WO2021006561A1 - 타이어 코드용 원사 및 타이어 코드 - Google Patents

타이어 코드용 원사 및 타이어 코드 Download PDF

Info

Publication number
WO2021006561A1
WO2021006561A1 PCT/KR2020/008738 KR2020008738W WO2021006561A1 WO 2021006561 A1 WO2021006561 A1 WO 2021006561A1 KR 2020008738 W KR2020008738 W KR 2020008738W WO 2021006561 A1 WO2021006561 A1 WO 2021006561A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire cord
yarn
polyethylene terephthalate
temperature
resin composition
Prior art date
Application number
PCT/KR2020/008738
Other languages
English (en)
French (fr)
Inventor
임기섭
정일
박성호
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to BR112022000060A priority Critical patent/BR112022000060A2/pt
Priority to CN202080049389.2A priority patent/CN114174575B/zh
Priority to EP20836537.9A priority patent/EP3967796A4/en
Priority to JP2021578141A priority patent/JP7356522B2/ja
Priority to US17/624,385 priority patent/US20220349094A1/en
Priority claimed from KR1020200082062A external-priority patent/KR102400110B1/ko
Publication of WO2021006561A1 publication Critical patent/WO2021006561A1/ko

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Definitions

  • the present invention relates to a tire cord yarn, a method for manufacturing the same, and a tire cord.
  • Tire cord is a fiber reinforcement that is put inside the rubber to enhance the life, safety, and ride comfort of automobile tires.
  • tire cords made of cotton yarn were known, but there was a weak limit to friction, and accordingly, various materials were developed to improve these limitations.
  • tire cords such as rayon, nylon, polyester, or steel are manufactured. Tire cord is being used.
  • Polyester fibers used as tire cords are manufactured by melt spinning a polymer resin chip obtained through solid phase polymerization. At this time, in order to develop the fiber strength required in the tire cord, an ultra-high molecular weight polymer with a higher molecular weight is used.In this way, when using an ultra-high molecular weight polymer, the shear rate or process temperature is adjusted to increase melt flow. It must be raised essential. However, according to this, a part of the polyester main chain may be thermally decomposed and the molecular weight or other physical properties of the manufactured fiber itself may be greatly reduced, and the efficiency of the manufacturing process may be lowered or the strength of the manufactured polyester fiber due to a continuous overwork in the spinning device. There is a limit in not being able to improve as much as desired.
  • An object of the present invention is to provide a yarn for a tire cord capable of implementing a relatively high molecular weight and strength while having a characteristic of not having a large change in melt viscosity due to a change in shear rate and excellent moldability.
  • the present invention is to provide a method of manufacturing the tire cord yarn.
  • the present invention is to provide a tire cord manufactured from the tire cord yarn.
  • a polyethylene terephthalate multifilament obtained by melting and spinning a resin composition including a first polyethylene terephthalate and a second polyethylene terephthalate having different intrinsic viscosity is included, and a weight average molecular weight of 90,000 g/mol or more and 1.9 to A yarn for a tire cord having a polydispersity index of 2.3 and a strength of 8.00 gf/d or more or 10.00 gf/d or more is provided.
  • a tire cord manufactured from the tire cord yarn may be provided.
  • a tire for an automobile including a tire cord manufactured from the yarn for the tire cord.
  • a method of manufacturing the tire cord yarn may be provided.
  • a yarn for a tire cord comprising a polyethylene terephthalate multifilament obtained by melting and spinning a resin composition comprising a first polyethylene terephthalate and a second polyethylene terephthalate having different intrinsic viscosity, and a weight average of 90,000 g/mol or more Having a molecular weight and a polydispersity index of 1.9 to 2.3, and having a strength of 8.00 gf/d or more or 10.00 gf/d or more, a yarn for a tire cord may be provided.
  • a polyester resin chip having a high intrinsic viscosity If a polyester resin chip having a high intrinsic viscosity is used, melting may be difficult due to the high viscosity during the spinning process, and failure of the manufacturing equipment may occur due to an increase in pressure.
  • a polyester resin chip having a low intrinsic viscosity when a polyester resin chip having a low intrinsic viscosity is used, there is a limit to the fiber strength.
  • the draw ratio is increased to obtain high strength fibers, and the shrinkage rate of the yarn increases and the shape stability of the yarn is poor when using the hot tube technology. have.
  • the present inventors believe that the yarn for a tire cord manufactured using a polyethylene terephthalate multifilament obtained by melting and spinning a resin composition including a first polyethylene terephthalate and a second polyethylene terephthalate having different intrinsic viscosity is melted, extruded or Through an experiment, it was confirmed through experiments that the mechanical properties of the final product can be improved by preventing thermal decomposition of materials while ensuring high resin flowability even in high-temperature processes such as spinning.
  • the tire cord including the tire cord yarn of the embodiment has a high level of tensile strength, and through an experiment, the tensile strength retention rate before and after the fatigue test can be maintained at a relatively high level. Confirmed.
  • the yarn for a tire cord of the embodiment has a weight average molecular weight of 90,000 g/mol or more and a polydispersity index of 1.9 to 2.3, and may have a strength of 8.00 gf/d or more or 10.00 gf/d or more.
  • the yarn for tire cords provided using polyethylene terephthalate multifilaments obtained by melting and spinning resin compositions including first polyethylene terephthalate and second polyethylene terephthalate having different intrinsic viscosities is a relatively wide level of polydispersity. Since it has an index, it has a wider molecular weight dispersion, so that the initial melt flowability at a low molecular weight can be imparted, and the high molecular weight can have a property of reducing thermal decomposition due to melting delay due to a high melting point.
  • the tire cord yarn may have a not very high melt viscosity even in a low shear rate region at a temperature of 300°C or less, and also, even when the shear rate is increased, the melt viscosity does not decrease significantly, so that it has sufficient formability and mechanical properties. Can be secured.
  • the ratio of the melt viscosity at a temperature of 290° C. and a shear rate of 2000/s compared to the melt viscosity at a temperature of 290° C. and a shear rate of 50/s is 50% or less, or 30 to Can be 50%.
  • the ratio of the melt viscosity at a temperature of 290°C and a shear rate of 2000/s compared to the melt viscosity at a temperature of 290°C and a shear rate of 50/s of the resin composition may be 50% or less, or 30 to 50% have.
  • the tire cord yarn has a high polydispersity index of 1.9 to 2.3, while having a high weight average molecular weight of 90,000 g/mol or more, and thus a high strength of 8.00 gf/d or more or 10.00 gf/d or more.
  • the polyethylene terephthalate multifilament may be obtained by melting and spinning a resin composition including first polyethylene terephthalate and second polyethylene terephthalate having different intrinsic viscosity.
  • the resin composition may also have melt properties equivalent to those of the tire cord. More specifically, the resin composition has a melt viscosity of 4,000 to 4,800 poise at a temperature of 290°C and a shear rate of 50/s, and 2,800 to 3,200 poise at a temperature of 290°C and a shear rate of 1000/s It may have a melt viscosity of.
  • the resin composition also has a melt viscosity that is not so high even in a low shear rate region at a temperature of 300°C or lower, so that the spinning pack pressure may not increase excessively, so that stable spinning is possible, and even when the shear rate is increased, the melt viscosity is large. It does not deteriorate, so it is possible to secure sufficient formability and mechanical properties.
  • the difference between the melt viscosity at a temperature of 290°C and a shear rate of 50/s and a melt viscosity at a temperature of 290°C and a shear rate of 1000/s of the resin composition may be 1,800 poise or less.
  • the resin composition may have a weight average molecular weight of 90,000 g/mol or more, a Z-average molecular weight of 125,000 to 132,000, and a polydispersity index of 2.150 to 2.300.
  • the resin composition may have a high Z-average molecular weight and thus a relatively wide polydispersity index. Accordingly, the resin composition may simultaneously have a property of reducing thermal decomposition due to a melting delay due to a high melting point exhibited by a polymer polymer while securing an initial melt flow property that is a characteristic of a low molecular weight polymer. And, as the thermal decomposition reduction becomes possible, the resin composition may have a higher weight average molecular weight and higher strength.
  • the polymer resin composition may include a first polyethylene terephthalate and a second polyethylene terephthalate having different intrinsic viscosity.
  • the resin composition may include a first polyethylene terephthalate having an intrinsic viscosity of 0.80 dl/g to 1.40 dl/g and a second polyethylene terephthalate having an intrinsic viscosity of 1.50 dl/g to 1.90 dl/g.
  • the first polyethylene terephthalate may have an intrinsic viscosity of 1.00 dl/g to 1.25 dl/g
  • the second polyethylene terephthalate may have an intrinsic viscosity of 1.65 dl/g to 1.75 dl/g.
  • the polymer resin composition specifies the content of the second polyethylene terephthalate among the first polyethylene terephthalate and the second polyethylene terephthalate, thereby reducing the flowability of the polymer and increasing the pack pressure that occurs when using a polyester having a high molecular weight. , It is possible to prevent the decrease in the durability of the spinning machine or the intrinsic viscosity of the manufactured yarn, and thereby provide a polyester yarn having high strength and high intrinsic viscosity while securing high efficiency and economic utility, and a tire cord using the same. I can.
  • the temperature in the manufacturing process may need to be increased to 300°C or higher, and accordingly, thermal decomposition accelerated and the physical properties of the first manufactured yarn decreased. Accordingly, it has been known that the use of polyester having a high intrinsic viscosity or a method of mixing it with other types of polyester has some limitations.
  • the polymer resin composition is a first polyester having an intrinsic viscosity of 0.80 dl/g to 1.40 dl/g, or 1.00 dl/g to 1.25 dl/g.
  • the limitation due to the use of polyester having a high intrinsic viscosity is solved.
  • the polymer resin composition includes the above-described first and second polyesters and includes the second polyester in a specific amount, but the overall intrinsic viscosity is not significantly lowered.
  • the polymer resin composition may have an appropriate fluidity at a temperature of 300° C. or less, and accordingly, the fluidity of the polymer is decreased, the pack pressure is increased, the durability of the spinning machine is decreased, or the manufactured yarn is It is possible to prevent a decrease in intrinsic viscosity, etc. That is, the polymer resin composition may have a not very high melt viscosity even in a low shear rate region at a temperature of 300° C. or lower, and also, even when the shear rate is increased, the melt viscosity does not increase significantly, thereby ensuring sufficient moldability. The melt viscosity may not be significantly lowered by thermal decomposition of the polyester.
  • the tire cord provided using the polymer resin composition may have a relatively high weight average molecular weight, for example, 90,000 g/mol or more, or 90,000 g/mol to 150,000 g/mol.
  • the tire cord yarn may have a maximum draw ratio of 2.0 times or more, or 2.0 to 2.30 times, or 2.1 to 2.25 times, and 8.00 gf/d or more or 10.00 gf/d or more, or 8.00 gf/d to 12.00 gf/ It can have a strength of d.
  • the method of manufacturing the tire cord is not largely limited, and may be obtained, for example, by melting and spinning the polymer resin composition.
  • the polymer resin composition may be melted at a temperature range of 250°C to 300°C, or 270°C to 300°C, and an initial spinning speed (based on 1st Godet Roller, G/R) of 1000m/min to 4000m/min, or 2000m/min to 4000m/min can be applied.
  • the yarn for the tire cord may be stretched 2.0 to 2.30 times, or 2.1 to 2.25 times.
  • the tire cord yarn of the embodiment includes polyethylene terephthalate multifilament, the total number of filaments of the polyethylene terephthalate multifilament may be 100 to 1,500, and the total fineness of the tire cord yarn may be 500 to 5,000 denier. .
  • the yarn for the tire cord may have a number of twists per unit length of 100 TPM to 600 TPM, or 200 TPM to 480 TPM.
  • the shape of the yarn for the tire cord is not particularly limited, and specifically, the total number of filaments is 100 to 1,500, the total fineness is 500 to 5,000 denier, and the number of twists per unit length is 100 to 600 TPM. It may include.
  • the yarn for the tire cord may be used as a cord for the body fly of the pneumatic tire. Accordingly, it is possible to very effectively support the overall vehicle load.
  • the use of the tire cord is not limited thereto, and may be applied to other uses such as cap ply.
  • a tire cord including the tire cord yarn may be provided.
  • the content of the yarn for the tire cord includes all of the above.
  • the tire cord is manufactured from the above-described yarn for the tire cord, and may have higher strength and higher intrinsic viscosity.
  • the tire cord yarn may have a draw ratio of 2.0 to 2.5 times, and at this time, the tensile strength of the tire cord measured based on ASTM D885 is 7.5 g/d or more, or 7.5 g/d to 9.9 g It can have the strength of /d.
  • the higher the draw ratio of the yarn included in the tire cord the higher the tensile strength of the tire cord.
  • the tensile strength of the tire cord may be 8.5 g/d or more, or 8.5 g/d to 9.9 g/d.
  • the tensile strength decreases significantly when repeated compression deformation and tensile deformation are applied, but the tire cord has a high level of tensile strength as described above, but is also fatigue resistant.
  • the tensile strength retention rate before and after the experiment can be maintained at a relatively high level.
  • the tire cord may have a tensile strength retention rate of 62% or more, or 62% to 75%, or 62.4% to 71%, before and after the fatigue resistance test of the following General Formula 1.
  • the tensile strength of the tire cord is measured according to ASTM D885 standards, and the tensile strength of the tire cord after the fatigue resistance test may be the tensile strength of the tire cord measured after removing the rubber after the fatigue resistance test below. have.
  • the disk fatigue test was evaluated according to JIS L 1017 standards, and more specifically, the fatigue test was performed by vulcanizing the tire cord with rubber for 20 minutes under a temperature of 160°C and a pressure of 20 kgf. Using a fatigue tester, a temperature of 100°C, 2500rpm and a tensile compression rate of ⁇ 8.0% are applied for 24 hours.
  • the tire cord forming a ply-twisted yarn by plying the above-described tire cord yarn; And immersing the ply-twisted yarn in an adhesive solution and performing heat treatment.
  • a total fineness of 500 to 5000 denier is twisted per unit length of 100 to 600 TPM (twist per meter)'Z' twisting, and the'Z' twisted yarn 1 to 3 plies It can be performed by a method of manufacturing a ply-twisted yarn having a total fineness of 500 to 15000 denier by twisting'S' at 100 to 600 TPM.
  • the adhesive solution one used for manufacturing a conventional tire cord, for example, resorcinol-formaldehyde-latex (RFL) adhesive solution may be used.
  • the heat treatment process may be performed for 90 to 360 seconds at a temperature of 220 to 260 °C, preferably for 90 to 240 seconds at a temperature of 230 to 250 °C, more preferably at a temperature of 240 to 245 °C for 90 To 120 seconds.
  • a tire for a vehicle including a tire cord manufactured from the yarn for the tire cord may be provided.
  • the tire may be a pneumatic tire to which the tire cord is adhered.
  • the method or condition of bonding the tire cord to the tire may be clearly determined by those skilled in the art in consideration of the specific type, material, or shape of the tire, or the type, material, or shape of the tire cord attached thereto.
  • the steps of melting and spinning a resin composition comprising a first polyethylene terephthalate and a second polyethylene terephthalate having different intrinsic viscosity at 200 to 300 °C to form a polyethylene terephthalate multifilament; Including, a method of manufacturing the above-described tire cord yarn may be provided.
  • the content of the tire cord yarn includes all of the above-described information regarding the tire cord yarn of the embodiment.
  • Specific conditions for the step of melting and spinning the polymer resin composition may be determined according to the characteristics and types of tire cords that are finally manufactured.
  • the polymer resin composition may be melted in a temperature range of 200°C to 300°C, or 250°C to 300°C, and the initial spinning speed (based on 1st Godet Roller, G/R) 1000m/min to 4000m/min Can be applied.
  • the manufactured tire cord may be stretched 1.5 to 3.0 times, or 2.0 to 2.2 times.
  • a yarn for a tire cord having a relatively high molecular weight and strength while having a characteristic of not having a large change in melt viscosity due to a change in a shear rate and excellent moldability.
  • a tire for a vehicle including the yarn for the tire cord may be provided.
  • a method of manufacturing a tire cord yarn using the polymer resin composition may be provided.
  • the crystallinity of the fibers was measured by the density gradient tube method.
  • a density gradient solution was made using a low density hard solution and a high density medium solution, and a standard float that knows the density was used to measure the density of the fiber sample, and the crystallinity was measured in the following manner.
  • Crystallinity (Xc)(%) [(Fiber sample density-Fiber specific gravity density)/(Fiber crystal density-Fiber specific density)] x 100
  • PET crystal density 1.457(g/cm3)
  • PET specific density 1.336(g/cm3)
  • the birefringence measurement of the fiber was measured with a polarizing microscope. Birefringence was measured by measuring the phase difference of the fiber using a compensator.
  • the polarizing microscope can directly measure the refractive index in the parallel direction and the refractive index in the vertical direction of the fiber, and measure the birefringence using the difference value.
  • GPC gel permeation chromatography
  • the intrinsic viscosity (I.V.) (dl/g) of each PET yarn was measured with a capillary viscometer according to ASTM D4603-96 method.
  • the solvent used was a mixture of phenol/1,1,2,2-tetrachloroethane (60/40% by weight).
  • Polyethylene terephthalate chips having an intrinsic viscosity of 1.20 dl/g were melted and extruded under conditions of a temperature of 290° C. and a shear rate of 112.40 S -1 to prepare pellets in a strand type. At this time, the load value by the internal pressure of the extruder showed a level of 66%.
  • Example 1 Chip I.V. Content (wt%) 1.2dl/g 100 50 80 70 1.7dl/g 0 50 20 30 Ext temp. (°C) 200/250/280/290/280/280/280/280/290 Ext L/D (mm) 1200/32 Die Nozzle L/D (mm) 12/4 (3Holes) Load (%) 66 71 69 70 Discharge speed (g/min) 300 Shear rate (s -1 ) 112.40
  • Table 2 shows the molecular weight and melt viscosity measurement results for the polymer resin compositions used in Examples and Comparative Examples.
  • the polymer resin compositions of 1 and 2 have a polydispersity index of 2.278 to 2.290, a temperature of 290° C. and a melt viscosity of 4,000 to 4,800 poise of 50/s, and a temperature of 290° C. and a temperature of 1000/s.
  • the resin composition had a melt viscosity of 2,800 to 3,200 poise at a shear rate, at which time the melt viscosity of the resin composition at a temperature of 290°C and a shear rate of 50/s, a temperature of 290°C, and a shear rate of 1000/s The difference in melt viscosity was less than 1,800 poise.
  • the polymer resin compositions of Examples 1 and 2 have a higher polydispersity index than Comparative Example 1 having the same level of number average molecular weight, so that high mechanical properties can be secured in the final product, and at a temperature of 300°C or less. Even in a low shear rate region, the melt viscosity may not be high, and even when the shear rate is increased, the melt viscosity is not significantly lowered, thereby ensuring sufficient formability and mechanical properties.
  • the polymer resin composition of Comparative Example 1 using 100% by weight of a polyethylene terephthalate chip having an intrinsic viscosity of 1.20 dl/g exhibits a relatively low polydispersity index and has a low molecular weight to ensure sufficient mechanical properties in the final product. it's difficult.
  • the polymer resin composition of Comparative Example 2 comprising a polyethylene terephthalate chip having an intrinsic viscosity of 1.20 dl/g and a polyethylene terephthalate chip having an intrinsic viscosity of 1.70 dl/g in a weight ratio of 50:50 was prepared at a temperature of 290°C and At shear rates of 50/s and 1000/s, both have a melt viscosity exceeding 3,200 poise, which is likely to result in insufficient moldability or load or failure occurring in manufacturing equipment such as extruders.
  • Polyethylene terephthalate chips having an intrinsic viscosity of 1.20 dl/g were melted and extruded under the conditions of a temperature of 290°C and a shear rate of 500 to 2000 S -1 , and an initial spinning rate (based on 1st Godet Roller, G/R ) 2800 m/min was applied to the undrawn yarn and finally 2.15 times stretched and wound to prepare a polyester drawn yarn.
  • the pack pressure by the discharge showed a level of 92kgf/cm2.
  • Polyethylene terephthalate chips having an intrinsic viscosity of 1.20 dl/g and polyethylene terephthalate chips having an intrinsic viscosity of 1.70 dl/g were mixed in a weight ratio of 10:90, and a temperature of 290°C and a shear rate of 500 to It was melted and extruded under 2000 S -1 conditions, and an initial spinning speed (based on 1st Godet Roller, G/R) of 2800 m/min was applied to take up the undrawn yarn and finally 2.15 times stretching and winding to prepare a polyester drawn yarn.
  • the pack pressure due to discharge showed a level of 94 kgf/cm2.
  • Polyethylene terephthalate chips having an intrinsic viscosity of 1.20 dl/g and polyethylene terephthalate chips having an intrinsic viscosity of 1.70 dl/g were mixed at a weight ratio of 20:80, and a temperature of 290°C and a shear rate of 500 to It was melted and extruded under 2000 S -1 conditions, and an initial spinning speed (based on 1st Godet Roller, G/R) of 2800 m/min was applied to take up the undrawn yarn and finally 2.15 times stretching and winding to prepare a polyester drawn yarn.
  • the pack pressure due to discharge showed a level of 92 kgf/cm2 cm2.
  • Polyethylene terephthalate chips having an intrinsic viscosity of 1.20 dl/g and polyethylene terephthalate chips having an intrinsic viscosity of 1.70 dl/g were mixed at a weight ratio of 30:70, and a temperature of 290°C and a shear rate of 500 to It was melted and extruded under 2000 S -1 conditions, and an initial spinning speed (based on 1st Godet Roller, G/R) of 2800 m/min was applied to take up the undrawn yarn and finally 2.15 times stretching and winding to prepare a polyester drawn yarn.
  • the pack pressure due to discharge showed a level of 103 kgf/cm2.
  • Example 3 10 90 295 2800 94 x2.15
  • Example 4 20 80 92 x2.2
  • Example 5 30 70 103 x2.13 Comparative Example 3 0 100 92 x2.15
  • -Total fineness 1000De.
  • Level, and Mono-filament fineness is 4De. (Apply L/D 2.1/0.7, 250H detained)
  • the tensile strength and cutting elongation of the yarn were determined using an Instron Universal Tensile Tester, according to ASTM D885, the initial load of 0.05gf/de. It was measured under the conditions of a sample length of 250 mm and a tensile speed of 300 mm/min.
  • Examples 3 to 4 showed similar pack pressures compared to Comparative Example 3, and Examples 3 to 5 significantly increased the intrinsic viscosity of the manufactured yarn compared to the Comparative Example, and thus the yarn It was confirmed that the strength and crystallinity of were greatly increased.
  • Example 3 x2.0 5600 8.51 13.32 92371 2.0250 0.2095 50.1 X2.15 6020 10.12 10.51 93012 1.9755 0.2128 49.9
  • Example 4 x2.0 5600 8.83 13.01 94145 2.0008 0.2120 50.3 x2.2 6160 11.27 10.11 94971 1.9638 0.2155 49.8
  • Example 5 x2.0 5600 8.96 12.97 93618 2.0160 0.2160 50.1 x2.13 5960 10.31 10.25 93914 1.9824 0.2183 49.8 Comparative Example 3 x2.0 5600 7.91 13.22 88754 2.0320 0.2093 50.3 x2.15 6020 9.73 10.13 89152 1.9995 0.2115 50.1
  • the maximum draw ratio of the drawn yarn obtained in Example 4 was expressed up to 2.2 times, and the winding speed was 6160 m/min, and the strength was measured up to about 11.3 gf/d, and the maximum draw ratio of Comparative Example 3. It was confirmed that the strength at 2.15 times was improved by more than 1.5 gf/d compared to 9.73 gf/d.
  • the drawn yarn, drawn yarn fineness, twist multiplier (TM), and the cord heat treatment conditions used are shown in Table 6 below, and the composition and drying conditions of the RFL adhesive solution are typical PET tire cord manufacturing conditions.
  • Example 6 Example 3 1000 430 2 240 ⁇ 245°C, more than 90 seconds
  • Example 7 Example 4 1000 430 2 240 ⁇ 245°C, more than 90 seconds
  • Example 8 Example 5 1000 430 2 240 ⁇ 245°C, more than 90 seconds Comparative Example 4 Comparative Example 3 1000 430 2 240 ⁇ 245°C, more than 90 seconds
  • cord strength was measured using a universal tensile tester.
  • the tire cords of Examples 6 to 8 and Comparative Example 4 were vulcanized with rubber for 20 minutes under a temperature of 160°C and a pressure of 20 kgf to prepare a specimen. And, using a disk fatigue tester (manufacturer: UESHIMA, model name: Belt tester FT-610) to the specimen, a temperature of 100°C, 2500 rpm and a tensile compression rate of ⁇ 8.0% were applied to repeat compression and tensile deformation for 24 hours. Applied alternately. Thereafter, the rubber was removed from the specimen, and the tensile strength after the fatigue test was measured in the same manner as the tensile strength measurement method, and based on this, the tensile strength retention rate (%) before and after the fatigue test was calculated.
  • a disk fatigue tester manufactured by UESHIMA, model name: Belt tester FT-610
  • the tire cords of Examples 6 to 8 have a tensile strength of 7.5 g/d or more when the yarns of Examples 3 to 5 having a draw ratio of 2.0 or more are used, and in particular, a yarn having a draw ratio of 2.1 or more. It was confirmed that the tensile strength was 8.5 g/d or more when using
  • the tensile strength decreases significantly when repeated compression deformation and tensile deformation are applied, but the tire cords of Examples 6 to 8 exhibit a high level of tensile strength as described above. While having, it was confirmed that the tensile strength retention rate before and after the fatigue resistance test was equal to or higher than the tire cord of Comparative Example 4 having a relatively low tensile strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tires In General (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

본 발명은 상이한 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트 및 제2폴리에틸렌테레프탈레이트를 포함한 수지 조성물을 용융 및 방사하여 얻어진 폴리에틸렌테레프탈레이트 멀티 필라멘트를 포함하는 고강도 타이어 코드용 원사 및 이의 제조 방법에 관한 것이다.

Description

타이어 코드용 원사 및 타이어 코드
관련 출원(들)과의 상호 인용
본 출원은 2019년 7월 5일자 한국특허출원 제10-2019-0081578호 및 2020년 7월 3일자 한국특허출원 제10-2020-0082062호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 타이어 코드용 원사, 이의 제조 방법 및 타이어 코드에 관한 것이다.
타이어 코드는 자동차 타이어의 수명, 안전성, 승차감 등을 높이기 위해 고무내부에 넣는 섬유 재질의 보강재이다. 이전에는 면사를 엮어 만든 타이어 코드가 알려져 있었으나 마찰에 약한 한계가 있었고, 이에 따라 이러한 한계점을 개선하기 위하여 다양한 재료에 대한 개발이 이루어졌고, 현재 레이온, 나일론, 폴리에스테르 등의 타이어 코드나 스틸로 제조된 타이어 코드가 사용되고 있다.
타이어 코드로 사용되는 폴리에스테르 섬유는 고상 중합을 통하여 얻어진 고분자 수지칩을 용융 방사하는 등의 방법으로 제조된다. 이때, 타이어 코드에서 요구되는 섬유 강력 발현을 위해서는 보다 분자량이 높은 초고분자량의 폴리머를 사용하게 되는데, 이와 같이 초고분자량의 폴리머를 사용할 경우 용융 흐름성을 높이 위해 전단 속도(Shear rate)나 공정 온도를 필수적으로 높여야 한다. 하지만 이에 따르면 폴리에스테르 주쇄의 일부가 열분해되어 제조되는 섬유 자체의 분자량이나 기타 물성이 크게 저하될 수 있고, 또한 방사 장치에 지속적인 무리가 발생하여 제조 공정의 효율성이 낮아지거나 제조되는 폴리에스테르 섬유의 강도를 원하는 만큼 향상시키지 못하는 한계가 있다.
본 발명은 전단 속도의 변화에 따른 용융 점도의 변화가 크지 않은 특성과 우수한 성형성을 가지면서 상대적으로 높은 분자량 및 강도를 구현할 수 있는 타이어 코드용 원사를 제공하기 위한 것이다.
또한, 본 발명은 상기 타이어 코드용 원사의 제조 방법을 제공하기 위한 것이다.
또한, 본 발명은 상기 타이어 코드용 원사로부터 제조된 타이어 코드를 제공하기 위한 것이다.
본 명세서에서는, 상이한 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트 및 제2폴리에틸렌테레프탈레이트를 포함한 수지 조성물을 용융 및 방사하여 얻어진 폴리에틸렌테레프탈레이트 멀티 필라멘트를 포함하고, 90,000 g/mol 이상의 중량평균분자량 및 1.9 내지 2.3의 다분산지수를 갖고, 8.00 gf/d이상 또는 10.00 gf/d이상의 강도를 갖는, 타이어 코드용 원사가 제공된다.
또한, 본 명세서에서는, 상기 타이어 코드용 원사로부터 제조된 타이어 코드가 제공될 수 있다.
또한, 본 명세서에서는, 상기 타이어 코드용 원사로부터 제조된 타이어 코드를 포함하는 자동차용 타이어가 제공된다.
또한, 본 명세서에서는, 상기 타이어 코드용 원사의 제조 방법이 제공될 수 있다.
발명의 일 구현예에 따르면, 상이한 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트 및 제2폴리에틸렌테레프탈레이트를 포함한 수지 조성물을 용융 및 방사하여 얻어진 폴리에틸렌테레프탈레이트 멀티 필라멘트를 포함하고, 90,000 g/mol 이상의 중량평균분자량 및 1.9 내지 2.3의 다분산지수를 갖고, 8.00 gf/d이상 또는 10.00 gf/d이상의 강도를 갖는, 타이어 코드용 원사가 제공될 수 있다.
높은 고유 점도를 갖는 폴리에스테르 수지칩을 사용하면 고점도로 인한 방사 공정상 용융이 어렵고 압력 상승으로 인해 제조 기기의 고장이 발생할 수 있다. 이에 반하여, 낮은 고유 점도를 갖는 폴리에스테르 수지칩을 사용하면 섬유 강력 발현의 한계가 있다. 특히, 높은 고유점도를 갖는 PET 수지를 방사할 경우, 점도 저하의 문제점이 발생하며, 높은 강도의 섬유를 얻기 위해 연신 배율을 높이고, Hot tube의 기술 이용시 원사의 수축율 증가 및 형태 안정성이 떨어지는 것으로 알려져 있다.
이에 본 발명자들은, 상이한 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트 및 제2폴리에틸렌테레프탈레이트를 포함한 수지 조성물을 용융 및 방사하여 얻어진 폴리에틸렌테레프탈레이트 멀티 필라멘트를 이용하여 제조되는 타이어 코드용 원사가 용융, 압출 또는 방사 등의 고온의 공정에서도 높은 수지 흐름성을 확보할 수 있으면서도 재료의 열분해 등을 방지하여 최종 제품의 기계적 물성을 향상시킬 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다.
또한, 후술하는 바와 같이 상기 구현예의 타이어 코드용 원사를 포함하는 타이어 코드는 높은 수준의 인장 강도를 가지면서도, 내피로 실험 전후의 인장 강도 유지율이 상대적으로 높은 수준으로 유지할 수 있다는 점을 실험을 통하여 확인하였다.
구체적으로, 상기 구현예의 타이어 코드용 원사는 90,000 g/mol 이상의 중량평균분자량 및 1.9 내지 2.3의 다분산지수를 갖고, 8.00 gf/d이상 또는 10.00 gf/d이상의 강도를 가질 수 있다.
특히, 상이한 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트 및 제2폴리에틸렌테레프탈레이트를 포함한 수지 조성물을 용융 및 방사하여 얻어진 폴리에틸렌테레프탈레이트 멀티 필라멘트를 이용하여 제공되는 타이어 코드용 원사는 상대적으로 넓은 수준의 다분산 지수를 가져서 보다 넓은 분자량 분산도를 가져서, 저분자량에서의 초기 용융 흐름성을 부여할 수 있고 고분자량은 높은 용융점으로 인해 용융지연으로 열분해를 감소할 수 있는 특성을 가질 수 있다.
또한, 상기 타이어 코드용 원사는 300℃ 이하의 온도에서 낮은 전단 속도 영역에서도 그리 높지 않은 용융 점도를 가질 수 있으며, 또한 전단 속도가 높아지는 경우에도 용융 점도가 크게 낮아지지 않아서 충분한 성형성과 함께 기계적 물성을 확보할 수 있다.
보다 구체적으로, 상기 타이어 코드용 원사는 290℃의 온도 및 50/s의 전단속도에서의 용용 점도 대비 290℃의 온도 및 2000/s의 전단속도에서 용융 점도의 비율이 50% 이하, 또는 30 내지 50% 일 수 있다.
또한, 상기 수지 조성물의 290℃의 온도 및 50/s의 전단속도에서의 용용 점도 대비 290℃의 온도 및 2000/s의 전단속도에서 용융 점도의 비율이 50% 이하, 또는 30 내지 50% 일 수 있다.
또한, 상기 타이어 코드용 원사는 1.9 내지 2.3의 넓은 수준의 다분산지수를 가지면서도 90,000 g/mol 이상의 높은 중량평균분자량을 가져서 8.00 gf/d이상 또는 10.00 gf/d이상의 높은 강도를 구현할 수 있다.
한편, 상기 폴리에틸렌테레프탈레이트 멀티 필라멘트는 상이한 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트 및 제2폴리에틸렌테레프탈레이트를 포함한 수지 조성물을 용융 및 방사하여 얻어질 수 있다.
상기 수지 조성물 또한 상기 타이어 코드와 동등한 용융 물성을 가질 수 있다. 보다 구체적으로, 상기 수지 조성물은 상기 수지 조성물은 290℃의 온도 및 50/s의 전단속도에서 4,000 내지 4,800 poise의 용융 점도를 갖고, 290℃의 온도 및 1000/s의 전단속도에서 2,800 내지 3,200 poise 의 용융 점도를 가질 수 있다.
상기 수지 조성물 또한 300℃ 이하의 온도에서 낮은 전단 속도 영역에서도 그리 높지 않은 용융 점도를 가져 방사 팩 압력이 과도하게 상승하지 않을 수 있어 안정적인 방사가 가능하고, 또한 전단 속도가 높아지는 경우에도 용융 점도가 크게 저하되지 않아서 충분한 성형성과 함께 기계적 물성을 확보할 수 있다.
보다 구체적으로, 상기 수지 조성물의 290℃의 온도 및 50/s의 전단속도에서의 용융 점도와 290℃의 온도 및 1000/s의 전단속도에서의 용융 점도의 차이가 1,800 poise 이하일 수 있다.
또한, 상기 수지 조성물은 90,000 g/mol 이상의 중량평균분자량, 125,000 내지 132,000의 Z-평균분자량 및 2.150 내지 2.300의 다분산지수를 가질 수 있다.
상기 수지 조성물은 높은 Z-평균분자량를 가져서 상대적으로 넓은 수준의 다분산 지수를 가질 수 있다. 이에 따라 상기 수지 조성물은 저분자 폴리머에서 나타나는 특징인 초기 용융 흐름성을 확보하면서도 고분자 폴리머가 나타내는 높은 용융점으로 인한 용융지연으로 열분해를 감소할 수 있는 특성을 동시에 가질 수 있다. 그리고, 이와 같이 열분해 감소가 가능해짐에 따라서, 상기 수지 조성물은 보다 높은 중량평균분자량 및 높은 강도를 가질 수 있다.
한편, 상기 고분자 수지 조성물은 상이한 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트 및 제2폴리에틸렌테레프탈레이트를 포함할 수 있다.
보다 구체적으로, 상기 수지 조성물은 0.80 dl/g 내지 1.40 dl/g의 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트 및 1.50 dl/g 내지 1.90 dl/g의 고유 점도를 갖는 제2폴리에틸렌테레프탈레이트를 포함할 수 있다. 또한, 상기 제1폴리에틸렌테레프탈레이트는 1.00 dl/g 내지 1.25 dl/g의 고유 점도를 가질 수 있고, 상기 제2폴리에틸렌테레프탈레이트는 1.65 dl/g 내지 1.75 dl/g의 고유 점도를 가질 수 있다.
특히, 상기 고분자 수지 조성물은 상기 제1폴리에틸렌테레프탈레이트 및 제2폴리에틸렌테레프탈레이트 중 상기 제2폴리에틸렌테레프탈레이트의 함량을 특정하여, 높은 분자량을 갖는 폴리에스테르의 사용시 발생하는 고분자의 유동성 저하, 팩압력 증가, 방사 기기 내구성 저하 또는 제조되는 원사의 고유 점도의 저하 등을 방지할 수 있으며, 이에 따라 높은 효율성 및 경제적 유용성을 확보하면서 높은 강도 및 높은 고유 점도를 갖는 폴리에스테르 원사 및 이를 이용한 타이어 코드를 제공할 수 있다.
통상 1.40 dl/g를 초과하는 높은 고유 점도를 갖는 폴리에스테르를 사용하는 경우 제조 공정에서의 온도를 300℃ 이상으로 높여야 하는 경우가 있고 이에 따라 열분해가 가속화 되어 최초 제조되는 원사의 물성이 저하되었고, 이에 따라 높은 고유 점도를 갖는 폴레에스테르의 사용이나 이를 다른 종류의 폴리에스테르와 혼합하는 방법은 어느 정도 한계가 있는 것으로 알려져 있었다.
이에 반하여, 상기 고분자 수지 조성물은 특정한 고유 점도를 갖는 2종류의 폴리에스테르, 보다 구체적으로는 0.80 dl/g 내지 1.40 dl/g, 또는 1.00 dl/g 내지 1.25 dl/g의 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트와 1.50 dl/g 내지 1.90 dl/g, 또는 1.65 dl/g 내지 1.75 dl/g의 고유 점도를 갖는 제2폴리에틸렌테레프탈레이트를 포함하면서, 상기 제2폴리에틸렌테레프탈레이트를 10 중량% 내지 40중량%, 또는 15 중량% 내지 35중량%, 또는 20 내지 30중량%를 포함 포함함으로서, 높은 고유 점도를 갖는 폴레에스테르의 사용에 따른 한계를 해소하였다.
특히, 상기 고분자 수지 조성물은 상술한 제1,2폴리에스테를 포함하고 제2폴리에스테를 특정 함량으로 포함하면서도 전체 고유 점도가 크게 낮아지지 않는다.
상술한 바와 같이, 상기 고분자 수지 조성물은 300℃ 이하의 온도에서 적정한 유동성을 가질 수 있으며, 이에 따라 폴리에스테르 원사의 제조 과정에서 고분자의 유동성 저하, 팩압력 증가, 방사 기기 내구성 저하 또는 제조되는 원사의 고유 점도의 저하 등을 방지할 수 있다. 즉, 상기 고분자 수지 조성물은 300℃ 이하의 온도에서 낮은 전단 속도 영역에서도 그리 높지 않은 용융 점도를 가질 수 있으며, 또한 전단 속도가 높아지는 경우에도 용융 점도가 크게 높아지지 않아서 충분한 성형성을 확보할 수 있으며 폴리에스테르의 열분해에 따라 용융 점도가 크게 낮아지지도 않은 특성을 가질 수 있다.
상기 고분자 수지 조성물을 이용하여 제공되는 타이어 코드는 상대적으로 높은 중량평균분자량, 예를 들어 90,000 g/mol이상, 또는 90,000 g/mol 내지 150,000 g/mol의 중량평균분자량을 가질 수 있다.
상기 타이어 코드용 원사는 2.0 배 이상, 또는 2.0 내지 2.30배, 또는 2.1 내지 2.25배 의 최대 연신비를 가질 수 있고, 8.00 gf/d이상 또는 10.00 gf/d이상, 또는 8.00 gf/d 내지 12.00 gf/d 의 강도를 가질 수 있다.
상기 타이어 코드의 제조 방법은 크게 한정되지 않으며, 예를 들어 상기 고분자 수지 조성물을 용융 및 방사하여 얻어질 수 있다. 이때, 상기 고분자 수지 조성물은 250℃ 내지 300℃, 또는 270℃ 내지 300℃의 온도 범위에서 용융 될 수 있으며, 초기 방사속도 (1st Godet Roller 기준, G/R) 1000m/min내지 4000m/min, 또는 2000m/min내지 4000m/min 를 적용할 수 있다.
상기 타이어 코드용 원사는 2.0 내지 2.30배, 또는 2.1 내지 2.25배 연신될 수 있다.
상기 구현예의 타이어 코드용 원사는 폴리에틸렌테레프탈레이트 멀티 필라멘트를 포함하고, 상기 폴리에틸렌테레프탈레이트 멀티 필라멘트의 총 필라멘트 수가 100 내지 1,500개일 수 있고, 상기 타이어 코드용 원사의 총 섬도가 500 내지 5,000 데니어일 수 있다.
상기 타이어 코드용 원사는 단위길이당 꼬임수가 100 TPM 내지 600 TPM, 또는 200 TPM 내지 480 TPM 일 수 있다.
상기 타이어 코드용 원사의 형태는 특별히 한정되지 않으며, 구체적으로, 총 필라멘트 수가 100 내지 1,500이고, 총 섬도가 500 내지 5,000 데니어 이며, 단위길이당 꼬임수가 100 내지 600 TPM인 1 내지 3 플라이의 합연사를 포함할 수 있다.
상기 타이어 코드용 원사는 공기 주입식 타이어의 보디 플라이용 코드로 사용될 수 있다. 이에 따라, 전체적인 차량의 하중을 매우 효과적으로 지지할 수 있다. 다만, 상기 타이어 코드의 용도가 이에 제한되는 것은 아니며, 캡 플라이(cap ply) 등 다른 용도에도 적용될 수 있다.
한편, 발명의 다른 구현예에 따르면, 상기 타이어 코드용 원사를 포함하는, 타이어 코드가 제공될 수 있다.
상기 타이어 코드용 원사에 관한 내용은 상술한 내용을 모두 포함한다.
상기 타이어 코드는 상술한 타이어 코드용 원사로부터 제조되어, 보다 높은 강도 및 높은 고유 점도를 가질 수 있다.
보다 구체적으로, 상기 타이어 코드용 원사는 2.0배 내지 2.5배의 연신비를 가질 수 있고, 이때 ASTM D885 기준으로 측정한 상기 타이어 코드의 인장 강도는 7.5 g/d 이상, 또는 7.5 g/d 내지 9.9 g/d 의 강도를 가질 수 있다.
또한, 상기 타이어 코드에 포함되는 원사의 연신비가 높을수록 상기 타이어 코드의 인장 강도는 보다 높아질 수 있으며, 예를 들어 상기 타이어 코드용 원사는 2.1배 내지 2.5배의 연신비를 갖을 때, ASTM D885 기준에 따른 상기 타이어 코드의 인장 강도가 8.5 g/d 이상, 또는 8.5 g/d 내지 9.9 g/d일 수 있다.
한편, 상대적으로 높은 강도를 갖는 타이어 코드의 경우, 반복압축변형 및 인장변형 등이 가해지는 경우 인장 강도가 크게 떨어지지만, 상기 타이어 코드는 상술한 바와 같이 높은 수준의 인장 강도를 가지면서도, 내피로 실험 전후의 인장 강도 유지율이 상대적으로 높은 수준으로 유지할 수 있다.
보다 구체적으로, 상기 타이어 코드는 하기 일반식1의 내피로 실험 전후의 인장 강도 유지율이 62% 이상, 또는 62% 내지 75%, 또는 62.4% 내지 71%일 수 있다.
[일반식1]
내피로 실험 전후의 인장 강도 유지율
= 내피로 실험 후의 타이어 코드의 인장 강도 / 내피로 실험 전의 타이어 코드의 인장 강도
상기 일반식 1에서, 상기 타이어 코드의 인장 강도는 ASTM D885 기준에 따라 측정하며, 상기 내피로 실험 후의 타이어 코드의 인장 강도는 하기 내피로 실험 이후 고무를 제거하고 측정한 타이어 코드의 인장 강도일 수 있다.
상기 Disk 내피로 실험은 JIS L 1017 기준에 따라 평가하며, 보다 구체적으로 상기 내피로 실험은 상기 타이어 코오드를 160℃의 온도 및 20kgf의 압력 조건 하에 20분 간 고무와 가류하여 제조된 시편에 대하여 Disk 피로시험기를 이용하여 100℃ 의 온도, 2500rpm 및 ±8.0%의 인장압축률을 24 시간 동안 적용하여 수행한다.
한편, 상기 타이어 코드는 상술한 타이어 코드용 원사를 합연하여 합연사를 형성하는 단계; 및 상기 합연사을 접착제 용액에 침지하고 열처리하는 단계를 통하여 제조될 수 있다.
상기 합연 단계는, 예를 들어, 총 섬도 500 내지 5000 데니어의 연신사를 단위길이당 꼬임 수 100 내지 600 TPM(twist per meter)으로 ′Z′연하고, 상기 ′Z′연 원사 1 내지 3 플라이를 100 내지 600 TPM으로 ′S′연하여 총 섬도 500 내지 15000 데니어의 합연사를 제조하는 방법으로 수행할 수 있다.
또한, 상기 접착제 용액으로는 통상적인 타이어 코오드의 제조를 위해 사용되는 것, 예를 들어, 레소시놀 - 포름알데히드 - 라텍스 (Resorcinol Formaldehyde - Latex, RFL) 접착제 용액을 사용할 수 있다. 그리고, 상기 열처리 공정은 220 내지 260 ℃의 온도 하에서 90 내지 360 초 동안 진행할 수 있고, 바람직하게는 230 내지 250 ℃의 온도 하에서 90 내지 240 초 동안, 보다 바람직하게는 240 내지 245℃의 온도 하에서 90 내지 120 초 동안 수행할 수 있다. 상기 합연사를 접착제 용액에 침지하고 이러한 조건 하에 열처리함으로써, 타이어 코오드의 형태 안정성이 더욱 향상될 수 있고, 타이어의 가류 시 물성 변화를 더욱 줄일 수 있게 된다.
한편, 발명의 또 다른 구현예에 따르면, 상기 타이어 코드용 원사로부터 제조된 타이어 코드를 포함하는 자동차용 타이어가 제공될 수 있다.
타이어는 상기 타이어 코오드가 접착되어 있는 공기 주입식 타이어로 될 수 있다.
이때, 상기 타이어에 대한 타이어 코오드의 접착 방법 또는 조건은 타이어의 구체적인 종류, 재질 또는 형상이나 이와 접착되는 타이어 코오드의 종류, 재질 또는 형상 등을 고려하여 당업자에게 자명하게 결정될 수 있다.
한편, 발명의 또 다른 구현예에 따르면, 상이한 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트 및 제2폴리에틸렌테레프탈레이트을 포함한 수지 조성물을 200 내지 300℃에서 용융하고 방사하여 폴리에틸렌테레프탈레이트 멀티 필라멘트를 형성하는 단계;를 포함하는, 상술한 타이어 코드용 원사의 제조 방법이 제공될 수 있다.
상기 타이어 코드용 원사에 관한 내용은 상기 구현예의 타이어 코드용 원사에 관하여 상술한 내용을 모두 포함한다.
상기 고분자 수지 조성물을 용융하고 방사하는 단계의 구체적인 조건은 최종 제조되는 타이어 코드의 특성 및 종류 등에 따라서 결정될 수 있다.
예를 들어, 상기 고분자 수지 조성물은 200℃ 내지 300℃, 또는 250℃ 내지 300℃의 온도 범위에서 용융 될 수 있으며, 초기 방사속도 (1st Godet Roller 기준, G/R) 1000m/min내지 4000m/min 를 적용할 수 있다.
또한, 상기 제조되는 타이어 코드는 1.5 내지 3.0배, 또는 2.0 내지 2.2배 연신될 수 있다.
본 발명에 따르면, 전단 속도의 변화에 따른 용융 점도의 변화가 크지 않은 특성과와 우수한 성형성을 가지면서 상대적으로 높은 분자량 및 강도를 구현하는 타이어 코드용 원사가 제공될 수 있다.
또한, 본 발명에 따르면, 상기 타이어 코드용 원사를 포함하는 자동차용 타이어가 제공될 수 있다.
또한, 본 발명에 따르면, 상기 고분자 수지 조성물을 이용한 타이어 코드용 원사의 제조 방법이 제공될 수 있다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
[측정 방법]
이하에서, 폴리에틸렌테레프탈레이트 칩, 고분자 수지 조성물 또는 원사 각각에 대한 물성은 아래와 같은 방법으로 측정하였다.
1. Capillary rheometer (모세관 용융점도계) 측정 방법
Gottfert사의 Rheo-tester 2000기기를 사용하여 100g의 칩을 barrel에 삽입하고, 290℃에서 5분간 체류시킨 후 Shear rate (/s)에 따라 토출구 L/D 20mm/1mm를 통과함으로써 Poise (Pa·s) 점도값을 측정하였다.
2. 결정화도 측정 방법
섬유의 결정화도 측정은 밀도구배관법으로 측정하였다. 밀도가 낮은 경액과 밀도가 높은 중액을 이용하여 밀도구배액을 만들어 밀도를 아는 표준 float를 사용하여, 섬유시료의 밀도를 측정하여 다음과 같은식으로 결정화도를 측정하였다.
결정화도(Xc)(%) = [(섬유시료 밀도 - 섬유 비중 밀도)/(섬유 결정밀도 - 섬유 비정밀도)] x 100
* PET 결정밀도 : 1.457(g/㎤) , PET 비정밀도 : 1.336(g/㎤)
3. 복굴절 측정 방법
섬유의 복굴절 측정은 편광현미경으로 측정하였다. Compensator를 사용하여 섬유의 위상차를 측정하여 복굴절를 측정하였다.
편광현미경은 직접 섬유의 평행방향 굴절률과 수직방향 굴절률을 측정하여 그 차이값으로 복굴절을 측정 할 수 있다.
4. 분자량 측정 방법
수평균분자량, 중량평균분자량, Z-평균분자량은 겔 투과 크로마토그래피(GPC)에 의하여 측정하였다. 구체적으로, 시료를 hexafluoroisopropanol(HFIP)에 녹인후, O-chlorophenol(OCP): 클로로포름=1:4(부피/부피)의 비율로 추가로 희석한 용액을 0.45㎛의 멤브레인 필터로 여과한 후 GPC 기기에 설치된 Stryragel HT 컬럼 (10³내지 10 5 Å ) 에 주입하여 측정하였다.
5. 강신도 측정
ASTM D885 방법에 따라, 인스트론사(Instron Engineering Corp, Canton, Mass)의 만능인장시험기를 이용하여, PET 원사의 인장강도(g/d) 및 절단신도(%)를 각각 측정하였다. (초기하중: 0.05 gf/d, 시료 길이: 250 mm, 인장속도: 300 mm/min)
6. 고유 점도 (I.V.)
각 PET 원사의 고유점도(I.V.)(dl/g)를 ASTM D4603-96 방법에 따라 모세관 점도계(Capillary Viscometer)로 측정하였다. 사용된 용매는 페놀/1,1,2,2-테트라클로로에탄 (60/40 중량%) 혼합액이었다.
[실시예 1 내지 2 및 비교예 1 내지 2: 고분자 수지 조성물의 제조]
[비교예 1]
1.20 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩을 290℃의 온도 및 전단속도(Shear rate) 112.40 S -1 조건하에서 용융 및 압출하여 스트랜드 타입(Strand type)으로 펠렛을 제조하였다. 이때, 압출기 내부 압력에 의한 Load값은 66% 수준을 보였다.
[비교예 2]
1.20 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩과 1.70 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩을 50:50의 중량비로 혼합하여 290℃의 온도 및 전단속도(Shear rate) 112.40 S -1 조건하에서 용융 및 압출하여 스트랜드 타입(Strand type)으로 펠렛을 제조하였다. 이때, 압출기 내부 압력에 의한 Load값은 71% 수준을 보였다.
[실시예 1]
1.20 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩과 1.70 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩을 80:20의 중량비로 혼합하여 290℃의 온도 및 전단속도(Shear rate) 112.40 S -1 조건하에서 용융 및 압출하여 스트랜드 타입(Strand type)으로 펠렛을 제조하였다. 이때, 압출기 내부 압력에 의한 Load값은 69% 수준을 보였다.
[실시예 2]
1.20 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩과 1.70 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩을 70:30의 중량비로 혼합하여 290℃의 온도 및 전단속도(Shear rate) 112.40 S -1 조건하에서 용융 및 압출하여 스트랜드 타입(Strand type)으로 펠렛을 제조하였다. 이때, 압출기 내부 압력에 의한 Load값은 70% 수준을 보였다.
상기 실시예 1 내지 2 및 비교예 1 내지 2에서의 고분자 수지 조성물의 제조에 관한 내용은 하기 표1과 같다.
No 비교예1 비교예2 실시예1 실시예2
칩 I.V. 함량 (wt%) 1.2dl/g 100 50 80 70
1.7dl/g 0 50 20 30
Ext temp. (℃) 200/250/280/290/280/280/280/280/290
Ext L/D (mm) 1200/32
Die Nozzle L/D (mm) 12/4 (3Holes)
Load (%) 66 71 69 70
토출속도 (g/min) 300
Shear rate (s -1) 112.40
[실험예1: 실시예 1 내지 2 및 비교예 1 내지 2의 고분자 수지 조성물에 대한 물성 평가]
실시예 및 비교예에서 사용한 고분자 수지 조성물에 대한 분자량 및 용용 점도 측정 결과를 하기 표2에 나타내었다.
구분 I.V. 1.7dl/g 함량 (wt%) GPC (g/mol) Melt Viscosity @ 290℃Poise (Pa·s)
Mn Mw Mz PD Shear rate (1/s) 50 500 1000 2000
비교예1 0 41440 86643 121940 2.091 4,081 3,154 2,748 2,284
실시예1 20 39740 90507 129970 2.278 4,350 3,401 2,977 2,351
실시예2 30 39784 91105 131055 2.290 4,415 3,456 3,012 2,394
비교예2 50 40044 92810 134520 2.318 5,603 4,105 3,450 2,679
상기 표2에서 확인되는 바와 같이, 1.20 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩과 1.70 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩을 70:30 또는 80:20의 중량비로 포함한 실시예 1 및 2의 고분자 수지 조성물은 2.278 내지 2.290의 다분산지수(Polydispersity index)를 가지며, 290℃의 온도 및 50/s의 4,000 내지 4,800 poise의 용융 점도를 갖고, 290℃의 온도 및 1000/s의 전단속도에서 2,800 내지 3,200 poise 의 용융 점도를 갖는다는 점이 확인되고, 이때 상기 수지 조성물의 290℃의 온도 및 50/s의 전단속도에서의 용융 점도와 290℃의 온도 및 1000/s의 전단속도에서의 용융 점도의 차이가 1,800 poise 이하였다.
즉, 실시예 1 및 2의 고분자 수지 조성물은 동일 수준의 수평균분자량을 갖는 비교예1에 비하여 높은 다분산지수를 가져서, 최종 제품에서 높은 기계적 물성을 확보할 수 있고, 300℃ 이하의 온도에서 낮은 전단 속도 영역에서도 그리 높지 않은 용융 점도를 가질 수 있으며, 또한 전단 속도가 높아지는 경우에도 용융 점도가 크게 낮아지지 않아서 충분한 성형성과 함께 기계적 물성을 확보할 수 있다.
이에 반하여, 1.20 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩을 100중량%로 사용한 비교예1의 고분자 수지 조성물은 상대적으로 낮은 다분산지수를 나타내고 분자량이 낮아 최종 제품에서 충분한 기계적 물성을 확보하기 어렵다.
그리고, 1.20 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩과 1.70 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩을 50:50의 중량비로 포함한 비교예 2의 고분자 수지 조성물은 290℃의 온도 및 50/s 및 1000/s 의 전단속도에서 모두 3,200 poise를 초과하는 융용 점도를 가져서, 충분한 성형성을 갖지 못하거나 압출기 등의 제조 장치에서 발생하는 부하나 고장을 초래할 것으로 보인다.
[실시예 3 내지 5 및 비교예 3: 타이어 코드용 원사의 제조]
[비교예3]
1.20 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩을 290℃의 온도 및 전단속도(Shear rate) 500 내지 2000 S -1 조건하에서 용융 및 압출하고, 초기 방사속도 (1st Godet Roller 기준, G/R) 2800m/min를 부여하여 미연신사 권취 및 최종적으로 2.15배 연신 및 권취하여 폴리에스터 연신사를 제조하였다. 토출에 의한 팩압력은 92kgf/㎠ 수준을 보였다.
[실시예 3]
1.20 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩과 1.70 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩을 10:90의 중량비로 혼합하고, 290℃의 온도 및 전단속도(Shear rate) 500 내지 2000 S -1 조건하에서 용융 및 압출하고, 초기 방사속도 (1st Godet Roller 기준, G/R) 2800m/min를 부여하여 미연신사 권취 및 최종적으로 2.15배 연신 및 권취하여 폴리에스터 연신사를 제조하였다. 토출에 의한 팩압력은 94 kgf/㎠ 수준을 보였다.
[실시예 4]
1.20 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩과 1.70 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩을 20:80의 중량비로 혼합하고, 290℃의 온도 및 전단속도(Shear rate) 500 내지 2000 S -1 조건하에서 용융 및 압출하고, 초기 방사속도 (1st Godet Roller 기준, G/R) 2800m/min를 부여하여 미연신사 권취 및 최종적으로 2.15배 연신 및 권취하여 폴리에스터 연신사를 제조하였다. 토출에 의한 팩압력은 92 kgf/㎠ ㎠수준을 보였다.
[실시예 5]
1.20 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩과 1.70 dl/g 의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 칩을 30:70의 중량비로 혼합하고, 290℃의 온도 및 전단속도(Shear rate) 500 내지 2000 S -1 조건하에서 용융 및 압출하고, 초기 방사속도 (1st Godet Roller 기준, G/R) 2800m/min를 부여하여 미연신사 권취 및 최종적으로 2.15배 연신 및 권취하여 폴리에스터 연신사를 제조하였다. 토출에 의한 팩압력은 103 kgf/㎠ 수준을 보였다.
[실험예2: 타이어 코드용 미연신 원사의 물성 측정]
하기 표3에는 실시예 3 내지 5 및 비교예 3 각각의 세부 내용을 기재하고 하기 표4에는 각각에서 얻어진 미연신 원사의 물성을 기재하였다.
조건 I.V. 1.7dl/gchip I.V. 1.20dl/g chip 방사온도 방사속도 팩압력 최대 연신비
wt% wt% m/min kgf/㎠ D/R
실시예3 10 90 295 2800 94 x2.15
실시예4 20 80 92 x2.2
실시예5 30 70 103 x2.13
비교예3 0 100 92 x2.15
- 총 섬도는 1000De. 수준이며, Mono-filament 섬도는 4De. (구금 L/D 2.1/0.7, 250H 적용)
조건 원사의 고유 점도 원사 강도(Tenacity) 원사 신율(Elongation) 원사의 결정화도
dl/g gf/d % %
실시예3 1.025 2.81 158.27 13.1
실시예4 1.124 2.92 151.62 13.4
실시예5 1.081 2.92 152.96 13.1
비교예3 0.951 2.79 163.92 12.6
- 원사의 인장강도, 절단 신율은 인스트론사의 만능인장시험기를 이용하여 ASTM D885 방법에 따라 초기하중 0.05gf/de. 시료장 250mm, 인장속도 300mm/min 조건하에 측정하였다.
상기 표3 및 4에서 나타난 바와 같이, 실시예3 내지 4는 비교예3 대비 유사한 팩압력을 나타내었으며, 실시예 3 내지 5는 비교예에 비하여 제조된 원사의 고유 점도가 크게 상승하고 이에 따라 원사의 강도 및 결정화도가 크게 증가하였다는 점이 확인되었다.
[실험예3: 타이어 코드용 연신 원사의 물성 측정]
하기 표5에는 실시예 3 내지 5 및 비교예 3 각각의 세부 내용을 기재하고 하기 표4에는 각각에서 얻어진 연신 원사의 물성을 기재하였다.
조건 연신비 Winderspeed 원사 강도(Tenacity) 원사 신율(Elongation) Mw 다분산지수 복굴절 결정화도
D/R m/min gf/d % g/mol - △n %
실시예3 x2.0 5600 8.51 13.32 92371 2.0250 0.2095 50.1
X2.15 6020 10.12 10.51 93012 1.9755 0.2128 49.9
실시예4 x2.0 5600 8.83 13.01 94145 2.0008 0.2120 50.3
x2.2 6160 11.27 10.11 94971 1.9638 0.2155 49.8
실시예5 x2.0 5600 8.96 12.97 93618 2.0160 0.2160 50.1
x2.13 5960 10.31 10.25 93914 1.9824 0.2183 49.8
비교예3 x2.0 5600 7.91 13.22 88754 2.0320 0.2093 50.3
x2.15 6020 9.73 10.13 89152 1.9995 0.2115 50.1
상기 표5에 나타난 바와 같이, 실시예4에서 얻어진 연신 원사는 최대 연신비가 2.2배까지 발현되어 권취속도 6160m/min까지 나타났으며, 강도는 약11.3gf/d까지 측정되어 비교예 3 의 최대 연신비 2.15배에서의 강도 9.73gf/d 대비 1.5gf/d이상 향상됨을 확인할 수 있었다.
또한, 연신비 2.0배에서 비교예 3 과 실시예 3 내지 5의 원사를 분석한 결과, 비교예3 대비 결정화도는 유사하지만, 복굴절 배향도, 분자량이 증가하며 분자량 분산도 또한 좁게 형성되는 점이 확인되었다.
즉, 실시예 3 내지 5의 원사는 비교예 3와 동일한 전단속도(shear rate)에서 용융 공정이 가능하며, 열분해 비율 또한 크게 감소하여 최종 원사의 고유 점도가 상대적으로 높고 강도 또한 높게 나타난 점이 확인되었다.
[실시예 6 내지 8 및 비교예 4: 타이어 코오드의 제조]
실시예 3 내지 5 및 비교예3 각가의 연신사를 사용하여 소정의 총 섬도, 및 단위길이당 꼬임 수(TPM)로 'Z'연 된 원사 2 가닥을 동일한 연계수의 'S'연으로 합연사하여 RFL 접착제 용액에 침지한 후, 건조 및 열처리하여 PET 타이어 코오드를 제조하였다.
이때, 사용된 연신사, 연신사 섬도, 연계수 (Twist Multiplier, TM) 및 코오드 열처리 조건은 하기 표 6에 나타내었고, 상기 RFL 접착제 용액의 조성과 건조 조건 등은 통상적인 PET 타이어 코오드의 제조 조건에 따랐다.
코오드 사용된 연신사 섬도 연수 Ply 코오드
제조 연신사 (denier) (TPM) 열처리조건
실시예 6 실시예 3 1000 430 2 240~245℃, 90초 이상
실시예 7 실시예 4 1000 430 2 240~245℃, 90초 이상
실시예 8 실시예 5 1000 430 2 240~245℃, 90초 이상
비교예 4 비교예 3 1000 430 2 240~245℃, 90초 이상
[실험예 4: 타이어 코오드의 물성 측정]
실시예 6 내지 8 및 비교예 4 각각의 타이어 코오드에 대하여 다음과 같은 방법으로 물성을 측정하였으며, 측정된 물성은 하기 표 7에 나타내었다.
1) 인장강도(g/d)
ASTM D885 기준에 따라, 만능인장시험기를 이용하여 코오드 강도를 측정하였다.
2) 내피로 특성 (%)
실시예 6 내지 8 및 비교예 4 각각의 타이어 코오드를 160℃의 온도 및 20kgf의 압력 조건 하에 20분 간 고무와 가류하여 시편을 제조하였다. 그리고, 상기 시편에 대하여 Disk 피로시험기(제조사: UESHIMA, 모델명: Belt tester FT-610)를 이용하여 100℃ 의 온도, 2500rpm 및 ±8.0%의 인장압축률을 적용하여 24 시간 동안 반복압축변형 및 인장변형 교대로 가하였다. 이후, 상기 시편에서 고무를 제거하고 상기 인장 강도 측정 방법과 동일한 방법으로 내피로 실험 이후의 인장 강도를 측정하고, 이를 바탕으로 내피로 실험 전후의 인장 강도 유지율(%)를 구하였다.
코오드물성 연신비 인장강도 내피로 실험 이후의 인장 강도 내피로 실험 전후의 인장 강도 유지율
단위 (D/R) (g/d) (g/d) (%)
실시예 6 X2.0 7.66 5.37 70.1
X2.15 8.80 5.55 63.1
실시예 7 X2.0 7.95 5.55 69.8
X2.2 9.61 6.04 62.8
실시예 8 X2.0 8.06 5.59 69.3
X2.13 8.82 5.50 62.4
비교예 4 X2.0 7.12 4.95 69.5
X2.15 8.27 5.15 62.3
상기 표7에서 확인되는 바와 같이, 실시예 6 내지 8의 타이어 코드는 2.0 이상의 연신비를 갖는 실시예 3 내지 5의 원사를 사용한 경우 7.5 g/d 이상의 인장 강도를 가지며, 특히 2.1 이상의 연신비를 갖는 원사를 사용하는 경우 8.5 g/d 이상의 인장 강도를 갖는다는 점이 확인되었다.
또한, 상대적으로 높은 강도를 갖는 타이어 코드의 경우, 반복압축변형 및 인장변형 등이 가해지는 경우 인장 강도가 크게 떨어지지만, 실시예 6 내지 8의 타이어 코드는 상술한 바와 같이 높은 수준의 인장 강도를 가지면서도, 내피로 실험 전후의 인장 강도 유지율이 상대적으로 낮은 인장 강도를 갖는 비교예 4의 타이어 코드 대비 동등 수준 이상이라는 점이 확인되었다.

Claims (16)

  1. 상이한 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트 및 제2폴리에틸렌테레프탈레이트를 포함한 수지 조성물을 용융 및 방사하여 얻어진 폴리에틸렌테레프탈레이트 멀티 필라멘트를 포함하고,
    90,000 g/mol 이상의 중량평균분자량 및 1.9 내지 2.3의 다분산지수를 갖고,
    8.0 gf/d이상의 강도를 갖는,
    타이어 코드용 원사.
  2. 제1항에 있어서,
    상기 수지 조성물의 290℃의 온도 및 50/s의 전단속도에서의 용용 점도 대비 290℃의 온도 및 2000/s의 전단속도에서 용융 점도의 비율이 50% 이하이거나, 또는
    상기 타이어 코드용 원사의 290℃의 온도 및 50/s의 전단속도에서의 용용 점도 대비 290℃의 온도 및 2000/s의 전단속도에서 용융 점도의 비율이 50% 이하인,
    타이어 코드용 원사.
  3. 제1항에 있어서,
    상기 수지 조성물의 290℃의 온도 및 50/s의 전단속도에서의 용용 점도 대비 290℃의 온도 및 1000/s의 전단속도에서의 용융 점도의 차이가 1,800 poise 이하인, 타이어 코드용 원사.
  4. 제1항 또는 제3항에 있어서,
    상기 수지 조성물은 290℃의 온도 및 50/s의 전단속도에서 4,000 내지 4,800 poise의 용융 점도를 갖고,
    290℃의 온도 및 1000/s의 전단속도에서 2,800 내지 3,200 poise 의 용융 점도를 갖는, 타이어 코드용 원사.
  5. 제1항에 있어서,
    상기 수지 조성물은 90,000 g/mol 이상의 중량평균분자량, 120,000 내지 130,000의 Z평균분자량 및 2.150 내지 2.300의 다분산지수를 갖는, 타이어 코드용 원사.
  6. 제1항에 있어서,
    상기 수지 조성물은 0.80 dl/g 내지 1.40 dl/g의 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트 및 1.50 dl/g 내지 1.90 dl/g의 고유 점도를 갖는 제2폴리에틸렌테레프탈레이트를 포함하는,
    타이어 코드용 원사.
  7. 제1항 또는 제6항에 있어서,
    상기 제1폴리에틸렌테레프탈레이트 및 제2폴리에틸렌테레프탈레이트 간의 고유 점도 차이가 0.3 내지 0.5dl/g 이상인, 타이어 코드용 원사.
  8. 제1항 또는 제6항에 있어서,
    상기 수지 조성물은 상기 제2폴리에틸렌테레프탈레이트를 10 중량% 내지 40중량% 포함하는, 타이어 코드용 원사.
  9. 제1항 또는 제6항에 있어서,
    상기 제1폴리에틸렌테레프탈레이트는 1.00 dl/g 내지 1.25 dl/g의 고유 점도를 갖고
    상기 제2폴리에틸렌테레프탈레이트는1.65 dl/g 내지 1.75 dl/g의 고유 점도를 갖는, 타이어 코드용 원사.
  10. 제1항에 있어서,
    상기 폴리에틸렌테레프탈레이트 멀티 필라멘트의 총 필라멘트 수가 100 내지 1,500개이며,
    상기 타이어 코드용 원사의 총 섬도가 500 내지 5,000 데니어인, 타이어 코드용 원사.
  11. 제1항에 있어서,
    상기 타이어 코드용 원사는 1.80 내지 2.50배의 최대 연신비를 갖는, 타이어 코드용 원사.
  12. 제1항의 타이어 코드용 원사를 포함하는, 타이어 코드.
  13. 제12항에 있어서,
    상기 타이어 코드용 원사는 2.0배 내지 2.5배의 연신비를 갖고,
    ASTM D885 기준에 따른 상기 타이어 코드의 인장 강도가 7.5 g/d 이상인,
    타이어 코드.
  14. 제12항에 있어서,
    상기 타이어 코드용 원사는 2.1배 내지 2.5배의 연신비를 갖고,
    ASTM D885 기준에 따른 상기 타이어 코드의 인장 강도가 8.5 g/d 이상인,
    타이어 코드.
  15. 제12항 또는 제14항 중 어느 한 항에 있어서,
    상기 타이어 코드는 하기 일반식1의 내피로 실험 전후의 인장 강도 유지율이 62% 이상인, 타이어 코드:
    [일반식1]
    내피로 실험 전후의 인장 강도 유지율
    = 내피로 실험 후의 타이어 코드의 인장 강도 / 내피로 실험 전의 타이어 코드의 인장 강도
    상기 일반식 1에서,
    상기 타이어 코드의 인장 강도는 ASTM D885 기준에 따라 측정하며,
    상기 Disk 내피로 실험은 JIS L 1017 기준에 따라 평가하며,
    상기 내피로 실험 후의 타이어 코드의 인장 강도는 하기 내피로 실험 이후 고무를 제거하고 측정한 타이어 코드의 인장 강도이며,
    상기 내피로 실험은 상기 타이어 코오드를 160℃의 온도 및 20kgf의 압력 조건 하에 20분 간 고무와 가류하여 제조된 시편에 대하여 Disk 피로시험기를 이용하여 100℃ 의 온도, 2500rpm 및 ±8.0%의 인장압축률을 24 시간 동안 적용하여 수행한다.
  16. 상이한 고유 점도를 갖는 제1폴리에틸렌테레프탈레이트 및 제2폴리에틸렌테레프탈레이트을 포함한 수지 조성물을 200 내지 300℃에서 용융하고 방사하여 폴리에틸렌테레프탈레이트 멀티 필라멘트를 형성하는 단계;를 포함하는, 제1항의 타이어 코드용 원사의 제조 방법.
PCT/KR2020/008738 2019-07-05 2020-07-03 타이어 코드용 원사 및 타이어 코드 WO2021006561A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112022000060A BR112022000060A2 (pt) 2019-07-05 2020-07-03 Fio para reforço de pneu e reforço de pneu
CN202080049389.2A CN114174575B (zh) 2019-07-05 2020-07-03 用于轮胎帘线的纱线和轮胎帘线
EP20836537.9A EP3967796A4 (en) 2019-07-05 2020-07-03 YARN FOR TIRE CORD
JP2021578141A JP7356522B2 (ja) 2019-07-05 2020-07-03 タイヤコード用原糸およびタイヤコード
US17/624,385 US20220349094A1 (en) 2019-07-05 2020-07-03 Yarn for tire cord and tire cord

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0081578 2019-07-05
KR20190081578 2019-07-05
KR10-2020-0082062 2020-07-03
KR1020200082062A KR102400110B1 (ko) 2019-07-05 2020-07-03 타이어 코드용 원사 및 타이어 코드

Publications (1)

Publication Number Publication Date
WO2021006561A1 true WO2021006561A1 (ko) 2021-01-14

Family

ID=74114269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008738 WO2021006561A1 (ko) 2019-07-05 2020-07-03 타이어 코드용 원사 및 타이어 코드

Country Status (4)

Country Link
US (1) US20220349094A1 (ko)
JP (1) JP7356522B2 (ko)
BR (1) BR112022000060A2 (ko)
WO (1) WO2021006561A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174575A (zh) * 2019-07-05 2022-03-11 可隆工业株式会社 用于轮胎帘线的纱线

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122136A1 (ja) * 2022-12-08 2024-06-13 株式会社ブリヂストン タイヤ用ポリエチレンテレフタレートコード及びタイヤ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236493A (ja) * 1998-02-20 1999-08-31 Kuraray Co Ltd ポリエステル樹脂組成物および製造法
JP2000170026A (ja) * 1998-12-09 2000-06-20 Unitika Ltd ポリエステル繊維の紡糸方法
KR20110124440A (ko) * 2010-05-11 2011-11-17 신화섬유공업 (주) 자발고권축 폴리에스테르 복합섬유 및 그 제조방법
KR20150109731A (ko) * 2014-03-20 2015-10-02 코오롱인더스트리 주식회사 폴리에틸렌테레프탈레이트 연신사, 그 제조방법, 및 그것을 이용하여 제조된 타이어 코드
KR20180079533A (ko) * 2016-12-30 2018-07-11 주식회사 효성 형태안정성이 우수한 폴리에틸렌테레프탈레이트 타이어 코드, 이의 제조방법 및 이를 포함하는 타이어
KR20200082062A (ko) 2018-12-28 2020-07-08 (주)아이쿱 혈액검사 결과 기반 생활패턴 및 변화인자 추정방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1570838A1 (de) * 1963-11-02 1970-01-02 Kurashiki Rayon Company Ltd Verfahren zur Herstellung von Polyestern mit besonderer Molekulargewichtsverteilung
JPS56330A (en) * 1979-06-15 1981-01-06 Teijin Ltd Original fiber for tire cord textile woof and tire cord textile
JPS5876521A (ja) * 1981-11-02 1983-05-09 Teijin Ltd 強撚用ポリエステル原糸の製造方法
JPH05125608A (ja) * 1991-10-29 1993-05-21 Teijin Ltd ポリエステル繊維の溶融紡糸方法
US6329053B2 (en) * 1999-07-28 2001-12-11 Kolon Industries, Inc. Polyester multifilamentary yarn for tire cords, dipped cord and production thereof
KR100667624B1 (ko) * 2002-11-26 2007-01-11 주식회사 코오롱 고신축성 사이드 바이 사이드형 복합 필라멘트 및 그의제조방법
KR100531617B1 (ko) * 2004-03-25 2005-11-28 주식회사 효성 복합섬유 및 이의 제조방법
DE102005003731B4 (de) * 2005-01-26 2006-10-05 Epc Industrial Engineering Gmbh Reaktor zur kontinuierlichen und gleichzeitigen Herstellung verschiedener und variabel viskos einstellbarer Polyesterprodukte mit Regelung des Prozessfortschrittes über das/die hydraulische(n) Antriebssysteme(e)
JP2007204741A (ja) 2006-01-05 2007-08-16 Toyobo Co Ltd ポリエステル樹脂組成物およびそれからなるポリエステル成形体
CN104141178A (zh) * 2014-07-31 2014-11-12 江苏盛虹科技股份有限公司 一种pet复合弹性纤维及其制备方法
CN108048939B (zh) * 2017-12-14 2019-11-12 江苏恒力化纤股份有限公司 一步纺弹力复合丝及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236493A (ja) * 1998-02-20 1999-08-31 Kuraray Co Ltd ポリエステル樹脂組成物および製造法
JP2000170026A (ja) * 1998-12-09 2000-06-20 Unitika Ltd ポリエステル繊維の紡糸方法
KR20110124440A (ko) * 2010-05-11 2011-11-17 신화섬유공업 (주) 자발고권축 폴리에스테르 복합섬유 및 그 제조방법
KR20150109731A (ko) * 2014-03-20 2015-10-02 코오롱인더스트리 주식회사 폴리에틸렌테레프탈레이트 연신사, 그 제조방법, 및 그것을 이용하여 제조된 타이어 코드
KR20180079533A (ko) * 2016-12-30 2018-07-11 주식회사 효성 형태안정성이 우수한 폴리에틸렌테레프탈레이트 타이어 코드, 이의 제조방법 및 이를 포함하는 타이어
KR20200082062A (ko) 2018-12-28 2020-07-08 (주)아이쿱 혈액검사 결과 기반 생활패턴 및 변화인자 추정방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174575A (zh) * 2019-07-05 2022-03-11 可隆工业株式会社 用于轮胎帘线的纱线
CN114174575B (zh) * 2019-07-05 2023-08-15 可隆工业株式会社 用于轮胎帘线的纱线和轮胎帘线

Also Published As

Publication number Publication date
BR112022000060A2 (pt) 2022-03-15
US20220349094A1 (en) 2022-11-03
JP2022540380A (ja) 2022-09-15
JP7356522B2 (ja) 2023-10-04

Similar Documents

Publication Publication Date Title
JP2569720B2 (ja) 産業用ポリエステル繊維、その製造方法及びタイヤコード用処理コード
WO2021006561A1 (ko) 타이어 코드용 원사 및 타이어 코드
KR20090048377A (ko) 크리이프 특성이 우수한 산업용 고강도 폴리에스테르 원사 및 그 제조방법
WO2018062960A1 (ko) 하이브리드 타이어 코드 및 그 제조방법
WO2014084470A1 (ko) 폴리에틸렌 섬유 및 그의 제조방법
WO2019088464A1 (ko) 폴리에스터 타이어코드와 이를 이용한 레이디얼 타이어
WO2019059560A1 (ko) 고강도 폴리에틸렌테레프탈레이트 원사 및 그 제조방법
WO2019190141A1 (ko) 고강도 원사를 제조하기 위한 방사팩, 원사의 제조장치 및 원사의 제조방법
WO2021045418A1 (ko) 내열성이 우수한 폴리에스터 타이어 코드 및 그를 포함하는 타이어
KR102400110B1 (ko) 타이어 코드용 원사 및 타이어 코드
KR20000022466A (ko) 폴리에스테르 필라멘트 및 이 필라멘트의 제조 방법
EP0906456B1 (en) Elastic fibre
US20050161854A1 (en) Dimensionally stable yarns
KR101792035B1 (ko) 내절단성이 우수한 폴리에틸렌 섬유, 그의 제조방법 및 상기 폴리에틸렌 섬유를 포함하는 물품
WO2016108429A1 (ko) 폴리에틸렌 섬유, 그의 제조방법 및 그의 제조장치
WO2022203183A1 (ko) 타이어 코드
WO2018124472A1 (ko) 폴리에스터 타이어 코드와 이를 이용한 레이디얼 타이어
WO2015108312A1 (ko) 치수안정성이 우수한 폴리에스테르 타이어 코드 및 이의 제조방법
KR102074194B1 (ko) 폴리페닐렌 설파이드 복합 섬유가 포함된 고무 복합체
WO2024043707A1 (ko) 친환경 타이어 코드 및 이를 이용하는 타이어
WO2023277428A1 (ko) 후가공성이 향상된 폴리에틸렌 원사 및 이를 포함하는 원단
WO2023106796A1 (ko) 원착 폴리에틸렌 원사 및 이를 포함하는 기능성 원단
KR930010802B1 (ko) 폴리에스테르 타이어코드 및 타이어코드사의 제조방법
WO2018139763A1 (ko) 폴리에스터 타이어 코드와 이를 이용한 레이디얼 타이어
WO2022005137A1 (ko) 에어백 쿠션 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021578141

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020836537

Country of ref document: EP

Effective date: 20211210

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022000060

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022000060

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220103