WO2018139763A1 - 폴리에스터 타이어 코드와 이를 이용한 레이디얼 타이어 - Google Patents

폴리에스터 타이어 코드와 이를 이용한 레이디얼 타이어 Download PDF

Info

Publication number
WO2018139763A1
WO2018139763A1 PCT/KR2017/014945 KR2017014945W WO2018139763A1 WO 2018139763 A1 WO2018139763 A1 WO 2018139763A1 KR 2017014945 W KR2017014945 W KR 2017014945W WO 2018139763 A1 WO2018139763 A1 WO 2018139763A1
Authority
WO
WIPO (PCT)
Prior art keywords
cord
tire
polyethylene terephthalate
yarn
strength
Prior art date
Application number
PCT/KR2017/014945
Other languages
English (en)
French (fr)
Inventor
이경하
박진경
김철
남윤희
Original Assignee
(주)효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)효성 filed Critical (주)효성
Publication of WO2018139763A1 publication Critical patent/WO2018139763A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords

Definitions

  • the present invention relates to a radial tire with a cap ply made of polyethylene terephthalate dip cord.
  • the installation of a cap ply on a tire for a passenger car is for the safety of the tire.
  • a tire having such a cap ply has become common.
  • the cap ply is continuously wound between the tire tread and the belt reinforcing steel cord layer without breaking in the circumferential direction of the tire to maintain the shape stability of the tire and to suppress the growth and deformation of the tire by centrifugal force during high speed driving. It is a part that plays a role of improving high speed durability.
  • the air pressure of the tire increases as the temperature inside the tire increases as the centrifugal force increases due to the rotation of the tire, and the load is applied in the longitudinal direction of the cap fly cord.
  • the role of the cap fly cord is to prevent the increase of the size of the center of the tire and the tread due to the centrifugal force while driving the vehicle, reducing the amount of deformation of the tire, and thereby reducing the work loss, thereby preventing the tire temperature increase and improving the durability of the tire.
  • a material that does not deform due to high elastic modulus is applied, or when the temperature rises, heat shrinkage force is expressed, and a cap fly cord contracts to use a material that can prevent the increase in size of the tire while driving. .
  • an increase in tire rotational inertia is prevented, resulting in reduction of energy consumption and suppression of heat generation of the tire, thereby increasing fatigue life and increasing durability.
  • cap ply material In general, the most widely used material for cap ply material is nylon 66, which is due to the high shrinkage of nylon 66. In particular, the part where the cap ply is reinforced is known to be the hottest part of the tire. Nylon 66 having this property is widely used as a capply material because a material having a high molecular weight should be used and a material having a low adhesive strength due to heat should be used. Another material that can be used for the cap ply is aramid. Aramid has different characteristics from nylon 66. Aramid fibers are aromatic polyamide fibers which are polyamide fibers having a benzene ring in a repeating unit.
  • the research for applying to a cap ply using a material such as PET is also underway, but these materials are weak in heat, so it was difficult to apply the cap ply material in the past.
  • the present invention is to apply a PET material, which was difficult to be conventionally applied as a cap ply material to the cap ply for radial tires, by limiting the physical properties of the PET cord.
  • An object of the present invention for solving the above problems is to provide a radial tire having a cap fly layer to which a dip cord made of polyethylene terephthalate yarn is applied.
  • the polyethylene terephthalate cap ply according to the present invention has a low severity of polyethylene terephthalate fibers, a high shrinkage rate and improved strength and elasticity.
  • a pair of parallel bead cores At least one radial carcass fly wound around the bead core;
  • the cap ply contains 90% or more of polyethylene terephthalate.
  • a deep cord manufactured using 400 to 2200 denier yarns in the form of one ply or two plies or more, wherein the deep cord has a shrinkage of 0.01 to 3.5% and a strength of 5%. Is 3.6 to 5.0 g / d, breaking strength of 7.5 g / d or more, and a shape stability index of 5.5 or less.
  • the dip cord is characterized in that the median elongation at 2.25g / d has a physical property of 2.0 to 3.5%, cutting elongation 8.0% to 14.0%.
  • the dip cord is characterized in that the twist coefficient represented by the square root of Twist / meter * Nominal Denier is 9,000 to 18,000.
  • the cap ply is generally reinforced with one or two layers, and if necessary, is reinforced throughout the tread, or selectively reinforced only with the tread edge portion, or tread. It is possible to apply similarly to the conventional capply cord reinforcement form, such as reinforcing in two layers and additionally reinforcing two layers in the tread edge portion, so that it is not limited by the special capply application structure.
  • a tire for a passenger car including the cap ply, and the application is limited depending on the type of tire, such as run flat tires, general passenger car tires, light truck tires, and the like as a general cap ply. It does not receive.
  • the deep cord made of polyethylene terephthalate high strength yarn of the present invention can overcome the disadvantage of low adhesive strength with conventional rubber, and the treatment cord formed from this yarn has excellent adhesive strength and strength to provide rubber products such as tires and belts. It can be usefully used as a reinforcing material or for other industrial uses.
  • Figure 1 illustrates the spinning and stretching process of polyethylene terephthalate yarn according to the present invention.
  • Figure 2 is a force-strain curve for the present invention and a conventional 1000d / 2 polyethylene terephthalate dip cord.
  • Figure 3 shows the structure of a tire for a passenger car manufactured using the dip cord according to the present invention in the cap fly layer.
  • Cap fly cord for radial tire according to the present invention is manufactured through the following process.
  • Polyethylene terephthalate multifilament is prepared as a preliminary step for producing the cord for the cap fly layer.
  • a polyethylene terephthalate chip having an intrinsic viscosity of 0.9 to 1.20 is melted and extruded while passing through a nozzle to produce a discharge yarn.
  • the polyethylene terephthalate polymer may contain at least 85 mole% of ethylene terephthalate units, but may optionally include only ethylene terephthalate units.
  • the polyethylene terephthalate may comprise a small amount of units derived from ethylene glycol and terephthalene dicarboxylic acid or derivatives thereof and one or more ester-forming components as copolymer units.
  • ester forming components copolymerizable with polyethylene terephthalate units include glycols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and the like, terephthalic acid, isophthalic acid, hexahydroterephthalic acid, stilbenica Dicarboxylic acids such as leric acid, bibenzoic acid, adipic acid, sebacic acid, azelaic acid.
  • TPA Terephthalic acid
  • ethylene glycol raw materials are melt mixed in the ratio of 2.0 to 2.3 in the prepared polyethylene terephthalate chip, and the melt mixture is transesterified and axially polymerized to form a raw chip.
  • the low chip is then subjected to solid phase polymerization to have an intrinsic viscosity of 0.9 to 1.20 under a temperature of 240 to 260 ° C. and a vacuum.
  • the intrinsic viscosity of the low chip is less than 0.9, the intrinsic viscosity of the final stretched yarn is lowered, so that it is impossible to exhibit high strength as a treatment cord after heat treatment.
  • the intrinsic viscosity of the chip exceeds 1.20, the radial tension increases excessively and Uneven cross section causes many filament cuts during stretching, resulting in poor stretch workability.
  • an antimony compound preferably antimony trioxide
  • an antimony compound may be added as the polymerization catalyst in the course of the polycondensation so that the amount of antimony metal remaining in the final polymer is 180 to 300 ppm.
  • the residual amount is less than 180ppm, the polymerization reaction rate is lowered, and the polymerization efficiency is lowered.
  • the residual amount is more than 300ppm, more than necessary antimony metal acts as a foreign material, which may lower the radial stretching workability.
  • the polyethylene terephthalate chip as described above is melted and extruded while passing through a nozzle to produce a discharge yarn.
  • the diameter of the nozzle is preferably 0.8 ⁇ 1.4mm.
  • the discharge yarn is passed through a cooling zone to quench and solidify.
  • a heating device of a certain length is installed in a distance from the nozzle directly to the start point of the cooling zone, that is, the length L of the hood.
  • This zone is called delayed cooling zone or heating zone, which has a length of 50 to 300 mm and a temperature of 250 to 400 ° C. (air contact surface temperature).
  • an open quenching method In the cooling zone, an open quenching method, a circular closed quenching method, a radial outflow quenching method, and a radial inflow quenching method according to a method of blowing cooling air. ) May be applied, but is not limited thereto.
  • the temperature of the cooling air injected for rapid cooling in the cooling zone is adjusted to 20 to 50 °C. Rapid cooling using such a sharp temperature difference between the hood and the cooling zone is intended to increase the freezing point and spinning tension of the spun polymer to increase the orientation of the undrawn yarn and the formation of the linking chain between the crystal and the crystal.
  • the discharged solidified yarn passing through the cooling zone can be oiled from 0.5 to 1.2% by weight with respect to the discharged yarn by the first spinning oil supply device applying an emulsion having excellent stretchability and thermal efficiency while reducing the friction coefficient between single yarns.
  • the spinning emulsion used in the oil ring may be an emulsion type, a solvent type, or a Neat Oil type, and the type of the oil does not limit the physical properties or properties of the polyethylene terephthalate yarn applied in the present invention.
  • the orientation of the undrawn yarn is preferably 0.06 to 0.60, if the orientation of the undrawn yarn is less than 0.06 can increase the crystallinity and the density of the crystal in the microstructure of the yarn If it exceeds 0.60, stretching workability is lowered, which is not preferable. Thereafter, the unstretched yarn is drawn through a stretch roller to multistage at an appropriate draw ratio to prepare yarn.
  • the stretching is performed by using the equipment to which the stretching roller is applied in five stages.
  • PET chips are melt melt spun at a spinning temperature of 290 to 310 ° C. through an extruder 1, a gear pump 2, a nozzle 3, and a heating device 4 to be pyrolyzed and hydrolyzed. The fall of the viscosity of a polymer by this is prevented.
  • the melt-discharged yarns are quenched and solidified through the cooling zone 5 and, if necessary, a short heating device at a distance (L) section of the hood to the start point of the cooling zone 5 immediately below the nozzle 3. Can be installed.
  • the length L section of the hood becomes a delay cooling zone or heating zone and has a length of 50 to 300 mm and a temperature of 250 to 400 ° C. (air contact surface temperature).
  • air contact surface temperature According to the method of blowing the cooling air in the cooling zone 5, open quenching, circular closed quenching and radial outflow quenching may be applied, but the present invention is not limited thereto. no.
  • the present invention is characterized in that it is further controlled by the A / C (air conditioner) from the outside in order to reduce the cooling temperature from the existing 20 °C to 10 to 15 °C to improve the cooling efficiency.
  • the discharged yarn solidified through the cooling zone 5 is oiled to 0.5 to 1.0% by the oil feeder 12 to become undrawn yarn.
  • Emulsion supply device 12 is characterized in that it is installed in one stage before the stretching roller 1 (6).
  • a yarn is formed by stretching the yarn passing through the first drawing roller while passing through a series of drawing rollers by a spin draw method.
  • the speed is set in the range of 2,000 to 3,500 m / min.
  • the unstretched yarn may be stretched in multiple stages, and each stretch roller temperature may be lower than or equal to the glass transition temperature of the unstretched yarn but lower than 95 ° C., and the final stretch roller 4 (9) temperature is 200 to 250 ° C. Is preferably.
  • the last stretching roller temperature is less than 200 °C, the degree of crystallinity and crystal size does not increase in the stretching process does not express the strength and thermal stability of the yarn to reduce the form stability at high temperature, the last stretching roller temperature exceeds 250 °C If there is a problem in that the microstructure of the yarn is uneven such that crystals are decomposed so close to the melting point that the strength of the yarn may be reduced.
  • the speed is set in the range of 2,000 to 3,500 m / min, after which the winding roller 4 is wound at 5000 to 6000 m / min, and the temperature in the stretching roller 4 is 200 to 250 ° C. It is characterized by being.
  • the total draw ratio of the yarn formed by winding as mentioned above is 1.8-2.5. If the draw ratio is less than 1.8, the degree of orientation of the amorphous portion is insufficient to obtain a high strength yarn, and as a result, the strength of the capply cord is low, resulting in a high speed durability of the tire. If the draw ratio is 2.5 or more, the degree of orientation is too high and the cord can be highly strengthened, but the shrinkage rate is high, the tire manufacturing processability is insufficient, the uniformity is low and the heat resistance is obtained.
  • a dip cord should be manufactured using the polyethylene terephthalate high strength multifilament yarn.
  • a step of giving a cord to the cord is required.
  • the cord in manufacturing a deep cord using the polyethylene terephthalate high-strength yarn, as a preliminary step of manufacturing the deep cord, the cord is subjected to a step of preparing a raw cord (a twisting step).
  • the twisted yarn is manufactured by adding a twisted twist to a polyethylene terephthalate yarn and then adding a twisted twist to the twisted yarn.
  • the twisted lead and the lower lead are subjected to the same softening (level of twist) or other softening as necessary.
  • the twist number of the deep cord depends on the thickness and total denier of the yarn used in the cord, and in the present invention, the twist coefficient represented by the square root of the twist number (Twist / meter) * Nominal Denier is 9,000 to 18,000. It is done.
  • polyester carcass used for carcass of a tire it is common to have a twist coefficient of 19,000 to 21,000, and in the present invention, by limiting the twist coefficient to the above range, the elastic modulus of the cord is less than that of the polyester cord for carcass. It is possible to show an improved figure.
  • the twist coefficient of the polyethylene terephthalate cord is less than 9,000, the elongation is excessively reduced to reduce the fatigue resistance of the cord itself, and when the tire durability is exceeded, the strength decreases and the elastic modulus of the cord is lowered. Due to the increased heat generated by the growth of the tire, the result is that the high speed durability of the tire is lowered, making it difficult to achieve the purpose of improving the high speed durability of the tire aimed at the invention.
  • Raw cord is manufactured by weaving machine using a weaving machine and immersed the obtained fabric in dipping solution, heat treatment at appropriate temperature and time to harden the adhesive solution on the fabric surface
  • a 'Dip Cord' for a tire cord having a resin layer attached to its surface is manufactured.
  • the dipping solution is a one bath solution for activating the surface of the polyethylene terephthalate fiber and a two bath solution for introducing a resin layer called RFL (Resorcinol Formaline Latex), and is applied to the fiber surface to introduce the adhesive force between the fibers and the rubber. It refers to the adhesive liquid.
  • the adhesive solution for the adhesion of the cord and rubber can be prepared using the following method.
  • the mixture is aged at 25 ° C. for 20 hours to maintain a solid concentration of 19.05%, and the adhesive amount is preferably 1.5 to 3.5% by weight of the fiber based on the solid content.
  • the dip cord After passing through 1 bath and 2 bath adhesive, the dip cord is dried and heat treated. After passing through the adhesive liquid of one bath, a dip cord is dried at 120-170 degreeC. The drying time may be 130 seconds to 220 seconds, and the dip cord may be stretched by 2 to 6% in the drying process. When the elongation ratio is low, the core and the elongation of the cord may increase, indicating physical properties that are difficult to apply to the tire cord. On the other hand, if the elongation rate is more than 6%, the central body level is appropriate, but the body length may be too small, resulting in poor fatigue resistance.
  • heat treatment is performed in a temperature range of 200 to 245 ° C. Elongation rate during heat treatment is maintained between 0.0 to 6.0%, the heat treatment time is appropriate 50 seconds to 90 seconds. If the heat treatment is performed for less than 50 seconds, the reaction time of the adhesive liquid is insufficient, resulting in low adhesive strength, and if the heat treatment exceeds 90 seconds, the hardness of the adhesive liquid may be increased, thereby reducing the fatigue resistance of the cord. have.
  • the dip cord After passing through the two bath adhesive liquids, the dip cord is dried at 120 to 170 ° C.
  • the drying time may be 80 seconds to 150 seconds, and the dip cord may be stretched by 0 to 4% in the drying process.
  • the elongation ratio is low, the core and the elongation of the cord may increase, indicating physical properties that are difficult to apply to the tire cord.
  • the elongation rate is above 4%, the cadaver level is appropriate, but the cuts may be too small, leading to poor fatigue resistance.
  • heat treatment is performed in a temperature range of 200 to 245 ° C. Elongation rate during heat treatment is maintained between -3 to 3.0%, the heat treatment time is appropriate 50 seconds to 120 seconds. If the heat treatment is performed for less than 50 seconds, the reaction time of the adhesive liquid is insufficient, resulting in low adhesive strength. If heat treatment is performed for more than 120 seconds, the hardness of the adhesive liquid may be increased, thereby reducing the fatigue resistance of the cord. have.
  • Figure 2 is a force-strain curve for the present invention and a conventional 1000d / 2 polyethylene terephthalate dip cord.
  • the force-strain curve of the polyethylene terephthalate dip cord can be adjusted to minimize the initial deformation to the impact initially generated by the external force of the polyethylene terephthalate dip cord.
  • Polyethylene terephthalate dip cord of the present invention is characterized by a shrinkage of 2.5 to 3.5% at 0.01g / d, strength of 3.6 to 5.0g / d at 5%, breaking strength of 7.5g / d or more, shape stability index of 5.5 or less .
  • Shrinkage rate is given by 0.01g / d super load using normal Testrite, measured by 177 degrees * 2 minutes, and evaluated.In the case of 5% elastic modulus, strength is 5% strain point in SS curve. , Nominal Denier (Yarn Denier for 1ply, Yarn Denier times ply for 2ply or more). The breaking strength is obtained by reading the maximum load on the SS curve and dividing it by the Nominal Denier. The morphological stability index is obtained by the sum of the median and shrinkage (Testrite, 0.05g / d, 177 degrees, 2 minutes) at 2.25g / d. It can be expressed as ES Index.
  • the shrinkage range of the present invention it is possible to have the shrinkage range of the present invention, but in such a case, as the shrinkage rate is lowered, the elasticity rate is also lowered, resulting in less than 3.0 g / d strength at 5%, improving the performance of the tire Is not sufficient, and it is common to show a shape stability index of 6.0 or more and a breaking strength of 7.5 g / d or less.
  • the shrinkage ratio is 3.5% or more, resulting in insufficient processability in forming the tire and poor uniformity, resulting in high speed durability deterioration due to unevenness of the tire. Will be imported.
  • the dip cord is characterized in that the median elongation at 2.25g / d has a physical property of 2.0 to 3.5%, cutting elongation 8.0% to 14.0%.
  • the dip cord is characterized in that the twist coefficient represented by the square root of Twist / meter * Nominal Denier is 9,000 to 18,000.
  • Polyethyleneterephthalate dip cords prepared according to the methods described above can be used for the preparation of the capply layer.
  • high performance radial tires made in accordance with the present invention comprise such capply layers.
  • Figure 3 shows a partial cross-sectional view of the structure of a tire for a passenger car manufactured using the polyethylene terephthalate dip cord according to the present invention as a cap ply.
  • the bead regions 35 of the tire 31 become annular bead cores 36 that are each non-extensible.
  • the bead core 36 is preferably made from a single filament steel wire wound continuously.
  • the high strength steel wire having a diameter of 0.95 mm to 1.00 mm becomes a 4x4 structure or a 4x5 structure.
  • the bead region 35 may have a bead filler 37, the bead filler 37 should have a hardness of a predetermined level or more, preferably Shore A hardness ( Shore A hardness) It may have a hardness of 40 or more.
  • the tire 31 may be reinforced with the crown portion by the belt structure 38 and the cap fly 39.
  • the belt structure 38 comprises a cutting belt ply 40 consisting of two belt cords 41 and 42 and the belt cord 41 of the belt ply 40 is about 20 with respect to the circumferential center surface of the tire. Can be oriented at an angle of degrees.
  • One belt cord 41 of the belt ply 40 may be arranged in a direction opposite to the circumferential center surface, opposite to the direction of the belt cord 42 of the other belt ply 40.
  • the belt structure 38 may comprise any number of plies, and may preferably be arranged in the range of 16 to 24 degrees.
  • the belt structure 38 serves to provide lateral stiffness to minimize the rise of the tread 33 from the road surface during operation of the tire 31.
  • the belt cords 41 and 42 of the belt structure 38 may be made of steel cords, and have a 2 + 2 structure, but may be made of any structure.
  • the cap ply 39 and the edge ply 44 are reinforced on the upper portion of the belt structure 38.
  • the cap ply cord 45 of the cap ply 39 is reinforced in parallel to the circumferential direction of the tire to prevent the tire from rotating at high speed.
  • the cap fly cord 45 of the cap ply 39 which acts to suppress the size change in the circumferential direction and has a large heat shrinkage stress at high temperature is used.
  • the capply cord 45 of the capply 39 may be manufactured using a deep cord made of a high strength yarn manufactured according to the method of the present invention.
  • One layer of cap ply 39 and one layer of edge ply 44 may be used, preferably one or two layers of cap plies and one or two layers of edge plies.
  • Reference numerals 32 and 34 not described in FIG. 3 denote the carcass layer 32 and the fly turn-up 34.
  • Reference numeral 33 denotes a carcass layer reinforcing cord 33.
  • the sample length was measured at 250 mm and a tensile speed of 300 m / min.
  • the median elongation at 2.25g / d is the elongation at load of 2.25g / d in the stress-strain curve, and at 5% the strength is measured as the total density of the cord by measuring the load at 5% strain in the stress-strain curve. Measure by dividing.
  • Polyethylene terephthalate fibers were obtained from raw cords according to the method described above in order to prepare the fibers for tire reinforcement.
  • a lower lead of 270 TPM was added to the polyethylene terephthalate company (1000D), and an upper lead of 270 TPM was added to the polyethylene terephthalate (1000D) to prepare a 2 Ply raw cord.
  • the obtained raw cord was treated by a two-bath dipping method, and one-bath dipping was performed by passing the raw cord through the adhesive solution prepared by the following method and drying at 160 ° C. for 150 seconds, followed by heat treatment at 240 ° C. for 60 seconds. During drying, 3% stretch was applied to prevent non-uniformity of raw cord due to heat shrinkage.
  • Two-bath dipping was passed through the raw cord through the adhesive solution prepared by the following method, dried at 160 °C for 90 seconds, and then heat-treated at 240 °C 60 seconds. -1% stretch was added during drying.
  • the lower cord of 410TPM was added to the polyethylene terephthalate yarn (1300D), and the upper cord of 410TPM was added to form a raw cord. Prepared. Table 1 shows the physical properties of the dip cord thus prepared.
  • a deep cord was prepared in the same manner as in Example 1, except that 235 TPM was added to the polyethylene terephthalate company (1300D), and then 235 TPM was added to the lower station. Table 1 shows the physical properties of the dip cord thus prepared.
  • the lower cord of 460TPM was added to the nylon 66 yarn (840D), and then the upper cord of 460TPM was added to form a raw cord.
  • the raw cord In the preparation of the raw cord, it was combined and twisted to 2 ply and passed through the adhesive solution prepared as follows to give the adhesive solution. Stretch was applied during drying to control the non-uniformity of raw cords due to heat shrinkage.
  • the adhesive solution was applied to perform one bath dipping heat treatment to terminate the adhesive treatment.
  • the physical properties of the prepared dip cords are shown in Table 1 below.
  • a deep cord was prepared in the same manner as in Comparative Example 1, except that 280 TPM was added to nylon 66 (1260D), and 280 TPM was added to the upper station to 280 TPM.
  • Table 1 shows the physical properties of the dip cord thus prepared.
  • a deep cord was prepared in the same manner as in Example 1, except that 370 TPM was added to the polyethylene terephthalate company (1500D), and then 370 TPM was added to be combined to form a raw cord.
  • Table 1 shows the physical properties of the dip cord thus prepared.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Material - PET PET PET Nylon Nylon PET Denier d 1000 1300 1300 840 1260 1500 Ply - 2 One 2 2 2 2 strong kgf 17.4 9.8 22.6 15.2 24.1 22.9 burglar g / d 7.9 7.5 8.1 9.1 8.6 6.9 g / d, @ 5% 3.8 4.1 3.6 1.0 1.2 2.7 Serious %, @ 2.25 g / d 3.0 2.8 3.2 7.9 7.9 4.2 Body % 12.4 10.9 13.9 20.1 23.1 17.0 Shrinkage %, 0.01 g / d 2.9 3.1 3.1 6.5 5.9 3.2 %, 0.05 g / d 2.0 2.2 2.2 5.6 5.0 2.3 E-S Index - 5.0 5.0 5.4 13.5 12.9 6.5 Twist TPM 270 410 235 460 280 370 Twisting Factor - 12075 14783 11983 18854 14056 202
  • the radial tire manufactured by using the deep cord manufactured according to Example 1 of the present invention as a cap ply has a carcass layer having a radially outer fly turn up, and the carcass layer was installed to include one layer. At this time, the carcass cord was oriented at a 90 degree angle with respect to the circumferential intermediate surface of the tire.
  • the fly turn-up 34 was to have a height of 40 to 80% with respect to the tire maximum cross-sectional height.
  • the bead part 35 has a bead core 36 formed of 4 ⁇ 4 high strength steel wire having a diameter of 0.95 to 1.00 mm and a bead filler 37 having a hardness of shore A hardness of 40 or more.
  • the belt 38 is reinforced by a belt reinforcement layer having a capply 39 on one layer and an edge ply 44 on a first layer so that the capply cord in the capply 39 is parallel to the circumferential direction of the tire. Placed.
  • a tire was manufactured in the same manner as in Example 4, except that a cord material for manufacturing a tire was used as the dip cord prepared in Example 2.
  • a tire was manufactured in the same manner as in Example 4, except that a cord material for manufacturing a tire was used as the dip cord prepared in Example 3.
  • Example 6 Carcass Material PET PET PET Specification (d / ply twisted yarn) 1500d / 2 1500d / 2 1500d / 2 Strong (kg) 24 24 24 Modulus of elasticity (g / d) 72 72 72 Cap fly Material Deep Code of Example 1 Deep Code of Example 2 Deep Code of Example 3 Specification (d / ply twisted yarn) 1000d / 2 1300d / 1 1300d / 2 Strong (kg) 17.4 9.8 22.6 Strength (g / d, @ 5%) 3.8 4.1 3.6 tire Flat ratio 0.6 0.6 0.6 Carcass floors One One One Cap fly floor One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One
  • a tire was manufactured in the same manner as in Example 4, except that a cord material for manufacturing a tire was used as a dip cord prepared in Comparative Example 1.
  • a tire was manufactured in the same manner as in Example 4, except that a cord material for manufacturing a tire was used as a dip cord prepared in Comparative Example 2.
  • a tire was manufactured in the same manner as in Example 4, except that a cord material for manufacturing a tire was used as a dip cord manufactured by Comparative Example 3.
  • the 205/65 R15 V tires manufactured according to Examples 5, 6 and Comparative Example 3 were mounted on a 2000cc class passenger car, and the noise generated in the vehicle was measured while driving at a speed of 60 km / h to determine the value of the audible frequency range.
  • the noise was expressed in dB, and the steering stability and riding comfort were evaluated by an experienced driver by driving a test course in units of 5 out of 100 points, and the results are shown in Table 4 below.
  • Durability is based on FMVSS 109's P-metric tire endurance test method, measuring 38 ° C ( ⁇ 3 ° C) and 85, 90, 100% of the tire's nominal load. A total of 34 hours was used to determine the pass (OK) when no trace of bead separation, cord cutting, belt separation, etc. was found in any part of the tread, sidewall, carcass cord, inner liner, or bead. .
  • the tire using the deep cord according to the present invention (Examples 4, 5, 6) is noise reduction and control compared to Comparative Examples 4, 5 using the conventional nylon 66 yarn caps Excellent effect on the stability, it can be seen that the uniformity of the tire is also improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Tires In General (AREA)

Abstract

본 발명은 폴리에틸렌테레프탈레이트 딥 코드로 제조된 캡 플라이를 가진 래디얼 타이어에 관한 것이다. 한 쌍의 평행한 비드코어; 비드코어 주위에 감기는 적어도 하나의 래디얼 카카스 플라이; 카카스 플라이 외주에 적층된 캡플라이 층; 및 캡플라이 층의 외주에 형성된 원주방향의 캡플라이 보강층;을 포함하는 레이디얼 타이어에 있어서, 상기 캡플라이는 폴리에틸렌테레프탈레이트를 80% 이상 함유하는 원사를 사용하여 제조된 딥 코드를 포함하고, 그 딥 코드는, 0.01g/d에서 수축율 2.5 내지 3.5%, 5%에서 강도가 3.6 내지 5.0g/d, 파단강도 7.5g/d 이상, 형태안정성 지수 5.5 이하인 것을 특징으로 한다.

Description

폴리에스터 타이어 코드와 이를 이용한 레이디얼 타이어
본 발명은 폴리에틸렌테레프탈레이트 딥 코드로 제조된 캡 플라이를 가진 레이디얼 타이어에 관한 것이다.
최근 들어 도로 환경의 개선과 차량의 성능 향상에 따라 타이어의 성능은 계속적으로 개선되고 있다. 특히 차량의 무게 증가 및 한계속도의 상승에 따라 안전성이 중요한 타이어의 품질 요소로 인식되고 있다. 이러한 타이어 안전성 증가 요구 추세에 맞추어 타이어의 안전 기준 또한 변화되고 있는 추세에 있으며, 타이어 업계에서도 타이어의 안전성을 부여하기 위한 방법에 대한 연구가 활발하게 진행되고 있다.
승용차용 타이어에 캡 플라이를 설치하는 것은 타이어의 안전성을 위한 것으로 최근들어 특히 이러한 캡 플라이를 가진 타이어가 일반화가 되고 있다. 캡 플라이는 타이어 트레드 부분과 벨트보강용 스틸코드 층 사이에 타이어의 원주 방향으로 끊어짐이 없이 연속적으로 감기게 되어 타이어의 형태안정성을 유지하고, 고속 주행시 원심력에 의한 타이어의 성장 및 변형을 억제함으로써 타이어의 고속내구성을 향상시키는 역할을 하는 부품을 말한다. 차량이 고속으로 주행하는 경우, 타이어의 회전에 의한 원심력의 증가와 함께, 타이어 내부의 온도가 상승함에 따라 타이어의 공기압이 상승하게 되어, 캡플라이 코드의 길이 방향으로 하중이 걸리게 된다. 이렇듯 고속주행시에는 원심력과 온도상승, 공기압에 의하여 타이어의 크기가 늘어난 상태에서 주행을 하게 되며, 주행에 따라 반복적으로 도로면에 접촉하게 되는 접지면에서 하중이 줄어들었다가 비접지면에서 하중이 회복되는 현상이 반복되어 코드 및 타이어에 가해지는 변형량이 증가하게 되고, 이러한 변형량 증가에 비례하여 타이어 코드 자체의 일 손실이 증가하게 된다. 이러한 일 손실은 또 다시 타이어 및 타이어 코드의 온도 상승에 기여하게 되어 급격한 타이어의 온도 상승 및 내구성 악화를 가져오게 된다.
캡 플라이 코드의 역할은 차량 주행시 원심력에 의한 타이어 중앙 및 트레드 부위의 크기 증가를 막아주는 역할을 하여 타이어의 변형량을 줄이고, 그에 따른 일 손실을 감소시켜 타이어의 온도증가를 막아주고, 타이어의 내구성을 개선하는 역할을 하게 된다. 일반적으로는 탄성율이 높아 변형이 되지 않는 소재를 적용하거나, 또는 온도가 상승할 경우 열수축력이 발현되어 캡플라이 코드가 수축함으로써 타이어의 주행중 크기 증가를 막아주는 역할을 할 수 있는 소재를 사용하게 된다. 이러한 경우 타이어의 크기가 커지지 않기 때문에 타이어 회전 관성의 증가가 방지되어 결과적으로 에너지 소비의 감소와 함께 타이어의 발열을 억제함으로써 피로수명의 증가와 내구성의 증가를 가져올 수 있다.
일반적으로 캡 플라이 재료로 가장 널리 쓰이는 물질은 나일론 66으로 이는 나일론 66의 높은 수축력에 인한 것이며, 특히 캡 플라이가 보강되는 부분은 타이어에서 주행 중 온도가 가장 높은 부분으로 알려져 있는바, 열수축력 이외에도 내열성을 가진 소재가 사용되어야 하고 또한 열에 의한 접착력 저하가 작은 물질이 사용되어야 하기 때문에 이러한 특성을 가진 나일론 66가 캡플라이 소재로 널리 사용되고 있다. 그 외 캡 플라이의 소재로 사용될 수 있는 것은 아라미드가 있다. 아라미드는 나일론 66과 다른 특징을 지닌다. 아라미드 섬유는 방향족 폴리아미드 섬유로 벤젠 고리를 반복단위 안에 가지고 있는 폴리아미드 섬유이다. 고온에서도 안정된 물성을 나타내는 소재로 타이어 캡 플라이에 적용되는 경우, 고온에서의 수축력 발현을 기대하기는 어렵지만 고온에서도 물성저하가 극히 적기 때문에 변형이 억제되어 나일론 캡 플라이를 적용한 결과와 유사한 특징을 나타낸다. 따라서 이러한 아라미드 섬유의 사용도 증가하고 있지만 아라미드 섬유의 경우 내피로성이 낮은 문제점이 있고 동시에 가격이 매우 고가이기 때문에 비용 문제가 발생한다.
PET와 같은 소재를 이용하여 캡 플라이에 적용하기 위한 연구도 진행 중에 있으나, 이러한 소재들은 열에 약하기 때문에 종래에는 캡플라이 소재로 적용하기가 어려운 점이 있었다. 본 발명은 PET 코드의 물성을 한정함으로써 종래에는 캡플라이 소재로 적용하기 어려웠던 PET 소재를 레이디얼 타이어용 캡 플라이에 적용하기 위한 것으로 아래와 같은 목적을 가진다.
위와 같은 문제점을 해결하기 위한 본 발명의 목적은 폴리에틸렌테레프탈레이트 원사로 제조된 딥 코드가 적용된 캡플라이 층을 가진 레이디얼 타이어를 제공하는 것이다.
본 발명에 따른 폴리에틸렌테레프탈레이트 캡 플라이는 폴리에틸렌테레프탈레이트 섬유의 중신이 낮고, 수축율이 높으며 향상된 강력 및 탄성율을 가진다.
본 발명의 적절한 실시형태에 따르면, 한 쌍의 평행한 비드코어; 비드코어 주위에 감기는 적어도 하나의 래디얼 카카스 플라이; 카카스 플라이 외주에 적층된 1층 이상의 경사 벨트 스틸 코드층 및 경사벨트 층의 외주에 형성된 원주방향의 캡플라이층을 포함하는 레이디얼 타이어에 있어서, 상기 캡플라이는 폴리에틸렌테레프탈레이트가 90% 이상 함유된 400 내지 2200데니어 원사를 1플라이(ply) 또는 2플라이(ply) 이상의 형태로 사용하여 제조된 딥 코드를 포함하고, 상기 딥코드는 0.01g/d에서 수축율 2.5 내지 3.5%, 5%에서 강도가 3.6 내지 5.0g/d, 파단강도 7.5g/d 이상, 형태안정성 지수 5.5 이하임을 특징으로 한다.
본 발명의 다른 적절한 실시 형태에 따르면, 상기 딥 코드는 2.25g/d에서 중간신도가 2.0 내지 3.5%, 절단 신도 8.0% 내지 14.0%의 물성을 가지는 것을 특징으로 한다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 상기 딥 코드는 꼬임수(Twist/meter)*Nominal Denier의 제곱근으로 표시되는 꼬임 계수가 9,000 내지 18,000인 것을 특징으로 한다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 상기 캡플라이는 1층 또는 2층으로 보강되는 것이 일반적이며, 필요에 따라 트레드 전체에 걸쳐 보강되거나, 트레드 에지(Edge)부분만 선택적으로 보강되거나, 트레드에 2층으로 보강되고, 트레드 에지 부분에 추가적으로 2층을 보강하는 등, 종래의 캡플라이 코드 보강형태와 유사하게 적용하는 것이 가능하여, 특별한 캡플라이 적용 구조의 제한을 받지는 않는다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 상기 캡플라이를 포함하는 승용차용 타이어가 제공되며, 일반적인 캡플라이와 마찬가지로, 런플랫 타이어나 일반 승용차 타이어, 경트럭용 타이어 등의 타이어 종류에 따라 적용에 제한을 받는 것은 아니다.
본 발명의 폴리에틸렌테레프탈레이트 고강도사로 제조된 딥 코드는 종래의 고무와의 접착력이 낮다는 단점을 극복할 수 있고, 이 사로부터 형성된 처리 코드는 접착력 및 강력이 우수하여 타이어 및 벨트 등의 고무제품의 보강재로서 또는 기타 산업적 용도로서 유용하게 사용될 수 있다.
본 발명에 따르면, 승용차용 레이디얼 타이어의 캡플라이 층에 본 발명에서 특정한 물성을 가지는 폴리에틸렌테레프탈레이트 딥 코드를 적용함으로써 타이어의 고속 내구성 등에 대해 만족할 만한 결과를 얻을 수 있다.
도 1은 본 발명에 따른 폴리에틸렌테레프탈레이트 사의 방사 및 연신 공정을 도시한 것이다.
도 2는 본 발명과 종래의 1000d/2 폴리에틸렌테레프탈레이트 딥 코드에 대한 힘-변형 곡선이다.
도 3은 본 발명에 따른 딥 코드를 캡플라이층에 사용하여 제조된 승용차용 타이어의 구조를 도시한 것이다.
이하, 본 발명에 의한 바람직한 실시예를 상세하게 설명한다. 또한, 본 실시예에서는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시한 것이며, 그 기술적인 요지를 이탈하지 않는 범위 내에서 다양한 변경이 가능하다.
본 발명에 따른 레이디얼 타이어를 위한 캡플라이 코드는 아래와 같은 공정을 통하여 제조된다. 캡플라이층용 코드를 제조하기 위한 전단계로 폴리에틸렌테레프탈레이트 멀티필라멘트가 제조된다. 먼저, 고유점도가 0.9 내지 1.20인 폴리에틸렌테레프탈레이트 칩을 용융하여 노즐을 통과시키면서 압출하여 방출사를 제조한다.
여기서, 폴리에틸렌테레프탈레이트 중합물은 최소한 85몰%의 에틸렌테레프탈레이트 단위를 함유할 수 있지만, 선택적으로 에틸렌테레프탈레이트 단위만을 포함할 수 있다.
선택적으로 상기 폴리에틸렌테레프탈레이트는 에틸렌글리콜 및 테레프탈렌 디카르복실산 또는 이들의 유도체 그리고 하나 또는 그 이상의 에스테르-형성 성분으로부터 유도된 소량의 단위를 공중합체 단위로 포함할 수 있다. 폴리에틸렌 테레프탈레이트 단위와 공중합 가능한 다른 에스테르 형성 성분의 예는 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올 등과 같은 글리콜과, 테레프탈산, 이소프탈산, 헥사하이드로테레프탈산, 스틸벤 디카르복실산, 비벤조산, 아디프산, 세바스산, 아젤라산과 같은 디카르복실산을 포함한다.
제조된 폴리에틸렌테레프탈레이트 칩에 테레프탈산(TPA)과 에틸렌글리콜 원료가 2.0 내지 2.3의 비율로 용융 혼합되고, 용융혼합물은 에스테르 교환반응 및 축-중합반응이 되어 로우 칩(raw chip)으로 형성된다. 이후, 상기 로우 칩은 240- 내지 260℃의 온도 및 진공 하에서 0.9 내지 1.20의 고유점도를 갖도록 고상중합이 된다.
이때, 로우 칩의 고유점도가 0.9 미만일 경우, 최종 연신사의 고유점도가 낮아져 열처리 후 처리 코드로서 고강도를 발휘할 수 없게 되며, 칩의 고유점도가 1.20를 초과할 경우에는 방사장력이 지나치게 증가하고 방출사의 단면이 불균일해져 연신 중 필라멘트 컷이 많이 발생하여 연신 작업성이 불량해진다.
또한, 선택적으로 축중합 반응 과정에서 중합촉매로 안티몬 화합물, 바람직하게는 삼산화안티몬이 최종 중합체 중의 안티몬 금속 잔존 양이 180 내지 300ppm이 되도록 첨가될 수 있다. 잔존 양이 180ppm 미만일 경우에 중합반응 속도가 느려져 중합효율이 저하되며, 잔존 양이 300ppm을 초과할 경우에는 필요 이상의 안티몬 금속이 이물질로 작용하여 방사 연신 작업성이 저하될 수 있다.
상기와 같은 폴리에틸렌테레프탈레이트 칩을 용융하여 노즐을 통과시키면서 압출하여 방출사를 제조하게 된다. 이때, 상기 노즐의 직경은 0.8~1.4mm인 것이 바람직하다.
이후, 상기 방출사를 냉각구역을 통과시켜 급냉 고화시키게 된다. 이때, 필요에 따라 노즐 직하에서 냉각구역 시작점까지의 거리, 즉 후드의 길이(L) 구간에 어느 정도 길이의 가열장치를 설치한다.
이 구역을 지연 냉각구역 또는 가열구역이라 하는데, 이 구역은 50 내지 300mm의 길이 및 250 내지 400℃의 온도(공기 접촉 표면온도)를 갖는다.
상기 냉각구역에서는 냉각공기를 불어주는 방법에 따라 오픈 냉각(open quenching)법, 원형 밀폐 냉각(circular closed quenching)법, 방사형 아웃플로우 냉각(radial outflow quenching)법 및 방사형 인플로우 냉각(radial in flow quenching)법 등을 적용할 수 있으나, 이에 한정되지 않는다.
이때, 상기 냉각구역 내에 급냉각을 위하여 주입되는 냉각 공기의 온도는 20 내지 50℃로 조절된다. 이와 같은 후드와 냉각구역 사이의 급격한 온도 차이를 이용한 급냉각은 방사된 중합체의 고화점 및 방사 장력을 높여 미연신사의 배향 및 결정과 결정 사이의 연결 사슬의 형성을 증가시키기 위함이다.
이후, 냉각구역을 통과하면서 고화된 방출사를 단사간 마찰계수를 줄임과 동시에 연신성, 열효율이 우수한 유제를 적용한 제1 방사유제 공급 장치에 의해 방출사에 대해 0.5 내지 1.2중량%로 오일링할 수 있다. 오일링에 사용되는 방사 유제는 에멀젼 타입이나 솔벤트 타입, Neat Oil 타입을 적용할 수 있으며, 유제의 종류가 본 발명에 적용된 폴리에틸렌테레프탈레이트 원사의 물성이나 특성을 한정하지는 않는다.
상기 오일링된 방출사를 방사하여 미연신사를 형성하고, 상기 미연신사의 배향도는 0.06 내지 0.60인 것이 바람직한데, 미연신사의 배향도가 0.06 미만이면 원사의 미세구조에서 결정화도 및 결정의 치밀성을 증대할 수 없고, 0.60을 초과하면 연신작업성이 저하되므로 바람직하지 못하다. 이후, 상기 미연신사를 연신 고뎃 롤러를 통과시켜 적절한 연신비로 다단 연신하여 원사를 제조한다.
본 발명에서는 연신 고뎃 롤러를 5단으로 적용한 설비를 이용하여 연신이 진행된다.
도 1을 참조하면, PET 칩은 익스트루더(1), 기어펌프(2), 노즐(3) 및 가열장치(4)를 통해 290 내지 310℃의 방사온도로 저온 용융 방사되어 열분해 및 가수분해에 의한 중합체의 점도의 저하가 방지된다. 제조된 용융 방출사는 냉각구역(5)을 통과하여 급냉 고화되고, 그리고 필요에 따라 노즐(3)의 바로 아래쪽 냉각구역(5) 시작점까지의 거리, 즉 후드의 길이(L) 구간에 짧은 가열장치가 설치될 수 있다.
후드의 길이(L) 구간은 지연 냉각구역 또는 가열구역이 되고 그리고 50 내지 300mm의 길이 및 250 내지 400℃의 온도(공기접촉 표면온도)를 갖는다. 냉각구역(5)에서 냉각공기를 불어주는 방법에 따라 오픈 냉각(open quenching)법, 원형 밀폐 냉각(circularclosed quenching)법 및 방사형 아웃플로우 냉각(radial outflow quenching)법이 적용될 수 있지만 반드시 이에 제한되는 것은 아니다. 본 발명은 냉각 효율 향상을 위해 냉각온도를 기존 20℃에서 10 내지 15℃로 다운시키기 위해 외부에서 추가로 A/C(에어 컨디셔너)에 의해 조절되는 것을 특징으로 한다. 냉각구역(5)을 통과하여 고화된 방출사는 유제 공급장치(12)에 의해 0.5 내지 1.0%로 오일링이 되어 미연신사가 된다. 유제 공급장치(12)는 연신 고뎃 롤러 1(6) 이전에 1단으로 설치되는 것을 특징으로 한다.
첫 번째 연신 고뎃 롤러를 통과한 사를 스핀드로(spin draw) 공법으로 일련의 연신 롤러를 통과시키면서 연신시킴으로써 원사를 형성하게 된다. 연신 고뎃 롤러 1에서는 그 속도를 2,000~3,500m/min의 범위로 설정한다. 연신 공정에서 미연신사는 다단 연신될 수 있으며, 각각의 연신 롤러 온도는 미연신사의 유리전이온도보다 낮은 혹은 같을 수 있으나 95℃보다 낮은 온도이며, 마지막 연신 롤러 4(9) 온도는 200 내지 250℃인 것이 바람직하다.
상기 마지막 연신 롤러 온도가 200℃ 미만이면 연신 공정에서 결정화도 및 결정의 크기가 증가하지 못하여 원사의 강도와 열적 안정성을 발현하지 못하여 고온에서 형태안정성이 저하되며, 상기 마지막 연신 롤러 온도가 250℃를 초과하면 융점에 너무 근접하여 오히려 결정이 분해되는 등 원사의 미세구조가 불균일해져서 원사의 강도가 저하될 수 있는 문제점이 있다.
본 발명에서는 연신 고뎃 롤러 1에서는 그 속도를 2,000~3,500m/min의 범위로 설정하고, 이후 연신 고뎃 롤러 4에서 5000~6000m/min로 권취하며, 연신 고뎃롤러 4 에서의 온도는 200 내지 250℃이 되는 것이 특징이다.
또한, 상기와 같이 권취로 형성된 원사의 총연신비는 1.8~2.5 사이인 것이 바람직하다. 연신비가 1.8 미만인 경우에는 비결정부의 배향도가 부족하여 고강도 원사를 얻을 수 없고, 결과적으로 캡플라이 코드의 강도가 낮아 타이어의 고속 내구성이 저하되는 결과를 가져오게 된다. 연신비가 2.5 이상이면, 배향도가 지나치게 높아, 코드의 고강력화는 가능하나, 수축율이 높아 타이어 제조 공정성이 부족하여 Uniformity가 낮고, 내열성이 낮은 타이어를 얻게 된다.
본 발명에 따른 레이디얼 타이어의 제조를 위하여 상기 폴리에틸렌테레프탈레이트 고강도 멀티필라멘트사를 이용하여 딥 코드가 제조되어야 한다. 그리고 딥 코드 제조의 전단계로서 코드에 연을 부여하는 단계(연사공정)를 필요로 한다.
본 발명에서는 상기 폴리에틸렌테레프탈레이트 고강도사를 이용하여 딥 코드를 제조하는데 있어서, 딥 코드 제조의 전단계로서 코드에 꼬임을 부여하여 생코드를 제조하는 단계(연사공정)를 거치게 된다.
상기 연사는 폴리에틸렌테레프탈레이트 원사에 하연(ply twist)을 가한 후에 상연(cable twist)을 가하여 합연함으로써 제조되며, 일반적으로 상연과 하연은 같은 연수(꼬임의 수준) 혹은 필요에 따라서 다른 연수를 가하게 된다. 상기 딥 코드의 꼬임수는 코드에 사용되는 원사의 굵기와 전체 데니어에 따라 달라지게 되며, 본 발명에서는 꼬임수(Twist/meter)*Nominal Denier의 제곱근으로 표시되는 꼬임 계수가 9,000 내지 18,000인 것으로 특징으로 한다. 타이어의 카카스에 사용되는 폴리에스터 카카스의 경우, 19,000 내지 21,000의 꼬임계수를 가지는 것이 일반적이며, 본 발명에서는 꼬임계수를 상기의 범위로 제한함으로써, 코드의 탄성율을 카카스용 폴리에스터 코드보다 향상된 수치를 보이는 것이 가능하다.
본 발명에서 폴리에틸렌테레프탈레이트 코드의 꼬임계수가 9,000 미만일 경우에는 절신이 지나치게 감소하여 코드 자체의 내피로도가 저하되어 타이어의 내구성이 저하되며, 18,000을 초과하는 경우에는 강력저하 및 코드의 탄성율이 낮아져, 타이어 성장 증가에 따른 발열 증가로 인하여 타이어의 고속내구성이 낮아지는 결과를 가져오게 되어, 발명이 목적으로 하고 있는 타이어의 고속내구성 개선의 목적을 이루기 어렵게 된다.
제조된 '생코드 (Raw Cord)'는 제직기(weaving machine)를 사용하여 직물로 제직되고 수득된 직물을 딥핑액에 침지하고, 적정한 온도와 시간으로 열처리 하여 직물 표면의 접착액을 경화하여 코드 표면에 수지층이 부착된 타이어코드용 '딥 코드(Dip Cord)'를 제조한다. 상기 과정에서 딥핑액은 폴리에틸렌테레프탈레이트 섬유 표면을 활성시키는 1욕 액과 RFL (Resorcinol Formaline Latex)이라 불리는 수지층을 도입하기 위한 2욕 액으로, 고무-섬유간의 접착력을 도입하기 위하여 섬유 표면에 도포되는 접착액을 일컫는다.
본 발명에서 코드와 고무의 접착을 위한 접착액은 아래와 같은 방법을 이용하여 제조될 수 있다.
1욕 접착액의 제조 방법
증류수 950 중량부;
100% 에폭시 5 중량부
50% 이소시아네이트 30 중량부
를 포함하는 용액을 제조하여 25℃에서 3시간 교반한다.
2욕 접착액의 제조 방법
29.4wt% 레소시놀 45.6 중량부;
증류수 255.5 중량부;
37% 포르말린 20 중량부; 및
10wt%수산화나트륨 3.8 중량부
를 포함하는 용액을 제조하여 25℃에서 2시간 교반하면서 반응시켜 RF resin 축합물을 제조한 후 아래의 성분을 추가한다.
40wt% VP-라텍스 300 중량부
증류수 129 중량부
28% 암모니아수 23.8 중량부.
성분 첨가 후 25℃에서 20시간 동안 숙성시켜 고형분 농도 19.05%가 되도록 유지한며, 접착제 부착량은 고형분 기준으로 섬유 무게에 대하여 1.5 내지 3.5%가 바람직하다.
1욕 및 2욕 접착액을 통과한 후 딥 코드는 건조 및 열처리 된다. 1욕의 접착액을 통과한 후 딥 코드는 120 내지 170℃에서 건조된다. 건조 시간은 130초 내지 220초가 될 수 있고, 건조 과정에서 딥 코드는 2 내지 6% 정도로 신장(strech)이 될 수 있다. 신장 비율이 낮은 경우 코드의 중신 및 절신이 증가하여 타이어코드로 적용되기 어려운 물성을 나타낼 수 있다. 다른 한편으로 신장 비율이 6%를 넘는 경우 중신수준은 적절하나 절신이 너무 작아져 내피로성이 저하될 수 있다.
건조 후에는 200 내지 245℃의 온도 범위에서 열처리된다. 열처리 시 신장 비율은 0.0 내지 6.0%사이를 유지하며, 열처리 시간은 50초 내지 90초가 적정하다. 50초 미만시간 동안 열처리가 되는 경우 접착액의 반응시간이 부족하여 접착력이 낮아지는 결과를 가져오게 되며, 90초를 초과하여 열처리가 되는 경우 접착액의 경도가 높아져서 코드의 내피로성이 감소될 수 있다.
2욕의 접착액을 통과한 후 딥 코드는 120 내지 170℃에서 건조된다. 건조 시간은 80초 내지 150초가 될 수 있고, 건조 과정에서 딥 코드는 0 내지 4% 정도로 신장(strech)이 될 수 있다. 신장 비율이 낮은 경우 코드의 중신 및 절신이 증가하여 타이어코드로 적용되기 어려운 물성을 나타낼 수 있다. 다른 한편으로 신장 비율이 4%를 넘는 경우 중신수준은 적절하나 절신이 너무 작아져 내피로성이 저하될 수 있다.
건조 후에는 200 내지 245℃의 온도 범위에서 열처리된다. 열처리 시 신장 비율은 -3 내지 3.0%사이를 유지하며, 열처리 시간은 50초 내지 120초가 적정하다. 50초 미만시간 동안 열처리가 되는 경우 접착액의 반응시간이 부족하여 접착력이 낮아지는 결과를 가져오게 되며, 120초를 초과하여 열처리가 되는 경우 접착액의 경도가 높아져서 코드의 내피로성이 감소될 수 있다.
도 2는 본 발명과 종래의 1000d/2 폴리에틸렌테레프탈레이트 딥 코드에 대한 힘-변형 곡선이다.
본 발명에 따르면, 폴리에틸렌테레프탈레이트 딥 코드가 외부 힘에 의해 초기에 발생하는 충격에 초기 변형을 최소로 하기 위한 폴리에틸렌테레프탈레이트 딥 코드의 힘-변형곡선이 조절될 수 있다. 본 발명의 폴리에틸렌테레프탈레이트 딥 코드는 0.01g/d에서 수축율 2.5 내지 3.5%, 5%에서 강도가 3.6 내지 5.0g/d이며, 파단강도 7.5g/d 이상, 형태안정성 지수 5.5 이하를 특징으로 한다.
수축율은 통상의 Testrite를 이용하여 0.01g/d 초하중을 부여하고, 177도*2분간 측정하여 평가하도록 하며, 탄성율 5%에서 강도는 S-S 커브에서 변형율 5%인 점의 하중을 g단위로 읽고, Nominal Denier (1ply의 경우 원사 Denier, 2ply 이상인 경우 원사 Denier와 ply수의 곱)로 나누어 구하도록 한다. 파단강도는 S-S 커브에서의 최대하중을 읽고, Nominal Denier로 나누어 구하도록 하며, 형태안정성 지수는 2.25g/d에서 중신과 수축율(Testrite, 0.05g/d, 177도, 2분)의 합으로 구할 수 있으며, E-S Index로 표시한다.
통상적인 폴리에틸렌테레프탈레이트 딥코드의 경우, 본 발명의 수축율 범위를 가지는 것은 가능하나, 그러한 경우 수축율이 낮아짐에 따라 탄성율 또한 낮아져, 5%에서 강도가 3.0g/d 이하를 보이게 되어, 타이어의 성능 개선이 충분하지 않으며, 형태안정성 지수 6.0이상, 파단강도 7.5g/d 이하를 보이는 것이 일반적이다.
반대로, 탄성율을 높여 5%에서 강도를 본 발명의 수준으로 하는 경우, 수축율이 3.5% 이상을 보이게 되어, 타이어 성형시 공정성이 부족하고, Uniformity가 나빠 결과적으로 타이어의 불균일에 따른 고속내구성 저하 현상을 가져오게 된다.
본 발명의 다른 적절한 실시 형태에 따르면, 상기 딥 코드는 2.25g/d에서 중간신도가 2.0 내지 3.5%, 절단 신도 8.0% 내지 14.0%의 물성을 가지는 것을 특징으로 한다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 상기 딥 코드는 꼬임수(Twist/meter)*Nominal Denier의 제곱근으로 표시되는 꼬임 계수가 9,000 내지 18,000인 것을 특징으로 한다.
위에서 설명한 방법에 따라 제조된 폴리에틸렌테레프탈레이트 딥 코드는 캡플라이 층의 제조를 위하여 사용될 수 있다. 그리고 본 발명에 따라 제조된 고성능 레이디얼 타이어는 이러한 캡플라이 층을 포함한다.
도 3은 본 발명에 따른 폴리에틸렌테레프탈레이트 딥 코드를 캡플라이로 사용하여 제조된 승용차용 타이어의 구조의 부분 단면도를 도시한 것이다.
도 3을 참조하면, 타이어(31)의 비드영역(35)은 각각 비신장성인 환상의 비드코어(36)가 된다. 비드코어(36)는 연속적으로 감겨진 단일 필라멘트 강선으로 만들어지는 것이 바람직하다. 바람직한 실시 형태는 0.95mm 내지 1.00mm 직경의 고강도 강선이 4x4 구조 또는 4x5 구조가 된다. 본 발명에 따른 타이어 코드의 실시 예에 있어, 비드영역(35)은 비드필러(37)를 가질 수 있고, 상기 비드필러(37)는 일정 수준 이상의 경도를 가져야 하며, 바람직하게는 쇼어 에이 경도(Shore A hardness) 40 이상의 경도를 가질 수 있다.
본 발명에 따르면, 타이어(31)는 벨트 구조체(38) 및 캡플라이(39)에 의하여 크라운부가 보강될 수 있다. 벨트 구조체(38)는 두 개의 벨트코드(41), (42)로 이루어진 절단 벨트 플라이(40)를 포함하고 벨트 플라이(40)의 벨트코드(41)는 타이어의 원주 방향 중앙 면에 대하여 약 20˚의 각도로 배향될 수 있다. 벨트 플라이(40)의 하나의 벨트코드(41)는 원주 방향 중앙 면과 대향하는 방향으로, 다른 벨트 플라이(40)의 벨트코드(42)의 방향과는 반대로 배치될 수 있다. 그러나 벨트 구조체(38)는 임의의 수의 플라이를 포함할 수 있으며, 바람직하게는 16 내지 24˚의 범위로 배치될 수 있다. 벨트 구조체(38)는 타이어(31)의 작동 중에 노면으로부터의 트레드(33)의 상승을 최소화하도록 측 방향 강성을 제공하는 역할을 한다. 벨트 구조체(38)의 벨트코드(41), (42)는 스틸코드로 제조될 수 있고, 2+2구조로 되어 있지만, 임의의 구조로 제작될 수 있다. 벨트 구조체(38)의 상부에는 캡플라이(39)와 에지플라이(44)가 보강되어 있는데 캡플라이(39)의 캡플라이 코드(45)는 타이어의 원주 방향에 평행하게 보강되어 타이어의 고속 회전에 따른 원주 방향의 크기 변화를 억제하는 작용을 하며, 고온에서의 열수축 응력이 큰 캡플라이(39)의 캡플라이 코드(45)가 사용된다. 상기 캡플라이(39)의 캡플라이 코드(45)는 본 발명의 방법에 따라 제조된 고강도사로 제조된 딥 코드를 이용하여 제조될 수 있다. 1층의 캡플라이(39)와 1층의 에지플라이(44)가 사용될 수 있고, 바람직하게는 1 또는 2층의 캡플라이 및 1 또는 2층의 에지플라이가 보강될 수 있다.
도 3에서 설명되지 않은 도면 부호 32 및 34는 카카스층(32) 및 플라이 턴업(34)을 나타낸다. 그리고 도면부호 33은 카카스층 보강용 코드(33)를 나타낸다.
아래에서 본 발명의 범위를 한정하지 않은 실시예 및 비교예가 기술된다. 아래의 실시예 및 비교예에서 물성 평가는 아래와 같이 측정 또는 평가하였다.
(a) 수축율
25℃, 65% RH에서 24시간 동안 방치한 후, Testrite를 이용하여, 0.01g/d의 정하중에서 측정한 길이(L0)와 177℃로 2분간 0.01g/d의 정하중에서 처리한 후의 길이(L1)의 비를 이용하여 건열수축률을 나타냈다.
S(%) = (L0 - L1) / L0 × 100
(b) 딥 코드 강도(g/d) 및 2.25g/d에서 중간신도%, 5%에서 강도
인스트론사의 저속 신장형 인장시험기를 이용하여 시료장 250mm, 인장속도 300m/min로 측정되었다. 2.25g/d에서 중간신도는 응력-변형율 곡선에서 2.25g/d의 하중에서 나타내는 신도를 말하며, 5%에서 강도는 응력-변형율 곡선에서 5% 변형율일 때의 하중을 측정하여 코드의 Total Denier로 나누어 줌으로써 측정한다.
(c) 딥 코드 형태안정성(E-S Index)
상기 (b)항의 일정 하중 하에서의 신도인 2.25g/d에서 중간신도와 수축율(Testrite, 0.05g/d, 177도, 2분)의 합을 의미하는 것으로, 타이어 코드가 가지고 있는 형태안정성을 나타내는 척도로 사용된다.
[실시예 1]
타이어 보강용 섬유를 제조하기 위하여 앞에서 설명한 방법에 따라 생코드 (Raw Cord)로 폴리에틸렌테레프탈레이트 섬유를 얻었다.
폴리에틸렌테레프탈레이트 사(1000D)에 270TPM의 하연을 가하고 다시 270TPM의 상연을 가하고 합연하여 2Ply 생코드를 제조하였다. 얻어진 생코드를 2욕 딥핑 방법으로 처리하였으며, 1욕 딥핑은 하기의 방법으로 조제된 접착액에 생코드를 통과시켜 160℃에서 150초간 건조시킨 후, 240℃로 60초간 열처리하였다. 건조시 3%의 신장(stretch)을 가하여 열수축에 의한 생코드의 불균일이 발생하지 않도록 조절하여 주었다.
증류수 950 중량부; 100% 에폭시 5 중량부; 50% 이소시아네이트 30 중량부 를 포함하는 용액을 제조하여 25℃에서 3시간 교반하여 사용하였다.
2욕 딥핑은 하기의 방법으로 조제된 접착액에 생코드를 통과시켜 160℃에서 90초간 건조시킨 후, 240℃로 60초간 열처리하였다. 건조시 -1%의 신장(stretch)을 가하여 주었다.
29.4wt% 레소시놀 45.6 중량부; 증류수 255.5 중량부; 37% 포르말린 20 중량부; 및 10wt%수산화나트륨 3.8 중량부을 포함하는 용액을 조제 후, 25℃에서 5시간 교반시키며 반응시키고 그리고 다음의 성분을 추가하였다:
40wt% VP-라텍스 300 중량부 , 증류수 129 중량부, 28% 암모니아수, 23.8 중량부 상기 성분 첨가 후 25℃에서 20시간 동안 숙성시켜 고형분 농도 19.05%로 유지되도록 하였다.
2욕 딥핑 열처리를 하여 접착제 처리를 종료하였다. 이와 같이 제조된 딥 코드의 물성을 평가하여 표 1로 나타내었다.
[실시예 2]
폴리에틸렌테레프탈레이트 사(1300D)에 410TPM의 하연을 가하고 다시 410TPM의 상연을 가하여 합연하여 생코드를 제조하고, 생코드 제조시 1ply로 연사하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 딥 코드를 제조하였다. 이와 같이 제조된 딥 코드의 물성을 평가하여 표 1에 나타내었다.
[실시예 3]
폴리에틸렌테레프탈레이트 사(1300D)에 235TPM의 하연을 가하고 다시 235TPM의 상연을 가하여 합연하여 생코드를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 딥 코드를 제조하였다. 이와 같이 제조된 딥 코드의 물성을 평가하여 표 1에 나타내었다.
[비교예 1]
나일론 66사(840D)에 460TPM의 하연을 가하고 다시 460TPM의 상연을 가하여 합연하여 생코드를 제조하였다. 생코드 제조시 2ply로 합연하여 연사하였고, 제조된 생코드에 하기와 같이 조제된 접착액에 통과시켜 접착액을 부여하였다. 건조시 신장(stretch)을 가하여 열수축에 의한 생코드의 불균일이 발생하지 않도록 조절하여 주었다.
29.4wt% 레소시놀 45.6 중량부; 증류수 255.5 중량부; 37% 포르말린 20 중량부; 및 10wt%수산화나트륨 3.8 중량부을 포함하는 용액을 조제 후, 25℃에서 5시간 교반시키며 반응시키고 그리고 다음의 성분을 추가하였다:
40wt% VP-라텍스 300 중량부 , 증류수 129 중량부, 28% 암모니아수, 23.8 중량부 상기 성분 첨가 후 25℃에서 20시간 동안 숙성시켜 고형분 농도 19.05%로 유지되도록 하였다.
접착액을 부여하여 1욕 딥핑 열처리를 하여 접착제 처리를 종료하였다. 이와 같이 제조된 딥 코드의 물성을 평가하여 표 1로 나타내었다.
[비교예 2]
나일론 66사(1260D)에 280TPM의 하연을 가하고 다시 280TPM의 상연을 가하여 합연하여 생코드를 제조한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 딥 코드를 제조하였다. 이와 같이 제조된 딥 코드의 물성을 평가하여 표 1에 나타내었다.
[비교예 3]
폴리에틸렌테레프탈레이트 사(1500D)에 370TPM의 하연을 가하고 다시 370TPM의 상연을 가하여 합연하여 생코드를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 딥 코드를 제조하였다. 이와 같이 제조된 딥 코드의 물성을 평가하여 표 1에 나타내었다.
  실시예 1 실시예 2 실시예 3 비교예 1 비교예 2 비교예 3
소재 - PET PET PET Nylon Nylon PET
Denier d 1000 1300 1300 840 1260 1500
Ply - 2 1 2 2 2 2
강력 kgf 17.4 9.8 22.6 15.2 24.1 22.9
강도 g/d 7.9 7.5 8.1 9.1 8.6 6.9
g/d, @5% 3.8 4.1 3.6 1.0 1.2 2.7
중신 %, @2.25g/d 3.0 2.8 3.2 7.9 7.9 4.2
절신 % 12.4 10.9 13.9 20.1 23.1 17.0
수축율 %, 0.01g/d 2.9 3.1 3.1 6.5 5.9 3.2
%, 0.05g/d 2.0 2.2 2.2 5.6 5.0 2.3
E-S Index - 5.0 5.0 5.4 13.5 12.9 6.5
꼬임수 TPM 270 410 235 460 280 370
꼬임계수 - 12075 14783 11983 18854 14056 20266
[실시예 4]
본 발명의 실시예 1에 의해 제조된 딥 코드를 캡플라이로 사용하여 제조된 레이디얼 타이어는 반경 방향 외측 플라이 턴업을 갖는 카카스층을 가지며, 상기 카카스층은 1층이 포함하도록 설치하였다. 이때 카카스 코드는 타이어의 원주 방향 중간 면에 대하여 90도 각도로 배향하였다. 상기 플라이 턴업(34)은 타이어 최대 단면 높이에 대하여 40 내지 80%의 높이를 갖도록 하였다. 비드부(35)는 0.95 내지 1.00mm 직경의 고강도 강선이 4×4로 형성된 비드코어(36)와 shore A hardness 40 이상의 경도의 비드필러(37)를 갖도록 하였다. 벨트(38)는 상부에 1층의 캡플라이(39)와 1층의 에지플라이(44)로 된 벨트보강층에 의해 보강되며 캡플라이(39) 내의 캡플라이 코드가 타이어의 원주 방향에 대하여 평행하도록 배치하였다.
[실시예 5]
타이어 제작을 위한 코드 소재를 실시예 2에 의해 제조된 딥 코드를 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 타이어를 제조하였다.
[실시예 6]
타이어 제작을 위한 코드 소재를 실시예 3에 의해 제조된 딥 코드를 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 타이어를 제조하였다.
구 분 실시예 4 실시예 5 실시예 6
카카스 소재 PET PET PET
규격(d/합연사) 1500d/2 1500d/2 1500d/2
강력(kg) 24 24 24
탄성계수(g/d) 72 72 72
캡플라이 소재 실시예1의 딥 코드 실시예2의 딥 코드 실시예3의 딥 코드
규격(d/합연사) 1000d/2 1300d/1 1300d/2
강력(kg) 17.4 9.8 22.6
강도(g/d, @5%) 3.8 4.1 3.6
타이어 편평비 0.6 0.6 0.6
카카스층수 1 1 1
캡플라이층수 1 1 1
[비교예 4]
타이어 제작을 위한 코드 소재를 비교예 1에 의해 제조된 딥 코드를 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 타이어를 제조하였다.
[비교예 5]
타이어 제작을 위한 코드 소재를 비교예 2에 의해 제조된 딥 코드를 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 타이어를 제조하였다.
[비교예 6]
타이어 제작을 위한 코드 소재를 비교예 3에 의해 제조된 딥 코드를 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 타이어를 제조하였다.
구 분 비교예 4 비교예 5 비교예 6
카카스 소재 PET PET PET
규격(d/합연사) 1500d/2 1500d/2 1500d/2
강력(kg) 24 24 24
탄성계수(g/d) 72 72 72
캡플라이 소재 비교예1의 딥 코드 비교예2의 딥 코드 비교예3의 딥 코드
규격(d/합연사) 840d/2 1260d/2 1500d/2
강력(kg) 15.2 24.1 22.9
강도(g/d, @5%) 1.0 1.2 2.7
타이어 편평비 0.6 0.6 0.6
카카스층수 1 1 1
캡플라이층수 1 1 1
상기 실시예 5, 6 및 비교예 3에 따라 제조된 205/65 R15 V 타이어를 2000cc 등급의 승용차에 장착하고 60km/h 속도로 주행하면서 차량 내에서 발생하는 소음을 측정하여 가청 주파수 영역의 값을 노이즈(dB)로 나타내었으며, 조종 안정성 및 승차감은 숙련된 운전자가 테스트 코스를 주행하여 100점 만점에 5점의 단위로 평가하여 그 결과를 다음의 표 4에 나타내었다. 내구성은 FMVSS 109의 P-메트릭 타이어 내구성 테스트(P-metric tire endurance test) 방법을 따라 측정온도 섭씨 38℃(±3℃), 타이어 표기 하중의 85, 90, 100% 조건으로, 주행 속도 80km/h로 하여 총 34시간 주행하여 트레드나 사이드월, 카카스 코드, 이너라이너, 비드 등 어느 부위에도 비드 분리, 코드 절단, 벨트 세퍼레이션 등의 흔적을 찾을 수 없는 경우에 합격(OK)으로 판정하였다.
구 분 실시예 4 실시예 5 실시예 6 비교예 4 비교예 5 비교예 6
타이어무게(kg) 9.7 9.8 9.8 9.7 9.8 9.9
승차감 100 99 100 97 98 95
조종안정성 100 100 100 100 100 98
내구성 OK OK OK OK OK OK
균일성 100 100 100 98 98 99
소음(dB) 61.3 61.5 61.2 61.8 61.4 62.2
상기 표 4의 시험 결과로 볼 때, 본 발명에 따른 딥 코드를 사용한 타이어(실시예 4, 5, 6)는 캡플라이에 종래의 나일론 66 사를 사용한 비교예 4, 5에 비하여 노이즈 감소 및 조종안정성 면에 효과가 우수하였으며, 타이어의 균일성 또한 향상됨을 알 수 있다.
이상에서 본 발명은 기재된 구체예에 대해서만 상세히 기술되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.
<부호의 설명>
1: 익스트루더 2: 기어펌프
3: 노즐 4: 가열장치
5: 냉각구역 6~10: 연신롤러
11: 권취롤러 12: 유제 공급장치
31 : 타이어 32 : 카카스층
33 : 카카스층 보강용 코드 34 : 플라이 턴업
35 : 비드영역 36 : 비드코어
37 : 비드필러 38 : 벨트 구조체
39 : 캡플라이 40 : 벨트플라이
41, 42 : 벨트코드 43 : 트레드
44 : 에지플라이 45 : 캡플라이 코드

Claims (4)

  1. 한 쌍의 평행한 비드코어; 비드코어 주위에 감기는 적어도 하나 이상의 래디얼 카카스 플라이; 카카스 플라이 외주에 적층된 1층 이상의 경사 벨트층, 경사 벨트층 외주에 타이어 원주 방향으로 적층된 1층 이상의 캡플라이 층을 포함하는 레이디얼 타이어에 있어서,
    상기 캡플라이는 폴리에틸렌테레프탈레이트를 90% 이상 함유하는 원사를 사용하여 제조된 딥 코드를 포함하며,
    상기 딥코드는 0.01g/d에서 수축율 2.5 내지 3.5%, 5%에서 강도가 3.6 내지 5.0g/d, 파단강도 7.5g/d 이상, 형태안정성 지수 5.5 이하인 것을 특징으로 하는 레이디얼 타이어
  2. 제 1 항에 있어서,
    상기 딥 코드는 2.25g/d에서 중간신도가 2.0 내지 3.5%, 절단 신도 8.0% 내지 14.0%의 물성을 가지는 것을 특징으로 하는 레이디얼 타이어.
  3. 제 1 항에 있어서,
    상기 딥 코드는 폴리에틸렌테레프탈레이트를 90% 이상을 함유하는 400 내지 2200d 원사를 1플라이(ply) 또는 2플라이(ply) 이상으로 합연하며, 꼬임계수가 9,000 내지 18,000 TPM*SQRT(Nominal Denier) 임을 특징으로 하는 레이디얼 타이어.
  4. 제 1 항에 있어서,
    상기 캡플라이 층은 1층 또는 2층으로 보강되는 것을 특징으로 하는 레이디얼 타이어.
PCT/KR2017/014945 2017-01-25 2017-12-18 폴리에스터 타이어 코드와 이를 이용한 레이디얼 타이어 WO2018139763A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170012000 2017-01-25
KR10-2017-0012000 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018139763A1 true WO2018139763A1 (ko) 2018-08-02

Family

ID=62978908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014945 WO2018139763A1 (ko) 2017-01-25 2017-12-18 폴리에스터 타이어 코드와 이를 이용한 레이디얼 타이어

Country Status (1)

Country Link
WO (1) WO2018139763A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050030449A (ko) * 2003-09-26 2005-03-30 주식회사 효성 고성능 래디얼 타이어
KR20110078137A (ko) * 2009-12-30 2011-07-07 주식회사 효성 고성능 래디얼 타이어
KR20120001940A (ko) * 2010-06-30 2012-01-05 코오롱인더스트리 주식회사 폴리에틸렌테레프탈레이트 연신사의 제조방법, 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드
KR20150097125A (ko) * 2014-02-18 2015-08-26 주식회사 효성 형태안정성이 우수한 폴리에틸렌테레프탈레이트 딥코드, 이의 제조방법 및 이를 포함하는 타이어
KR20160100979A (ko) * 2013-12-25 2016-08-24 코드사 글로벌 엔두스트리옐 이플릭 베 코드 베지 사나위 베 티카레트 아노님 시르케티 공기입 레이디얼 타이어

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050030449A (ko) * 2003-09-26 2005-03-30 주식회사 효성 고성능 래디얼 타이어
KR20110078137A (ko) * 2009-12-30 2011-07-07 주식회사 효성 고성능 래디얼 타이어
KR20120001940A (ko) * 2010-06-30 2012-01-05 코오롱인더스트리 주식회사 폴리에틸렌테레프탈레이트 연신사의 제조방법, 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드
KR20160100979A (ko) * 2013-12-25 2016-08-24 코드사 글로벌 엔두스트리옐 이플릭 베 코드 베지 사나위 베 티카레트 아노님 시르케티 공기입 레이디얼 타이어
KR20150097125A (ko) * 2014-02-18 2015-08-26 주식회사 효성 형태안정성이 우수한 폴리에틸렌테레프탈레이트 딥코드, 이의 제조방법 및 이를 포함하는 타이어

Similar Documents

Publication Publication Date Title
WO2019088464A1 (ko) 폴리에스터 타이어코드와 이를 이용한 레이디얼 타이어
KR101734892B1 (ko) 치수안정성이 우수한 폴리에틸렌테레프탈레이트 원사의 제조방법
KR101602385B1 (ko) 형태안정성이 우수한 폴리에틸렌테레프탈레이트 딥코드, 이의 제조방법 및 이를 포함하는 타이어
KR20200120225A (ko) 고내열 폴리에틸렌테레프탈레이트 코드 및 이의 제조방법
KR20180079533A (ko) 형태안정성이 우수한 폴리에틸렌테레프탈레이트 타이어 코드, 이의 제조방법 및 이를 포함하는 타이어
WO2018139763A1 (ko) 폴리에스터 타이어 코드와 이를 이용한 레이디얼 타이어
WO2018124472A1 (ko) 폴리에스터 타이어 코드와 이를 이용한 레이디얼 타이어
WO2021045418A1 (ko) 내열성이 우수한 폴리에스터 타이어 코드 및 그를 포함하는 타이어
WO2019088463A1 (ko) 강성을 낮춘 폴리에스터 타이어코드를 적용한 래디얼 타이어
KR100630263B1 (ko) 카카스 층에 하이브리드 코드를 이용한 고성능 래디얼 타이어
WO2018124471A1 (ko) 폴리에스터 타이어 코드와 이를 이용한 레이디얼 타이어
KR20120069340A (ko) 폴리에스터 멀티필라멘트를 이용한 래디얼 공기입 타이어
KR100674675B1 (ko) 하이브리드 코드를 사용한 딥코드 및 이를 이용한 래디얼타이어
KR20180079238A (ko) 폴리에틸렌테레프탈레이트 딥 코드의 캡플라이 층을 가진 고성능 래디얼 타이어
KR100894384B1 (ko) 하이브리드 딥코드의 제조 방법 및 이를 이용한 래디얼타이어
KR101838491B1 (ko) 폴리에틸렌테레프탈레이트 사 및 아라미드 사를 이용한 내피로도가 우수한 타이어코드 및 이를 적용한 래디얼 공기입 타이어
KR101878780B1 (ko) 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어
KR100674673B1 (ko) 하이브리드 코드를 사용한 고성능 래디얼 타이어
WO2024043707A1 (ko) 친환경 타이어 코드 및 이를 이용하는 타이어
KR100761518B1 (ko) 하이브리드 딥코드의 제조 방법 및 이를 이용한 래디얼타이어
KR102166025B1 (ko) 고강도 저수축 폴리에틸렌테레프탈레이트 원사의 제조방법 및 이를 통해 제조된 폴리에틸렌테레프탈레이트 원사
KR101838490B1 (ko) 폴리에틸렌테레프탈레이트 사 및 아라미드 사를 이용한 고강력 타이어코드 및 이를 적용한 래디얼 공기입 타이어
KR101849196B1 (ko) 고공기압 타이어
KR100674674B1 (ko) 하이브리드 코드를 사용한 고성능 래디얼 타이어
KR100584695B1 (ko) 폴리에틸렌-2,6-나프탈레이트 섬유를 이용한 고성능래디얼 타이어

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894004

Country of ref document: EP

Kind code of ref document: A1