WO2018062017A1 - 圧力測定用材料組成物、圧力測定用材料、及び圧力測定用材料セット - Google Patents

圧力測定用材料組成物、圧力測定用材料、及び圧力測定用材料セット Download PDF

Info

Publication number
WO2018062017A1
WO2018062017A1 PCT/JP2017/034219 JP2017034219W WO2018062017A1 WO 2018062017 A1 WO2018062017 A1 WO 2018062017A1 JP 2017034219 W JP2017034219 W JP 2017034219W WO 2018062017 A1 WO2018062017 A1 WO 2018062017A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsule
pressure measurement
color
pressure
median diameter
Prior art date
Application number
PCT/JP2017/034219
Other languages
English (en)
French (fr)
Inventor
田中 智史
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018542507A priority Critical patent/JP6685416B2/ja
Priority to KR1020197009069A priority patent/KR102203040B1/ko
Priority to KR1020217000523A priority patent/KR102262970B1/ko
Priority to CN201780059700.XA priority patent/CN109791079B/zh
Publication of WO2018062017A1 publication Critical patent/WO2018062017A1/ja
Priority to US16/364,189 priority patent/US11230130B2/en
Priority to US17/456,720 priority patent/US11958307B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/124Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
    • B41M5/165Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components characterised by the use of microcapsules; Special solvents for incorporating the ingredients
    • B41M5/1655Solvents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/247Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet using distributed sensing elements, e.g. microcapsules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0097Dye preparations of special physical nature; Tablets, films, extrusion, microcapsules, sheets, pads, bags with dyes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • G01L5/0038Force sensors associated with force applying means applying a pushing force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/124Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
    • B41M5/132Chemical colour-forming components; Additives or binders therefor
    • B41M5/155Colour-developing components, e.g. acidic compounds; Additives or binders therefor; Layers containing such colour-developing components, additives or binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/124Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
    • B41M5/165Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components characterised by the use of microcapsules; Special solvents for incorporating the ingredients
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/04Direct thermal recording [DTR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/38Intermediate layers; Layers between substrate and imaging layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/124Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/42Intermediate, backcoat, or covering layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/42Intermediate, backcoat, or covering layers
    • B41M5/44Intermediate, backcoat, or covering layers characterised by the macromolecular compounds

Definitions

  • the present disclosure relates to a pressure measurement material composition, a pressure measurement material, and a pressure measurement material set.
  • the materials used for pressure measurement are used for applications such as liquid crystal glass bonding, solder printing on printed circuit boards, and pressure adjustment between rollers.
  • a pressure measurement film represented by, for example, a prescale (trade name; registered trademark) provided by FUJIFILM Corporation.
  • the measurable pressure range of the commercially available pressure measuring film that is, the pressure range where color development is obtained by pressurization is a range of 0.05 MPa or more, and in a weak pressure range below 0.05 MPa, The color gradation required for detection is insufficient, or even if color development is obtained, it is difficult to obtain the density gradation necessary for determining the pressure difference.
  • a material with improved color density difference ⁇ D before and after pressurization at 0.05 MPa has been proposed, such as a pressure measurement material described in JP-A-2009-19949.
  • a pressure measurement material described in JP-A-2009-19949.
  • the present disclosure has been made in view of the above, and is a material composition for pressure measurement, which has excellent color developability and color granularity at a minute pressure of less than 0.05 MPa, and suppresses color development due to rubbing, pressure A measurement material and a pressure measurement material set are provided.
  • the present disclosure includes the following aspects. ⁇ 1> A microcapsule A containing an electron-donating colorless dye precursor and a microcapsule B not containing an electron-donating colorless dye precursor, and a volume standard median diameter D50A of the microcapsule A and a microcapsule
  • the volume standard median diameter D50B of B is a pressure measuring material having a color former layer satisfying the following formula 1.
  • D50A ⁇ D50B Formula 1 ⁇ 2> The material for pressure measurement according to ⁇ 1>, wherein the median diameter D50A satisfies the following formula 2 and the median diameter D50B satisfies the following formula 3.
  • the volume standard median diameter D50X of all particles contained in the color former layer is the material for pressure measurement according to ⁇ 1> or ⁇ 2> satisfying the following formula 4.
  • 15 ⁇ m ⁇ D50X ⁇ 50 ⁇ m Formula 4 ⁇ 4> The material for pressure measurement according to any one of ⁇ 1> to ⁇ 3>, wherein the coefficient of variation of the particle size distribution of all particles contained in the color former layer is 35% to 150%.
  • ⁇ 5> When color is developed, a concentration exceeding 0.02 is obtained as a concentration difference ⁇ D1 obtained by subtracting the concentration before pressure is applied from the concentration after applying pressure at 0.01 MPa ⁇ 1>
  • ⁇ 6> A developer material having a developer layer containing an electron-accepting compound is placed on the color developer layer in such a manner that a developer layer having the same area as the color developer layer is brought into contact with the color developer layer and developed. Any one of ⁇ 1> to ⁇ 5>, in which the density difference ⁇ D2 obtained by subtracting the density before rubbing from the color density after rubbing the color former layer 20 times with respect to the material is 0.02 or less The material for pressure measurement described in 1.
  • ⁇ 7> The ratio of the number average wall thickness ⁇ A of the microcapsule A to the volume standard median diameter D50A of the microcapsule A is 1.0 ⁇ 10 ⁇ 3 to 4.0 ⁇ 10 ⁇ 3 , Any one of ⁇ 1> to ⁇ 6>, wherein the ratio of the number average wall thickness ⁇ B of the microcapsule B to the volume standard median diameter D50B is 1.0 ⁇ 10 ⁇ 3 to 1.5 ⁇ 10 ⁇ 2
  • ⁇ 8> The pressure measurement material according to any one of ⁇ 1> to ⁇ 7>, comprising at least a support, and an easy adhesion layer and a color former layer arranged from the support side.
  • microcapsule A includes two types of microcapsules having different volume standard median diameters D50A.
  • the microcapsule A contains at least two kinds including a microcapsule A1 whose median diameter is D50A1 and a microcapsule A2 whose median diameter is D50A2.
  • D50A1> D50A2 the ratio of the content of the microcapsule A1 to the content of the microcapsule A2 is 100/1 to 100/150 on a mass basis, and any one of ⁇ 1> to ⁇ 9>
  • ⁇ 11> Any one of ⁇ 1> to ⁇ 10>, wherein the content of the microcapsules A and B in the color former layer is 80% by mass to 97% by mass with respect to the total solid content of the color former layer
  • ⁇ 12> A pressure measurement material set comprising the pressure measurement material according to any one of ⁇ 1> to ⁇ 11> and a color development material having a color developer layer containing an electron-accepting compound. .
  • a microcapsule A encapsulating an electron-donating colorless dye precursor and a microcapsule B not encapsulating an electron-donating colorless dye precursor, and a volume standard median diameter D50A of the microcapsule A;
  • the volume standard median diameter D50B of the microcapsule B is a material composition for pressure measurement that satisfies the following formula 1.
  • D50A ⁇ D50B Formula 1 ⁇ 14> The material composition for pressure measurement according to ⁇ 13>, wherein the median diameter D50A satisfies the following formula 2 and the median diameter D50B satisfies the following formula 3.
  • a pressure measurement material composition, a pressure measurement material, and a pressure measurement material that have excellent color developability at a minute pressure of less than 0.05 MPa and that suppress color development due to rubbing. A set is provided.
  • the notation “to” described in the present specification indicates a range including numerical values described before and after “to” as a minimum value and a maximum value, respectively.
  • the upper limit value or the lower limit value described in a numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
  • the amount of each component in the composition when there are a plurality of substances corresponding to each component in the composition, they exist in the composition unless otherwise specified. It means the total amount of multiple substances. In the present specification, a combination of preferred embodiments is a more preferred embodiment.
  • the pressure measurement material of the present disclosure includes a microcapsule A encapsulating an electron donating colorless dye precursor and a microcapsule B not encapsulating an electron donating colorless dye precursor, and the volume standard median of the microcapsule A
  • the diameter D50A and the volume standard median diameter D50B of the microcapsule B have a color former layer satisfying the following formula 1.
  • the pressure measurement material of the present disclosure may have other layers such as a support and an easy-adhesion layer as necessary in addition to the color former layer. D50A ⁇ D50B Formula 1
  • the pressure measurement material of the present disclosure is used in combination with a material (developer material) having a developer layer containing a developer that develops an electron donating colorless dye precursor that is a color developing component in the color developer layer. .
  • the pressure measurement material and the developer material of the present disclosure are overlapped by bringing the color developer layer of the pressure measurement material and the developer layer of the developer material into contact with each other, for example, It is used by installing it at the site to be measured that provides surface pressure. For example, when the surface pressure is applied, if the applied surface pressure is not uniform over the entire surface, the color is developed to a density corresponding to the pressure, and an image having a density gradation is obtained.
  • the color developing layer including the microcapsule A encapsulating the electron-donating colorless dye precursor as the color developing component has a diameter larger than that of the microcapsule A, and The microcapsule B that does not contain the coloring component is mixed.
  • the median diameter of the volume standard of the microcapsule is the sum of the volume of the particles on the large diameter side and the small diameter side when the entire microcapsule is divided into two with a particle diameter at which the cumulative volume is 50% as a threshold value.
  • the diameter (D50) at which the amount is equal is equal.
  • the median diameter of the volume standard of the microcapsule A is equivalent to the sum of the volume of particles between the two when the microcapsule A is divided into two with the particle diameter at which the cumulative volume is 50% as a threshold value. It refers to the particle size (D50A).
  • the median diameter of the volume standard of all particles contained in the color former layer is determined by dividing the particle group including the microcapsules into two when the particle diameter at which the cumulative volume is 50% is divided into two as threshold values. This refers to the particle diameter (D50X) in which the total volume is equal, and includes the particle distribution of microcapsules and other particles other than microcapsules.
  • the median diameter of the volume standard is the size of all microcapsules in the range of 2 cm ⁇ 2 cm when the surface of the coating film formed after coating the microcapsule solution on a support and photographing with a light microscope at 150 ⁇ magnification. Is a value calculated by measuring.
  • the pressure measurement material of one embodiment of the present invention has at least one color former layer.
  • the color former layer contains at least one kind of microcapsule A enclosing an electron-donating colorless dye precursor and at least one kind of microcapsule B not containing an electron-donating colorless dye precursor.
  • other components may be included.
  • the color former layer has a median diameter larger than that of microcapsule A (D50A ⁇ D50B) in addition to microcapsule A that contributes to color development when pressure is applied, and does not enclose an electron-donating colorless dye precursor under pressure.
  • D50A ⁇ D50B a median diameter larger than that of microcapsule A
  • the microcapsule B that does not develop color
  • the microcapsule B is broken first to prevent destruction of the microcapsule A, so that the color developability is kept low. Thereby, unnecessary color development due to rubbing or the like is suppressed.
  • the microcapsule B preferably contains a solvent or the like as an oil component. When an unplanned minute pressure is applied, the microcapsule B breaks before the microcapsule A and the microcapsule A is destroyed.
  • the oil component in the microcapsule B is in a state of being spread in the surface direction of the color developer layer and the developer layer, the reactivity of the color developing component with the developer when the microcapsule A breaks and develops color
  • the color development sensitivity is improved. Thereby, it is possible to reproduce density gradation corresponding to a wide pressure range while being excellent in color developability at a minute pressure while suppressing unnecessary color development at a minute pressure due to rubbing or the like.
  • the microcapsules A and B contained in the color former layer satisfy the relationship of the following formula 1.
  • D50A ⁇ D50B Formula 1 In Equation 1, D50A represents the volume standard median diameter of the microcapsule A, and D50B represents the volume standard median diameter of the microcapsule B.
  • D50A is smaller than D50B, color development at a minute pressure during handling such as rubbing (rubbing) can be suppressed.
  • any of the microcapsules A has a D50A smaller than D50B.
  • the volume standard median diameter D50A of the microcapsule A satisfies the following formula 2
  • the volume standard median diameter D50B of the microcapsule B satisfies the following formula 3.
  • it is. 10 ⁇ m ⁇ D50A ⁇ 40 ⁇ m Formula 2
  • each of the microcapsules A and B has the above particle diameter, unnecessary color development due to rubbing or the like can be more effectively prevented. Specifically, when D50A is less than 40 ⁇ m, color developability does not become too high, and color development due to rubbing or the like can be more effectively suppressed. On the other hand, if D50A is larger than 10 ⁇ m, the difference from D50B does not become too large, and therefore the CV value described later does not become too large, so that coating unevenness does not easily occur when the color former layer is applied and dried. Specifically, when the color former layer is applied and dried, uneven density due to drying hardly occurs.
  • D50B when D50B is less than 150 ⁇ m, the CV value described later does not become too large, the density gradation becomes good, and the occurrence of uneven coating is further suppressed. If D50B is larger than 40 ⁇ m, the difference from D50A can be maintained, and color development due to rubbing or the like can be more effectively prevented.
  • the coefficient of variation (CV value; hereinafter also referred to as CV value) of the particle size distribution of all particles contained in the color former layer is preferably 35% to 150%.
  • CV value is preferably 40% to 110%, more preferably 40% to 80%.
  • the CV value represents the relative variation of the particles of the color former layer, and is a value obtained from the following.
  • CV value (%) standard deviation / arithmetic mean particle size ⁇ 100
  • the arithmetic average particle diameter and the standard deviation are values calculated by photographing the surface of the color former layer at 150 times with an optical microscope and measuring the sizes of all the microcapsules in the range of 2 cm ⁇ 2 cm.
  • the number average wall thickness ⁇ A of the microcapsules A depends on various conditions such as the type of capsule wall material and the capsule diameter, but is 0.01 ⁇ m to 0.00 mm in that it can be broken at a pressure below 0.05 MPa. 15 ⁇ m is preferable, and 0.02 ⁇ m to 0.10 ⁇ m is more preferable.
  • the number average wall thickness ⁇ B of the microcapsules B also depends on various conditions such as the type of capsule wall material and the capsule diameter, but is 0.05 ⁇ m to 1.0 ⁇ m is preferable, and 0.07 ⁇ m to 0.80 ⁇ m is more preferable.
  • the wall thickness of the microcapsule refers to the thickness ( ⁇ m) of the resin film (so-called capsule wall) that forms the capsule particles of the microcapsule, and the number average wall thickness refers to the thickness of the individual capsule wall of the five microcapsules.
  • the ratio ( ⁇ A / D50A) of the number average wall thickness ⁇ A of the microcapsule A to the volume standard median diameter D50A of the microcapsule A is 1.0 ⁇ 10 ⁇ 3 to 4.0 ⁇ 10 ⁇ 3 . It is preferable.
  • the ratio of ⁇ A / D50A is within the above range, the balance between the capsule size and the capsule wall thickness is good, and the capsule wall thickness is too thin and there are few concerns such as leakage of capsule inclusions over time, The color developability is excellent in a minute pressure range below 0.05 MPa.
  • the ratio of ⁇ A / D50A is 1.0 ⁇ 10 ⁇ 3 or more, destruction due to rubbing or the like is not easily caused, unnecessary color development is suppressed, and density gradation is excellent. Further, when the ratio of ⁇ A / D50A is 4.0 ⁇ 10 ⁇ 3 or less, the effect of suppressing color development due to rubbing or the like is excellent, and the wall thickness with respect to the particle size is not too large, and thus the density gradation property is excellent. It will be a thing.
  • the ratio of ⁇ A / D50A is more preferably 1.3 ⁇ 10 ⁇ 3 to 2.5 ⁇ 10 ⁇ 3 .
  • the ratio of the number average wall thickness ⁇ B of the microcapsule B to the volume standard median diameter D50B of the microcapsule B is preferably 1.0 ⁇ 10 ⁇ 3 to 1.5 ⁇ 10 ⁇ 2 .
  • the ratio of ⁇ B / D50B is 1.0 ⁇ 10 ⁇ 3 or more, it is advantageous in that the capsule structure can be easily maintained in the manufacturing process of the pressure measurement material and an excellent density gradation can be obtained.
  • the ratio of ⁇ B / D50B is 1.5 ⁇ 10 ⁇ 2 or less, the property of breaking when a minute pressure due to rubbing or the like is applied is maintained, and color development at a minute pressure of less than 0.05 MPa is achieved. Excellent in properties.
  • the ratio of ⁇ B / D50B is more preferably 1.0 ⁇ 10 ⁇ 3 to 8.0 ⁇ 10 ⁇ 3 .
  • the pressure measurement material according to an embodiment of the present invention has a concentration obtained by subtracting the concentration before pressure is applied from the concentration after applying pressure at 0.01 MPa when color is developed in combination with a developer material.
  • ⁇ D1 it is preferable that a concentration in a range exceeding 0.02 is obtained.
  • the concentration difference before and after pressurization at a pressure of 0.01 MPa is a concentration difference obtained by subtracting the concentration before applying pressure at 0.01 MPa from the concentration after applying pressure at 0.01 MPa to cause color development.
  • ⁇ D1 developed from the color former layer exceeds 0.02, the color former layer in one embodiment of the present invention can be visually recognized or read when a minute pressure less than 0.05 MPa is applied. High density and density gradation can be reproduced.
  • ⁇ D1 is preferably as large as possible, more preferably 0.05 or more, and still more preferably 0.1 or more.
  • the color density is a value measured using a densitometer RD-19 (manufactured by Gretag Macbeth). The same applies to the following.
  • a developer material having a developer layer containing an electron-accepting compound is stacked on the color developer layer with the developer layer having the same area as that of the color developer layer being brought into contact with the color developer layer.
  • the density difference ( ⁇ D2) obtained by subtracting the density before rubbing from the color density after rubbing the color former layer 20 times with respect to the material is preferably suppressed to 0.02 or less. More preferably, it is suppressed to less than 0.02.
  • ⁇ D2 is 0.02 or less, color development reaching a density that can be visually recognized or read by rubbing or the like can be suppressed to a small extent.
  • ⁇ D2 is preferably as small as possible, more preferably 0.01 or less, and even more preferably zero (that is, no color development).
  • the volume standard median diameter D50X of all particles contained in the color former layer preferably satisfies the following formula 4.
  • the total particles contained in the color former layer include particles other than microcapsules in addition to microcapsules.
  • the particles other than the microcapsules include a pigment or the like, for example, pigment particles or the like are also included. 15 ⁇ m ⁇ D50X ⁇ 50 ⁇ m Formula 4
  • D50X when D50X is larger than 15 ⁇ m, it is more advantageous in that a color density that can be visually recognized even at a minute pressure of 0.01 MPa is exhibited. Further, when D50X is smaller than 50 ⁇ m, it is more advantageous in that unnecessary color development due to rubbing or the like is suppressed and an effective density gradation is expressed.
  • the microcapsule A encloses an electron-donating colorless dye precursor that is a color forming component, preferably encapsulates a solvent, and may further encapsulate an auxiliary solvent, an additive, and the like as necessary.
  • the microcapsule A contains at least one electron donating colorless dye precursor as a color forming component.
  • the electron-donating colorless dye precursor a known one can be used in the application of pressure-sensitive copying paper or heat-sensitive recording paper.
  • Various compounds such as spiropyran compounds and fluorene compounds can be used.
  • JP-A-5-257272 The electron donating colorless dye precursors may be used singly or in combination of two or more.
  • the electron donating colorless dye precursor enhances the color developability in a minute pressure range below 0.05 MPa, and develops a high concentration at a minute pressure, that is, a concentration change corresponding to a wide pressure range (that is, a concentration gradient). Therefore, those having a high molar extinction coefficient ( ⁇ ) are preferable.
  • the molar extinction coefficient ( ⁇ ) of the electron-donating colorless dye precursor is preferably 10000 mol ⁇ 1 ⁇ cm ⁇ 1 ⁇ L or more, more preferably 15000 mol ⁇ 1 ⁇ cm ⁇ 1 ⁇ L or more, Further, it is preferably 25000 mol ⁇ 1 ⁇ cm ⁇ 1 ⁇ L or more.
  • One or more electron-donating colorless dye precursors having a molar extinction coefficient ( ⁇ ) in the above range, or two or more containing an electron-donating colorless dye precursor having a molar extinction coefficient ( ⁇ ) in the above range Is used as a mixture, the ratio of the electron-donating colorless dye precursor having a molar extinction coefficient ( ⁇ ) of 10,000 mol ⁇ 1 ⁇ cm ⁇ 1 ⁇ L or more to the total amount of the electron-donating colorless dye precursor is: From the viewpoint of enhancing the color developability in a minute pressure range below 0.05 MPa and expressing a change in concentration (that is, a concentration gradient) over a wide pressure range, the range of 10% by mass to 100% by mass is preferable, and 20% by mass.
  • the range of ⁇ 100% by mass is more preferable, and the range of 30% by mass to 100% by mass is more preferable.
  • the content (for example, coating amount) of the electron donating colorless dye precursor in the color former layer is 0.1 g / m 2 in terms of mass after drying from the viewpoint of enhancing the color developability in a minute pressure range below 0.05 MPa.
  • -5 g / m 2 is preferable, 0.1 g / m 2 to 4 g / m 2 is more preferable, and 0.2 g / m 2 to 3 g / m 2 is more preferable.
  • the microcapsule A preferably includes at least one kind of solvent.
  • the solvent those known for pressure-sensitive copying paper can be used.
  • alkylnaphthalene compounds such as diisopropylnaphthalene, diarylalkane compounds such as 1-phenyl-1-xylylethane, alkyl such as isopropylbiphenyl, and the like.
  • Aromatic hydrocarbons such as biphenyl compounds, triarylmethane compounds, alkylbenzene compounds, benzylnaphthalene compounds, diarylalkylene compounds, arylindane compounds; aliphatic hydrocarbons such as dibutyl phthalate and isoparaffins, soybean oil, Examples include natural animal and vegetable oils such as corn oil, cottonseed oil, rapeseed oil, olive oil, coconut oil, castor oil, and fish oil, and natural products such as high-boiling fractions such as mineral oil.
  • the mass ratio of the solvent and the electron donating dye precursor (solvent: precursor) encapsulated in the microcapsule A is preferably in the range of 98: 2 to 30:70 in terms of color development, and 97: 3
  • the range of ⁇ 40: 60 is more preferred, and the range of 95: 5 to 50:50 is even more preferred.
  • the microcapsule A may include an auxiliary solvent as necessary.
  • the auxiliary solvent include solvents having a boiling point of 130 ° C. or less, and examples include ketone compounds such as methyl ethyl ketone, ester compounds such as ethyl acetate, alcohol compounds such as isopropyl alcohol, and the like.
  • the microcapsule A may contain an additive as necessary, in addition to the electron-donating colorless dye precursor, the solvent, and the auxiliary solvent.
  • the additive include an ultraviolet absorber, a light stabilizer, an antioxidant, a wax, and an odor inhibitor.
  • the content of the microcapsule A in the color former layer is preferably 50% by mass to 80% by mass, and 60% by mass to 75% by mass with respect to the total solid mass of the color former layer. % Is more preferable.
  • the microcapsule B is a capsule that does not include an electron-donating colorless dye precursor that is a color developing component, and preferably includes a solvent as an oil component, and further includes an auxiliary solvent, an additive, and the like as necessary. May be.
  • the microcapsule B does not include the electron-donating colorless dye precursor means that the microcapsule B does not substantially include the electron-donating colorless dye precursor. Means that the amount of the electron-donating colorless dye precursor encapsulated in is less than 5% by mass, preferably 0 (zero)% by mass, based on the total mass of the encapsulated material.
  • the electron donating colorless dye precursor to be included is selected from the electron donating colorless dye precursor that can be included in the microcapsule A. be able to.
  • the microcapsule B is formed into capsule properties such as the composition of the capsule wall material, the manufacturing conditions, the capsule wall thickness, the particle size, etc., similar to the microcapsule A, except that the electron donating colorless dye precursor is not included. Can do.
  • the components such as the solvent, auxiliary solvent, and additive that can be included in the microcapsule B can be selected from the same components as the solvent, auxiliary solvent, additive, and the like that can be included in the microcapsule A.
  • the microcapsule B may be included as a microcapsule having a different composition, capsule properties and production conditions from the microcapsule A, in addition to not encapsulating the electron-donating colorless dye precursor.
  • the content of the microcapsule B in the color former layer (that is, the amount applied in the case of coating) is preferably 5% by mass to 35% by mass with respect to the total solid mass of the color former layer, and is preferably 10% by mass to 30%. More preferably, it is more preferably 10% by weight to 25% by weight.
  • the color former layer may contain two or more kinds of microcapsules A having different median diameters, and may contain two or more kinds of microcapsules B having different median diameters.
  • the number of large-sized microcapsules that are destroyed decreases as the pressure increases, and then the small-sized microcapsules break down and develop color, so that the pressure is high
  • the color density in the region is improved, and as a result, the pressure measurement material becomes more excellent in the density gradation in the high density region.
  • the thickness of the color former layer (when the microcapsule diameter is larger than the layer thickness, the thickness excluding the microcapsules exposed from the layer surface) is preferably 0.01 ⁇ m to 0.10 ⁇ m, more preferably 0.02 ⁇ m to 0.07 ⁇ m.
  • the color former layer can be formed by preparing a pressure measuring material composition and forming a film.
  • the color former layer may be formed, for example, by applying a pressure measurement material composition (preparation liquid for forming a color former layer) on a support by a method such as coating and drying.
  • the microcapsules contained in the color former layer may be obtained as a dispersion as described above.
  • the obtained microcapsule dispersion may be used as it is as a pressure-measuring material composition for forming a color former layer containing an electron-donating colorless dye precursor (preparation liquid for forming a color former layer; for example, a coating liquid). .
  • the material composition for pressure measurement is obtained by adding a water-soluble polymer binder (for example, a fine powder of starch or starch derivative, a buffering agent such as cellulose fiber powder, polyvinyl alcohol, etc.) to the obtained microcapsule dispersion.
  • a water-soluble polymer binder for example, a fine powder of starch or starch derivative, a buffering agent such as cellulose fiber powder, polyvinyl alcohol, etc.
  • Hydrophobic polymer binder eg, vinyl acetate, acrylic, styrene / butadiene copolymer latex, etc.
  • surfactant eg, inorganic particles (eg, silica particles), fluorescent whitening agent, antifoaming agent, It may be prepared by adding a penetrating agent, an ultraviolet absorber, a preservative and the like.
  • the surfactant used in the color former layer examples include sodium alkylbenzene sulfonate that is an anionic surfactant (for example, Neogen T of Daiichi Kogyo Seiyaku Co., Ltd.), and polyion that is a nonionic surfactant.
  • anionic surfactant for example, Neogen T of Daiichi Kogyo Seiyaku Co., Ltd.
  • polyion that is a nonionic surfactant examples include oxyalkylene lauryl ether (for example, Neugen LP70 from Daiichi Kogyo Seiyaku Co., Ltd.).
  • silica particles used in the color former layer examples include gas phase method silica and colloidal silica.
  • gas phase method silica As an example of a commercially available product, the Snowtex (registered trademark) series (for example, Snowtex 30) of Nissan Chemical Co., Ltd. can be used.
  • the microcapsules A and B contained in the pressure measurement material composition for forming the color former layer satisfy the relationship of the following formula 1.
  • D50A represents the volume standard median diameter of the microcapsule A
  • D50B represents the volume standard median diameter of the microcapsule B.
  • the microcapsules A and B satisfying the above formula 1 further have a volume standard median diameter D50A of the microcapsule A satisfying the following formula 2, and the microcapsule B It is preferable that the median diameter D50B of the volume standard satisfies the following formula 3. 10 ⁇ m ⁇ D50A ⁇ 40 ⁇ m Formula 2 40 ⁇ m ⁇ D50B ⁇ 150 ⁇ m Formula 3 Since each of the microcapsules A and B has the above particle diameter, unnecessary color development due to rubbing or the like can be more effectively prevented.
  • the details are as described above, and the preferred embodiments are also the same.
  • the ratio of the content of microcapsule A to the content of microcapsule B (capsule A / capsule B) contained in the pressure measurement material composition for forming the color former layer is 100/5 to It is preferable that it is 100/50.
  • the microcapsule A is included in the same amount or more with respect to the microcapsule B, the balance between the color developability with respect to minute pressure and the effect of suppressing color development with respect to the minute pressure given during handling such as rubbing Can do.
  • the ratio is more preferably 100/10 to 100/40, and still more preferably 100/15 to 100/35 on a mass basis.
  • the material composition for pressure measurement has a volume standard median diameter D50X of all contained particles satisfying the following formula 4, and the coefficient of variation of the particle size distribution of all contained particles: (CV value) is preferably 35% to 150%.
  • the total particles contained in the material composition for pressure measurement include particles other than microcapsules in addition to microcapsules. When particles other than microcapsules contain, for example, pigments, pigment particles and the like are also included. 15 ⁇ m ⁇ D50X ⁇ 50 ⁇ m Formula 4 The effect of mixing the microcapsules B having a larger particle diameter than the microcapsules A encapsulating the color developing component, that is, rubbing, etc., because the entire particles contained in the pressure measurement material composition are in the above particle diameter range.
  • the effect of suppressing unnecessary color development due to is more effective.
  • the particle distribution in the color former layer, particularly the relative dispersion of the microcapsules is small, so that the balance between the color developability to a minute pressure and the color development preventive property due to rubbing is excellent. It will be.
  • the CV value is preferably 40% to 110%, more preferably 40% to 80%.
  • the pressure measurement material composition includes two or more types of microcapsules having different volume standard median diameters (D50A) as the microcapsules A is also suitable.
  • D50A includes two or more different types of microcapsules
  • the color of the microcapsules is broken in order starting from the microcapsules with larger diameters, and then the number of large-sized microcapsules that are broken decreases as the pressure increases, followed by the smaller diameter.
  • the microcapsules break down and develop color. Therefore, the color density in the region on the higher pressure side is improved. Thereby, a pressure measurement material superior in density gradation in a high density region can be obtained.
  • the composition containing at least two kinds including the microcapsule A1 having a median diameter of D50A1 and the microcapsule A2 having a median diameter of D50A2 as the microcapsules A having different volume standard median diameters (D50A) When the median diameters of the microcapsule A1 and the microcapsule A2 satisfy the following formula, D50A1> D50A2
  • the ratio (A1 / A2) of the content of the microcapsule A1 to the content of the microcapsule A2 in the color former layer is preferably 100/1 to 100/150, more preferably 100 / It is 25 to 100/100, more preferably 100/40 to 100/70.
  • the content ratio (A1 / A2) in the case of satisfying the above inequality is within the above range, the density gradation is more excellent.
  • the total content of the microcapsule A and the microcapsule B in the color former layer is 80% by mass to 97% by mass with respect to the total solid mass of the color former layer. Is preferred.
  • the content of the microcapsules A and B is within the above range, the amount of other components present around the macrocapsules is reduced, and the microcapsules are easily broken when subjected to pressure. But it will be easier to develop colors.
  • the median diameter of the volume standard of the microcapsule A and microcapsule B is also reduced, and as a result, the graininess when color is developed can be suppressed to a low level. Thereby, even when measuring within a narrow pressure range, it is possible to measure accurately.
  • the content of the microcapsules A and B is 80% by mass or more, the sensitivity to pressure becomes better. Moreover, it is easy to ensure the adhesiveness of a microcapsule and a base material as content of the microcapsule A and the microcapsule B is 98 mass% or less.
  • the total content of the microcapsules A and B is more preferably 85% by mass to 96% by mass, and still more preferably 85% by mass to 95% by mass.
  • the application can be performed by a known application method.
  • the coating method include a coating method using an air knife coater, rod coater, bar coater, curtain coater, gravure coater, extrusion coater, die coater, slide bead coater, blade coater and the like.
  • the pressure measurement material of one embodiment of the present invention preferably has at least a support, and an easy adhesion layer and a color former layer arranged from the support side.
  • the easy adhesion layer is preferably provided in order to improve the adhesion between the support and the color former layer.
  • the easy adhesion layer further suppresses the microcapsules from electrostatically interacting with the easy adhesion layer (for example, hydrogen bonding) and agglomeration when the composition containing the microcapsules is applied and dried. effective. Thereby, when measuring a pressure, the effect that a microcapsule is destroyed by a minute pressure is improved.
  • the easy adhesion layer may be a layer containing urethane polymer, blocked isocyanate and the like.
  • the thickness of the easy adhesion layer is preferably 0.005 ⁇ m to 0.2 ⁇ m, and more preferably 0.01 ⁇ m to 0.1 ⁇ m.
  • the support may have any shape such as a sheet shape, a film shape, or a plate shape. Specific examples of the support include paper, plastic film, and synthetic paper.
  • plastic film examples include a polyester film such as a polyethylene terephthalate film, a cellulose derivative film such as cellulose triacetate, a polyolefin film such as polypropylene and polyethylene, and a polystyrene film.
  • synthetic paper examples include polypropylene or polyethylene terephthalate biaxially stretched to form a large number of microvoids (Yupo, etc.), polyethylene, polypropylene, polyethylene terephthalate, polyamide, etc. And the like laminated on a part of paper, one side or both sides.
  • a plastic film and synthetic paper are preferable, and a plastic film is more preferable.
  • the pressure measurement material according to an embodiment of the present invention is used as one sheet of a so-called two-sheet type material in which a microcapsule enclosing a coloring component and a developer are provided on separate substrates.
  • a pressure measuring material having a color former layer containing a microcapsule enclosing a color developing component on a substrate, a developer material having a developer layer containing a developer on the substrate have.
  • the pressure measurement is performed in such a manner that the pressure measurement material and the developer material are overlapped with the surface of the color developer layer of the material for pressure measurement and the surface of the developer layer of the developer material in contact with each other.
  • it can be performed by placing and pressurizing the pressure or pressure distribution at the site to be measured.
  • Pressurization can be performed by applying pressure (point pressure, linear pressure, surface pressure, etc.) with a point, a line, or a surface by an arbitrary method.
  • pressure point pressure, linear pressure, surface pressure, etc.
  • the difference in color density that is, the density difference
  • the difference pressure is captured. This is effective when difficult surface pressure is applied.
  • the pressure measurement material set according to one embodiment of the present invention includes the pressure measurement material according to one embodiment of the present invention described above and a developer material having a developer layer containing an electron accepting compound. It is a sheet type material.
  • the pressure measurement material set according to an embodiment of the present invention may include other materials as necessary in addition to the pressure measurement material and the developer material.
  • the developer material has a developer layer containing an electron-accepting compound that is a developer that develops a color developing component contained in the color developer layer of the pressure measuring material.
  • the color developer material preferably has at least a support and a color developer layer.
  • the developer layer contains at least an electron-accepting compound that is a developer, and may contain other components such as a binder, a pigment, and an additive as necessary.
  • Examples of the electron-accepting compound include inorganic compounds and organic compounds.
  • Specific examples of the inorganic compound include acidic clay, activated clay, attapulgite, zeolite, bentonite, clay material such as kaolin, and the like.
  • Specific examples of the organic compound include metal salts of aromatic carboxylic acids, phenol formaldehyde resins, metal salts of carboxylated terpene phenol resins, and the like.
  • acidic clay, activated clay, zeolite, kaolin, metal salt of aromatic carboxylic acid, metal salt of carboxylated terpene phenol resin are preferable, acidic clay, activated clay, kaolin, aromatic carboxylic acid More preferably, it is a metal salt.
  • metal salt of aromatic carboxylic acid examples include 3,5-di-t-butylsalicylic acid, 3,5-di-t-octylsalicylic acid, 3,5-di-t-nonylsalicylic acid, 3,5 -Di-t-dodecylsalicylic acid, 3-methyl-5-t-dodecylsalicylic acid, 3-t-dodecylsalicylic acid, 5-t-dodecylsalicylic acid, 5-cyclohexylsalicylic acid, 3,5-bis ( ⁇ , ⁇ -dimethylbenzyl ) Salicylic acid, 3-methyl-5- ( ⁇ -methylbenzyl) salicylic acid, 3- ( ⁇ , ⁇ -dimethylbenzyl) -5-methylsalicylic acid, 3- ( ⁇ , ⁇ -dimethylbenzyl) -6-methylsalicylic acid, 3 -( ⁇ -methylbenzyl) -5- ( ⁇ , ⁇ - ⁇ -
  • the content of electron-accepting compound in the color developer layer (case of coating the coating weight), 0.1g / m 2 ⁇ 30g / m 2 is preferable in dry weight.
  • Content when the electron-accepting compound is an inorganic compound, more preferably, on a dry weight was 3g / m 2 ⁇ 20g / m 2, more preferably 5g / m 2 ⁇ 15g / m 2.
  • the developer layer can be formed by preparing and forming a preparation liquid for forming the developer layer.
  • the developer layer may be formed, for example, by applying a preparation solution for forming a developer layer on a support by a method such as coating and drying.
  • the preparation liquid for forming the developer layer may be a dispersion liquid in which an electron accepting compound is dispersed in water or the like.
  • the dispersion liquid in which the electron-accepting compound is dispersed can be prepared by mechanically dispersing the inorganic compound in water when the electron-accepting compound is an inorganic compound, and the electron-accepting compound is an organic compound. In some cases, it can be prepared by mechanically dispersing the organic compound in water or dissolving it in an organic solvent.
  • the method described in JP-A-8-207435 can be referred to.
  • the obtained dispersion liquid of the electron-accepting compound may be used as a preparation liquid (for example, a coating liquid) for forming a developer layer for forming a developer layer containing the electron-accepting compound as it is.
  • a preparation liquid for example, a coating liquid
  • the developer layer can contain binders, pigments, and additives such as fluorescent brighteners, antifoaming agents, penetrating agents, and preservatives.
  • binder examples include styrene-butadiene copolymer latex, vinyl acetate latex, acrylic ester latex, polyvinyl alcohol, polyacrylic acid, maleic anhydride-styrene copolymer, starch, casein, gum arabic, and gelatin. And synthetic or natural polymer substances such as carboxymethylcellulose and methylcellulose.
  • Examples of the pigment include kaolin, calcined kaolin, kaolin aggregate, heavy calcium carbonate, and light carbonates in various forms (for example, rice granule, prismatic shape, spindle shape, squid shape, spherical shape, aragonite columnar shape and amorphous shape).
  • Examples include calcium, talc, rutile, or anatase type titanium dioxide.
  • the coating can be performed by a known coating method, and the same coating method as that for forming the color former layer described above. Can be applied.
  • Example 1 Preparation of electron-donating colorless dye precursor-encapsulated microcapsule solution (A)- 20 parts of the following compound (A), which is an electron-donating colorless dye precursor, was dissolved in 57 parts of linear alkylbenzene (JX Energy Co., Ltd., Grade Alkene L) to obtain Solution A.
  • the median diameter (D50A) in the volume standard of the electron-donating colorless dye precursor-encapsulated microcapsules (A) was 30 ⁇ m.
  • the number average wall thickness was 0.054 ⁇ m, and ⁇ A / D50A was 1.8 ⁇ 10 ⁇ 3 .
  • the median diameter (D50A) is obtained after applying the microcapsule solution onto a polyethylene terephthalate (PET) sheet (Toyobo Co., Ltd., Cosmo Shine (registered trademark) A4300) with an easy adhesion layer as a support and drying.
  • PET polyethylene terephthalate
  • the surface of the coated film was photographed at 150 ⁇ with an optical microscope, and the size of all the microcapsules in the range of 2 cm ⁇ 2 cm was measured and calculated.
  • the number average wall thickness is obtained by preparing a cross section of the coating film, selecting 5 microcapsules from the cross section, and obtaining the thickness ( ⁇ m) of each capsule wall with a scanning electron microscope (SEM
  • the median diameter (D50B) in the volume standard of the electron-donating colorless dye precursor non-encapsulated microcapsules (B) was 55 ⁇ m.
  • the number average wall thickness was 0.24 ⁇ m, and ⁇ B / D50B was 4.3 ⁇ 10 ⁇ 3 .
  • the median diameter (D50B) and the number average wall thickness were calculated by the same method as D50A.
  • developer sheet (1) The average particle diameter of all the particles was measured by using 10 parts of zinc acceptor 3,5-di- ⁇ -methylbenzylsalicylate, 100 parts of calcium carbonate, 1 part of sodium hexametaphosphate and 200 parts of water using a sand grinder. Was dispersed to prepare a dispersion. Next, 100 parts of a 10% aqueous solution of polyvinyl alcohol (PVA-203, Kuraray Co., Ltd.), 10 parts of styrene-butadiene latex as a solid content, and 450 parts of water are added to the prepared dispersion, and an electron accepting compound is added. A coating solution containing a developer (developer-containing preparation solution) was prepared.
  • a coating solution containing an electron-accepting compound is coated on a 75 ⁇ m-thick polyethylene terephthalate (PET) sheet so that the solid coating amount is 4.0 g / m 2 and dried to form a developer layer.
  • PET polyethylene terephthalate
  • Examples 2 to 50, Comparative Examples 1 to 6 A two-sheet type comprising a dye precursor sheet and a developer sheet in the same manner as in Example 1 except that the microcapsule solution and the color former layer were changed as shown in Tables 1 to 3 in Example 1. A material set for pressure measurement was prepared.
  • the dye precursor sheet (1) and the developer sheet (1) are each cut into a size of 5 cm ⁇ 5 cm, and the dye precursor sheet (1) and the developer sheet (1) are The surface of the color former layer of the dye precursor sheet (1) and the surface of the developer layer of the developer sheet (1) were brought into contact with each other and superposed. Both the superposed sheets were sandwiched between two glass plates having a smooth surface and placed on a desk, and a weight was placed on the glass plate, so that pressure was applied at a pressure of 0.03 MPa to develop a color. Thereafter, the two superimposed sheets were peeled off, and the color development surface of the color developer sheet (1) was visually observed and evaluated according to the following evaluation criteria. The evaluation results are shown in Tables 1 to 3. ⁇ Evaluation criteria> 3: The graininess on the color development surface is very small. 2: Although there is some graininess on the color development surface, there is no problem in practical use. 1: The graininess on the color development surface is clearly large.
  • Comparative Example 2 which does not contain the electron donating colorless dye precursor non-encapsulated microcapsule liquid (B) containing no color forming component
  • the capsule size is small, there is no color development due to rubbing, but color developability at a minute pressure. As a result, the color tone was poor.
  • Comparative Examples 4 to 5 since two types of microcapsules encapsulating the coloring component are contained and no electron-donating colorless dye precursor non-encapsulating microcapsules containing no coloring component are contained, coloring due to rubbing is not suppressed.
  • Comparative Example 6 contains electron-donating colorless dye precursor non-encapsulated microcapsules that do not contain a color forming component
  • D50B of the electron-donating colorless dye precursor non-encapsulated microcapsules is an electron-donating colorless dye precursor. Since the size is equal to or smaller than D50A of the microcapsule, the function as a sacrificial material is poor, and color development due to rubbing could not be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Color Printing (AREA)
  • Measuring Fluid Pressure (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Materials For Medical Uses (AREA)

Abstract

電子供与性無色染料前駆体を内包するマイクロカプセルA及び電子供与性無色染料前駆体を内包しないマイクロカプセルBを含有し、かつ、前記マイクロカプセルAの体積標準のメジアン径D50Aと、前記マイクロカプセルBの体積標準のメジアン径D50Bと、が下記式1を満たす発色剤層を有する圧力測定用材料、圧力測定用材料組成物、及び圧力測定用材料セットである。 D50A<D50B 式1

Description

圧力測定用材料組成物、圧力測定用材料、及び圧力測定用材料セット
 本開示は、圧力測定用材料組成物、圧力測定用材料、及び圧力測定用材料セットに関する。
 圧力の測定に用いられる材料は、液晶ガラスの貼合せ工程、プリント基板へのハンダ印刷、ローラ間の圧力調整などの用途に使われている。圧力の測定に用いられる材料の例として、例えば富士フイルム(株)から提供されているプレスケール(商品名;登録商標)に代表される圧力測定フィルムがある。
 ところが、上市されている圧力測定フィルムの測定可能な圧力範囲、つまり加圧により発色が得られる圧力の範囲は、0.05MPa以上の範囲となっており、0.05MPaを下回る弱い圧力範囲では、検出に必要とされる発色が不足し、又は発色が得られても圧力差を判断するために必要な濃度階調は得られにくい。
 近年、製品の高機能化及び高精細化により、微小な圧力の分布を測定する必要性が増す傾向にある。例えば、液晶パネルの分野では、貼り合わせ方法として、大面積化に対応して真空貼り合わせ方式が採用される場合が増加し、大気圧である0.1MPa以下の圧力領域での圧力分布の把握が重要になっている。また、スマートフォンの分野では、モジュールの薄手化に伴い、貼り合わせ時の歩留まりを向上させる観点から0.05MPa以下の微小な圧力での貼り合わせが必要とされており、圧力分布を精密に把握する必要性が生じている。
 上記に鑑み、例えば、特開2009-19949号公報において、微小な圧力で視認ないし読み取り可能な濃度を得るため、0.05MPaでの加圧前後における発色濃度差ΔDが0.02以上である圧力測定用材料が提案されている。
 また、例えば、特開2009-63512号公報において、低圧で良好な発色が得られる2シートタイプの圧力測定用材料として、マイクロカプセルにおける数平均壁厚σと顕色剤層の表面粗さRaとに着目し、擦れに対する発色が抑制された圧力測定用材料が開示されている。
 上記した従来技術では、例えば、特開2009-19949号公報に記載の圧力測定用材料のように、0.05MPaでの加圧前後における発色濃度差ΔDが良化された材料は提案されているものの、0.05MPaを下回るさらに微小な圧力が与えられた場合の濃度及び濃度階調を検出するためには、0.05MPa未満の微小な圧力の検出に適した材料を選択することが望ましい。
 しかしながら、0.05MPaを下回る微小な圧力の付与によっても、視認ないし読み取りが可能な濃度及び濃度階調が得られるように高感度化しようとすると、取り扱い時の擦れ等に起因した発色が生じやすくなる課題がある。
 つまり、0.05MPaを下回る圧力範囲において良好に発色し、かつ、微小な圧力差に対応した発色(すなわち濃度階調)が得られ、かつ、擦れ等によって不要な発色を抑えることができる技術の確立が望まれている。
 本開示は、上記に鑑みてなされたものであり、0.05MPa未満の微小な圧力での発色性及び発色粒状性に優れ、かつ、擦れによる発色が抑制された圧力測定用材料組成物、圧力測定用材料、及び圧力測定用材料セットを提供する。
 本開示は、以下の態様が含まれる。
 <1> 電子供与性無色染料前駆体を内包するマイクロカプセルA及び電子供与性無色染料前駆体を内包しないマイクロカプセルBを含有し、かつ、マイクロカプセルAの体積標準のメジアン径D50Aと、マイクロカプセルBの体積標準のメジアン径D50Bと、が下記式1を満たす発色剤層を有する圧力測定用材料である。
   D50A<D50B  式1
 <2> 上記のメジアン径D50Aが下記式2を満たし、かつ、上記のメジアン径D50Bが下記式3を満たす<1>に記載の圧力測定用材料である。
   10μm<D50A<40μm   式2
   40μm<D50B<150μm  式3
 <3> 発色剤層に含まれる全粒子の体積標準のメジアン径D50Xが、下記式4を満たす<1>又は<2>に記載の圧力測定用材料である。
   15μm<D50X<50μm   式4
 <4> 発色剤層に含まれる全粒子の粒径分布の変動係数が、35%~150%である<1>~<3>のいずれか1つに記載の圧力測定用材料である。
 <5> 発色させた場合に、0.01MPaで圧力を加えて発色させた後の濃度から圧力を加える前の濃度を減じた濃度差ΔD1として、0.02を超える濃度が得られる<1>~<4>のいずれか1つに記載の圧力測定用材料である。
 <6> 発色剤層の上に、電子受容性化合物を含む顕色剤層を有する顕色材料を、発色剤層と同一面積の顕色剤層を発色剤層に接触させて重ね、顕色材料に対して発色剤層を20回反復運動させて擦過させた後の発色濃度から擦過前の濃度を減じた濃度差ΔD2が0.02以下である<1>~<5>のいずれか1つに記載の圧力測定用材料である。
 <7> マイクロカプセルAの体積標準のメジアン径D50Aに対する、マイクロカプセルAの数平均壁厚δの比が1.0×10-3~4.0×10-3であり、マイクロカプセルBの体積標準のメジアン径D50Bに対する、マイクロカプセルBの数平均壁厚δの比が、1.0×10-3~1.5×10-2である<1>~<6>のいずれか1つに記載の圧力測定用材料である。
 <8> 少なくとも、支持体と、支持体側から配置された易接着層及び発色剤層と、を有する<1>~<7>のいずれか1つに記載の圧力測定用材料である。
 <9> マイクロカプセルAとして、体積標準のメジアン径D50Aが異なる二種のマイクロカプセルを含む<1>~<8>のいずれか1つに記載の圧力測定用材料である。
 <10> マイクロカプセルAとして、メジアン径がD50A1であるマイクロカプセルA1及びメジアン径がD50A2であるマイクロカプセルA2を含む少なくとも二種を含有し、
 D50A1>D50A2の関係を満たす場合、マイクロカプセルA2の含有量に対するマイクロカプセルA1の含有量の比が、質量基準で100/1~100/150である<1>~<9>のいずれか1つに記載の圧力測定用材料である。
 <11> 発色剤層中におけるマイクロカプセルA及びマイクロカプセルBの含有量が、発色剤層の全固形分に対して、80質量%~97質量%である<1>~<10>のいずれかに1つに記載の圧力測定用材料である。
 <12> <1>~<11>のいずれか1つに記載の圧力測定用材料と、電子受容性化合物を含む顕色剤層を有する顕色材料と、を含む圧力測定用材料セットである。
 <13> 電子供与性無色染料前駆体を内包するマイクロカプセルAと、電子供与性無色染料前駆体を内包しないマイクロカプセルBと、を含み、かつ、マイクロカプセルAの体積標準のメジアン径D50Aと、マイクロカプセルBの体積標準のメジアン径D50Bと、が下記式1を満たす圧力測定用材料組成物である。
   D50A<D50B  式1
 <14> メジアン径D50Aが下記式2を満たし、メジアン径D50Bが下記式3を満たす<13>に記載の圧力測定用材料組成物である。
   10μm<D50A<40μm   式2
   40μm<D50B<150μm  式3
 <15> マイクロカプセルBの含有量に対するマイクロカプセルAの含有量の比が、質量基準で100/5~100/50である<13>又は<14>に記載の圧力測定用材料組成物である。
 <16> 組成物に含まれる全粒子の体積標準のメジアン径D50Xが下記式4を満たし、かつ、組成物に含まれる全粒子の粒径分布の変動係数が35%~150%である<13>~<15>のいずれか1つに記載の圧力測定用材料組成物である。
   15μm<D50X<50μm   式4
 <17> マイクロカプセルAとして、体積標準のメジアン径D50Aが異なる二種のマイクロカプセルを含む<13>~<16>のいずれか1つに記載の圧力測定用材料組成物である。
 本発明の実施形態によれば、0.05MPa未満の微小な圧力での発色性に優れ、かつ、擦れによる発色が抑制された圧力測定用材料組成物、圧力測定用材料、及び圧力測定用材料セットが提供される。
 以下、本開示の圧力測定用材料組成物、圧力測定用材料、及び圧力測定用材料セットについて、詳細に説明する。
 なお、本明細書中に記載の「~」の表記は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書中において、組成物中の各成分の量について言及する場合、組成物中に各成分に相当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本明細書において、好ましい態様の組み合わせは、より好ましい態様である。
<圧力測定用材料>
 本開示の圧力測定用材料は、電子供与性無色染料前駆体を内包するマイクロカプセルA及び電子供与性無色染料前駆体を内包しないマイクロカプセルBを含有し、かつ、マイクロカプセルAの体積標準のメジアン径D50Aと、マイクロカプセルBの体積標準のメジアン径D50Bと、が下記式1を満たす発色剤層を有している。本開示の圧力測定用材料は、発色剤層に加え、必要に応じて、支持体及び易接着層等の他の層を有してもよい。
   D50A<D50B  式1
 本開示の圧力測定用材料は、発色剤層中の発色成分である電子供与性無色染料前駆体を発色させる顕色剤を含む顕色剤層を有する材料(顕色材料)と組み合わせて用いられる。具体的には、本開示の圧力測定用材料及び顕色材料を、圧力測定用材料の発色剤層と顕色材料の顕色剤層とを接触させて重ね合わせ、重ね合わせた状態で、例えば面圧を付与する被測定部位に設置して使用される。例えば面圧が付与された際、付与された面圧が全面において均一でない場合は圧力に応じた濃度に発色し、濃度階調のある画像が得られる。
 圧力の測定に用いられる材料としては、従来から提案され、広く利用されるに至っているが、いずれも加圧時に付与される0.05MPa以上の範囲の圧力の検出に好適に用いられるものである。ところが、近年では、製品の高機能化及び高精細化に伴い、求められる圧力の検出能は0.05MPaを下回る範囲となってきている。上記のように、従来から例えば、特開2009-19949号公報及び特開2009-63512号公報に記載の圧力測定用材料等が提供されているが、検出に適した圧力範囲が近年要求される圧力範囲と乖離しており、従来の圧力測定用材料等では容易に測定が行い難い傾向がある。
 一方、微小な圧力で良好な発色が得られ、かつ、広い圧力範囲に対応して濃度階調が現れるように圧力測定用材料を設計することは難しい。例えば微小な圧力で検出するために高感度化すると、微小な圧力で発色し過ぎる結果、濃度階調が現れる圧力範囲が狭まりやすく、しかも取り扱い時の僅かな擦れ等で発色し、画像中に予定していない発色が混在しやすい。
 上記に鑑み、本発明の一実施形態の圧力測定用材料では、発色成分である電子供与性無色染料前駆体を内包するマイクロカプセルAを含む発色層中に、マイクロカプセルAより大径で、かつ、発色成分を内包しないマイクロカプセルBを混在させる。これにより、必要な発色感度を獲得し、不要な発色を抑制する。微小な圧力に対する発色バランスをとることにより、0.05MPa未満の微小な圧力での発色性に優れ、かつ、擦れによる発色が抑制された圧力測定用材料を提供することができる。
 ここで、マイクロカプセルの体積標準のメジアン径は、マイクロカプセル全体を体積累計が50%となる粒子径を閾値に2つに分けた場合に、大径側と小径側での粒子の体積の合計が等量となる径(D50)を指す。
 例えば、マイクロカプセルAの体積標準のメジアン径は、マイクロカプセルAを体積累計が50%となる粒子径を閾値に2つに分けた場合の両者間での粒子の体積の合計が等量となる粒子径(D50A)を指す。また、発色剤層に含まれる全粒子の体積標準のメジアン径は、マイクロカプセルを含む粒子群を体積累計が50%となる粒子径を閾値に2つに分けた場合の両者間での粒子の体積の合計が等量となる粒子径(D50X)を指し、マイクロカプセルとマイクロカプセル以外の他の粒子の粒子分布が含まれる。
 体積標準のメジアン径は、マイクロカプセル液を支持体に塗布し、乾燥後に形成された塗布膜の表面を光学顕微鏡により150倍で撮影し、2cm×2cmの範囲にある全てのマイクロカプセルの大きさを計測して算出される値である。
[発色層]
 本発明の一実施形態の圧力測定用材料は、少なくとも一層の発色剤層を有する。
 発色剤層は、電子供与性無色染料前駆体を内包するマイクロカプセルAの少なくとも一種と、電子供与性無色染料前駆体を内包しないマイクロカプセルBの少なくとも一種と、を含有しており、必要に応じて、更に他の成分を含んでもよい。
 発色剤層は、圧力が加えられた場合の発色に寄与するマイクロカプセルAに加え、マイクロカプセルAよりメジアン径が大きく(D50A<D50B)、電子供与性無色染料前駆体を内包せず加圧下で発色しないマイクロカプセルBを含むことにより、予定しない微小な圧力が与えられた際は、まずマイクロカプセルBが壊れてマイクロカプセルAの破壊を防ぐので、発色性が低く抑えられる。これにより、擦れ等による不要な発色が抑制される。
 更に、マイクロカプセルBは、オイル成分として溶剤等を含む場合が好ましく、予定しない微小な圧力が与えられた際、マイクロカプセルBがマイクロカプセルAより先に壊れ、マイクロカプセルAが破壊された際にはマイクロカプセルB中のオイル成分が発色剤層及び顕色剤層の面方向に染み亘った状態になるので、マイクロカプセルAが壊れて発色する際の発色成分の顕色剤との反応性が向上し、発色感度は向上する。これにより、擦れ等による微小な圧力での不要な発色を抑制しつつも、微小な圧力での発色性に優れ、かつ、広い圧力範囲に対応する濃度階調を再現することができる。
 本発明の一実施形態の圧力測定用材料では、発色剤層に含まれるマイクロカプセルA及びマイクロカプセルBが下記式1の関係を満たしている。
   D50A<D50B  式1
 式1において、D50Aは、マイクロカプセルAの体積標準のメジアン径を表し、D50Bは、マイクロカプセルBの体積標準のメジアン径を表す。
 D50AがD50Bより小さい関係にあることにより、擦れ(擦過)等の取り扱い時の微小な圧力での発色が抑えられる。
 なお、例えばメジアン径の異なる二種以上のマイクロカプセルAを含む場合、擦れ等による発色抑制の観点から、いずれのマイクロカプセルAもD50AがD50Bより小さいことが好ましく、より好ましい態様では、全てのマイクロカプセルAが上記の式1を満たす。
 上記式1を満たすマイクロカプセルA及びBは、更に、マイクロカプセルAの体積標準のメジアン径D50Aが下記式2を満たし、かつ、マイクロカプセルBの体積標準のメジアン径D50Bが下記式3を満たしていることが好ましい。
   10μm<D50A<40μm   式2
   40μm<D50B<150μm  式3
 マイクロカプセルA及びBがそれぞれ上記粒子径を有していることにより、擦れ等に起因する不要な発色をより効果的に防ぐことができる。
 具体的には、D50Aが40μm未満であると、発色性が高くなり過ぎず、擦れ等による発色がより効果的に抑えられる。また、D50Aが10μmより大きいと、D50Bとの差が大きくなり過ぎず、したがって後記のCV値も大きくなり過ぎないので、発色剤層を塗布し乾燥した際の塗布ムラが生じにくい。詳細には、発色剤層を塗布し乾燥した際、乾燥に伴う濃淡ムラが生じにくい。
 また、D50Bが150μm未満であると、後記のCV値が大きくなり過ぎず、濃度階調が良好になり、塗布ムラの発生もより抑えられる。D50Bが40μmより大きいと、D50Aとの差異が保てるので、擦り等による発色をより効果的に防ぐことができる。
 上記の中でも、上記と同様の観点から、下記の式2-1及び式3-1を満たす場合がより好ましい。
   10μm<D50A<40μm   式2-1
   40μm<D50B<100μm   式3-1
 更には、下記の式2-2及び式3-2を満たす場合が好ましい。
   10μm<D50A<40μm   式2-2
   40μm<D50B<80μm   式3-2
 更には、下記の式2-3及び式3-3を満たす場合が好ましい。
   25μm<D50A<35μm   式2-3
   40μm<D50B<80μm   式3-3
 発色剤層に含まれる全粒子の粒径分布の変動係数(CV値;Coefficient of Variation;以下、CV値ともいう。)としては、35%~150%であることが好ましい。
 CV値が上記範囲内であると、発色剤層内の粒子分布、特にマイクロカプセルの相対的なバラツキが小さいので、微小な圧力に対する発色性と擦り等による発色防止性とのバランスに優れたものとなる。
 CV値としては、40%~110%が好ましく、40%~80%がより好ましい。
 なお、CV値は、発色剤層の粒子の相対的なバラツキを表し、下記より求められる値である。
    CV値(%)= 標準偏差/算術平均粒子径×100
 算術平均粒子径及び標準偏差は、発色剤層の表面を光学顕微鏡により150倍で撮影し、2cm×2cmの範囲にある全てのマイクロカプセルの大きさを計測して算出される値である。
 マイクロカプセルAの数平均壁厚δは、カプセル壁材の種類及びカプセル径等の種々の条件に依存するが、0.05MPaを下回る圧力で破壊可能である点で、0.01μm~0.15μmが好ましく、0.02μm~0.10μmがより好ましい。
 また、マイクロカプセルBの数平均壁厚δについても、カプセル壁材の種類及びカプセル径等の種々の条件に依存するが、マイクロカプセルAより容易に破壊されやすくなる点で、0.05μm~1.0μmが好ましく、0.07μm~0.80μmがより好ましい。
 マイクロカプセルの壁厚とは、マイクロカプセルのカプセル粒子を形成する樹脂膜(いわゆるカプセル壁)の厚み(μm)を指し、数平均壁厚とは、5個のマイクロカプセルの個々のカプセル壁の厚み(μm)を走査型電子顕微鏡(SEM)により求めて平均した平均値をいう。具体的には、まずマイクロカプセル液を任意の支持体上に塗布し、乾燥して塗布膜を形成する。得られた塗布膜の断面切片を作製し、その断面をSEMを用いて観察し、任意の5個のマイクロカプセルを選択の上、選択した個々のマイクロカプセルの断面を観察してカプセル壁の厚みを求めて平均値を算出する。
 マイクロカプセルAの体積標準のメジアン径D50Aに対する、マイクロカプセルAの数平均壁厚δの比(δ/D50A)としては、1.0×10-3~4.0×10-3であることが好ましい。δ/D50Aの比が上記範囲内であると、カプセルの大きさとカプセル壁の厚みとのバランスが良く、カプセル壁の厚みが薄すぎて経時でカプセルの内包物が漏れる等の懸念が少なく、0.05MPaを下回る微小な圧力範囲での発色性に優れたものとなる。
 δ/D50Aの比が1.0×10-3以上であると、擦れ等による破壊が容易に起こりにくくなり、不要な発色が抑えられ、濃度階調性に優れたものとなる。また、δ/D50Aの比が4.0×10-3以下であると、擦れ等による発色の抑制効果に優れ、しかも粒子サイズに対する壁厚が大き過ぎないため、濃度階調性に優れたものとなる。
 δ/D50Aの比は、1.3×10-3~2.5×10-3がより好ましい。
 また、マイクロカプセルBの体積標準のメジアン径D50Bに対する、マイクロカプセルBの数平均壁厚δの比は、1.0×10-3~1.5×10-2であることが好ましい。δ/D50Bの比が1.0×10-3以上であると、圧力測定用材料の製造プロセス内でカプセル構造を維持しやすく、優れた濃度階調が得られる点で有利である。また、δ/D50Bの比が1.5×10-2以下であると、擦れ等による微小な圧力が与えられた際に壊れる性質を維持し、0.05MPa未満の微小な圧力での発色性に優れる。
 δ/D50Bの比は、1.0×10-3~8.0×10-3がより好ましい。
 本発明の一実施形態の圧力測定用材料は、顕色材料と組み合わせて発色させた場合に、0.01MPaで圧力を加えて発色させた後の濃度から圧力を加える前の濃度を減じた濃度差(ΔD1)として、0.02を超える範囲の濃度が得られるものであることが好ましい。
 なお、0.01MPaの圧力での加圧前後における濃度差とは、0.01MPaで圧力を加えて発色させた後の濃度から、0.01MPaで圧力を加える前の濃度を減じて求まる濃度差をいう。
 発色剤層に由来して発色したΔD1が0.02を超えるので、本発明の一実施形態における発色剤層は、0.05MPaを下回る微小な圧力を与えて発色させた場合に視認ないし読み取り可能な濃度及び濃度階調を再現することができる。
 ΔD1は、値が大きいほど好ましく、0.05以上がより好ましく、0.1以上が更に好ましい。
 発色濃度は、濃度計RD-19(グレタグマクベス社製)を用いて測定される値である。以下において、同様である。
 更には、発色剤層の上に、電子受容性化合物を含む顕色剤層を有する顕色材料を、発色剤層と同一面積の顕色剤層を発色剤層に接触させて重ね、顕色材料に対して発色剤層を20回反復運動させて擦過させた後の発色濃度から擦過前の濃度を減じた濃度差(ΔD2)が、0.02以下に抑えられていることが好ましく、0.02未満に抑えられていることがより好ましい。
 ΔD2が0.02以下であると、擦り等によって視認ないし読み取り可能な濃度に至る発色が少なく抑えられる。
 ΔD2は、値が小さいほど好ましく、0.01以下である場合がより好ましく、ゼロである(すなわち発色しない)場合が更に好ましい。
 発色剤層に含まれる全粒子の体積標準のメジアン径D50Xとしては、下記式4を満たしていることが好ましい。発色剤層に含まれる全粒子とは、マイクロカプセルのほか、マイクロカプセル以外の粒子も含む。マイクロカプセル以外の粒子が、例えば顔料等を含む場合は、顔料の粒子なども含む。
   15μm<D50X<50μm   式4
 発色剤層に含まれる粒子の全体が上記粒子径の範囲にあることにより、発色成分を内包するマイクロカプセルAより粒子径の大きいマイクロカプセルBを混在させたことによる効果、すなわち擦り等による不要な発色の抑制効果がより効果的に現れる。
 具体的には、D50Xが15μmより大きいと、微小な圧力0.01MPaでも視認可能な発色濃度を発現する点でより有利である。また、D50Xが50μmより小さいと、擦り等による不要な発色を抑え、かつ、有効な濃度階調を発現する点でより有利である。
 次に、本発明の一実施形態における発色剤層に含まれる各成分について詳述する。
-マイクロカプセルA-
 マイクロカプセルAは、発色成分である電子供与性無色染料前駆体を内包し、好ましくは溶媒を内包し、必要に応じて、更に、補助溶媒、及び添加剤等を内包してもよい。
(電子供与性無色染料前駆体)
 マイクロカプセルAは、発色成分として電子供与性無色染料前駆体の少なくとも一種を内包する。
 電子供与性無色染料前駆体は、感圧複写紙あるいは感熱記録紙の用途において公知のものを使用することができる。例えば、トリフェニルメタンフタリド系化合物、フルオラン系化合物、フェノチアジン系化合物、インドリルフタリド系化合物、ロイコオーラミン系化合物、ローダミンラクタム系化合物、トリフェニルメタン系化合物、ジフェニルメタン系化合物、トリアゼン系化合物、スピロピラン系化合物、フルオレン系化合物など各種の化合物を使用することができる。
 上記の化合物の詳細については、特開平5-257272号公報の記載を参照することができる。
 電子供与性無色染料前駆体は、一種単独で又は二種以上を混合して用いてもよい。
 電子供与性無色染料前駆体は、0.05MPaを下回る微小な圧力範囲での発色性を高め、微少な圧力で高い濃度、すなわち広い圧力範囲に対応する濃度変化(すなわち濃度勾配)を発現する観点から、モル吸光係数(ε)の高いものが好ましい。電子供与性無色染料前駆体のモル吸光係数(ε)は、10000 mol-1・cm-1・L以上であることが好ましく、15000 mol-1・cm-1・L以上あることがより好ましく、更には25000mol-1・cm-1・L以上あることが好ましい。
 モル吸光係数(ε)が上記の範囲にある電子供与性無色染料前駆体の好ましい例としては、3-(4-ジエチルアミノ-2-エトキシフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド(ε=61000)、3-(4-ジエチルアミノ-2-エトキシフェニル)-3-(1-n-オクチル-2-メチルインドール-3-イル)フタリド(ε=40000)、3-[2,2-ビス(1-エチル-2-メチルインドール-3-イル)ビニル]-3-(4-ジエチルアミノフェニル)-フタリド(ε=40000)、9-[エチル(3-メチルブチル)アミノ]スピロ[12H-ベンゾ[a]キサンテン-12,1’(3’H)イソベンゾフラン]-3’-オン(ε=34000)、2-アニリノ-6-ジブチルアミノ-3-メチルフルオラン(ε=22000)、6-ジエチルアミノ-3-メチル-2-(2,6-キシリジノ)-フルオラン(ε=19000)、2-(2-クロロアニリノ)-6-ジブチルアミノフルオラン(ε=21000)、3,3-ビス(4-ジメチルアミノフェニル)-6-ジメチルアミノフタリド(ε=16000)、2-アニリノ-6-ジエチルアミノ-3-メチルフルオラン(ε=16000)等が挙げられる。
 モル吸光係数(ε)が上記の範囲にある電子供与性無色染料前駆体を一種単独で用い、あるいはモル吸光係数(ε)が上記の範囲にある電子供与性無色染料前駆体を含む二種以上を混合して用いる場合、電子供与性無色染料前駆体の合計量に占める、モル吸光係数(ε)が10000 mol-1・cm-1・L以上の電子供与性無色染料前駆体の割合は、0.05MPaを下回る微小な圧力範囲での発色性を高め、かつ、広い圧力範囲に対する濃度変化(すなわち濃度勾配)を発現させる観点から、10質量%~100質量%の範囲が好ましく、20質量%~100質量%の範囲がより好ましく、更には30質量%~100質量%の範囲が更に好ましい。
 二種以上の電子供与性無色染料前駆体を用いる場合、モル吸光係数(ε)がそれぞれ10000mol-1・cm-1・L以上のものを二種以上併用するのが好ましい。
 モル吸光係数(ε)は、電子供与性無色染料を95質量%酢酸水溶液中に溶解した場合の吸光度から算出することができる。具体的には、吸光度が1.0以下となるように濃度を調節した電子供与性無色染料の95質量%酢酸水溶液において、測定用セルの長さをAcm、電子供与性無色染料の濃度をB mol/L、吸光度をCとした場合に、下記式によって算出することができる。
   モル吸光係数(ε)= C/(A×B)
 電子供与性無色染料前駆体の発色剤層における含有量(例えば塗布量)は、0.05MPaを下回る微小な圧力範囲での発色性を高める観点から、乾燥後の質量で0.1g/m~5g/mが好ましく、0.1g/m~4g/mがより好ましく、0.2g/m~3g/mがさらに好ましい。
(溶媒)
 マイクロカプセルAは、溶媒の少なくとも一種を内包することが好ましい。
 溶媒としては、感圧複写紙用途において公知のものを使用することができ、例えば、ジイソプロピルナフタレン等のアルキルナフタレン系化合物、1-フェニル-1-キシリルエタン等のジアリールアルカン系化合物、イソプロピルビフェニル等のアルキルビフェニル系化合物、トリアリールメタン系化合物、アルキルベンゼン系化合物、ベンジルナフタレン系化合物、ジアリールアルキレン系化合物、アリールインダン系化合物等の芳香族炭化水素;フタル酸ジブチル、イソパラフィン等の脂肪族炭化水素、大豆油、コーン油、綿実油、菜種油、オリーブ油、ヤシ油、ひまし油、魚油等の天然動植物油等、鉱物油等の天然物高沸点留分等が挙げられる。
 溶媒は、一種単独で又は二種以上を混合して使用してもよい。
 マイクロカプセルAに内包される、溶媒と電子供与性染料前駆体との質量比(溶媒:前駆体)としては、発色性の点で、98:2~30:70の範囲が好ましく、97:3~40:60の範囲がより好ましく、95:5~50:50の範囲が更に好ましい。
(補助溶媒)
 マイクロカプセルAは、必要に応じて、補助溶媒を内包してもよい。
 補助溶媒としては、沸点が130℃以下である溶媒が挙げられ、例えば、メチルエチルケトン等のケトン系化合物、酢酸エチルなどのエステル系化合物、イソプロピルアルコール等のアルコール系化合物等が含まれる。
(他の成分)
 マイクロカプセルAは、上記の電子供与性無色染料前駆体、溶媒及び補助溶媒以外に、必要に応じて、添加剤を内包してもよい。添加剤としては、紫外線吸収剤、光安定化剤、酸化防止剤、ワックス、臭気抑制剤などを挙げることができる。
 マイクロカプセルAの発色剤層中における含有量(塗布による場合は塗布量)としては、発色剤層の全固形分質量に対して、50質量%~80質量%が好ましく、60質量%~75質量%がより好ましい。
-マイクロカプセルB-
 マイクロカプセルBは、発色成分である電子供与性無色染料前駆体を内包しないカプセルであり、好ましくはオイル成分としての溶媒を内包し、必要に応じて、更に、補助溶媒、及び添加剤等を内包してもよい。
 「マイクロカプセルBが電子供与性無色染料前駆体を内包しない」とは、マイクロカプセルBに電子供与性無色染料前駆体が実質的に内包されていないことを指し、具体的には、マイクロカプセルBに内包されている電子供与性無色染料前駆体の量が、内包物の全質量に対して5質量%未満であることを意味し、好ましくは0(ゼロ)質量%である。
 マイクロカプセルBが電子供与性無色染料前駆体を内包している場合、内包される電子供与性無色染料前駆体は、マイクロカプセルAに内包可能な電子供与性無色染料前駆体から選択して内包することができる。
 マイクロカプセルBは、電子供与性無色染料前駆体を内包しないこと以外は、マイクロカプセルAと同様のカプセル壁材等の組成、製造条件、カプセル壁の厚み、粒子サイズ等のカプセル性状に形成することができる。
 この場合、マイクロカプセルBに内包され得る溶媒、補助溶媒、及び添加剤等の成分は、マイクロカプセルAに内包可能な溶媒、補助溶媒、添加剤等と同様の成分を選択することができる。
 上記とは別に、マイクロカプセルBは、電子供与性無色染料前駆体を内包しないこと以外にもマイクロカプセルAとは組成、カプセル性状及び製造条件が異なるマイクロカプセルとして含まれてもよい。
 マイクロカプセルBの発色剤層中における含有量(すなわち塗布による場合は塗布量)としては、発色剤層の全固形分質量に対して、5質量%~35質量%が好ましく、10質量%~30質量%がより好ましく、10質量%~25質量%が更に好ましい。
 発色剤層は、メジアン径の異なる二種以上のマイクロカプセルAを含んでもよく、メジアン径の異なる二種以上のマイクロカプセルBを含んでもよい。
 メジアン径の異なる二種以上のマイクロカプセルAを含む場合、圧力が高くなるにつれて破壊される大径のマイクロカプセルの数が減り、続いて小径のマイクロカプセルが破壊して発色するため、圧力の高い領域での発色濃度が向上し、その結果、高濃度域における濃度階調により優れた圧力測定材料となる。
 発色剤層の厚みとしては、特に制限はなく、目的等に応じて選択することができる。
 発色剤層の厚み(マイクロカプセル径が層厚より大きい場合は層表面から露出したマイクロカプセルを除く厚み)は、0.01μm~0.10μmが好ましく、0.02μm~0.07μmがより好ましい。
 マイクロカプセルの作製方法については、特に制限はなく、従来公知の方法を適用することができる。例えば、特開2009-019949号公報の段落番号0036~0044に記載の方法を参照することができる。
~圧力測定用材料組成物~
 発色剤層は、圧力測定用材料組成物を調製して成膜することにより形成することができる。
 発色剤層は、例えば、支持体上に圧力測定用材料組成物(発色剤層形成用調製液)を塗布等の方法で付与し、乾燥させることにより形成されてもよい。
 発色剤層に含有されるマイクロカプセルは、既述のように分散液として得てもよい。得られたマイクロカプセルの分散液は、そのまま電子供与性無色染料前駆体を含む発色剤層を形成するための圧力測定用材料組成物(発色剤層形成用調製液;例えば塗布液)としてもよい。
 また、圧力測定用材料組成物は、得られたマイクロカプセルの分散液に、さらに水溶性高分子結着剤(例えば、澱粉又は澱粉誘導体の微粉末、セルロース繊維粉末等の緩衝剤、ポリビニルアルコール等)、疎水性高分子結着剤(例えば、酢酸ビニル系、アクリル系、スチレン・ブタジエン共重合体ラテックス等)、界面活性剤、無機粒子(例えばシリカ粒子)、蛍光増白剤、消泡剤、浸透剤、紫外線吸収剤、及び防腐剤等を添加して調製されてもよい。
 発色剤層に用いられる界面活性剤としては、例えば、アニオン性界面活性剤であるアルキルベンゼンスルホン酸ナトリウム(例えば、第一工業製薬(株)のネオゲンT等)、及びノニオン系界面活性剤であるポリオキシアルキレンラウリルエーテル(例えば、第一工業製薬(株)のノイゲンLP70等)などが挙げられる。
 発色剤層に用いられるシリカ粒子としては、例えば、気相法シリカ、コロイダルシリカ等が挙げられる。上市されている市販品の例としては、日産化学(株)のスノーテックス(登録商標)シリーズ(例えばスノーテックス30)等を用いることができる。
 発色剤層を形成するための圧力測定用材料組成物に含まれるマイクロカプセルA及びマイクロカプセルBは、下記式1の関係を満たしている。式1において、D50Aは、マイクロカプセルAの体積標準のメジアン径を表し、D50Bは、マイクロカプセルBの体積標準のメジアン径を表す。
   D50A<D50B  式1
 D50AがD50Bより小さい関係にあることにより、既述の通り、擦れ(例えば、擦過)等の取り扱い時の微小な圧力での発色が抑えられる。
 また、既述の発色剤層における場合と同様に、上記式1を満たすマイクロカプセルA及びBは、更に、マイクロカプセルAの体積標準のメジアン径D50Aが下記式2を満たし、かつ、マイクロカプセルBの体積標準のメジアン径D50Bが下記式3を満たしていることが好ましい。
   10μm<D50A<40μm   式2
   40μm<D50B<150μm  式3
 マイクロカプセルA及びBがそれぞれ上記粒子径を有していることにより、擦れ等に起因する不要な発色をより効果的に防ぐことができる。詳細については、既述の通りであり、好ましい態様も同様である。
 発色剤層を形成するための圧力測定用材料組成物に含まれる、マイクロカプセルBの含有量に対するマイクロカプセルAの含有量の比(カプセルA/カプセルB)としては、質量基準で100/5~100/50であることが好ましい。
 マイクロカプセルAがマイクロカプセルBに対して同量以上の範囲で含まれることにより、微小な圧力に対する発色性と、擦り等の取り扱い時に与えられる微小な圧力に対する発色抑制効果と、のバランスを図ることができる。
 上記の比としては、質量基準で、100/10~100/40がより好ましく、100/15~100/35が更に好ましい。
 圧力測定用材料組成物は、発色剤層における場合と同様に、含有される全粒子の体積標準のメジアン径D50Xが下記式4を満たし、かつ、含有される全粒子の粒径分布の変動係数(CV値)が35%~150%である場合が好ましい。圧力測定用材料組成物に含まれる全粒子とは、マイクロカプセルのほか、マイクロカプセル以外の粒子も含む。マイクロカプセル以外の粒子が、例えば顔料等を含む場合は顔料の粒子なども含む。
   15μm<D50X<50μm   式4
 圧力測定用材料組成物に含まれる粒子の全体が上記粒子径の範囲にあることにより、発色成分を内包するマイクロカプセルAより粒子径の大きいマイクロカプセルBを混在させたことによる効果、すなわち擦り等による不要な発色の抑制効果がより効果的に現れる。
 また、CV値が上記範囲内であると、発色剤層内の粒子分布、特にマイクロカプセルの相対的なバラツキが小さいので、微小な圧力に対する発色性と擦り等による発色防止性とのバランスに優れたものとなる。
 CV値としては、40%~110%が好ましく、40%~80%がより好ましい。
 圧力測定用材料組成物は、マイクロカプセルAとして、体積標準のメジアン径(D50A)が異なる二種以上のマイクロカプセルを含む態様も好適である。
 D50Aが異なる二種以上のマイクロカプセルを含む場合、一般に径の大きいマイクロカプセルから順に圧力で壊れて発色した後、圧力が高くなるにつれて破壊される大径のマイクロカプセルの数が減り、続いて小径のマイクロカプセルが破壊して発色する。そのため、より高圧力側における領域での発色濃度が向上する。これにより、高濃度域における濃度階調により優れた圧力測定材料が得られる。
 体積標準のメジアン径(D50A)が異なるマイクロカプセルAとして、メジアン径がD50A1であるマイクロカプセルA1及びメジアン径がD50A2であるマイクロカプセルA2を含む少なくとも二種を含有する組成とする際、二種のマイクロカプセルA1及びマイクロカプセルA2のメジアン径が下記式を満たす関係にある場合には、
  D50A1>D50A2
 発色剤層中における、マイクロカプセルA2の含有量に対するマイクロカプセルA1の含有量の比(A1/A2)としては、質量基準で100/1~100/150であることが好ましく、より好ましくは100/25~100/100であり、更に好ましくは100/40~100/70である。上記不等式を満たす場合の含有量の比(A1/A2)が上記範囲にあることで、濃度階調により優れたものとなる。
 マイクロカプセルA及びマイクロカプセルBの、発色剤層中における合計含有量(塗布による場合は塗布量)としては、発色剤層の全固形分質量に対して、80質量%~97質量%であることが好ましい。
 マイクロカプセルA及びマイクロカプセルBの含有量が上記範囲内にあることで、マクロカプセル周辺に存在するその他成分の量が少なくなり、圧力を受けた際にマイクロカプセルが容易に壊れやすくなり、低い圧力でも発色させ易くなる。さらに、圧力に対する感度が向上するので、マイクロカプセルA及びマイクロカプセルBの体積標準のメジアン径も小さくなり、結果、発色した際の粒状感を少なく抑えることができる。これにより、狭い圧力範囲内で測定を行う場合も精度良く測定を行うことができる。
 マイクロカプセルA及びマイクロカプセルBの含有量が80質量%以上であると、圧力に対する感度がより良好になる。また、マイクロカプセルA及びマイクロカプセルBの含有量が98質量%以下であると、マイクロカプセルと基材との密着性を確保しやすい。
 マイクロカプセルA及びマイクロカプセルBの合計含有量は、85質量%~96質量%がより好ましく、更に好ましくは85質量%~95質量%である。
 発色剤層形成用調製液を塗布して発色剤層を形成する場合、塗布は、公知の塗布法により行うことができる。塗布法としては、例えば、エアーナイフコーター、ロッドコーター、バーコーター、カーテンコーター、グラビアコーター、エクストルージョンコーター、ダイコーター、スライドビードコーター、ブレードコーター等を用いた塗布法を挙げることができる。
 本発明の一実施形態の圧力測定用材料は、少なくとも、支持体と、支持体側から配置された易接着層及び発色剤層と、を有する態様が好ましい。
[易接着層]
 易接着層は、支持体と発色剤層との密着性を向上させるために設けられていることが好ましい。また、易接着層は、更に、マイクロカプセルを含有する組成物を塗布し乾燥する際に、マイクロカプセルが易接着層と静電的に相互作用(例えば水素結合)し、凝集するのを抑制する効果がある。これにより、圧力測定する際、マイクロカプセルが微小な圧力で破壊される効果を向上させる。
 易接着層は、ウレタンポリマー、ブロックイソシアネート等を含む層であってもよい。
 易接着層の厚みとしては、特に制限はなく、目的等に応じて選択することができる。
 易接着層の厚みは、0.005μm~0.2μmが好ましく、0.01μm~0.1μmがより好ましい。
[支持体]
 支持体は、シート状、フィルム状、板状等のいずれの形状であってもよい。
 支持体の具体的な例としては、紙、プラスチックフィルム、合成紙等が挙げられる。
 紙の具体例としては、上質紙、中質紙、更紙、中性紙、酸性紙、再生紙、コート紙、マシンコート紙、アート紙、キャストコート紙、微塗工紙、トレーシングペーパー、再生紙等を挙げることができる。
 プラスチックフィルムの具体例としては、ポリエチレンテレフタレートフィルム等のポリエステルフィルム、三酢酸セルロース等のセルロース誘導体フィルム、ポリプロピレン、ポリエチレン等のポリオレフィンフィルム、ポリスチレンフィルム等を挙げることができる。
 合成紙の具体例としては、ポリプロピレン又はポリエチレンテレフタレート等を二軸延伸してミクロボイドを多数形成したもの(ユポ等)、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリアミド等の合成繊維を用いて作製したもの、これらを紙の一部、片面もしくは両面に積層したもの、等が挙げられる。
 中でも、加圧により生じる発色濃度をより高める観点から、プラスチックフィルム、合成紙が好ましく、プラスチックフィルムがより好ましい。
 本発明の一実施形態の圧力測定用材料は、発色成分を内包するマイクロカプセルと顕色剤とが別個の基材に付与された、いわゆる2シートタイプの材料の一方のシートとして用いられる。
 2シートタイプの場合、基材上に発色成分を内包するマイクロカプセルを含む発色剤層を有する圧力測定用材料と、基材上に顕色剤を含む顕色剤層を有する顕色材料と、を有している。この場合、圧力測定は、圧力測定用材料及び顕色材料を、圧力測定用材料の発色剤層の表面と顕色材料の顕色剤層の表面とを接触させた状態で重ね、重ねた状態のまま、圧力又は圧力分布を測定する部位に配置して加圧することにより行える。
 加圧は、任意の方法により点、線、又は面で圧力(点圧、線圧、又は面圧等)を与えることにより行うことができる。本発明の一実施形態の圧力測定用材料では、特に0.05MPa未満の微小な圧力範囲において、微小な圧力差を識別するための発色濃度の差(すなわち濃度差)が小さく、差圧が捉えにくい面圧が与えられる場合に有効である。
<圧力測定用材料セット>
 本発明の一実施形態の圧力測定用材料セットは、既述の本発明の一実施形態の圧力測定用材料と、電子受容性化合物を含む顕色剤層を有する顕色材料と、を含む2シートタイプの材料である。本発明の一実施形態の圧力測定用材料セットは、圧力測定用材料及び顕色材料に加え、必要に応じて、他の材料を含んでいてもよい。
 なお、圧力測定用材料セットの圧力測定用材料の詳細については、既述の通りであり、好ましい態様も同様である。
-顕色材料-
 顕色材料は、圧力測定用材料の発色剤層に含まれる発色成分を発色させる顕色剤である電子受容性化合物を含む顕色剤層を有している。顕色材料は、少なくとも、支持体と、顕色剤層と、を有する態様が好ましい。
 顕色剤層は、少なくとも顕色剤である電子受容性化合物を含み、必要に応じて、バインダー、顔料、及び添加剤等の他の成分を含んでもよい。
(電子受容性化合物)
 電子受容性化合物としては、無機化合物及び有機化合物を挙げることができる。
 無機化合物の具体例としては、酸性白土、活性白土、アタパルジャイト、ゼオライト、ベントナイト、カオリンのような粘土物質等が挙げられる。
 有機化合物の具体例としては、芳香族カルボン酸の金属塩、フェノールホルムアルデヒド樹脂、カルボキシル化テルペンフェノール樹脂の金属塩等が挙げられる。
 中でも、電子受容性化合物としては、酸性白土、活性白土、ゼオライト、カオリン、芳香族カルボン酸の金属塩、カルボキシル化テルペンフェノール樹脂の金属塩が好ましく、酸性白土、活性白土、カオリン、芳香族カルボン酸の金属塩であることがより好ましい。
 芳香族カルボン酸の金属塩の好ましい具体例としては、3,5-ジ-t-ブチルサリチル酸、3,5-ジ-t-オクチルサリチル酸、3,5-ジ-t-ノニルサリチル酸、3,5-ジ-t-ドデシルサリチル酸、3-メチル-5-t-ドデシルサリチル酸、3-t-ドデシルサリチル酸、5-t-ドデシルサリチル酸、5-シクロヘキシルサリチル酸、3,5-ビス(α,α-ジメチルベンジル)サリチル酸、3-メチル-5-(α-メチルベンジル)サリチル酸、3-(α,α-ジメチルベンジル)-5-メチルサリチル酸、3-(α,α-ジメチルベンジル)-6-メチルサリチル酸、3-(α-メチルベンジル)-5-(α,α-ジメチルベンジル)サリチル酸、3-(α,α-ジメチルベンジル)-6-エチルサリチル酸、3-フェニル-5-(α,α-ジメチルベンジル)サリチル酸、カルボキシ変性テルペンフェノール樹脂、3,5-ビス(α-メチルベンジル)サリチル酸とベンジルクロリドとの反応生成物であるサリチル酸樹脂等の、亜鉛塩、ニッケル塩、アルミニウム塩、カルシウム塩等を挙げることができる。
 顕色剤層中における電子受容性化合物の含有量(塗布による場合は塗布量)は、乾燥質量で0.1g/m~30g/mが好ましい。電子受容性化合物が無機化合物である場合の含有量は、より好ましくは、乾燥質量で3g/m~20g/mであり、さらに好ましくは、5g/m~15g/mである。電子受容性化合物が有機化合物である場合の含有量は、より好ましくは、乾燥質量で0.1g/m~5g/mであり、さらに好ましくは、0.2g/m~3g/mである。
 顕色剤層は、顕色剤層形成用の調製液を調製して成膜することにより形成することができる。顕色剤層は、例えば、支持体上に顕色剤層形成用の調製液を塗布等の方法で付与し、乾燥させることにより形成されてもよい。
 顕色剤層形成用の調製液は、電子受容性化合物を水等に分散した分散液でもよい。
 電子受容性化合物を分散した分散液は、電子受容性化合物が無機化合物である場合は無機化合物を機械的に水に分散処理させることにより調製することができ、また電子受容性化合物が有機化合物である場合は有機化合物を機械的に水に分散処理するか、又は有機溶媒に溶解することにより調製することができる。
 詳細については、特開平8-207435号公報に記載の方法を参照できる。
 得られた電子受容性化合物の分散液は、そのまま電子受容性化合物を含む顕色剤層を形成するための顕色剤層形成用の調製液(例えば塗布液)としてもよい。
(他の成分)
 顕色剤層は、上記の電子受容性化合物のほか、バインダー、顔料、並びに蛍光増白剤、消泡剤、浸透剤、防腐剤等の添加剤などを含むことができる。
 バインダーとしては、例えば、スチレン-ブタジエン共重合体ラテックス、酢酸ビニル系ラテックス、アクリル酸エステル系ラテックス、ポリビニルアルコール、ポリアクリル酸、無水マレイン酸-スチレン-共重合体、デンプン、カゼイン、アラビアゴム、ゼラチン、カルボキシメチルセルロース、メチルセルロースなどの合成又は天然高分子物質が挙げられる。
 顔料としては、例えば、カオリン、焼成カオリン、カオリン凝集体、重質炭酸カルシウム、種々の形態(例えば、米粒状、角状、紡錘状、イガ状、球状、アラゴナイト系柱状及び無定形)の軽質炭酸カルシウム、タルク、ルチル型、又はアナターゼ型の二酸化チタン等が挙げられる。
 顕色剤層形成用の調製液を塗布して顕色剤層を形成する場合、塗布は、公知の塗布法により行うことができ、既述の発色剤層を形成する場合と同様の塗布法を適用することができる。
 以下、本発明を実施例により更に具体的に説明する。本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「%」及び「部」は質量基準である。
(実施例1)
-電子供与性無色染料前駆体内包マイクロカプセル液(A)の調製-
 直鎖アルキルベンゼン(JXエネルギー(株)、グレードアルケンL)57部に、電子供与性無色染料前駆体である下記の化合物(A)20部を溶解し、溶液Aを得た。次に、合成イソパラフィン(出光興産(株)、IPソルベント1620)15部、酢酸エチル1.2部に溶解したN,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン((株)アデカ、アデカポリエーテルEDP-300)0.2部を、攪拌している溶液Aに加えて溶液Bを得た。さらに、酢酸エチル3部に溶解したトリレンジイソシアナートのトリメチロールプロパン付加物(DIC(株)、バーノックD-750)1.2部を、攪拌している溶液Bに加えて溶液Cを得た。そして、水140部にポリビニルアルコール(PVA-205、(株)クラレ)9部を溶解した溶液中に上記の溶液Cを加えて、乳化分散した。乳化分散後の乳化液に水340部を加え、攪拌しながら70℃まで加温し、1時間攪拌後、冷却した。さらに水を加えて濃度を調整し、固形分濃度19.6%の電子供与性無色染料前駆体内包マイクロカプセル液(A)を得た。
Figure JPOXMLDOC01-appb-C000001
 電子供与性無色染料前駆体内包マイクロカプセル(A)の体積標準でのメジアン径(D50A)は、30μmであった。数平均壁厚は、0.054μmであり、δ/D50Aは、1.8×10-3であった。
 メジアン径(D50A)は、マイクロカプセル液を支持体である易接着層付ポリエチレンテレフタレート(PET)シート(東洋紡(株)、コスモシャイン(登録商標)A4300)上に塗布して乾燥した後、得られた塗布膜の表面を光学顕微鏡により150倍で撮影し、2cm×2cmの範囲にある全てのマイクロカプセルの大きさを計測して算出した。また、数平均壁厚は、塗布膜の断面切片を作製し、断面から5個のマイクロカプセルを選択し、個々のカプセル壁の厚み(μm)を走査型電子顕微鏡(SEM)により求めて平均して算出した。
-電子供与性無色染料前駆体非内包マイクロカプセル液(B)の調製-
 合成イソパラフィン(出光興産(株)、IPソルベント1620)15部、酢酸エチル3部に溶解したN,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン((株)アデカ、アデカポリエーテルEDP-300)0.4部を、攪拌している1-フェニル-1-キシリルエタン(新日本石油(株)、ハイゾールSAS296)78部に加えて溶液Dを得た。さらに、酢酸エチル7部に溶解したトリレンジイソシアナートのトリメチロールプロパン付加物(DIC(株)、バーノックD-750)3部を、攪拌している溶液Dに加えて溶液Eを得た。そして、水140部にポリビニルアルコール(PVA-205、(株)クラレ)69部を溶解した溶液中に上記の溶液Eを加えて、乳化分散した。乳化分散後の乳化液に水340部を加え、攪拌しながら70℃まで加温し、1時間攪拌後、冷却した。さらに水を加えて濃度を調整し、固形分濃度19.6%の電子供与性無色染料前駆体非内包マイクロカプセル液(B)を得た。
 電子供与性無色染料前駆体非内包マイクロカプセル(B)の体積標準でのメジアン径(D50B)は、55μmであった。数平均壁厚は、0.24μmであり、δ/D50Bは、4.3×10-3であった。メジアン径(D50B)及び数平均壁厚は、上記のD50Aと同様の方法で算出した。
-染料前駆体シート(1)の作製-
 上記で得た電子供与性無色染料前駆体内包マイクロカプセル液(A)18部、上記で得た電子供与性無色染料前駆体非内包マイクロカプセル液(B)2部、水63部、コロイダルシリカ(日産化学(株)、スノーテックス(登録商標)30)1.8部、カルボキシメチルセルロースNa(第一工業製薬(株)、セロゲン5A)の10%水溶液1.8部、カルボキシメチルセルロースNa(第一工業製薬(株)、セロゲンEP)の1%水溶液30部、アルキルベンゼンスルホン酸ナトリウム(第一工業製薬(株)、ネオゲンT)の15%水溶液0.3部、及びノイゲンLP70(第一工業製薬(株))の1%水溶液0.8部を混合し、2時間撹拌することにより、圧力測定用材料組成物(1)を得た。
 得られた圧力測定用材料組成物(1)を、厚さ75μmの易接着層付ポリエチレンテレフタレート(PET)シート(東洋紡(株)、コスモシャイン(登録商標)A4300)の上に、乾燥後の質量が2.8g/mとなるようにバーコーターにより塗布し、乾燥させて発色剤層を形成し、圧力測定用材料である染料前駆体シート(1)を作製した。
 上記において、圧力測定用材料組成物(1)における全粒子の体積標準のメジアン径(D50X)は、33μmであった。また、圧力測定用材料組成物(1)における全粒子の粒径分布のCV値(%;=標準偏差/平均粒径×100)は、51%であった。
 なお、メジアン径、平均粒径、及び標準偏差は、作製した染料前駆体シート(1)の塗布面である発色剤層の表面を光学顕微鏡により150倍で撮影し、2cm×2cmの範囲にある全てのマイクロカプセルの大きさを計測して算出した。
-顕色剤シート(1)の作製-
 電子受容性化合物である3,5-ジ-α-メチルベンジルサリチル酸亜鉛10部、炭酸カルシウム100部、ヘキサメタリン酸ナトリウム1部、及び水200部を、サンドグラインダーを用いて、全粒子の平均粒子径が2μmになるように分散して分散液を調製した。次いで、調製した分散液に、ポリビニルアルコール(PVA-203、クラレ(株))の10%水溶液100部、スチレン-ブタジエンラテックスを固形分として10部、及び水450部を添加し、電子受容性化合物を含有する塗布液(顕色剤含有調製液)を調製した。
 電子受容性化合物を含有する塗布液を、厚さ75μmのポリエチレンテレフタレート(PET)シートの上に固形分塗布量が4.0g/mになるように塗布し、乾燥させて顕色剤層を形成し、顕色材料である顕色剤シート(1)を得た。
 以上のようにして、染料前駆体シート(1)及び顕色剤シート(1)からなる2シートタイプの圧力測定用材料セットを作製した。
(実施例2~50、比較例1~6)
 実施例1において、マイクロカプセル液及び発色剤層を表1~表3に示すように変更したこと以外は、実施例1と同様にして、染料前駆体シート及び顕色剤シートからなる2シートタイプの圧力測定用材料セットを作製した。
-評価-
 実施例及び比較例で作製した圧力測定用材料セットを用い、以下の測定及び評価を行った。測定及び評価の結果は、下記表1~表3に示す。
(1)0.01MPa加圧前後での濃度差(ΔD1)
 染料前駆体シート(1)及び顕色剤シート(1)をそれぞれ5cm×5cmのサイズに裁断し、染料前駆体シート(1)と顕色剤シート(1)とを、染料前駆体シート(1)の発色剤層の表面と顕色剤シート(1)の顕色剤層の表面とを接触させて重ね合わせた。重ね合わせた両シートを、表面が平滑な2枚のガラス板の間に挟んで机上に置き、ガラス板の上に錘を載置することにより0.01MPaの圧力で加圧し、発色させた。
 その後、重ね合わせた両シートを剥離し、濃度計RD-19(グレタグマクベス社製)を用いて、顕色剤シート(1)に形成された発色部の濃度(DA)を測定した。
 上記とは別に、未使用の顕色剤シート(1)に対して同様の方法で濃度(初期濃度;DB)を測定した。
 発色部の濃度DAから初期濃度DBを減算して濃度差を求め、発色濃度(ΔD)とした。結果は、下記表1~表3に示す。
(2)擦過による濃度差(ΔD2)
 染料前駆体シート(1)及び顕色剤シート(1)をそれぞれ10cm×15cmのサイズに裁断し、染料前駆体シート(1)の発色剤層の上に顕色剤シート(1)を、染料前駆体シート(1)の発色剤層と顕色剤シート(1)の顕色剤層とを接触させて重ね合わせ、重ね合わせた状態のまま、顕色剤シート(1)の顕色剤層に対して発色剤層を20回反復運動させて擦過させた。擦過後の発色濃度から擦過前の初期濃度を減算して濃度差(ΔD2)を求めた。結果は、下記表1~表3に示す。
(3)発色の濃度階調(階調性)
 圧力測定用材料セットを用い、上記「ΔD1」を求める際の「DA」の測定と同様の方法で0.01MPa、0.02MPa、0.03MPa、0.04MPa、及び0.05MPaの圧力で発色させた発色部の濃度を測定した。評価は、下記の評価基準にしたがって行った。評価結果は、下記表1~表3に示す。
 <評価基準>
5:0.05MPaにて高い濃度を示し、濃度変化が直線的である。
4:0.05MPaにて高い濃度を示すが、濃度変化に若干屈曲点があるものの、実用上問題ない。
3:0.05MPaでの濃度が低い、又は濃度変化が飽和している。
2:0.05MPaでの濃度が低い、又は濃度変化が飽和しており、実用上支障が生じる懸念がある。
1:0.05MPaでの濃度がゼロに近く、又は濃度変化がなく、実用上使用できない。
(4)塗布ムラ
 染料前駆体シート(1)の塗布面である発色剤層の表面を目視により観察し、下記の評価基準にしたがって評価した。評価結果は、下記表1~表3に示す。
 <評価基準>
5:濃淡ムラ及び欠陥等の発生がない。
4:濃淡ムラ及び欠陥等が僅かにあるものの、実用上問題がない。
3:明らかな濃淡ムラ又は欠陥等がある。
2:明らかな濃淡ムラ又は欠陥等があり、実用上支障が生じる懸念がある。
1:濃淡ムラ及び欠陥等が非常に多く、実用上使用できない。
(5)発色粒状性
 染料前駆体シート(1)及び顕色剤シート(1)をそれぞれ5cm×5cmのサイズに裁断し、染料前駆体シート(1)と顕色剤シート(1)とを、染料前駆体シート(1)の発色剤層の表面と顕色剤シート(1)の顕色剤層の表面とを接触させて重ね合わせた。重ね合わせた両シートを、表面が平滑な2枚のガラス板の間に挟んで机上に置き、ガラス板の上に錘を載置することにより0.03MPaの圧力で加圧し、発色させた。その後、重ね合わせた両シートを剥離し、発色した顕色剤シート(1)の発色面状を目視で観察し、下記の評価基準にしたがって評価した。評価結果を表1~表3に示す。
 <評価基準>
3:発色面における粒状感が非常に小さい。
2:発色面に多少の粒状感があるが、実用上は問題ない。
1:発色面における粒状感が明らかに大きい。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~表3に示すように、実施例では、0.05MPa未満の微小な圧力でも、視認ないし読み取り可能な0.02以上の発色濃度が得られた一方、擦過による発色は0.02以下に抑えられた。
 これに対して、発色成分を含まない電子供与性無色染料前駆体非内包マイクロカプセル液(B)を含有しない比較例1、3では、微小な圧力での発色性は得られるものの、いずれも擦過による発色も大きく、発色の階調性に劣るものであった。また、発色成分を含まない電子供与性無色染料前駆体非内包マイクロカプセル液(B)を含有しない比較例2では、カプセルサイズが小さいため、擦過による発色はないものの、微小な圧力での発色性も乏しい結果となり、発色の階調性にも劣っていた。
 比較例4~5では、発色成分を内包するマイクロカプセルを二種含有し、発色成分を含まない電子供与性無色染料前駆体非内包マイクロカプセルを含有しないので、擦過による発色を抑えられていない。
 また、比較例6は、発色成分を含まない電子供与性無色染料前駆体非内包マイクロカプセルを含有するものの、電子供与性無色染料前駆体非内包マイクロカプセルのD50Bが、電子供与性無色染料前駆体内包マイクロカプセルのD50Aに対して同サイズ以下であるので、犠牲材としての機能は乏しく、やはり擦過による発色を抑えられなかった。
 2016年9月29日に出願された日本国特許出願2016-191783号及び2017年6月2日に出願された日本国特許出願2017-110220の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (17)

  1.  電子供与性無色染料前駆体を内包するマイクロカプセルA及び電子供与性無色染料前駆体を内包しないマイクロカプセルBを含有し、かつ、前記マイクロカプセルAの体積標準のメジアン径D50Aと、前記マイクロカプセルBの体積標準のメジアン径D50Bと、が下記式1を満たす発色剤層を有する圧力測定用材料。
       D50A<D50B  式1
  2.  前記メジアン径D50Aが下記式2を満たし、かつ、前記メジアン径D50Bが下記式3を満たす請求項1に記載の圧力測定用材料。
       10μm<D50A<40μm   式2
       40μm<D50B<150μm  式3
  3.  前記発色剤層に含まれる全粒子の体積標準のメジアン径D50Xが、下記式4を満たす請求項1又は請求項2に記載の圧力測定用材料。
       15μm<D50X<50μm   式4
  4.  前記発色剤層に含まれる全粒子の粒径分布の変動係数が、35%~150%である請求項1~請求項3のいずれか1項に記載の圧力測定用材料。
  5.  発色させた場合に、0.01MPaで圧力を加えて発色させた後の濃度から前記圧力を加える前の濃度を減じた濃度差ΔD1として、0.02を超える濃度が得られる請求項1~請求項4のいずれか1項に記載の圧力測定用材料。
  6.  前記発色剤層の上に、電子受容性化合物を含む顕色剤層を有する顕色材料を、前記発色剤層と同一面積の前記顕色剤層を前記発色剤層に接触させて重ね、前記顕色材料に対して前記発色剤層を20回反復運動させて擦過させた後の発色濃度から前記擦過前の濃度を減じた濃度差ΔD2が0.02以下である請求項1~請求項5のいずれか1項に記載の圧力測定用材料。
  7.  前記マイクロカプセルAの体積標準のメジアン径D50Aに対する、前記マイクロカプセルAの数平均壁厚δの比が、1.0×10-3~4.0×10-3であり、前記マイクロカプセルBの体積標準のメジアン径D50Bに対する、前記マイクロカプセルBの数平均壁厚δの比が、1.0×10-3~1.5×10-2である請求項1~請求項6のいずれか1項に記載の圧力測定用材料。
  8.  少なくとも、支持体と、前記支持体側から配置された易接着層及び前記発色剤層と、を有する請求項1~請求項7のいずれか1項に記載の圧力測定用材料。
  9.  前記マイクロカプセルAとして、体積標準のメジアン径D50Aが異なる二種のマイクロカプセルを含む請求項1~請求項8のいずれか1項に記載の圧力測定用材料。
  10.  前記マイクロカプセルAとして、メジアン径がD50A1であるマイクロカプセルA1及びメジアン径がD50A2であるマイクロカプセルA2を含む少なくとも二種を含有し、
     D50A1>D50A2の関係を満たす場合、マイクロカプセルA2の含有量に対するマイクロカプセルA1の含有量の比が、質量基準で100/1~100/150である請求項1~請求項9のいずれか1項に記載の圧力測定用材料。
  11.  前記発色剤層中における前記マイクロカプセルA及び前記マイクロカプセルBの含有量が、発色剤層の全固形分に対して、80質量%~97質量%である請求項1~請求項10のいずれかに1項に記載の圧力測定用材料。
  12.  請求項1~請求項11のいずれか1項に記載の圧力測定用材料と、
     電子受容性化合物を含む顕色剤層を有する顕色材料と、
    を含む圧力測定用材料セット。
  13.  電子供与性無色染料前駆体を内包するマイクロカプセルAと、電子供与性無色染料前駆体を内包しないマイクロカプセルBと、を含み、かつ、前記マイクロカプセルAの体積標準のメジアン径D50Aと、前記マイクロカプセルBの体積標準のメジアン径D50Bと、が下記式1を満たす圧力測定用材料組成物。
       D50A<D50B  式1
  14.  前記メジアン径D50Aが下記式2を満たし、前記メジアン径D50Bが下記式3を満たす請求項13に記載の圧力測定用材料組成物。
       10μm<D50A<40μm   式2
       40μm<D50B<150μm  式3
  15.  前記マイクロカプセルBの含有量に対する前記マイクロカプセルAの含有量の比が、質量基準で100/5~100/50である請求項13又は請求項14に記載の圧力測定用材料組成物。
  16.  組成物に含まれる全粒子の体積標準のメジアン径D50Xが下記式4を満たし、かつ、組成物に含まれる全粒子の粒径分布の変動係数が35%~150%である請求項13~請求項15のいずれか1項に記載の圧力測定用材料組成物。
       15μm<D50X<50μm   式4
  17.  前記マイクロカプセルAとして、体積標準のメジアン径D50Aが異なる二種のマイクロカプセルを含む請求項13~請求項16のいずれか1項に記載の圧力測定用材料組成物。
PCT/JP2017/034219 2016-09-29 2017-09-22 圧力測定用材料組成物、圧力測定用材料、及び圧力測定用材料セット WO2018062017A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018542507A JP6685416B2 (ja) 2016-09-29 2017-09-22 圧力測定用材料組成物、圧力測定用材料、及び圧力測定用材料セット
KR1020197009069A KR102203040B1 (ko) 2016-09-29 2017-09-22 압력 측정용 재료 조성물, 압력 측정용 재료, 및 압력 측정용 재료 세트
KR1020217000523A KR102262970B1 (ko) 2016-09-29 2017-09-22 압력 측정용 재료 조성물, 압력 측정용 재료, 및 압력 측정용 재료 세트
CN201780059700.XA CN109791079B (zh) 2016-09-29 2017-09-22 压力测定用材料组合物、压力测定用材料及压力测定用材料组
US16/364,189 US11230130B2 (en) 2017-06-02 2019-03-26 Material composition for pressure measurement, material for pressure measurement, and material set for pressure measurement
US17/456,720 US11958307B2 (en) 2016-09-29 2021-11-29 Material composition for pressure measurement, material for pressure measurement, and material set for pressure measurement

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016191783 2016-09-29
JP2016-191783 2016-09-29
JP2017-110220 2017-06-02
JP2017110220 2017-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/364,189 Continuation US11230130B2 (en) 2016-09-29 2019-03-26 Material composition for pressure measurement, material for pressure measurement, and material set for pressure measurement

Publications (1)

Publication Number Publication Date
WO2018062017A1 true WO2018062017A1 (ja) 2018-04-05

Family

ID=61763388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034219 WO2018062017A1 (ja) 2016-09-29 2017-09-22 圧力測定用材料組成物、圧力測定用材料、及び圧力測定用材料セット

Country Status (6)

Country Link
US (1) US11958307B2 (ja)
JP (3) JP6685416B2 (ja)
KR (2) KR102203040B1 (ja)
CN (2) CN113865767A (ja)
TW (1) TWI778978B (ja)
WO (1) WO2018062017A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262532A1 (ja) * 2019-06-28 2020-12-30 富士フイルム株式会社 圧力測定用シートセット、圧力測定用シート
CN113330289A (zh) * 2019-01-17 2021-08-31 富士胶片株式会社 压力测定用材料及压力测定用材料的制造方法
WO2022138532A1 (ja) * 2020-12-25 2022-06-30 富士フイルム株式会社 圧力測定用シートセット、圧力測定用シートセットの製造方法
KR20230106691A (ko) 2020-12-25 2023-07-13 후지필름 가부시키가이샤 압력 측정용 시트 세트, 압력 측정용 시트, 마이크로 캡슐, 분산액, 압력 측정용 시트 세트의 제조 방법, 압력 측정용 시트의 제조 방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865767A (zh) 2016-09-29 2021-12-31 富士胶片株式会社 压力测定用材料组合物、压力测定用材料及压力测定用材料组
JP7212159B2 (ja) * 2019-06-28 2023-01-24 富士フイルム株式会社 圧力測定用シートセット、圧力測定用シート、分散液
JP7100209B2 (ja) * 2019-12-13 2022-07-12 富士フイルム株式会社 圧力測定用シートセット、圧力測定用シート、圧力測定用シートセットの製造方法、圧力測定用シートの製造方法
WO2022070774A1 (ja) 2020-10-02 2022-04-07 富士フイルム株式会社 画像解析方法、画像解析装置、プログラム、及び記録媒体
CN116324350A (zh) 2020-10-02 2023-06-23 富士胶片株式会社 图像分析方法、图像分析装置、程序及记录媒体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647504A (en) * 1969-08-19 1972-03-07 Edward J Hayes Jr Pressure sensitive laminate
JPS5441177A (en) * 1977-09-08 1979-04-02 Fuji Photo Film Co Ltd Sheet for pressure measurement
JPS5838190A (ja) * 1981-08-31 1983-03-05 Kanzaki Paper Mfg Co Ltd 感圧記録シ−ト
JPH03247484A (ja) * 1990-02-26 1991-11-05 Mitsubishi Paper Mills Ltd スチルト材、およびそれを含有する感圧性層
JP2004267877A (ja) * 2003-03-06 2004-09-30 Seiko Epson Corp マイクロカプセルの製造方法
JP2009019949A (ja) * 2007-07-11 2009-01-29 Fujifilm Corp 圧力測定用材料
JP2009063512A (ja) * 2007-09-07 2009-03-26 Fujifilm Corp 圧力測定用材料

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617334A (en) 1968-11-08 1971-11-02 Ncr Co Pressure-sensitive sheet material
BR6910973D0 (pt) * 1968-11-08 1973-04-19 Ncr Co Minusculas unidades formadoras de marcas por pressao
US3738857A (en) 1970-11-09 1973-06-12 Ncr Pressure-sensitive record sheet and method of making
JPS5724852B2 (ja) 1974-10-29 1982-05-26
JPS5288380A (en) * 1976-01-20 1977-07-23 Fuji Photo Film Co Ltd Pressure measuring device
US4147830A (en) * 1976-01-28 1979-04-03 Fuji Photo Film Co., Ltd. Recording sheet
JPS5478186A (en) * 1977-12-02 1979-06-22 Fuji Photo Film Co Ltd Pressure measuring sheet
US4842976A (en) 1982-01-18 1989-06-27 Mead Corp. Color image-forming process
JPS61188184A (ja) * 1985-02-14 1986-08-21 Kanzaki Paper Mfg Co Ltd 感圧複写紙
DE3512565A1 (de) 1985-04-06 1986-10-16 Basf Ag, 6700 Ludwigshafen Mikrokapseln und deren verwendung
US4865938A (en) * 1986-12-19 1989-09-12 Brother Kogyo Kabushiki Kaisha Photo and pressure sensitive recording media comprising an adhesive agent
US4977131A (en) 1988-05-24 1990-12-11 Moore Business Forms, Inc. OCR scannable carbonless copying system and a method of producing OCR scannable images therewith
JPH02182980A (ja) * 1989-01-10 1990-07-17 Kanebo Ltd 芳香性合成皮革
US4985484A (en) * 1989-02-27 1991-01-15 The Mead Corporation Process for the production of coating compositions containing microcapsules
JP3036021B2 (ja) * 1990-08-20 2000-04-24 ブラザー工業株式会社 乾式転写材製造用インクリボン
JPH0577588A (ja) * 1991-05-30 1993-03-30 Shinko Kagaku Kogyo Kk 情報隠蔽用接着性シート及びこれを用いた葉書仕様
JPH0755606A (ja) * 1993-08-06 1995-03-03 Brother Ind Ltd 圧力測定シート
JPH07260955A (ja) * 1994-03-18 1995-10-13 Toppan Printing Co Ltd 時間経過表示体
JPH0958119A (ja) 1995-08-22 1997-03-04 Mitsubishi Paper Mills Ltd 感圧記録シートおよびその製造方法
JPH1086511A (ja) * 1996-09-10 1998-04-07 Oji Paper Co Ltd 改ざん防止用感圧複写シート
WO1999025553A1 (fr) * 1997-11-13 1999-05-27 Teijin Limited Film de polyester adherant facilement
US6482471B1 (en) * 1998-08-18 2002-11-19 Asahi Kogaku Kogyo Kabushiki Kaisha Image-forming substrate coated with layer of microcapsules
JP4077359B2 (ja) 2003-04-25 2008-04-16 松本油脂製薬株式会社 マイクロカプセル
JP5258236B2 (ja) * 2007-09-10 2013-08-07 富士フイルム株式会社 圧力測定用材料
JP5014096B2 (ja) 2007-12-04 2012-08-29 富士フイルム株式会社 圧力測定用材料
US8470735B2 (en) 2009-04-03 2013-06-25 Nippon Paper Industries Co., Ltd. Coating solution for heat-sensitive color-developing layer, and heat-sensitive recording material
TWI415750B (zh) * 2010-07-13 2013-11-21 Taiwan Hopax Chems Mfg Co Ltd Touch the display of the image of the notes
US20120015174A1 (en) 2010-07-13 2012-01-19 Taiwan Hopax Chemicals Mfg. Co., Ltd. Note pad containing carbonless color-developing material
JP2012186315A (ja) * 2011-03-04 2012-09-27 Nitto Denko Corp 薄膜基板の製造方法
CN102757681A (zh) * 2012-06-21 2012-10-31 京东方科技集团股份有限公司 一种电子墨水及制备方法
JP6448910B2 (ja) * 2014-03-06 2019-01-09 大王製紙株式会社 紙管及び当該紙管を使用したロール状シート
CN113865767A (zh) 2016-09-29 2021-12-31 富士胶片株式会社 压力测定用材料组合物、压力测定用材料及压力测定用材料组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647504A (en) * 1969-08-19 1972-03-07 Edward J Hayes Jr Pressure sensitive laminate
JPS5441177A (en) * 1977-09-08 1979-04-02 Fuji Photo Film Co Ltd Sheet for pressure measurement
JPS5838190A (ja) * 1981-08-31 1983-03-05 Kanzaki Paper Mfg Co Ltd 感圧記録シ−ト
JPH03247484A (ja) * 1990-02-26 1991-11-05 Mitsubishi Paper Mills Ltd スチルト材、およびそれを含有する感圧性層
JP2004267877A (ja) * 2003-03-06 2004-09-30 Seiko Epson Corp マイクロカプセルの製造方法
JP2009019949A (ja) * 2007-07-11 2009-01-29 Fujifilm Corp 圧力測定用材料
JP2009063512A (ja) * 2007-09-07 2009-03-26 Fujifilm Corp 圧力測定用材料

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113330289A (zh) * 2019-01-17 2021-08-31 富士胶片株式会社 压力测定用材料及压力测定用材料的制造方法
EP3896417A4 (en) * 2019-01-17 2022-02-16 FUJIFILM Corporation PRESSURE MEASUREMENT MATERIAL AND METHOD FOR PRODUCTION OF PRESSURE MEASUREMENT MATERIAL
US11754453B2 (en) 2019-01-17 2023-09-12 Fujifilm Corporation Pressure measuring material and method for manufacturing pressure measuring material
WO2020262532A1 (ja) * 2019-06-28 2020-12-30 富士フイルム株式会社 圧力測定用シートセット、圧力測定用シート
JPWO2020262532A1 (ja) * 2019-06-28 2020-12-30
CN113811750A (zh) * 2019-06-28 2021-12-17 富士胶片株式会社 压力测量用片材组、压力测量用片材
JP7231732B2 (ja) 2019-06-28 2023-03-01 富士フイルム株式会社 圧力測定用シートセット、圧力測定用シート
CN113811750B (zh) * 2019-06-28 2024-03-08 富士胶片株式会社 压力测量用片材组、压力测量用片材
WO2022138532A1 (ja) * 2020-12-25 2022-06-30 富士フイルム株式会社 圧力測定用シートセット、圧力測定用シートセットの製造方法
KR20230087596A (ko) 2020-12-25 2023-06-16 후지필름 가부시키가이샤 압력 측정용 시트 세트, 압력 측정용 시트 세트의 제조 방법
KR20230106691A (ko) 2020-12-25 2023-07-13 후지필름 가부시키가이샤 압력 측정용 시트 세트, 압력 측정용 시트, 마이크로 캡슐, 분산액, 압력 측정용 시트 세트의 제조 방법, 압력 측정용 시트의 제조 방법

Also Published As

Publication number Publication date
CN113865767A (zh) 2021-12-31
TWI778978B (zh) 2022-10-01
JP2020073906A (ja) 2020-05-14
TW201829997A (zh) 2018-08-16
US20220080759A1 (en) 2022-03-17
KR20210006022A (ko) 2021-01-15
CN109791079B (zh) 2021-10-15
JP6742546B2 (ja) 2020-08-19
US11958307B2 (en) 2024-04-16
JP2020073907A (ja) 2020-05-14
JPWO2018062017A1 (ja) 2019-03-28
JP6698967B2 (ja) 2020-05-27
KR20190039604A (ko) 2019-04-12
KR102262970B1 (ko) 2021-06-08
KR102203040B1 (ko) 2021-01-13
TW202248609A (zh) 2022-12-16
CN109791079A (zh) 2019-05-21
JP6685416B2 (ja) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6698967B2 (ja) 圧力測定用材料組成物、圧力測定用材料、及び圧力測定用材料セット
TWI396836B (zh) 壓力測定用材料
JP5142640B2 (ja) 圧力測定用材料
TWI428577B (zh) 壓力測定用材料
JP4986749B2 (ja) 圧力測定用材料
JP6830532B2 (ja) 圧力測定用材料
WO2018221168A1 (ja) 圧力測定用材料
JP6608121B2 (ja) 圧力測定用材料、圧力測定用材料セット、圧力測定方法、及び圧力測定用液体セット
US11230130B2 (en) Material composition for pressure measurement, material for pressure measurement, and material set for pressure measurement
JP5258236B2 (ja) 圧力測定用材料
TWI842080B (zh) 壓力測定用材料及壓力測定用材料組
JPWO2019003838A1 (ja) 圧力測定用材料
JP2009014493A (ja) 圧力測定用材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018542507

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197009069

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855971

Country of ref document: EP

Kind code of ref document: A1