WO2018056333A1 - 浸炭シャフト部品 - Google Patents

浸炭シャフト部品 Download PDF

Info

Publication number
WO2018056333A1
WO2018056333A1 PCT/JP2017/033987 JP2017033987W WO2018056333A1 WO 2018056333 A1 WO2018056333 A1 WO 2018056333A1 JP 2017033987 W JP2017033987 W JP 2017033987W WO 2018056333 A1 WO2018056333 A1 WO 2018056333A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
carburized
shaft component
carburized shaft
less
Prior art date
Application number
PCT/JP2017/033987
Other languages
English (en)
French (fr)
Inventor
竜也 岩崎
宏二 渡里
秀和 末野
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP17853103.4A priority Critical patent/EP3517639A4/en
Priority to US16/331,468 priority patent/US11421727B2/en
Priority to CN201780058036.7A priority patent/CN109790593B/zh
Priority to KR1020197007369A priority patent/KR102161576B1/ko
Priority to JP2018540278A priority patent/JP6680361B2/ja
Publication of WO2018056333A1 publication Critical patent/WO2018056333A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/62Low carbon steel, i.e. carbon content below 0.4 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/64Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/70Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
    • F16C2204/72Ferrous alloys, e.g. steel alloys with chromium as the next major constituent with nickel as further constituent, e.g. stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/74Ferrous alloys, e.g. steel alloys with manganese as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/10Hardening, e.g. carburizing, carbo-nitriding
    • F16C2223/12Hardening, e.g. carburizing, carbo-nitriding with carburizing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a carburized shaft component.
  • shaft parts for example, transmission shafts
  • induction quenching which is a kind of surface hardening treatment
  • a method for manufacturing a shaft part to be quenched for example, the following method can be given. That is, first, a rough member having a shape close to the final product is manufactured. Next, a hole such as an oil hole is made by drilling or the like, and an intermediate member closer to the final product is manufactured. Finally, the intermediate member is quenched (induction quenching or carburizing quenching) to obtain a shaft component.
  • Patent Document 1 discloses a method for manufacturing a shaft component with high torsional fatigue strength, in which steel material components and carburizing time are optimized.
  • Patent Document 2 discloses a shaft excellent in fatigue resistance and a method for improving the fatigue characteristics, characterized in that the compressive residual stress in the surface layer of the oil hole is 50% to 90% of the tensile strength of the steel material. ing.
  • shaft parts are required to have excellent static torsional strength in addition to further improvement in torsional fatigue strength.
  • the shaft component obtained by the technique disclosed in Patent Document 1 has a high level of static torsional strength and torsional fatigue strength due to insufficient studies on hole processing and strength improvement, and further on the structure of the hole surface layer. It may be difficult to achieve both.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a carburized shaft component that is excellent in static torsional strength and torsional fatigue strength.
  • the present inventors diligently studied carburized shaft parts that can achieve both excellent static torsional strength and torsional fatigue strength. As a result, the present inventors have found that by cutting the hole after carburizing and quenching, the retained austenite in the surface layer of the hole can be transformed into hard work-induced martensite during the cutting, and the hardness near the hole can be increased. I found it. Furthermore, the present inventors can improve the static torsional strength and torsional fatigue strength of the carburized shaft component because the occurrence of cracks from the site near the hole and the development thereof are suppressed by increasing the hardness near the hole. It has also been found that the static torsional strength and torsional fatigue strength of the carburized shaft component can be further improved by transforming more retained austenite during processing-induced martensite transformation during cutting.
  • the present inventors have focused on the chemical composition of steel (carburized shaft parts) and heat treatment conditions and attempted to further improve the static torsional strength and torsional fatigue strength. As a result, it was found that by adopting specific steel material components and heat treatment conditions, work-induced martensitic transformation is likely to occur during cutting, and the static torsional strength and torsional fatigue strength of the carburized shaft parts are remarkably improved.
  • the maximum retained austenite volume fraction (R1) in the range from the outer peripheral surface to the depth of 1 mm in the axial direction of the hole and from the surface of the hole to 200 ⁇ m is 10.0 to 30.0%, Residue obtained by the equation (A) from R1 and the residual austenite volume ratio (R2) at a depth position of 1 mm from the outer peripheral surface in the axial direction of the hole and at a depth position of 20 ⁇ m from the surface of the hole.
  • a carburized shaft component having excellent static torsional strength and torsional fatigue strength can be obtained.
  • FIG. 1A is a schematic diagram of a quenching material and a carburized shaft component
  • FIG. 1B is a depth position of 1 mm in the axial direction of the hole from the outer periphery of the quenching material and the carburized shaft component, and It is a figure which shows the cross section AA 'perpendicular
  • FIG. 2 is a diagram showing a reference position in the measurement of the retained austenite volume ratio of the carburized shaft component.
  • FIG. 3 is a scanning electron microscope image of the hole surface layer at a cross-section A-A ′ at a depth position of 1 mm in the axial direction of the hole from the outer periphery of the carburized shaft component and perpendicular to the hole.
  • FIG. 4 is a side view of a test piece used in the torsion test.
  • FIG. 5 is a top view of the periphery of the hole in the carburized shaft component according to the present invention.
  • the carburized shaft component according to the embodiment of the present invention has a depth of 3 mm from the outer peripheral surface or an inner portion deeper than that by mass%.
  • C 0.10 to 0.30%, Si: 0.01 to 0.30%, Mn: 0.4 to 2.0%, P: 0.050% or less, S: 0.005 to 0.020%, Cr: 0.4 to 3.5%, Al: 0.010 to 0.050%, N: 0.005 to 0.025%, and O: 0.003% or less, with the balance being Fe and impurities,
  • Pb 0.5% or less
  • One or more selected from the group consisting of V, Nb and Ti with a total content of 0.1% or less
  • the C content (Cs) of the surface layer part is 0.60 to 1.00% by mass
  • the maximum retained austenite volume fraction (R1) in the range from the outer peripheral surface to the depth of 1 mm in the axial direction of the hole and from the surface of the hole to 200 ⁇ m is 10.0 to 30.0%, Residue obtained by the equation (A) from R1 and the residual austenite volume ratio (R2) at a depth position of 1 mm from the outer peripheral surface in the axial direction of the hole and at a depth position of 20 ⁇ m from the surface of the hole.
  • the austenite reduction rate ( ⁇ ) is 20% or more.
  • the carburized shaft component according to the embodiment of the present invention includes any shaft component having at least one hole such as an oil hole on the outer peripheral surface and carburized, and is not particularly limited. And shaft parts used in industrial machines, such as transmission shafts.
  • the carburized shaft component according to the embodiment of the present invention includes a shaft component having an arbitrary shape, and is not particularly limited.
  • the diameter is about 150 mm or less, about 100 mm or less, or about 30 mm or less, and the length is It may be a hollow or solid cylindrical or rod-shaped shaft component that is 5 mm or more.
  • the carburized shaft component has the following chemical composition.
  • the ratio (%) of each element shown below means mass%.
  • carbon is introduced into the surface layer portion by carburizing treatment, and strictly speaking, the chemical composition differs between the surface layer portion and the inside of the carburized shaft component. Therefore, the chemical composition shown below (including essential components, impurities, and optional components) is a region that is not affected by the carburizing process, that is, the carburized shaft component so as to match the chemical composition of the steel material before the carburizing process. This refers to the chemical composition at a depth of 3 mm or deeper from the outer peripheral surface.
  • C 0.10 to 0.30% Carbon (C) increases the strength (particularly the strength of the core) of the carburized shaft component. C further generates retained austenite to increase static torsional strength and torsional fatigue strength. If the C content is too low, this effect cannot be obtained. On the other hand, if the C content is too high, the strength of the steel material processed into the carburized shaft component becomes too high. Therefore, the machinability of the steel material is reduced. Therefore, the C content is 0.10 to 0.30%. The minimum with preferable C content is 0.15% or more. The upper limit with preferable C content is less than 0.25%.
  • Si 0.01 to 0.30%
  • Silicon (Si) has an effect of improving hardenability, but increases the carburizing abnormal layer during the carburizing process. In particular, when the content exceeds 0.30%, the carburized abnormal layer greatly increases, so that a soft structure called an incompletely hardened structure is generated, and the torsional fatigue strength of the carburized shaft component is lowered.
  • the Si content is preferably 0.25% or less, and more preferably 0.20% or less. However, it is difficult to make the Si content less than 0.01% in mass production. Therefore, the Si content is set to 0.01 to 0.30%. In view of the manufacturing cost in mass production, it is considered that the Si content in the actually manufactured product of the present invention is often 0.05% or more.
  • Mn 0.4 to 2.0%
  • Manganese (Mn) increases the hardenability of the steel and increases retained austenite in the steel. Compared with austenite not containing Mn, austenite containing Mn is likely to undergo work-induced martensitic transformation during cutting after carburizing and quenching. As a result, the static torsional strength and torsional fatigue strength of the carburized shaft component are increased. If the Mn content is too low, this effect cannot be obtained. On the other hand, if the Mn content is too high, the retained austenite after carburizing and tempering becomes excessive. For this reason, sufficient work-induced martensite transformation does not occur during cutting, and residual austenite becomes excessive after cutting. Difficult to decrease.
  • the Mn content is 0.4 to 2.0%.
  • the minimum with preferable Mn content is 0.8%.
  • the upper limit with preferable Mn content is 1.8%.
  • P 0.050% or less Phosphorus (P) is an impurity. P segregates at the grain boundary and lowers the grain boundary strength. As a result, the static torsional strength and torsional fatigue strength of the carburized shaft component are reduced. Therefore, the P content is 0.050% or less. The upper limit with preferable P content is 0.030%. The P content should be as low as possible. The minimum with preferable P content is 0.0002%.
  • S 0.005 to 0.020% Sulfur (S) combines with Mn to form MnS and enhances machinability. If the S content is too low, this effect cannot be obtained. On the other hand, if the S content is too high, coarse MnS is formed, and the hot workability and cold workability of steel and the torsional fatigue strength of the carburized shaft parts are reduced. Therefore, the S content is 0.005 to 0.020%. A preferable lower limit of the S content is 0.008%. The upper limit with preferable S content is 0.015%.
  • Chromium (Cr) increases the hardenability of the steel and further increases the retained austenite. If the Cr content is too low, this effect cannot be obtained. On the other hand, if the Cr content is too high, the retained austenite after carburizing and tempering becomes excessive. In this case, sufficient machining-induced martensite transformation does not occur during the cutting process in the hole cutting process, and residual austenite is less likely to decrease after the cutting process. As a result, the static torsional strength and torsional fatigue strength of the carburized shaft component are reduced. Therefore, the Cr content is 0.4 to 3.5%. The minimum with preferable Cr content is 0.5%. The upper limit with preferable Cr content is 3.1%.
  • Al 0.010 to 0.050%
  • Aluminum (Al) deoxidizes steel. Al is further combined with N to form AlN, and the crystal grains are refined. As a result, the static torsional strength and torsional fatigue strength of the carburized shaft component are increased. If the Al content is too low, this effect cannot be obtained. On the other hand, if the Al content is too high, hard and coarse Al 2 O 3 is generated, the machinability of the steel is lowered, and the torsional fatigue strength is also lowered. Therefore, the Al content is 0.010 to 0.050%. The minimum with preferable Al content is 0.020%. The upper limit with preferable Al content is 0.040%.
  • N 0.005 to 0.025%
  • Nitrogen (N) forms nitrides to refine crystal grains, and increases the static torsional strength and torsional fatigue strength of carburized shaft components. If the N content is too low, this effect cannot be obtained. On the other hand, if the N content is too high, coarse nitrides are generated and the toughness of the steel is reduced. Therefore, the N content is 0.005 to 0.025%.
  • the minimum with preferable N content is 0.010%.
  • the upper limit with preferable N content is 0.020%.
  • Oxygen (O) is an impurity. O combines with Al to form hard oxide inclusions. Oxide inclusions reduce the machinability of steel and reduce the torsional fatigue strength of carburized shaft components. Accordingly, the O content is 0.003% or less. The lower the O content, the better. A preferable lower limit of the O content is 0.0001%.
  • the balance of the chemical composition of the carburized shaft component is iron (Fe) and impurities.
  • Impurities mean components that are mixed in from the ore and scrap used as a raw material for steel, the environment of the manufacturing process, and the like, but not intentionally contained in the carburized shaft parts. Even if impurities are mixed in the carburized shaft component, the object of the present invention can be achieved as long as the amount is small and the properties of the steel material are not impaired.
  • the carburized shaft component according to the present invention can achieve the object of the present invention even if each of the following elements is included within a specified range.
  • REM Rare earth element
  • Ca Calcium
  • Mg 0.0005% or less
  • W 0.001% or less
  • Sb Antimony
  • Bismuth 0.001% or less
  • Co Cobalt
  • Tantalum Ta: 0.001% or less
  • the carburized shaft component may further contain Pb instead of a part of Fe.
  • Pb 0.5% or less
  • Lead (Pb) is an optional element and may not be contained. When contained, reduction in tool wear and improvement in chip disposal are realized. However, if the Pb content is too high, the strength and toughness of the steel are reduced, and the static torsional strength and torsional fatigue strength of the carburized shaft component are also reduced. Therefore, the Pb content is preferably 0.5% or less. A more preferable upper limit of the Pb content is 0.4%. In addition, in order to acquire said effect, it is preferable to make Pb content 0.03% or more.
  • the carburized shaft component may further contain one or more selected from the group consisting of V, Nb, and Ti instead of part of Fe.
  • V, Nb and Ti 0.1% or less in total content
  • Vanadium (V), niobium (Nb) and titanium (Ti) are optional elements and may not be contained. These elements combine with C and N to form precipitates. Precipitates of these elements complement the grain refinement of the quenched part by AlN. These elemental precipitates increase the static torsional strength and torsional fatigue strength of the carburized shaft component. However, if the total content of these elements exceeds 0.1%, the precipitates become coarse and the torsional fatigue strength decreases. Therefore, the total content of V, Nb and Ti is preferably 0.1% or less. If any one or more of V, Nb, and Ti is contained as an optional element, the above effect can be obtained. A more preferable upper limit of the total content of V, Nb and Ti is 0.08%. In order to acquire said effect by V, Nb, and Ti, containing 0.01% or more is preferable.
  • the carburized shaft component may further contain one or more selected from the group consisting of Mo and Ni instead of part of Fe. All of these elements increase the hardenability of the steel and increase the retained austenite.
  • Mo Molybdenum
  • Mo is an optional element and may not be contained. When contained, Mo increases the hardenability of the steel and increases the retained austenite. Mo further increases the resistance to temper softening and increases the static torsional strength and torsional fatigue strength of the carburized shaft component. However, if the Mo content is too high, the retained austenite after carburizing and quenching becomes excessive. In this case, sufficient work-induced martensitic transformation does not occur during cutting. As a result, the static torsional strength and torsional fatigue strength of the carburized shaft component are reduced. Therefore, the Mo content is preferably 3.0% or less. A more preferable upper limit of the Mo content is 2.0%. In order to acquire the said effect by Mo, containing 0.1% or more is preferable.
  • Nickel (Ni) is an optional element and may not be contained. When contained, Ni increases the hardenability of the steel and increases the retained austenite. Ni further increases the toughness of the steel. However, if the Ni content is too high, residual austenite after carburizing and quenching becomes excessive. In this case, sufficient work-induced martensitic transformation does not occur during cutting after tempering. As a result, the static torsional strength and torsional fatigue strength of the carburized shaft component are reduced. Therefore, the Ni content is preferably 2.5% or less. A more preferable upper limit of the Ni content is 2.0%. In order to acquire the said effect by Ni, containing 0.1% or more is preferable.
  • Cu 0 to 0.50% Cu is dissolved in martensite to increase the strength of the steel material. Therefore, the fatigue strength of the steel material is increased. However, if the Cu content is too high, it segregates at the grain boundaries of steel during hot forging and induces hot cracking. Therefore, the Cu content is 0.50% or less. Note that the Cu content is preferably 0.40% or less, and more preferably 0.25% or less. In order to acquire the said effect by Cu, containing 0.10% or more is preferable.
  • B 0 to 0.020% B has the effect of suppressing the grain boundary segregation of P and increasing the toughness. However, if added over 0.020%, abnormal grain growth occurs during carburizing, and the torsional fatigue strength decreases. Therefore, the B content is 0.020% or less.
  • the B content is preferably 0.015% and more preferably 0.010% or less. In order to acquire the said effect by B, containing 0.0005% or more is preferable.
  • F1 1.54 * C + 0.81 * Si + 1.59 * Mn + 1.65 * Cr + 1.77 * Mo + 0.63 * Ni.
  • F1 is a parameter representing the hardenability of steel. If F1 is too low, the hardenability of the steel will be low. In this case, low strength ferrite and pearlite are generated, and the static torsional strength and torsional fatigue strength of the carburized shaft component are reduced. Therefore, F1 is 2.35 or more. A more preferable lower limit of F1 is 3.0. In order to ensure the toughness of the carburized shaft component, the preferable upper limit of F1 is 8.0.
  • F2 -0.1xSi + 15.2xMn + 7.0xCr + 6.7xMo + 6.2xNi.
  • F2 is a parameter representing the stability of austenite. If F2 is too low, the ratio of retained austenite obtained after carburizing and quenching will be low. As a result, the hardening effect of the hole periphery due to the processing-induced martensite transformation cannot be obtained, and the static torsional strength and torsional fatigue strength of the carburized shaft component are lowered. On the other hand, if F2 is too high, the amount of retained austenite after carburizing and quenching and tempering becomes excessive, and the static torsional strength and torsional fatigue strength decrease.
  • F2 is required to be 11.3 to 33.8.
  • a preferred lower limit of F2 is 12.0.
  • the preferable upper limit of F2 is 33.0.
  • the carburized shaft component according to the embodiment of the present invention has one or a plurality of carburized shaft components that have a vertical or predetermined angle with respect to the longitudinal (axial) direction of the carburized shaft components and are opened from the outer peripheral surface of the carburized shaft components. It has a through hole or a non-through hole.
  • the diameter of the hole is not particularly limited, but may be, for example, 0.2 mm to 10 mm.
  • C content of surface layer portion (Cs): 0.60 to 1.00% C contained in the surface layer portion of the carburized shaft part increases the static torsional strength and torsional fatigue strength of the carburized shaft part.
  • the C content of the carburized shaft component surface layer is measured by the following method.
  • a part with a depth of 1 mm in the axial direction of the hole from the outer peripheral surface of the carburized shaft part and a hole surface layer of 50 ⁇ m is cut by cutting, and the C content in the chip is quantitatively measured by emission spectroscopic analysis, and the value is obtained as a surface layer portion.
  • the C concentration of the carburized shaft part surface layer portion can be quantitatively analyzed using EPMA (electron beam microanalyzer).
  • the C content (Cs) contained in the surface layer portion is low, the hardness of the carburized layer will be low. As a result, the static torsional strength of the carburized shaft component decreases.
  • (Cs) is high, hard pro-eutectoid cementite is generated in the surface layer portion of the carburized shaft component.
  • cementite serves as a starting point of fracture, and static torsional strength and torsional fatigue strength are reduced.
  • tool wear during cutting increases, and machinability decreases. Accordingly, the C content (Cs) in the surface layer portion is 0.60 to 1.00%.
  • the preferable lower limit of Cs is 0.65%.
  • a preferable upper limit of Cs is 0.90%.
  • Total volume ratio of martensite and retained austenite ( ⁇ ′ + ⁇ ) in the structure at a depth of 1 mm in the axial direction of the hole from the outer peripheral surface of the carburized shaft part and at a depth of 20 ⁇ m from the hole surface If a low-strength phase such as ferrite or pearlite exists as a structure at a depth of 1 mm in the axial direction of the hole from the outer peripheral surface of the carburized shaft part and 20 ⁇ m from the surface of the hole, these phases As a starting point, cracks are likely to occur, and the static torsional strength and torsional fatigue strength of the carburized shaft parts are reduced.
  • the total volume ratio ( ⁇ ′ + ⁇ ) of martensite and retained austenite in the structure at the above position is limited to 97% or more.
  • the preferable range of the said total volume ratio is 99% or more.
  • the total volume ratio ( ⁇ ′ + ⁇ ) of martensite and retained austenite corresponds to a depth position of 1 mm in the axial direction of the hole from the outer peripheral surface of the carburized shaft component and a depth position of 20 ⁇ m from the hole surface.
  • the reference position 21 (see FIG. 2) to be measured is measured by the following method by observing the structure. That is, the surface (cross section) perpendicular to the axial direction of the hole is the observation surface including the hole surface layer portion in a cross section perpendicular to the axial center of the hole at a depth of 1 mm from the outer periphery of the carburized shaft component. A test piece is collected (FIG. 1A-A ′).
  • the mirror polished specimen is corroded with 5% nital solution.
  • the corroded surface is observed with three optical fields using an optical microscope with a magnification of 1000 times.
  • the reference position 21 is set to the center of the visual field (FIG. 1-11). 10 ⁇ m from the center of the field of view to the surface of the hardened material, 10 ⁇ m from the center of the field of view to the direction opposite to the surface of the hardened material, 50 ⁇ m from the center of the field to both directions perpendicular to the surface of the hardened material, 20 ⁇ m ⁇ 100 ⁇ m
  • the area ratio of each phase is obtained by a normal image analysis method.
  • the average value of the area ratio of each phase obtained for each of the three visual fields is defined as the volume ratio of each phase.
  • the maximum retained austenite volume ratio (R1) in the range from the outer peripheral surface of the carburized shaft part to the depth of 1 mm in the axial direction of the hole and the depth of 200 ⁇ m from the surface of the hole is 10.
  • the maximum retained austenite volume fraction (R1) is measured by the following method.
  • the carburized shaft part is cut so as to divide the hole in two axial directions and through its center (FIG. 2B-B ′).
  • masking is performed in which a hole having a diameter of 1 mm is formed around a position 1 mm deep from the outer peripheral surface, and electrolytic polishing is performed.
  • the amount of polishing is adjusted by changing the time of electrolytic polishing, and a hole with a depth of 30 ⁇ m is dug.
  • the electrolytic polishing is performed at a voltage of 20 V using an electrolytic solution containing 11.6% ammonium chloride, 35.1% glycerin, and 53.3% water.
  • X-rays are irradiated around the reference position and analyzed by the X-ray diffraction method.
  • the product name RINT-2500HL / PC manufactured by Rigaku Corporation is used for X-ray diffraction.
  • a Cr tube is used as the light source.
  • the tube voltage is 40 kV
  • the tube current is 40 mA
  • the collimator diameter is 0.5 mm.
  • Data analysis uses AutoMATE software (manufactured by Rigaku Corporation).
  • the K ⁇ 2 component is removed by the Rachinger method, and the residual austenite volume fraction (R1) is calculated based on the integrated intensity ratio of the diffraction peaks of the (211) plane of the bcc structure and the (220) plane of the fcc structure using the profile of the K ⁇ 1 component. calculate. Note that the spot size of X-rays to be irradiated is 0.5 mm or less.
  • the residual austenite volume ratio (R2) at a depth position of 1 mm from the outer peripheral surface of the carburized shaft component in the axial direction of the hole and at a depth position of 20 ⁇ m from the hole surface is preferably 20% or less. If the volume ratio of the retained austenite after cutting is too high, hard martensite cannot be obtained, and static torsional strength and torsional fatigue strength are reduced.
  • the retained austenite volume fraction (R2) is measured by the following method.
  • the carburized shaft part is cut so as to divide the hole in two axial directions and through its center (FIG. 2B-B ′).
  • masking is performed in which a hole having a diameter of 1 mm is formed around a position 1 mm deep from the outer peripheral surface, and electrolytic polishing is performed.
  • the amount of polishing is adjusted by changing the electrolytic polishing time, and a hole having a depth of 20 ⁇ m is formed.
  • the center of the hole is irradiated with X-rays having a spot size of ⁇ 0.5 mm, and the residual austenite volume ratio (R2) is measured in the same manner as the residual austenite volume ratio (R1).
  • the retained austenite reduction rate ( ⁇ ) represents the degree of work-induced martensitic transformation during cutting.
  • When ⁇ is large, it means that more work-induced martensitic transformation has occurred during cutting, and the static torsional strength and torsional fatigue strength are improved. In order to obtain such an effect, ⁇ must be 20% or more. A preferable value of ⁇ is 25% or more.
  • the carburized shaft component according to the embodiment of the present invention may have a plastic fluidized bed on the surface of the hole.
  • This plastic fluidized bed is a layer formed by a large deformation occurring in the surface layer portion of the hole when the hole is cut.
  • This plastic fluidized bed is hard, and when the thickness is 0.5 ⁇ m or more, the static torsional strength and torsional fatigue strength of the carburized shaft component can be improved.
  • the plastic fluidized bed is fragile, it can be deformed to some extent when its thickness is thin. However, if the thickness exceeds 15 ⁇ m, cracking occurs and becomes the starting point of cracking, so the torsional fatigue strength is reversed. May fall.
  • the thickness of the plastic fluidized layer on the surface layer of the carburized shaft component is preferably 0.5 to 15 ⁇ m.
  • the thickness of the plastic fluidized layer on the surface layer of the carburized shaft component is preferably 1 ⁇ m or more, and more preferably 3 ⁇ m or more. .
  • a preferable upper limit is 13 micrometers, More preferably, it is 10 micrometers.
  • the thickness of the plastic fluidized bed on the hole surface is measured by the following method. It includes a hole surface layer portion in a cross section perpendicular to the hole at a depth of 1 mm in the axial direction of the hole from the outer peripheral surface of the carburized shaft component, and a surface (cross section) perpendicular to the axial direction of the hole becomes an observation surface.
  • a test piece is collected (AA ′ in FIG. 1).
  • the mirror polished specimen is corroded with 5% nital solution.
  • the corroded surface is observed with a scanning electron microscope (SEM) at a magnification of 5000 times. An example of the obtained SEM image is shown in FIG.
  • the plastic fluidized bed 31 is a portion where the structure is curved along the surface of the hole with respect to the base material 32 (from the left direction to the right direction in FIG. 3), and is curved from the surface of the hole.
  • the distance to the edge of the texture was defined as the thickness of the plastic fluidized bed 31.
  • the carburized shaft component according to the embodiment of the present invention includes a layer hardened over a certain depth from the hole surface, including the plastic fluidized layer.
  • a hardened layer includes a layer (working-induced martensite layer) formed by processing-induced martensite transformation of the retained austenite in the hole surface layer at the time of hole cutting, and has a thickness of about 200 to 300 ⁇ m, for example.
  • the carburized shaft component according to the present invention has a plastic fluidized layer 31 and a work-induced martensite layer 51, particularly a hard material, around a hole 43 that may cause a reduction in static torsional strength and torsional fatigue strength.
  • the carburized shaft component according to the embodiment of the present invention can be manufactured by cutting a hole after carburizing and quenching.
  • the carburized shaft component can be manufactured by the method shown in the following modes 1 and 2.
  • the carburizing shaft component manufacturing method includes a step of processing a steel material to obtain a rough member (rough member manufacturing step), a step of carburizing and quenching the rough member to obtain a carburized material (carburizing material manufacturing step), And a step of drilling a hole in the quenched material to obtain a carburized shaft component (hole cutting step).
  • the method of manufacturing the carburized shaft component is in mass%, C: 0.10 to 0.30%, Si: 0.01 to 0.30%, Mn: 0.4 to 2.0%, P: 0.050% or less, S: 0.005 to 0.020%, Cr: 0.4 to 3.5%, Al: 0.010 to 0.050%, N: 0.005 to 0.025%, and O: 0.003% or less, with the balance being Fe and impurities,
  • mass% Pb 0.5% or less
  • a step of processing a steel material satisfying the formula (1) and the formula (2) to obtain a rough member (coarse member manufacturing step), Carburizing treatment, isothermal holding treatment, quenching treatment for the rough member to obtain a carburized material,
  • the carbon potential (Cp1) during the carburizing process is set to 0.7% or higher and 1.1% or lower
  • the carburizing time (t1) is set to 60 minutes or longer
  • the constant temperature holding temperature. (T2) is 820 ° C. or higher and 870 ° C. or lower
  • the carbon potential (Cp2) during the constant temperature holding treatment is 0.7% or more and 0.9% or less
  • the constant temperature holding treatment time (t2) is 20 to 60 minutes.
  • a structure at a reference position corresponding to a depth position of 1 ⁇ m from a position corresponding to the surface of the hole from a position corresponding to the surface of the hole is 1 mm in the axial direction of the hole from the outer peripheral surface of the carburized shaft component which is the final form.
  • the volume ratio (RF) of residual austenite is 20% or less
  • the volume ratio (RF) of residual austenite before cutting and the volume ratio (RF) of residual austenite after cutting is expressed by the formula (B).
  • a steel member having the above chemical composition is processed to obtain a rough member.
  • a known method can be adopted as the processing method. Examples of the processing method include hot processing, cold processing, cutting processing, and the like.
  • the part other than the hole of the rough member has the same shape as the carburized shaft part, and the diameter of the hole is smaller than the diameter of the hole of the carburized shaft part. Note that the difference between the radius of the hole of the carburized shaft component and the radius of the hole in the rough member corresponds to the notch (d) in the subsequent hole cutting step.
  • carburizing and quenching In the carburizing and quenching step, first, carburizing treatment is performed, and then a constant temperature holding treatment is performed. The carburizing process and the constant temperature holding process are performed under the following conditions.
  • Carburization treatment Carburizing temperature (T1): 900-1050 ° C If the carburizing temperature (T1) is too low, the surface layer of the coarse member is not sufficiently carburized. In this case, there is little retained austenite after carburizing and quenching, and the hardness of the surface layer is also low. Therefore, the static torsional strength and the torsional fatigue strength of the carburized shaft component are reduced. On the other hand, if the carburizing temperature (T1) is too high, the austenite grains become coarse, and the static torsional strength and torsional fatigue strength of the carburized shaft component are reduced. Accordingly, the carburizing temperature (T1) is 900 to 1050 ° C. The preferable lower limit of the carburizing temperature (T1) is 910 ° C, and the preferable upper limit is 1000 ° C.
  • Carbon potential during carburization (Cp1): 0.7-1.1% If the carbon potential (Cp1) is too low, sufficient carburization is not performed. In this case, there is little retained austenite after carburizing and quenching, and the hardness of the surface layer is also low. For this reason, the static torsional strength and torsional fatigue strength of the carburized shaft component are reduced. On the other hand, if the carbon potential (Cp1) is too high, hard pro-eutectoid cementite precipitated during carburization remains over 3% even after carburizing and quenching. In this case, cracks are generated starting from proeutectoid cementite, and the torsional fatigue strength of the carburized shaft component is reduced.
  • the carbon potential (Cp1) is 0.7 to 1.1%.
  • the carbon potential (Cp1) may be varied within the above range during the carburizing process.
  • Carburizing time (t1) 60 minutes or longer If the time of carburizing treatment (carburizing time) (t1) is too short, sufficient carburizing is not performed. Therefore, the carburizing time (t1) is 60 minutes or more. On the other hand, if the carburizing time (t1) is too long, the productivity is lowered. Therefore, the upper limit of the carburizing time (t1) is preferably 240 minutes.
  • Constant temperature holding temperature (T2) 820 to 870 ° C If the constant temperature holding temperature (T2) is too low, it becomes difficult to control the atmosphere such as the carbon potential. In this case, it is difficult to adjust the volume ratio of retained austenite. On the other hand, if the constant temperature holding temperature (T2) is too high, the distortion generated during quenching may increase, and a crack may occur. Therefore, the constant temperature holding temperature (T2) is 820 to 870 ° C.
  • Carbon potential (Cp2) during isothermal holding treatment 0.7-0.9% If the carbon potential (Cp2) during the constant temperature holding process is too low, C that has entered during carburizing is released to the outside again. In this case, there is little retained austenite after carburizing and quenching, and the surface layer hardness is also low. As a result, the static torsional strength and torsional fatigue strength of the carburized shaft component are reduced. On the other hand, if the carbon potential (Cp2) is too high, hard pro-eutectoid cementite precipitates. In this case, cracks are generated starting from proeutectoid cementite, and the torsional fatigue strength of the carburized shaft component is reduced. Moreover, the tool wear at the time of cutting increases, and the machinability of the carburized material decreases. Therefore, the carbon potential (Cp2) is 0.7 to 0.9%.
  • Constant temperature holding time (t2) 20 to 60 minutes If the constant temperature holding time (t2) is too short, the temperature of the coarse member will not be uniform, and the distortion generated during quenching will increase. In this case, burn cracking may occur in the carburized material. On the other hand, if the constant temperature holding time (t2) is too long, productivity is lowered. Accordingly, the constant temperature holding time (t2) is 20 to 60 minutes.
  • the quenching process After the constant temperature holding treatment, a quenching treatment is performed by a well-known method.
  • the quenching process can be, for example, oil quenching.
  • a tempering process may be performed after the carburizing and quenching process.
  • the structure of the reference position 21 corresponding to the depth position of 1 mm from the outer peripheral surface of the shaft component which is the final form in the axial direction of the hole and the depth position of 20 ⁇ m from the position corresponding to the surface of the hole is Site and residual austenite (RI) of 12.0 to 35.0% by volume, and other phases other than the martensite and retained austenite are 3% or less by volume.
  • the structure observation of the reference position 21 corresponding to a depth position of 1 ⁇ m from the outer peripheral surface of the carburized shaft component which is the final form in the quenching material in the axial direction of the hole and a depth position of 20 ⁇ m from the position corresponding to the surface of the hole. Is implemented in the following manner. That is, in the hardened material, a surface perpendicular to the axial direction of the hole, including the hole surface layer portion in a cross section perpendicular to the axial center of the hole at a depth of 1 mm in the axial direction of the hole from the outer periphery of the carburized shaft component which is the final form A test piece having a (cross section) as an observation surface is collected (FIG.
  • the mirror polished specimen is corroded with 5% nital solution.
  • the corroded surface is observed with three optical fields using an optical microscope with a magnification of 1000 times.
  • the reference position is set to the center of the field of view (FIG. 1-11). 10 ⁇ m from the center of the field of view to the surface of the hardened material, 10 ⁇ m from the center of the field of view to the direction opposite to the surface of the hardened material, 50 ⁇ m from the center of the field to both directions perpendicular to the surface of the hardened material, 20 ⁇ m ⁇ 100 ⁇ m
  • the area ratio of each phase is obtained by a normal image analysis method.
  • the average value of the area ratio of each phase obtained for each of the three visual fields is defined as the volume ratio of each phase.
  • retained austenite is contained in martensite. That is, it is impossible to distinguish between martensite and retained austenite by microstructure observation with an optical microscope. Therefore, at a reference position (FIG. 2-21) corresponding to a depth position of 1 mm in the axial direction of the hole from the outer peripheral surface of the carburized shaft component, which is the final form, and a depth position of 20 ⁇ m from the position corresponding to the surface of the hole.
  • the retained austenite volume fraction (RI) is measured by the following method. The carburized material is cut so as to divide the hole into two in the axial direction and through the center of the hole (FIG. 2B-B ′).
  • electrolytic polishing is performed on the surface of the hole.
  • the amount of polishing is adjusted by changing the time of electrolytic polishing, and a hole having a depth reaching the reference position is dug.
  • the electrolytic polishing is performed at a voltage of 20 V using an electrolytic solution containing 11.6% ammonium chloride, 35.1% glycerin, and 53.3% water.
  • X-rays are irradiated around the reference position and analyzed by the X-ray diffraction method.
  • the product name RINT-2500HL / PC manufactured by Rigaku Corporation is used for X-ray diffraction.
  • a Cr tube is used as the light source.
  • the tube voltage is 40 kV
  • the tube current is 40 mA
  • the collimator diameter is 0.5 mm.
  • Data analysis uses AutoMATE software (manufactured by Rigaku Corporation).
  • the K ⁇ 2 component is removed by the Rachinger method, and the residual austenite volume fraction (RI) is calculated based on the integrated intensity ratio of the diffraction peaks of the (211) plane of the bcc structure and the (220) plane of the fcc structure using the profile of the K ⁇ 1 component. calculate. Note that the spot size of X-rays to be irradiated is 0.5 mm or less.
  • RI volume ratio of retained austenite at a reference position 21 corresponding to a depth position of 1 ⁇ m from the outer peripheral surface of the carburized shaft component as a final form in the axial direction of the hole and a position corresponding to the depth of 20 ⁇ m from the position corresponding to the surface of the hole.
  • RI Volume ratio of retained austenite at a reference position 21 corresponding to a depth position of 1 ⁇ m from the outer peripheral surface of the carburized shaft component as a final form in the axial direction of the hole and a position corresponding to the depth of 20 ⁇ m from the position corresponding to the surface of the hole.
  • Residual austenite undergoes work-induced martensi
  • the volume ratio of phases other than martensite and retained austenite (for example, ferrite, pearlite, pro-eutectoid cementite) at the reference position of the carburized material is 3% or less. If low-strength phases such as ferrite and pearlite are present at the reference position of the carburized material, these phases are maintained even after cutting. Torsional strength and torsional fatigue strength are reduced. Moreover, if pro-eutectoid cementite exists, a crack will generate
  • phases other than martensite and retained austenite for example, ferrite, pearlite, pro-eutectoid cementite
  • Tool feed f More than 0.01 mm / rev (rotation) 0.1 mm / rev or less
  • the feed f is more than 0.01 mm / rev and 0.1 mm / rev or less.
  • a preferable lower limit of the feed f is 0.02 mm / rev.
  • a preferable upper limit of the feed f is 0.08 mm / rev, and more preferably 0.05.
  • Cutting speed v 10 to 50 m / min
  • the tool is advanced from the outer periphery of the carburized material toward the center while rotating the tool along the hole.
  • the speed at which the outer peripheral portion of the tool rotates is called a cutting speed v.
  • the cutting speed v is 10 to 50 m / min.
  • a preferable upper limit is 40 m / min, and more preferably 30 m / min.
  • Cut (d) 0.05 to 0.25 mm
  • the notch (d) is the difference between the radius of the hole in the carburized shaft component and the radius of the hole in the coarse member, and corresponds to the machining allowance by cutting. If the notch (d) is too small, the cutting resistance will be small. In this case, sufficient work-induced martensitic transformation does not occur. Therefore, the torsional fatigue strength of the carburized shaft component is not improved. On the other hand, if the notch (d) is too large, the carburized hardened layer becomes too thin, so that the static torsional strength and torsional fatigue strength of the carburized shaft component are reduced. Therefore, the cut (d) is 0.05 to 0.25 mm.
  • the preferable lower limit of the cut (d) is 0.08 mm, and the preferable upper limit is 0.20 mm, more preferably 0.15 mm.
  • Carburized shaft component structure Carburized shaft parts can be obtained by the hole machining described above.
  • the volume ratio (RF) of retained austenite is 20% or less at the reference position 21 which is 1 mm deep from the outer peripheral surface of the carburized shaft part in the axial direction of the hole and 20 ⁇ m deep from the hole surface.
  • the residual austenite reduction rate ( ⁇ ′) before and after cutting determined by the formula (B) from the volume ratio (RF) of the previous retained austenite (RI) and the retained austenite after cutting becomes 35% or more.
  • the austenite volume fraction (RF) is measured by the following method. That is, the carburized shaft part is cut so as to divide the hole into two in the axial direction and through the center of the hole (FIG. 2B-B ′). On the surface of the hole, masking is performed in which a hole having a diameter of 1 mm is formed around a position 1 mm deep from the outer peripheral surface, and electrolytic polishing is performed. The amount of polishing is adjusted by changing the electrolytic polishing time, and a hole having a depth of 20 ⁇ m is formed. The center of the hole is irradiated with X-rays having a spot size of ⁇ 0.5 mm, and the residual austenite volume ratio (RF) is measured by the same method as the above-mentioned residual austenite volume ratio (RI).
  • volume reduction rate ( ⁇ ′) of the retained austenite before and after the cutting process is calculated by the formula (B) based on the obtained volume ratios (RI) and (RF).
  • Reduction rate ⁇ ′ (RI ⁇ RF) / RI ⁇ 100 (B)
  • the austenite volume ratio (RF) at a depth position of 1 mm in the axial direction of the hole from the outer peripheral surface of the carburized shaft component and at a depth position of 20 ⁇ m from the hole surface is 20% or less. If the volume ratio of the retained austenite after cutting is too high, hard martensite cannot be obtained, and static torsional strength and torsional fatigue strength are reduced.
  • the volume reduction rate ( ⁇ ′) of retained austenite before and after cutting is 35% or more.
  • the retained austenite undergoes work-induced martensitic transformation, thereby increasing the static torsional strength and fatigue strength. If the volume reduction rate ( ⁇ ′) is too low, this effect cannot be obtained sufficiently.
  • the retained austenite volume ratio (RF) is the retained austenite volume ratio (R2) described in the column of the carburized shaft component.
  • the retained austenite reduction rate ( ⁇ ′) obtained by the equation (B) is a value similar to the above-described ⁇ (described in the section of the carburized shaft part), and both are holes in the manufacturing process of the carburized shaft part. Describes the degree of work-induced transformation of austenite during cutting. Therefore, ⁇ ′ increases as ⁇ increases.
  • the carburized shaft component according to the embodiment of the present invention can be manufactured by cutting a hole after performing a carburizing and quenching process without opening a pilot hole in a steel material.
  • the time for the carburizing process that is, the carburizing time (t1) is made longer than that in the case of Mode 1 so as to surely carburize to a deeper position of the steel material. It is necessary. Therefore, according to aspect 2, it is preferable that the carburizing time (t1) is 300 minutes or longer, for example, 300 to 900 minutes. It is because sufficient carburization is not performed when t1 is less than 300 minutes.
  • Ingots were obtained by the ingot-making method using molten steel of each steel type. Each ingot was heated at 1250 ° C. for 4 hours and then hot forged to obtain a round bar having a diameter of 35 mm. The finishing temperature during hot forging was 1000 ° C.
  • the normalizing process was performed on each round bar.
  • the normalizing treatment temperature was 925 ° C., and the normalizing treatment time was 2 hours. After the normalizing treatment, the round bar was allowed to cool to room temperature (25 ° C.).
  • the rough bar which is the base of the torsion test piece 41 shown in FIG.
  • the diameter of the hole is smaller than 3 mm in the state of the coarse member.
  • a torsional test piece 41 corresponding to a carburized shaft part has a circular cross section, a cylindrical test part 42, a hole 43 arranged at the center of the test part 42, and a cylindrical large diameter part 44 arranged on both sides. And a pair of gripping portions 45 chamfered around the circumference of the large diameter portion.
  • the center part of the test piece is a hollow hole 46 for weight reduction. As shown in FIG.
  • the entire length of the torsion test piece 41 is 200 mm
  • the outer diameter of the test part 42 is 20 mm
  • the length of the test part 42 is 30 mm
  • the diameter of the hole 43 is 3 mm
  • the hollow hole The diameter of 46 is 6 mm.
  • Carburizing and quenching was performed on the rough member of the torsion test piece 41 based on the conditions shown in Table 2.
  • tempering was performed at 180 ° C. for 30 minutes.
  • the thickness of the carburized hardened layer formed by carburizing and tempering under the heat treatment condition a in Table 2 using the steel type D in Table 1 is a measurement of the distance (thickness) from the surface and its Vickers hardness (HV). The value was about 1.0 mm.
  • the structure observation at the reference position 21 corresponding to the depth position of 20 ⁇ m from the position corresponding to the hole surface from the position corresponding to the hole surface from the outer peripheral surface of the carburized shaft component which is the final form of the carburized material is 1 mm in the axial direction of the hole. It was carried out by the method. That is, the hardened material includes a hole surface layer portion in a cross section perpendicular to the axial center of the hole at a depth of 1 mm in the axial direction of the hole from the outer periphery of the test piece (torsion test piece 41) corresponding to the shaft component as the final form.
  • a test piece was collected such that a surface (cross section) perpendicular to the axial direction of the hole was an observation surface (see reference numeral 12 in FIG. 1).
  • the mirror polished specimen was corroded with a 5% nital solution.
  • the corroded surface was observed with 3 optical fields using an optical microscope with a magnification of 1000 times. At this time, the reference position was set to the center of the visual field.
  • the area ratio of each phase was determined by a normal image analysis method. The average value of the area ratio of each phase obtained for each of the three visual fields was defined as the volume ratio of each phase.
  • electrolytic polishing On the surface of the hole, masking is performed in which a hole having a diameter of 1 mm is formed around a position 1 mm deep from the outer peripheral surface, and electrolytic polishing is performed. The amount of polishing is adjusted by changing the time of electrolytic polishing, and a hole having a depth reaching the reference position is dug.
  • the electrolytic polishing was performed by using an electrolytic solution containing 11.6% ammonium chloride, 35.1% glycerin, and 53.3% water at a voltage of 20V.
  • X-rays were irradiated around the reference position and analyzed by the X-ray diffraction method.
  • the product name RINT-2500HL / PC manufactured by Rigaku Corporation is used for X-ray diffraction.
  • a Cr tube is used as the light source.
  • the tube voltage is 40 kV
  • the tube current is 40 mA
  • the collimator diameter is 0.5 mm.
  • K ⁇ rays were removed by a V filter and K ⁇ rays were used.
  • AutoMATE software manufactured by Rigaku Corporation was used for data analysis.
  • the K ⁇ 2 component is removed by the Rachinger method, and the residual austenite volume fraction (RI) is calculated based on the integrated intensity ratio of the diffraction peaks of the (211) plane of the bcc structure and the (220) plane of the fcc structure using the profile of the K ⁇ 1 component. Calculated.
  • the spot size of the irradiated X-ray was set to ⁇ 0.5 mm or less.
  • the torsion test piece 41 that became a carburized material was subjected to hole cutting under the conditions shown in Table 3 to obtain a torsion test piece 41 equivalent to a carburized shaft part.
  • the cutting conditions ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ in Table 3 are holes under the conditions of the tool feed f and the cutting speed v shown in Table 3 after drilling a pilot hole in the steel material and performing carburizing and quenching treatment. It means cutting.
  • the cutting condition ⁇ means that after carburizing and quenching without drilling a pilot hole in the steel material, hole cutting is performed under the conditions of the tool feed f and the cutting speed v shown in Table 3, and the cutting condition ⁇ is a steel material. This means that after the pilot hole is drilled and the carburizing and quenching treatment is performed, no hole cutting is performed.
  • a coated carbide drill having a diameter of 3 mm and having a ceramic coating on the surface of the cemented carbide was used as the cutting tool.
  • the tip of a coated carbide drill with a tip angle of 90 ° and a diameter of 6 mm was used.
  • the Vickers hardness near the hole surface formed by the heat treatment condition a in Table 2 and the cutting condition ⁇ in Table 3 using the steel type D in Table 1 is about 900 Hv and 20 ⁇ m at a distance of 10 ⁇ m in the depth direction from the hole surface. By the way, it was about 890 HV, about 860 HV at 40 ⁇ m, about 820 HV at 50 ⁇ m, about 770 HV at 100 ⁇ m, and about 740 HV at 300 ⁇ m.
  • the maximum retained austenite volume ratio (R1) in the range from the outer peripheral surface of the test piece corresponding to the carburized shaft component (torsion test piece 41) to the depth of 1 mm in the axial direction of the hole and 200 ⁇ m from the surface of the hole is as follows: It measured by the method of. The carburized material was cut so as to divide the hole into two in the axial direction and through the center of the hole (FIG. 2). On the surface of the hole, masking with a hole having a diameter of 1 mm centered on a 1 mm depth position from the outer peripheral surface was performed, and electrolytic polishing was performed.
  • the amount of polishing was adjusted by changing the time of electrolytic polishing, and a hole having a depth of 30 ⁇ m was dug.
  • the surface was subjected to X-ray diffraction by the above-described method, and the volume fraction of retained austenite at a position of 30 ⁇ m from the surface was determined.
  • the hole was deepened by 10 ⁇ m, and the volume ratio of retained austenite was measured each time until the hole depth reached 200 ⁇ m. And the largest retained austenite volume fraction obtained in that was made into (R1).

Abstract

所定の組成を有し、表層部のC含有量が質量%で0.60~1.00%であり、外周表面に少なくとも1つの穴を有し、外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面から20μmの深さ位置での組織におけるマルテンサイトと残留オーステナイトの合計体積率が97%以上であり、外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面から200μm深さまでの範囲における最大残留オーステナイト体積率(R1)が10.0~30.0%であり、R1と、外周表面から前記穴の軸方向に1mmの深さ位置でかつ穴の表面から20μmの深さ位置での残留オーステナイト体積率(R2)とから式(A):Δγ=(R1-R2)/R1×100によって求められる残留オーステナイト減少率が20%以上であることを特徴とする浸炭シャフト部品が提供される。

Description

浸炭シャフト部品
 本発明は、浸炭シャフト部品に関する。
 自動車や産業機械に使用されるシャフト部品(例えば、トランスミッションシャフト)には、表面硬化処理の一種である浸炭焼入れ又は高周波焼入れが施されるものがある。
 焼入れを施すシャフト部品の製造方法としては、例えば次の方法が挙げられる。即ち、初めに、最終製品に近い形状の粗部材を製造する。次いで、ドリル加工等で油穴等の穴を開け、最終製品にさらに近い中間部材を製造する。そして最後に、中間部材に対して焼入れ(高周波焼入れ又は浸炭焼入れ)を施して、シャフト部品を得る。
 通常、シャフト部品には油穴を含めた種々の穴が開けられており、この穴の周辺が、強度上最も弱い部位となっている。したがって、穴を有するシャフト部品の強度を高めるには、穴とその周辺を重点的に強化しなければならない。シャフト部品のねじり疲労強度を高める技術は、特許文献1及び特許文献2に開示されている。
 特許文献1には、鋼材成分及び浸炭時間を最適化した、ねじり疲労強度の高いシャフト部品の製造方法が開示されている。
 特許文献2には、油穴の表層における圧縮残留応力が、鋼材の引張強さの50%~90%であることを特徴とする耐疲労特性に優れたシャフト及びその疲労特性向上方法が開示されている。
特開2005-256082号公報 特開2006-111962号公報
 ところで、昨今の自動車や産業機械においては、好燃費化のため、小型化・軽量化が強く求められている。その中で、シャフト部品には、ねじり疲労強度の更なる向上に加え、優れた静ねじり強度がいずれも要求される。しかしながら、特許文献1に開示された技術により得られるシャフト部品では、穴の加工や強度改善に関する検討、さらには穴表層の組織の検討が十分でないために、静ねじり強度とねじり疲労強度を高いレベルで両立させることが困難な場合がある。
 特許文献2に開示された技術では、超音波振動端子によって油穴内部を打撃することで、油穴の表層に圧縮残留応力を導入することでシャフトの疲労破壊の起点となる油穴部分を強化している。しかしながら、超音波振動端子による打撃では、油穴全体にむら無く処理を施すことが難しく、常に目標の強度が得られない可能性がある。さらに、鋼材の成分及び表層の組織の検討が十分でないために、静ねじり強度とねじり疲労強度を高いレベルで両立させることが困難な場合がある。
 油穴を強化する手法としては、特許文献2に開示された超音波振動端子による打撃に加えて、ショットピーニングによる表面改質処理も考えられる。しかし、これらの工程はいずれも、通常の工程とは異なる設備や装置を必要とし、コストが上昇するため経済的に不利である。
 本発明は、上記事情に鑑みてなされたものであって、静ねじり強度及びねじり疲労強度に優れる浸炭シャフト部品を提供することを目的とする。
 本発明者らは、優れた静ねじり強度及びねじり疲労強度を両立できる浸炭シャフト部品について鋭意検討した。その結果、本発明者らは、浸炭焼入れ後に穴を切削加工することで、切削時に穴表層部の残留オーステナイトが硬質な加工誘起マルテンサイトに変態して穴付近の硬度を上昇させることができることを見出した。さらに、本発明者らは、穴付近の硬度を上昇させることで穴付近の部位からの亀裂の発生及び進展が抑制されるため、浸炭シャフト部品の静ねじり強度及びねじり疲労強度を向上させることができること、また、切削時により多くの残留オーステナイトを加工誘起マルテンサイト変態させることで、浸炭シャフト部品の静ねじり強度及びねじり疲労強度をより一層向上させることができることも見出した。
 通常、切削時の加工誘起マルテンサイトへの変態挙動を制御するためには、切削条件を最適化することが有効である。そのため、本発明者らは、マルテンサイトへの変態量をできるだけ多くすべく、切削条件の最適化を試みた。しかしながら、切削条件だけを最適化したのでは、浸炭シャフト部品の静ねじり強度及びねじり疲労強度は確かに向上するものの、目標とする値に到達するには至らなかった。
 そこで、本発明者らは、鋼材(浸炭シャフト部品)の化学成分や熱処理条件にも着目して、静ねじり強度及びねじり疲労強度のさらなる改善を試みた。その結果、特定の鋼材成分や熱処理条件を採用することで、切削加工時に加工誘起マルテンサイト変態が生じ易くなり、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が格段に向上することが判明した。
 従来、残留オーステナイト量を制御するために、特定の鋼材の化学成分や熱処理条件を採用することは、一般に行われている。しかしながら、残留オーステナイト量のみならず、切削加工時の加工誘起マルテンサイト変態の挙動を制御するために、鋼材の化学成分や熱処理条件を最適化することは、これまで行われていない新規な技術的思想である。
 以上により、本発明者らは、浸炭シャフト部品の静ねじり強度及びねじり疲労強度を劇的に改善するには、鋼材の化学成分、熱処理条件及び切削条件を個別に最適化するのではなく、これらの条件を相互に関連付けて有機的に最適化することが望ましいとの知見を得た。
 そして、本発明者らは、鋼材の化学成分、熱処理条件及び切削条件の有機的な最適化により、浸炭焼入れ後の組織と切削加工後の組織とが適切に制御され、ひいては、静ねじり強度及びねじり疲労強度がバランス良く改善された浸炭シャフト部品が得られる、との知見を得た。以上の知見に基づき、本発明者らは発明を完成した。その要旨は以下のとおりである。
 [1]外周表面から3mm深さ又はそれより深い内部が、質量%で、
 C:0.10~0.30%、
 Si:0.01~0.30%、
 Mn:0.4~2.0%、
 P:0.050%以下、
 S:0.005~0.020%、
 Cr:0.4~3.5%、
 Al:0.010~0.050%、
 N:0.005~0.025%、及び
 O:0.003%以下
を含有し、残部がFe及び不純物からなり、
 任意選択で、さらに、質量%で、
 Pb:0.5%以下、
 V、Nb及びTiからなる群から選択される1種以上を総含有量で0.1%以下、
 Mo:3.0%以下及びNi:2.5%以下からなる群から選択される1種以上、
 Cu:0~0.50%、及び
 B:0~0.020%
を含有し、式(1)及び式(2)を満たし、
 表層部のC含有量(Cs)が質量%で0.60~1.00%であり、
 前記外周表面に少なくとも1つの穴を有し、
 前記外周表面から前記穴の軸方向に1mmの深さ位置でかつ前記穴の表面から20μmの深さ位置での組織におけるマルテンサイトと残留オーステナイトの合計体積率(α’+γ)が97%以上であり、
 前記外周表面から前記穴の軸方向に1mmの深さ位置でかつ前記穴の表面から200μm深さまでの範囲における最大残留オーステナイト体積率(R1)が10.0~30.0%であり、
 前記R1と、前記外周表面から前記穴の軸方向に1mmの深さ位置でかつ前記穴の表面から20μmの深さ位置での残留オーステナイト体積率(R2)とから式(A)によって求められる残留オーステナイト減少率(Δγ)が20%以上であることを特徴とする、浸炭シャフト部品。
 1.54×C+0.81×Si+1.59×Mn+1.65×Cr+1.77×Mo+0.63×Ni≧2.35 (1)
 11.3≦-0.1×Si+15.2×Mn+7.0×Cr+6.7×Mo+6.2×Ni≦33.8      (2)
 ここで、式(1)及び式(2)中の各元素記号には、各元素の含有量(質量%)が代入され、元素を含まない場合は0が代入される。
 Δγ=(R1-R2)/R1×100 (A)
 [2]前記R2が20%以下であることを特徴とする、上記[1]に記載の浸炭シャフト部品。
 [3]前記穴の表面に塑性流動層を有することを特徴とする、上記[1]又は[2]に記載の浸炭シャフト部品。
 [4]前記塑性流動層の厚さが0.5~15μmであることを特徴とする、上記[3]に記載の浸炭シャフト部品。
 本発明によれば、静ねじり強度及びねじり疲労強度に優れた浸炭シャフト部品を得ることができる。
図1(a)は、焼入れ材及び浸炭シャフト部品の模式図であり、図1(b)は、焼入れ材及び浸炭シャフト部品の外周から穴の軸方向に1mmの深さ位置であって、かつ穴軸心に垂直な断面A-A’を示す図である。 図2は、浸炭シャフト部品の残留オーステナイト体積率の測定における基準位置を示す図である。 図3は、浸炭シャフト部品の外周から穴の軸方向に1mmの深さ位置であって、かつ穴に垂直な断面A-A’における、穴表層の走査型電子顕微鏡像である。 図4は、ねじり試験に用いる試験片の側面図である。 図5は、本発明に係る浸炭シャフト部品における穴周辺部の上面図である。
 以下、図面を参照して、本発明の実施形態に係る浸炭シャフト部品を詳細に説明する。なお、図中、同一又は相当する部材には、同一符号を付してその説明は繰り返さない。
<浸炭シャフト部品>
 本発明の実施形態に係る浸炭シャフト部品は、外周表面から3mm深さ又はそれより深い内部が、質量%で、
 C:0.10~0.30%、
 Si:0.01~0.30%、
 Mn:0.4~2.0%、
 P:0.050%以下、
 S:0.005~0.020%、
 Cr:0.4~3.5%、
 Al:0.010~0.050%、
 N:0.005~0.025%、及び
 O:0.003%以下
を含有し、残部がFe及び不純物からなり、
 任意選択で、さらに、質量%で、
 Pb:0.5%以下、
 V、Nb及びTiからなる群から選択される1種以上を総含有量で0.1%以下、
 Mo:3.0%以下及びNi:2.5%以下からなる群から選択される1種以上、
 Cu:0~0.50%、及び
 B:0~0.020%
を含有し、式(1)及び式(2)を満たし、
 表層部のC含有量(Cs)が質量%で0.60~1.00%であり、
 前記外周表面に少なくとも1つの穴を有し、
 前記外周表面から前記穴の軸方向に1mmの深さ位置でかつ前記穴の表面から20μmの深さ位置での組織におけるマルテンサイトと残留オーステナイトの合計体積率(α’+γ)が97%以上であり、
 前記外周表面から前記穴の軸方向に1mmの深さ位置でかつ前記穴の表面から200μm深さまでの範囲における最大残留オーステナイト体積率(R1)が10.0~30.0%であり、
 前記R1と、前記外周表面から前記穴の軸方向に1mmの深さ位置でかつ前記穴の表面から20μmの深さ位置での残留オーステナイト体積率(R2)とから式(A)によって求められる残留オーステナイト減少率(Δγ)が20%以上であることを特徴としている。
 1.54×C+0.81×Si+1.59×Mn+1.65×Cr+1.77×Mo+0.63×Ni≧2.35 (1)
 11.3≦-0.1×Si+15.2×Mn+7.0×Cr+6.7×Mo+6.2×Ni≦33.8      (2)
 ここで、式(1)及び式(2)中の各元素記号には、各元素の含有量(質量%)が代入され、元素を含まない場合は0が代入される。
 Δγ=(R1-R2)/R1×100 (A)
 本発明の実施形態に係る浸炭シャフト部品は、外周表面に油穴等の少なくとも1つの穴を有しかつ浸炭処理された任意のシャフト部品を包含するものであり、特に限定されないが、例えば、自動車及び産業機械に使用されるシャフト部品、例えばトランスミッションシャフトを含む。また、本発明の実施形態に係る浸炭シャフト部品は、任意の形状のシャフト部品を包含し、特に限定されないが、例えば、直径が約150mm以下、約100mm以下又は約30mm以下であり、長さが5mm以上である中空又は中実の筒状又は棒状のシャフト部品であってよい。
(浸炭シャフト部品の化学組成(必須成分))
 浸炭シャフト部品は以下の化学組成を有する。なお、以下に示す各元素の割合(%)は全て質量%を意味する。浸炭シャフト部品では、浸炭処理によって表層部に炭素が導入されるため、厳密には浸炭シャフト部品の表層部と内部とで化学組成が異なる。そこで、以下に示す化学組成(必須成分、不純物及び任意選択的成分を含む)は、浸炭処理前の鋼材の化学組成と一致するように、浸炭処理の影響を受けない領域、すなわち浸炭シャフト部品の外周表面から3mm深さ又はそれより深い内部における化学組成について言うものである。
C:0.10~0.30%
 炭素(C)は、浸炭シャフト部品の強度(特に芯部の強度)を高める。Cはさらに、静ねじり強度及びねじり疲労強度を高めるための残留オーステナイトを生成する。C含有量が低すぎれば、この効果が得られない。一方、C含有量が高すぎれば、浸炭シャフト部品に加工する鋼材の強度が高くなりすぎる。そのため、鋼材の被削性が低下する。従って、C含有量は0.10~0.30%である。C含有量の好ましい下限は0.15%以上である。C含有量の好ましい上限は0.25%未満である。
Si:0.01~0.30%
 シリコン(Si)は、焼入れ性を高める作用を有するが、浸炭処理の際、浸炭異常層を増加させてしまう。特に、その含有量が0.30%を超えると、浸炭異常層が大幅に増加するために不完全焼入れ組織とよばれる軟質組織が生成して、浸炭シャフト部品のねじり疲労強度が低下する。浸炭異常層の生成を防止するには、Siの含有量は0.25%以下とすることが好ましく、0.20%以下とすることがより好ましい。しかし、量産においてSiの含有量を0.01%未満にすることは困難である。したがって、Siの含有量を0.01~0.30%とした。なお、量産における製造コストを考慮すると、実際に製造される本発明品では、Si含有量は0.05%以上含まれることが多いと思われる。
Mn:0.4~2.0%
 マンガン(Mn)は、鋼の焼入れ性を高めるとともに、鋼中の残留オーステナイトを増加させる。Mnを含有するオーステナイトは、Mnを含有しないオーステナイトと比較して、浸炭焼入れ後の切削時に加工誘起マルテンサイト変態しやすい。その結果、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が高まる。Mn含有量が低すぎれば、この効果が得られない。一方、Mn含有量が高すぎれば、浸炭焼入れ及び焼戻し後の残留オーステナイトが過剰に多くなる。そのため、切削加工時に十分な加工誘起マルテンサイト変態が発生せず、切削加工後も残留オーステナイトが過剰となり、ひいては切削加工時に十分な加工誘起マルテンサイト変態が発生せず、切削加工後も残留オーステナイトが減少しにくい。その結果、切削加工後の浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。従って、Mn含有量は0.4~2.0%である。Mn含有量の好ましい下限は0.8%である。Mn含有量の好ましい上限は1.8%である。
P:0.050%以下
 燐(P)は不純物である。Pは、粒界に偏析して粒界強度を下げる。その結果、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。従って、P含有量は0.050%以下である。P含有量の好ましい上限は0.030%である。P含有量はなるべく低い方がよい。P含有量の好ましい下限は0.0002%である。
S:0.005~0.020%
 硫黄(S)は、Mnと結合してMnSを形成し、被削性を高める。S含有量が低すぎれば、この効果が得られない。一方、S含有量が高すぎれば、粗大なMnSを形成して、鋼の熱間加工性、冷間加工性、浸炭シャフト部品のねじり疲労強度が低下する。従って、S含有量は0.005~0.020%である。S含有量の好ましい下限は0.008%である。S含有量の好ましい上限は0.015%である。
Cr:0.4~3.5%
 クロム(Cr)は鋼の焼入れ性を高め、さらに、残留オーステナイトを増加させる。Cr含有量が低すぎれば、この効果が得られない。一方、Cr含有量が高すぎれば、浸炭焼入れ及び焼戻し後の残留オーステナイトが過剰となる。この場合、穴切削工程における切削加工時に十分な加工誘起マルテンサイト変態が発生せず、切削加工後も残留オーステナイトが減少しにくい。その結果、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。従って、Cr含有量は0.4~3.5%である。Cr含有量の好ましい下限は0.5%である。Cr含有量の好ましい上限は3.1%である。
Al:0.010~0.050%
 アルミニウム(Al)は鋼を脱酸する。Alはさらに、Nと結合してAlNを形成し、結晶粒を微細化する。その結果、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が高まる。Al含有量が低すぎれば、この効果は得られない。一方、Al含有量が高すぎれば、硬質で粗大なAl23が生成して、鋼の被削性が低下し、さらに、ねじり疲労強度も低下する。従って、Al含有量は0.010~0.050%である。Al含有量の好ましい下限は0.020%である。Al含有量の好ましい上限は0.040%である。
N:0.005~0.025%
 窒素(N)は窒化物を形成して結晶粒を微細化し、浸炭シャフト部品の静ねじり強度及びねじり疲労強度を高める。N含有量が低すぎれば、この効果が得られない。一方、N含有量が高すぎれば、粗大な窒化物が生成して鋼の靱性が低下する。従って、N含有量は0.005~0.025%である。N含有量の好ましい下限は0.010%である。N含有量の好ましい上限は0.020%である。
O:0.003%以下
 酸素(O)は不純物である。OはAlと結合して硬質な酸化物系介在物を形成する。酸化物系介在物は鋼の被削性を低下させ、浸炭シャフト部品のねじり疲労強度も低下させる。従って、O含有量は0.003%以下である。O含有量はなるべく低い方がよい。O含有量の好ましい下限は0.0001%である。
 上記浸炭シャフト部品の化学組成の残部は鉄(Fe)及び不純物である。不純物とは、鋼の原料として利用される鉱石やスクラップ、又は、製造工程の環境等から混入する成分であって、浸炭シャフト部品に意図的に含有させた成分ではない成分を意味する。浸炭シャフト部品に不純物が混入していても、微量であり鋼材の性質が損なわれない範囲であれば、本発明の目的は達成可能である。具体的な例として、本発明に係る浸炭シャフト部品は、以下に示す各元素を、それぞれ規定の範囲内で含んでいても、発明の目的を達成することができる。
 希土類元素(REM) : 0.0005%以下
 カルシウム(Ca)  : 0.0005%以下
 マグネシウム(Mg) : 0.0005%以下
 タングステン(W)  : 0.001%以下
 アンチモン(Sb)  : 0.001%以下
 ビスマス(Bi)   : 0.001%以下
 コバルト(Co)   : 0.001%以下
 タンタル(Ta)   : 0.001%以下
(浸炭シャフト部品の化学組成(任意選択的成分))
 浸炭シャフト部品はさらに、Feの一部に代えて、Pbを含有してもよい。
 Pb:0.5%以下
 鉛(Pb)は任意選択的元素であり、含有されていなくてもよい。含有される場合、工具摩耗の低下及び切り屑処理性の向上が実現される。しかしながら、Pb含有量が高すぎれば、鋼の強度及び靱性が低下し、浸炭シャフト部品の静ねじり強度及びねじり疲労強度も低下する。従って、Pb含有量は0.5%以下とすることが好ましい。Pb含有量のさらに好ましい上限は0.4%である。なお、上記の効果を得るためにはPb含有量を0.03%以上とすることが好ましい。
 浸炭シャフト部品はさらに、Feの一部に代えて、V、Nb及びTiからなる群から選択される1種以上を含有してもよい。
V、Nb及びTi:総含有量で0.1%以下
 バナジウム(V)、ニオブ(Nb)及びチタン(Ti)は任意選択的元素であり、含有されていなくてもよい。これらの元素は、C及びNと結合して、析出物を形成する。これらの元素の析出物は、AlNによる焼入れ部の結晶粒微細化を補完する。これらの元素の析出物は、浸炭シャフト部品の静ねじり強度及びねじり疲労強度を高める。しかしながら、これらの元素の総含有量が0.1%を超えれば、析出物が粗大化し、ねじり疲労強度が低下する。従って、V、Nb及びTiの総含有量は0.1%以下であることが好ましい。任意選択的元素として、V、Nb及びTiのいずれか1種以上が含有されれば、上記効果が得られる。V、Nb及びTiの総含有量のさらに好ましい上限は0.08%である。V、Nb及びTiによる上記の効果を得るためには、0.01%以上の含有が好ましい。
 浸炭シャフト部品はさらに、Feの一部に代えて、Mo及びNiからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも、鋼の焼入れ性を高め、残留オーステナイトを増加させる。
Mo:3.0%以下
 モリブデン(Mo)は任意選択的元素であり、含有されていなくてもよい。含有される場合、Moは鋼の焼入れ性を高め、残留オーステナイトを増加させる。Moはさらに、焼戻し軟化抵抗を高め、浸炭シャフト部品の静ねじり強度及びねじり疲労強度を高める。しかしながら、Mo含有量が高すぎれば、浸炭焼入れ後の残留オーステナイトが過剰となる。この場合、切削加工時に十分な加工誘起マルテンサイト変態が発生しない。その結果、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。従って、Mo含有量は3.0%以下とすることが好ましい。Mo含有量のさらに好ましい上限は2.0%である。Moによる上記の効果を得るためには、0.1%以上の含有が好ましい。
Ni:2.5%以下
 ニッケル(Ni)は任意選択的元素であり、含有されていなくてもよい。含有される場合、Niは鋼の焼入れ性を高め、残留オーステナイトを増加させる。Niはさらに、鋼の靱性を高める。しかしながら、Ni含有量が高すぎれば、浸炭焼入れ後の残留オーステナイトが過剰となる。この場合、焼戻し後の切削加工時に十分な加工誘起マルテンサイト変態が発生しない。その結果、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。従って、Ni含有量は2.5%以下であることが好ましい。Ni含有量のさらに好ましい上限は2.0%である。Niによる上記の効果を得るためには、0.1%以上の含有が好ましい。
Cu:0~0.50%
 Cuはマルテンサイトに固溶して鋼材の強度を高める。そのため、鋼材の疲労強度が高まる。しかしながら、Cu含有量が高すぎれば、熱間鍛造時に鋼の粒界に偏析して熱間割れを誘起する。したがって、Cu含有量は0.50%以下である。なお、Cu含有量は0.40%以下であることが好ましく、0.25%以下であることが一層好ましい。Cuによる上記の効果を得るためには、0.10%以上の含有が好ましい。
B:0~0.020%
 BはPの粒界偏析を抑制して靭性を高める効果がある。しかしながら、0.020%を超えて添加すると、浸炭時に異常粒成長が生じ、ねじり疲労強度が低下する。したがって、B含有量は0.020%以下である。なお、B含有量は、0.015%あることが好ましく、0.010%以下であることが一層好ましい。Bによる上記の効果を得るためには、0.0005%以上の含有が好ましい。
(各元素の含有量の関係)
 浸炭シャフト部品を構成する各元素の含有量の関係は、以下に示す式(1)及び式(2)を満たす。
 1.54×C+0.81×Si+1.59×Mn+1.65×Cr+1.77×Mo+0.63×Ni≧2.35 (1)
 11.3≦-0.1×Si+15.2×Mn+7.0×Cr+6.7×Mo+6.2×Ni≦33.8      (2)
 ここで、式(1)及び(2)中の各元素記号には、各元素の含有量(質量%)が代入され、元素を含まない場合は0が代入される。
式(1)について
 F1=1.54×C+0.81×Si+1.59×Mn+1.65×Cr+1.77×Mo+0.63×Niと定義する。F1は、鋼の焼入れ性を表すパラメータである。F1が低すぎれば、鋼の焼入れ性が低くなる。この場合、強度の低いフェライト及びパーライトが生成し、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。従って、F1は2.35以上である。F1のより好ましい下限は3.0である。浸炭シャフト部品の靭性確保のためF1の好ましい上限は8.0である。
式(2)について
 F2=-0.1×Si+15.2×Mn+7.0×Cr+6.7×Mo+6.2×Niと定義する。F2は、オーステナイトの安定度を表すパラメータである。F2が低すぎれば、浸炭焼き入れ後に得られる残留オーステナイト割合が低くなる。その結果、加工誘起マルテンサイト変態による穴周辺部の硬化作用を得られず、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低くなる。一方、F2が高すぎれば、浸炭焼入れ及び焼戻し後の残留オーステナイトの量が過剰となり、静ねじり強度及びねじり疲労強度が低下する。さらに、残留オーステナイトが安定であるために、切削加工時に得られる加工誘起マルテンサイト変態の割合も少なくなる。この観点からも、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。従って、F2は11.3~33.8であることが求められる。F2の好ましい下限は12.0である。F2の好ましい上限は33.0である。
[浸炭シャフト外周表面の少なくとも1つの穴]
 本発明の実施形態に係る浸炭シャフト部品は、当該浸炭シャフト部品の長手(軸)方向に対して垂直又は所定の角度を有し、かつ当該浸炭シャフト部品の外周表面から開けられた1個又は複数個の貫通穴又は非貫通穴を有する。穴の直径は、特に限定されないが、例えば0.2mm~10mmであってよい。
[表層部のC含有量(Cs):0.60~1.00%]
 浸炭シャフト部品の表層部に含まれるCは、浸炭シャフト部品の静ねじり強度及びねじり疲労強度を高める。本発明において、浸炭シャフト部品表層部のC含有量は以下の手法で測定される。
 浸炭シャフト部品の外周表面から穴の軸方向に1mm深さでかつ穴表層50μmの部分を切削加工によって切り出し、その切粉中のC含有量を発光分光分析で定量測定し、その値を表層部のC含有量とする。また、浸炭シャフト部品表層部のC濃度は、EPMA(電子線マイクロアナライザ)を用いて定量分析することもできる。
 表層部に含まれるC含有量(Cs)が低ければ、浸炭層の硬度が低くなる。その結果、浸炭シャフト部品の静ねじり強度が低下する。一方、(Cs)が高ければ、浸炭シャフト部品の表層部に硬質な初析セメンタイトが生成する。Csが過度に高く、当該初析セメンタイトが3%を超えた場合には、セメンタイトが破壊の起点となり、静ねじり強度及びねじり疲労強度が低下する。さらに、切削加工時の工具摩耗が増大し、被削性が低下する。従って、表層部のC含有量(Cs)は0.60~1.00%である。Csの好ましい下限は0.65%である。Csの好ましい上限は0.90%である。
[浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面から20μmの深さ位置での組織におけるマルテンサイトと残留オーステナイトの合計体積率(α’+γ)]
 浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面から20μmの深さ位置での組織として、フェライト、パーライト等の強度の低い相が存在すれば、これらの相を起点に亀裂が発生しやすく、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低くなる。また、初析セメンタイトが存在すれば、浸炭シャフト部品の製造工程における切削加工時の工具摩耗が増大するうえに、疲労破壊の起点となるためねじり疲労強度が低下する。従って、上記位置での組織におけるマルテンサイトと残留オーステナイトの合計体積率(α’+γ)を97%以上に限定する。なお、当該合計体積率の好ましい範囲は99%以上である。
 本発明において、マルテンサイトと残留オーステナイトの合計体積率(α’+γ)は、浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面から20μmの深さ位置に相当する基準位置21(図2参照)を組織観察して次の方法で測定される。即ち、浸炭シャフト部品の外周から穴の軸方向に1mmの深さ位置でかつ穴軸心に垂直な断面における穴表層部を含み、穴の軸方向に垂直な面(横断面)が観察面になるような試験片を採取する(図1A-A’)。鏡面研磨した試験片を、5%ナイタール溶液で腐食する。腐食された面を、倍率1000倍の光学顕微鏡にて3視野観察する。このとき、基準位置21を視野の中心にする(図1-11)。視野の中心から焼入れ材の表面方向に10μm、視野の中心から焼入れ材の表面と反対の方向に10μm、視野の中心から焼入れ材の表面方向と垂直な両方向に各々50μmの、20μm×100μmの範囲の平面内において、各相の面積率を通常の画像解析方法によって求める。3視野のそれぞれについて得られた各相の面積率の平均値を各相の体積率と定義する。
[浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面から200μm深さまでの範囲における最大残留オーステナイト体積率(R1)]
 浸炭焼き入れによって導入された残留オーステナイトは、浸炭シャフト部品の穴切削加工時に加工誘起マルテンサイト変態する。具体的には、穴開け加工時に、切削工具と母材との間の摩擦力により、穴の表層付近にある残留オーステナイトの一部が、加工誘起マルテンサイトに変態する。一方、この作用による加工誘起マルテンサイト変態の発生は穴の表面に近いほど強く、穴の表面から離れるほど弱くなる。
 穴開け加工にともなう加工誘起マルテンサイト変態の結果、浸炭シャフト部品の強度が上昇し、静ねじり強度及びねじり疲労強度が上昇する。このような効果を得るためには、浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面から200μm深さまでの範囲における最大残留オーステナイト体積率(R1)が10.0%以上でなければならない。
 一方、残留オーステナイトは軟質であるため、最大残留オーステナイト体積率(R1)が30.0%を超えるとかえって浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。
 本発明において、最大残留オーステナイト体積率(R1)は次の方法で測定される。穴の軸方向でかつその中心を通って穴を2分割するように浸炭シャフト部品を切断する(図2B-B’)。穴表面において、外周表面から1mm深さ位置を中心にφ1mmの穴が開いたマスキングを施し、電解研磨を施す。電解研磨の時間を変化させることで研磨量を調整し、30μm深さの穴を掘る。電解研磨は、11.6%の塩化アンモニウムと、35.1%のグリセリンと、53.3%の水とを含有する電解液を用いて電圧20Vで行う。電解研磨された表面に対してX線回折を実施し、表面から30μm位置の残留オーステナイトの体積率を求める。この過程を繰り返すことで、10μmずつ穴を深くし、その都度残留オーステナイトの体積率を測定することを、穴の深さが200μmとなるまで繰り返す。そしてその中で得られた最大の残留オーステナイト体積率を(R1)とする。
 電解研磨された表面において、基準位置を中心にX線を照射して、X線回折法により解析を行う。X線回折には、株式会社リガク製の商品名RINT-2500HL/PCを使用する。光源にはCr管球を使用する。管電圧は40kV、管電流は40mAであり、コリメーター直径は0.5mmである。VフィルターによってKβ線を除去し、Kα線を使用する。データ解析は、AutoMATEソフトウエア(株式会社リガク製)を用いる。Rachinger法によってKα2成分を除去し、Kα1成分のプロファイルを用いて、bcc構造の(211)面とfcc構造の(220)面の回折ピークの積分強度比に基づいて残留オーステナイト体積率(R1)を計算する。なお、照射するX線のスポットサイズはφ0.5mm以下とする。
[浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面から20μmの深さ位置での残留オーステナイト体積率(R2)]
 浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面から20μmの深さ位置での残留オーステナイト体積率(R2)は20%以下であることが好ましい。切削加工後の残留オーステナイトの体積率が高すぎれば、硬質なマルテンサイトが得られず、静ねじり強度及びねじり疲労強度が低下する。
 本発明において、残留オーステナイト体積率(R2)は次の方法で測定される。穴の軸方向でかつその中心を通って穴を2分割するように浸炭シャフト部品を切断する(図2B-B’)。穴表面において、外周表面から1mm深さ位置を中心にφ1mmの穴が開いたマスキングを施し、電解研磨を施す。電解研磨の時間を変化させることで研磨量を調整し、20μm深さの穴を開ける。その穴の中心に、スポットサイズφ0.5mmのX線を照射して、残留オーステナイト体積率(R1)と同様にして残留オーステナイト体積率(R2)を測定する。
[R1とR2から式(A):Δγ=(R1-R2)/R1×100によって求められる残留オーステナイト減少率Δγ]
 R1とR2から上記式(A)によって求められる残留オーステナイト減少率(Δγ)が20%以上である。
 残留オーステナイト減少率(Δγ)は、切削加工時の加工誘起マルテンサイト変態の程度を表す。Δγが大きいと、切削時により多くの加工誘起マルテンサイト変態が発生したことを意味し、静ねじり強度及びねじり疲労強度が向上する。このような効果を得るためにはΔγが20%以上でなければならない。なお、好ましいΔγの値は25%以上である。
[穴表面の塑性流動層]
 本発明の実施形態に係る浸炭シャフト部品は、穴の表面に塑性流動層を有していてもよい。この塑性流動層は、穴の切削加工時に、穴の表層部に大きな変形が生じることで形成される層である。この塑性流動層は硬質であり、厚さが0.5μm以上になると浸炭シャフト部品の静ねじり強度及びねじり疲労強度を向上させ得る。しかしながら、塑性流動層は脆いため、その厚さが薄い場合にはある程度変形が可能であるが、厚さが15μmを超えると、割れが生じて亀裂発生の起点となるため、ねじり疲労強度が逆に低下する場合がある。さらに、塑性流動層はその厚さが15μmを超えると、被削性が低下し、切削加工時の工具への負担が大きくなって工具寿命が著しく低下する場合がある。以上により、浸炭シャフト部品の表層の塑性流動層の厚さは好ましくは0.5~15μmである。なお、浸炭シャフト部品の静ねじり強度及びねじり疲労強度をさらに向上させるためには、浸炭シャフト部品の表層の塑性流動層の厚さは1μm以上とすることが好ましく、3μm以上とすることがさらに好ましい。また、好ましい上限は13μmであり、さらに好ましくは10μmである。
 穴表面の塑性流動層の厚さは、次の方法で測定される。浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴に垂直な断面における穴表層部を含み、穴の軸方向に垂直な面(横断面)が観察面になるような試験片を採取する(図1のA-A’)。鏡面研磨した試験片を、5%ナイタール溶液で腐食する。腐食された面を、倍率5000倍の走査型電子顕微鏡(SEM)にて観察する。得られたSEM像の一例を図3に示す。同図において、塑性流動層31は、母材32に対して組織が穴の表面に沿って(図3において紙面の左方向から右方向に)湾曲している部分であり、穴の表面から湾曲した組織の端までの距離を塑性流動層31の厚さと定義した。
[穴表層部の硬化層]
 本発明の実施形態に係る浸炭シャフト部品は、上記の塑性流動層を含めて、穴表面から一定の深さにわたって硬化された層を有する。このような硬化層は、穴の切削加工時に穴表層部の残留オーステナイトが加工誘起マルテンサイト変態することで形成された層(加工誘起マルテンサイト層)を含み、例えば、約200~300μmの厚さを有する。本発明に係る浸炭シャフト部品は、図5に示すように、静ねじり強度及びねじり疲労強度を低下させる要因となりうる穴43の周辺に、塑性流動層31と加工誘起マルテンサイト層51、特に硬質な加工誘起マルテンサイト層51を含む硬化層を備えることにより、全体としては優れた静ねじり強度及びねじり疲労強度を実現したものである。
<浸炭シャフト部品の製造方法>
 本発明の実施形態に係る浸炭シャフト部品は、浸炭焼入れ後に穴を切削加工することによって製造することができ、例えば、以下の態様1及び2に示す方法によって製造することができる。
(態様1)
 浸炭シャフト部品の製造方法は、鋼材を加工して粗部材を得る工程(粗部材製造工程)と、粗部材に対して浸炭焼入れ処理を施して浸炭材を得る工程(浸炭材製造工程)と、焼入れ材に対して穴の切削加工を施して、浸炭シャフト部品を得る工程(穴切削工程)とを含む。より具体的には、浸炭シャフト部品の製造方法は、質量%で、
 C:0.10~0.30%、
 Si:0.01~0.30%、
 Mn:0.4~2.0%、
 P:0.050%以下、
 S:0.005~0.020%、
 Cr:0.4~3.5%、
 Al:0.010~0.050%、
 N:0.005~0.025%、及び
 O:0.003%以下
を含有し、残部がFe及び不純物からなり、
 任意選択で、さらに、質量%で、
 Pb:0.5%以下、
 V、Nb及びTiからなる群から選択される1種以上を総含有量で0.1%以下、
 Mo:3.0%以下及びNi:2.5%以下からなる群から選択される1種以上、
 Cu:0~0.50%、及び
 B:0~0.020%
を含有し、式(1)及び式(2)を満たす鋼材を加工して粗部材を得る工程(粗部材製造工程)と、
 前記粗部材に対して浸炭処理、恒温保持処理、焼入れ処理を施して浸炭材を得る工程であって、
 浸炭温度(T1)を900°以上1050℃以下とし、浸炭処理時のカーボンポテンシャル(Cp1)を0.7%以上1.1%以下とし、浸炭時間(t1)を60分以上とし、恒温保持温度(T2)を820℃以上870℃以下とし、恒温保持処理時のカーボンポテンシャル(Cp2)を0.7%以上0.9%以下とし、恒温保持処理時間(t2)を20~60分とすることで、
 前記浸炭材において、最終形態である浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面に相当する位置から20μmの深さ位置に相当する基準位置での組織が、マルテンサイトと体積率で12.0~35.0%の残留オーステナイト(RI)とを含むとともに、前記マルテンサイト及び残留オーステナイト以外の他の相が体積率で3%以下となる工程(浸炭材製造工程)と、
 前記浸炭材の穴に対して切削加工を施して浸炭シャフト部品を得る工程であって、
 切削時の工具送りを0.01mm/rev超0.1mm/rev以下とし、切削速度を10m/分以上50m/分以下とし、切り込み(d)を0.05mm以上0.25mm以下とすることで、
 前記基準位置での組織において、残留オーステナイトの体積率(RF)が20%以下となり、切削前の残留オーステナイト体積率(RI)と切削後の残留オーステナイトの体積率(RF)から式(B)によって求められる残留オーステナイト減少率(Δγ’)が35%以上となる工程(穴切削工程)と
を含む。
 1.54×C+0.81×Si+1.59×Mn+1.65×Cr+1.77×Mo+0.63×Ni≧2.35 (1)
 11.3≦-0.1×Si+15.2×Mn+7.0×Cr+6.7×Mo+6.2×Ni≦33.8      (2)
 ここで、式(1)及び式(2)中の各元素記号には、各元素の含有量(質量%)が代入され、元素を含まない場合は0が代入される。
 Δγ’=(RI-RF)/RI×100 (B)
[粗部材製造工程]
 本工程では、浸炭シャフト部品の形状に近い所望の形状を有する粗部材を製造する。初めに、上記化学組成を有する鋼材を準備する。
(粗部材の製造)
 上記化学組成を有する鋼材を加工して粗部材を得る。加工方法は周知の方法を採用することができる。加工方法としては、例えば、熱間加工、冷間加工、切削加工等が挙げられる。粗部材は、穴以外の部分は浸炭シャフト部品と同様の形状とし、穴の直径は、浸炭シャフト部品の穴の直径より小さくする。なお、浸炭シャフト部品の穴の半径と、粗部材における穴の半径の差が、後の穴切削工程における、切り込み(d)に相当する。
[浸炭材製造工程]
 上記のようにして得られた粗部材に対して、浸炭処理、恒温保持処理、焼入れ処理を施して浸炭材を得る。これにより、浸炭材において、最終形態である浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さでかつ穴の表面に相当する位置から20μmの深さ位置に相当する基準位置21(図2参照)での組織が、マルテンサイトと体積率で12.0~35.0%の残留オーステナイト(RI)とを含むとともに、上記マルテンサイト及び残留オーステナイト以外の他の相が体積率で3%以下とする。
(浸炭焼入れ)
 浸炭焼入れ工程は、初めに、浸炭処理を施し、その後、恒温保持処理を施す。浸炭処理及び恒温保持処理は、次の条件で行う。
(浸炭処理)
浸炭温度(T1):900~1050℃
 浸炭温度(T1)が低すぎれば、粗部材の表層が十分に浸炭されない。この場合、浸炭焼入れ後の残留オーステナイトが少なく、表層の硬さも低い。そのため、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低くなる。一方、浸炭温度(T1)が高すぎれば、オーステナイト粒が粗大化して浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。従って、浸炭温度(T1)は900~1050℃である。浸炭温度(T1)の好ましい下限は910℃であり、好ましい上限は1000℃である。
浸炭処理時のカーボンポテンシャル(Cp1):0.7~1.1%
 カーボンポテンシャル(Cp1)が低すぎれば、十分な浸炭がされない。この場合、浸炭焼入れ後の残留オーステナイトが少なく、表層の硬さも低い。そのため、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。一方、カーボンポテンシャル(Cp1)が高すぎれば、浸炭時に析出した硬質な初析セメンタイトが浸炭焼入れ後にも3%を超えて残存する。この場合、初析セメンタイトを起点に亀裂が発生し、浸炭シャフト部品のねじり疲労強度が低下する。また、切削加工時の工具摩耗が増大し、浸炭材の被削性が低下する。従って、カーボンポテンシャル(Cp1)は0.7~1.1%である。カーボンポテンシャル(Cp1)は浸炭処理時に上記範囲内で変動させてもよい。
浸炭時間(t1):60分以上
 浸炭処理の時間(浸炭時間)(t1)が短すぎれば、十分な浸炭がされない。従って、浸炭時間(t1)は60分以上とする。一方、浸炭時間(t1)が長すぎれば、生産性が低下する。従って、浸炭時間(t1)の上限は240分とすることが好ましい。
(恒温保持処理)
 浸炭処理後、恒温保持処理を施す。恒温保持処理は、次の条件で行う。
恒温保持温度(T2):820~870℃
 恒温保持温度(T2)が低すぎれば、カーボンポテンシャル等の雰囲気制御が困難になる。この場合、残留オーステナイトの体積率が調整しにくい。一方、恒温保持温度(T2)が高すぎれば、焼入れ時に生じる歪が増大して、焼割れが発生する場合がある。従って、恒温保持温度(T2)は820~870℃である。
恒温保持処理時のカーボンポテンシャル(Cp2):0.7~0.9%
 恒温保持処理時におけるカーボンポテンシャル(Cp2)が低すぎれば、浸炭時に侵入したCが再度外部に放出される。この場合、浸炭焼入れ後の残留オーステナイトが少なく、表層硬さも低い。その結果、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。一方、カーボンポテンシャル(Cp2)が高すぎれば、硬質な初析セメンタイトが析出する。この場合、初析セメンタイトを起点に亀裂が発生し、浸炭シャフト部品のねじり疲労強度が低下する。また、切削加工時の工具摩耗が増大し、浸炭材の被削性が低下する。従って、カーボンポテンシャル(Cp2)は0.7~0.9%である。
恒温保持時間(t2):20~60分
 恒温保持時間(t2)が短すぎれば、粗部材の温度が均一にならず、焼入れ時に生じる歪が増大する。この場合、浸炭材に焼割れが発生する場合がある。一方、恒温保持時間(t2)が長すぎれば、生産性が低下する。従って、恒温保持時間(t2)は20~60分である。
(焼入れ処理)
 恒温保持処理後、周知の方法で焼入れ処理を施す。焼入れ処理は、例えば、油焼入れとすることができる。
(焼戻し処理)
 浸炭シャフト部品の靭性を高めたい場合、浸炭焼入れ処理を施した後、焼戻し処理を施してもよい。
(浸炭材製造工程終了後の浸炭材の組織)
 上述の条件で最終形態であるシャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面に相当する位置から20μmの深さ位置に相当する基準位置21の組織は、マルテンサイトと体積率で12.0~35.0%の残留オーステナイト(RI)とを含むとともに、上記マルテンサイト及び残留オーステナイト以外の他の相が体積率で3%以下となる。
 なお、焼入れ材における最終形態である浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面に相当する位置から20μmの深さ位置に相当する基準位置21の組織観察は次の方法で実施される。即ち、焼入れ材において、最終形態である浸炭シャフト部品の外周から穴の軸方向に1mmの深さ位置でかつ穴軸心に垂直な断面における穴表層部を含み、穴の軸方向に垂直な面(横断面)が観察面になるような試験片を採取する(図1A-A’)。鏡面研磨した試験片を、5%ナイタール溶液で腐食する。腐食された面を、倍率1000倍の光学顕微鏡にて3視野観察する。このとき、基準位置を視野の中心にする(図1-11)。視野の中心から焼入れ材の表面方向に10μm、視野の中心から焼入れ材の表面と反対の方向に10μm、視野の中心から焼入れ材の表面方向と垂直な両方向に各々50μmの、20μm×100μmの範囲の平面内において、各相の面積率を通常の画像解析方法によって求める。3視野のそれぞれについて得られた各相の面積率の平均値を各相の体積率と定義する。
 光学顕微鏡による組織観察では、残留オーステナイトはマルテンサイトに含まれている。つまり、光学顕微鏡による組織観察では、マルテンサイトと残留オーステナイトとの区別ができない。そこで、最終形態である浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面に相当する位置から20μmの深さ位置に相当する基準位置(図2-21)での残留オーステナイト体積率(RI)を、次の方法で測定する。穴の軸方向でかつその中心を通って穴を2分割するように浸炭材を切断する(図2B-B’)。穴表面において、外周表面から1mm深さ位置を中心にφ1mmの穴が開いたマスキングを施し、電解研磨を施す。電解研磨の時間を変化させることで研磨量を調整し、基準位置に達する深さの穴を掘る。電解研磨は、11.6%の塩化アンモニウムと、35.1%のグリセリンと、53.3%の水とを含有する電解液を用いて電圧20Vで行う。
 電解研磨された表面において、基準位置を中心にX線を照射して、X線回折法により解析を行う。X線回折には、株式会社リガク製の商品名RINT-2500HL/PCを使用する。光源にはCr管球を使用する。管電圧は40kV、管電流は40mAであり、コリメーター直径は0.5mmである。VフィルターによってKβ線を除去し、Kα線を使用する。データ解析は、AutoMATEソフトウエア(株式会社リガク製)を用いる。Rachinger法によってKα2成分を除去し、Kα1成分のプロファイルを用いて、bcc構造の(211)面とfcc構造の(220)面の回折ピークの積分強度比に基づいて残留オーステナイト体積率(RI)を計算する。なお、照射するX線のスポットサイズはφ0.5mm以下とする。
 最終形態である浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面に相当する位置から20μmの深さ位置に相当する基準位置21での残留オーステナイトの体積率(RI)は12.0~35.0%である。残留オーステナイトは、浸炭焼入れ後の穴切削加工時に、加工誘起マルテンサイト変態する。上述したように、本発明に係るシャフト部品では、穴の周辺で形成された加工誘起マルテンサイトにより、穴の存在による浸炭シャフト部品の静ねじり強度及びねじり疲労強度の低下が抑制される。外周表面から1mm深さ位置における残留オーステナイトの体積率(RI)が12.0%より低い場合、この効果が得られない。一方、残留オーステナイトの体積率(RI)が35.0%より高い場合、切削加工後にも多くの軟質なオーステナイトが残留する。そのため、浸炭シャフト部品全体では、優れた静ねじり強度及びねじり疲労強度を得られない。RIを12.0~35.0%の範囲内に制御することにより、最終形態である浸炭シャフト部品において、以下の特徴すなわち(a)10.0~30.0%の最大残留オーステナイト体積率(R1)及び(b)20%以上の残留オーステナイト減少率(Δγ)のうち一方又は両方をより確実に達成することができる。
 浸炭材の基準位置におけるマルテンサイト及び残留オーステナイト以外の他の相(例えば、フェライト、パーライト、初析セメンタイト)の体積率は3%以下である。浸炭材の基準位置にフェライト、パーライト等の強度の低い相が存在すれば、これらの相は切削加工後も維持されるため、これらの相を基点に亀裂が発生しやすく、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。また、初析セメンタイトが存在すれば、初析セメンタイトを起点に亀裂が発生し、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。
[穴切削工程(切削加工)]
 浸炭焼入れ処理を施した後、穴に切削加工を施す。切削加工により、穴を開けつつ、その表層で加工誘起マルテンサイト変態を発生させる。これにより、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が高まる。切削加工は、次の条件で行う。なお、切削工具としては、例えばcBNのエンドミルを用いることができる。cBNのエンドミルを使用することは、工具摩耗の抑制及び加工能率向上の点で有効である。また、工具コストを削減したい場合、コーティングが施された超硬ドリル(JIS B 0171:2014年、1003、1004番に規定するコーテッド超硬ドリル)を用いても良い。
工具送りf:0.01mm/rev(回転)超0.1mm/rev以下
 浸炭後に油穴を切削加工する際には、浸炭材外周部から中心に向かって、油穴にそって工具を回転させながら進めていく。その際に、工具一回転あたりに進む距離を工具送りfという。工具送りfが小さすぎれば、切削抵抗、つまり、工具が被削材に押し付けられる力が小さすぎる。この場合、十分な加工誘起マルテンサイト変態が発生しない。そのため、浸炭シャフト部品のねじり疲労強度が向上しない。一方、送りが大きすぎれば、切削抵抗が大きくなり過ぎる。この場合、切削時に工具が破損する恐れがある。従って、送りfは0.01mm/rev超0.1mm/rev以下である。送りfの好ましい下限は0.02mm/revである。送りfの好ましい上限は0.08mm/revであり、より好ましくは0.05である。
切削速度v:10~50m/分
 浸炭後に穴を切削加工する際には、浸炭材外周部から中心に向かって、穴にそって工具を回転させながら進めていく。その際に、工具の外周部が回転する速度を切削速度vという。切削速度vが大きすぎれば、切削温度が上昇し、マルテンサイト変態が生じ難くなる。そのため、浸炭シャフト部品のねじり疲労強度が向上しない。一方、切削速度が小さすぎれば、切削能率が低下し、製造効率が低下する。従って、切削速度vは10~50m/分である。好ましい上限は40m/分であり、より好ましくは30m/分である。
切り込み(d):0.05~0.25mm
 切り込み(d)は、浸炭シャフト部品の穴の半径と、粗部材における穴の半径の差であり、切削加工による削り代に相当する。切り込み(d)が小さすぎれば、切削抵抗が小さくなる。この場合、十分な加工誘起マルテンサイト変態が発生しない。そのため、浸炭シャフト部品のねじり疲労強度が向上しない。一方、切り込み(d)が大きすぎれば、浸炭硬化層が薄くなりすぎるため、浸炭シャフト部品の静ねじり強度及びねじり疲労強度が低下する。従って、切り込み(d)は0.05~0.25mmである。切り込み(d)の好ましい下限は0.08mmであり、好ましい上限は0.20mmであり、より好ましくは0.15mmである。
(浸炭シャフト部品の組織)
 以上に示す穴切削加工により浸炭シャフト部品が得られる。浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面から20μmの深さ位置である基準位置21において、残留オーステナイトの体積率(RF)が20%以下となり、切削前の残留オーステナイト体積率(RI)と切削後の残留オーステナイトの体積率(RF)から式(B)によって求められる切削前後の残留オーステナイト減少率(Δγ’)が35%以上となる。
 オーステナイト体積率(RF)の測定は次の方法で実施される。即ち、穴の軸方向でかつその中心を通って穴を2分割するように浸炭シャフト部品を切断する(図2B-B’)。穴表面において、外周表面から1mm深さ位置を中心にφ1mmの穴が開いたマスキングを施し、電解研磨を施す。電解研磨の時間を変化させることで研磨量を調整し、20μm深さの穴を開ける。その穴の中心に、スポットサイズφ0.5mmのX線を照射して、前述の残留オーステナイト体積率(RI)と同様の方法にて残留オーステナイト体積率(RF)を測定する。
 よって、切削加工前後の残留オーステナイトの体積減少率(Δγ’)は、求めた体積率(RI)及び(RF)に基づいて、式(B)によって計算される。
 減少率Δγ’=(RI-RF)/RI×100 (B)
 浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴表面から20μmの深さ位置におけるオーステナイト体積率(RF)は20%以下である。切削加工後の残留オーステナイトの体積率が高すぎれば、硬質なマルテンサイトが得られず、静ねじり強度及びねじり疲労強度が低下する。
 切削加工前後の残留オーステナイトの体積減少率(Δγ’)は35%以上である。切削加工により、残留オーステナイトが加工誘起マルテンサイト変態することで、静ねじり強度及び疲労強度が高まる。体積減少率(Δγ’)が低すぎれば、この効果が十分に得られない。ここで、残留オーステナイト体積率(RF)とは、浸炭シャフト部品の欄で述べた残留オーステナイト体積率(R2)である。また、式(B)によって求められる残留オーステナイト減少率(Δγ’)とは、上述した(浸炭シャフト部品の欄で述べた)Δγに類似した値であり、いずれも浸炭シャフト部品の製造工程における穴切削加工時のオーステナイトの加工誘起変態の程度を表す。したがって、Δγが大きくなるほどΔγ’も大きくなる。
 態様1の製造方法では、上記のとおり、粗部材製造工程において最終の穴径よりも小径の下穴を開けた後、次の浸炭材製造工程において浸炭焼入れ処理が行われる。したがって、態様1の製造方法によれば、この浸炭焼入れ処理によってシャフト部品の外周表面に近い下穴表層部を比較的容易に硬化させることができ、その結果として、最後の穴切削工程において当該外周表面に近い穴表層部の残留オーステナイトを硬質な加工誘起マルテンサイトに確実に変態させることが可能となる。それゆえ、態様1の製造方法によれば、穴付近の部位からの亀裂の発生及び進展が抑制されるため、静ねじり強度及びねじり疲労強度に優れた浸炭シャフト部品を製造することができる。
(態様2)
 本発明の実施形態に係る浸炭シャフト部品は、態様1の場合とは異なり、鋼材に下穴を開けずに浸炭焼入れ処理を行った後、穴を切削加工することによって製造することも可能である。しかしながら、この場合には、下穴を開ける場合と比較して、鋼材のより深い位置まで確実に浸炭されるように浸炭処理の時間、すなわち浸炭時間(t1)を態様1の場合よりも長くすることが必要である。したがって、態様2によれば、浸炭時間(t1)は300分以上、例えば300~900分とすることが好ましい。t1が300分未満であると、十分な浸炭がされないからである。なお、浸炭焼入れ処理における他の条件、すなわち浸炭温度(T1)、浸炭処理時のカーボンポテンシャル(Cp1)、恒温保持温度(T2)、恒温保持処理時のカーボンポテンシャル(Cp2)及び恒温保持時間(t2)は、態様1について上で記載された範囲内で適宜決定すればよい。また、穴切削工程における切削時の工具送り及び切削速度についても、態様1に関連して記載された範囲内で適宜決定すればよい。態様2は、下穴を開ける必要がないため、態様1より工程が簡単であるという点で有利である。しかしながら、態様2は、上記のとおり非常に長い浸炭時間(t1)を必要とする。したがって、生産性の観点からは態様1の製造方法を用いて本発明の実施形態に係る浸炭シャフト部品を製造することが好ましい。
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。以下に示した表においては、本発明の要件を満たさない項目、および、本発明の望ましい製造条件を満たさない項目については、アスタリスク(*)を付与した。
 真空溶解炉を用いて、表1に示す化学組成を有する150kgの溶鋼A~Tを得た。
Figure JPOXMLDOC01-appb-T000001
 各鋼種の溶鋼を用いて、造塊法によりインゴットを得た。各インゴットを1250℃で4時間加熱した後、熱間鍛造を行って直径35mmの丸棒を得た。熱間鍛造時の仕上げ温度は1000℃であった。
 各丸棒に対して焼準処理を行った。焼準処理温度は925℃であり、焼準処理時間は2時間であった。焼準処理後、丸棒を室温(25℃)まで放冷した。
 放冷後の丸棒に対して機械加工を実施して、図4に示すねじり試験片41の元となる粗部材を製造した。上記の態様1の方法に従って浸炭焼入れ前に下穴を開ける場合には、粗部材の状態では、穴の直径は3mmより小さい。浸炭シャフト部品相当のねじり試験片41は、横断面が円形であり、円柱状の試験部42と、試験部42中央に配置された穴43と、両側に配置された円柱状の太径部44と、太径部の周を面取りした一対のつかみ部45とを備えている。さらに、軽量化のため、試験片の中心部は中空穴46となっている。図4に示すとおり、ねじり試験片41の全体長さは200mmであり、試験部42の外径は20mm、試験部42の長さは30mmであり、穴43の直径は3mmであり、中空穴46の直径は6mmである。
 ねじり試験片41の粗部材に対して、表2に示す条件に基づいて、浸炭焼入れを実施した。
Figure JPOXMLDOC01-appb-T000002
 浸炭焼入れ後、180℃で30分間の焼戻し処理を行った。
 表1の鋼種Dを用いて、表2の熱処理条件aの浸炭焼入れ及び焼戻しにより形成された浸炭硬化層の厚さは、表面からの距離(厚さ)とそのビッカース硬度(HV)との測定値から約1.0mmであった。
[浸炭材の組織観察]
 浸炭材における最終形態である浸炭シャフト部品の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面に相当する位置から20μmの深さ位置に相当する基準位置21の組織観察を次の方法で実施した。即ち、焼入れ材において、最終形態であるシャフト部品相当の試験片(ねじり試験片41)の外周から穴の軸方向に1mmの深さ位置でかつ穴軸心に垂直な断面における穴表層部を含み、穴の軸方向に垂直な面(横断面)が観察面になるような試験片を採取した(図1の符号12参照)。鏡面研磨した試験片を、5%ナイタール溶液で腐食した。腐食された面を、倍率1000倍の光学顕微鏡にて3視野観察した。このとき、基準位置を視野の中心にした。視野の中心から焼入れ材の表面方向に10μm、視野の中心から焼入れ材の表面と反対の方向に10μm、視野の中心から焼入れ材の表面方向と垂直な両方向に各々50μmの、20μm×100μmの範囲の平面内において、各相の面積率を通常の画像解析方法によって求めた。3視野のそれぞれについて得られた各相の面積率の平均値を各相の体積率と定義した。
[残留オーステナイトの体積率(RI)の測定]
 焼入れ材において、最終形態であるシャフト部品相当の試験片(ねじり試験片51)の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面に相当する位置から20μmの深さ位置に相当する基準位置21でのオーステナイト体積率(RI)を、次の方法で測定する。穴の軸方向でかつその中心を通って穴を2分割するように浸炭材を切断した(図2)。穴表面において、外周表面から1mm深さ位置を中心にφ1mmの穴が開いたマスキングを施し、電解研磨を施す。電解研磨の時間を変化させることで研磨量を調整し、基準位置に達する深さの穴を掘る。電解研磨は、11.6%の塩化アンモニウムと、35.1%のグリセリンと、53.3%の水とを含有する電解液を用いて、電圧20Vで電解研磨を行った。
 電解研磨された表面において、基準位置を中心にX線を照射して、X線回折法により解析を行った。X線回折には、株式会社リガク製の商品名RINT-2500HL/PCを使用する。光源にはCr管球を使用する。管電圧は40kV、管電流は40mAであり、コリメーター直径は0.5mmである。VフィルターによってKβ線を除去し、Kα線を使用した。データ解析は、AutoMATEソフトウエア(株式会社リガク製)を用いた。Rachinger法によってKα2成分を除去し、Kα1成分のプロファイルを用いて、bcc構造の(211)面とfcc構造の(220)面の回折ピークの積分強度比に基づいて残留オーステナイト体積率(RI)を計算した。なお、照射するX線のスポットサイズはφ0.5mm以下とした。
 浸炭材となったねじり試験片41に対して、表3に示す条件で穴切削加工を施して、浸炭シャフト部品相当のねじり試験片41を得た。なお、表3中の切削条件α、β、γ、ε、ζ及びηは鋼材に下穴を開けて浸炭焼入れ処理を施した後、表3に示す工具送りf及び切削速度vの条件で穴切削加工することを意味している。一方、切削条件δは鋼材に下穴を開けずに浸炭焼入れ処理を施した後、表3に示す工具送りf及び切削速度vの条件で穴切削加工することを意味し、切削条件θは鋼材に下穴を開けて浸炭焼入れ処理を施した後、穴切削加工を行わないことを意味している。
Figure JPOXMLDOC01-appb-T000003
 穴切削加工の際、切削工具には、超硬合金の表面に、セラミックコーティングを施した、直径3mmのコーテッド超硬ドリルを利用した。また、面取りには、先端角90°の直径6mmのコーテッド超硬ドリルの先端部を用いた。
 そして、上記の穴開け加工を施したものを、ねじり試験片41とした。
 表1の鋼種Dを用いて、表2の熱処理条件a、表3の切削条件αにより形成された穴表面付近のビッカース硬度は、穴表面から深さ方向の距離10μmのところで約900Hv、20μmのところで約890HV、40μmのところで約860HV、50μmのところで約820HV、100μmのところで約770HV、300μmのところで約740HVであった。
[残留オーステナイトの体積率(R2・RF)の測定]
 浸炭シャフト部品相当の試験片(ねじり試験片41)の穴の軸方向でかつその中心を通って穴を2分割するように浸炭シャフト部品を切断した(図2)。穴表面において、外周表面から1mm深さ位置を中心にφ1mmの穴が開いたマスキングを施し、電解研磨を施した。電解研磨の時間を変化させることで研磨量を調整し、20μm深さの穴を掘った。
 穴表面に対して、上述の方法でX線回折を実施し、外周表面から1mmの深さ位置でかつ穴の表面から20μm深さ位置の残留オーステナイトの体積率(R2・RF)を求めた。
[残留オーステナイトの体積率(R1)の測定]
 浸炭シャフト部品相当の試験片(ねじり試験片41)の外周表面から穴の軸方向に1mmの深さ位置でかつ穴の表面から200μm深さまでの範囲における最大残留オーステナイト体積率(R1)を、次の方法で測定した。穴の軸方向でかつその中心を通って穴を2分割するように浸炭材を切断した(図2)。穴表面において、外周表面から1mm深さ位置を中心にφ1mmの穴が開いたマスキングを施し、電解研磨を施した。電解研磨の時間を変化させることで研磨量を調整し、30μm深さの穴を掘った。その表面に対して上述の方法でX線回折を実施し、表面から30μm位置の残留オーステナイトの体積率を求めた。この過程を繰り返すことで、10μmずつ穴を深くし、その都度残留オーステナイトの体積率を測定することを、穴の深さが200μmとなるまで繰り返した。そしてその中で得られた最大の残留オーステナイト体積率を(R1)とした。
[静ねじり試験(静ねじり強度の測定)]
 図4に示すねじり試験片41を用いて、サーボパルサー式ねじり試験機でねじり試験を行い、応力とねじり角の関係を取得した。次いで、応力とねじり角が比例関係を保つ最大のせん断応力τ、いわゆる比例限を静ねじり強度とした。この比例限は、引張試験でいう降伏応力に相当する。本試験においては、静ねじり強度が520MPa以上の場合が、従来技術に対して優れた静ねじり強度を有するという点で合格である。
[ねじり疲労試験(ねじり疲労強度の測定)]
 図4に示すねじり試験片41を用いて、負荷最大せん断応力τを50MPaピッチで変化させて、繰り返し周波数4Hzで両振りのねじり疲労試験を行った。そして、繰り返し数105回に達する前に破断した最大せん断応力の最小値(τf,min)と、(τf,min)より低い応力で最大の未破断点の最大せん断応力(σr,max)との中間点を疲労限度とした。なお、試験機にはサーボパルサー式ねじり試験機を用いた。本試験においては、ねじり疲労強度が375MPa以上の場合が、従来技術に対して優れたねじり疲労強度を有するという点で合格である。
[試験結果]
 以上に説明した各試験等に関する結果を表4、表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4から明らかなように、本発明に係る実施例の浸炭シャフト部品では、その化学組成(表層部のC含有量を含む)を調整することを前提に、特に切削前の穴表層部の残留オーステナイト体積率に相当するRIを所定の範囲に制御しつつ、切削後にその減少率Δγ‘が所定の割合以上になるように当該残留オーステナイトを加工誘起マルテンサイトに変態させることで、優れた静ねじり強度及びねじり疲労強度を達成できることが証明された。これらの特徴は、浸炭シャフト部品において、R1が10.0~30.0%であること、Δγが20%以上であること等に見出される。また、鋼材に下穴を開けずに浸炭焼入れ処理を施した後、穴切削加工した表4のNo.26の浸炭シャフト部品(表3の切削条件δ)においても、600分の比較的長い浸炭時間(t1)にわたって浸炭処理(表2の熱処理条件d)を行うことで、最終形態である浸炭シャフト部品において、10.0~30.0%のR1及び20%以上のΔγの両方の特徴を達成し、その結果として優れた静ねじり強度及びねじり疲労強度を達成できることが証明された。
 これに対し、表5から明らかなように、比較例の浸炭シャフト部品では、その化学組成(表層部のC含有量を含む)、R1及びΔγ等が本発明の範囲内に制御されていないために、静ねじり強度とねじり疲労強度を高いレベルで両立できていないことがわかる。また、鋼材に下穴を開けずに浸炭焼入れ処理を施した後、穴切削加工した表5のNo.33の浸炭シャフト部品(表3の切削条件δ)においては、浸炭時間(t1)が120分と比較的短いために(表2の熱処理条件c)、例えば、最終形態である浸炭シャフト部品においてR1が10.0~30.0%の範囲外となっており、結果として静ねじり強度とねじり疲労強度を高いレベルで両立できていないことがわかる。
 11  組織観察位置
 12  走査型電子顕微鏡観察位置
 21  基準位置
 22  浸炭シャフト部品の穴表面
 23  浸炭材の穴表面
 31  塑性流動層
 32  母材
 41  ねじり試験片
 42  試験部
 43  穴
 44  太径部
 45  つかみ部
 51  加工誘起マルテンサイト層

Claims (4)

  1.  外周表面から3mm深さ又はそれより深い内部が、質量%で、
     C:0.10~0.30%、
     Si:0.01~0.30%、
     Mn:0.4~2.0%、
     P:0.050%以下、
     S:0.005~0.020%、
     Cr:0.4~3.5%、
     Al:0.010~0.050%、
     N:0.005~0.025%、及び
     O:0.003%以下
    を含有し、残部がFe及び不純物からなり、
     任意選択で、さらに、質量%で、
     Pb:0.5%以下、
     V、Nb及びTiからなる群から選択される1種以上を総含有量で0.1%以下、
     Mo:3.0%以下及びNi:2.5%以下からなる群から選択される1種以上、
     Cu:0~0.50%、及び
     B:0~0.020%
    を含有し、式(1)及び式(2)を満たし、
     表層部のC含有量(Cs)が質量%で0.60~1.00%であり、
     前記外周表面に少なくとも1つの穴を有し、
     前記外周表面から前記穴の軸方向に1mmの深さ位置でかつ前記穴の表面から20μmの深さ位置での組織におけるマルテンサイトと残留オーステナイトの合計体積率(α’+γ)が97%以上であり、
     前記外周表面から前記穴の軸方向に1mmの深さ位置でかつ前記穴の表面から200μm深さまでの範囲における最大残留オーステナイト体積率(R1)が10.0~30.0%であり、
     前記R1と、前記外周表面から前記穴の軸方向に1mmの深さ位置でかつ前記穴の表面から20μmの深さ位置での残留オーステナイト体積率(R2)とから式(A)によって求められる残留オーステナイト減少率(Δγ)が20%以上であることを特徴とする、浸炭シャフト部品。
     1.54×C+0.81×Si+1.59×Mn+1.65×Cr+1.77×Mo+0.63×Ni≧2.35 (1)
     11.3≦-0.1×Si+15.2×Mn+7.0×Cr+6.7×Mo+6.2×Ni≦33.8      (2)
     ここで、式(1)及び式(2)中の各元素記号には、各元素の含有量(質量%)が代入され、元素を含まない場合は0が代入される。
     Δγ=(R1-R2)/R1×100 (A)
  2.  前記R2が20%以下であることを特徴とする、請求項1に記載の浸炭シャフト部品。
  3.  前記穴の表面に塑性流動層を有することを特徴とする、請求項1又は2に記載の浸炭シャフト部品。
  4.  前記塑性流動層の厚さが0.5~15μmであることを特徴とする、請求項3に記載の浸炭シャフト部品。
PCT/JP2017/033987 2016-09-20 2017-09-20 浸炭シャフト部品 WO2018056333A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17853103.4A EP3517639A4 (en) 2016-09-20 2017-09-20 CARBONED SHAFT COMPONENT
US16/331,468 US11421727B2 (en) 2016-09-20 2017-09-20 Carburized shaft part
CN201780058036.7A CN109790593B (zh) 2016-09-20 2017-09-20 渗碳轴部件
KR1020197007369A KR102161576B1 (ko) 2016-09-20 2017-09-20 침탄 샤프트 부품
JP2018540278A JP6680361B2 (ja) 2016-09-20 2017-09-20 浸炭シャフト部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-183228 2016-09-20
JP2016183228 2016-09-20

Publications (1)

Publication Number Publication Date
WO2018056333A1 true WO2018056333A1 (ja) 2018-03-29

Family

ID=61690403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033987 WO2018056333A1 (ja) 2016-09-20 2017-09-20 浸炭シャフト部品

Country Status (6)

Country Link
US (1) US11421727B2 (ja)
EP (1) EP3517639A4 (ja)
JP (1) JP6680361B2 (ja)
KR (1) KR102161576B1 (ja)
CN (1) CN109790593B (ja)
WO (1) WO2018056333A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006659A (ja) * 2019-06-27 2021-01-21 Jfeスチール株式会社 鋼部品およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259012A (ja) * 1989-03-31 1990-10-19 Nippon Steel Corp 高疲労強度肌焼き品の製造方法
JPH0953148A (ja) * 1995-08-11 1997-02-25 Kobe Steel Ltd 高靭性肌焼き鋼製機械部品およびその製法
JP2005256082A (ja) * 2004-03-11 2005-09-22 Kobe Steel Ltd 浸炭処理部品の製造方法
JP2016183398A (ja) * 2015-03-26 2016-10-20 新日鐵住金株式会社 製品部材の製造方法及び製品部材
JP2016183399A (ja) * 2015-03-26 2016-10-20 新日鐵住金株式会社 浸炭機械構造部品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3932995B2 (ja) * 2002-06-28 2007-06-20 Jfeスチール株式会社 高周波焼もどし用鋼およびその製造方法
JP4818632B2 (ja) 2004-09-17 2011-11-16 新日本製鐵株式会社 耐疲労特性に優れたシャフトおよびその疲労特性向上方法
JP2006292108A (ja) * 2005-04-12 2006-10-26 Daido Steel Co Ltd クランクシャフト及びその製造方法
JP2006342904A (ja) * 2005-06-09 2006-12-21 Nsk Ltd ピニオンシャフト及びプラネタリギヤ装置
JP2009197314A (ja) * 2007-05-18 2009-09-03 Jfe Steel Corp 機械構造用部品
CN102459678B (zh) * 2009-05-27 2013-09-25 住友金属工业株式会社 渗碳部件及其制造方法
JP5505263B2 (ja) * 2010-11-05 2014-05-28 新日鐵住金株式会社 低サイクル疲労特性に優れた浸炭焼入れ鋼材及び浸炭焼入れ部品
CN103339278A (zh) * 2011-01-25 2013-10-02 新日铁住金株式会社 渗碳或碳氮共渗用的钢
JP6015094B2 (ja) * 2012-04-25 2016-10-26 日本精工株式会社 ピニオンシャフト
CN103331651A (zh) * 2012-12-17 2013-10-02 四川凌峰航空液压机械有限公司 细长孔轴类薄壁零件加工变形的工艺处理方法
JP2015007265A (ja) * 2013-06-25 2015-01-15 日本精工株式会社 転動軸
JP2016148428A (ja) * 2015-02-13 2016-08-18 日本精工株式会社 転動軸及びその製造方法
JP6614238B2 (ja) * 2015-08-10 2019-12-04 日本製鉄株式会社 製品部材の製造方法及び製品部材
JP6606978B2 (ja) * 2015-10-29 2019-11-20 日本製鉄株式会社 製品部材の製造方法及び製品部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259012A (ja) * 1989-03-31 1990-10-19 Nippon Steel Corp 高疲労強度肌焼き品の製造方法
JPH0953148A (ja) * 1995-08-11 1997-02-25 Kobe Steel Ltd 高靭性肌焼き鋼製機械部品およびその製法
JP2005256082A (ja) * 2004-03-11 2005-09-22 Kobe Steel Ltd 浸炭処理部品の製造方法
JP2016183398A (ja) * 2015-03-26 2016-10-20 新日鐵住金株式会社 製品部材の製造方法及び製品部材
JP2016183399A (ja) * 2015-03-26 2016-10-20 新日鐵住金株式会社 浸炭機械構造部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3517639A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006659A (ja) * 2019-06-27 2021-01-21 Jfeスチール株式会社 鋼部品およびその製造方法
JP7264117B2 (ja) 2019-06-27 2023-04-25 Jfeスチール株式会社 鋼部品およびその製造方法

Also Published As

Publication number Publication date
CN109790593A (zh) 2019-05-21
EP3517639A1 (en) 2019-07-31
KR102161576B1 (ko) 2020-10-05
US20200182286A1 (en) 2020-06-11
JPWO2018056333A1 (ja) 2019-06-24
CN109790593B (zh) 2020-10-23
EP3517639A4 (en) 2020-04-15
KR20190040012A (ko) 2019-04-16
US11421727B2 (en) 2022-08-23
JP6680361B2 (ja) 2020-04-15

Similar Documents

Publication Publication Date Title
JPWO2014104113A1 (ja) 浸炭用鋼
JP6461478B2 (ja) 高周波焼入れ歯車及び歯車の高周波焼入れ方法
WO2019244503A1 (ja) 機械部品
JP2016050350A (ja) 耐ピッチング性および耐摩耗性に優れる高強度高靱性機械構造用鋼製部品およびその製造方法
JP6614238B2 (ja) 製品部材の製造方法及び製品部材
JP2011074427A (ja) 掘削用中空鋼ロッド
JP2011122208A (ja) 軟窒化歯車
JP6601358B2 (ja) 浸炭部品およびその製造方法
JP6606978B2 (ja) 製品部材の製造方法及び製品部材
JP6431456B2 (ja) 軟窒化用鋼および部品ならびにこれらの製造方法
WO2018056333A1 (ja) 浸炭シャフト部品
WO2019244504A1 (ja) 機械部品の製造方法
JP6477129B2 (ja) 製品部材の製造方法及び製品部材
WO2018056332A1 (ja) シャフト部品
JP6623686B2 (ja) 製品部材の製造方法及び製品部材
JP2008223083A (ja) クランクシャフト及びその製造方法
JP4821582B2 (ja) 真空浸炭歯車用鋼
WO2018012636A1 (ja) Cvtシーブ用鋼材、cvtシーブおよびcvtシーブの製造方法
JP7163770B2 (ja) 転がり軸受部品及びその製造方法
JP6658317B2 (ja) 浸炭部品
JP2023069388A (ja) 鋼、および、浸炭焼入れ部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540278

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197007369

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017853103

Country of ref document: EP

Effective date: 20190423