WO2018062960A1 - 하이브리드 타이어 코드 및 그 제조방법 - Google Patents

하이브리드 타이어 코드 및 그 제조방법 Download PDF

Info

Publication number
WO2018062960A1
WO2018062960A1 PCT/KR2017/011026 KR2017011026W WO2018062960A1 WO 2018062960 A1 WO2018062960 A1 WO 2018062960A1 KR 2017011026 W KR2017011026 W KR 2017011026W WO 2018062960 A1 WO2018062960 A1 WO 2018062960A1
Authority
WO
WIPO (PCT)
Prior art keywords
twisted yarn
aramid
pet
yarn
tire cord
Prior art date
Application number
PCT/KR2017/011026
Other languages
English (en)
French (fr)
Inventor
이민호
전옥화
임종하
김다애
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61759875&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018062960(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from KR1020160125412A external-priority patent/KR102415569B1/ko
Priority claimed from KR1020160183260A external-priority patent/KR102376147B1/ko
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to PL17856846.5T priority Critical patent/PL3521058T3/pl
Priority to US16/336,614 priority patent/US11639565B2/en
Priority to EP17856846.5A priority patent/EP3521058B1/en
Priority to JP2019512731A priority patent/JP6742511B2/ja
Priority to CN201780060696.9A priority patent/CN109843604B/zh
Publication of WO2018062960A1 publication Critical patent/WO2018062960A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/005Reinforcements made of different materials, e.g. hybrid or composite cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • D02G3/28Doubled, plied, or cabled threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C2009/0071Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
    • B60C2009/0092Twist structure
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/047Blended or other yarns or threads containing components made from different materials including aramid fibres
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • D10B2505/022Reinforcing materials; Prepregs for tyres

Definitions

  • the present invention relates to a hybrid tire cord and a method for manufacturing the same, and more particularly, to a high performance hybrid tire cord and a method for manufacturing the same that can realize high performance and light weight of the tire.
  • the present invention also relates to a hybrid cord for carcass and a method of manufacturing the same.
  • Fiber cords in particular "dip cords", which are fiber cords treated with adhesives, are widely used as reinforcements for rubber products such as tires, conveyor belts, V-belts, hoses and the like.
  • Materials of the fiber cord include nylon fibers, polyester fibers, rayon fibers and the like.
  • One of the important ways to improve the performance of the final rubber product is to improve the physical properties of the fiber cords used as reinforcement.
  • the fiber cord used as a reinforcing material of the tire is referred to as a tire cord.
  • a tire cord As the driving speed of the vehicle is gradually increased according to the improvement of the performance of the vehicle and the improvement of the road condition, research on a tire cord that can maintain the stability and durability of the tire even at high speed is being actively conducted.
  • Tires a composite of fiber, metal and rubber, are located on the outermost tread in contact with the road surface, a cap ply under the tread, a belt under the cap ply, and a carcass under the belt ( carcass). In order to reduce the weight of such a tire, it is necessary to increase the performance of a tire cord that is a fiber component.
  • Hybrid tire cords made of nylon and aramid have been developed for the high performance of the tire cords, and these hybrid tire cords have a problem in that nylon physical properties are initially expressed on the S-S curve pattern and thus exhibit low modulus.
  • the present invention relates to a hybrid tire cord and a method of manufacturing the same that can prevent the problems caused by the above limitations and disadvantages of the related art.
  • One aspect of the present invention is to provide a high-performance hybrid tire cord that can implement high performance and light weight of the tire.
  • Another aspect of the present invention is to provide a method for manufacturing a high performance hybrid tire cord that can realize high performance and light weight of a tire at high productivity and low cost while minimizing physical property variations.
  • Still another aspect of the present invention is to provide a hybrid tire cord for carcass that can realize high performance and light weight of a tire by having high strength, high modulus, and excellent fatigue resistance.
  • Another aspect of the present invention by having a high strength, high modulus, and excellent fatigue resistance characteristics of a hybrid tire cord for carcass that can realize high performance and light weight of the tire at high productivity and low cost It is to provide a method that can be produced.
  • PET low-twisted yarn, aramid low-twisted yarn, and the PET low-twisted yarn and the aramid low-twisted yarn includes an adhesive, the PET low-twisted yarn and the aramid low-twisted yarn
  • the hybrid tire cord is provided together, wherein the length of the aramid lower yarn after untwisting for a predetermined length portion is 1 to 1.1 times the length of the PET lower twist yarn.
  • the PET low twist yarns are made of 400 to 3000 denier PET filaments
  • the aramid low twist yarns are made of 400 to 3000 denier aramid filaments.
  • the PET low twist yarn may have a fineness of 1300 to 3000 denier
  • the aramid low twist yarn may have a fineness of 1500 to 3000 denier
  • the PET lower twisted yarn has a first twisting direction
  • the aramid lower twisted yarn has a second twisting direction
  • the PET lower twisted yarn and the aramid lower twisted yarn are mutually staged in a third twisting direction
  • the second twisting direction is the first twisting direction
  • the third twisting direction is opposite to the first twisting direction.
  • the PET low twist yarn and the aramid low twist yarn have a first twist number of 200 to 500 TPM, respectively.
  • the PET lower twisted yarn and the aramid lower twisted yarn are staged together with a second twisted number, and the second twisted number is equal to the first twisted number.
  • the weight ratio of the PET low twisted yarn and the aramid low twisted yarn is 20:80 to 80:20.
  • the weight ratio of the PET lower twisted yarn and the aramid lower twisted yarn may have a range of 1: 3 to 3: 1.
  • the hybrid tire cord has a breaking strength of 8.0 to 15.0 g / d and an elongation at break of 5 to 15%, as measured by ASTM D885.
  • the hybrid tire cord has a strength retention of 80% or more after a disc fatigue test conducted according to the JIS-L 1017 method of the Japanese Standard Association (JSA).
  • JSA Japanese Standard Association
  • the 3% LASE measured by ASTM D885 is at least 8 kgf, the 5% LASE is at least 15 kgf, and the 7% LASE is at least 25 kgf.
  • 3% LASE measured by ASTM D885 may be 8 kgf or more, 5% LASE may be 15 kgf or more, and 7% LASE may be 25 kgf or more.
  • the dry heat shrinkage measured at 0.01 g / d at super load for 2 minutes at 180 ° C. is 0.3 to 2.5%.
  • the step of lowering the aramid filament in a first direction to form aramid lower twisted yarn the step of lowering the PET filament in a second direction to form a PET lower twisted yarn, the aramid lower twisted yarn and the PET under Streaking twisted yarns together in a third direction to form a twisted yarn, immersing the twisted yarn in an adhesive solution, drying the bonded twisted yarn impregnated with the adhesive solution by the immersion, and the dried sum And heat treating the twisted yarn, wherein the second direction is the same as the first direction, and the third direction is opposite to the first direction, and is applied to the PET filament in the forming of the PET twisted yarn.
  • a method of manufacturing a hybrid tire cord the tension being less than the tension applied to the aramid filament in the step of forming the aramid twisted yarn.
  • the length of the PET lower twisted yarn after untwisting the twisted yarn is 1.005 to 1.050 times the length of the aramid twisted yarn.
  • the tension applied to the PET filament in the step of forming the PET low twisted yarn is 50% to 95% of the tension applied to the aramid filament in the step of forming the aramid low twisted yarn.
  • the forming of the aramid lower twisted yarn, the forming of the PET low twisted yarn and the step of forming the fused twisted yarn are performed by one twisting machine.
  • the forming of the aramid low twisted yarn, the forming of the PET low twisted yarn and the step of forming the fused twisted yarn are performed in a continuous process.
  • the adhesive solution includes at least one of a Resorcinol Formaldehyde Latex (RFL) adhesive and an epoxy adhesive.
  • RTL Resorcinol Formaldehyde Latex
  • the drying step is performed for 30 to 120 seconds at 70 to 200 °C
  • the heat treatment step is carried out for 30 to 120 seconds at 200 to 250 °C.
  • the dipping step, the drying step, and the heat treatment step are performed continuously, and the tension applied to the twisted yarns in the dipping step, the drying step, and the heat treatment step is 0.4 kg / cord or more per cord.
  • the length of the aramid low twisted yarn measured after the untwist of the hybrid cord is 1 to 1.1 times the length of the PET low twisted yarn.
  • the length of the aramid twisted yarn after untwisting for the length portion of is 1 to 1.1 times the length of the PET twisted yarn, provides a hybrid tire cord for carcass.
  • the productivity of the hybrid tire cord can be improved and the manufacturing cost can be reduced.
  • a hybrid tire cord having excellent strength retention of 80% or more can be manufactured.
  • the hybrid tire cord according to an embodiment of the present invention manufactured by such a manufacturing method may have a high performance and light weight feature, and may also be applied to a high pressure tire.
  • the hybrid tire cord according to the embodiment of the present invention due to the high strength of the aramid lower yarn, it is possible to minimize the tire deformation during high-speed driving.
  • Hybrid tire cord according to an embodiment of the present invention has a substantially the same number of twists and substantially the same length of the aramid twisted yarn and PET lower twisted yarn, so that the structural stability is excellent, the physical property deviation and defect rate that can be caused in the manufacturing process Can be minimized.
  • the tire since the length of the aramid lower yarn measured after the tire cord is untwisted is 1 to 1.1 times the length of the PET lower twist yarn, the tire is applied to the tire cord when the tension and compression are repeated. Stress can be dispersed in PET aluminate as well as aramid low yarn. As a result, the hybrid tire cord according to an embodiment of the present invention has excellent fatigue resistance, so that the tire can maintain stability even at high speed for a long time.
  • the hybrid tire cord according to an embodiment of the present invention can minimize tire deformation during high-speed driving, and particularly high pressure tires that must withstand high loads and have excellent shape stability, such as tires of large vehicles such as SUV, LT, etc. It can be usefully applied to carcass.
  • the strength and modulus degradation that can be caused during the manufacturing of the hybrid tire cord, in particular during the heat treatment can be minimized.
  • the term "primarily twisted yarn” refers to a yarn made by twisting a filament in either direction.
  • the filament is meant to include both monofilament and multifilament.
  • the lower twisted yarn may be made of filament yarn. In the case where the lower twisted yarn consists of one strand of yarn, the lower twisted yarn is also called a single yarn.
  • twist yarn refers to a yarn made by twisting two or more strands of lower twist yarn together in either direction. According to one embodiment of the invention, the twisted yarn is also referred to as a "raw cord”.
  • tire cord refers to a twisted yarn containing an adhesive so that it can be applied directly to a rubber product. According to one embodiment of the invention, the tire cord is also referred to as a "dip cord”.
  • twist number means the number of twists per meter, the unit is TPM (Twist Per Meter).
  • LASE means Load At Specific Elongation, for example 3% LASE means load at 3% elongation.
  • One embodiment of the present invention provides a hybrid tire cord.
  • the hybrid tire cord according to an embodiment of the present invention is a hybrid type of PET and aramid, and includes PET coated low-twist yarn, aramid low twisted yarn and PET coated low-twist yarn and aramid low twisted yarn.
  • PET lower twisted yarn and aramid lower twisted yarn are staged together.
  • the length of the aramid twisted yarn is 1 to 1.1 times the length of the PET twisted yarn.
  • the hybrid tire cord according to the embodiment of the present invention includes a PET lower twisted yarn in the first twisting direction and an aramid lower twisted yarn in the second twisting direction, and the PET lower twisted yarn and the aramid lower twisted yarn are together in the third twisting direction.
  • Hybrid tire cord according to an embodiment of the present invention includes a twisted yarn made by PET low twist yarn and aramid low twist yarn.
  • PET filament and aramid filament are simultaneously lowered by one twister (for example, cable cord twister, Allma's Cable Corder) to form PET lower twisted yarn and aramid lower twisted yarn respectively, almost simultaneously, i.e.
  • the PET lower twisted yarn and the aramid lower twisted yarn are continuously stringed together to form a combined twisted yarn which is a raw cord.
  • the second twist direction of the aramid lower twisted yarn is the same as the first twisted direction of the PET lower twisted yarn, and the third twisted direction, that is, the upper twisted direction is the opposite direction to the first twisted direction.
  • the PET lower twisted yarn and the aramid lower twisted yarn may have the same twist number.
  • PET low twisted yarn and aramid low twisted yarn may have the same twist number in the range of 200 to 500 TPM, for example. That is, the PET low twist yarn and the aramid low twist yarn may each have a first twist number of 200 to 500 TPM.
  • the PET low twist yarn and the aramid low twist yarn are together in a second twist number, and the second twist number may be the same as the first twist number.
  • the productivity of the hybrid tire cord is improved and the manufacturing cost is improved compared to the batch method in which each lower and upper edge is performed by different twisters. Can be reduced.
  • aramid Since aramid has a straight molecular chain, it has high crystallinity and hardly shrinkage behavior by heat.
  • the PET filament produced by the stretching process to express the high strength and high modulus required in the tire cord is contracted during the heat treatment process performed in the hybrid tire cord (deep cord) manufacturing process, as a result of the final tire
  • the length difference between the aramid twisted yarn and the PET twisted yarn may occur in the cord, resulting in uneven physical properties. If the shape of the deep cord becomes uneven due to shrinkage of the PET low twisted yarn, the aramid low twisted yarn and the PET low twisted yarn are separated, causing strong degradation, and fatigue performance is also lowered. For example, if the length difference occurs such that the length of aramid single yarn exceeds 1.1 times the length of PET single yarn in the resultant hybrid tire cord, the strength and modulus of the hybrid tire cord are reduced, and the fatigue resistance is also reduced. .
  • the PET lower twisted yarn aramid It is made longer than lower twisted yarn.
  • a relatively high level of tension eg, 0.4 kg / cord or more
  • the aramid single yarns and PET single yarns in the finished hybrid tire cord may have substantially the same length and structure.
  • the tension applied to the aramid filament and the PET filament is appropriately adjusted when the twisting process is performed. That is, when the lower and upper edges are performed, the length of the PET lower twisted yarn can be made longer than that of the aramid lower twisted yarn by applying a greater tension to the aramid filament than the PET filament.
  • the length of PET lower twisted yarn after untwisting the twisted twisted yarn (low cord) of a predetermined length is 1.005 to 1.050 times the length of the aramid lower twisted yarn. Therefore, the conjugated twisted yarn (low cord) according to an embodiment of the present invention may have a structure in which the PET lower twisted yarn covers the aramid lower twisted yarn, that is, a merged structure with a slight "covering structure".
  • the length of the PET lower twisted yarn in the twisted yarn (low cord) is longer than the length of the aramid lower twisted yarn, PET caused when sequentially performing subsequent dipping, drying and heat treatment processes for applying the adhesive Due to the shrinkage of the lower twisted yarn, the length of the aramid lower twisted yarn in the final hybrid tire cord (ie, the deep cord) can be prevented from being excessively longer than the PET lower twisted yarn.
  • the length of the aramid lower twisted yarn after untwisting for the predetermined length portion is 1 to 1.1 times the length of the PET lower twisted yarn.
  • the length of the PET lower twisted yarn in the twisted yarn (low cord) is less than 1.005 times the length of the aramid lower twisted yarn
  • a hybrid tire cord having a covering structure in which the length of the aramid lower twisted yarn exceeds 1.1 times the length of the PET lower twisted yarn is finally obtained.
  • the aramid lower twist covering the PET lower twist yarn is pushed out by friction with the guide or the roller to form a loop, so that the variation of physical properties and the defective rate are large when the hybrid tire cord is manufactured. Not only that, but also in the tire manufacturing process, the tire defective rate increases due to the property variation.
  • the same twist number is applied within the range of 200 to 500 TPM when performing the lower and upper edges for producing the twisted yarn (low cord).
  • the subsequent dipping, drying, and heat treatment processes for applying the adhesive are performed in sequence, unintended untwist may occur, resulting in a difference of less than 15% of the initial twist in the lower and upper edges. have.
  • the higher the number of twists of the fiber the lower the strength, but the fatigue performance increases.
  • the lower the number of twists of the fiber the higher the strength but the lower the fatigue performance.
  • the lower twisted yarns exhibit similar behavior in strength and fatigue performance.
  • Aramid filament and PET filament used in the production of a hybrid tire cord according to an embodiment of the present invention is not particularly limited.
  • the aramid filament and the PET filament applied to the aramid low twisted yarn and the PET low twisted yarn, respectively, may have the same or similar fineness within the range of 400 to 3000 denier.
  • the PET lower twist yarn according to an embodiment of the present invention is a PET filament yarn made of 400 to 3000 denier PET filaments
  • the aramid lower twist yarn is an aramid filament yarn made of aramid filaments of 400 to 3000 denier.
  • This hybrid tire cord can be applied to high-performance lightweight tires.
  • PET low-twisted yarn may have a fineness of 1300 to 3000 denier
  • aramid low twisted yarn may have a fineness of 1500 to 3000 denier.
  • Hybrid cords composed of aramid low twisted yarn and PET low twisted yarn having such fineness can be particularly usefully applied to high pressure tires.
  • Aramids contain a phenyl ring with an amide group in the main chain and are classified into para-type (p-) and meta-type (m-) according to the linking state of the phenyl ring.
  • the aramid lower yarn may include poly (p-phenylene terephthalamide).
  • the aramid filaments have a tensile strength of at least 20 g / d, and an elongation at break of at least 3%. If the aramid filament's tensile strength is less than 20 g / d, it does not sufficiently compensate for the low strength of PET filament yarn, which increases the risk of tire deformation at high speeds.
  • the hybrid tire cord is 2 to 3 times the tire cord of PET single material even if the weight ratio of the aramid twisted yarn to the PET lower twist yarn is about 15:85. Has a modulus of. Therefore, the weight ratio of the aramid twisted yarn and the PET twisted yarn may be determined in consideration of both the physical properties of the tire cord and the manufacturing cost. According to one embodiment of the present invention, the weight ratio of the aramid low twisted yarn and the PET low twisted yarn is 20:80 to 80:20.
  • the hybrid tire cord finally obtained follows the physical properties of PET, and it is not suitable as a tire cord for high pressure tires requiring high form stability due to lack of strength and modulus. not.
  • weight reduction of the tires becomes impossible as a result.
  • the weight ratio of the aramid low twisted yarn and the PET low twisted yarn may be adjusted in the range of 1: 3 to 3: 1.
  • the hybrid tire cord according to an embodiment of the present invention further includes an adhesive coated on the PET low twisted yarn and the aramid low twisted yarn to improve adhesion with other components of the tire.
  • the adhesive includes at least one of a Resorcinol Formaldehyde Latex (RFL) adhesive and an epoxy adhesive.
  • RTL Resorcinol Formaldehyde Latex
  • the hybrid tire cord has a breaking strength of 8.0 to 15.0 g / d and an elongation at break of 5 to 15%. More specifically, the hybrid tire cord according to an embodiment of the present invention may have a breaking strength of 10.0 to 15.0 g / d and an elongation at break of 5 to 15%. Break strength and elongation at break can be measured by ASTM D885.
  • Hybrid tire cord according to an embodiment of the present invention has a strong retention of 80% or more.
  • the strength ratio refers to the strength retention after the disc fatigue test conducted according to the JIS-L 1017 method of the Japanese Standard Association (JSA).
  • Hybrid cords having a high strength retention of more than 80% can be produced by the manufacturing method according to an embodiment of the present invention.
  • the hybrid tire cord according to one embodiment of the present invention has a high strength of 30 kgf or more, as measured by ASTM D885.
  • Hybrid tire cord according to an embodiment of the present invention can be used in high-performance lightweight tires.
  • the hybrid tire cord according to the embodiment of the present invention has a high modulus capable of ensuring excellent shape stability of a degree required for a high pressure tire, it may be used as a reinforcing material of a high pressure tire.
  • a hybrid tire cord for a high performance lightweight tire may have 3% LASE of 6 kgf or more, 5% LASE of 10 kgf or more, 7% LASE of 17 kgf or more, as measured by ASTM D885.
  • hybrid tire cords applied to high pressure tires can be produced by, for example, PET low twisted yarn of 1300 denier or more and Aramii low twisted yarn having fineness of 1500 denier or more, and measured in accordance with ASTM D885 of 8 kgf or more.
  • the dry heat shrinkage measured at 0.01 g / d of the super load for 2 minutes at 180 ° C. may be 0.3 to 2.5%.
  • Hybrid tire cord according to an embodiment of the present invention described above is applied to the carcass of the tire, it can be used as a hybrid tire cord for carcass according to another embodiment of the present invention.
  • Carcass is a skeleton of a tire that supports the load of the vehicle body and maintains the air pressure of the tire, and has a structure surrounding the entire surface of the tire. Therefore, weight reduction of carcass is required for weight reduction of a tire. In order to reduce the weight of the carcass, it is necessary to reduce the number of carcass reinforcement layers or to reduce the thickness of each reinforcement layer. For this purpose, the high performance of the carcass tire cord should be determined.
  • PET polyethylene terephthalate
  • rayon rayon
  • hybrid tire cord made of nylon and aramid has been developed for a cap ply, and this hybrid tire cord exhibits low modulus by initially exhibiting nylon properties on an S-S curve pattern. Because carcass serves as the overall skeleton of the tire and has a great influence on the shape stability of the tire, when the initial modulus is low, there is a problem that the tire shape collapses due to low shape stability during tire manufacturing. Accordingly, it is recognized that hybrid tire cords of nylon and aramid are not suitable for carcass.
  • the hybrid tire cord according to an embodiment of the present invention can be used as a hybrid tire cord for carcass.
  • Hybrid tire cord for carcass according to another embodiment of the present invention can maintain the shape of the tire and improve the driving performance of the car.
  • Yet another embodiment of the present invention provides a method of manufacturing a hybrid tire cord.
  • 400 to 3000 denier aramid filaments and 400 to 3000 denier PET filaments are introduced into the cable cord twister that performs both the lower and upper edges.
  • the aramid filament is lowered in the first direction to form aramid lower twisted yarn (first step) and the PET filament is lowered in the second direction to form PET lower twisted yarn (second step) is performed simultaneously, and the aramid The lower twisted yarn and the PET lower twisted yarn are phased together in a third direction to form a combined twisted yarn (third step).
  • PET low twist yarns having a fineness of 1300 to 3000 deniers, and aramid low twist yarns having a fineness of 1500 to 3000 deniers may be used.
  • the step of forming the lower twist yarn (the first and second steps) and the step of forming the twisted yarn (the third step) are performed in one twisting machine.
  • the step of forming the twisted yarn (third step) is performed in a continuous process with the step of forming the lower twist yarn (first step and second step). That is, the third step is performed continuously with the first and second steps.
  • the second direction is the same as the first direction
  • the third direction is opposite to the first direction.
  • the same twist number is applied in the range of 200 to 500 TPM when performing the lower and upper edges.
  • the twisted yarn is produced by the continuous method in which the lower and upper edges are performed in one twisting machine, each of the PET filament and the aramid filament is twisted with a different twisting machine and then another twisting machine.
  • the productivity of the hybrid tire cord can be improved as compared to the batch method that stages them together.
  • the tension applied to the PET filament in the step of forming the PET low twist yarn (second step) the tension applied to the aramid filament in the step of forming the aramid low twist yarn (first step) Is less than Therefore, although the lower and upper edges are performed by a single twisting machine, when the twisted twisted yarn (low cord) of a predetermined length is untwisted, the length of the aramid lower twisted yarn may be slightly shorter than the length of the PET lower twisted yarn.
  • the PET lower twisted yarn may have a length of 1.005 to 1.050 times the length of the aramid lower twisted yarn.
  • the tension applied to the filament is less than the tension applied to the aramid filament in the first step.
  • the tension applied to the PET filament in the step of forming the PET twisted yarn (first step) ranges from 50% to 95% of the tension applied to the aramid filament in the step of forming the aramid twisted yarn (second step). Can be adjusted.
  • the amount of tension applied to the PET filament and the aramid filament can be adjusted by appropriately setting the revolutions per minute (rpm) of the rolls of the twisting machine.
  • the magnitude of the tension applied to the PET filament and the aramid filament can be adjusted by appropriately setting the 'Creel Yarn Tension' and the 'Inner Yarn Tension' of the twisting machine.
  • the aramid low twisted yarn and the PET low twisted yarn thus manufactured may have a fineness of 400 to 3000, respectively.
  • PET low twist yarn may have a fineness of 1300 to 3000 denier
  • aramid low twist yarn may have a fineness of 1500 to 3000 denier.
  • the aramid low twisted yarn and PET low twisted yarn may have the same or similar fineness in the range of 1500-3000 denier, respectively.
  • the step of dipping the twisted yarn (low cord) into the adhesive solution, the drying of the twisted yarn impregnated with the adhesive solution, and the heat treatment of the dried twisted yarn are continuously performed according to an embodiment of the present invention.
  • the hybrid tire cord (ie deep cord) is completed.
  • the adhesive solution may include at least one of a Resorcinol Formaldehyde Latex (RFL) adhesive and an epoxy adhesive.
  • RTL Resorcinol Formaldehyde Latex
  • the temperature and time of the drying step may vary depending on the composition of the adhesive solution. For example, drying may be performed at 70 to 200 ° C. for 30 to 120 seconds.
  • the heat treatment may be performed at 200 to 250 ° C. for 30 to 120 seconds.
  • the dipping step, the drying step, and the heat treatment step may be performed continuously.
  • the adhesive component of the adhesive solution is coated on the surface of the twisted yarn (low cord), thereby increasing the adhesion between the hybrid tire cord and the rubber composition for manufacturing a tire according to an embodiment of the present invention.
  • the twister is set to perform the lower and upper edges with the same twist number
  • the twisted yarns produced by the twister i.e., the low cord
  • the tension applied to the twisted yarn (low cord) in the immersion, drying and heat treatment steps performed successively is 0.4 kg / cord or more. This can be done.
  • the twist failure in the twist (twist) process, the twist failure can be significantly reduced, and the twisted yarn has a stable structure, thereby minimizing the property variation due to shape irregularities.
  • the difference between the maximum value and the minimum value in each of the properties can be significantly reduced.
  • the difference between the maximum value and the minimum value of the cutting strength is 3 g / d or less, and the difference between the maximum value and the minimum value of elongation at break is 5% or less.
  • the cable cord twister (Allma's Cable Corder), and the lower edge in the Z-direction and the upper edge in the S-direction are simultaneously performed to perform 2-ply twisted yarn cabled yarn (ie, cord).
  • the cable cord twister was set with a twist number of 460 TPM for the lower and upper edges, and by adjusting the tension applied to the PET filament and the aramid filament, respectively, in the twisted yarn (low cord), the PET for the aramid twisted yarn
  • the ratio of the length of the lower twisted yarn (PET lower twisted yarn length / aramid lower twisted yarn length) (L P / L A ) was set to be 1.005.
  • a 0.05 g / d load was applied to a 1 m long twisted yarn (low cord) sample to loosen the upper twist and separate the aramid twisted yarn and the PET twisted yarn from each other. And the length of the PET lower twist yarn was measured in a state of applying a load of 0.05g / d, respectively.
  • the twisted yarn (low cord) was then subjected to 2.0% by weight of resorcinol, 3.2% by weight of formalin (37%), 1.1% by weight of sodium hydroxide (10%), 43.9% by weight of styrene / butadiene / vinylpyridine (15). / 70/15) dipped into a resorcinol-formaldehyde-latex (RFL) adhesive solution comprising rubber (41%), and water.
  • RFL resorcinol-formaldehyde-latex
  • a hybrid tire cord (deep cord) was manufactured in the same manner as in Example 1 except that the ratio of the length (L P / L A ) of the PET lower twist yarn to the aramid lower twist yarn in the twisted yarn (low cord) was 1.010. .
  • a hybrid tire cord (deep cord) was manufactured in the same manner as in Example 1 except that the ratio of the length (L P / L A ) of the PET lower twist yarn to the aramid lower twist yarn in the twisted yarn (low cord) was 1.020. .
  • a hybrid tire cord (deep cord) was manufactured in the same manner as in Example 1 except that the ratio of the length (L P / L A ) of the PET lower twist yarn to the aramid lower twist yarn in the twisted yarn (low cord) was 1.030. .
  • a hybrid tire cord (deep cord) was prepared in the same manner as in Example 1 except that the ratio of the length (L P / L A ) of the PET lower twist yarn to the aramid lower twist yarn in the twisted yarn (low cord) was 1.050. .
  • the cable cord twister (Allma's Cable Corder), and perform 2-ply twisted yarn by simultaneously performing the lower edge in the Z-direction and the upper edge in the S-direction. ply cabled yarn) was prepared.
  • the cable cord twister was set with a twist number of 380 TPM for the lower twist and the upper twist, and the PET lower twist yarn for the aramid twisted yarn in the aramid twisted yarn (low cord) by adjusting the tension applied to the PET filament and the aramid filament, respectively
  • the ratio of length (PET lower twisted yarn length / aramid lower twisted yarn length) (L P / L A ) was set to 1.03.
  • a 0.05 g / d load was applied to a 1 m long twisted yarn (low cord) sample to loosen the upper twist and separate the aramid twisted yarn and the PET twisted yarn from each other. And the length of the PET lower twist yarn was measured in a state of applying a load of 0.05g / d, respectively.
  • the twisted yarn (low cord) was then subjected to 2.0% by weight of resorcinol, 3.2% by weight of formalin (37%), 1.1% by weight of sodium hydroxide (10%), 43.9% by weight of styrene / butadiene / vinylpyridine (15). / 70/15) dipped into a resorcinol-formaldehyde-latex (RFL) adhesive solution comprising rubber (41%), and water.
  • RFL resorcinol-formaldehyde-latex
  • a hybrid tire cord was manufactured in the same manner as in Example 6 except that the ratio (L P / L A ) of the PET twisted yarn length to the aramid twisted yarn length was 1.005.
  • a hybrid tire cord was manufactured in the same manner as in Example 6 except that the ratio (L P / L A ) of the PET twisted yarn length to the aramid twisted yarn length was 1.05.
  • the cable cord twister was set with twist of 360 TPM for the lower and upper lead, except that the ratio of the length (L P / L A ) of PET lower twist yarn to aramid lower twist yarn in the twisted yarn (low cord) was 0.980. Then, a hybrid tire cord (deep cord) was manufactured in the same manner as in Example 1.
  • the cable cord twister was set with twist of 400 TPM for the lower and upper lead, except that the ratio of the length (L P / L A ) of PET lower twist yarn to aramid lower twist yarn in the twisted yarn (low cord) was 0.980.
  • the cable cord twister was set to twist of 430 TPM for the lower and upper lead, except that the ratio of the length (L P / L A ) of the PET lower twist yarn to the aramid lower twist yarn in the twisted yarn (low cord) was 0.980.
  • a hybrid tire cord (deep cord) was prepared in the same manner as in Example 1 except that the ratio of the length (L P / L A ) of the PET lower twist yarn to the aramid lower twist yarn in the twisted yarn (low cord) was 0.980. .
  • a hybrid tire cord was manufactured in the same manner as in Example 6, except that the ratio of the PET low twisted yarn length (L P / L A ) to the aramid low twisted yarn length in the twisted yarn (low cord) was 1.000.
  • a hybrid tire cord was prepared in the same manner as in Example 6 except that the ratio of the PET lower twisted yarn length (L P / L A ) to the aramid lower twisted yarn length in the twisted yarn (low cord) was 0.98.
  • Example 1-9 and Comparative Example 1-6 can be summarized in Table 1 below.
  • Example 1 1000 1000 460 1.005
  • Example 2 1000 1000 460 1.010
  • Example 3 1000 1000 1000 460 1.020
  • Example 4 1000 1000 460 1.030
  • Example 5 1000 1000 1000 460 1.050
  • Example 6 1500 1500 380 1.030
  • Example 7 2000 2000 300 1.030
  • Example 8 1500 1500 380 1.005
  • Example 9 1500 1500 380 1.050 Comparative Example 1 1000 1000 360 0.980 Comparative Example 2 1000 1000 400 0.980 Comparative Example 3 1000 1000 1000 430 0.980 Comparative Example 4 1000 1000 460 0.980 Comparative Example 5 1500 1500 380 1.000 Comparative Example 6 1500 1500 380 0.980
  • a hybrid tire cord (deep cord) was applied by applying a 300 m / min tensile speed to 10 samples of 250 mm using an Instron Engineering Corp., Canton, Mass. Strong, moderate (at 4.5 kg) and body length were measured respectively. Subsequently, the strength, weight (at 4.5 kg) and length of the hybrid tire cord (deep cord) were obtained by calculating the average values of strength, weight (at 4.5 kg) and length of the ten samples, respectively.
  • 3% LASE of the hybrid tire cord was applied by applying a 300 m / min tensile speed on 10 samples of 250 mm using an Instron Engineering Corp., Canton, Mass. 5% LASE, and 7% LASE were measured respectively. The 3% LASE, 5% LASE, and 7% LASE of the hybrid tire cord were then obtained by calculating the average of 3% LASE, 5% LASE, and 7% LASE of the 10 samples, respectively.
  • Samples were prepared by vulcanizing a hybrid tire cord (deep cord) measured for strength (strong fatigue) to rubber, and then using a disk fatigue gauge according to the JIS-L 1017 method of the Japanese Standard Association (JSA). Fatigue Tester) was subjected to fatigue by repeating the tension and contraction for 16 hours in the range of 8% while rotating at a speed of 2500 rpm at 80 °C. Then, after removing the rubber from the sample, the strength after fatigue of the hybrid tire cord (deep cord) was measured. Based on the pre-fatigue strength and post-fatigue strength, the strength retention defined by Equation 1 below was calculated.
  • JSA Japanese Standard Association
  • the pre-fatigue and post-fatigue strength (kgf) is 300 m / min tensile rate for a 250 mm sample using an Instron Engineering Corp. (Instron Engineering Corp., Canton, Mass) according to ASTM D-885 test method. This was obtained by measuring the Strength at Break while adding.
  • Example 1 1.000 24.1 2 9.3 6.9 12.5 18.9 1.02 90.3
  • Example 2 1.010 25.6 1.9 9.3 7.0 12.4 18.7 1.02 92.5
  • Example 3 1.010 24.6 2 8.9 6.8 12.6 18.8 0.96 96.4
  • Example 4 1.020 24.7 1.9 8.9 7.0 12.8 19.6 0.96 98.7
  • Example 5 1.025 24.2 1.7 7.2 7.9 15.0 22.9 0.89 95.1
  • Example 6 1.02 38.4 1.4 9.3 10.7 17.8 27.6 1.71 85.6
  • Example 7 1.025 45.1 0.9 8.8 14.9 23.6 35.4 0.89 86.4
  • Example 8 1.035 37.2 1.4 9.5 9.3 16.6 26.1 1.56 81.4
  • hybrid tire cords of Examples 9 to 9 according to the present invention not only have a strong retention of 80% or more, but also 3% LASE measured by ASTM D885 is 8 kgf or more, 5% LASE is 15 kgf or more, 7 It can be seen that% LASE is more than 25 kgf.
  • the hybrid tire cords of the embodiments 9 to 9 can be used as reinforcement materials of high pressure tires, and in particular can be used for carcass of high pressure tires.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Tires In General (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

타이어의 고성능화 및 경량화를 구현할 수 있는 고성능 하이브리드 타이어 코드 및 그 제조방법이 개시된다. 본 발명의 하이브리드 타이어 코드는, PET 하연사, 아라미드 하연사, 및 상기 PET 하연사와 상기 아라미드 하연사 상에 코팅된 접착제를 포함하며, 소정 길이의 상기 하이브리드 타이어 코드에 있어서 상기 상연의 언트위스트 후 상기 아라미드 하연사의 길이는 상기 PET 하연사의 길이의 1 내지 1.1배이다.

Description

하이브리드 타이어 코드 및 그 제조방법
본 발명은 하이브리드 타이어 코드 및 그 제조방법에 관한 것으로서, 더욱 구체적으로는, 타이어의 고성능화 및 경량화를 구현할 수 있는 고성능 하이브리드 타이어 코드 및 그 제조방법에 관한 것이다. 또한, 본 발명은 카카스용 하이브리드 코드 및 그 제조방법에 관한 것이다.
타이어, 컨베이어 밸트, V-밸트, 호스 등의 고무 제품의 보강재로서 섬유 코드, 특히 접착제로 처리된 섬유 코드인 "딥 코드(dip cord)"가 널리 이용되고 있다. 섬유 코드의 재료로는 나일론 섬유, 폴리에스테르 섬유, 레이온 섬유 등이 있다. 최종 고무 제품의 성능을 향상시키는 중요한 방법들 중 하나는 보강재로서 사용되는 섬유 코드의 물성을 향상시키는 것이다.
한편, 타이어의 보강재로 사용되는 섬유 코드를 타이어 코드로 지칭한다. 자동차의 성능 향상 및 도로 상태 개선에 따라 차량의 주행속도가 점차 증가하고 있어, 고속 주행 시에도 타이어의 안정성 및 내구성을 유지시킬 수 있는 타이어 코드에 대한 연구가 활발히 진행되고 있다.
또한, 친환경 차량에 대한 요구가 증가하면서, 고연비를 위한 차량의 경량화가 큰 이슈로 부각되고 있으며, 이를 위하여 타이어의 경량화에 대한 연구도 역시 활발히 진행되고 있다.
섬유, 금속 및 고무의 복합체인 타이어는 최외각에 위치하여 노면과 접촉하는 트레드(tread), 트레드 아래의 캡 플라이(cap ply), 캡 플라이 아래의 벨트(belt), 및 벨트 아래의 카카스(carcass)를 포함한다. 이러한 타이어의 경량화를 위해 섬유 성분인 타이어 코드의 고성능화가 필요하다.
타이어 코드의 고성능화를 위해 나일론과 아라미드로 제조된 하이브리드 타이어 코드가 개발되었는데, 이러한 하이브리드 타이어 코드는 S-S 커브 패턴 상에서 초기에 나일론 물성이 발현되어 낮은 모듈러스를 나타내는 문제점이 있다.
본 발명은 위와 같은 관련 기술의 제한 및 단점들에 기인한 문제점들을 방지할 수 있는 하이브리드 타이어 코드 및 그 제조방법에 관한 것이다.
본 발명의 일 관점은, 타이어의 고성능화 및 경량화를 구현할 수 있는 고성능 하이브리드 타이어 코드를 제공하는 것이다.
본 발명의 다른 관점은, 타이어의 고성능화 및 경량화를 구현할 수 있는 고성능 하이브리드 타이어 코드를 물성 편차를 최소화시키면서 높은 생산성 및 저렴한 비용으로 제조할 수 있는 방법을 제공하는 것이다.
본 발명의 또 다른 일 관점은, 높은 강력, 높은 모듈러스, 및 우수한 내피로 특성을 가짐으로써 타이어의 고성능화 및 경량화를 구현할 수 있는 카카스용 하이브리드 타이어 코드를 제공하는 것이다.
본 발명의 또 다른 일 관점은, 높은 강력, 높은 모듈러스, 및 우수한 내피로 특성을 가짐으로써 타이어의 고성능화 및 경량화를 구현할 수 있는 카카스용 하이브리드 타이어 코드를 물성 편차를 최소화시키면서 높은 생산성 및 저렴한 비용으로 제조할 수 있는 방법을 제공하는 것이다.
본 발명의 또 다른 특징 및 이점들이 이하에서 기술된 것이고, 부분적으로는 그러한 기술로부터 자명할 것이다. 또는, 본 발명의 실시를 통해 본 발명의 또 다른 특징 및 이점들이 이해될 수 있을 것이다. 본 발명의 목적들 및 다른 이점들은 발명의 상세한 설명 및 특허청구범위에서 특정된 구조에 의해 실현되고 달성될 것이다.
이러한 기술적 과제를 해결하기 위해, 본 발명의 일 실시예는, PET 하연사, 아라미드 하연사, 및 상기 PET 하연사와 상기 아라미드 하연사 상에 코팅된 접착제를 포함하고, 상기 PET 하연사와 상기 아라미드 하연사는 함께 상연되어 있고, 소정의 길이 부분에 대한 언트위스트 후 상기 아라미드 하연사의 길이는 상기 PET 하연사의 길이의 1 내지 1.1배인, 하이브리드 타이어 코드를 제공한다.
상기 PET 하연사는 400 내지 3000 데니어의 PET 필라멘트로 이루어지고, 상기 아라미드 하연사는 400 내지 3000 데니어의 아라미드 필라멘트로 이루어진다.
보다 구체적으로, 상기 PET 하연사는 1300 내지 3000 데니어의 섬도를 가질 수 있고, 상기 아라미드 하연사는 1500 내지 3000 데니어의 섬도를 가질 수 있다.
상기 PET 하연사는 제1 꼬임 방향을 갖고, 상기 아라미드 하연사는 제2 꼬임 방향을 갖고, 상기 PET 하연사와 상기 아라미드 하연사는 함께 제3 꼬임 방향으로 상연되어 있고, 상기 제2 꼬임 방향은 상기 제1 꼬임 방향과 동일하고, 상기 제3 꼬임 방향은 상기 제1 꼬임 방향과 반대이다.
상기 PET 하연사와 상기 아라미드 하연사는 각각 200 내지 500TPM의 제1 꼬임수를 갖는다.
상기 PET 하연사와 상기 아라미드 하연사는 함께 제2 꼬임수로 상연되어 있고, 상기 제2 꼬임수는 상기 제1 꼬임수와 동일하다.
상기 PET 하연사와 상기 아라미드 하연사의 중량비는 20:80 내지 80:20이다.
보다 구체적으로, 상기 PET 하연사와 상기 아라미드 하연사의 중량비는 1:3 내지 3:1의 범위를 가질 수 있다.
상기 하이브리드 타이어 코드는 ASTM D885에 의해 측정된 절단강도가 8.0 내지 15.0 g/d 이고, 파단신율이 5 내지 15%이다.,
상기 하이브리드 타이어 코드는 일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 실시되는 디스크 피로 테스트 후의 강력 유지율이 80% 이상이다.
상기 하이브리드 타이어 코드에 있어서, ASTM D885에 의해 측정된 3% LASE가 8 kgf 이상이고, 5% LASE가 15 kgf 이상이고, 및 7% LASE가 25 kgf 이상이다.
보다 구체적으로, 상기 하이브리드 타이어 코드에 있어서, ASTM D885에 의해 측정된 3% LASE가 8 kgf 이상일 수 있고, 5% LASE가 15 kgf 이상일 수 있고, 7% LASE가 25 kgf 이상일 수 있다.
상기 하이브리드 타이어 코드 있어서, 180℃에서 2분 동안 초하중 0.01 g/d에서 측정된 건열 수축율이 0.3 내지 2.5%이다.
본 발명의 다른 일 실시예는, 아라미드 필라멘트를 제1 방향으로 하연하여 아라미드 하연사를 형성하는 단계, PET 필라멘트를 제2 방향으로 하연하여 PET 하연사를 형성하는 단계, 상기 아라미드 하연사와 상기 PET 하연사를 함께 제3 방향으로 상연하여 합연사를 형성하는 단계, 상기 합연사를 접착제 용액에 침지시키는 단계, 상기 침지에 의해 상기 접착제 용액이 함침된 상기 합연사를 건조시키는 단계, 및 상기 건조된 합연사를 열처리하는 단계를 포함하되, 상기 제2 방향은 상기 제1 방향과 동일하고, 상기 제3 방향은 상기 제1 방향과 반대이며, 상기 PET 합연사를 형성하는 단계에서 상기 PET 필라멘트에 인가되는 장력이 상기 아라미드 합연사를 형성하는 단계에서 상기 아라미드 필라멘트에 인가되는 장력보다 작은, 하이브리드 타이어 코드의 제조방법을 제공한다.
상기 합연사를 형성하는 단계에서 형성된 소정 길이의 상기 합연사에 있어서, 상기 합연사의 언트위스트 후 상기 PET 하연사의 길이가 상기 아라미드 하연사의 길이의 1.005 내지 1.050배이다.
상기 PET 하연사를 형성하는 단계에서 상기 PET 필라멘트에 인가되는 장력은 상기 아라미드 하연사를 형성하는 단계에서 상기 아라미드 필라멘트에 인가되는 장력의 50% 내지 95%이다.
상기 아라미드 하연사를 형성하는 단계, 상기 PET 하연사를 형성하는 단계 및 상기 합연사를 형성하는 단계는 하나의 연사기에 의해 수행된다.
상기 아라미드 하연사를 형성하는 단계 및 상기 PET 하연사를 형성하는 단계와 상기 합연사를 형성하는 단계는 연속 공정으로 수행된다.
상기 접착제 용액은 RFL(Resorcinol Formaldehyde Latex) 접착제 및 에폭시계 접착제 중 적어도 하나를 포함한다.
상기 건조 단계는 70 내지 200℃에서 30 내지 120초 동안 수행되고, 상기 열처리 단계는 200 내지 250℃에서 30 내지 120초간 수행된다.
상기 침지 단계, 상기 건조 단계, 및 상기 열처리 단계는 연속적으로 수행되며, 상기 침지 단계, 상기 건조 단계, 및 상기 열처리 단계에서 상기 합연사에 가해지는 장력은 코드 당 0.4 kg/cord 이상이다.
상기 열처리 후, 상기 하이브리드 코드의 언트위스트 후 측정된 상기 아라미드 하연사의 길이는 상기 PET 하연사의 길이의 1 내지 1.1 배이다.
본 발명의 또 다른 일 실시예는, PET 하연사, 아라미드 하연사, 및 상기 PET 하연사와 상기 아라미드 하연사 상에 코팅된 접착제를 포함하고, 상기 PET 하연사와 상기 아라미드 하연사는 함께 상연되어 있고, 소정의 길이 부분에 대한 언트위스트 후 상기 아라미드 하연사의 길이는 상기 PET 하연사의 길이의 1 내지 1.1배인, 카카스용 하이브리드 타이어 코드를 제공한다.
위와 같은 일반적 서술 및 이하의 상세한 설명 모두는 본 발명을 예시하거나 설명하기 위한 것일 뿐으로서, 특허 청구범위의 발명에 대한 더욱 자세한 설명을 제공하기 위한 것으로 이해되어야 한다.
본 발명의 일 실시예에 의하면, 합연사 제조를 위한 상연과 하연이 하나의 연사기에 의해 수행되기 때문에, 하이브리드 타이어 코드의 생산성이 향상되고 제조비용이 감소될 수 있다. 또한, 본 발명의 일 실시예에 따른 제조방법에 따를 경우, 80% 이상의 우수한 강력 유지율을 갖는 하이브리드 타이어 코드가 제조될 수 있다.
이러한 제조방법에 의해 제조된 본 발명의 일 실시예에 따른 하이브리드 타이어 코드는 고성능의 경량화 특징을 가질 수 있으며, 또한 고압 타이어에 적용될 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 하이브리드 타이어 코드는, 아라미드 하연사의 높은 강력 덕분에, 고속 주행시 타이어 변형을 최소화할 수 있다.
본 발명의 일 실시예에 따른 하이브리드 타이어 코드는 아라미드 하연사와 PET 하연사가 실질적으로 동일한 꼬임수 및 실질적으로 동일한 길이를 가져, 구조적 안정성이 우수하기 때문에, 제조 과정에서 초래될 수 있는 물성 편차 및 불량률이 최소화될 수 있다.
본 발명의 일 실시예에 의하면, 타이어 코드가 언트위스트된 후 측정된 아라미드 하연사의 길이가 PET 하연사의 길이의 1 내지 1.1 배이기 때문에, 타이어가 인장 및 압축을 반복할 때, 타이어 코드에 가해지는 스트레스가 아라미드 하연사뿐만 아니라 PET 하연사에도 분산될 수 있다. 그 결과, 본 발명의 일 실시예에 따른 하이브리드 타이어 코드는 우수한 내피로 특성을 가져, 장시간의 고속 주행에서도 타이어가 안정성을 유지할 수 있도록 한다.
또한, 본 발명의 일 실시예에 따른 하이브리드 타이어 코드는 고속 주행시 타이어 변형을 최소화할 수 있으며, 특히 SUV, LT 등과 같은 대형 차량의 타이어와 같이 높은 하중을 견뎌야 하고 우수한 형태안정성을 가져야 하는 고압 타이어의 카카스에 유용하게 적용될 수 있다.
본 발명의 일 실시예에 의하면, 하이브리드 타이어 코드의 제조 과정, 특히 열처리 과정에서 초래될 수 있는 강력 및 모듈러스 저하가 최소화될 수 있다.
이하에서는 본 발명의 하이브리드 타이어 코드, 카카스용 하이브리드 타이어 코드 및 그 제조방법에 대한 실시예들을 구체적으로 설명한다.
본 발명의 기술적 사상 및 범위를 벗어나지 않는 범위 내에서 본 발명의 다양한 변경 및 변형이 가능하다는 점은 당업자에게 자명할 것이다. 따라서, 본 발명은 특허청구범위에 기재된 발명 및 그 균등물의 범위 내에 드는 변경 및 변형을 모두 포함한다.
본 명세서에서 사용되는 용어 "하연사(primarily twisted yarn)"는 필라멘트를 어느 한쪽 방향으로 꼬아서 만든 실(yarn)을 의미이다. 여기서, 필라멘트는 모노필라멘트 및 멀티필라멘트를 모두 포함하는 의미이다. 본 발명의 일 실시예에 따르면, 하연사는 필라멘트사로 이루어질 수 있다. 하연사가 한 가닥의 실로 이루어지는 경우, 하연사를 단사(single yarn)라고도 한다.
본 명세서에서 사용되는 용어 "합연사(cabled yarn)"는 2 가닥 이상의 하연사들을 어느 한쪽 방향으로 함께 꼬아서 만든 실을 의미한다. 본 발명의 일 실시예에 따르면, 합연사를 "로 코드(raw cord)"라고도 한다.
본 명세서에서 사용되는 용어 "타이어 코드"는 고무 제품에 바로 적용될 수 있도록 접착제를 함유한 합연사를 의미한다. 본 발명의 일 실시예에 따르면, 타이어 코드를 "딥 코드(dip cord)"라고도 한다.
본 명세서에서 사용되는 "꼬임수(twist number)"는 1m 당 꼬임의 횟수를 의미하며, 그 단위는 TPM(Twist Per Meter)이다.
본 명세서에서 사용되는 "LASE"는 특정 신율에서의 하중(Load At Specific Elongation)을 의미하며, 예를 들어, 3% LASE는 3% 신율에서의 하중을 의미한다.
고성능 타이어 코드를 개발하기 위해서는 재료 자체의 물성뿐만 아니라 꼬임수, 형태 등과 같은 구조적 특성을 모두 고려하여야 한다.
본 발명의 일 실시예는 하이브리드 타이어 코드를 제공한다.
본 발명의 일 실시예에 따른 하이브리드 타이어 코드는 PET와 아라미드의 하이브리드 타입으로서, PET 하연사, 아라미드 하연사 및 PET 하연사와 아라미드 하연사 상에 코팅된 접착제를 포함한다. 여기서, PET 하연사와 아라미드 하연사는 함께 상연되어 있다. 본 발명의 일 실시예에 따른 하이브리드 타이어 코드의 소정의 길이 부분에 대한 언트위스트 후, 아라미드 하연사의 길이는 PET 하연사의 길이의 1 내지 1.1배인이다.
구체적으로, 본 발명의 일 실시예에 따른 하이브리드 타이어 코드는 제1 꼬임 방향의 PET 하연사 및 제2 꼬임 방향의 아라미드 하연사를 포함하되, PET 하연사와 아라미드 하연사는 함께 제3 꼬임 방향으로 상연되어 있다. 본 발명의 일 실시예에 따른 하이브리드 타이어 코드는 PET 하연사 및 아라미드 하연사가 상연되어 이루어진 합연사를 포함한다.
예를 들어, PET 필라멘트와 아라미드 필라멘트가 하나의 연사기(예를 들어, 케이블 코드 연사기, Allma社의 Cable Corder)에 의해 동시에 각각 하연됨으로써 PET 하연사와 아라미드 하연사가 각각 형성되고, 그와 거의 동시에, 즉, 연속적으로 PET 하연사와 아라미드 하연사가 함께 상연되어 로 코드(raw cord)인 합연사가 형성된다.
아라미드 하연사의 제2 꼬임 방향은 PET 하연사의 제1 꼬임 방향과 동일하며, 제3 꼬임 방향, 즉, 상연 방향은 제1 꼬임 방향의 반대 방향이다.
본 발명의 일 실시예에 따르면, PET 하연사와 아라미드 하연사는 동일한 꼬임수를 가질 수 있다. PET 하연사와 아라미드 하연사는, 예를 들어, 200 내지 500 TPM의 범위에서 동일한 꼬임수를 가질 수 있다. 즉, PET 하연사와 아라미드 하연사는 각각 200 내지 500TPM의 제1 꼬임수를 가질 수 있다. 또한 PET 하연사와 아라미드 하연사는 함께 제2 꼬임수로 상연되어 있고, 제2 꼬임수는 제1 꼬임수와 동일할 수 있다.
본 발명의 일 실시예에 따르면, 하연과 상연이 하나의 연사기에 의해 수행되기 때문에, 각각의 하연 및 상연이 상이한 연사기에 의해 수행되는 배치식 방법에 비해 하이브리드 타이어 코드의 생산성이 향상되고 제조비용이 감소될 수 있다.
아라미드는 직선형 분자사슬을 갖기 때문에 결정화도가 높고 열에 의한 수축 거동이 거의 없다. 반면, 타이어 코드에서 요구되는 고강력 및 고모듈러스를 발현시키기 위하여 연신 공정을 통해 제조되는 PET 필라멘트는, 하이브리드 타이더 코드(딥 코드) 제조 과정에서 수행되는 열처리 공정 중에 수축하게 되고, 그 결과 최종 타이어 코드에서 아라미드 하연사와 PET 하연사의 길이 차이가 발생하여 물성 불균일이 초래될 수 있다. PET 하연사의 수축으로 인해 딥 코드의 형태가 불균일해지면 아라미드 하연사와 PET 하연사가 분리되어 강력 저하가 발생하며, 피로 성능도 역시 낮아지게 된다. 예를 들어, 최종 결과물인 하이브리드 타이어 코드에서 아라미드 단사의 길이가 PET 단사 길이의 1.1 배를 초과할 정도로 길이 차이가 발생하면, 하이브리드 타이어 코드의 강력 및 모듈러스 저하가 야기되고, 내피로 특성도 감소된다.
따라서, 본 발명의 일 실시예에 의하면, 높은 강력 및 피로성능을 갖는 하이브리드 타이어 코드를 제조하기 위하여, 연사(twist) 공정 중에 아라미드 필라멘트와 PET 필라멘트에 각각 가해지는 장력을 조절하여 PET 하연사를 아라미드 하연사보다 길게 제조한다. 또한, 열처리 공정 중에 PET 하연사의 수축을 최소화하기 위하여 비교적 높은 수준의 장력(예를 들어, 0.4 kg/cord 이상)을 합연사(로 코드)에 인가할 수 있다. 그에 따라, 완성된 하이브리드 타이어 코드에서 아라미드 단사와 PET 단사가 실질적으로 동일한 길이 및 구조를 가질 수 있다.
구체적으로, 최종 타이어 코드에서 아라미드 하연사와 PET 하연사가 실질적으로 동일한 구조를 갖도록 하기 위하여, 연사(twist) 공정을 수행할 때 아라미드 필라멘트와 PET 필라멘트에 가해지는 장력을 적절히 조절한다. 즉, 하연과 상연이 수행될 때 PET 필라멘트보다 아라미드 필라멘트에 상대적으로 더 큰 장력을 가함으로써 PET 하연사의 길이를 아라미드 하연사보다 더 길게 만들 수 있다.
본 발명의 일 실시예에 의하면, 소정 길이의 합연사(로 코드)를 언트위스트한 후의 PET 하연사의 길이는 아라미드 하연사의 길이의 1.005 내지 1.050배이다. 따라서, 본 발명의 일 실시예에 따른 합연사(로 코드)는 아라미드 하연사를 PET 하연사가 커버링하는 구조, 즉, "커버링 구조"가 약간 가미된 머지 구조(merged structure)를 가질 수 있다.
본 발명의 일 실시예에 따르면, 합연사(로 코드)에서 PET 하연사의 길이가 아라미드 하연사의 길이보다 길기 때문에, 접착제 부여를 위한 후속의 디핑, 건조 및 열처리 공정들을 순차적으로 수행할 때 야기되는 PET 하연사의 수축으로 인해 최종 하이브리드 타이어 코드(즉, 딥 코드)에서 아라미드 하연사의 길이가 PET 하연사보다 지나치게 길어지는 것이 방지될 수 있다.
본 발명의 일 실시예에 의하면, 소정 길이의 최종 하이브리드 타이어 코드에 있어서, 소정의 길이 부분에 대한 언트위스트 후 아라미드 하연사의 길이는 PET 하연사의 길이의 1 내지 1.1 배이다.
하이브리드 타이어 코드에서 아라미드 하연사가 PET 하연사보다 짧을 경우, 즉, 합연사(로 코드)에서 PET 하연사의 길이가 아라미드 하연사의 길이의 1.050 배를 초과할 경우, 타이어의 인장/압축이 반복될 때 타이어 코드에 가해지는 스트레스가 아라미드 하연사에 집중적으로 인가되기 때문에 타이어 코드의 내피로 특성이 낮을 수 밖에 없고, 이러한 낮은 내피로 특성으로 인해 장시간의 고속 주행시 타이어의 안정성이 담보될 수 없다.
반면, 합연사(로 코드)에서 PET 하연사의 길이가 아라미드 하연사의 길이의 1.005 배 미만일 경우, 아라미드 하연사의 길이가 PET 하연사의 길이의 1.1 배를 초과하는 커버링 구조의 하이브리드 타이어 코드가 최종적으로 얻어진다. 이와 같은 커버링 구조의 하이브리드 타이어 코드에서는 PET 하연사를 커버링하는 아라미드 하연사가 가이드 또는 롤러와의 마찰에 의해 밀려 루프를 형성하는 등 형태 불균일이 야기되기 때문에, 하이브리드 타이어 코드 제조시 물성 편차 및 불량률이 커지게 될 뿐만 아니라, 타이어 제조 공정에서도 물성 편차로 인해 타이어 불량률이 증가한다.
본 발명의 일 실시예에 의하면, 합연사(로 코드) 제조를 위한 하연 및 상연을 수행할 때, 200 내지 500 TPM 범위 내에서 동일한 꼬임수가 적용된다. 다만, 접착제 부여를 위한 후속의 디핑, 건조 및 열처리 공정들을 순차적으로 수행할 때 의도치 않은 연풀림(untwist)이 발생하여 하연과 상연에 있어서 최초 설정 꼬임수 대비 15% 이내의 차이가 각각 발생할 수 있다. 일반적으로, 섬유의 꼬임수가 높으면 강력은 저하되나 피로 성능이 증가한다. 반면, 섬유의 꼬임수가 낮을수록 강력이 증가하지만 피로 성능은 감소한다.
본 발명의 일 실시예에 의하면, 아라미드 하연사와 PET 하연사가 실질적으로 동일한 꼬임수, 길이 및 구조를 가짐에 따라, 하연사들이 강력 및 피로 성능에 있어서 유사한 거동을 나타낸다.
본 발명의 일 실시예에 따른 하이브리드 타이어 코드 제조에 사용되는 아라미드 필라멘트 및 PET 필라멘트는 특별히 제한되지 않는다. 아라미드 하연사 및 PET 하연사에 각각 적용되는 아라미드 필라멘트 및 PET 필라멘트는 400 내지 3000 데니어의 범위 내에서 동일 또는 유사한 섬도를 가질 수 있다. 예를 들어, 본 발명의 일 실시예에 따른 PET 하연사는 400 내지 3000 데니어의 PET 필라멘트로 이루어진 PET 필라멘트사이고, 아라미드 하연사는 400 내지 3000 데니어의 아라미드 필라멘트로 이루어진 아라미드 필라멘트사이다. 이러한 하이브리드 타이어 코드는 고성능의 경량 타이어에 적용될 수 있다.
한편, PET 하연사는 1300 내지 3000 데니어의 섬도를 가지며, 아라미드 하연사는 1500 내지 3000 데니어의 섬도를 가질 수 있다. 이러한 섬도를 갖는 아라미드 하연사와 PET 하연사로 이루어진 하이브리드 코드는, 특히, 고압 타이어에 유용하게 적용될 수 있다.
아라미드(aramid)는 주쇄에 아미드기와 함게 페닐 고리를 포함하고 있으며 페닐 고리의 연결상태에 따라 파라형(p-)과 메타형(m-)으로 분류된다. 본 발명의 일 실시예에 의하면, 아라미드 하연사는 폴리(p-페닐렌테레프탈아미드)를 포함할 수 있다.
본 발명의 일 실시예에 의하면, 아라미드 필라멘트는 20 g/d 이상의 인장강도, 및 3% 이상의 절단신도를 갖는다. 아라미드 필라멘트의 인장강도가 20 g/d 미만이면 PET 필라멘트사의 낮은 강도를 충분히 보상하지 못하기 때문에 고속 주행시 타이어 변형이 초래될 위험이 증가한다.
또한, 아라미드 필라멘트는 PET 필라멘트 대비 5 내지 10 배의 모듈러스를 갖기 때문에, 하이브리드 타이어 코드에서 아라미드 하연사와 PET 하연사의 중량비가 15:85 정도만 되더라도 하이브리드 타이어 코드는 PET 단일 소재의 타이어 코드 대비 2 내지 3 배의 모듈러스를 갖게 된다. 따라서, 타이어 코드의 물성과 제조비용을 모두 고려하여 아라미드 하연사와 PET 하연사의 중량비를 결정할 수 있다. 본 발명의 일 실시예에 의하면, 아라미드 하연사와 PET 하연사의 중량비는 20:80 내지 80:20이다.
PET 하연사의 중량이 아라미드 하연사 중량의 4배를 초과하면, 최종적으로 얻어지는 하이브리드 타이어 코드가 PET의 물성을 따르게 되어 강력 및 모듈러스가 부족하게 되어 높은 형태안정성을 요구하는 고압 타이어용 타이어 코드로서 적합하지 않다. 또한, 부족한 강력 및 모듈러스를 만회하기 위하여 많은 양의 타이어 코드들이 사용되어야 하기 때문에, 결과적으로 타이어의 경량화가 불가능해진다.
반면, 아라미드 하연사의 중량이 PET 하연사 중량의 4배를 초과하면, 하이브리드 타이어 코드의 내피로 성능이 저하되어 타이어의 내구력 확보가 어렵고, 또한 고가의 아라미드를 다량으로 사용함으로써 비용이 상승하게 된다.
보다 구체적으로, 아라미드 하연사와 PET 하연사의 중량비는 1:3 내지 3:1의 범위로 조정될 수도 있다.
본 발명의 일 실시예에 따른 하이브리드 타이어 코드는, 타이어의 다른 구성 요소들과의 접착력 향상을 위하여 PET 하연사와 아라미드 하연사 상에 코팅된 접착제를 더 포함한다. 접착제는 RFL(Resorcinol Formaldehyde Latex) 접착제 및 에폭시계 접착제 중 적어도 하나를 포함한다.
본 발명의 일 실시예에 따르면, 하이브리드 타이어 코드는 8.0 내지 15.0 g/d의 절단강도 및 5 내지 15%의 파단신율을 갖는다. 보다 구체적으로, 본 발명의 일 실시예에 따른 하이브리드 타이어 코드는 10.0 내지 15.0 g/d의 절단강도 및 5 내지 15%의 파단신율을 가질 수도 있다. 절단강도 및 파단신율은 ASTM D885에 의해 측정될 수 있다.
본 발명의 일 실시예에 따른 하이브리드 타이어 코드는 80% 이상의 강력 유지율을 갖는다. 강력 율지율은 일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 실시되는 디스크 피로 테스트 후의 강력 유지율을 의미한다. 80% 이상의 높은 강력 유지율을 갖는 하이브리드 코드는 본 발명의 일 실시예에 따른 제조방법에 의해 제조될 수 있다.
또한, 본 발명의 일 실시예에 따른 하이브리드 타이어 코드는, ASTM D885에 의해 측정된, 30 kgf 이상의 높은 강력(strength)을 갖는다.
본 발명의 일 실시에에 따른 하이브리드 타이어 코드는 고성능 경량화 타이어에 사용될 수 있다. 뿐만 아니라, 본 발명의 일 실시에에 따른 하이브리드 타이어 코드는 고압 타이어에 요구되는 정도의 우수한 형태안정성을 담보할 수 있는 높은 모듈러스를 가지고 있기 때문에, 고압 타이어의 보강재로 사용될 수 있다.
예를 들어, 본 발명의 실시예에 따라, 고성능 경량화 타이어를 위한 하이브리드 타이어코드는, ASTM D885에 의해 측정된, 6kgf 이상의 3% LASE, 10kgf 이상의 5% LASE, 17kgf 이상의 7% LASE를 가질 수 있다. 또한, 고압 타이어에 적용되는 하이브리드 타이어코드는, 예를 들어, 1300데니어 이상의 PET 하연사 및 1500데니어 이상의 섬도를 갖는 아라이미 하연사에 의하여 제조될 수 있으며, ASTM D885에 의해 측정된, 8 kgf 이상의 3% LASE, 15 kgf 이상의 5% LASE, 및 25 kgf 이상의 7% LASE를 가질 수 있다.
본 발명의 일 실시예에 따른 하이브리드 타이어 코드에 있어서, 180℃에서 2분 동안 초하중 0.01 g/d에서 측정된 건열 수축율이 0.3 내지 2.5%일 수 있다.
상기 설명된 본 발명의 일 실시예에 따른 하이브리드 타이어 코드는 타이어의 카카스에 적용되어, 본 발명의 다른 일 실시예에 따른 카카스용 하이브리드 타이어 코드로 사용될 수 있다.
카카스는 차체의 하중을 지지하고 타이어의 공기압을 유지시키는 타이어의 골격으로서, 타이어의 전면(全面)을 감싸는 구조를 갖는다. 따라서, 타이어의 경량화를 위해 카카스의 경량화가 요구된다. 카카스의 경량화를 위해서는 카카스 보강재 층의 개수를 감소시키거나 각 보강재 층의 두께를 감소시킬 필요가 있는데, 이를 위해서는 카카스용 타이어 코드의 고성능화가 선결되어야 한다.
통상적으로, 카카스용 타이어 코드를 위한 소재로서 PET(폴리에틸렌 테레프탈레이트)와 레이온(Rayon)이 사용되고 있다. 그러나, 두 종류 모두 카카스 보강재 층의 개수를 감소시키거나 각 보강재 층의 두께를 감소시키기에는 그 강력 및 모듈러스가 불충분하다.
최근, 나일론과 아라미드로 제조된 하이브리드 타이어 코드가 캡 플라이용으로 개발되었으며, 이러한 하이브리드 타이어 코드는 S-S 커브 패턴 상에서 초기에 나일론 물성이 발현되어 낮은 모듈러스를 나타낸다. 카카스는 타이어의 전체적 뼈대 역할을 하고 타이어의 형태안정성에 지대한 영향을 미치기 때문에, 초기 모듈러스가 낮을 경우 타이어 제조 시 낮은 형태안정성으로 인해 타이어 형태가 무너지는 문제점이 있다. 따라서, 나일론과 아라미드의 하이브리드 타이어 코드는 카카스용으로 적합하지 않은 것으로 인식되고 있다.
특히, SUV(Sport Utility Vehicle) 및 LT(Light Truck) 수요가 증가하면서, 일반 차량의 타이어보다 높은 하중을 견딜 수 있으면서도 주행 안정성을 담보할 수 있는 고압 타이어에 적합한, 상당히 높은 형태안정성을 갖는, 고강력 및 고모듈러스의 타이어 코드가 더욱 요구되고 있다.
재료 자체의 물성, 각 하연사들의 선밀도(linear density), 꼬임수, 형태 등과 같은 구조적 측면을 모두 고려할 때, 본 발명의 일 실시예에 따른 하이브리드 타이어 코드는, 본 발명의 다른 일 실시예에 따른 카카스용 하이브리드 타이어 코드로 사용될 수 있다. 본 발명의 다른 일 실시예에 따른 카카스용 하이브리드 타이어 코드는 타이어의 형태를 유지하고 자동차 주행 성능을 향상시킬 수 있다.
본 발명의 또 다른 일 실시예는 하이브리드 타이어 코드의 제조방법을 제공한다.
본 발명의 또 다른 일 실시예에 따른 하이브리드 타이어 코드의 제조방법은, 아라미드 필라멘트를 제1 방향으로 하연하여 아라미드 하연사를 형성하는 단계, PET 필라멘트를 제2 방향으로 하연하여 PET 하연사를 형성하는 단계, 아라미드 하연사와 PET 하연사를 함께 제3 방향으로 상연하여 합연사를 형성하는 단계, 합연사를 접착제 용액에 침지시키는 단계, 침지에 의해 상기 용액이 함침된 합연사를 건조시키는 단계 및 건조된 합연사를 열처리하는 단계를 포함한다.
이하에서는 본 발명의 또 다른 일 실시예에 따른 하이브리드 타이어 코드의 제조방법을 더욱 상세히 설명하도록 한다.
먼저, 400 내지 3000 데니어의 아라미드 필라멘트와 400 내지 3000 데니어의 PET 필라멘트가 하연과 상연을 모두 수행하는 케이블 코드 연사기로 투입된다. 연사기에서, 아라미드 필라멘트가 제1 방향으로 하연되어 아라미드 하연사가 형성되는 단계(제1 단계)와 PET 필라멘트가 제2 방향으로 하연되어 PET 하연사가 형성되는 단계(제2 단계)가 동시에 수행되고, 아라미드 하연사와 PET 하연사가 함께 제3 방향으로 상연되어 합연사가 형성되는 단계(제3 단계)가 수행된다.
한편, 고압 타이어용 하이브리드 타이어 코드 제조를 위해, 1300 내지 3000 데니어의 섬도를 갖는 PET 하연사와, 1500 내지 3000 데니어의 섬도를 갖는 아라미드 하연사가 사용될 수도 있다.
하연사를 형성하는 단계(제1 단계 및 제2 단계) 및 합연사를 형성하는 단계(제3 단계)는 하나의 연사기에서 수행된다. 또한, 합연사를 형성하는 단계(제3 단계)는 하연사를 형성하는 단계(제1 단계 및 제2 단계)와 연속 공정으로 수행된다. 즉, 제3 단계는 제1 및 제2 단계들과 연속적으로 수행된다.
전술한 바와 같이, 제2 방향은 제1 방향과 동일하고, 제3 방향은 제1 방향의 반대이다. 하연과 상연을 수행할 때 200 내지 500 TPM의 범위 내에서 동일한 꼬임수가 적용된다.
본 발명의 또 다른 일 실시예에 의하면, 하연과 상연이 하나의 연사기에서 수행되는 연속식 방법으로 합연사가 제조되기 때문에, PET 필라멘트와 아라미드 필라멘트를 각기 다른 연사기로 각각 하연한 후 또 다른 연사기로 이들을 함께 상연하는 배치식 방법에 비해 하이브리드 타이어 코드의 생산성이 향상될 수 있다.
본 발명의 또 다른 일 실시예에 의하면, PET 하연사를 형성하는 단계(제2 단계)에서 PET 필라멘트에 인가되는 장력이 아라미드 하연사를 형성하는 단계(제1 단계)에서 아라미드 필라멘트에 인가되는 장력보다 작다. 따라서, 하나의 연사기에 의해 하연과 상연이 수행됨에도 불구하고, 소정 길이의 합연사(로 코드)를 언트위스 하면 아라미드 하연사의 길이가 PET 하연사의 길이보다 약간 더 짧을 수 있다.
본 발명의 또 다른 일 실시예에 의하면, 소정 길이의 합연사(로 코드)를 언트위스트한 후, PET 하연사의 길이가 아라미드 하연사의 길이의 1.005 내지 1.050배가 될 수 있을 정도로, 제2 단계에서 PET 필라멘트에 인가되는 장력이 제1 단계에서 아라미드 필라멘트에 인가되는 장력보다 작다. 예를 들어, PET 합연사를 형성하는 단계(제1 단계)에서 PET 필라멘트에 인가되는 장력은 아라미드 합연사를 형성하는 단계(제2 단계)에서 아라미드 필라멘트에 인가되는 장력의 50% 내지 95% 범위로 조정될 수 있다.
PET 필라멘트와 아라미드 필라멘트에 가해지는 장력의 크기는 연사기의 롤들(rolls)의 분당 회전수(rpm)를 적절히 세팅함으로써 조절될 수 있다. 예를 들어, PET 필라멘트와 아라미드 필라멘트에 가해지는 장력의 크기는 연사기의 'Creel Yarn Tension'과 'Inner Yarn Tension'을 적절히 세팅함으로써 조절될 수 있다.
이와 같이 제조된 아라미드 하연사와 PET 하연사는 각각 400 내지 3000의 섬도를 가질 수 있다. 한편, 고압 타이어용 하이브리드 타이어 코드 제조를 위해, PET 하연사는 1300 내지 3000 데니어의 섬도를 갖고, 아라미드 하연사는 1500 내지 3000 데니어의 섬도를 가질 수도 있다. 또한, 아라미드 하연사와 PET 하연사는 각각 1500 내지 3000 데니어의 범위 내에서 동일 또는 유사한 섬도를 가질 수도 있다.
이어서, 합연사(로 코드)를 접착제 용액에 침지시키는 단계, 접착제 용액이 함침된 합연사를 건조시키는 단계, 및 건조된 합연사를 열처리하는 단계가 연속적으로 수행됨으로써 본 발명의 일 실시예에 따른 하이브리드 타이어 코드(즉, 딥 코드)가 완성된다.
접착제 용액은 RFL(Resorcinol Formaldehyde Latex) 접착제 및 에폭시계 접착제 중 적어도 하나를 포함할 수 있다.
건조 단계의 온도 및 시간은 접착제 용액의 조성에 따라 달라질 수는 있다. 예를 들어, 70 내지 200℃에서 30 내지 120초 동안 건조가 수행될 수 있다.
열처리는 200 내지 250℃에서 30 내지 120초간 실시될 수 있다.
이 때, 침지 단계, 건조 단계, 및 열처리 단계는 연속적으로 수행될 수 있다.
위와 같은 공정들을 통해 접착제 용액의 접착제 성분이 합연사(로 코드)의 표면에 코팅됨으로써 본 발명의 일 실시예에 따른 하이브리드 타이어 코드와 타이어 제조용 고무 조성물과의 접착성이 증가된다.
한편, 동일한 꼬임수로 하연 및 상연을 수행하도록 연사기가 세팅되지만, 연사기에 의해 제조된 합연사(즉, 로 코드)가 접착제 용액에 침지된 후 건조 및 열처리되는 과정에서 꼬임 풀림 현상이 발생될 수 있다. 이러한 꼬임 풀림 현상을 최소화하기 위하여, 그리고 PET 합연사의 지나친 수축을 방지하기 위하여, 연속적으로 수행되는 침지, 건조, 및 열처리 단계들에서 합연사(로 코드)에 가해지는 장력이 0.4 kg/cord 이상이 되도록 할 수 있다. 그에 따라, 최초 설정 꼬임수와 최종 제조된 하이브리드 타이어 코드의 실제 꼬임수의 차이가 최초 설정 꼬임수의 15% 미만이 되도록 할 수 있다.
본 발명의 일 실시예에 의하면, 연사(twist) 공정에서 꼬임 불량이 현격히 감소될 수 있고, 합연사가 안정된 구조를 가짐으로써, 형태 불균일로 인한 물성 편차가 최소화될 수 있다. 구체적으로, 동일 조건 하에서 제조되는 본 발명의 하이브리드 타이어 코드들의 경우, 각 물성들에 있어서 최대값과 최소값의 차이가 획기적으로 감소될 수 있는데, 예를 들어, 절단강도의 최대값과 최소값의 차이는 3 g/d 이하이고, 파단신율의 최대값과 최소값의 차이는 5% 이하이다.
이하, 본 발명의 구체적 실시예들 및 비교예들을 통해 본 발명의 효과를 설명한다. 다만, 하기의 실시예들은 본 발명의 이해를 돕기 위한 것일 뿐, 이들이 본 발명의 권리범위를 제한하는 것은 아니다.
실시예 1
1000 데니어의 PET 필라멘트와 1000 데니어의 아라미드 필라멘트를 케이블 코드 연사기(Allma社의 Cable Corder)에 투입하고, Z-방향의 하연과 S-방향의 상연을 동시에 각각 수행하여 2-합연사(2-ply cabled yarn)(즉, 로 코드)를 제조하였다. 이때, 하연과 상연을 위해 460 TPM의 꼬임수로 상기 케이블 코드 연사기가 세팅되었으며, PET 필라멘트 및 아라미드 필라멘트에 각각 가해지는 장력을 조절함으로써, 합연사(로 코드)에 있어서, 아라미드 하연사에 대한 PET 하연사의 길이의 비율(PET 하연사 길이/아라미드 하연사 길이)(LP/LA)이 1.005가 되도록 하였다. 아라미드 하연사와 PET 하연사의 길이 비율을 구하기 위하여, 1m 길이의 합연사(로 코드) 샘플에 0.05g/d 하중을 주어 상연 꼬임을 풀어 아라미드 하연사와 PET 하연사를 서로 분리한 후, 아라미드 하연사의 길이 및 PET 하연사의 길이를 0.05g/d의 하중을 부여한 상태에서 각각 측정하였다.
이어서, 합연사(로 코드)를 2.0 중량%의 레소시놀, 3.2 중량%의 포르말린(37%), 1.1 중량%의 수산화나트륨(10%), 43.9 중량%의 스티렌/부타디엔/비닐피리딘(15/70/15) 고무(41%), 및 물을 포함하는 레솔시놀-포름알데히드-라텍스(RFL) 접착제 용액에 디핑하였다. 침지에 의해 RFL 용액을 함유하게 된 합연사(로 코드)를 150℃에서 100초 동안 건조시키고 240℃에서 100초 동안 열처리함으로써 딥 코드인 하이브리드 타이어 코드를 완성하였다. 침지, 건조, 및 열처리 공정시 합연사에 가해진 장력은 0.5 kg/cord이었다.
실시예 2
합연사(로 코드)에 있어서 아라미드 하연사에 대한 PET 하연사의 길이의 비율(LP/LA)이 1.010이었다는 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 타이어 코드(딥 코드)를 제조하였다.
실시예 3
합연사(로 코드)에 있어서 아라미드 하연사에 대한 PET 하연사의 길이의 비율(LP/LA)이 1.020이었다는 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 타이어 코드(딥 코드)를 제조하였다.
실시예 4
합연사(로 코드)에 있어서 아라미드 하연사에 대한 PET 하연사의 길이의 비율(LP/LA)이 1.030이었다는 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 타이어 코드(딥 코드)를 제조하였다.
실시예 5
합연사(로 코드)에 있어서 아라미드 하연사에 대한 PET 하연사의 길이의 비율(LP/LA)이 1.050이었다는 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 타이어 코드(딥 코드)를 제조하였다.
실시예 6
1500 데니어의 PET 필라멘트와 1500 데니어의 아라미드 필라멘트를 케이블 코드 연사기(Allma社의 Cable Corder)에 투입하고, Z-방향의 하연과 S-방향의 상연을 동시에 각각 수행하여 2-ply 합연사(2-ply cabled yarn)(로 코드)를 제조하였다. 이때, 하연과 상연을 위해 380 TPM의 꼬임수로 상기 케이블 코드 연사기가 세팅되었으며, PET 필라멘트 및 아라미드 필라멘트에 각각 가해지는 장력을 조절함으로써 합연사(로 코드)에 있어서 아라미드 하연사에 대한 PET 하연사의 길이의 비율(PET 하연사 길이/아라미드 하연사 길이)(LP/LA)이 1.03이 되도록 하였다. 아라미드 하연사와 PET 하연사의 길이 비율을 구하기 위하여, 1m 길이의 합연사(로 코드) 샘플에 0.05g/d 하중을 주어 상연 꼬임을 풀어 아라미드 하연사와 PET 하연사를 서로 분리한 후, 아라미드 하연사의 길이 및 PET 하연사의 길이를 0.05g/d의 하중을 부여한 상태에서 각각 측정하였다.
이어서, 합연사(로 코드)를 2.0 중량%의 레소시놀, 3.2 중량%의 포르말린(37%), 1.1 중량%의 수산화나트륨(10%), 43.9 중량%의 스티렌/부타디엔/비닐피리딘(15/70/15) 고무(41%), 및 물을 포함하는 레솔시놀-포름알데히드-라텍스(RFL) 접착제 용액에 디핑하였다. 침지에 의해 RFL 용액을 함유하게 된 합연사(로 코드)를 150℃에서 100초 동안 건조시키고, 240℃에서 100초 동안 열처리함으로써 하이브리드 타이어 코드를 완성하였다. 침지, 건조, 및 열처리 공정시 합연사에 가해진 장력은 0.5 kg/cord이었다.
실시예 7
1500 데니어의 PET 필라멘트 대신 2000 데니어의 PET 필라멘트가 이용되었고, 1500 데니어의 아라미드 필라멘트 대신에 2000 데니어의 아라미드 필라멘트가 이용되었으며, 하연과 상연을 위해 300 TPM의 꼬임수로 케이블 코드 연사기가 세팅되었다는 것을 제외하고는, 실시예 6과 동일한 방법으로 하이브리드 타이어 코드를 완성하였다.
실시예 8
합연사(로 코드)에 있어서, 아라미드 합연사 길이에 대한 PET 합연사 길이의 비율(LP/LA)이 1.005이었다는 것을 제외하고는 실시예 6과 동일한 방법으로 하이브리드 타이어 코드를 제조하였다.
실시예 9
합연사(로 코드)에 있어서, 아라미드 합연사 길이에 대한 PET 합연사 길이의 비율(LP/LA)이 1.05이었다는 것을 제외하고는 실시예 6과 동일한 방법으로 하이브리드 타이어 코드를 제조하였다.
비교예 1
하연과 상연을 위해 360 TPM의 꼬임수로 상기 케이블 코드 연사기가 세팅되었고, 합연사(로 코드)에 있어서 아라미드 하연사에 대한 PET 하연사의 길이의 비율(LP/LA)이 0.980이었다는 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 타이어 코드(딥 코드)를 제조하였다.
비교예 2
하연과 상연을 위해 400 TPM의 꼬임수로 케이블 코드 연사기가 세팅되었고, 합연사(로 코드)에 있어서 아라미드 하연사에 대한 PET 하연사의 길이의 비율(LP/LA)이 0.980이었다는 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 타이어 코드(딥 코드)를 제조하였다.
비교예 3
하연과 상연을 위해 430 TPM의 꼬임수로 케이블 코드 연사기가 세팅되었고, 합연사(로 코드)에 있어서 아라미드 하연사에 대한 PET 하연사의 길이의 비율(LP/LA)이 0.980이었다는 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 타이어 코드(딥 코드)를 제조하였다.
비교예 4
합연사(로 코드)에 있어서 아라미드 하연사에 대한 PET 하연사의 길이의 비율(LP/LA)이 0.980이었다는 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 타이어 코드(딥 코드)를 제조하였다.
비교예 5
합연사(로 코드)에 있어서 아라미드 하연사 길이에 대한 PET 하연사 길이의 비율(LP/LA)이 1.000이었다는 것을 제외하고는 실시예 6과 동일한 방법으로 하이브리드 타이어 코드를 제조하였다.
비교예 6
합연사(로 코드)에 있어서 아라미드 하연사 길이에 대한 PET 하연사 길이의 비율(LP/LA)이 0.98이었다는 것을 제외하고는 실시예 6과 동일한 방법으로 하이브리드 타이어 코드를 제조하였다.
실시예 1-9 및 비교예 1-6은 하기 표 1로 정리될 수 있다.
PET 하연사 섬도(denier) 아라미드 하연사 섬도 (denier) 상연/하연 꼬임수TPM (LP/LA) (Raw Cord)
실시예 1 1000 1000 460 1.005
실시예 2 1000 1000 460 1.010
실시예 3 1000 1000 460 1.020
실시예 4 1000 1000 460 1.030
실시예 5 1000 1000 460 1.050
실시예 6 1500 1500 380 1.030
실시예 7 2000 2000 300 1.030
실시예 8 1500 1500 380 1.005
실시예 9 1500 1500 380 1.050
비교예 1 1000 1000 360 0.980
비교예 2 1000 1000 400 0.980
비교예 3 1000 1000 430 0.980
비교예 4 1000 1000 460 0.980
비교예 5 1500 1500 380 1.000
비교예 6 1500 1500 380 0.980
위 실시예 1-9 및 비교예 1-6에 의해 얻어진 하이브리드 타이어 코드(딥 코드)들의, (i) PET 하연사 길이에 대한 아라미드 하연사 길이의 비율(아라미드 하연사 길이/PET 하연사 길이) (LA/LP), (ii) 강력, 중신(at 4.5 kg) 및 절신, (iii) 3% LASE, 5% LASE 및 7% LASE, (iv) 건열수축율, 및 (v) 디스크 피로 테스트 후 강력 유지율을 다음의 방법들로 각각 측정하였고, 그 결과를 표 2에 나타내었다.
(i) PET 하연사 길이에 대한 아라미드 하연사 길이의 비율(LA/LP)
1m 길이의 하이브리드 타이어 코드 샘플에 0.05g/d 하중을 주어 상연 꼬임을 풀어 아라미드 하연사와 PET 하연사를 서로 분리한 후, 아라미드 하연사의 길이 및 PET 하연사의 길이를 0.05g/d의 하중을 부여한 상태에서 각각 측정하였다.
다음, "아라미드 하연사 길이/PET 하연사 길이"(LA/LP)의 값을 계산하였다.
(ii) 강력(kgf), 중신(at 4.5 kg)(%), 및 절신(%)
ASTM D-885 시험방법에 따라, 인스트론 시험기(Instron Engineering Corp., Canton, Mass)를 이용하여 250 mm의 샘플 10개에 대하여 300 m/min 인장속도를 가함으로써 하이브리드 타이어 코드(딥 코드)의 강력, 중신(at 4.5 kg) 및 절신을 각각 측정하였다. 이어서, 10개 샘플들의 강력, 중신(at 4.5 kg) 및 절신의 평균치를 각각 산출함으로써 하이브리드 타이어 코드(딥 코드)의 강력, 중신(at 4.5 kg) 및 절신을 얻었다.
(iii) 3% LASE, 5% LASE 및 7% LASE
ASTM D-885 시험방법에 따라, 인스트론 시험기(Instron Engineering Corp., Canton, Mass)를 이용하여 250 mm의 샘플 10개에 대하여 300 m/min 인장속도를 가함으로써 하이브리드 타이어 코드의 3% LASE, 5% LASE, 및 7% LASE를 각각 측정하였다. 이어서, 10개 샘플들의 3% LASE, 5% LASE, 및 7% LASE 의 평균치를 각각 산출함으로써 하이브리드 타이어 코드의 3% LASE, 5% LASE, 및 7% LASE를 얻었다.
(iv) 건열수축율(%)
온도 25℃, 상대습도 65%의 분위기 조건하에서 24시간 이상 샘플을 방치한 후에 테스트라이트(Testrite) 기기를 사용하여 180℃에서 2분 동안 초하중 0.01 g/d(20g) 하에서 측정하였다.
(v) 디스크 피로 테스트 후 강력 유지율(%)
강력(피로 전 강력)이 측정된 하이브리드 타이어 코드(딥 코드)를 고무에 가류하여 시료를 제조한 후, 일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 디스크 피로 측정기(Disk Fatigue Tester)를 이용하여 80℃에서 2500 rpm의 속도로 회전시키면서 ㅁ8% 범위 내에서 인장 및 수축을 16시간 동안 반복함으로써 시료에 피로를 가하였다. 이어서, 시료로부터 고무를 제거한 후 하이브리드 타이어 코드(딥 코드)의 피로 후 강력을 측정하였다. 피로 전 강력과 피로 후 강력을 기초로 하여 하기의 식 1에 의해 정의되는 강력 유지율을 계산하였다.
<식 1>: 강력 유지율(%) = [피로 후 강력(kgf)/피로 전 강력(kgf)] × 100
여기서, 피로 전 및 피로 후 강력(kgf)은, ASTM D-885 시험방법에 따라, 인스트론 시험기(Instron Engineering Corp., Canton, Mass)를 이용하여 250 mm의 샘플에 대하여 300 m/min 인장속도를 가하면서 절단 강력(Strength at Break)을 측정함으로써 구하였다.
(LA/LP) 강력(kgf) 중신 (%) 절신(%) 3% LASE(kgf) 5% LASE(kgf) 7% LASE(kgf) 건열 수축율(%) 강력유지율(%)
실시예1 1.000 24.1 2 9.3 6.9 12.5 18.9 1.02 90.3
실시예2 1.010 25.6 1.9 9.3 7.0 12.4 18.7 1.02 92.5
실시예3 1.010 24.6 2 8.9 6.8 12.6 18.8 0.96 96.4
실시예4 1.020 24.7 1.9 8.9 7.0 12.8 19.6 0.96 98.7
실시예5 1.025 24.2 1.7 7.2 7.9 15.0 22.9 0.89 95.1
실시예6 1.02 38.4 1.4 9.3 10.7 17.8 27.6 1.71 85.6
실시예7 1.025 45.1 0.9 8.8 14.9 23.6 35.4 0.89 86.4
실시예8 1.035 37.2 1.4 9.5 9.3 16.6 26.1 1.56 81.4
실시예9 1.00 38.3 1.4 8.9 12.1 19.3 28.7 1.44 80.2
비교예1 1.100 26.3 1.8 7.7 7.6 14.9 23.8 0.85 41.6
비교예2 1.070 23.6 2.2 8.6 7.3 14.5 23.5 0.8 59.9
비교예3 1.070 23.5 2.3 9.1 7.0 14.1 23.2 0.88 53.9
비교예4 1.100 22.6 2.5 13.1 6.8 13.9 22.8 0.87 68.1
비교예5 1.07 35.4 1.6 9.9 9.9 16.7 26.2 0.84 42.5
비교예6 1.10 32.1 1.6 10.3 9.5 16.2 25.5 0.83 40.1
표 1 및 표 2를 참조하면, 비교예 1 내지 6에서 제조된 70% 미만의 강력 유지율을 가진다. 반면, 본 발명의 또 다른 일 실시예에 따른 제조방법으로 제조된 하이브리드 코드(실시예 1 내지 9)는 80% 이상의 강력 유지율을 가진다는 것을 확인할 수 있다. 이러한 물성을 갖는 본 발명에 따른 실시예 1 내지 9의 하이브리드 타이어 코드는 고성능 경량화 타이어에 유용하게 적용될 수 있다.
또한, 본 발명에 따른 실시예 9 내지 9의 하이브리드 타이어 코드는 80% 이상의 강력 유지율을 가질 뿐 아니라 ASTM D885에 의해 측정된 3% LASE가 8 kgf 이상이고, 5% LASE가 15 kgf 이상이고, 7% LASE가 25 kgf 이상임을 확인할 수 있다. 이러한 실시예 9 내지 9의 하이브리드 타이어 코드는 고압 타이어의 보강재로 사용될 수 있으며, 특히 고압 타이어의 카카스에 사용될 수 있다.

Claims (23)

  1. PET 하연사;
    아라미드 하연사; 및
    상기 PET 하연사와 상기 아라미드 하연사 상에 코팅된 접착제;
    를 포함하고,
    상기 PET 하연사와 상기 아라미드 하연사는 함께 상연되어 있고,
    소정의 길이 부분에 대한 언트위스트 후 상기 아라미드 하연사의 길이는 상기 PET 하연사의 길이의 1 내지 1.1배인,
    하이브리드 타이어 코드.
  2. 제1항에 있어서,
    상기 PET 하연사는 400 내지 3000 데니어의 PET 필라멘트로 이루어지고,
    상기 아라미드 하연사는 400 내지 3000 데니어의 아라미드 필라멘트로 이루어진,
    하이브리드 타이어 코드.
  3. 제2항에 있어서,
    상기 PET 하연사는 1300 내지 3000 데니어의 섬도를 가지며, 상기 아라미드 하연사는 1500 내지 3000 데니어의 섬도를 갖는,
    하이브리드 타이어 코드.
  4. 제1항에 있어서,
    상기 PET 하연사는 제1 꼬임 방향을 갖고,
    상기 아라미드 하연사는 제2 꼬임 방향을 갖고,
    상기 PET 하연사와 상기 아라미드 하연사는 함께 제3 꼬임 방향으로 상연되어 있고,
    상기 제2 꼬임 방향은 상기 제1 꼬임 방향과 동일하고,
    상기 제3 꼬임 방향은 상기 제1 꼬임 방향과 반대인,
    하이브리드 타이어 코드.
  5. 제1항에 있어서,
    상기 PET 하연사와 상기 아라미드 하연사는 각각 200 내지 500TPM의 제1 꼬임수를 갖는,
    하이브리드 타이어 코드.
  6. 제5항에 있어서,
    상기 PET 하연사와 상기 아라미드 하연사는 함께 제2 꼬임수로 상연되어 있고,
    상기 제2 꼬임수는 상기 제1 꼬임수와 동일한,
    하이브리드 타이어 코드.
  7. 제1항에 있어서,
    상기 PET 하연사와 상기 아라미드 하연사의 중량비는 20:80 내지 80:20인,
    하이브리드 타이어 코드.
  8. 제7항에 있어서,
    상기 PET 하연사와 상기 아라미드 하연사의 중량비는 1:3 내지 3:1인,
    하이브리드 타이어 코드.
  9. 제1항에 있어서,
    ASTM D885에 의해 측정된 절단강도가 8.0 내지 15.0 g/d 이고, 파단신율이 5 내지 15%인,
    하이브리드 타이어 코드.
  10. 제1항에 있어서,
    일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 실시되는 디스크 피로 테스트 후의 강력 유지율이 80% 이상인,
    하이브리드 타이어 코드.
  11. 제1항에 있어서,
    ASTM D885에 의해 측정된 3% LASE가 6 kgf 이상이고, 5% LASE가 10 kgf 이상이고, 7% LASE가 17 kgf 이상인,
    하이브리드 타이어 코드.
  12. 제11항에 있어서,
    ASTM D885에 의해 측정된 3% LASE가 8 kgf 이상이고, 5% LASE가 15 kgf 이상이고, 7% LASE가 25 kgf 이상인,
    하이브리드 타이어 코드.
  13. 제1항에 있어서,
    180℃에서 2분 동안 초하중 0.01 g/d에서 측정된 건열 수축율이 0.3 내지 2.5%인,
    하이브리드 타이어 코드.
  14. 아라미드 필라멘트를 제1 방향으로 하연하여 아라미드 하연사를 형성하는 단계;
    PET 필라멘트를 제2 방향으로 하연하여 PET 하연사를 형성하는 단계;
    상기 아라미드 하연사와 상기 PET 하연사를 함께 제3 방향으로 상연하여 합연사를 형성하는 단계;
    상기 합연사를 접착제 용액에 침지시키는 단계;
    상기 침지에 의해 상기 접착제 용액이 함침된 상기 합연사를 건조시키는 단계; 및
    상기 건조된 합연사를 열처리하는 단계;를 포함하되,
    상기 제2 방향은 상기 제1 방향과 동일하고,
    상기 제3 방향은 상기 제1 방향과 반대이며,
    상기 PET 합연사를 형성하는 단계에서 상기 PET 필라멘트에 인가되는 장력이 상기 아라미드 합연사를 형성하는 단계에서 상기 아라미드 필라멘트에 인가되는 장력보다 작은,
    하이브리드 타이어 코드의 제조방법.
  15. 제14항에 있어서,
    상기 합연사를 형성하는 단계에서 형성된 소정 길이의 상기 합연사에 있어서, 상기 합연사의 언트위스트 후 상기 PET 하연사의 길이가 상기 아라미드 하연사의 길이의 1.005 내지 1.050배인,
    하이브리드 타이어 코드의 제조방법.
  16. 제14항에 있어서,
    상기 PET 하연사를 형성하는 단계에서 상기 PET 필라멘트에 인가되는 장력은 상기 아라미드 하연사를 형성하는 단계에서 상기 아라미드 필라멘트에 인가되는 장력의 50% 내지 95%인, 하이브리드 타이어 코드의 제조방법.
  17. 제14항에 있어서,
    상기 아라미드 하연사를 형성하는 단계, 상기 PET 하연사를 형성하는 단계 및 상기 합연사를 형성하는 단계는 하나의 연사기에 의해 수행되는,
    하이브리드 타이어 코드의 제조방법.
  18. 제14항에 있어서,
    상기 아라미드 하연사를 형성하는 단계 및 상기 PET 하연사를 형성하는 단계와 상기 합연사를 형성하는 단계는 연속 공정으로 수행되는,
    하이브리드 타이어 코드의 제조방법.
  19. 제14항에 있어서,
    상기 접착제 용액은 RFL(Resorcinol Formaldehyde Latex) 접착제 및 에폭시계 접착제 중 적어도 하나를 포함하는,
    하이브리드 타이어 코드의 제조방법.
  20. 제14항에 있어서,
    상기 건조 단계는 70 내지 200℃에서 30 내지 120초 동안 수행되고,
    상기 열처리 단계는 200 내지 250℃에서 30 내지 120초간 수행되는,
    하이브리드 타이어 코드의 제조방법.
  21. 제14항에 있어서,
    상기 침지 단계, 상기 건조 단계, 및 상기 열처리 단계는 연속적으로 수행되며,
    상기 침지 단계, 상기 건조 단계, 및 상기 열처리 단계에서 상기 합연사에 가해지는 장력은 코드 당 0.4 kg/cord 이상인,
    하이브리드 타이어 코드의 제조방법.
  22. 제14항에 있어서,
    상기 열처리 후, 상기 하이브리드 코드의 언트위스트 후 측정된 상기 아라미드 하연사의 길이는 상기 PET 하연사의 길이의 1 내지 1.1 배인,
    하이브리드 타이어 코드의 제조방법.
  23. PET 하연사;
    아라미드 하연사; 및
    상기 PET 하연사와 상기 아라미드 하연사 상에 코팅된 접착제;
    를 포함하고,
    상기 PET 하연사와 상기 아라미드 하연사는 함께 상연되어 있고,
    소정의 길이 부분에 대한 언트위스트 후 상기 아라미드 하연사의 길이는 상기 PET 하연사의 길이의 1 내지 1.1배인,
    카카스용 하이브리드 타이어 코드.
PCT/KR2017/011026 2016-09-29 2017-09-29 하이브리드 타이어 코드 및 그 제조방법 WO2018062960A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL17856846.5T PL3521058T3 (pl) 2016-09-29 2017-09-29 Hybrydowy kord oponowy
US16/336,614 US11639565B2 (en) 2016-09-29 2017-09-29 Hybrid tire cord and method for manufacturing the same
EP17856846.5A EP3521058B1 (en) 2016-09-29 2017-09-29 Hybrid tire cord and method for manufacturing same
JP2019512731A JP6742511B2 (ja) 2016-09-29 2017-09-29 ハイブリッドタイヤコード及びその製造方法
CN201780060696.9A CN109843604B (zh) 2016-09-29 2017-09-29 混合轮胎帘线及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160125412A KR102415569B1 (ko) 2016-09-29 2016-09-29 하이브리드 타이어 코드 및 그 제조방법
KR10-2016-0125412 2016-09-29
KR1020160183260A KR102376147B1 (ko) 2016-12-30 2016-12-30 카카스용 하이브리드 타이어 코드 및 그 제조방법
KR10-2016-0183260 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018062960A1 true WO2018062960A1 (ko) 2018-04-05

Family

ID=61759875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011026 WO2018062960A1 (ko) 2016-09-29 2017-09-29 하이브리드 타이어 코드 및 그 제조방법

Country Status (7)

Country Link
US (1) US11639565B2 (ko)
EP (1) EP3521058B1 (ko)
JP (1) JP6742511B2 (ko)
CN (1) CN109843604B (ko)
HU (1) HUE061660T2 (ko)
PL (1) PL3521058T3 (ko)
WO (1) WO2018062960A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210053398A1 (en) * 2018-03-20 2021-02-25 Compagnie Generale Des Etablissements Michelin Tire comprising a single caracss ply with an improved deformation depth in the sidewall after running in
JP2022509044A (ja) * 2018-12-27 2022-01-20 コーロン インダストリーズ インク ゴムに対する強い接着力および優れた耐疲労特性を有するハイブリッドタイヤコードおよびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900012636A1 (it) * 2019-07-23 2021-01-23 Bridgestone Europe Nv Sa Metodo per produrre un dispositivo elettronico per un articolo di gomma
KR20210135095A (ko) * 2020-05-04 2021-11-12 한국타이어앤테크놀로지 주식회사 카카스층에 아라미드 코드를 포함하는 타이어
CN113089161B (zh) * 2021-04-01 2022-08-02 江苏太极实业新材料有限公司 聚酰胺56与聚酯pet的复合浸胶帘子布及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070046572A (ko) * 2005-10-31 2007-05-03 주식회사 코오롱 고무보강용 코드 및 이의 제조방법
KR20150055619A (ko) * 2012-09-11 2015-05-21 꽁빠니 제네날 드 에따블리세망 미쉘린 추가 측벽 보강재를 포함하는 타이어
KR20150071701A (ko) * 2012-10-12 2015-06-26 꽁빠니 제네날 드 에따블리세망 미쉘린 혼합 카커스 플라이를 포함하는 플랫 주행이 가능하도록 설계된 타이어
KR20150073955A (ko) * 2012-10-18 2015-07-01 코드사 글로벌 엔두스트리옐 이플릭 베 코드 베지 사나위 베 티카레트 아노님 시르케티 타이어 코드 패브릭
US20150375573A1 (en) * 2013-02-28 2015-12-31 Bridgestone Corporation Pneumatic safety tire

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155394A (en) 1977-08-29 1979-05-22 The Goodyear Tire & Rubber Company Tire cord composite and pneumatic tire
JPS6045401A (ja) * 1983-08-22 1985-03-11 Toyo Tire & Rubber Co Ltd 複合ポリエステルコ−ド補強空気タイヤ
JPS6171204A (ja) * 1984-09-13 1986-04-12 Bridgestone Corp 空気入りラジアルタイヤのカ−カス用プライ
JP2604709B2 (ja) * 1985-08-15 1997-04-30 株式会社ブリヂストン 乗用車用ラジアルタイヤ
JPH04271904A (ja) 1991-02-25 1992-09-28 Sumitomo Rubber Ind Ltd ライトトラック用ラジアルタイヤ
JPH05262104A (ja) 1992-03-17 1993-10-12 Sumitomo Rubber Ind Ltd ライトトラック用ラジアルタイヤ
JP3611395B2 (ja) 1996-03-11 2005-01-19 横浜ゴム株式会社 空気入りラジアルタイヤ
US6601378B1 (en) * 1999-09-08 2003-08-05 Honeywell International Inc. Hybrid cabled cord and a method to make it
JP4268464B2 (ja) * 2003-06-30 2009-05-27 住友ゴム工業株式会社 空気入りラジアルタイヤ
US7721780B2 (en) 2005-07-21 2010-05-25 The Goodyear Tire & Rubber Company Monoply pneumatic run-flat tire with composite ply cord
DE102007025490A1 (de) * 2007-05-31 2008-12-04 Continental Aktiengesellschaft Festigkeitsträgerlage aus Hybridcorden für elastomere Erzeugnisse, insbesondere für die Gürtelbandage von Fahrzeugluftreifen
EP2222480B1 (en) 2007-10-24 2011-07-27 Pirelli Tyre S.P.A. Tire having a structural element reinforced with a hybrid yarn
JP4751454B2 (ja) 2007-11-13 2011-08-17 住友ゴム工業株式会社 空気入りタイヤ
JP5305389B2 (ja) 2008-01-18 2013-10-02 株式会社ブリヂストン 空気入りラジアルタイヤ
JP5628525B2 (ja) 2010-01-18 2014-11-19 株式会社ブリヂストン 空気入りタイヤ
US20140120791A1 (en) * 2012-10-26 2014-05-01 E I Du Pont De Nemours And Company Composite layer for reinforcement of objects such as tires or belts
KR101580352B1 (ko) 2012-12-27 2015-12-23 코오롱인더스트리 주식회사 하이브리드 섬유 코드 및 그 제조방법
US9175425B2 (en) * 2013-02-27 2015-11-03 E I Du Pont Nemours And Company Unbalanced hybrid cords and methods for making on cable cording machines
US20140237983A1 (en) * 2013-02-27 2014-08-28 E I Du Pont De Nemours And Company Unbalanced Hybrid Cords and Methods for Making on Cable Cording Machines
DE102014220518A1 (de) 2014-10-09 2016-04-14 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen aufweisend eine Gürtelbandage
KR101740769B1 (ko) * 2014-10-21 2017-05-29 한국타이어 주식회사 하이브리드 코드 및 그를 포함하는 고성능 래디얼 타이어
KR101602605B1 (ko) 2015-06-29 2016-03-21 코오롱인더스트리 주식회사 하이브리드 타이어 코드 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070046572A (ko) * 2005-10-31 2007-05-03 주식회사 코오롱 고무보강용 코드 및 이의 제조방법
KR20150055619A (ko) * 2012-09-11 2015-05-21 꽁빠니 제네날 드 에따블리세망 미쉘린 추가 측벽 보강재를 포함하는 타이어
KR20150071701A (ko) * 2012-10-12 2015-06-26 꽁빠니 제네날 드 에따블리세망 미쉘린 혼합 카커스 플라이를 포함하는 플랫 주행이 가능하도록 설계된 타이어
KR20150073955A (ko) * 2012-10-18 2015-07-01 코드사 글로벌 엔두스트리옐 이플릭 베 코드 베지 사나위 베 티카레트 아노님 시르케티 타이어 코드 패브릭
US20150375573A1 (en) * 2013-02-28 2015-12-31 Bridgestone Corporation Pneumatic safety tire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3521058A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210053398A1 (en) * 2018-03-20 2021-02-25 Compagnie Generale Des Etablissements Michelin Tire comprising a single caracss ply with an improved deformation depth in the sidewall after running in
JP2022509044A (ja) * 2018-12-27 2022-01-20 コーロン インダストリーズ インク ゴムに対する強い接着力および優れた耐疲労特性を有するハイブリッドタイヤコードおよびその製造方法
JP7091559B2 (ja) 2018-12-27 2022-06-27 コーロン インダストリーズ インク ゴムに対する強い接着力および優れた耐疲労特性を有するハイブリッドタイヤコードおよびその製造方法
US11938765B2 (en) 2018-12-27 2024-03-26 Kolon Industries, Inc. Hybrid tire cord with strong adhesion to rubber and excellent fatigue resistance, and method for manufacturing the same

Also Published As

Publication number Publication date
EP3521058B1 (en) 2023-03-15
US11639565B2 (en) 2023-05-02
EP3521058A4 (en) 2020-06-10
HUE061660T2 (hu) 2023-07-28
CN109843604A (zh) 2019-06-04
US20210207295A1 (en) 2021-07-08
JP6742511B2 (ja) 2020-08-19
PL3521058T3 (pl) 2023-05-29
CN109843604B (zh) 2021-08-03
EP3521058A1 (en) 2019-08-07
JP2019532192A (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018062960A1 (ko) 하이브리드 타이어 코드 및 그 제조방법
WO2017003169A1 (ko) 하이브리드 타이어 코드 및 그 제조방법
WO2014104680A1 (en) Hybrid fiber cord and method for manufacturing the same
WO2013048097A2 (ko) 아라미드 섬유 코드 및 그 제조방법
KR20060126101A (ko) 하이브리드 타이어 코오드 및 이의 제조방법
WO2019088464A1 (ko) 폴리에스터 타이어코드와 이를 이용한 레이디얼 타이어
WO2022231286A1 (ko) 바이오 유래 성분을 포함하는 코드 및 그 제조방법
KR102544693B1 (ko) 하이브리드 타이어 코드 및 그 제조방법
US6539698B2 (en) Wrapped cord
WO2020138996A2 (ko) 고무에 대한 강한 접착력 및 우수한 내피로 특성을 갖는 하이브리드 타이어 코드 및 그 제조방법
WO2021045418A1 (ko) 내열성이 우수한 폴리에스터 타이어 코드 및 그를 포함하는 타이어
KR100605129B1 (ko) 하이브리드 타이어 코오드 및 이의 제조방법
KR102376147B1 (ko) 카카스용 하이브리드 타이어 코드 및 그 제조방법
WO2021006561A1 (ko) 타이어 코드용 원사 및 타이어 코드
WO2021066385A1 (ko) 하이브리드 타이어 코드 및 그 제조 방법
WO2024043707A1 (ko) 친환경 타이어 코드 및 이를 이용하는 타이어
WO2018139763A1 (ko) 폴리에스터 타이어 코드와 이를 이용한 레이디얼 타이어
WO2021133005A1 (ko) 타이어 코드, 그 제조방법 및 이를 포함하는 타이어
JPH0717125B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856846

Country of ref document: EP

Effective date: 20190429