higher the heat set rate, the better the dimensional stability when the clothing product is repeatedly worn. Heat setting rate (%) [(Ld1 ⁇ Ld0) / Ld0] ⁇ 100
  • a razor blade was set to stand at an intermediate point of 25 cm from the elastic yarn to be fed so that the thread angle was 115 degrees, and the surface speed on the winding roller was set to 70 m / min.
  • the amount of white scum adhering to the razor blade was visually evaluated from the first to the fifth grade. I made a decision. When the scum is frequently generated, there is a problem that the frictional resistance against the knitting needles and the guide is increased at the time of processing the fabric and the quality of the knitted fabric is lowered.
  • Grade 5 No adhesion to the razor blade.
  • Grade 4 Slightly adhered to the razor blade.
  • Third grade Slightly adhered to the razor blade.
  • Second grade Slightly larger amount of adhesion to the razor blade.
  • First grade A large amount of deposits on the razor blade.
  • the amount of white scum adhering to the razor blade was visually evaluated from the first to the fifth grade. I made a decision. Grade 5: No adhesion to the razor blade. Grade 4: Slightly adhered to the razor blade. Third grade: Slightly adhered to the razor blade. Second grade: Slightly larger amount of adhesion to the razor blade. First grade: A large amount of deposits on the razor blade.
  • Infrared absorption spectrum analysis device IRAffinity-IS type manufactured by Shimadzu Corporation Detector: MIRACLE 10 Sample stage: ATR prism plate (Diamond / ZnSe)
  • FIG. 2 shows a GPC chromatogram of the polyurethaneurea polymer (B) (reference numeral 4). The molecular weight in terms of polystyrene was 142,800.
  • a polyurethane urea polymer (A) having a tertiary nitrogen group at the end was prepared from the terminal tertiary nitrogen-containing alkylamine compound shown in Table 1 in the same manner as described above.
  • FIG. 1 shows an IR chart of N-1 among the produced polyurethaneurea polymer (A).
  • FIG. 2 shows GPC chromatograms of N-2 (reference numeral 1) and N-4 (reference numeral 2). From these chromatograms, it was found that the polystyrene equivalent molecular weights of N-2 and N-4 were 28,000 and 30,100, respectively.
  • 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate was added to the DMAc solution of the urethane urea polymer (B) produced in Production Example 1, and the above production.
  • a solution obtained by uniformly dissolving and dispersing the urethane urea polymer (A) having a tertiary nitrogen group at its terminal by high-speed stirring is added to the polyurethane urea polymer (B) solution and stirred to obtain a uniform stock solution for spinning.
  • reaction solution A portion of the obtained reaction solution was taken and dropped into water, the white precipitate was filtered, washed thoroughly with water, and dried under reduced pressure at 80 ° C. This precipitate was confirmed to be a compound having tertiary nitrogen groups at both ends of 4,4′-diphenylmethane diisocyanate having a target polystyrene equivalent number average molecular weight of 4,900.
  • a compound having a tertiary nitrogen group at its end was converted to 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate of Comparative Example 1 as a polyurethane urea polymer ( Polyurethane elastic fiber using a polyurethane urea polymer solution added and mixed in a stock solution for spinning added in an amount of 1 part by mass with respect to 100 parts by mass of the solid content of B) so as to have a mass part uniformly listed in Table 2 Manufactured.
  • N value (isocyanate equivalent of diisocyanate) / (hydroxyl equivalent of polyol) is 1.65.
  • N value (isocyanate equivalent of diisocyanate) / (hydroxyl equivalent of polyol) is 1.65.
  • a urethane prepolymer composed of urethane bonds and having an isocyanate group at the end was obtained.
  • the urethane prepolymer was cooled to room temperature and dissolved in 500 g of DMAc solvent, and 37.6 g of diethylaminopropylamine was added to 300 g of DMAc while cooling and maintaining vigorously while maintaining the temperature at 20 ° C. to 30 ° C. The dissolved solution was added dropwise. After completion of the dropwise addition, stirring was further continued for 2 hours.
  • Urethane capped with an isocyanate end by reacting 400 g of polytetramethylene ether diol having a number average molecular weight of 1800 with 91.7 g of 4,4′-diphenylmethane diisocyanate under a dry nitrogen atmosphere at 80 ° C. for 3 hours with stirring. A prepolymer was obtained. After cooling this to room temperature, 720 g of dimethylacetamide was added and dissolved to prepare a urethane prepolymer solution.
  • polyurethane urea heavy weight with respect to 100 parts by weight of the solid content of the polyurethane urea polymer.
  • the mixture was stirred to obtain a uniform stock solution for spinning.
  • a polyurethane elastic fiber was produced using a polyurethane urea polymer solution to which a high molecular weight end group having a tertiary nitrogen group at its end was added a urethane urea compound. The addition amount was set to be parts by mass described in Table 2.
  • a polyurethane solution consisting only of urethane bonds having no concentration of urea bonds having a concentration of 42.7%, a viscosity of 610 Pa ⁇ s / 30 ° C., and a number average molecular weight of 100,000 was obtained.
  • Example 7 to 14 The polyurethane urea polymer (A) having a tertiary nitrogen group at the end described in Table 3 and the anionic functional group described in Table 4 in the stock solution for spinning of the polyurethane urea polymer (B) solution produced in Reference Example 1 Add a polymer equivalent to a mass part equivalent to 100 parts by mass of the solid content of the polyurethane urea polymer (B) (addition amount shown in Table 5), and add a solution that is uniformly dissolved and dispersed by high-speed stirring. To obtain a uniform stock solution for spinning. The results of producing and evaluating polyurethane elastic fibers using this are shown in Table 5.
  • Example 15 (Examples 15, 16, and 17) (Preparation of inorganic functional agent dispersion adjusting liquid and evaluation test of dispersibility due to pressure loss when passing through stock solution)
  • a container 150 g of solid fine particles as inorganic functional agents shown in Table 6 below, 800 g of N, N-dimethylacetamide (DMAc), and a polyurethane urea polymer whose terminal groups shown in Table 6 below are tertiary nitrogen groups (A) or a polycarboxylic acid copolymer which is a polymer of an isobutylene / maleic anhydride / diamino compound described in Patent Document 9 and a compound having an anionic functional group is added and stirred at 6000 rpm for 1 hour with a homomixer.
  • DMAc N, N-dimethylacetamide
  • A tertiary nitrogen groups
  • A polycarboxylic acid copolymer which is a polymer of an isobutylene / maleic anhydride
  • the polyurethane elastic fiber obtained by the production method of the present invention can improve the dyeability and vividly develop colors, can improve the color fastness even in washing and dry cleaning, and is stable without reducing the heat resistance. Spinning productivity can be ensured, scum is not generated, and metal wear resistance is excellent.
  • the polyurethane elastic fiber obtained by the production method of the present invention has excellent dyeability, fastness during washing, spinning stability, heat setting property and anti-waste property, metal (knitting needle) friction, and product quality. It is useful as a polyurethane elastic fiber material for excellent inner, outer, leg, sportswear, jeans, swimwear and hygiene materials. In addition, the polyurethane elastic fiber obtained by the production method of the present invention has excellent dyeability, fastness during washing, heat setting property and metal (knitting needle) friction, inner, outer, leg, sportswear, Useful as jeans, swimwear and hygiene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本発明のポリウレタン弾性繊維の製造方法は、[1]一般式(1)で示される数平均分子量が12,000~50,000であるポリウレタンウレア重合体(A)を製造する工程;[2]ポリウレタンウレア重合体(A)を、ポリウレタンウレア重合体(B)に添加し、紡糸用原液を調製する工程;及び、[3]紡糸用原液を用いてポリウレタン弾性繊維を紡糸する工程を含む。式中、R及びRは、アルキル基又はヒドロキシアルキル基であり、Rはアルキレン基、ポリエチレンオキシ基又はポリプロピレンオキシ基であり、Rはジイソシアネート残基であり、Xはウレタン結合又はウレア結合であり、R及びRはジイソシアネート残基であり、Pはジオール残基であり、Qはジアミン残基であり、UTはウレタン結合であり、UAはウレア結合であり、k、l、m及びnはそれぞれ0又は正の数である。

Description

ポリウレタン弾性繊維の製造方法
 本発明は、ポリウレタン弾性繊維の製造方法に関する。すなわち、スカム発生が極力少なく、さらに熱セット性、染色性・染色堅牢性に優れたポリウレタン弾性繊維の製造方法に関する。更には、無機機能剤の凝集が抑制された紡糸用原液を用いた乾式紡糸において、紡糸安定生産性に優れ、糸表面にスカムが発生せず、金属摩耗性に優れた、ポリウレタン弾性繊維の容易な製造方法に関する。
 本願は、2016年10月5日に日本に出願された特願2016-197498号、及び、2016年10月5日に日本に出願された特願2016-197499号に基づき優先権を主張し、その内容をここに援用する。
 ポリウレタン弾性繊維は、伸縮性に富み、その優れた物理特性及び化学特性のため、ファンデーション類、肌着、ボディスーツ、レッグ、パンスト、水着、ジーンズ、スポーツウェア及び衛生材等の繊維製品に広く利用されている。
 ポリウレタン弾性繊維は、一般に、ナイロン繊維等の他の繊維素材と交編や交織され使用される。特に、ナイロン繊維と組み合わされて使用される場合が多く、通常、その布帛は、ナイロン用染料として用いられるアニオン系の染料である酸性染料、酸性媒染料及び含金属染料によって染色されている。
 しかし、ポリウレタン弾性繊維を含む繊維製品はポリウレタン弾性繊維の染色堅牢性が低いため、洗濯時に、浴槽中でポリウレタン繊維中から染料が抜け出し退色したり、他の布地で摩擦されると他の洗濯物を染料で汚染するという問題がある。また、ポリウレタン弾性繊維は染料への親和性がナイロンと異なり、ナイロン繊維は良く染まるがポリウレタン弾性繊維は薄くしか染まらない場合があり、ナイロンとポリウレタン弾性繊維との交編布帛においては、同色性不一致による審美性低下の問題がある。
 すなわち、ポリウレタン弾性繊維は、染色性及び洗濯時の染色堅牢性が十分でなく、従来から、染色時の加工条件の検討、染料の開発、ポリウレタンポリマー自体の改質、ポリウレタンへの添加剤の配合等の種々の検討がなされてきたが未だ充分でなく、ポリウレタン弾性繊維の染色性能に対して更なる向上が望まれている。
 さらに、ポリウレタン弾性繊維は、伸縮性に富むが故に生地にした場合の寸法安定性が劣り、その為、生地の裁断後に生地がカールし、生地を製品に縫製加工する際に作業者に負担をかけたり、着用中に衣料品の寸法が縮むといったセット性不良の問題が発生する。高い温度でセットすることも可能であるが、ポリウレタンは熱劣化を起こしやすい。さらにまた、ポリウレタン弾性繊維の別の問題として、本来粘着性があるため、編み針やガイドとの金属摩擦により、生地の編み工程時に糸切れが起こり易いと言う問題がある。また、スカムが発生すると、針やガイドに対する金属摩耗性が一層悪化する。
 上述の諸問題を解決するために、従来から多くのことが検討されてきた。例えば、第三級窒素基を有する化合物をウレタンポリマーの主鎖にビルトインさせたり、第三級窒素基をポリアクリル酸の側鎖にもつ化合物をポリマー重合体に添加してポリウレタンの染色性を向上させる試みが行われている(下記特許文献1~4参照)。しかし、ポリウレタンポリマーの主鎖に第三級窒素基を有する化合物をビルトインした場合や主鎖に第三級窒素基を有する側鎖を持つ化合物を添加した場合には、ポリウレタン構造中の結晶構造が乱されるため、熱フローによる繊維の耐熱性の低下や弾性繊維の物理特性である弾性回復性が低下する問題があった。
 また、特許文献5には、ポリウレタン弾性繊維を構成するポリウレタン樹脂に分子量が300以上2,000未満の末端基に第三級窒素基を有する低分子ウレア化合物を用いて改良することが試みられている。この低分子ウレア化合物は、一分子中に占める染着基である第三級窒素基濃度が高いので、少量の添加でも染色効果は高い。しかし、低分子ウレア化合物はポリウレタンとの親和性が良くないためにスカム(糸カス)が発生しやすいという問題があった。このようにスカムが発生するのは、ウレア結合がウレタン結合よりもポリウレタンウレア重合体に対する親和性が良くないためである。
 また、特許文献6には、分子量が2,000~100,000の末端基が第三級窒素基である特定構造のポリウレタン重合体を用いて前記諸問題を改善することも提案されている。該特許文献6で得られたポリウレタン重合体の一部は比較的分子量が高く繊維と絡まり合うので、前述したようなスカムの発生は起こり難い一方で、分子の末端基に第三級窒素基を有するので、高分子であれば染色基としての濃度が低くなり、そのため染色性が低下する。また、一分子中に占める染着基濃度を高めようと分子量を下げる製造条件下では、ジオール化合物とジイソシアネート化合物との反応であるプレポリマー反応工程で未反応の原料ジイソシアネート化合物が多く残存するために、低分子ウレア化合物が多く混入する。よって、分子量が低めに設定して得られたポリウレタン重合体には、製法上、不可避的に上記の特許文献5記載のような低分子ウレア化合物に相当する化合物が多く含まれるため、やはりスカム発生は避けられなかった。
 さらに、特許文献7には、原料の主構成成分がポリマージオール及びジイソシアネートであり、アニオン性官能基としてスルホン酸基を有する化合物の重合体を含有し、カチオン染料で染色したときに染着性を示すことを特徴とするポリウレタン系弾性糸が開示されている。特許文献8には、アニオン性官能基としてポリカルボン酸系共重合体化合物を用いて無機粒子の分散性を向上させることが開示されている。しかし、アニオン性官能基を有する化合物の重合体を単独で用いた場合、ポリウレタン重合体自体にある弱塩基性の染着座席をアニオン性官能基によって塞がれてしまう為、ポリウレタン重合体に酸性染料が吸着結合することができない。そのためアニオン性官能基を有する化合物のみを重合体に添加したものは未添加のポリウレタン重合体に比較しても染色性が低下する。
 前述のように、第三級窒素基含有化合物がポリウレタン弾性繊維の染色性向上に有効であることはすでに知られていたが、官能基量が少ない場合は、十分な染色性が得られない。逆に第三級窒素官能基量を増加させた低分子ウレア化合物を用いると、添加したポリウレタン弾性繊維からブリードアウトしスカムになったり、ポリウレタン弾性繊維の弾性特性が低下する。ポリウレタン弾性繊維と混用するナイロン等の他繊維との染料吸着特性が異なるために、3原色の配合染料等で染色した場合はポリウレタンとナイロンとの色違い現象を生じ、色あわせも難しいという問題があった。
 更にまた、ポリウレタン弾性繊維はもともと柔軟かつ粘着性のある素材であるがゆえに、紡糸工程でのガイドやローラーでの摩擦抵抗による糸切れなどが起こりやすいために、通常では酸化チタン等の微小粉体をポリウレタン重合体に添加することにより解決がはかられている。しかし、第三級窒素含有化合物は、酸化チタンやハイドロタルサイトをポリウレタン紡糸用溶液体中で凝集を促進し、逆に紡糸中の糸キレを増加させる問題があった。
 特許文献9には、マレイミド構造を有する第三級窒素含有の特定のポリマーが、スカムを生成させず、ポリウレタン弾性繊維の伸長回復性を低下させず、また、パークロロエチレン等でも抽出されず、かつ耐久性も良く、ポリウレタンの染色性を改良できることが開示されている。しかし、この場合においても、酸化チタンやハイドロタルサイトをポリウレタン紡糸用溶液体中で凝集を促進し、逆に紡糸中の糸キレを増加させる問題が起こることがあった。
特公昭47-51645号公報 特公昭47-48895号公報 特公昭46-2904号公報 特公昭61-7212号公報 特開2014-095162号公報 特開2014-091891号公報 特開2009-024320号公報 特開2012-193259号公報 特公平3-6177号公報
 前述のように、第三級窒素基含有化合物が、ポリウレタン弾性繊維の染色性向上に有効であることはすでに知られていた。しかし、その第三級窒素基が、主にポリマーの主鎖に存在する場合や、第三級窒素基含有化合物とポリウレタン重合体との親和性が良くない場合においては、ポリウレタン弾性繊維の性能に悪影響を与えていた。
 本発明の目的は、以上の課題を達成すること、すなわち、
(1)染色性を向上させ、鮮やかに発色させ、かつ、低分子ウレア化合物のスカム発生を抑制することである。
(2)アニオン系共重合化合物を染色補助剤として用いて、末端第三級窒素含有化合物と併用して用いることによって、ポリウレタン弾性繊維の染色性を向上させることである。さらに、
(3)末端第三級窒素含有化合物は無機機能粉体を凝集促進させる傾向にあるが、アニオン性官能基を有する化合物の重合体を併用することによって無機機能剤の凝集を抑制し、紡糸工程での安定性を向上させることである。
 本発明者らは、前記課題を解決すべく鋭意検討し、実験を重ねた結果、重合体末端に第三級窒素基を有し分子量が所望の範囲に制御されたポリウレタンウレア重合体を含むポリウレタン弾性繊維が、染色性、耐熱性、熱セット性及び紡糸性を同時に向上させるとともにスカムや糸切れの発生が抑制されることが分かった。さらに該ポリウレタンウレア重合体の製造方法として、プレポリマー反応を経ずして、ポリウレタンウレア重合体と、第一級窒素基と第三級窒素基とを分子内に同時に有する特定のジアミノ化合物を含む混合物を特定の反応条件下で加熱することにより、低分子ウレア化合物の混入を抑え且つ所望する中分子量の末端に第三級窒素基を有するポリウレタンウレア重合体を容易に製造できることを見出した。
 また、本発明者らは、酸性染料に有効なアミン類の添加量を少なくして染色効果を高めて前記の問題点を解消することに着眼して鋭意検討を重ねた結果、アニオン性官能基を有する化合物単独では染色性を低下させるが、本実施形態の末端に第三級窒素化合物を含有するポリウレタンウレア重合体と併用することで驚くべき相乗的効果を見出し、さらには無機機能剤の凝集抑制効果があることを見出し本発明に到達した。
 すなわち、本発明は、以下の通りのものである:
[1]
(1)高分子ジオールとジイソシアネートとが反応して得られたプレポリマーに、活性水素含有化合物を反応させて得られたポリウレタンウレア重合体(B)の固形分100質量部に対して、下記一般式(2):
Figure JPOXMLDOC01-appb-C000003
 {式中、R及びRはそれぞれ独立に炭素原子数が1~5のアルキル基又はヒドロキシアルキレン基を表し、若しくはRとRが結合し、それらが結合した窒素原子と共に複素環基を形成しており、Rは炭素原子数が1~5の直鎖又は分岐したアルキル基、エチレンオキシ繰り返し単位が1~5の基又はプロピレンオキシ繰り返し単位が1~5の基である。}
 で表されるジアミノ化合物(2)を、0.01~15質量部の比で添加した後に、加熱により下記一般式(1):
Figure JPOXMLDOC01-appb-C000004
 {式中、R及びRは、同一又は異なる炭素原子数が1~10の直鎖又は分岐したアルキル基又はヒドロキシアルキル基であるか、若しくはRとRが結合し、それらが結合した窒素原子と共に複素環基を形成しており、Rは炭素原子数が1~8の直鎖又は分岐したアルキレン基、繰り返し単位が1~5のエチレンオキシ基又は繰り返し単位が1~5のプロピレンオキシ基であり、Rはジイソシアネート残基であり、Xはウレタン結合又はウレア結合であり、R及びRは同一又は異なるジイソシアネート残基であり、Pはジオール残基であり、Qはジアミン残基であり、UTはウレタン結合であり、UAはウレア結合であり、k、l、m及びnはそれぞれ正の数であって、mとnのどちらかは0でも良く、さらにlは0でもよい。}
 で示される末端基に第三級窒素基を有し、ポリスチレン換算の数平均分子量が12,000~50,000であるポリウレタンウレア重合体(A)を製造する工程;
(2)前記ポリウレタンウレア重合体(A)の固形分を、前記ポリウレタンウレア重合体(B)の固形分100質量部に対して、0.01~20質量部の比で添加し、溶剤を含む紡糸用原液を調製する工程;及び、
(3)前記紡糸用原液を用いてポリウレタン弾性繊維を紡糸する工程
を含むポリウレタン弾性繊維の製造方法。
[2]
 前記紡糸用原液には、アニオン性官能基を有する化合物の重合体が含有されている、前記[1]に記載のポリウレタン弾性繊維の製造方法。
[3]
 前記アニオン性官能基が、カルボキシル基、スルホン酸基、ニトロ基及びリン酸基からなる群から選択されたものである、前記[2]に記載のポリウレタン弾性繊維の製造方法。
[4]
 前記アニオン性官能基の含有量が、前記ポリウレタン弾性繊維中10mmol/kg以上200mmol/kg以下である、前記[2]又は[3]に記載のポリウレタン弾性繊維の製造方法。
[5]
 前記ポリウレタン弾性繊維が、マグネシウム、カルシウム、アルミニウム、及び亜鉛からなる群から選ばれる金属の金属塩である炭素原子数5~40の脂肪酸金属塩;酸化チタン;酸化亜鉛;酸化亜鉛とシリカの金属複合塩;ハイドロタルサイト類化合物;フンタイト類化合物;MgOとZnOの固溶体;二酸化ケイ素と酸化亜鉛の複合物;二酸化ケイ素と酸化亜鉛の複合塩;二酸化ケイ素と酸化亜鉛とアルミナの複合塩;多孔質性合成シリカ;カーボンブラック;着色剤;及び顔料からなる群から選ばれる無機機能剤を、前記ポリウレタンウレア重合体(B)の固形分100質量部に対して0.1~10質量部の比で含む、前記[1]~[4]のいずれか一項に記載のポリウレタン弾性繊維の製造方法。
 本発明によれば、染色性、洗濯やドライクリーニングにおける染料堅牢性が向上し、耐熱性を低下させずに熱セット性及び安定した紡糸生産性を確保し得て、併せて紡糸中や後工程におけるスカムや糸切れの発生が抑制されるポリウレタン弾性繊維の製造方法を提供することができる。
実施例にて製造されるN-1化合物のIRチャートを示す図である。 実施例にて製造されるN-2化合物(符号1)、N-4化合物(符号2)、比較例4(符号3)及びポリウレタンウレア重合体(B)(符号4)のそれぞれのGPCクロマトグラムを示す図である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について、「本実施形態1」及び「本実施形態2」に分けて詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
 本実施形態1に係るポリウレタン弾性繊維の製造方法は、
(1)高分子ジオールとジイソシアネートとが反応して得られたプレポリマーに、活性水素含有化合物を反応させて得られたポリウレタンウレア重合体(B)の固形分100質量部に対して、下記一般式(2):
Figure JPOXMLDOC01-appb-C000005
 {式中、R及びRはそれぞれ独立に炭素原子数が1~5のアルキル基又はヒドロキシアルキレン基を表し、若しくはRとRが結合し、それらが結合した窒素原子と共に複素環基を形成しており、Rは炭素原子数が1~5の直鎖又は分岐したアルキル基、エチレンオキシ繰り返し単位が1~5の基又はプロピレンオキシ繰り返し単位が1~5の基である。}
 で表されるジアミノ化合物(2)を、0.01~15質量部の比で添加した後に、加熱により下記一般式(1):
Figure JPOXMLDOC01-appb-C000006
 {式中、R及びRは、同一又は異なる炭素原子数が1~10の直鎖又は分岐したアルキル基又はヒドロキシアルキル基であるか、若しくはRとRが結合し、それらが結合した窒素原子と共に複素環基を形成しており、Rは炭素原子数が1~8の直鎖又は分岐したアルキレン基、繰り返し単位が1~5のエチレンオキシ基又は繰り返し単位が1~5のプロピレンオキシ基であり、Rはジイソシアネート残基であり、Xはウレタン結合又はウレア結合であり、R及びRは同一又は異なるジイソシアネート残基であり、Pはジオール残基であり、Qはジアミン残基であり、UTはウレタン結合であり、UAはウレア結合であり、k、l、m及びnはそれぞれ正の数であって、mとnのどちらかは0でも良く、さらにlは0でもよい。}
 で示される末端基に第三級窒素基を有し、ポリスチレン換算の数平均分子量が12,000~50,000であるポリウレタンウレア重合体(A)を製造する工程;
(2)前記ポリウレタンウレア重合体(A)の固形分を、前記ポリウレタンウレア重合体(B)の固形分100質量部に対して、0.01~20質量部の比で添加し、溶剤を含む紡糸用原液を調製する工程;及び、
(3)前記紡糸用原液を用いてポリウレタン弾性繊維を紡糸する工程
を含む。
(ジアミノ化合物とポリウレタン重合体(A)、(B))
 上記のポリウレタン弾性繊維の構成成分の一つである、本実施形態1に係るポリウレタンウレア重合体(A)は、たとえば後述するようにポリウレタン重合体(B)の固形分100質量部に対して、下記一般式(2):
Figure JPOXMLDOC01-appb-C000007
 {式中、R及びRはそれぞれ独立に炭素原子数が1~5のアルキル基又はヒドロキシアルキレン基を表し、若しくはRとRが結合し、それらが結合した窒素原子と共に複素環基を形成しており、Rは炭素原子数が1~5の直鎖又は分岐したアルキル基、エチレンオキシ繰り返し単位が1~5の基又はプロピレンオキシ繰り返し単位が1~5の基である。}
 で表されるジアミノ化合物を0.01~15質量部の比で添加した後に、加熱することによって製造することができる。
 本実施形態1にて用いられるジアミノ化合物としては、第三級窒素基を有し、かつアミノ交換反応によってポリウレタンウレア重合体(B)の分子量を調節可能とする第一級窒素基を分子内に同時に有する単活性水素化合物であり、以下のような化合物を挙げることが出来る。例えば、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、ジプロピルアミノエチルアミン、N,N-ジイソプロピルアミノエチルアミン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエトキシプロピルアミン、ジエタノールアミノプロピルアミン、N-アミノエチルピペリジン、N-アミノエチル-4-ピペコリン、N-アミノプロピルピペリジン、N-アミノプロピル-2-ピペコリン、N-アミノプロピルモルホリン、4-アミノメチル-1-ブチルピペリジン、ジメチルアミノエトキシプロピルアミン、N-アミノエチルピペリジン、N-アミノエチル-4-ピペコリン、N-アミノプロピルピペリジン、N-アミノプロピル-2-ピペコリン、N-アミノプロピルモルホリン、4-アミノメチル-1-ブチルピペリジン等のアミン化合物が例示される。これらの中でより好ましくは、ジエチルアミノプロピルアミン、ジブチルアミノプロピルアミンである。
 ポリウレタンウレア重合体(A)の製造実施形態は、前記ジアミノ化合物を、後述するポリウレタンウレア重合体(B)の固形分100質量部に対して、0.01~15質量部の比で添加することを特徴とする。後述するような加熱条件下にて両者を反応せしめることによって、上記式(1)で示されるような重合体末端に、該第三級窒素基を有し、ポリスチレン換算の数平均分子量で、12,000~50,000のポリウレタンウレア重合体(A)を製造することができる。
 該ジアミノ化合物の添加量がこの範囲にあると、本実施形態1の最大の効果、すなわち染色性、耐熱性、熱セット性及び紡糸性を同時に向上させるとともに後工程におけるスカムや糸切れの発生が抑制されるポリウレタン弾性繊維が得ることができる。
 次に、本実施形態1にて用いられるポリウレタンウレア重合体(B)について説明する。このポリウレタンウレア重合体(B)は、高分子ジオールとジイソシアネートとが反応して得られたプレポリマーに、活性水素含有化合物を反応させる公知の方法で得られる。
 上記高分子ジオールとしてはポリエステルジオール、ポリカーボネートジオール及びポリエーテルジオール等を挙げることができる。好ましくはポリエーテルジオールであり、1種又は2種以上の炭素数2~10の直鎖状又は分岐状のアルキレン基がエーテル結合しているポリアルキレンエーテルジオールが特に好ましい。
 ポリアルキレンエーテルジオールとしては単一又は共重合ポリアルキレンエーテルジオールが好ましい。本発明で使用されるポリアルキレンエーテルジオールの数平均分子量(Mn)は500~6,000が好ましく、さらに好ましくは1,000~3,000である。Mnが500より小さい場合弾性回復性が低下し、6,000より大きいと紡糸性が悪化する。
 共重合ポリアルキレンエーテルジオールは、アルキレン基がブロック状又はランダム状にエーテル結合している。従来からポリウレタン弾性繊維の原料として広範に用いられている単一重合ポリアルキレンエーテルジオールであるPTMG(ポリテトラメチレンエーテルグリコール)に比較して、2種類以上のアルキレン基からなる共重合ポリアルキレンエーテルジオールを用いたポリウレタン弾性繊維の場合、ポリウレタン成分の65質量%~85質量%を占めるジオール成分が非晶性であるため、ポリウレタンポリマー中に染料が浸透しやすく、ポリウレタン弾性繊維中でジアミノ化合物と染料とが効率的に結合する為、一層染色性が良好で色相良好な鮮やかな発色が得られる。
 さらに、共重合ジオールを用いた利点として、弾性機能がさらに改善され、その為、このポリウレタン弾性繊維は優れた弾性機能、即ち、高い破断伸度、伸長時の歪に対する小さな応力変動及び伸長時の応力の小さなヒステリシス損失等を有する。従って、これを使用したパンティストッキングやアウターは、優れた弾性機能を有し、着用感にも優れ、審美性良好な繊維製品となる。共重合ポリアルキレンエーテルジオールの中でも、得られるポリウレタン弾性繊維の耐水性、耐光性、耐摩耗性及び弾性機能等の観点から、ブチレン基、すなわちテトラメチレンエーテルユニットを含む共重合ポリアルキレンエーテルジオールが好ましく、更にはブチレン基、すなわちテトラメチレンエーテルユニットと2,2-ジメチルプロピレン基、すなわちネオペンチレンエーテルユニットとの組み合わせや、テトラメチレンエーテルユニットと2-メチルブチレン基との組み合わせが好ましい。
 テトラメチレン基以外のアルキレンエーテルユニットは、4モル%以上且つ85モル%以下含むことが好ましい。アルキレンエーテルユニットが4モル%未満では、ポリウレタンウレア弾性繊維の弾性機能改良効果が小さく、85モル%を越えると弾性繊維の強度又は伸度の低下が大きい。
 上記ジイソシアネートとしては、分子内に2個のイソシアネート基を有す公知の脂肪族、脂環族若しくは芳香族の有機ジイソシアネートが挙げられる。具体的には、4,4′-ジフェニルメタンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート、p-フェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4′-ジシクロヘキシルメタンジイソシアネート等の有機ジイソシアネートが例示され、好ましくは、4,4′-ジフェニルメタンジイソシアネートである。また、有機ジイソシアネートとして、遊離のイソシアネート基に変換される封鎖されたイソシアネート基を有する化合物を使用してもよい。
 イソシアネート基と反応する上記2官能性活性水素含有化合物としては、ポリウレタンにおける常用の鎖伸長剤、即ち、イソシアネートと反応しウレア基又はウレタン基を形成し得る、水素原子を少なくとも2個含有する分子量500以下の低分子化合物を用いることが出来る。この具体例としては、エチレンジアミン、プロピレンジアミン、トリレンジアミン、m-キシリレンジアミン、1,3-ジアミノシクロヘキサン、イソホロンジアミン、ヒドラジン、4,4′-ジアミノジフェニルメタン、ジヒドラジド、ピペラジン等のジアミン類、及び特開平5-155841号公報で開示されたジアミン化合物類、エチレングリコール、プロピレングリコール、1,4-ブタンジオール等のジオール類等が挙げられ、好ましくはエチレンジアミン、1,2-プロピレンジアミン、及び特開平5-155841号公報で開示されたジアミン化合物類が挙げられる。これらの化合物は、単独で又は、2種以上を混合して用いても良い。また場合により、イソシアネートと反応し得る活性水素を1個含有する化合物と併用しても良い。
 本発明の使用されるポリウレタン重合時に末端停止剤として用いることが出来るイソシアネート基と反応する第三級窒素基を有する単活性水素化合物の例として次の化合物を挙げることが出来る。ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、ジプロピルアミノエチルアミン、N,N-ジイソプロピルアミノエチルアミン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエトキシプロピルアミン、ジエタノールアミノプロピルアミン、N-アミノエチルピペリジン、N-アミノエチル-4-ピペコリン、N-アミノプロピルピペリジン、N-アミノプロピル-2-ピペコリン、N-アミノプロピルモルホリン、4-アミノメチル-1-ブチルピペリジン、ジメチルアミノエトキシプロピルアミン、N-アミノエチルピペリジン、N-アミノエチル-4-ピペコリン、N-アミノプロピルピペリジン、N-アミノプロピル-2-ピペコリン、N-アミノプロピルモルホリン、4-アミノメチル-1-ブチルピペリジン等のアミン化合物が例示される。また、第三級窒素基を有し且つイソシアネート基と反応する水酸基を1分子構造中に同時に有するアルコール化合物の例として、ジエチルアミノプロピルアルコール、ジエチルアミノイソプロピルアルコール、ジメチルアミノエチルアルコール、ジプロピルアミノエチルアルコール、ジメチルアミノエトキシプロピルアルコール等が例示される。イソシアナート基と反応する単活性水素基としては、活性アミノ基を有する化合物の方が活性水酸基を有するものに比べて、該イソシアネート基と速やかに反応を完結し副反応の架橋が少ない点や、ポリウレタン弾性繊維の弾性回復性と耐熱性の点からもより好ましい。
 また、上記の単活性水素化合物の他に、ポリウレタンの重合反応時に用いられる以下のイソシナネート基と反応する別の単活性水素含有化合物と混合使用しても良く、この場合、得られるポリウレタン重合体を紡糸すれば、本発明のポリウレタン弾性繊維が得られる。
 それらの化合物の例として以下のものを挙げることができる。
 メタノール、エタノール、2-プロパノール、2-メチル-2-プロパノール、1-ブタノール、2-エチル-1-ヘキサノール、3-メチル-1-ブタノール等のモノアルコールや、イソプロピルアミン、n-ブチルアミン、t-ブチルアミン、2-エチルヘキシルアミン等のモノアルキルアミンや、ジエチルアミン、ジメチルアミン、ジ-n-ブチルアミン、ジ-t-ブチルアミン、ジイソブチルアミン、ジ-2-エチルヘキシルアミン、ジイソプロピルアミン等のジアルキルアミンが挙げられる。これらは単独で、又は混合して用いることができる。モノアルコールより1官能性アミンであるモノアルキルアミン又はジアルキルアミンが好ましく、ポリウレタンウレア重合体(B)の末端基と本発明で用いうるジアミン化合物(2)のアミン交換反応が容易な点でジエチルアミンが特に好ましい。
 ジイソシアネート化合物、高分子ジオール及び活性水素含有化合物を用いてポリウレタンウレアを製造する方法に関しては、公知のウレタン化反応の技術を採用することが出来る。また、本発明で用いられる各種化合物の化学量論的割合は、高分子ジオールの水酸基と活性水素含有化合物の活性水素の総和が、ジイソシアネート化合物のイソシアネート基に対して1.00以上1.07当量未満が好ましい。
 本発明における原料ウレタンウレア重合体(B)の製法の一例を挙げれば、ポリオールに対して過剰当量のジイソシアナートを予め反応させ、末端イソシアナート基のプレポリマーを得、得られたプレポリマーに2官能性活性水素含有化合物、第三級窒素基を有する単活性水素化合物及び/又は単活性水素含有化合物を反応させることである。
 なお、本発明のポリウレタンウレア弾性繊維を構成するポリウレタンウレア重合体(B)の比粘度(ηsp/c)は、1.1~3.5dl/gが好ましい。この範囲とすることにより、弾性回復性に優れた弾性繊維となる。尚、ここで比粘度(ηsp/c)とは、N,N-ジメチルアセトアミド(DMAc)溶媒中における(η/η-1)/Cで計算した値である(但し、Cはポリマー0.5g/DMAC99.5g(0.5質量%)の溶液粘度であり、ηはオストワルド粘度計による希薄溶液中の落下秒数であり、ηは同上粘度計によるDMAcのみの落下秒数である)。
 本実施形態1のポリウレタンウレア弾性繊維の製造方法について、更に詳述する。
(第一工程)
<ポリウレタンウレア重合体(B)とジアミノ化合物との混合加熱>
 本実施形態1においては、上記の一般式(2)で表されるジアミノ化合物を、先述のポリウレタンウレア重合体(B)100質量部に対して、0.01~15質量部の比で添加し、その後で加熱することにより、表されるジアミノ化合物を含む混合組成物を加熱し、下記一般式(1):
Figure JPOXMLDOC01-appb-C000008
 {式中、R及びRは、同一又は異なる炭素原子数が1~10の直鎖又は分岐したアルキル基又はヒドロキシアルキル基であるか、若しくはRとRが結合し、それらが結合した窒素原子と共に複素環基を形成しており、Rは炭素原子数が1~8の直鎖又は分岐したアルキレン基、繰り返し単位が1~5のエチレンオキシ基又は繰り返し単位が1~5のプロピレンオキシ基であり、Rはジイソシアネート残基であり、Xはウレタン又はウレア結合であり、R及びRは同一又は異なるジイソシアネート残基であり、Pはジオール残基であり、Qはジアミン残基であり、UTはウレタン結合であり、UAはウレア結合であり、k、l、m及びnはそれぞれ正の数であって、mとnのどちらかは0でも良く、さらにlは0でもよい。}
 で示される末端基に第三級窒素基を有し、ポリスチレン換算の数平均分子量が12,000~50,000であるポリウレタンウレア重合体(A)を製造する。
 前記ジアミノ化合物(2)が、ポリウレタンウレア重合体(B)の固形分100質量部に対して、0.01~15質量部の比で加えることによって、以下のような加熱条件下、ポリウレタンウレア重合体(B)のウレア結合部位に該ジアミノ化合物(2)がアミノ交換反応を行って末端基や主鎖のウレア基部位に反応し、数平均分子量をポリスチレン換算で、12,000~50,000の末端基に第三級窒素基を有する分子量が調整されたポリウレタンウレア重合体(A)を得ることができる。ジアミノ化合物(2)のより好ましい添加量は、ポリウレタンウレア重合体(B)の固形分100質量部に対して、1~10質量部の比であり、更に好ましくは2~8質量部である。
 上記のポリウレタンウレア重合体(B)と、本実施形態1に係るジアミノ化合物とを溶剤の存在下に混合加熱する際の加熱撹拌温度は50℃~150℃が好ましい。より好ましくは70℃~100℃である。加熱撹拌温度が50℃~150℃にあると、所望するポリウレタンウレア重合体(A)を比較的短時間に副反応等を起こさずに得られので好ましい。
 ポリウレタンウレア重合体(B)とジアミノ化合物との加熱混合時間は30分から40時間が好ましい。好ましくは2時間~30時間である。さらに好ましくは、15時間~25時間である。混合時間が30分から40時間以内であると、所定の混合温度下、所望する分子量のポリウレタンウレア重合体(A)が得られるので好ましい。
 ポリウレタンウレア重合体(B)とジアミノ化合物とを含む混合組成物は、無溶剤下でも溶剤を用いても良いが、ポリウレタンウレア重合体(B)とジアミノ化合物との混合状態がより均質に反応が進むという点で、溶剤下で行われることが好ましい。好適な溶剤としては、N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキサイド等、イソシアネート基に不活性な溶剤が挙げられる。ポリウレタン繊維の製造には、通常DMAc又はDMFが好ましい溶剤として用いられるので、ジアミノ化合物との混合の際にもDMAc又はDMFを用いることが特に好ましい。
 溶剤としてポリウレタンウレア重合体(A)を、(B)に使用する溶剤と同じ溶剤を使用して上記のポリウレタンウレア重合体(A)を製造すると、ポリウレタンウレア重合体(B)に、ポリウレタンウレア重合体(A)を、直接混合して紡糸用原液として用いることが可能であるため、製造工程が簡便かつ容易になる。
 上記のような条件下にて、本実施形態1に係るポリウレタンウレア重合体(A)の分子量を所望する範囲に調節することができる。
 (第一工程)
 上記の混合加熱条件により得られるポリウレタンウレア重合体(A)の数平均分子量は、ポリスチレン換算で12,000~50,000に調整するのが好ましい(測定方法については実施例にて説明する)。より好ましくは15,000~45,000、さらに好ましくは20,000~40,000である。ポリウレタンウレア重合体(A)の分子量が12,000~50,000にあると、このように分子量が調節されたポリウレタンウレア重合体(A)を含む紡糸用原液を紡糸して得られるポリウレタン弾性繊維の染色性、耐熱性、熱セット性及び紡糸性が同時に向上するだけでなく、後工程におけるスカムや糸切れの発生が抑制され、さらに耐熱性が低下しないので、染色工程での生地のパワー低下も起こらない。
 ポリウレタンウレア重合体(A)の固形分を、他のポリウレタンウレア重合体(B)の固形分100質量部に対して、0.01~20質量部の比で含有していることが必要である。0.01部未満では効果が少なく、20質量部を超えるとポリウレタン弾性繊維の弾性特性が低下する。好ましくは0.1~15質量部、さらに好ましくは1~10質量部である。
 本実施形態1に係るジアミノ化合物(2)により、上記一般式(1)で表されるポリウレタンウレア重合体(A)が生成する理由については、本実施形態1のポリウレタンウレア重合体(B)に含まれるポリマーの主鎖及び末端のウレア基と該アミノ化合物(2)中の第1級アミノ基との間で加熱によって起こるアミノ交換反応のためである。このように、アミノ交換反応がポリウレタンウレア重合体(B)のウレア基とジアミノ化合物(2)の第1級アミノ基間で起こると、ポリウレタンウレア重合体(B)の主鎖にもアミノ交換反応による切断が起こり、切断後の重合体の末端基に該ジアミノ化合物(2)中の第三級窒素基が結合した、いわゆる”中分子量”のポリウレタンウレア重合体(A)が生成する。
 生成したポリウレタンウレア重合体(A)は、中分子量ゆえに十分な濃度の第三級窒素基を確保でき且つ低分子量ウレア化合物も少ないので、満足できる染色性が得られるのみならず他のポリウレタンウレア重合体(B)と分子レベルで絡まり合うことができ、紡糸中や後工程においても、スカムの発生は起こり難い。しかしながら、前述した特許文献5にて提案された、分子量が300以上2000未満の末端基に第三級窒素基を有する特定の化合物は、上記一般式(1)中のkが0に相当する低分子ウレア化合物でありポリウレタンウレア重合体(B)に対する親和性が低くその為スカムが発生する。また特許文献6においても、分子量を低めに設定してプレポリマー製法で得られた、末端基に第三級窒素基を有するポリウレタン(ウレア)重合体には、未反応の原料ジイソシアナートが残留するので、不可避的に上記のkが0に相当する低分子量のウレア化合物を含むため、スカムが発生しやすい。本発明に係るジアミノ化合物(2)とポリウレタンウレア(B)とによって製造する方法によって、はじめて、kが0に相当する低分子量のものを含有することが少なく製造することが可能となった。
(第二工程)
(紡糸用原液調製工程)
 本工程は、前記ポリウレタンウレア重合体(A)の固形物を、前記ポリウレタンウレア重合体(B)の固形分100質量部に対して、0.01~20質量部の比で添加し、溶剤を含む紡糸用原液を調製する工程である。より好ましい添加量は、1~15質量部である。
 ポリウレタンウレア重合体(A)の添加量がこのような所定の範囲にあれば、本実施形態1における最大の効果を発現することができる。
 紡糸用原液100質量%に対して、ポリウレタンウレア重合体(A)と(B)とを合わせた固形分濃度は20質量%以上50質量%以下が好ましく、細糸の高速紡糸時に糸切れが起こらないので好ましい。さらに好ましくは30~40質量%である。
 この様にして得られるポリウレタンウレア重合体溶液に、所望により、公知の有機化合物又は無機化合物の熱安定剤、酸化防止剤、紫外線防止剤、黄変防止剤、熱変色防止剤の安定剤等を添加しても良い。本発明のポリウレタンウレア弾性繊維は、本発明の効果を阻害しない程度であれば、必要に応じ各種の公知のポリウレタン用安定剤や顔料などが含有されていてもよい。
 例えばフェノール系酸化防止剤は、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2、6-ジメチルベンジル)イソシアヌレート、3,9-ビス〔2-〔3-〔3-ターシャルブチル-4-ヒドロオキシ-5-メチルフェニル〕プロピオニルオキシ〕-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ〔5・5〕ウンデカン、トリエチレングリコール-ビス(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオナート、片ヒンダードのヒドロキシフェニル基を少なくとも1個有する分子量が約300以上である片ヒンダードフェノール化合物、p―クレゾールとジビニルベンゼンの重合体、p―クレゾールとジシクロペンタジエンの重合体、p-クロロメチルスチレンとp-クレゾールの重合体等が上げられる。チバガイギー社製“チヌビン”等のベンゾトリアゾール系、ベンゾフェノン系薬剤、住友化学工業(株)製の“スミライザー”P-16等のリン系薬剤、各種のヒンダードアミン系薬剤、酸化チタン、カーボンブラック等の無機顔料、フッ素系樹脂粉体又はシリコーン系樹脂粉体、ステアリン酸マグネシウム等の金属石鹸、また、銀や亜鉛やこれらの化合物などを含む殺菌剤、消臭剤、またシリコーン、鉱物油などの滑剤、硫酸バリウム、酸化セリウム、ベタインやリン酸系などの各種の帯電防止剤などが添加され、またポリマーと反応して存在することが挙げられる。そして、特に光や各種の酸化窒素などへの耐久性をさらに高めるには、酸化窒素捕捉剤、例えば(株)日本ファインケム製のHN-150、熱酸化安定剤、光安定剤、例えば、住友化学工業(株)製の“スミソーブ”300#622などの光安定剤などを含有させることが好ましい。
(第三工程)
(ポリウレタンウレア弾性繊維の紡糸工程)
 本工程においては、上記のポリウレタンウレア紡糸用原液を用いてポリウレタンウレア弾性繊維を製造する。
 ポリウレタン弾性繊維を紡糸する際の紡糸方法としては、一般に、溶融紡糸法、湿式紡糸法、乾式紡糸法が知られている。本発明においては、紡糸方法は高速紡糸時に細糸を安定生産できる乾式紡糸法が好ましい。
 本発明のポリウレタン弾性繊維を紡糸した後、パッケージに巻き取るに際し、25℃における動粘度が5~50センチストークスであるポリアルキルシロキサンと25℃における動粘度が30~70センチストークスである鉱物油との比(ポリアルキルシロキサン/鉱物油)が100/0~50/50であるオイル成分、脂肪酸金属塩、ポリカルボン酸系共重合物及びポリエーテル変性シリコーンを含む繊維処理剤で糸を処理することができる。
 更に詳しくは、本発明のポリウレタン弾性繊維を紡糸した後、パッケージに巻き取るに際し、25℃における動粘度が5~50センチストークスであるポリアルキルシロキサンと25℃における動粘度が30~70センチストークスである鉱物油との比が100/0~50/50であるオイル成分と、該オイル成分100質量部に対して炭素原子数10~30の脂肪酸金属塩0.1~10質量部、ポリカルボン酸系共重合物0.001~5質量部及びポリエーテル変性シリコーン0.00001~5質量部とを含む繊維処理剤で糸を処理することができる。繊維処理剤には、他に変性シリコーン、リン酸系化合物、タルク、シリカ、コロイダルアルミナ等の鉱物性徴粒子、高級脂肪族アルコール、パラフィン、ポリエチレン、常温で固体のワックス、着色剤、ロジン、顔料、カーボンブラック等を、本発明の効果を損なわない限度において、さらに付与しても構わない。
 これらの混合組成からなる繊維処理剤の調整方法は公知の方法により、ボールミル装置、ビーズミル装置、ホモミキサー装置で均一に分散させることができる。湿式ビーズミルで均一分散させることが好ましい。
 上記繊維処理剤のポリウレタン弾性繊維への付着量は、処理剤未付与のポリウレタン弾性繊維100質量部に対して、0.5~10質量部であることが好ましく、さらに好ましくは2~8質量部である。
 本実施形態2に係るポリウレタン弾性繊維の製造方法は、
(1)前記ポリウレタンウレア重合体(A)を製造する工程;
(2)前記ポリウレタンウレア重合体(A)の固形分を、前記ポリウレタンウレア重合体(B)の固形分100質量部に対して、0.01~20質量部の比で添加し、アニオン性官能基を有する化合物の重合体及び溶剤を含む紡糸用原液を調製する工程;並びに、
(3)前記紡糸用原液を用いてポリウレタン弾性繊維を紡糸する工程
を含む。
 まず、本実施形態2にて用いられるポリウレタンウレア重合体(A)について説明する。
 本実施態様にて用いられるポリウレタンウレア重合体(A)は、数平均分子量が12,000~50,000であり、上記一般式(1)で示される末端基に第三級窒素基を有するポリウレタンウレア重合体である。
 また、本実施形態2に係るポリウレタンウレア重合体(A)と後述するアニオン性官能基を有する化合物の重合体と組みわせることによって、本実施形態2の課題でもある、ポリウレタン弾性繊維の染色特性や熱特性、とりわけ染色堅牢度が同時に向上するとともに、無機機能剤の凝集を抑制し、紡糸中及び後工程におけるスカムや糸切れの発生が抑制される。
 次に本実施形態2にて用いられるポリウレタン重合体(B)について説明する。
 ポリウレタン重合体(B)は、高分子ジオールとジイソシアネートとが反応して得られたプレポリマーに、活性水素含有化合物を反応させる公知の方法で得られる。
 上記高分子ジオールとしてはポリエステルジオール、ポリカーボネートジオール及びポリエーテルジオール等を挙げることができる。好ましくはポリエーテルジオールであり、1種又は2種以上の炭素数2~10の直鎖状又は分岐状のアルキレン基がエーテル結合しているポリアルキレンエーテルジオールが特に好ましい。
 ポリアルキレンエーテルジオールとしては単一又は共重合ポリアルキレンエーテルジオールが好ましい。本実施形態2で使用されるポリアルキレンエーテルジオールの数平均分子量(Mn)は500~6,000が好ましく、さらに好ましくは1,000~3,000である。Mnが500より小さい場合弾性回復性が低下し、6,000より大きいと紡糸性が悪化する。
 共重合ポリアルキレンエーテルジオールは、アルキレン基がブロック状又はランダム状にエーテル結合している。従来からポリウレタン弾性繊維の原料として広範に用いられている単一重合ポリアルキレンエーテルジオールであるPTMG(ポリテトラメチレンエーテルグリコール)に比較して、2種類以上のアルキレン基からなる共重合ポリアルキレンエーテルジオールを用いたポリウレタン弾性繊維の場合、ポリウレタン成分の65質量%~85質量%を占めるジオール成分が非晶性であるため、ポリウレタンポリマー中に染料が浸透しやすく、ポリウレタン弾性繊維中でジアミノ化合物と染料とが効率的に結合する為、一層染色性が良好で色相良好な鮮やかな発色が得られる。
 さらに、共重合ジオールを用いた利点として、弾性機能がさらに改善され、その為、このポリウレタン弾性繊維は優れた弾性機能、即ち、高い破断伸度、伸長時の歪に対する小さな応力変動及び伸長時の応力の小さなヒステリシス損失等を有する。従って、これを使用したパンティストッキングやアウターは、優れた弾性機能を有し、着用感にも優れ、審美性良好な繊維製品となる。共重合ポリアルキレンエーテルジオールの中でも、得られるポリウレタン弾性繊維の耐水性、耐光性、耐摩耗性及び弾性機能等の観点から、ブチレン基、すなわちテトラメチレンエーテルユニットを含む共重合ポリアルキレンエーテルジオールが好ましく、更にはブチレン基、すなわちテトラメチレンエーテルユニットと2,2-ジメチルプロピレン基、すなわちネオペンチレンエーテルユニットとの組み合わせや、テトラメチレンエーテルユニットと2-メチルブチレン基との組み合わせが好ましい。
 テトラメチレン基以外のアルキレンエーテルユニットは、4mol%以上且つ85mol%以下含むことが好ましい。アルキレンエーテルユニットが4mol%未満では、ポリウレタン弾性繊維の弾性機能改良効果が小さく、85mol%を越えると弾性繊維の強度又は伸度の低下が大きい。
 上記ジイソシアネートとしては、分子内に2個のイソシアネート基を有す公知の脂肪族、脂環族若しくは芳香族の有機ジイソシアネートが挙げられる。具体的には、4,4′-ジフェニルメタンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート、p-フェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4′-ジシクロヘキシルメタンジイソシアネート等の有機ジイソシアネートが例示され、好ましくは、4,4′-ジフェニルメタンジイソシアネートである。また、有機ジイソシアネートとして、遊離のイソシアネート基に変換される封鎖されたイソシアネート基を有する化合物を使用してもよい。
 イソシアネート基と反応する上記活性水素含有化合物としては、ポリウレタンにおける常用の鎖伸長剤、即ち、イソシアネートと反応しウレア基又はウレタン基を形成し得る、水素原子を少なくとも2個含有する分子量500以下の低分子化合物を用いることが出来る。この具体例としては、エチレンジアミン、プロピレンジアミン、トリレンジアミン、m-キシリレンジアミン、1,3-ジアミノシクロヘキサン、イソホロンジアミン、ヒドラジン、4,4′-ジアミノジフェニルメタン、ジヒドラジド、ピペラジン等のジアミン類、及び特開平5-155841号公報で開示されたジアミン化合物類、エチレングリコール、プロピレングリコール、1,4-ブタンジオール等のジオール類等が挙げられ、好ましくはエチレンジアミン、1,2-プロピレンジアミン、及び特開平5-155841号公報で開示されたジアミン化合物類が挙げられる。これらの化合物は、単独で又は2種以上を混合して用いても良い。また、場合により、イソシアネートと反応し得る活性水素を1個含有する化合物と併用しても良い。
 ジイソシアネート、高分子ジオール及び活性水素含有化合物を用いてポリウレタンを製造する方法に関しては、公知のウレタン化反応の技術を採用することが出来る。また、本実施形態2で用いられる各種化合物の化学量論的割合は、高分子ジオールの水酸基と活性水素含有化合物の活性水素の総和が、ジイソシアネート化合物のイソシアネート基に対して1.00以上1.07当量未満が好ましい。
 本実施形態2に係るポリウレタンウレア重合体(A)のうち、より好ましい態様のポリウレタンウレア重合体(A)について説明する。
 本実施形態2において、より好ましいポリウレタンウレア重合体(A)は、上記一般式(1)におけるUA及びXがウレア結合である、数平均分子量が12,000~50,000のポリウレタンウレア重合体であって、例えば、上記のポリウレタン重合体(B)と、下記一般式(2)で表されるような分子内に第一級窒素基と第三級窒素基とを同時に有するジアミノ化合物とを反応させることにより、分子量が12,000~50,000に制御され、末端基に第三級窒素基を有する重合体(A)として得ることができる。
 本実施態様にて用いられるジアミノ化合物としては、例えば、下記一般式(2):
Figure JPOXMLDOC01-appb-C000009
 {式中、R及びRは、同一又は異なる炭素原子数が1~10の直鎖又は分岐したアルキル基又はヒドロキシアルキル基であるか、若しくはRとRが結合し、それらが結合した窒素原子と共に複素環基を形成しており、Rは炭素原子数が1~8の直鎖又は分岐したアルキレン基、繰り返し単位が1~5のエチレンオキシ基又は繰り返し単位が1~5のプロピレンオキシ基である。}
 で表されるアミン化合物が挙げられる。すなわち、分子内に第三級窒素基を有し、かつアミノ交換反応によってポリウレタンウレア重合体(A)の分子量を調節可能な第一級窒素基を分子内に同時に有する単活性水素化合物であって、より具体的には、以下のような化合物を挙げることが出来る。例えば、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、ジプロピルアミノエチルアミン、N,N-ジイソプロピルアミノエチルアミン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエトキシプロピルアミン、ジエタノールアミノプロピルアミン、N-アミノエチルピペリジン、N-アミノエチル-4-ピペコリン、N-アミノプロピルピペリジン、N-アミノプロピル-2-ピペコリン、N-アミノプロピルモルホリン、4-アミノメチル-1-ブチルピペリジン、ジメチルアミノエトキシプロピルアミン、N-アミノエチルピペリジン、N-アミノエチル-4-ピペコリン、N-アミノプロピルピペリジン、N-アミノプロピル-2-ピペコリン、N-アミノプロピルモルホリン、4-アミノメチル-1-ブチルピペリジン等のアミン化合物が例示される。
 これらの中でより好ましくは、ジエチルアミノプロピルアミン、ジブチルアミノプロピルアミンである。
<ポリウレタン重合体(B)とジアミノ化合物との加熱混合>
 本実施形態2に係るより好ましいポリウレタンウレア重合体(A)は、上記したようなポリウレタン重合体(B)に対して、上記のジアミノ化合物(2)をポリウレタン重合体(B)の固形分100質量部に対して0,01~15質量部の比で加えてから加熱することによって、下記一般式(1):
Figure JPOXMLDOC01-appb-C000010
で表されるポリウレタンウレア重合体であり、式中、UA及びXがウレア結合であるポリウレタンウレア重合体として得ることができる。前記ジアミノ化合物(2)がこの範囲であれば、後述するように加熱により前記ポリウレタンウレア重合体の分子量をポリスチレン換算で、12,000~50,000になるように調整することができ、ポリウレタン弾性繊維に悪影響を与えずに、効果を発現することができる。該ジアミノ化合物のより好ましい量は、ポリウレタン重合体(B)の固形分100質量部に対して0.5~6質量部であり、更に好ましくは1~5質量部である。
 上記のポリウレタン重合体(B)と、本実施形態2に係るジアミノ化合物(2)とを溶剤の存在下に混合加熱する際の加熱温度は50℃~150℃が好ましい。より好ましくは70℃~100℃である。加熱温度が50℃~150℃にあると、所望するポリウレタンウレア重合体の分子量が比較的短時間に得られるので好ましい。
 ポリウレタン重合体(B)とジアミノ化合物との混合時間は30分から30時間が好ましい。より好ましくは1時間~15時間である。混合時間が30分から30時間以内であると、所定の混合温度下、所望する分子量のポリウレタンウレア重合体(A)が得られるので好ましい。
 ポリウレタン重合体(B)とジアミノ化合物(2)との加熱混合は溶剤下で行われることが好ましいが、好適な溶剤としては、N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキサイド等、イソシアネート基に不活性な溶剤が挙げられる。ポリウレタン弾性繊維の製造には、通常DMAc又はDMFが好ましい溶剤として用いられるので、ポリウレタン重合体(B)とジアミノ化合物との加熱混合の際にもDMAc又はDMFを用いることが特に好ましい。
 溶剤としてDMAcを用いて上記のポリウレタンウレア重合体(A)を製造すると紡糸用原液に直接混合が可能であるため、その分製造工程が簡便になる。
 上記のような条件下にて、本実施形態2に係るポリウレタンウレア重合体(A)の分子量を所望する範囲に調節することができる。
 上記の混合加熱条件により得られるポリウレタンウレア重合体(A)の分子量は、ポリスチレン換算の数平均分子量として12,000~50,000に調整するのが好ましい(測定方法については実施例にて説明する)。より好ましくは15,000~45,000、さらに好ましくは20,000~40,000である。ポリウレタンウレア重合体の分子量が12,000~50,000にあると、このように分子量が調節されたポリウレタンウレア重合体(A)を含む紡糸用原液を紡糸して得られるポリウレタン弾性繊維の染色性、耐熱性、熱セット性及び紡糸性が同時に向上するだけでなく、後工程におけるスカムや糸切れの発生が抑制され、さらに紡糸中や生地加工時にパワー低下を起こさない。
 本実施形態2においては、ポリウレタンウレア重合体(A)の固形分を他のポリウレタン重合体(B)の固形分100質量部に対して、0.01~20質量部含有していることが必要である。0.01部未満では効果が少なく、20質量部を超えるとポリウレタン弾性繊維の弾性特性が低下する。好ましくは0.1~15質量部、さらに好ましくは1~10質量部である。
 また、本実施形態2に係るポリウレタンウレア重合体(A)と後述するアニオン性官能基を有する化合物の重合体と組みわせることによって、酸化チタンやハイドロタルサイト等の無機機能剤の凝集が抑制された紡糸用原液が得られ、該原液を用いて乾式紡糸して得られたポリウレタン弾性繊維は、紡糸安定生産性に優れ、かつスカムが発生せず、熱セット性も良好で、さらに驚くべきことに、相乗効果を発揮して染色性・染色堅牢度に優れたものになる。
 上記のジアミノ化合物(2)により、上記の一般式(1)におけるUA及びXがウレア結合である、すなわち末端基に第三級窒素基を有するポリウレタンウレア重合体(A)が生成し、かつその分子量を所望する範囲に調節できる理由は、本実施形態2におけるポリウレタン重合体(B)に含まれるウレア結合と該ジアミノ化合物中の第一級窒素基との間で起こるアミノ交換反応のためである。
 このように、アミノ交換反応がポリウレタン重合体(B)のウレア基とジアミノ化合物間で起こると、ポリウレタン重合体(B)の主鎖の切断が起こり、切断後の重合体の末端基に該ジアミノ化合物中の第三級窒素基が結合した、いわゆる”中分子量”を有するポリウレタンウレア重合体が生成する。末端基に第三級窒素基を有するポリウレタンウレア重合体(A)は、中分子量ゆえに他のポリウレタン重合体と分子レベルで絡まり合うことができるので、紡糸中及び後工程において、スカムの発生は起こり難い。これに対して、特許文献5にて提案された分子量が300以上2,000未満の末端基に第三級窒素基を有するウレア化合物では、ポリウレタン重合体との親和性が劣り、かつ分子量が低すぎるゆえに、スカム発生となりやすい。また、特許文献6においても、分子量が2,000~100,000で、末端基が第三級窒素基である特定構造のポリウレタンウレア重合体が提示されているが、プレポリマーを経由する方法で、分子量が低めに製造したポリウレタンウレア重合体には、プレポリマー中に、未反応の原料ジイソシアネート化合物が残留する為、不可避的に製造工程上からスカムの原因となる低分子量のウレア化合物が多く含まれる。
 しかしながら、アニオン性官能基を有する化合物の重合体を併用することによって、低分子量のウレア化合物に対してもスカム発生を抑制することができる。
 より好ましい製造法は前述したアミノ交換反応の製造法である。
 次に本実施形態2に係るアニオン性官能基を有する化合物の重合体(以下、アニオン性重合体という)について説明する。
 一般的な酸性染料による染色では、染液中にアニオン性化合物(たとえば酢酸水溶液など)を加えて、pHを約4に設定するのである。しかし、本実施形態2ではその代わりに、あらかじめ、繊維中に、アニオン性重合体を添加混合しておくことにより、酸性染料中に存するアルカリ金属塩基を活性化させることで、ポリウレタン重合体中において、末端第三級窒素と強く吸着反応しポリウレタン弾性繊維の染色性を向上させる、という特徴を有する。
 本実施形態2にて用いられるアニオン性重合体の官能基としては、カルボキシル基、スルホン酸基、ニトロ基及びリン酸基からなる群から選択されたものであるが、その中でカルボキシル基であるものが特に好ましい。
 本実施形態2で用いるアニオン性重合体として、官能基にカルボキシル基を有するものとして、例えば、本出願人による特許文献8に詳細に記載されている。アニオン性重合体の具体的な一例として、日油株式会社製商品名マリアリムAKM-0531、AFB-0561、AFB-1521、AAB-0851、AEM3511,AWS-0851等があげられる。好ましい化合物はAKM-0531、AAB-0851である。また、スルホン酸基を含有する例としては、特許文献7に記載されている重合体である。これらのアニオン性重合体を、単独又は組み合わせて使用することができる。
 該アニオン性重合体は、ポリウレタン弾性繊維に対して、10mmol/kg以上200mmol/kg以下であることが好ましい。より好ましくは20mmol/kg~180mmol/kg、さらに好ましくは30mmol/kg~150mmol/kgである。このアニオン性重合体をポリウレタン弾性繊維に対して10mmol/kg以上200mmol/kg以下含有し、本実施形態2に係るポリウレタンウレア重合体(A)と組み合わせることによって、無機機能剤の凝集抑制や低分子ウレア化合物のスカムの抑制や繊維の染色特性及び染色堅牢度が著しく改善される。
 このようにポリウレタン弾性繊維の染色堅牢度が改善される理由については、以下のように推定している:本実施形態2では、アニオン性重合体(特に、ポリカルボン酸系共重合化合物)と、末端に第三級窒素含有アルキルアミンが結合したポリウレタンウレア重合体(A)とを併用する。一方、特許文献7に記載されているアニオン性重合体を単独で用いた場合、先述した[背景技術]の項にて説明したように、ポリウレタン重合体自体にある弱塩基性の染着座席をアニオン性官能基によって塞がれてしまう為、ポリウレタン重合体に酸性染料が吸着結合することができない。そのためアニオン性重合体を単独で添加したものは未添加のポリウレタン重合体に比較して染色性が低下する。これに対して、本実施形態2では、アニオン性官能基を有する化合物の重合体と第三級窒素含有のポリウレタン重合体(A)と併用することによって、アニオン性官能基によって酸性染料が有する化学構造中の金属塩(例えば、スルホン酸Na塩)をフリーのアニオン性官能基(スルホン酸基)に変化させる。しかも、ポリウレタン弾性繊維を構成するポリウレタン重合体(B)内部にてスルホン酸基の変換が起こる為、効率よくポリウレタン重合体(B)中で酸性染料が第三級窒素含有物化合物に吸着結合することができ、優れた染色効果を発揮することができる。染料は高価な原料あり、かつ、染色浴中で一部の染料は使用されずに、廃液中に存在して廃棄され、その廃液処理費用や環境汚染の観点からも本発明は有益である。
 さらに、先述したように、ポリウレタン弾性繊維はもともと柔軟かつ粘着性のある素材であるがゆえに、紡糸工程でのガイドやローラーでの摩擦抵抗による糸切れなどが起こりやすく、通常、酸化チタン等を微小紛体化したものを繊維に添加することによって改善がはかられている。また、ポリウレタン弾性繊維の耐塩素性を改良するために特許文献8には、ハイドロタルサイト等の微小紛体を繊維に添加し解決しようと試みられている。
 本実施形態2においては、上記のごとくポリウレタン弾性繊維の糸切れや耐塩素性を向上させる化合物(無機機能剤という)を含有するのが好ましい。
 無機機能剤として好ましいものとして、炭素原子数5~40の脂肪酸金属塩、ここで該金属塩中の金属は、マグネシウム、カルシウム、アルミニウム、及び亜鉛からなる群から選ばれる;酸化チタン;酸化亜鉛;酸化亜鉛とシリカの金属複合塩;ハイドロタルサイト類化合物;フンタイト類化合物;MgOとZnOの固溶体;二酸化ケイ素と酸化亜鉛の複合物;二酸化ケイ素と酸化亜鉛の複合塩;二酸化ケイ素と酸化亜鉛とアルミナの複合塩;多孔質性合成シリカ;カーボンブラック;着色剤;及び顔料からなる群から選ばれるものが挙げられる。
 そして該無機機能剤の前記ポリウレタン重合体(B)100質量部に対する含有量は、0.1~10質量部であることが好ましい。無機機能剤の含有量がこの範囲にあると、ポリウレタン弾性繊維の糸切れが起こらず、かつ繊維の耐塩素性が良好となる。
 しかしながらこのような各種の無機機能剤は、上記のアミド系溶剤中では、親和性に乏しく、著しく凝集しやすい。特に本実施形態2に係る、さらに末端に第三級窒素基を有するポリウレタンウレア重合体(A)のみを用いた場合には、一層大きな凝集体の形成を加速させ、フィルター詰まりや前記したような様々な問題を引き起こす。
 これに対して、本実施形態2に係る、末端に第三級窒素基を含有するポリウレタンウレア重合体(A)とアニオン性官能基を有する化合物の重合体と併用することによって、該無機機能剤の粉体は、アミド系溶剤に微分散させさせた状態でも、凝集を起こさず、安定な分散状態を維持することができる。
 また、染色性も同時に一層向上させるという予想外の驚くべき効果を見出した。
 この様にして得られるポリウレタンウレア重合体(A)はアニオン性官能基を有する化合物の重合体と別々に、又はあらかじめ混合してポリウレタン重合体(B)に加えてもよい。更に、所望により、ポリウレタン弾性繊維に有用な公知の有機化合物又は無機化合物の平滑剤、熱安定剤、酸化防止剤、紫外線防止剤、黄変防止剤、熱変色防止剤及び耐プール用殺菌塩素剤等を添加し、紡糸用原液を調製する。
 以上のような添加剤を添加して調製された紡糸用原液は、従来公知の乾式紡糸法、溶融紡糸法等で紡糸筒紡糸口金を経て繊維状や押し出し成型法により細長い扁平繊維状に成型された後に、筒に巻き取られて、ポリウレタン弾性繊維が得られる。好ましくは、乾式紡糸で得られるポリウレタン弾性繊維である。
 この際、更に、公知のポリウレタン弾性繊維用油剤を紡糸時に外部よりオイリング装置を用いて、油剤として付着させてもよい。ここで用いられる油剤成分は、エーテル変性シリコーンの他に、ポリエステル変性シリコーン、ポリエーテル変性シリコーン、ポリアミノ変性シリコーン、ポリオルガノシロキサン、鉱物油、タルク、シリカ、コロイダルアルミナ等の鉱物性微粒子、ステアリン酸マグネシウム及びステアリン酸カルシウム等の高級脂肪酸金属塩粉末、高級脂肪族カルボン酸、高級脂肪族アルコール、パラフィンポリエチレン等の常温で固体のワックスなど種々のものを組み合わせて使用して良い。
 本実施形態2のポリウレタン弾性繊維は、本発明の効果を阻害しない程度であれば、必要に応じ各種安定剤や顔料などが含有されていてもよい。例えば、耐光剤、酸化防止剤などとして、チバガイギー社製“チヌビン”等のベンゾトリアゾール系、ベンゾフェノン系薬剤、住友化学工業(株)製の“スミライザー”P-16等のリン系薬剤、各種のヒンダードアミン系薬剤、酸化チタン、カーボンブラック等の無機顔料、フッ素系樹脂粉体又はシリコーン系樹脂粉体、ステアリン酸マグネシウム等の金属石鹸、また、銀や亜鉛やこれらの化合物などを含む殺菌剤、消臭剤、また、シリコーン、鉱物油などの滑剤、硫酸バリウム、酸化セリウム、ベタインやリン酸系などの各種の帯電防止剤などが添加され、また、ポリマーと反応して存在することが挙げられる。そして、特に光や各種の酸化窒素などへの耐久性をさらに高めるには、酸化窒素捕捉剤、例えば(株)日本ファインケム製のHN-150、熱酸化安定剤、光安定剤、例えば、住友化学工業(株)製の“スミソーブ”300#622などの光安定剤などを含有させることが好ましい。
 本発明の製造方法で得られるポリウレタン弾性繊維は、実用上は、そのまま裸糸として使用しても良く、また、他の繊維、例えば、ポリアミド繊維、ウール、綿、再生繊維、ポリエステル繊維、セルロース繊維など、従来公知の繊維で被覆して被覆弾性繊維として使用することもできる。特に、ナイロン、エステル、アクリル、天然繊維及びセルロース誘導体からなる群から選ばれた繊維素材と組み合わせて用いることが好ましい。
 本発明の製造方法で得られるポリウレタン弾性繊維は、ファウンデーション、靴下留め、口ゴム、コルセット、外科用の包帯、製紐、織物及び編物の水着等に用いる事ができる。特に、インナー、アウター、レッグ、スポーツウェア、ジーンズ、水着及び衛生材からなる群から選ばれた繊維製品に好ましく用いられる。
 本発明の製造方法で得られるポリウレタン弾性繊維を染色する場合は、通常の合成繊維、天然繊維の染色法と同じ方法を用いてよい。すなわち、浸染法、パッドスチーム法、パッドサーモフィックス法、捺染法及びスプレー法等の染色法を適用できる。染色機としては、液流染色機、ウィンス染色機及びエアーフロー染色機等の通常の染色機を用いることができる。
 以下実施例により本発明を詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。各種評価は以下の方法にて行った。
(1)ポリウレタン弾性繊維の製造の例
 後述の実施例の紡糸用原液を脱泡した後、16個の紡糸口金(各々の口金は4個の細孔を有す)の細孔から熱風約230℃中に押しだしてDMAc溶剤を蒸発させた。乾燥された糸条を仮撚りし、ゴッデトローラを経てオイリングローラー上でジメチルシリコンを主成分とする油剤を付与し、毎分750m/分の速度で紙管に巻き取り、44dt/4フィラメントのポリウレタン弾性繊維を得た。得られたポリウレタン弾性繊維を用いて以下の各種評価を行った結果を表2及び表5に記載した。このようにして製造し得られたポリウレタン弾性繊維は、破断強伸度の測定法引っ張り試験機(オリエンテック(株)製:UTM-3-100型)により、20℃、65%RH雰囲気下で、糸試料長5cm幅で1分間1000%の歪み速度で測定した。得られた破断強伸度は、良好な物性を示した。
(2)ポリウレタン弾性繊維の染色性評価
 染色性評価には2ウェイトリコット編地を用いた。すなわち、フロント筬に33dt/10fのナイロン繊維、ミドル筬とバック筬に44dtの本実施例又は比較例のポリウレタン弾性繊維を用い、フロント筬の組織を10/23、ミドル筬の組織を10/01、バック筬の組織を12/10とした2ウェイトリコット編地を編成した。この生地のポリウレタン弾性繊維の混率は35%であり、拡布状態で連続精練機に投入した。この際、連続精練機は4つの液槽があるものを使用し、20℃、50℃、70℃、90℃と、反物が順次通過する際の温度を変えて、かつ、各液槽には、すべて精練剤(花王(株)製 スコアロールFC-250)2g/Lを投入した。連続精練機を通過した反物は、水洗浴の通過後、マングルにて脱水しピンテンターにて190℃で45秒間プレセットを行った。
 ついで、液流染色機に投入し、精練もかねて液中で精練剤(花王(株)製 スコアロールFC-250)2g/Lを投入し、70℃、20分間酸性浴で精練を行った。排液、すすぎ、再注水し、pH4に調整した黒色の酸性染料を投入し、95℃で60分間染色した。
 その後、すすぎを行い、フィックス処理(天然タンニンS 6%owf、吐酒石L 3%owf、80℃/40分間処理)後、反物を染色機から取り出し、柔軟樹脂加工、更にピンテンターにて170℃で仕上げセットを行った。
 黒色に染めた際の染色性を下記の基準に従って判定した。
          5級  濃黒、
          4級  黒、
          3級  淡黒、
          2級  灰色、
          1級  薄灰色
(3)生地の洗濯染色堅牢度
 JIS L0844変退色により評価を行った。
 その際の使用洗剤は花王(株)製 洗剤商品名「アタック」2g/Lであり、洗濯液温度80℃の条件で各30分間洗濯後、30分間流水すすぎした後脱水し、室温(20℃、65%RH)にて、24時間乾燥後の色相の変化を測定した。
 色相の変化(Δ級)=生地の洗濯前の級-生地の洗濯後の級
 洗濯前の級数が大きく、且つ、Δ級の数値が小さいほど、色変化が少なく染色性と堅牢性が良好であるといえる。
(4)生地のドライクリーニング処理後の染色堅牢度
 JIS L-0860により評価を行った。
 本実施形態のポリウレタン弾性繊維は、分散染料染色物のドライクリーニング試験を行った場合に、液汚染が3級以上であることが好ましい。このドライクリーニング試験の液汚染評価で3級に満たない場合、ポリウレタン弾性繊維と分散染料可染型繊維との混用布帛を分散染料で染色した繊維素材について、ドライクリーニング堅牢度は満足するものが得られない可能性がある。
〔4-1〕評価試験用ベアポリウレタン弾性繊維編地の調製
 丸編機(小池機械製作所(株)CR-C型)を用いて、ポリウレタン弾性繊維で編成したベアのポリウレタン弾性繊維編地を1.2g計量し、ポリエステル繊維からなるベア編地4.8gと表面を一緒にあわせて留め、ステンレス製容器に入れ、C.I.ディスパースブルー167(ベンゼンアゾ系分散染料)5%owf、浴比1:50、pH5.0にて130℃で30分間染色する。この染色されたポリウレタン弾性繊維とポリエステル繊維を、ハイドロサルファイト1.6g/lと苛性ソーダ1.6g/l、浴比1:50にて80℃で20分還元洗浄処理を行う。得られるポリウレタン弾性繊維のベア編地を水洗、風乾して評価に用いる。
〔4-2〕評価試験用のポリウレタン弾性繊維/ポリエステル繊維混用布帛の調製
 ポリウレタン弾性繊維とポリエチレンテレフタレートからなるポリエステル繊維55デシテックス/24フィラメントを、ポリウレタン弾性繊維の混率が20%となるように、通常の編成条件にて6コースサテンネット編地を得た。この混用布帛を、C.I.ディスパースブルー167(ベンゼンアゾ系分散染料)5%owf、浴比1:50、pH5.0にて130℃で30分間染色を行う。続いて、この染色布帛を、ハイドロサルファイト1.6g/lと苛性ソーダ1.6g/l、浴比1:50にて80℃で20分還元洗浄処理を行う。得られるポリウレタン弾性繊維とポリエステル繊維の染色交編布帛を水洗、風乾して、評価に用いる。
〔4-3〕ドライクリーニング液の汚染
 JIS L-0860に従ってドライクリーニング試験を実施し、ドライクリーニング液とドライクリーニング試験後の汚れ液を磁器容器(20mm×40mm×10mm)に8ml採取し、液汚染程度を汚染用グレースケールと比較してその色落ち度を判定した。
(5)紡糸安定性の評価
 以下の実施例記載の方法に準じて製造した紡糸用原液を、前記の方法にて30時間紡糸してその糸切れ回数(回/時間)を測定した。糸切れ回数が少ないほど生産性が安定している。
(6)熱切断秒数
 初期長14cmの試験糸を50%伸長して21cmとし、直径6cmのシリコンオイルが充填され表面温度が190℃に制御された円筒状の熱体に押し当て(糸接触部分1cm)、接触開始から切断されるまでの秒数を測定する。秒数が長いと耐熱性が高く、耐熱性が低いと布帛加工時に、熱セッターや染色工程で、糸切断による布帛ピンホールの欠点が発生しやすい。
(7)熱セット率測定法
 熱セット率は以下の測定及び数式にて求めた。無緊張かつ直線状の状態の長さLd0の弾性糸を2.0倍の長さまで伸長し固定後、そのままの状態で185±1℃に調整したテンターボックスを通過させ、テンターボックス通過時間を30秒とし、直ちに弾性糸を取り出し、Ld0以下の長さで曲がりくねらせて十分にリラックスし、室温で16時間放置する。再び、弾性糸を無緊張かつ直線状の状態にし、そのときの長さをLd1としたとき、下記の数式でセット率を定義した。熱セット率が高い程、衣料製品を繰り返し着用したときに寸法安定性が良好である。
    熱セット率(%)=〔(Ld1-Ld0)/Ld0〕×100
(8-1)スカム(糸カス)評価法
 実施例1~6、比較例1~4のスカム(糸カス)評価は次の方法に従った。
 40デニール/5フィラメントの弾性繊維400gを紙管に巻き取って後、40℃、65%RHの雰囲気で35日間放置後、紙管を梨地ローラー上に置き、ローラーを回転させながら、ローラー表面速度40m/分で、弾性繊維を送り出す。送り出された弾性繊維を50cm離れた所に設置された同じ径の梨地ローラー上に巻き取る。送り出す弾性糸から25cmの中間地点にかみそり刃を糸角115度になるように設定して立てておき、巻き取るローラー上の表面速度を70m/分設定した。かみそり刃上に弾性繊維を1時間走行させた後、かみそり刃(エヌティー(株)製:NT-L型刃品番L-300)上に付着した白色スカムの量を目視によって1級から5級の判断をした。スカムの発生が多い場合は、生地の加工時に対編み針やガイドに対する摩擦抵抗が増加し編地生地品位が低下する問題がある。
5級:かみそり刃に全く付着無し。
4級:かみそり刃にほんのわずか付着あり。
3級:かみそり刃に若干付着あり。
2級:かみそり刃にやや付着量多し。
1級:かみそり刃に多量の付着物あり。
(8-2)スカム評価方法
 実施例7~14、比較例5~14のスカム(糸カス)評価は次の方法に従った。
 44デニール/4フィラメントの弾性繊維を、45℃、65%RHの雰囲気で30日間放置後、紙管を梨地ローラー上に置き、ローラーを回転させながら、ローラー表面速度40m/分で、弾性繊維を送り出す。送り出された弾性繊維を50cm離れた所に設置された同じ径の梨地ローラー上に巻き取る。送り出す弾性糸から25cmの中間地点にかみそり刃を糸角115度になるように設定して立てておき、巻き取るローラー上の表面速度を70m/分設定した。かみそり刃上に弾性繊維を1時間走行させた後、かみそり刃(エヌティー(株)製:NT-L型刃品番L-300)上に付着した白色スカムの量を目視によって1級から5級の判断をした。
 5級:かみそり刃に全く付着無し。
 4級:かみそり刃にほんのわずか付着あり。
 3級:かみそり刃に若干付着あり。
 2級:かみそり刃にやや付着量多し。
 1級:かみそり刃に多量の付着物あり。
(9)分子量測定
 ポリウレタンウレア重合体(B)はじめ実施例中のポリウレタンウレア重合体の数平均分子量は、ポリスチレン換算分子量として以下の測定条件にて測定した。
 サンプル濃度 : 0.1質量%(DMF溶液)
 注入量    : 50μl
 送液ポンプ  : 島津製作所製 LC-20AD
 カラムオーブン: 同上     CT0-20A
 検出器    : 同上     SPD-M20A
 溶離液    : DMF
 流量     : 1ml/min
 カラム温度  : 40℃
 カラム    : Shodex GPC KD-804+KD-803
(10)赤外線吸収スペクトル法分析
 装置:島津製作所製 IRAffinity-IS型
 検出器:MIracle 10
 試料台:ATRプリズムプレート(ダイヤモンド/ZnSe)
 (製造例1)
 (ポリウレタンウレア重合体(B)溶液の製造)
 数平均分子量1800のポリテトラメチレンエーテルジオール400gと4,4’-ジフェニルメタンジイソシアネート91.7gとを乾燥窒素雰囲気下、80℃で3時間、攪拌下で反応させて、末端がイソシアネートでキャップされたウレタンプレポリマーを得た。これを室温に冷却した後、N,N-ジメチルアセトアミド(以下DMAcと略す)720gを加えて溶解し、ウレタンプレポリマー溶液を調整した。一方、エチレンジアミン8.11g及びジエチルアミン1.37gをDMAc390gに溶解し、これを前記プレポリマー溶液に室温下で激しく攪拌しながら添加して、粘度360Pa・s(30℃)のポリウレタンウレア重合体(B)溶液(固形分濃度31.1質量%)を得た。
 また、図2にポリウレタンウレア重合体(B)(符号4)のGPCクロマトグラムを示した。ポリスチレン換算分子量は142,800であった。
(実施例1~6)
(末端が第三級窒素基であるウレタンウレア重合体(A)の製造)
 製造例1で製造したポリウレタンウレア(B)溶液300gにジエチルアミノプロピルアミン2.8g(上記(B)の固形分100質量部に対して3質量部相当量)をDMAc120gに溶解した溶液を添加して、均一になるように撹拌混合した後、100℃迄、徐々に昇温し、100℃に保ったままで20時間、撹拌加熱した。これを室温迄冷却して末端が第三級窒素基を有するポリウレタンウレア重合体(A)粘度52mPa・s/25℃を製造した。
 表1記載の末端第三級窒素含有アルキルアミン化合物を前記と同様な方法に従って末端が第三級窒素基であるポリウレタンウレア重合体(A)を製造した。
 尚、図1には製造したポリウレタンウレア重合体(A)のうち、N-1のIRチャートを示した。図2には一例として、N-2(符号1)とN-4(符号2)それぞれのGPCクロマトグラムを示した。これらのクロマトグラムから、N-2及びN-4のポリスチレン換算分子量はそれぞれ28,000と30,100であることが分かった。
 製造例1にて製造したウレタンウレア重合体(B)のDMAc溶液に1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2、6-ジメチルベンジル)イソシアヌレートと、前記で製造した末端が第三級窒素基であるウレタンウレア重合体(A)を高速撹拌により均一に溶解及び分散した液を上記のポリウレタンウレア重合体(B)溶液に加えて攪拌し、均一な紡糸用原液を得た。なお、ポリウレタンウレア重合体(B)の全固形分100質量部に対して、当該イソシアヌレート化合物の添加量は1質量部、一般式(1)式で表わされるポリウレタンウレア重合体(A)の添加量は表2に記載された質量部になるようにした。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
(比較例1)
 製造例1で製造したポリウレタンウレア重合体(B)の固形分100質量部に対して、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2、6-ジメチルベンジル)イソシアヌレートを1質量部のみ添加し、末端が第三級窒素基であるポリウレタンウレア重合体(A)は、添加しないポリウレタンウレア重合体(B)の紡糸用原液を用いて前記記載の方法にてポリウレタン弾性繊維を製造した。
(比較例2)
[低分子ウレア化合物の製造]
 特許文献5の実施例1に従って以下のように合成した。
 ジエチルアミノプロピルアミン52.5部をDMAc(ジメチルアセトアミド)200部に溶解した溶液に、4,4′-ジフェニルメタンジイソシアネート50.0部をDMAc300部に溶解した溶液を徐々に滴下した。なお、滴下は温度10℃~20℃に保つように冷却しながら攪拌して行なった。滴下終了後、更に2時間攪拌を続けた。
 得られた反応溶液の一部を取り、水中に滴下して、白色沈殿物をろ過し、充分に水洗後、80℃で減圧乾燥させた。この沈殿物は、目的とするポリスチレン換算の数平均分子量が4,900の4,4′-ジフェニルメタンジイソシアネートの両末端に第三級窒素基を有する化合物であると確認された。末端が第三級窒素基である化合物を、比較例1の1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2、6-ジメチルベンジル)イソシアヌレートを、ポリウレタンウレア重合体(B)の固形分100質量部に対して、1質量部添加した紡糸用原液に、均一に表2に記載された質量部になるように添加混合したポリウレタンウレア重合体溶液を用いてポリウレタン弾性繊維を製造した。
(比較例3)
(プレポリマー合成法で製造された主鎖がウレタン結合で構成され、末端基のみに第三級窒素基を有するポリウレタンウレア重合体の製造)
 特許文献6の実施例1に従って合成した。
 数平均分子量1,800のポリテトラメチレンエーテルジオール400gと4,4’-ジフェニルメタンジイソシアネート91.7gとを乾燥窒素雰囲気下、80℃で3時間、攪拌下で反応させた。この場合の、ポリオールとジイソシアナートの仕込み値(N値と略す)=(ジイソシアナートのイソシアナート当量)/(ポリオールの水酸基当量)は1.65である。こうしてウレタン結合で構成され末端がイソシアネート基からなるウレタンプレポリマーを得た。このウレタンプレポリマーを、室温まで冷却し、DMAc溶剤500gで溶解して得られた溶液に、温度20℃~30℃に保つように冷却し激しく攪拌しながら、ジエチルアミノプロピルアミン37.6gをDMAc300gに溶解した溶液を滴下した。滴下終了後、更に2時間攪拌を続けた。
 この溶液の一部を取り、IR、GPCの測定結果から、数平均分子量11,000の目的とする特許文献6に記載の式(1)で表わされるポリウレタンウレア重合体であることを確認した。この末端のみ三級窒素基を有するウレタンウレア化合物を、比較例1記載の紡糸用原液に添加したポリウレタンウレア重合体溶液を用いてポリウレタン弾性繊維を製造した。添加量は表2に記載された質量部になるようにした。
(比較例4)
 (末端停止剤の一部に第三級窒素基含有単活性水素化合物を用いてポリウレタンウレア重合を行ない、ポリウレタンウレア重合体中に末端基が第三級窒素基であるポリウレタンウレア重合体の添加と混合を同時に行なう紡糸用原液の調整及びポリウレタン弾性繊維の製造)
 特許文献6の実施例3に従って合成した。
 数平均分子量1800のポリテトラメチレンエーテルジオール400gと4,4’-ジフェニルメタンジイソシアネート91.7gとを乾燥窒素雰囲気下、80℃で3時間、攪拌下で反応させて、末端がイソシアネートでキャップされたウレタンプレポリマーを得た。これを室温に冷却した後、ジメチルアセトアミド720gを加えて溶解し、ウレタンプレポリマー溶液を調整した。一方、エチレンジアミン8.11g、ジエチルアミノプロピルアミン1.98g及びジエチルアミン0.26gをジメチルアセトアミド390gに溶解し、これを前記プレポリマー溶液に室温下で添加して、粘度285Pa・s/30℃のポリウレタン溶液を得た。この重合体には、第三級アミノ化合物の仕込み量から特許文献6中の(1)式で表わされるポリウレタンウレア重合体が、他のポリウレタンウレア重合体100質量部に対して27質量部含有されている。このポリウレタンウレア重合体の固形分100質量部に対して1質量部の1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2、6-ジメチルベンジル)イソシアヌレートを、ポリウレタンウレア重合体溶液に加えて攪拌し、均一な紡糸用原液を得た。この末端が第三級窒素基である高分子量の末端基がウレタンウレア化合物を添加したポリウレタンウレア重合体溶液を用いてポリウレタン弾性繊維を製造した。添加量は表2に記載された質量部になるようにした。
 尚、図2に、上記の特許文献6中の(1)式で表されるポリウレタンウレア重合体のGPCクロマトグラム(符号3)を示した。このクロマトグラムから、この重合体のポリスチレン換算分子量は75,000であることが分かった。
(比較例5)
 撹拌機及び温度計を備えた四つ口フラスコに、数平均(OH価から計算)分子量3,100のPTMG310g、分子量62のエチレングリコール16.3g、MDI91.5g及びDMAc577gを仕込み、乾燥窒素雰囲気下、70℃で7時間反応させ、次にn-ブチルアルコール13.1gを加えて1時間末端停止反応を行った後、20℃まで冷却した。濃度42.7%、粘度610Pa・s/30℃、数平均分子量100,000のウレア結合を有しないウレタン結合のみからなるポリウレタン溶液を得た。得られたポリウレタン溶液300gに、ジアミノ化合物(2)に相当する6.4gのジエチルアミノプロピルアミンとDMAc148.3g加えて均一にした溶液を加えて100℃迄、徐々に昇温し、100℃に保ったままで20時間、撹拌加熱した。これを室温迄冷却した。液体クロマトグラフィーにて反応した液中のジアミノ化合物(2)に相当するジアミノ化合物(2)に相当するジエチルアミノプロピルアミンを測定したが、ジエチルアミノプロピルアミンはわずかに減少したのみであった。このことから該原料となるポリウレタン樹脂溶液中にウレア結合を有しない物は、アミン交換反応を行うことが困難であり本発明に用いうる末端が第三級窒素基であるウレタンウレア重合体(A)を得ることができないことが分かった。
(参考例1)
(ポリウレタンウレア重合体原液及び弾性繊維用の紡糸用原液の製造)
 数平均分子量1800のポリテトラメチレンエーテルジオール400gと4,4’-ジフェニルメタンジイソシアネート91.7gとを乾燥窒素雰囲気下、80℃で3時間、攪拌下で反応させて、末端がイソシアネートでキャップされたウレタンプレポリマーを得た。これを室温に冷却した後、N,N-ジメチルアセトアミド(以下DMAcと略す)720gを加えて溶解し、ウレタンプレポリマー溶液を調整した。一方、エチレンジアミン8.11g及びジエチルアミン1.37gをDMAc390gに溶解し、これを前記プレポリマー溶液に室温下で激しく攪拌しながら添加して、粘度310Pa・s(30℃)のポリウレタンウレア重合体(B)溶液(濃度31.1質量%)を得た。
 前記のポリウレタンウレア重合体(B)の固形分100質量部に対して、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2、6-ジメチルベンジル)イソシアヌレートを1質量部のみ添加したポリウレタンウレア重合体溶液をポリウレタン弾性繊維用の紡糸用原液として製造した。
(参考例2)
(末端が第三級窒素基含有ポリウレタンウレア重合体(A) NPU-1~5の製造)
 参考例1で製造したポリウレタンウレア重合体(B)溶液300gにジエチルアミノプロピルアミン1.87g(上記(B)の固形分100質量部に対して2質量部相当量)をDMAc120gに溶解した溶液を添加して、均一になるように撹拌混合した後、100℃迄、徐々に加熱昇温し、100℃に保ったままで15時間、撹拌加熱した。これを室温迄冷却して末端に第三級窒素基を有し、粘度が76mPa・s/25℃のポリウレタンウレア重合体(A)(NPU-1)溶液を製造した。
 前記と同様な方法で、表3記載の第三級窒素含有アミノ化合物を、参考例1で製造したポリウレタンウレア重合体(B)溶液に、表3記載の(B)の固形分100質量部に対する質量部相当量を添加して、末端が第三級窒素基であるポリウレタンウレア重合体(A)(NPU2~5)を製造し表3に記載した。
Figure JPOXMLDOC01-appb-T000013
(参考例3)
(アニオン性官能基を有する化合物の重合体(PA1~4)の製造)
 表4に、特許文献7及び特許文献8に記載の方法で作成したアニオン性官能基を有する化合物の重合体の共重合組成を記載した。表4には、原料である各モノマー及び重合仕込みモル数を示す。尚、表中、重合平均分子量はGPCを用いて測定した。
Figure JPOXMLDOC01-appb-T000014
 (実施例7~14)
 参考例1にて製造したポリウレタンウレア重合体(B)溶液の紡糸用原液に、表3記載の末端が第三級窒素基を有するポリウレタンウレア重合体(A)と表4記載のアニオン性官能基を有する化合物の重合体を、ポリウレタンウレア重合体(B)の固形分100質量部に対する質量部相当量(表5記載の添加量)を加えて、高速撹拌により均一に溶解及び分散した液を加えて攪拌し、均一な紡糸用原液を得た。
 これを用いてポリウレタン弾性繊維を製造し評価した結果を表5に記載した。
Figure JPOXMLDOC01-appb-T000015
(比較例5~14)
 参考例1で製造したポリウレタンウレア重合体(B)溶液の紡糸用原液を用いて表3記載の末端が第三級窒素基であるポリウレタンウレア重合体(A)及び表4記載のアニオン性官能基を有する化合物の重合体を表5に記載した添加量を配合してポリウレタン弾性繊維を製造し評価した結果を表5に記載した。
 尚、比較例13及び14で使用したポリウレタンウレア重合体のポリスチレン換算の数平均分子量は、それぞれ、11,000と4,900であった。
(実施例15、16、17)
(無機機能剤分散調整液の作製と原液通過時の圧力損失による分散性の評価テスト)
 容器に、以下の表6に示す無機機能剤である固体微粒子150g、N,N-ジメチルアセトアミド(DMAc)800g、及び以下の表6に示す末端基が第三級窒素基であるポリウレタンウレア重合体(A)又は特許文献9記載のイソブチレン・無水マレイン酸・ジアミノ化合物とアニオン性官能基を有する化合物の重合体であるポリカルボン酸系共重合物を加えて、ホモミキサーにて6000rpmで1時間攪拌後、上記参考例1で作製したポリウレタンウレア重合体(B)原液の紡糸用原液30gを加え、次いで、1時間攪拌後、ポリウレタンウレア重合体(B)原液の紡糸用原液600gをさらに加えて、150rpmにて2時間攪拌して、ポリウレタン弾性繊維用の各種固体微粒子分散調整液を作製した。これを、ステンレス製の容器に移して、容器を窒素ガスで加圧下、ギヤポンプで送液して焼結フィルター(20μm以上カット)の原液通過時の圧力損失による分散性の評価テストに用いた。以下の表6に固体微粒子分散調整液の組成を示す。
(比較例15~19)
 前記ポリウレタンウレア重合体(B)溶液に表3に記載した末端基が第三級窒素基であるポリウレタンウレア重合体(A)又は特許文献9記載のイソブチレン含有の無水マレイン酸/ジアミノ化合物反応重合体又はアニオン性官能基を有する化合物の重合体を固体微粒子に用いて比較評価した結果を表6に記載した。
Figure JPOXMLDOC01-appb-T000016
 本発明の製造方法で得られるポリウレタン弾性繊維は、染色性を向上させ鮮やかに発色させることができ、洗濯やドライクリーニングにおいても染色堅牢度を向上させることができ、耐熱性を低下させずに安定した紡糸生産性を確保することができ、スカムの発生がなく耐金属摩耗性に優れる。
 本発明の製造方法で得られるポリウレタン弾性繊維は、優れた染色性、洗濯時の堅牢度、紡糸安定性、熱セット性及び対糸カス性、金属(編み針)摩擦性を有し、商品品質に優れたインナー、アウター、レッグ、スポーツウェア、ジーンズ、水着及び衛生材用のポリウレタン弾性繊維素材として有用である。
 また、本発明の製造方法で得られるポリウレタン弾性繊維は、優れた染色性、洗濯時の堅牢度、熱セット性及び対金属(編み針)摩擦性を有し、インナー、アウター、レッグ、スポーツウェア、ジーンズ、水着及び衛生材として有用である。
 1  N-2化合物
 2  N-3化合物
 3  特許文献6中の(1)式で表されるポリウレタンウレア重合体
 4  製造例1で製造されたポリウレタンウレア重合体(B)

Claims (5)

  1. (1)高分子ジオールとジイソシアネートとが反応して得られたプレポリマーに、活性水素含有化合物を反応させて得られたポリウレタンウレア重合体(B)の固形分100質量部に対して、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000001
     {式中、R及びRはそれぞれ独立に炭素原子数が1~5のアルキル基又はヒドロキシアルキレン基を表し、若しくはRとRが結合し、それらが結合した窒素原子と共に複素環基を形成しており、Rは炭素原子数が1~5の直鎖又は分岐したアルキル基、エチレンオキシ繰り返し単位が1~5の基又はプロピレンオキシ繰り返し単位が1~5の基である。}
     で表されるジアミノ化合物(2)を、0.01~15質量部の比で添加した後に、加熱により下記一般式(1):
    Figure JPOXMLDOC01-appb-C000002
     {式中、R及びRは、同一又は異なる炭素原子数が1~10の直鎖又は分岐したアルキル基又はヒドロキシアルキル基であるか、若しくはRとRが結合し、それらが結合した窒素原子と共に複素環基を形成しており、Rは炭素原子数が1~8の直鎖又は分岐したアルキレン基、繰り返し単位が1~5のエチレンオキシ基又は繰り返し単位が1~5のプロピレンオキシ基であり、Rはジイソシアネート残基であり、Xはウレタン結合又はウレア結合であり、R及びRは同一又は異なるジイソシアネート残基であり、Pはジオール残基であり、Qはジアミン残基であり、UTはウレタン結合であり、UAはウレア結合であり、k、l、m及びnはそれぞれ正の数であって、mとnのどちらかは0でも良く、さらにlは0でもよい。}
     で示される末端基に第三級窒素基を有し、ポリスチレン換算の数平均分子量が12,000~50,000であるポリウレタンウレア重合体(A)を製造する工程;
    (2)前記ポリウレタンウレア重合体(A)の固形分を、前記ポリウレタンウレア重合体(B)の固形分100質量部に対して、0.01~20質量部の比で添加し、溶剤を含む紡糸用原液を調製する工程;及び、
    (3)前記紡糸用原液を用いてポリウレタン弾性繊維を紡糸する工程
    を含むポリウレタン弾性繊維の製造方法。
  2.  前記紡糸用原液には、アニオン性官能基を有する化合物の重合体が含有されている、請求項1に記載のポリウレタン弾性繊維の製造方法。
  3.  前記アニオン性官能基が、カルボキシル基、スルホン酸基、ニトロ基及びリン酸基からなる群から選択されたものである、請求項2に記載のポリウレタン弾性繊維の製造方法。
  4.  前記アニオン性官能基の含有量が、前記ポリウレタン弾性繊維中10mmol/kg以上200mmol/kg以下である、請求項2又は3に記載のポリウレタン弾性繊維の製造方法。
  5.  前記ポリウレタン弾性繊維が、マグネシウム、カルシウム、アルミニウム、及び亜鉛からなる群から選ばれる金属の金属塩である炭素原子数5~40の脂肪酸金属塩;酸化チタン;酸化亜鉛;酸化亜鉛とシリカの金属複合塩;ハイドロタルサイト類化合物;フンタイト類化合物;MgOとZnOの固溶体;二酸化ケイ素と酸化亜鉛の複合物;二酸化ケイ素と酸化亜鉛の複合塩;二酸化ケイ素と酸化亜鉛とアルミナの複合塩;多孔質性合成シリカ;カーボンブラック;着色剤;及び顔料からなる群から選ばれる無機機能剤を、前記ポリウレタンウレア重合体(B)の固形分100質量部に対して0.1~10質量部の比で含む、請求項1~4のいずれか一項に記載のポリウレタン弾性繊維の製造方法。
PCT/JP2017/036105 2016-10-05 2017-10-04 ポリウレタン弾性繊維の製造方法 WO2018066592A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197012058A KR102076103B1 (ko) 2016-10-05 2017-10-04 폴리우레탄 탄성 섬유의 제조 방법
DE112017005050.2T DE112017005050B4 (de) 2016-10-05 2017-10-04 Elastische Polyurethanfaser und Verfahren zum Herstellen einer elastischen Polyurethanfaser
CN201780072940.3A CN110036145B (zh) 2016-10-05 2017-10-04 聚氨酯弹性纤维及聚氨酯弹性纤维的制造方法
JP2018543934A JP6509449B2 (ja) 2016-10-05 2017-10-04 ポリウレタン弾性繊維及びポリウレタン弾性繊維の製造方法
US16/336,393 US11105020B2 (en) 2016-10-05 2017-10-04 Polyurethane elastic fiber and method for producing polyurethane elastic fiber
US17/386,701 US11618979B2 (en) 2016-10-05 2021-07-28 Method for producing polyurethane elastic fiber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016197499 2016-10-05
JP2016-197499 2016-10-05
JP2016-197498 2016-10-05
JP2016197498 2016-10-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/336,393 A-371-Of-International US11105020B2 (en) 2016-10-05 2017-10-04 Polyurethane elastic fiber and method for producing polyurethane elastic fiber
US17/386,701 Division US11618979B2 (en) 2016-10-05 2021-07-28 Method for producing polyurethane elastic fiber

Publications (1)

Publication Number Publication Date
WO2018066592A1 true WO2018066592A1 (ja) 2018-04-12

Family

ID=61831065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036105 WO2018066592A1 (ja) 2016-10-05 2017-10-04 ポリウレタン弾性繊維の製造方法

Country Status (6)

Country Link
US (2) US11105020B2 (ja)
JP (1) JP6509449B2 (ja)
KR (1) KR102076103B1 (ja)
CN (1) CN110036145B (ja)
DE (2) DE112017005050B4 (ja)
WO (1) WO2018066592A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020153375A1 (ja) * 2019-01-22 2021-09-30 旭化成株式会社 ポリウレタン弾性繊維及びそれを含有する布帛
CN116253852A (zh) * 2022-12-22 2023-06-13 苏州羽燕新材料科技有限公司 一种改性热塑性聚氨酯弹性体的制备方法
JP7464496B2 (ja) 2020-10-23 2024-04-09 東レ・オペロンテックス株式会社 ポリウレタンウレア弾性繊維およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11105020B2 (en) 2016-10-05 2021-08-31 Sanko Co., Ltd. Polyurethane elastic fiber and method for producing polyurethane elastic fiber
CN113089122B (zh) * 2021-04-01 2023-03-10 华峰重庆氨纶有限公司 一种粘度稳定可控的聚氨酯脲纺丝原液及纤维的制备方法
WO2023036242A1 (en) * 2021-09-08 2023-03-16 Hung Hon Industrial Company Limited Formulations of deodorizing and anti-irritating coatings for brassiere products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339166A (ja) * 2001-03-14 2002-11-27 Du Pont Toray Co Ltd ポリウレタン弾性繊維およびその製造方法、布帛ならびに水着
JP2006118102A (ja) * 2004-10-25 2006-05-11 Nisshinbo Ind Inc 合着マルチフィラメントポリウレタン系弾性繊維の製造方法及びこれによって得られる合着マルチフィラメントポリウレタン系弾性繊維
WO2008153080A1 (ja) * 2007-06-12 2008-12-18 Asahi Kasei Fibers Corporation ポリウレタン弾性繊維
JP2014091891A (ja) * 2012-11-06 2014-05-19 Asahi Kasei Fibers Corp ポリウレタン弾性繊維及びその製造方法
JP2014095162A (ja) * 2012-11-08 2014-05-22 Asahi Kasei Fibers Corp ポリウレタン弾性繊維及びその繊維製品

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462904Y1 (ja) 1967-10-09 1971-02-01
US3715412A (en) * 1971-03-03 1973-02-06 Y Nakahara Stabilized polyurethane elastomer composition
JPS5845221A (ja) 1981-09-10 1983-03-16 Toyobo Co Ltd ウレタン重合体
JPS617212A (ja) 1984-05-29 1986-01-13 ヘンケル・コーポレイション 日焼け止め組成物およびその使用法
JPS6245650A (ja) 1985-08-23 1987-02-27 Asahi Chem Ind Co Ltd ポリウレタン組成物
JP3009156B2 (ja) 1989-06-02 2000-02-14 日本電気ホームエレクトロニクス株式会社 補間信号の垂直輪郭補償回路
CN1065294C (zh) 1996-09-24 2001-05-02 烟台氨纶股份有限公司 一种聚醚型易染氨纶丝的制造方法
TW507028B (en) * 1999-02-12 2002-10-21 Asahi Chemical Ind A moisture-absorbable synthetic fiber with an improved moisture-release property
WO2000056958A1 (fr) * 1999-03-19 2000-09-28 Asahi Kasei Kabushiki Kaisha Fibre elastique en polyurethane-uree et son procede de fabrication
JP4264912B2 (ja) 1999-04-28 2009-05-20 オペロンテックス株式会社 ポリウレタンウレア組成物およびポリウレタン弾性繊維
TW200728529A (en) 2005-12-27 2007-08-01 Opelontex Co Ltd Polyurethane elastic filament and process for manufacturing the same
CN101641465B (zh) * 2006-12-15 2013-08-21 因维斯塔技术有限公司 聚氨酯弹力丝及其制备方法
JP4941410B2 (ja) 2007-06-18 2012-05-30 東レ・オペロンテックス株式会社 ポリウレタン系弾性糸およびそれを用いてなる伸縮性布帛
JP5647548B2 (ja) 2011-03-16 2014-12-24 旭化成せんい株式会社 ポリウレタン組成物
KR101383405B1 (ko) 2012-10-30 2014-04-08 주식회사 효성 염색성이 개선된 스판덱스 섬유
KR20160078842A (ko) * 2014-12-24 2016-07-05 주식회사 효성 염색성을 향상시킨 스판덱스 섬유
JP2016197499A (ja) 2015-04-02 2016-11-24 アイリスオーヤマ株式会社 Led照明装置
JP6310413B2 (ja) 2015-04-02 2018-04-11 日本電信電話株式会社 リチウム空気二次電池、その空気極用触媒の製造方法、並びにリチウム空気二次電池の製造方法
US11105020B2 (en) 2016-10-05 2021-08-31 Sanko Co., Ltd. Polyurethane elastic fiber and method for producing polyurethane elastic fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339166A (ja) * 2001-03-14 2002-11-27 Du Pont Toray Co Ltd ポリウレタン弾性繊維およびその製造方法、布帛ならびに水着
JP2006118102A (ja) * 2004-10-25 2006-05-11 Nisshinbo Ind Inc 合着マルチフィラメントポリウレタン系弾性繊維の製造方法及びこれによって得られる合着マルチフィラメントポリウレタン系弾性繊維
WO2008153080A1 (ja) * 2007-06-12 2008-12-18 Asahi Kasei Fibers Corporation ポリウレタン弾性繊維
JP2014091891A (ja) * 2012-11-06 2014-05-19 Asahi Kasei Fibers Corp ポリウレタン弾性繊維及びその製造方法
JP2014095162A (ja) * 2012-11-08 2014-05-22 Asahi Kasei Fibers Corp ポリウレタン弾性繊維及びその繊維製品

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020153375A1 (ja) * 2019-01-22 2021-09-30 旭化成株式会社 ポリウレタン弾性繊維及びそれを含有する布帛
JP7102555B2 (ja) 2019-01-22 2022-07-19 旭化成株式会社 ポリウレタン弾性繊維及びそれを含有する布帛
JP7464496B2 (ja) 2020-10-23 2024-04-09 東レ・オペロンテックス株式会社 ポリウレタンウレア弾性繊維およびその製造方法
CN116253852A (zh) * 2022-12-22 2023-06-13 苏州羽燕新材料科技有限公司 一种改性热塑性聚氨酯弹性体的制备方法
CN116253852B (zh) * 2022-12-22 2024-05-03 苏州羽燕特种材料科技有限公司 一种改性热塑性聚氨酯弹性体的制备方法

Also Published As

Publication number Publication date
DE112017005050B4 (de) 2022-03-03
JP6509449B2 (ja) 2019-05-08
US11105020B2 (en) 2021-08-31
JPWO2018066592A1 (ja) 2019-06-24
DE112017005050T5 (de) 2019-06-13
CN110036145B (zh) 2020-11-27
CN110036145A (zh) 2019-07-19
US20200017996A1 (en) 2020-01-16
KR20190049897A (ko) 2019-05-09
US20220018042A1 (en) 2022-01-20
US11618979B2 (en) 2023-04-04
DE112017008368B4 (de) 2024-03-28
KR102076103B1 (ko) 2020-02-11

Similar Documents

Publication Publication Date Title
WO2018066592A1 (ja) ポリウレタン弾性繊維の製造方法
JP5168401B2 (ja) ポリウレタン弾性糸およびその製造方法
JP2006176772A (ja) 低いヒートセット温度を有するスパンデックスおよびその製造のための物質
US9567694B2 (en) Elastic fabric comprising a polyurethane elastic fiber made from a polyether based polyol
TWI537441B (zh) 聚胺基甲酸酯彈性絲及其製法與含該彈性絲之布匹
JP7402246B2 (ja) リサイクルポリウレタン弾性繊維、その製法、該リサイクルポリウレタン弾性繊維を含む繊維構造物、ギャザー部材、及び衛生材料
JP2008540765A (ja) 高エチレンエーテル含有率を有するポリ(テトラメチレン−コ−エチレンエーテル)グリコールからのスパンデックス
JP6031331B2 (ja) ポリウレタン弾性繊維及びその製造方法
JP6516121B2 (ja) ポリウレタン弾性糸及びその製造方法
JP6063210B2 (ja) ポリウレタン弾性繊維及びその繊維製品
JP2013163885A (ja) ポリウレタン弾性繊維およびその製造方法
JP4728874B2 (ja) ポリウレタン弾性繊維および染色助剤
JP2010150720A (ja) 弾性布帛
JP5258266B2 (ja) ポリウレタンウレア弾性繊維及びその製造方法
JP7464496B2 (ja) ポリウレタンウレア弾性繊維およびその製造方法
MXPA02005342A (es) Composicion de una fibra elastica que puede resistir agua que contiene cloro.
KR20230162629A (ko) 폴리우레탄 탄성사 및 그의 제조 방법
JP2006161239A (ja) ポリウレタン系弾性繊維の処理方法、及び、染色弾性布帛の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543934

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197012058

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17858429

Country of ref document: EP

Kind code of ref document: A1