WO2018054314A1 - 一种R-Fe-B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法 - Google Patents

一种R-Fe-B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法 Download PDF

Info

Publication number
WO2018054314A1
WO2018054314A1 PCT/CN2017/102605 CN2017102605W WO2018054314A1 WO 2018054314 A1 WO2018054314 A1 WO 2018054314A1 CN 2017102605 W CN2017102605 W CN 2017102605W WO 2018054314 A1 WO2018054314 A1 WO 2018054314A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
hre
earth sintered
sintered magnet
based rare
Prior art date
Application number
PCT/CN2017/102605
Other languages
English (en)
French (fr)
Inventor
林玉麟
永田浩
廖宗博
谢菊华
叶瀚棽
Original Assignee
厦门钨业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司 filed Critical 厦门钨业股份有限公司
Priority to KR1020197007636A priority Critical patent/KR102138243B1/ko
Priority to CN201910408822.6A priority patent/CN110070986B/zh
Priority to JP2019514245A priority patent/JP6803462B2/ja
Priority to CN201780002786.2A priority patent/CN108140482B/zh
Priority to US16/092,292 priority patent/US11501914B2/en
Priority to EP17852382.5A priority patent/EP3438997B1/en
Publication of WO2018054314A1 publication Critical patent/WO2018054314A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together

Definitions

  • the invention relates to the technical field of manufacturing magnets, in particular to a grain boundary diffusion method of an R-Fe-B rare earth sintered magnet, an HRE diffusion source and a preparation method thereof.
  • Coercivity is the most important technical parameter of rare earth sintered magnets (such as Nd-Fe-B sintered magnets), which improves the anti-demagnetization ability of magnets during use.
  • the coercive force of the Nd—Fe—B based sintered magnet is mainly improved by the following methods: 1) adding a heavy rare earth element (hereinafter referred to as HRE, in the production process of the Nd—Fe—B based sintered magnet; Or HREE or Heavy Rare Earth or Heavy Rare Earth Elements; 2) Adding trace elements to optimize grain boundary structure and refine grains, but it will lead to an increase in the content of nonmagnetic phase of magnets, and decrease in Br; 3)
  • HRE heavy rare earth element
  • Mode 1) and Mode 3) use NRE to partially or completely replace Nd in the Nd 2 Fe 14 B grains, increasing the coercive force.
  • mode 3) is the most efficient and economical
  • HRE including Dy or Tb, etc.
  • HRE diffuses to the grain boundary during sintering and enters the depth of Nd 2 Fe 14 B grains at a depth of about 1 to 2 ⁇ m, and the coercive force increases, and Dy 2 Fe
  • the anisotropy field of 14 B, Tb 2 Fe 14 B, etc. is smaller than the anisotropy field of Nd 2 Fe 14 B, resulting in a large decrease in residual magnetization of the sintered magnet.
  • the magnet after the heating process is used to form a liquid phase in the Nd-rich phase of the grain boundary, and a heavy rare earth element such as Dy or Tb is infiltrated from the surface of the magnet to cause grain boundary diffusion and crystal grain formation in the surface region of the magnet. Core-shell structure, coercive force increases. Since HRE (including Dy or Tb, etc.) enters only about 5 nm deep inside the crystal grain, the reduction of magnet remanence can be controlled to a certain limit (about 0.3 kGs).
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a grain boundary diffusion method for a rare earth sintered magnet.
  • the method can reduce the consumption of heavy rare earth elements and control the loss of remanence Br of the magnet while increasing the coercive force.
  • a grain boundary diffusion method for an R-Fe-B rare earth sintered magnet comprising the steps of: forming a dry layer on a high temperature resistant support, the dry layer is adhered with a HRE compound powder, and the HRE is selected from the group consisting of At least one of Dy, Tb, Gd or Ho; and heat-treating the R-Fe-B based rare earth sintered magnet and the engineered A treated high temperature carrier in a vacuum or an inert atmosphere The surface of the R-Fe-B based rare earth sintered magnet is supplied to the engineering B of HRE.
  • the present invention forms a dry layer to which a HRE compound is attached on a high temperature resistant carrier to obtain a HRE diffusion source, and then diffuses the rare earth sintered magnet.
  • This method can reduce the surface area of the HRE compound, adjust its diffusion mode and diffusion speed, and thereby improve diffusion. Efficiency and diffusion quality.
  • the present invention can obtain an arbitrary shape HRE diffusion source corresponding to the shape of a non-planar magnet such as an arch magnet or a ring magnet by changing the shape of the high temperature resistant carrier, thereby making the diffusion distance of the HRE diffusion source to the non-planar magnet also become Controllable, a magnet with an improved Hcj (coercive force) and a sharp decrease in SQ (squareness) is obtained.
  • Another object of the present invention is to provide an HRE diffusion source.
  • An HRE diffusion source comprising a structure in which a dry layer is formed on a high temperature resistant carrier, and a HRE compound powder is attached to the dried layer, and the HRE is at least one selected from the group consisting of Dy, Tb, Gd or Ho.
  • the HRE diffusion source is a primary diffusion source. After the HRE diffusion source is set as a primary diffusion source, the control of the diffusion temperature and the diffusion time can be appropriately relaxed, and the uniformity of the performance of each batch of magnets is not affected even when the diffusion temperature is increased and the diffusion time is extended.
  • the diffusion method of the HRE diffusion source provided by the present invention is different from the conventional method of embedding a rare earth sintered magnet in an HRE compound.
  • the six faces of the magnet are all in contact with the HRE diffusion source, which causes a rapid drop of Br.
  • the HRE diffusion source provided by the invention can provide a uniformly distributed evaporation supply surface, and stably supply atoms to corresponding receiving surfaces (such as the orientation surface of the magnet), which can well control the amount of the diffused HRE compound, the diffusion site and the diffusion speed. For accurate and efficient diffusion.
  • the diffusion method of the HRE diffusion source provided by the invention and the direct application of the HRE diffusion source solution to the rare earth sintered magnet The way is different.
  • the magnet In the process of spraying the HRE diffusion source solution on the rare earth sintered magnet, the magnet needs to be turned over during the spraying process, and at the same time, the six faces of the magnet are all exposed to the HRE diffusion source, which can cause the Br to rapidly drop during the diffusion process. It also causes additional consumption of non-oriented HRE diffusion sources, and after the diffusion is completed, a 6-face grinding process is also required.
  • the HRE diffusion source provided by the present invention does not require the above procedure, and the diffusion process is controllable and efficient.
  • Another object of the present invention is to provide a method of preparing a HRE diffusion source.
  • a method for preparing a HRE diffusion source includes the following steps:
  • the first organic solvent and the second organic solvent are water and/or ethanol.
  • Water and ethanol are green materials and will not burden the environment.
  • Example 1 is a schematic structural view of a film W plate of Example 1;
  • Embodiment 2 is a schematic view showing a diffusion process of Embodiment 1;
  • Figure 3 is a schematic structural view of a coated zirconia plate of Example 2.
  • Figure 4.1 is a schematic view showing the diffusion process of Embodiment 2;
  • Figure 4.2 is a schematic diagram of the diffusion process of Comparative Example 2.1 and Comparative Example 2.2;
  • Figure 4.3 is a schematic diagram of the diffusion process of Comparative Example 2.3 and Comparative Example 2.4;
  • Figure 5 is a schematic structural view of a coated Mo plate of Example 3.
  • FIG. 6 is a schematic view showing a diffusion process of Embodiment 3.
  • Figure 7 is a schematic structural view of a film W plate of Example 4.
  • Figure 8 is a schematic view showing the diffusion process of Embodiment 4.
  • Figure 9 is a schematic view showing the structure of a film W sphere of Example 5.
  • Figure 10 is a schematic view showing the diffusion process of Embodiment 5.
  • Figure 11 is a schematic view showing the structure of a coated Mo plate of Example 6.
  • Figure 12 is a schematic illustration of the diffusion process of Example 6.
  • the R-Fe-B based rare earth sintered magnet and the film-forming high temperature resistant support treated by the Engineering A are placed in a processing chamber, in a vacuum or in an inert atmosphere, for the R
  • the Fe-B rare earth sintered magnet and the high temperature resistant carrier forming the film are subjected to heat treatment, and the engineering B of HRE is supplied from the high temperature resistant carrier forming the film to the surface of the R-Fe-B based rare earth sintered magnet.
  • the process chamber has an atmosphere pressure of 0.05 MPa or less.
  • the diffusion atmosphere is controlled to a vacuum environment, two types of diffusion can be formed, one is direct contact diffusion, and the other is vapor diffusion, thereby improving diffusion efficiency.
  • the dried layer on which the HRE compound is formed on the high temperature resistant carrier is placed in contact with the R-Fe-B based rare earth sintered magnet or The contact is placed in such a manner that when placed in a non-contact manner, the average interval between the two is set to be 1 cm or less.
  • the HRE compound enters the rare earth sintered magnet at a high speed, but requires surface treatment, and when placed in a non-contact manner, the HRE compound is diffused by a vapor method, and the rate of entering the rare earth sintered magnet is Lowering can save the surface treatment process while forming a vapor concentration gradient for efficient diffusion.
  • the atmosphere pressure of the processing chamber It is preferably at most 1000 Pa.
  • the pressure in the processing chamber can be lowered, and the diffusion efficiency can be improved.
  • the vacuum atmosphere is favorable for the formation of a vapor concentration gradient and improves the diffusion efficiency.
  • the atmosphere of the processing chamber is preferably below 100 Pa.
  • the dried layer is a film.
  • the film to which the HRE compound powder is attached according to the present invention is It refers to a film in which a powder of HRE compound is fixed, which does not simply refer to a continuous film, and may also be a discontinuous film. Therefore, it should be noted that either a continuous film or a discontinuous film should be within the scope of the present invention.
  • the heat treatment temperature of the process B is a temperature below the sintering temperature of the R-Fe-B based rare earth sintered magnet.
  • the R-Fe-B based rare earth sintered magnet and the engineering A treated high temperature resistant carrier are heated in an environment of 800 ° C to 1020 ° C for 5 to 100 hours. .
  • a higher diffusion temperature can be used to shorten the diffusion time, thereby reducing energy consumption.
  • the dried layer is a uniformly distributed film having a thickness of less than 1 mm.
  • At least two dried layers are formed on the high temperature resistant carrier, and two adjacent dried layers are evenly distributed on the high temperature resistant carrier at a distance of less than 1.5 cm.
  • the bonding force of the dried layer to the high temperature resistant carrier is Grade 1, Grade 2, Grade 3 or Grade 4.
  • the bonding strength between the high temperature resistant carrier and the dry layer is too low, the adhesion of the dried layer to the high temperature resistant carrier is not strong, which may cause slight drying of the dried layer or a slight agglomeration during heating.
  • the bonding force testing method adopted by the present invention is as follows: a single-edge cutter having a cutting edge angle of 30° and a cutting edge thickness of 50 to 100 ⁇ m is used to cut a pitch of 5 mm parallel to the length and width directions of the same long and wide surface of the high temperature resistant carrier forming the dry layer. There are 11 cutting lines. When cutting, the angle between the cutter and the high temperature resistant carrier forming the dry layer should be the same, the force should be uniform, and the cutting edge should just pass through the dry layer to touch the substrate during the cutting. The inspection results are shown in Table 1.
  • the dried layer to which the HRE compound powder is attached further comprises at least 95% by weight of a film former that can be removed from the Engineering B, the film forming agent being selected from the group consisting of resin, cellulose, and fluorosilicon. At least one of a polymer, a dry oil or water glass.
  • the dried layer to which the HRE compound powder is attached consists of a film former and a HRE compound powder.
  • the dried layer to which the HRE compound powder is attached is an electrostatically adsorbed HRE compound powder.
  • the process of electrostatic adsorption does not mix with the film former and other impurities, so that after the diffusion is completed, the HRE compound can be directly recovered and reused.
  • the high temperature resistant carrier is selected from at least one of high temperature resistant particles, high temperature resistant mesh, high temperature resistant sheets, high temperature resistant strips or other shaped high temperature resistant bodies.
  • the high temperature resistant carrier is selected from the group consisting of zirconia, alumina, yttria, boron nitride, silicon nitride or silicon carbide, or is selected from the group consisting of Mo, W, Nb, Ta, Ti, Hf, A metal of Group IVB, Group VB, VIB or VIIB of the periodic table of Zr, Ti, V, Re or an alloy of the above materials.
  • the high-temperature resistant carrier made of the above material does not deform at a high temperature, and can maintain the diffusion distance, and the deformation of the rare earth sintered magnet can be prevented when the high temperature resistant carrier and the rare earth sintered magnet are laminated.
  • the HRE compound powder is at least one powder selected from the group consisting of HRE oxide, HRE fluoride, HRE chloride, HRE nitrate, and HRE oxyfluoride, the powder having a particle size of 200 microns. the following.
  • the content of HRE oxide, HRE fluoride, HRE chloride, HRE nitrate, and HRE oxyfluoride in the dried layer to which the HRE compound is attached is 90% by weight or more, HRE oxide, HRE
  • the content of fluoride, HRE chloride, HRE nitrate and HRE oxyfluoride is increased, and the diffusion efficiency can be appropriately increased.
  • the thickness of the R-Fe-B based rare earth sintered magnet in the magnetic orientation direction is 30 mm or less.
  • the grain boundary diffusion method provided by the present invention can significantly improve the performance of a rare earth sintered magnet having a maximum thickness of 30 mm.
  • the R-Fe-B based rare earth sintered magnet has a R 2 Fe 14 B type crystal grain as a main phase, wherein R is at least one selected from the group consisting of Y and Sc. Wherein the content of Nd and/or Pr is 50% by weight or more of the content of R.
  • the composition of the R-Fe-B based rare earth sintered magnet includes M, and the M is selected from the group consisting of Co, Bi, Al, Cu, Zn, In, Si, S, P, Ti, and V. At least one of Cr, Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta or W.
  • a heat treatment step is further added to the R-Fe-B based rare earth sintered magnet. After the heat treatment process, the magnetic properties and uniformity of the rare earth sintered magnet are improved.
  • Step a A TbF 3 powder having an average particle diameter of 10 ⁇ m was taken, water was added thereto, and the TbF 3 powder was not passed, and it was ground in a ball mill for 5 hours to obtain an abrasive powder.
  • Step b Cellulose was added to water, and an aqueous solution of 1 wt% cellulose was placed.
  • Step c The abrasive powder obtained in the step a is added to the aqueous solution obtained in the step b in a weight ratio of cellulose to TbF 3 powder of 1:9, and uniformly mixed to obtain a mixed liquid.
  • Step d Select a W plate 11 having a length of 10 cm ⁇ 10 cm and a thickness of 0.5 mm, and the W plate 11 is placed in an oven and heated to 80° C., taken out, and the mixture is uniformly sprayed on the surface of the W plate and placed in an oven again. Dry, a film W plate was obtained, and TbF 3 powder adhered to the film.
  • step d The operation of the step d was repeated on the other side surface of the film W plate to obtain a film W plate 1 having the same film thickness on both sides, as shown in FIG.
  • Example 1.1 in Example 1.1, Example 1.2, Example 1.3, and Example 1.4, the bonding force between the film 12 and the W plate 11 was 4 or less, and Example 1.5 and Example 1.6.
  • Example 1.5 the bonding force of the film 12 and the W plate 11 It is level 5.
  • Example 1.1 to Example 1.6 Example 1.1 to Example 1.6:
  • a rare earth magnet sintered body having an atomic composition of N4.7 of 14.7, Co of 1, B of 6.5, Cu of 0.4, Mn of 0.1, Ga of 0.1, Zr of 0.1, Ti of 0.3 and Fe of Fe was prepared. the amount. It is prepared according to the steps of melting, bucking, hydrogen crushing, jet milling, pressing, sintering and heat treatment of the conventional rare earth magnet.
  • the heat-treated sintered body is processed into a magnet of 15 mm ⁇ 15 mm ⁇ 30 mm, and the direction of the magnetic field is oriented in the direction of 30 mm, and the processed magnet is sandblasted, purged, and the surface is cleaned.
  • the magnet is magnetically tested using NIM-10000H large-scale rare earth permanent magnet non-destructive testing system of China Metrology Institute. The measured temperature is 20 °C, and the measurement result is Br: 13.45kGs, Hcj: 19.00kOe, (BH)max: 42.41MGOe, SQ : 98.8%, the standard deviation of Hcj is 0.1.
  • the magnet 6 and the coating W plate 1 were stacked in the magnet orientation direction, and heat-dissipated at a temperature of 950 ° C for 30 hours in a high-purity Ar gas atmosphere of 800 Pa to 1000 Pa.
  • Step a A TbF 3 powder having an average particle diameter of 10 ⁇ m was taken, water was added thereto, and the TbF 3 powder was not passed, and it was ground in a ball mill for 5 hours to obtain an abrasive powder.
  • Step b Cellulose was added to water, and an aqueous solution of 1 wt% cellulose was placed.
  • Step c The abrasive powder obtained in the step a is added to the aqueous solution obtained in the step b in a weight ratio of cellulose to TbF 3 powder of 1:9, and uniformly mixed to obtain a mixed liquid.
  • Step d a mixed liquid prepared in the same manner as in the step c of the embodiment 1.1, the embodiment 1.2, the embodiment 1.3, the embodiment 1.4, and the embodiment 1.5, and uniformly and completely spray-coating the mixed liquid on the magnet.
  • the coated magnet was dried in an environment of 80 ° C, and heat-dissipated at a temperature of 950 ° C for 30 hours in a high-purity Ar gas atmosphere of 800 Pa to 1000 Pa.
  • the diffused magnet was magnetically tested using the NIM-10000H bulk rare earth permanent magnet non-destructive testing system of China Metrology Institute.
  • the measured temperature was 20 °C.
  • a 1:9 weight ratio of cellulose and TbF 3 powder (average particle size of 10 ⁇ m) was obtained, and a compact of 0.6 mm thickness was pressed.
  • the magnet and the compact were stacked in the orientation direction of the magnet, and heat-dissipated at a temperature of 950 ° C for 30 hours in a high-purity Ar gas atmosphere of 800 Pa to 1000 Pa.
  • the spraying and drying of the mixed solution are performed on the W plate, and therefore, in the embodiment 1.1 and the embodiment 1.2.
  • Example 1.3, Example 1.4, Example 1.5, and Example 1.6 no oxidation or rust on the surface of the magnet was observed.
  • Comparative Example 1.1, Comparative Example 1.2, Comparative Example 1.3, Comparative Example 1.4, and Comparative Example 1.5 oxidation and rust on the surface of the magnet were observed.
  • Comparative Example 1.1 to Comparative Example 1.5 and Examples 1.1 to 1.6 that the direct application of the mixed solution to the surface of the magnet causes a decrease in the remanence (Br) of the magnet and an increase in the coercive force (Hcj). The amplitude is lower. This is due to the magnet When the surface mixture is dried, the surface properties of the magnet are changed, which greatly affects the diffusion effect.
  • the change in the surface properties of the magnet may be due to the grain boundary corrosion of the magnet due to the hot and humid environment during drying, or the film forming agent may fill the diffusion path on the surface of the magnet when the film is formed on the surface of the magnet, resulting in a decrease in diffusion efficiency.
  • Comparative Example 1.1 to Comparative Example 1.5 in the process of spraying the HRE diffusion source solution on the rare earth sintered magnet, it is necessary to invert the magnet during the spraying process, and the six faces of the magnet are all in contact with the HRE diffusion. Source, re-diffusion process can lead to a rapid decline of Br, but also caused additional consumption of non-oriented HRE diffusion sources, after the completion of the diffusion, 6-side grinding is also required.
  • Step a Dy 2 O 3 powder having an average particle diameter of 20 ⁇ m was taken, and anhydrous ethanol was added until the Dy 2 O 3 powder was not passed, and it was ground in a ball mill for 25 hours to obtain an abrasive powder.
  • Step b adding a resin to absolute ethanol, and arranging a solution of 20 wt% resin in absolute ethanol;
  • Step c The grinding powder obtained in the step a is added to the anhydrous ethanol solution obtained in the step b in a weight ratio of 0.07:1 by weight of the resin and the Dy 2 O 3 powder, and uniformly mixed to obtain a mixed liquid.
  • Step d selecting a zirconia plate 21 having a length of 10 cm ⁇ 10 cm and a thickness of 0.5 mm, and the zirconia plate 21 is placed in an oven and heated to 120 ° C, taken out, and the mixture is uniformly sprayed on the surface of the zirconia plate and placed again.
  • the film was dried in an oven to obtain a coated zirconia plate, and Dy 2 O 3 powder was adhered to the film 22.
  • step d The operation of the step d was repeated on the other side surface of the coated zirconia sheet to obtain a coated zirconia sheet 2 having the same film thickness on both sides, and the film thickness was 35 ⁇ m as shown in FIG.
  • the bonding force of the film 22 and the zirconia plate 21 was 4 or less by the adhesion test.
  • Example 2.1 to Example 2.5
  • a rare earth magnet sintered body having an atomic composition of N3.6 of 13.6, Co of 1, B of 6.0, Cu of 0.4, Mn of 0.1, Al of 0.2, Bi of 0.1, Ti of 0.3 and Fe of Fe was prepared. the amount. It is prepared according to the steps of melting, bucking, hydrogen crushing, jet milling, pressing, sintering and heat treatment of the conventional rare earth magnet.
  • the heat-treated sintered body is processed into a magnet of 15 mm ⁇ 15 mm ⁇ 5 mm, and the direction of the magnetic field is oriented in the direction of 5 mm.
  • the processed magnet is sandblasted, purged, and the surface is cleaned.
  • the magnet is magnetically tested using NIM-10000H bulk rare earth permanent magnet non-destructive testing system of China Metrology Institute.
  • the measured temperature is 20 °C, and the measurement result is Br: 14.43kGs, Hcj: 16.27kOe, (BH)max: 49.86MGOe, SQ : 91.2%, the standard deviation of Hcj is 0.11.
  • the magnet 7 and the coated zirconia plate 2 are placed at different distances in the orientation direction of the magnet (the distance is as shown in Table 3), in a high-purity Ar gas atmosphere of 800 Pa to 1000 Pa, Temperature diffusion heat treatment at 950 ° C for 12 hours.
  • Comparative Example 2.1 As shown in Fig. 4.2, the magnet and the Dy plate 71 having a thickness of 1 mm were placed at a distance of 0.1 cm along the orientation direction of the magnet 7, and in a high-purity Ar gas atmosphere of 800 Pa to 1000 Pa at 850 ° C The temperature was diffusion heat treated for 24 hours.
  • Comparative Example 2.2 As shown in Fig. 4.2, the magnet and the Dy plate 71 having a thickness of 1 mm were placed at a distance of 0.1 cm along the orientation direction of the magnet 7, and in a high-purity Ar gas atmosphere of 800 Pa to 1000 Pa at 950 ° C The temperature was diffusion heat treated for 12 hours.
  • Comparative Example 2.3 As shown in Fig. 4.3, a weight ratio of 0.07:1 resin and Dy 2 O 3 powder (average particle diameter of 20 ⁇ m) was taken, and a compact of 1 mm thickness was pressed. The magnet 7 and the compact 72 were placed at a distance of 0.1 cm in the direction in which the magnets were oriented, and were heat-transferred at a temperature of 850 ° C for 24 hours in a high-purity Ar gas atmosphere of 800 Pa to 1000 Pa.
  • Comparative Example 2.4 As shown in Fig. 4.3, a weight ratio of 0.07:1 resin and Dy 2 O 3 powder (average particle diameter of 20 ⁇ m) was taken, and a compact of 1 mm thickness was pressed. The magnet 7 and the compact 72 were placed at a distance of 0.1 cm from each other along the orientation direction of the magnet, and were heat-dissipated at a temperature of 950 ° C for 12 hours in a high-purity Ar gas atmosphere of 800 Pa to 1000 Pa.
  • the diffused magnet was magnetically tested using the NIM-10000H bulk rare earth permanent magnet non-destructive testing system of China Metrology Institute.
  • the measured temperature was 20 °C.
  • the spraying and drying of the mixed solution are performed on the zirconia plate, and therefore, in the embodiment 2.1, the embodiment 2.2, the implementation In Example 2.3, Example 2.4, and Example 2.5, no oxidation or rust on the surface of the magnet was observed.
  • Example 2.1, Example 2.2, Example 2.3, Example 2.4 and Example 2.5 decrease as the separation distance increases, and when the separation distance is less than 1 cm, The effect of diffusion efficiency is small; while in Comparative Example 2.3 and Comparative Example 2.4, the compact 72 shrinks during the diffusion process, and therefore, the diffusion effects of the respective magnets are extremely different.
  • Example 2 Unlike the method in which the HRE compound powder is known to be directly contacted and diffused, in Example 2, diffusion by HRE vapor method (not in direct contact) is employed, and a good diffusion effect can be obtained in the same manner.
  • Step a A plurality of sets of TbF 3 powders having different average particle diameters (as shown in Table 4) were taken, and anhydrous ethanol was added until the TbF 3 powder was not passed, and it was ground in a ball mill for 5 hours to obtain an abrasive powder.
  • Step b A dry oil was added to absolute ethanol, and a solution of a dry oil of 1 wt% dry oil was placed.
  • Step c The abrasive powder obtained in the step a is added to the anhydrous ethanol solution obtained in the step b in a weight ratio of 0.05:1 of the dry oil and the TbF 3 powder, and uniformly mixed to obtain a mixed liquid.
  • Step d selecting a Mo plate 31 having a length of 10 cm ⁇ 10 cm and a thickness of 0.5 mm, and the Mo plate 31 is placed in an oven and heated to 100 ° C, taken out, and the mixture is uniformly sprayed on one side surface of the Mo plate, and placed again. The oven was dried to obtain a coated Mo plate, and TbF 3 powder was adhered to the film 32.
  • step d The operation of the step d was repeated on the other side surface of the coated Mo plate, and the coated Mo plate 3 having the same film thickness on both sides was obtained, and the film thickness was 100 ⁇ m as shown in FIG.
  • the bonding strength of the film (the average particle diameter of the TbF 3 powder as shown in Table 4) to the Mo plate was 4 or less.
  • Example 3.1 to Example 3.5 Example 3.1 to Example 3.5:
  • a rare earth magnet sintered body having an atomic composition of 0.1, Nd of 13.3, B of 6.0, Cu of 0.4, Al of 0.1, Ga of 0.2 and Fe of the remainder was prepared. It is prepared according to the steps of melting, bucking, hydrogen crushing, jet milling, pressing, sintering and heat treatment of the conventional rare earth magnet.
  • the heat-treated sintered body is processed into a magnet of 15 mm ⁇ 15 mm ⁇ 10 mm, and the direction of the magnetic field is oriented in the direction of 10 mm.
  • the processed magnet is sandblasted, purged, and the surface is cleaned.
  • the magnet is magnetically tested using NIM-10000H large-scale rare earth permanent magnet non-destructive testing system of China Metrology Institute.
  • the measured temperature is 20 °C, and the measurement result is Br: 14.39kGs, Hcj: 18.36kOe, (BH)max: 50.00MGOe, SQ : 92.9%, the standard deviation of Hcj is 0.13.
  • the magnet 8 and the coated Mo plate 3 are stacked in the orientation direction of the magnet, in a high-purity Ar gas atmosphere of 1800 Pa to 2000 Pa, The heat treatment was carried out at a temperature of 1000 ° C for 12 hours.
  • Comparative Example 3.1 A magnet was embedded in a TbF 3 powder (having an average particle diameter of 50 ⁇ m), and heat-dissipated at a temperature of 950 ° C for 24 hours in a high-purity Ar gas atmosphere of 1800 Pa to 2000 Pa.
  • Comparative Example 3.2 A magnet was embedded in a TbF 3 powder (having an average particle diameter of 50 ⁇ m), and heat-dissipated at a temperature of 1000 ° C for 12 hours in a high-purity Ar gas atmosphere of 1800 Pa to 2000 Pa.
  • Comparative Example 3.3 A Tb film was electrodeposited on the above magnet (Tb plating layer thickness: 100 ⁇ m), and heat-dissipated at a temperature of 950 ° C for 24 hours in a high-purity Ar gas atmosphere of 1800 Pa to 2000 Pa.
  • Comparative Example 3.4 A Tb film was electrodeposited on the above magnet (Tb plating layer thickness: 100 ⁇ m), and heat-dissipated at a temperature of 1000 ° C for 12 hours in a high-purity Ar gas atmosphere of 1800 Pa to 2000 Pa.
  • the diffused magnet was magnetically tested using the NIM-10000H bulk rare earth permanent magnet non-destructive testing system of China Metrology Institute.
  • the measured temperature was 20 °C.
  • the spraying and drying of the mixed solution are performed on the zirconia plate, and therefore, in the embodiment 3.1, the embodiment 3.2, the implementation In Example 3.3, Example 3.4, and Example 3.5, no oxidation or rust on the surface of the magnet was observed.
  • Example 3.1 the diffusion effects of Example 3.1, Example 3.2, Example 3.3, and Example 3.4 are good, the Br of the magnet is hardly lowered, the coercive force is remarkably improved, and the magnets are The diffusion effect is uniform.
  • Comparative Example 3.1 and Comparative Example 3.2 the TbF 3 powder was unevenly agglomerated during the diffusion process, and therefore, the diffusion effects of the respective magnets were extremely different.
  • Step a A TbCl 3 powder having an average particle diameter of 50 ⁇ m was taken, and anhydrous ethanol was added to prepare a TbCl 3 solution.
  • Step b A fluorosilicone polymer was added to the water, and an aqueous solution of a concentration of 10% by weight of the fluorosilicone polymer was placed.
  • Step c The fluorosilicone polymer and TbCl 3 are added to the aqueous solution obtained in the step b in a weight ratio of 0.02:1, and the solution obtained in the step a is uniformly mixed to obtain a mixed solution.
  • Step d Select a W plate 41 having a length of 9 cm ⁇ 9 cm and a thickness of 0.5 mm.
  • the W plate 41 is placed in an oven and heated to 80 ° C, and taken out.
  • Each of the W plates 41 is covered with an obstacle of an equal width at intervals of 2 cm, and the obstacle is covered.
  • the width of the mixture is uniformly sprayed on the surface of the W plate, and is again placed in an oven to be dried, and the obstacle is peeled off to obtain a film W plate having a film-forming film 42 having a film thickness of 0.5. Mm. TbCl 3 powder was attached to the film.
  • step d The operation of the step d was repeated on the other side surface of the film W plate to obtain a film W plate 4 having the same film thickness on both sides, as shown in FIG.
  • Example 4.1 to Example 4.5 Example 4.1 to Example 4.5:
  • the heat-treated sintered body is processed into a magnet of 10 mm ⁇ 10 mm ⁇ 20 mm, and the direction of the magnetic field is oriented in the direction of 20 mm, and the processed magnet is sandblasted, purged, and the surface is cleaned.
  • the magnet is magnetically tested using NIM-10000H large-scale rare earth permanent magnet non-destructive testing system of China Metrology Institute. The measured temperature is 20 °C, and the measurement result is Br: 14.30kGs, Hcj: 17.07kOe, (BH)max: 49.20MGOe, SQ : 92.2%, the standard deviation of Hcj is 0.22.
  • the magnet 9 and the coating W plate 4 were stacked in the magnet orientation direction, and heat-dissipated at a temperature of 1020 ° C for 6 hours in a high-purity Ar gas atmosphere of 0.05 MPa.
  • the diffused magnet was magnetically tested using the NIM-10000H bulk rare earth permanent magnet non-destructive testing system of China Metrology Institute.
  • the measured temperature was 20 °C.
  • Step a A Tb(NO 3 ) 3 powder having an average particle diameter of 80 ⁇ m was taken, and water was added to prepare a Tb(NO 3 ) 3 solution.
  • Step b Water glass was added to water, and an aqueous solution of 1 wt% water glass was placed.
  • Step c The solution obtained in the step a is added to the aqueous solution obtained in the step b in a weight ratio of water glass and Tb(NO 3 ) 3 of 0.01:0.9, and uniformly mixed to obtain a mixed solution.
  • Step d Select a W ball 51 of 0.1 mm to 3 mm diameter (the diameter of the W ball is as shown in Table 6), put it into an oven and heat it to 80 ° C, take it out, and spray the above mixture evenly on the W ball. The surface was again dried in an oven to obtain a film W sphere 5 as shown in FIG. The thickness of the film 52 was 0.15 mm, and Tb(NO 3 ) 3 was adhered to the film.
  • Example 5.1 to Example 5.5
  • a rare earth magnet sintered body having an atomic composition of 0.1, Nd of 13.8, B of 6.0, Cu of 0.4, Mn of 0.1, Ga of 0.2 and Fe of the remainder was prepared. It is prepared according to the steps of melting, bucking, hydrogen crushing, jet milling, pressing, sintering and heat treatment of the conventional rare earth magnet.
  • the heat-treated sintered body is processed into a magnet of 10 mm ⁇ 10 mm ⁇ 12 mm, and the direction of the magnetic field is oriented in the direction of 12 mm, and the processed magnet is sandblasted, purged, and the surface is cleaned.
  • the magnet 10 is magnetically tested using the NIM-10000H bulk rare earth permanent magnet non-destructive testing system of China Metrology Institute. The measured temperature is 20 ° C, and the measurement result is Br: 14.39 kGs, Hcj: 18.36 kOe, (BH)max: 50.00 MGOe, SQ: 92.9%, and the standard deviation of Hcj is 0.13.
  • the film W ball 5 was placed in close contact with each other on the surface in the orientation direction of the magnet 10, and was subjected to diffusion heat treatment at a temperature of 800 ° C for 100 hours in a high-purity Ar gas atmosphere of 2800 Pa to 3000 Pa.
  • Step a Different powders having an average particle diameter of 10 ⁇ m (the powder types are shown in Table 7) were taken, and anhydrous ethanol was added until the TbF 3 powder was not passed, and it was ground in a ball mill for 5 hours to obtain an abrasive powder.
  • Step b Cellulose was added to absolute ethanol, and a solution of 1 wt% cellulose in absolute ethanol was placed.
  • Step c The grinding powder obtained in the step a is added to the anhydrous ethanol solution obtained in the step b in a weight ratio of 0.05:1 of the cellulose and the TbF 3 powder, and the mixture is uniformly mixed to obtain a mixed liquid.
  • Step d selecting a Mo plate 61 having a length of 10 cm ⁇ 10 cm and a thickness of 0.5 mm, and the Mo plate 61 is placed in an oven and heated to 100 ° C, taken out, and the mixture is uniformly sprayed on one side surface of the Mo plate, and placed again. The oven was dried to obtain a coated Mo plate, and TbF 3 powder was adhered to the film 62.
  • step d The operation of the step d was repeated on the other side surface of the coated Mo plate to obtain a coated Mo plate 6 having the same film thickness on both sides, and the film thickness was 30 ⁇ m as shown in FIG.
  • the bonding force between the film and the Mo plate was 4 or less.
  • Example 6.1 to Example 6.4 Example 6.1 to Example 6.4:
  • a rare earth magnet sintered body having an atomic composition of 0.1, Nd of 13.3, B of 6.0, Cu of 0.4, Al of 0.1, Ga of 0.2 and Fe of the remainder was prepared. It is prepared according to the steps of melting, bucking, hydrogen crushing, jet milling, pressing, sintering and heat treatment of the conventional rare earth magnet.
  • the heat-treated sintered body is processed into a magnet of 15 mm ⁇ 15 mm ⁇ 5 mm, and the direction of the magnetic field is oriented in the direction of 5 mm, and the processed magnet is sandblasted, purged, and the surface is cleaned.
  • the magnet is magnetically tested using NIM-10000H large-scale rare earth permanent magnet non-destructive testing system of China Metrology Institute. The measured temperature is 20 °C, and the measurement result is Br: 14.39kGs, Hcj: 18.36kOe, (BH)max: 50.00MGOe, SQ : 92.9%, the standard deviation of Hcj is 0.13.
  • the magnet 101 and the coated Mo plate 6 were stacked in the orientation direction of the magnet, and heat-dissipated at a temperature of 950 ° C for 12 hours in a high-purity Ar gas atmosphere of 1800 Pa to 2000 Pa.
  • the diffused magnet was magnetically tested using the NIM-10000H bulk rare earth permanent magnet non-destructive testing system of China Metrology Institute.
  • the measured temperature was 20 °C.
  • Example 6.1, Example 6.2, Example 6.3, and Example 6.4 used different kinds of powders, wherein the mixed powder was easy to cause other reactions, and the diffusion effect was relatively poor.
  • Step a A TbF 3 powder having an average particle diameter of 20 ⁇ m was taken, and anhydrous ethanol was added until the TbF 3 powder was not passed, and the mixture was ground for 20 hours to obtain an abrasive powder.
  • Step b adding a resin to absolute ethanol, and arranging a solution of 20 wt% resin in absolute ethanol;
  • Step c The grinding powder obtained in the step a is added to the anhydrous ethanol solution obtained in the step b in a weight ratio of 0.07:1 of the resin and the TbF 3 powder, and the mixture is uniformly mixed to obtain a mixed liquid.
  • Step d selecting a zirconia plate 21 having a length of 10 cm ⁇ 10 cm and a thickness of 0.5 mm, and the zirconia plate 21 is placed in an oven and heated to 120 ° C, taken out, and the mixture is uniformly sprayed on the surface of the zirconia plate and placed again. The oven was dried to obtain a coated zirconia sheet, and TbF 3 powder was adhered to the film 22.
  • step d The operation of the step d was repeated on the other side surface of the coated zirconia sheet to obtain a coated zirconia sheet having the same film thickness on both sides, and the film thickness was 30 ⁇ m.
  • the bonding force between the film and the zirconia plate was 4 or less.
  • Example 7.1 to Example 7.5 Example 7.1 to Example 7.5:
  • the heat-treated sintered body is processed into a magnet of 15 mm ⁇ 15 mm ⁇ 5 mm, and the direction of the magnetic field is oriented in the direction of 5 mm, and the processed magnet is sandblasted, purged, and the surface is cleaned.
  • the magnet is magnetically tested using NIM-10000H large-scale rare earth permanent magnet non-destructive testing system of China Metrology Institute. The measured temperature is 20 °C, and the measurement result is Br: 14.33kGs, Hcj: 15.64kOe, (BH)max: 49.25MGOe, SQ : 89.8%, the standard deviation of Hcj is 0.11.
  • a coated zirconia plate, a 0.5 mm thick molybdenum mesh, a magnet, and a 0.5 mm thick molybdenum mesh are sequentially stacked in the orientation direction of the magnet (the spacing distance is as shown in Table 8), and is at a height of 10 -3 Pa to 1000 Pa.
  • the mixture was subjected to diffusion heat treatment at a temperature of 950 ° C for 12 hours in a purity Ar gas atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种R-Fe-B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法,包括以下步骤:在耐高温载体上形成干燥层的工程A,所述干燥层附着有HRE化合物粉末,所述的HRE是选自Dy、Tb、Gd或Ho的至少一种;在真空中或惰性气氛中,对所述R-Fe-B系稀土烧结磁体和所述经过工程A处理的所述耐高温载体进行热处理,向所述R-Fe-B系稀土烧结磁铁的表面供给HRE的工程B。该方法可降低重稀土元素的消耗,并在升高矫顽力的同时,控制磁铁剩磁Br的损失。

Description

一种R-Fe-B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法 技术领域
本发明涉及磁铁的制造技术领域,特别是涉及R-Fe-B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法。
背景技术
矫顽力(Hcj)是稀土烧结磁铁(如Nd-Fe-B系烧结磁体等)的最重要技术参数,提高磁铁在使用过程中的抗退磁能力。在传统的方式中,主要通过以下的方式来提高Nd-Fe-B系烧结磁铁的矫顽力:1)在Nd-Fe-B系烧结磁铁的制作工序中添加重稀土元素(下称HRE,或称HREE或称Heavy Rare Earth或称Heavy Rare Earth Elements);2)添加微量元素优化晶界结构、细化颗粒,但会导致磁铁非磁性相的含量增加,Br降低;3)对Nd-Fe-B系烧结磁铁进行HRE晶界扩散处理。方式1)和方式3)均使用以HRE来部分置换或全部置换Nd2Fe14B晶粒中的Nd,增加矫顽力。这其中,以方式3)最为高效和经济。
在方式1)中,HRE(包括Dy或Tb等)在烧结过程中扩散到晶界,并进入Nd2Fe14B晶粒内部约1~2μm的深度,矫顽力增加,而由于Dy2Fe14B、Tb2Fe14B等的各向异性场小于Nd2Fe14B的各向异性场,导致烧结磁铁的剩磁下降较多。
方式3)中,则是加热机加工后的磁铁,使晶界的富Nd相形成液相,将Dy、Tb等重稀土元素从磁铁表面渗入,进行晶界扩散,磁铁表面区域的晶粒形成核壳结构,矫顽力增加。而由于HRE(包括Dy或Tb等)仅进入到晶粒内部约5nm的深度,可将磁铁剩磁的降低控制在一定限度(0.3kGs左右)。
然而,由于方式1)和方式3)中均使用HRE对Nd2Fe14B晶粒中的Nd进行置换,降低化合物的饱和磁极化强度,因此,只要采用上述方法以增加矫顽力,剩磁的损失就不可避免。
发明内容
本发明的目的在于克服现有技术之不足,提供一种稀土烧结磁铁的晶界扩散方法,该方 法可降低重稀土元素的消耗,并在升高矫顽力的同时,控制磁铁剩磁Br的损失。
本发明解决其技术问题所采用的技术方案是:
一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,包括以下步骤:在耐高温载体上形成干燥层的工程A,所述干燥层附着有HRE化合物粉末,所述的HRE是选自Dy、Tb、Gd或Ho的至少一种;以及在真空中或惰性气氛中,对所述R-Fe-B系稀土烧结磁体和所述经过工程A处理的所述耐高温载体进行热处理,向所述R-Fe-B系稀土烧结磁铁的表面供给HRE的工程B。
本发明在耐高温载体上形成附着有HRE化合物的干燥层,制得HRE扩散源,之后向稀土烧结磁铁进行扩散,此方法可降低HRE化合物的表面积,调整其扩散方式和扩散速度,进而改善扩散效率和扩散质量。
进一步地,本发明可以通过改变耐高温载体的形状,获得与拱形磁铁或环形磁铁等非平面磁铁形状对应的任意形状HRE扩散源,从而使HRE扩散源到非平面磁铁的扩散距离也变得可控,获得Hcj(矫顽力)提高、SQ(方形度)也不急剧降低的磁体。
本发明的另一目的在于提供一种HRE扩散源。
一种HRE扩散源,包括如下的结构:在耐高温载体上形成干燥层,所述干燥层中附着有HRE化合物粉末,所述的HRE是选自Dy、Tb、Gd或Ho的至少一种。
在推荐的实施方式中,所述HRE扩散源为一次扩散源。在将HRE扩散源设置成一次扩散源后,可适当放松对扩散温度和扩散时间的控制,即使在扩散温度升高、扩散时间延长之时,也不会影响各批次磁铁性能的一致性。
本发明提供的HRE扩散源的扩散方式与现有将稀土烧结磁铁包埋在HRE化合物中的方式不同。在将稀土烧结磁铁包埋在HRE化合物的过程中,磁铁的6个面均接触到了HRE扩散源,会导致Br快速下降。本发明提供的HRE扩散源可提供分布均匀的蒸发供应面,向对应的接收面(如磁铁的取向面)稳定提供原子,其可以很好地控制被扩散的HRE化合物用量、扩散部位和扩散速度,进行准确、高效的扩散。
本发明提供的HRE扩散源的扩散方式与将HRE扩散源溶液直接喷涂在稀土烧结磁铁的 方式也不同。在将HRE扩散源溶液喷涂在稀土烧结磁铁的过程中,需要在喷涂过程中对磁铁进行翻转,同时,磁铁的6个面均接触到了HRE扩散源,在扩散过程中可导致Br快速下降,同时也造成了对非取向面对HRE扩散源的额外消耗,在扩散完成之后,还需要进行6面磨削处理。而本发明提供的HRE扩散源并不需要上述程序,其扩散过程是可控、高效的。
本发明的另一目的在于提供一种HRE扩散源的制备方法。
一种HRE扩散源的制备方法,包括如下的步骤:
1)取HRE化合物粉末,加入第一有机溶剂,至没过粉末,充分研磨获得研磨粉或研磨液;
2)在第二有机溶剂中加入成膜剂,配置成膜剂的第二有机溶剂溶液;
3)按所述成膜剂和所述HRE化合物粉末为0.01~0.1:0.9的重量比,在所述第二有机溶剂溶液加入所述研磨粉或所述研磨液,混合均匀,得到混合液;以及
4)选取耐高温载体,将所述混合液喷在所述耐高温载体表面,烘干。
在推荐的实施方式中,所述第一有机溶剂和第二有机溶剂为水和/或乙醇。水、乙醇是绿色环保材料,不会对环境造成负担。
需要说明的是,本发明中公布的数值范围包括这个数值范围内的所有点值。
附图说明
图1是实施例1的覆膜W板的结构示意图;
图2是实施例1的扩散过程示意图;
图3是实施例2的覆膜氧化锆板的结构示意图;
图4.1是实施例2的扩散过程示意图;
图4.2是对比例2.1、对比例2.2的扩散过程示意图;
图4.3是对比例2.3、对比例2.4的扩散过程示意图;
图5是实施例3的覆膜Mo板的结构示意图;
图6是实施例3的扩散过程示意图;
图7是实施例4的覆膜W板的结构示意图;
图8是实施例4的扩散过程示意图;
图9是实施例5的覆膜W圆球的结构示意图;
图10是实施例5的扩散过程示意图;
图11是实施例6的覆膜Mo板的结构示意图;以及
图12是实施例6的扩散过程示意图。
具体实施方式
在推荐的实施方式中,将所述R-Fe-B系稀土烧结磁铁和经过所述工程A处理的形成膜的耐高温载体放置在处理室内,在真空中或惰性气氛中,对所述R-Fe-B系稀土烧结磁体和所述形成膜的耐高温载体进行热处理,从所述形成膜的耐高温载体向所述R-Fe-B系稀土烧结磁铁的表面供给HRE的工程B。
在推荐的实施方式中,所述处理室的气氛压力在0.05MPa以下。在扩散气氛控制为真空环境,可以形成两种扩散形式,一种是直接接触扩散,一种是蒸汽扩散,从而提升扩散效率。
在推荐的实施方式中,所述工程B中,所述耐高温载体上形成的所述附着有HRE化合物的干燥层与所述R-Fe-B系稀土烧结磁铁以接触的方式放置或以不接触的方式放置,在以不接触的方式放置时,两者之间的平均间隔设定在1cm以下。在以接触的方式放置时,HRE化合物进入稀土烧结磁铁的速度快,但需要进行表面处理,而在以不接触的方式放置时,HRE化合物是以蒸汽法进行扩散,进入稀土烧结磁铁的速度会降低,可以节约表面处理工序,同时形成蒸汽浓度梯度,进行高效扩散。
在推荐的实施方式中,所述工程B中,在所述附着有HRE化合物的干燥层与所述R-Fe-B系稀土烧结磁铁以不接触的方式放置时,所述处理室的气氛压力优选在1000Pa以下。在以不接触的方式放置时,可降低处理室的压力,提高扩散效率,真空气氛有利于蒸汽浓度梯度的形成,提高扩散效率。
在推荐的实施方式中,所述工程B中,在所述附着有HRE化合物粉末的干燥层与所述R-Fe-B系稀土烧结磁铁以不接触的方式放置时,所述处理室的气氛压力优选在100Pa以下。
在推荐的实施方式中,所述的干燥层为膜。本发明所述附着有HRE化合物粉末的膜是 指将HRE化合物粉末固定在其中的膜,其并非单纯指连续的膜,其也可以是不连续的膜。因此,需要说明的是,无论是连续的膜,或者是不连续的膜均应在本发明的保护范围之内。
在推荐的实施方式中,所述工程B的热处理温度为所述R-Fe-B系稀土烧结磁铁烧结温度以下的温度。
在推荐的实施方式中,所述工程B中,将所述R-Fe-B系稀土烧结磁铁和所述经过工程A处理的耐高温载体在800℃~1020℃的环境中加热5~100小时。在上述工程中,可使用较高的扩散温度,以缩短扩散时间,从而降低能源的耗用。
在推荐的实施方式中,所述干燥层为均一分布的膜,其厚度在1mm以下。通过控制干燥的厚度,即使在成膜剂、HRE化合物粉末选择不佳的情况下,也能保证不发生皲裂、断裂等情形。
在推荐的实施方式中,所述耐高温载体上形成至少两块的干燥层,每两块相邻的所述干燥层在所述耐高温载体上以间隔1.5cm以下的距离均匀分布。
在推荐的实施方式中,所述干燥层与所述耐高温载体的结合力为1级、2级、3级或4级。耐高温载体与干燥层的结合力过低之时,干燥层在耐高温载体的附着力不强,可能会引起干燥层轻微脱落、或者在加热过程中微量团聚的情形。
本发明采用的结合力测试方法如下:采用刃口角30°,刃口厚度50~100μm的单刃刀具在形成干燥层的耐高温载体的同一长宽面的平行于长宽方向切割间距为5mm的切割线各11条。切割时,刀具与形成干燥层的耐高温载体的夹角要一致,用力均匀,刃口在切割中要正好能穿干燥层而触及基底。检查结果如表1中所示。
表1 检查结果分级表
Figure PCTCN2017102605-appb-000001
Figure PCTCN2017102605-appb-000002
在推荐的实施方式中,所述附着有HRE化合物粉末的干燥层还包括可在所述工程B中脱除至少95wt%的成膜剂,所述成膜剂选自树脂、纤维素、氟硅聚合物、干性油或水玻璃等中的至少一种。
在推荐的实施方式中,所述附着有HRE化合物粉末的干燥层由成膜剂和HRE化合物粉末组成。
在推荐的实施方式中,所述附着有HRE化合物粉末的干燥层为静电吸附的HRE化合物粉末。静电吸附的过程不会混入成膜剂和其他杂质,如此,在扩散完成后,HRE化合物可以直接回收,并重复使用。
在推荐的实施方式中,所述耐高温载体选自耐高温颗粒、耐高温网、耐高温板、耐高温条或其他形状耐高温体的至少一种。
在推荐的实施方式中,所述耐高温载体采用选自氧化锆、氧化铝、氧化钇、氮化硼、氮化硅或碳化硅,或选自Mo、W、Nb、Ta、Ti、Hf、Zr、Ti、V、Re的周期表ⅣB族、ⅤB族、ⅥB或ⅦB族的一种金属或者上述材料的合金制成。上述材料制成的耐高温载体在高温下不变形,可保持扩散距离不变,且在上述耐高温载体和稀土烧结磁铁层叠设置时,可防止稀土烧结磁铁的变形。
在推荐的实施方式中,所述HRE化合物粉末为选自HRE氧化物、HRE氟化物、HRE氯化物、HRE硝酸盐和HRE氟氧化物的至少一种粉末,所述粉末的粒径为200微米以下。
在推荐的实施方式中,所述附着有HRE化合物的干燥层中,HRE氧化物、HRE氟化物、HRE氯化物、HRE硝酸盐和HRE氟氧化物的含量在90wt%以上,HRE氧化物、HRE氟化物、HRE氯化物、HRE硝酸盐和HRE氟氧化物的含量提高,可适当提高扩散效率。
在推荐的实施方式中,所述R-Fe-B系稀土烧结磁铁沿其磁取向方向的厚度为30mm以下。本发明提供的晶界扩散方法可显著提升最大厚度为30mm的稀土烧结磁铁性能。
在推荐的实施方式中,所述R-Fe-B系稀土烧结磁铁以R2Fe14B型结晶粒作为主相,其中,R是选自Y和Sc在内的稀土元素中的至少一种,其中,Nd和/或Pr的含量为R的含量的50wt%以上。
在推荐的实施方式中,所述R-Fe-B系稀土烧结磁铁的成分中包括M,所述M选自Co、Bi、Al、Cu、Zn、In、Si、S、P、Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta或W中的至少一种。
在推荐的实施方式中,在所述工程B之后,对所述R-Fe-B系稀土烧结磁铁进一步追加热处理工序。经热处理工序之后,稀土烧结磁铁的磁性能和一致性会有所改善。
以下结合实施例对本发明作进一步详细说明。
实施例1
步骤a:取平均粒径为10微米的TbF3粉末,加入水,至没过TbF3粉末,放入球磨机研磨5小时,获得研磨粉。
步骤b:在水中加入纤维素,配置浓度1wt%纤维素的水溶液。
步骤c:按纤维素和TbF3粉末为1:9的重量比,在步骤b获得的水溶液中加入步骤a获得的研磨粉,混合均匀,得到混合液。
步骤d:选取10cm×10cm长宽、0.5mm厚度的W板11,W板11放入烘箱加热到80℃,取出,将上述混合液均匀地喷在上述W板表面,并再次放入烘箱烘干,得到覆膜W板,膜中附着有TbF3粉末。
对覆膜W板的另一侧表面重复步骤d的操作,得到两侧膜厚相同的覆膜W板1,如图1中所示。
重复上述操作,获得不同膜厚的W板(膜厚如表2中所示)。
经结合力测试,如表2中所示,实施例1.1、实施例1.2、实施例1.3、实施例1.4中,膜12与W板11的结合力为4级以下,实施例1.5、实施例1.6中,膜12与W板11的结合力 为5级。
实施例1.1~实施例1.6:
准备稀土磁铁烧结体,该烧结体具有如下的原子组成:Nd为14.7、Co为1,B为6.5、Cu为0.4、Mn为0.1、Ga为0.1、Zr为0.1、Ti为0.3、Fe为余量。依照现有稀土磁铁的熔炼、甩片、氢破碎、气流磨、压制、烧结和热处理的工序制得。
经过热处理的烧结体加工成15mm×15mm×30mm的磁铁,30mm方向为磁场取向方向,加工后的磁铁喷砂,吹洗,表面洁净化。磁铁使用中国计量院的NIM-10000H大块稀土永磁无损检测系统进行磁性能检测,测定温度为20℃,测定结果为Br:13.45kGs,Hcj:19.00kOe,(BH)max:42.41MGOe,SQ:98.8%,Hcj的标准偏差值为0.1。
如图2中所示,将磁铁6、覆膜W板1在磁铁取向方向堆叠放置,在800Pa~1000Pa的高纯度Ar气体气氛中,以950℃的温度扩散热处理30小时。
对比例1.1~对比例1.5:
步骤a:取平均粒径为10微米的TbF3粉末,加入水,至没过TbF3粉末,放入球磨机研磨5小时,获得研磨粉。
步骤b:在水中加入纤维素,配置浓度1wt%纤维素的水溶液。
步骤c:按纤维素和TbF3粉末为1:9的重量比,在步骤b获得的水溶液中加入步骤a获得的研磨粉,混合均匀,得到混合液。
步骤d:将与实施例1.1、实施例1.2、实施例1.3、实施例1.4、实施例1.5相当量的步骤c制得的混合液,将上述混合液均匀、全面喷雾涂覆在上述磁铁上,将涂覆后的磁铁在80℃的环境中干燥,在800Pa~1000Pa的高纯度Ar气体气氛中,以950℃的温度扩散热处理30小时。
扩散后的磁铁使用中国计量院的NIM-10000H大块稀土永磁无损检测系统进行磁性能检测,测定温度为20℃。
对比例2:
取1:9的重量比的纤维素和TbF3粉末(平均粒径为10微米),压制得0.6mm厚度的 压块。将磁铁、压块沿着磁铁的取向方向堆叠放置,在800Pa~1000Pa的高纯度Ar气体气氛中,以950℃的温度扩散热处理30小时。
实施例和对比例的磁性能评价情况如表2中所示。
表2 实施例和对比例的磁性能评价情况
Figure PCTCN2017102605-appb-000003
在实施例1.1、实施例1.2、实施例1.3、实施例1.4、实施例1.5、实施例6的实施方式中,混合液的喷涂、干燥在W板上进行,因此,在实施例1.1、实施例1.2、实施例1.3、实施例1.4、实施例1.5、实施例1.6中,并未观察到磁铁表面发生氧化、生锈的情形。而在对比例1.1、对比例1.2、对比例1.3、对比例1.4、对比例1.5中,均观察到了磁铁表面发生氧化、生锈的情形。
从对比例1.1~对比例1.5、和实施例1.1~实施例1.6可以看到,将混合液直接涂覆在磁铁表面,会引起磁铁剩磁(Br)的降低和矫顽力(Hcj)升高幅度的较低。这是由于,在磁铁 表面的混合液干燥时,引起了磁铁表面性状发生改变,从而大幅度影响了扩散效果。磁铁表面性状的改变可能是由于干燥时的湿热环境对磁铁造成的晶界腐蚀,也可能是成膜剂在磁铁表面成膜时,对磁铁表面的扩散通路进行填充,造成扩散效率的降低。
另外,在对比例1.1~对比例1.5的实施方式中,在将HRE扩散源溶液喷涂在稀土烧结磁铁的过程中,需要在喷涂过程中对磁铁进行翻转,磁铁的6个面均接触到了HRE扩散源,再扩散过程中可导致Br快速下降,同时也造成了对非取向面对HRE扩散源的额外消耗,在扩散完成之后,还需要进行6面磨削处理。
在对比例2中,压块会在扩散过程中发生收缩,因此,各个磁铁的扩散效果差异极大。
实施例2
步骤a:取平均粒径为20微米的Dy2O3粉末,加入无水乙醇,至没过Dy2O3粉末,放入球磨机研磨25小时,获得研磨粉。
步骤b:在无水乙醇中加入树脂,配置浓度20wt%树脂的无水乙醇溶液;
步骤c:按树脂和Dy2O3粉末为0.07:1的重量比,在步骤b获得的无水乙醇溶液中加入步骤a获得的研磨粉,混合均匀,得到混合液。
步骤d:选取10cm×10cm长宽、0.5mm厚度的氧化锆板21,氧化锆板21放入烘箱加热到120℃,取出,将上述混合液均匀地喷在上述氧化锆板表面,并再次放入烘箱烘干,得到覆膜氧化锆板,膜22中附着有Dy2O3粉末。
对覆膜氧化锆板的另一侧表面重复步骤d的操作,得到两侧膜厚相同的覆膜氧化锆板2,膜厚为35μm,如图3中所示。
经结合力测试,膜22与氧化锆板21的结合力为4级以下。
实施例2.1~实施例2.5:
准备稀土磁铁烧结体,该烧结体具有如下的原子组成:Nd为13.6、Co为1,B为6.0、Cu为0.4、Mn为0.1、Al为0.2、Bi为0.1、Ti为0.3、Fe为余量。依照现有稀土磁铁的熔炼、甩片、氢破碎、气流磨、压制、烧结和热处理的工序制得。
经过热处理的烧结体加工成15mm×15mm×5mm的磁铁,5mm方向为磁场取向方向, 加工后的磁铁喷砂,吹洗,表面洁净化。磁铁使用中国计量院的NIM-10000H大块稀土永磁无损检测系统进行磁性能检测,测定温度为20℃,测定结果为Br:14.43kGs,Hcj:16.27kOe,(BH)max:49.86MGOe,SQ:91.2%,Hcj的标准偏差值为0.11。
如图4.1中所示,将磁铁7、覆膜氧化锆板2在磁铁的取向方向间隔不同距离放置(间隔距离如表3中所示),在800Pa~1000Pa的高纯度Ar气体气氛中,以950℃的温度扩散热处理12小时。
对比例2.1~对比例2.4:
对比例2.1:如图4.2中所示,将上述磁铁、1mm厚度的Dy板71沿着磁铁7的取向方向间隔0.1cm的距离放置,在800Pa~1000Pa的高纯度Ar气体气氛中,以850℃的温度扩散热处理24小时。
对比例2.2:如图4.2中所示,将上述磁铁、1mm厚度的Dy板71沿着磁铁7的取向方向间隔0.1cm的距离放置,在800Pa~1000Pa的高纯度Ar气体气氛中,以950℃的温度扩散热处理12小时。
对比例2.3:如图4.3中所示,取0.07:1的重量比的树脂和Dy2O3粉末(平均粒径为20微米),压制得1mm厚度的压块。将上述磁铁7、压块72沿着磁铁的取向方向间隔0.1cm的距离放置,在800Pa~1000Pa的高纯度Ar气体气氛中,以850℃的温度扩散热处理24小时。
对比例2.4:如图4.3中所示,取0.07:1的重量比的树脂和Dy2O3粉末(平均粒径为20微米),压制得1mm厚度的压块。将上述磁铁7、压块72沿着磁铁的取向方向间隔0.1cm的距离放置,在800Pa~1000Pa的高纯度Ar气体气氛中,以950℃的温度扩散热处理12小时。
扩散后的磁铁使用中国计量院的NIM-10000H大块稀土永磁无损检测系统进行磁性能检测,测定温度为20℃。
实施例和对比例的磁性能评价情况如表3中所示。
表3 实施例和对比例的磁性能评价情况
Figure PCTCN2017102605-appb-000004
在实施例2.1、实施例2.2、实施例2.3、实施例2.4、实施例2.5的实施方式中,混合液的喷涂、干燥在氧化锆板上进行,因此,在实施例2.1、实施例2.2、实施例2.3、实施例2.4、实施例2.5中,并未观察到磁铁的表面发生氧化、生锈的情形。
从对比例和实施例可以看到,实施例2.1、实施例2.2、实施例2.3、实施例2.4和实施例2.5的扩散效率随间隔距离的增大而降低,当间隔距离在1cm以下时,对扩散效率的影响较小;而在对比例2.3和对比例2.4中,压块72会在扩散过程中发生收缩,因此,各个磁铁的扩散效果差异极大。
与已知用HRE化合物粉末直接接触进行扩散的方式不同,实施例2中采用以HRE蒸汽法(不直接接触)进行扩散,同样能够取得良好的扩散效果。
实施例3
步骤a:取多组不同平均粒径的TbF3粉末(如表4中所示),加入无水乙醇,至没过TbF3粉末,放入球磨机研磨5小时,获得研磨粉。
步骤b:在无水乙醇中加入干性油,配置浓度1wt%干性油的无水乙醇溶液。
步骤c:按干性油和TbF3粉末为0.05:1的重量比,在步骤b获得的无水乙醇溶液中加 入步骤a获得的研磨粉,混合均匀,得到混合液。
步骤d:选取10cm×10cm长宽、0.5mm厚度的Mo板31,Mo板31放入烘箱加热到100℃,取出,将上述混合液均匀地喷在上述Mo板的一侧表面,并再次放入烘箱烘干,得到覆膜Mo板,膜32中附着有TbF3粉末。
对覆膜Mo板的另一侧表面重复步骤d的操作,得到两侧膜厚相同的覆膜Mo板3,膜厚为100μm,如图5中所示。
经结合力测试,膜(TbF3粉末的平均粒径如表4中所示)与Mo板的结合力为4级以下。
实施例3.1~实施例3.5:
准备稀土磁铁烧结体,该烧结体具有如下的原子组成:Ho为0.1、Nd为13.8、Co为1,B为6.0、Cu为0.4、Al为0.1、Ga为0.2、Fe为余量。依照现有稀土磁铁的熔炼、甩片、氢破碎、气流磨、压制、烧结和热处理的工序制得。
经过热处理的烧结体加工成15mm×15mm×10mm的磁铁,10mm方向为磁场取向方向,加工后的磁铁喷砂,吹洗,表面洁净化。磁铁使用中国计量院的NIM-10000H大块稀土永磁无损检测系统进行磁性能检测,测定温度为20℃,测定结果为Br:14.39kGs,Hcj:18.36kOe,(BH)max:50.00MGOe,SQ:92.9%,Hcj的标准偏差值为0.13。
如图6中所示,将磁铁8、覆膜Mo板3(TbF3粉末平均粒径如表4中所示)在磁铁的取向方向堆叠放置,在1800Pa~2000Pa的高纯度Ar气体气氛中,以1000℃的温度扩散热处理12小时。
对比例3.1~对比例3.4:
对比例3.1:将磁铁包埋在TbF3粉末(平均粒径为50微米)中,在1800Pa~2000Pa的高纯度Ar气体气氛中,以950℃的温度扩散热处理24小时。
对比例3.2:将磁铁包埋在TbF3粉末(平均粒径为50微米)中,在1800Pa~2000Pa的高纯度Ar气体气氛中,以1000℃的温度扩散热处理12小时。
对比例3.3:将Tb膜电沉积在上述磁铁上(Tb电镀层厚度为100μm),在1800Pa~2000Pa的高纯度Ar气体气氛中,以950℃的温度扩散热处理24小时。
对比例3.4:将Tb膜电沉积在上述磁铁上(Tb电镀层厚度为100μm),在1800Pa~2000Pa的高纯度Ar气体气氛中,以1000℃的温度扩散热处理12小时。
扩散后的磁铁使用中国计量院的NIM-10000H大块稀土永磁无损检测系统进行磁性能检测,测定温度为20℃。
实施例和对比例的磁性能评价情况如表4中所示。
表4 实施例和对比例的磁性能评价情况
Figure PCTCN2017102605-appb-000005
在实施例3.1、实施例3.2、实施例3.3、实施例3.4、实施例3.5的实施方式中,混合液的喷涂、干燥在氧化锆板上进行,因此,在实施例3.1、实施例3.2、实施例3.3、实施例3.4、实施例3.5中,并未观察到磁铁的表面发生氧化、生锈的情形。
从对比例和实施例可以看到,实施例3.1、实施例3.2、实施例3.3、实施例3.4的扩散效果好,磁铁的Br几乎没有降低,矫顽力则有显著地提升,且各个磁铁的扩散效果均一。而在对比例3.1和对比例3.2中,TbF3粉末会在扩散过程中发生不均匀团聚,因此,各个磁铁的扩散效果差异极大。
实施例4
步骤a:取平均粒径为50微米的TbCl3粉末,加入无水乙醇,配制为TbCl3溶液。
步骤b:在水中加入氟硅聚合物,配置浓度10wt%氟硅聚合物的水溶液。
步骤c:氟硅聚合物和TbCl3按0.02:1的重量比,在步骤b制得的水溶液中加入步骤a获得的溶液,混合均匀,得到混合液。
步骤d:选取9cm×9cm长宽、0.5mm厚度的W板41,W板41放入烘箱加热到80℃,取出,在W板41上每间隔2cm各自覆盖一等宽的障碍物,障碍物的宽度如表5中所示,再将上述混合液均匀地喷在上述W板表面,并再次放入烘箱烘干,剥离障碍物,得到分段成膜42的覆膜W板,膜厚0.5mm。膜中附着有TbCl3粉末。
对覆膜W板的另一侧表面重复步骤d的操作,得到两侧膜厚相同的覆膜W板4,如图7中所示。
实施例4.1~实施例4.5:
准备稀土磁铁烧结体,该烧结体具有如下的原子组成:Pr为0.1、Nd为13.7、Co为1,B为6.5、Cu为0.4、Al为0.1、Ga为0.1、Ti为0.3、Fe为余量。依照现有稀土磁铁的熔炼、甩片、氢破碎、气流磨、压制、烧结和热处理的工序制得。
经过热处理的烧结体加工成10mm×10mm×20mm的磁铁,20mm方向为磁场取向方向,加工后的磁铁喷砂,吹洗,表面洁净化。磁铁使用中国计量院的NIM-10000H大块稀土永磁无损检测系统进行磁性能检测,测定温度为20℃,测定结果为Br:14.30kGs,Hcj:17.07kOe,(BH)max:49.20MGOe,SQ:92.2%,Hcj的标准偏差值为0.22。
如图8中所示,将磁铁9、覆膜W板4在磁铁取向方向堆叠放置,在0.05MPa的高纯度Ar气体气氛中,以1020℃的温度扩散热处理6小时。
扩散后的磁铁使用中国计量院的NIM-10000H大块稀土永磁无损检测系统进行磁性能检测,测定温度为20℃。
实施例的磁性能评价情况如表5中所示。
表5 实施例的磁性能评价情况
Figure PCTCN2017102605-appb-000006
从实施例可以看到,在分段成膜的扩散方式中,在两端膜之间的间隔在1.5cm以下时,并不会影响扩散效果的均一性,这可能是因为,扩散距离在1.5cm左右的范围内波动时,对扩散速度的影响不大。
实施例5
步骤a:取平均粒径为80微米的Tb(NO3)3粉末,加入水,配制为Tb(NO3)3溶液。
步骤b:在水中加入水玻璃,配置浓度1wt%水玻璃的水溶液。
步骤c:按水玻璃和Tb(NO3)3为0.01:0.9的重量比,在步骤b获得的水溶液中加入步骤a获得的溶液,混合均匀,得到混合液。
步骤d:选取0.1mm~3mm直径的W圆球51(W圆球直径如表6中所示),放入烘箱加热到80℃,取出,再将上述混合液均匀地喷在上述W圆球表面,并再次放入烘箱烘干,得到覆膜W圆球5,如图9中所示。膜52的厚度0.15mm,膜中附着有Tb(NO3)3
实施例5.1~实施例5.5:
准备稀土磁铁烧结体,该烧结体具有如下的原子组成:Ho为0.1、Nd为13.8、Co为1,B为6.0、Cu为0.4、Mn为0.1、Ga为0.2、Fe为余量。依照现有稀土磁铁的熔炼、甩片、氢破碎、气流磨、压制、烧结和热处理的工序制得。
经过热处理的烧结体加工成10mm×10mm×12mm的磁铁,12mm方向为磁场取向方向,加工后的磁铁喷砂,吹洗,表面洁净化。磁铁10使用中国计量院的NIM-10000H大块稀土永磁无损检测系统进行磁性能检测,测定温度为20℃,测定结果为Br:14.39kGs,Hcj:18.36kOe, (BH)max:50.00MGOe,SQ:92.9%,Hcj的标准偏差值为0.13。
如图10中所示,将磁铁10取向方向的表面上紧密排列放置覆膜W圆球5,在2800Pa~3000Pa的高纯度Ar气体气氛中,以800℃的温度扩散热处理100小时。
实施例和对比例的磁性能评价情况如表6中所示。
表6 实施例和对比例的磁性能评价情况
Figure PCTCN2017102605-appb-000007
实施例6
步骤a:取平均粒径10μm的不同粉末(粉末种类如表7所示),加入无水乙醇,至没过TbF3粉末,放入球磨机研磨5小时,获得研磨粉。
步骤b:在无水乙醇中加入纤维素,配置浓度1wt%纤维素的无水乙醇溶液。
步骤c:按纤维素和TbF3粉末为0.05:1的重量比,在步骤b获得的无水乙醇溶液中加入步骤a获得的研磨粉,混合均匀,得到混合液。
步骤d:选取10cm×10cm长宽、0.5mm厚度的Mo板61,Mo板61放入烘箱加热到100℃,取出,将上述混合液均匀地喷在上述Mo板的一侧表面,并再次放入烘箱烘干,得到覆膜Mo板,膜62中附着有TbF3粉末。
对覆膜Mo板的另一侧表面重复步骤d的操作,得到两侧膜厚相同的覆膜Mo板6,膜厚为30μm,如图11中所示。
经结合力测试,膜与Mo板的结合力为4级以下。
实施例6.1~实施例6.4:
准备稀土磁铁烧结体,该烧结体具有如下的原子组成:Ho为0.1、Nd为13.8、Co为1,B为6.0、Cu为0.4、Al为0.1、Ga为0.2、Fe为余量。依照现有稀土磁铁的熔炼、甩片、氢破碎、气流磨、压制、烧结和热处理的工序制得。
经过热处理的烧结体加工成15mm×15mm×5mm的磁铁,5mm方向为磁场取向方向,加工后的磁铁喷砂,吹洗,表面洁净化。磁铁使用中国计量院的NIM-10000H大块稀土永磁无损检测系统进行磁性能检测,测定温度为20℃,测定结果为Br:14.39kGs,Hcj:18.36kOe,(BH)max:50.00MGOe,SQ:92.9%,Hcj的标准偏差值为0.13。
如图12中所示,将磁铁101、覆膜Mo板6在磁铁的取向方向堆叠放置,在1800Pa~2000Pa的高纯度Ar气体气氛中,以950℃的温度扩散热处理12小时。
扩散后的磁铁使用中国计量院的NIM-10000H大块稀土永磁无损检测系统进行磁性能检测,测定温度为20℃。
实施例和对比例的磁性能评价情况如表7中所示。
表7 实施例的磁性能评价情况
Figure PCTCN2017102605-appb-000008
从实施例可以看到,实施例6.1、实施例6.2、实施例6.3、实施例6.4使用了不同种类的粉末,其中混合粉末由于容易引起其它反应,且扩散效果相对较为不佳。
实施例7
步骤a:取平均粒径为20微米的TbF3粉末,加入无水乙醇,至没过TbF3粉末,研磨20小时,获得研磨粉。
步骤b:在无水乙醇中加入树脂,配置浓度20wt%树脂的无水乙醇溶液;
步骤c:按树脂和TbF3粉末为0.07:1的重量比,在步骤b获得的无水乙醇溶液中加入 步骤a获得的研磨粉,混合均匀,得到混合液。
步骤d:选取10cm×10cm长宽、0.5mm厚度的氧化锆板21,氧化锆板21放入烘箱加热到120℃,取出,将上述混合液均匀地喷在上述氧化锆板表面,并再次放入烘箱烘干,得到覆膜氧化锆板,膜22中附着有TbF3粉末。
对覆膜氧化锆板的另一侧表面重复步骤d的操作,得到两侧膜厚相同的覆膜氧化锆板,膜厚为30μm。
经结合力测试,膜与氧化锆板的结合力为4级以下。
实施例7.1~实施例7.5:
准备稀土磁铁烧结体,该烧结体具有如下的原子组成:Nd为13.6、Co为1,B为6.0、Cu为0.4、Mn为0.05、Al为0.3、Bi为0.1、Ti为0.3、Fe为余量。依照现有稀土磁铁的熔炼、甩片、氢破碎、气流磨、压制、烧结和热处理的工序制得。
经过热处理的烧结体加工成15mm×15mm×5mm的磁铁,5mm方向为磁场取向方向,加工后的磁铁喷砂,吹洗,表面洁净化。磁铁使用中国计量院的NIM-10000H大块稀土永磁无损检测系统进行磁性能检测,测定温度为20℃,测定结果为Br:14.33kGs,Hcj:15.64kOe,(BH)max:49.25MGOe,SQ:89.8%,Hcj的标准偏差值为0.11。
将覆膜氧化锆板、0.5mm厚度的钼网、磁铁、0.5mm厚度的钼网在磁铁的取向方向依次堆叠放置(间隔距离如表8中所示),在10-3Pa~1000Pa的高纯度Ar气体气氛中,以950℃的温度扩散热处理12小时。
表8 实施例的磁性能评价情况
Figure PCTCN2017102605-appb-000009
上述实施例仅用来进一步说明本发明的几种具体的实施例,但本发明并不局限于实施例,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均落入本发明技术方案的保护范围内。

Claims (25)

  1. 一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于,包括以下步骤:
    在耐高温载体上形成干燥层的工程A,所述干燥层附着有HRE化合物粉末,所述的HRE是选自Dy、Tb、Gd或Ho的至少一种;以及
    在真空中或惰性气氛中,对所述R-Fe-B系稀土烧结磁体和所述经过工程A处理的所述耐高温载体进行热处理,向所述R-Fe-B系稀土烧结磁铁的表面供给HRE的工程B。
  2. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述处理室的气氛压力在0.05MPa以下。
  3. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述工程B中,所述耐高温载体上形成的所述附着有HRE化合物粉末的干燥层与所述R-Fe-B系稀土烧结磁铁以接触的方式放置或以不接触的方式放置,在以不接触的方式放置时,两者之间的平均间隔设定在1cm以下。
  4. 根据权利要求3中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述工程B中,在所述附着有HRE化合物粉末的干燥层与所述R-Fe-B系稀土烧结磁铁以不接触的方式放置时,所述处理室的气氛压力在1000Pa以下。
  5. 根据权利要求3中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述工程B中,在所述附着有HRE化合物粉末的干燥层与所述R-Fe-B系稀土烧结磁铁以不接触的方式放置时,所述处理室的气氛压力在100Pa以下。
  6. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述的干燥层为膜。
  7. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述工程B的热处理温度为所述R-Fe-B系稀土烧结磁铁烧结温度以下的温度。
  8. 根据权利要求7中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述工程B中,将所述R-Fe-B系稀土烧结磁铁和所述经过工程A处理的耐高温载体在800℃~1020℃的环境中加热5~100小时。
  9. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所 述干燥层为均一分布的膜,其厚度在1mm以下。
  10. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述耐高温载体上形成至少两块的干燥层,每两块相邻的所述干燥层在所述耐高温载体上以间隔1.5cm以下的距离均匀分布。
  11. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述干燥层与所述耐高温载体的结合力为1级、2级、3级或4级。
  12. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述附着有HRE化合物粉末的干燥层还包括可在所述工程B中脱除至少95wt%的成膜剂,所述成膜剂选自树脂、纤维素、氟硅聚合物、干性油或水玻璃中的至少一种。
  13. 根据权利要求9中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述附着有HRE化合物粉末的干燥层由成膜剂和HRE化合物粉末组成。
  14. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述附着有HRE化合物粉末的干燥层为静电吸附的HRE化合物粉末。
  15. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述耐高温载体为耐高温颗粒、耐高温网、耐高温板或耐高温条。
  16. 根据权利要求15中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述耐高温载体采用选自氧化锆、氧化铝、氧化钇、氮化硼、氮化硅或碳化硅,或选自Mo、W、Nb、Ta、Ti、Hf、Zr、Ti、V、Re的周期表ⅣB族、ⅤB族、ⅥB或ⅦB族的一种金属或者上述材料的合金制成。
  17. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述HRE化合物粉末为选自HRE氧化物、HRE氟化物、HRE氯化物、HRE硝酸盐和HRE氟氧化物的至少一种粉末,所述粉末的平均粒径为200微米以下。
  18. 根据权利要求17中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述附着有HRE化合物粉末的干燥层中,HRE氧化物、HRE氟化物、HRE氯化物、HRE硝酸盐和HRE氟氧化物的含量在90wt%以上。
  19. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述R-Fe-B系稀土烧结磁铁沿其磁取向方向的厚度为30mm以下。
  20. 根据权利要求1中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述R-Fe-B系稀土烧结磁铁以R2Fe14B型结晶粒作为主相,其中,R是选自包括Y和Sc在内的稀土元素中的至少一种,其中,Nd和/或Pr的含量为R的含量的50wt%以上。
  21. 根据权利要求20中所述的一种R-Fe-B系稀土烧结磁铁的晶界扩散方法,其特征在于:所述R-Fe-B系稀土烧结磁铁的成分中包括M,所述M选自Co、Bi、Al、Ca、Mg、O、C、N、Cu、Zn、In、Si、S、P、Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、In、Sn、Sb、Hf、Ta或W中的至少一种。
  22. 一种HRE扩散源,其特征在于,包括如下的结构:在耐高温载体上形成干燥层,所述干燥层中附着有HRE化合物粉末,所述的HRE是选自Dy、Tb、Gd或Ho的至少一种。
  23. 根据权利要求22中所述的一种HRE扩散源,其特征在于:所述HRE扩散源为一次扩散源。
  24. 一种HRE扩散源的制备方法,其特征在于,包括如下的步骤:
    1)取HRE化合物粉末,加入第一有机溶剂,至没过粉末,充分研磨获得研磨粉或研磨液;
    2)在第二有机溶剂中加入成膜剂,配置成膜剂的第二有机溶剂溶液;
    3)按所述成膜剂和所述HRE化合物粉末为0.01~0.1:0.9的重量比,在所述第二有机溶剂溶液加入所述研磨粉或所述研磨液,混合均匀,得到混合液;以及
    4)选取耐高温载体,将所述混合液喷在所述耐高温载体表面,烘干。
  25. 根据权利要求24中所述的一种HRE扩散源的制备方法,其特征在于:所述第一有机溶剂为水和/或乙醇,所述第二有机溶剂为水和/或乙醇。
PCT/CN2017/102605 2016-09-26 2017-09-21 一种R-Fe-B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法 WO2018054314A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197007636A KR102138243B1 (ko) 2016-09-26 2017-09-21 R-Fe-B계 희토류 소결자석의 입계확산 방법, HRE 확산원 및 그의 제조방법
CN201910408822.6A CN110070986B (zh) 2016-09-26 2017-09-21 一种R-Fe-B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法
JP2019514245A JP6803462B2 (ja) 2016-09-26 2017-09-21 R−Fe−B系希土類焼結磁石の粒界拡散方法
CN201780002786.2A CN108140482B (zh) 2016-09-26 2017-09-21 一种R-Fe-B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法
US16/092,292 US11501914B2 (en) 2016-09-26 2017-09-21 Grain boundary diffusion method of R-Fe-B series rare earth sintered magnet
EP17852382.5A EP3438997B1 (en) 2016-09-26 2017-09-21 Method for grain boundary diffusion of r-fe-b rare earth sintered magnets, hre diffusion source and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610850051.2 2016-09-26
CN201610850051.2A CN107871602A (zh) 2016-09-26 2016-09-26 一种R‑Fe‑B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法

Publications (1)

Publication Number Publication Date
WO2018054314A1 true WO2018054314A1 (zh) 2018-03-29

Family

ID=61690714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102605 WO2018054314A1 (zh) 2016-09-26 2017-09-21 一种R-Fe-B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法

Country Status (7)

Country Link
US (1) US11501914B2 (zh)
EP (1) EP3438997B1 (zh)
JP (1) JP6803462B2 (zh)
KR (1) KR102138243B1 (zh)
CN (3) CN107871602A (zh)
TW (1) TWI657146B (zh)
WO (1) WO2018054314A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013998A (ja) * 2018-07-20 2020-01-23 煙台首鋼磁性材料株式有限公司 Nd−Fe−B系焼結永久磁性体の重希土類元素拡散処理方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107871602A (zh) 2016-09-26 2018-04-03 厦门钨业股份有限公司 一种R‑Fe‑B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法
KR102045399B1 (ko) * 2018-04-30 2019-11-15 성림첨단산업(주) 희토류 영구자석의 제조방법
US20190378651A1 (en) * 2018-06-08 2019-12-12 Shenzhen Radimag Magnets Co.,Ltd Permeating treatment method for radially oriented sintered magnet, magnet, and composition for magnet permeation
JP7293772B2 (ja) * 2019-03-20 2023-06-20 Tdk株式会社 R-t-b系永久磁石
US20200303100A1 (en) * 2019-03-22 2020-09-24 Tdk Corporation R-t-b based permanent magnet
JP7251264B2 (ja) * 2019-03-28 2023-04-04 Tdk株式会社 R‐t‐b系永久磁石の製造方法
CN109903986A (zh) * 2019-04-01 2019-06-18 中钢集团南京新材料研究院有限公司 一种提高钕铁硼磁体矫顽力的方法
CN110415965A (zh) * 2019-08-19 2019-11-05 安徽大地熊新材料股份有限公司 一种提高烧结稀土-铁-硼磁体矫顽力的方法
CN112908672B (zh) * 2020-01-21 2024-02-09 福建省金龙稀土股份有限公司 一种R-Fe-B系稀土烧结磁体的晶界扩散处理方法
US20220328245A1 (en) * 2020-01-21 2022-10-13 Xiamen Tungsten Co., Ltd. R-Fe-B SINTERED MAGNET AND GRAIN BOUNDARY DIFFUSION TREATMENT METHOD THEREOF
CN111210962B (zh) * 2020-01-31 2021-05-07 厦门钨业股份有限公司 一种含SmFeN或SmFeC的烧结钕铁硼及其制备方法
CN111599565B (zh) * 2020-06-01 2022-04-29 福建省长汀金龙稀土有限公司 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN114141464A (zh) * 2020-09-03 2022-03-04 轻能量电子商务科技有限公司 磁能材料组成结构
CN114420439B (zh) * 2022-03-02 2022-12-27 浙江大学 高温氧化处理提高高丰度稀土永磁抗蚀性的方法
CN115910521A (zh) * 2023-01-04 2023-04-04 苏州磁亿电子科技有限公司 一种薄膜状hre扩散源及制备方法、钕铁硼磁体制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806299A (zh) * 2003-06-18 2006-07-19 独立行政法人科学技术振兴机构 稀土类-铁-硼系磁铁及其制造方法
CN103985535A (zh) * 2014-05-31 2014-08-13 厦门钨业股份有限公司 一种对RTB系磁体进行Dy扩散的方法、磁体和扩散源
CN103985534A (zh) * 2014-05-30 2014-08-13 厦门钨业股份有限公司 对R-T-B系磁体进行Dy扩散的方法、磁体和扩散源

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898757B (zh) * 2004-10-19 2010-05-05 信越化学工业株式会社 稀土永磁材料的制备方法
JP4702546B2 (ja) * 2005-03-23 2011-06-15 信越化学工業株式会社 希土類永久磁石
WO2008032426A1 (en) * 2006-09-15 2008-03-20 Intermetallics Co., Ltd. PROCESS FOR PRODUCING SINTERED NdFeB MAGNET
KR101242465B1 (ko) * 2007-10-31 2013-03-12 가부시키가이샤 알박 영구자석의 제조 방법 및 영구자석
CN102177271B (zh) * 2008-10-08 2014-05-21 株式会社爱发科 蒸发材料及蒸发材料的制造方法
CN102483979B (zh) * 2009-07-10 2016-06-08 因太金属株式会社 NdFeB烧结磁铁的制造方法
JP5747543B2 (ja) * 2011-02-14 2015-07-15 日立金属株式会社 Rh拡散源およびそれを用いたr−t−b系焼結磁石の製造方法
JP2012217270A (ja) 2011-03-31 2012-11-08 Tdk Corp 回転機用磁石、回転機及び回転機用磁石の製造方法
EP2772926A4 (en) * 2011-10-27 2015-07-22 Intermetallics Co Ltd METHOD FOR PRODUCING A SINTERED NDFEB MAGNET
CN104299744B (zh) 2014-09-30 2017-04-12 许用华 一种烧结NdFeB磁体的重稀土元素附着方法
CN107871602A (zh) 2016-09-26 2018-04-03 厦门钨业股份有限公司 一种R‑Fe‑B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法
CN107146670A (zh) * 2017-04-19 2017-09-08 安泰科技股份有限公司 一种稀土永磁材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806299A (zh) * 2003-06-18 2006-07-19 独立行政法人科学技术振兴机构 稀土类-铁-硼系磁铁及其制造方法
CN103985534A (zh) * 2014-05-30 2014-08-13 厦门钨业股份有限公司 对R-T-B系磁体进行Dy扩散的方法、磁体和扩散源
CN103985535A (zh) * 2014-05-31 2014-08-13 厦门钨业股份有限公司 一种对RTB系磁体进行Dy扩散的方法、磁体和扩散源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438997A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013998A (ja) * 2018-07-20 2020-01-23 煙台首鋼磁性材料株式有限公司 Nd−Fe−B系焼結永久磁性体の重希土類元素拡散処理方法

Also Published As

Publication number Publication date
EP3438997A1 (en) 2019-02-06
CN110070986A (zh) 2019-07-30
KR102138243B1 (ko) 2020-07-27
JP2019535130A (ja) 2019-12-05
KR20190064572A (ko) 2019-06-10
CN108140482A (zh) 2018-06-08
EP3438997B1 (en) 2020-11-04
JP6803462B2 (ja) 2020-12-23
TW201814057A (zh) 2018-04-16
CN110070986B (zh) 2022-06-24
EP3438997A4 (en) 2019-11-13
TWI657146B (zh) 2019-04-21
US20200027656A1 (en) 2020-01-23
US11501914B2 (en) 2022-11-15
CN108140482B (zh) 2019-07-23
CN107871602A (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
WO2018054314A1 (zh) 一种R-Fe-B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法
JP6385551B1 (ja) Nd−Fe−B系磁性体の保磁力増強方法
WO2016095869A1 (zh) 一种r-t-b永磁体的制备方法
JP5457615B1 (ja) 磁気記録膜形成用スパッタリングターゲット及びその製造方法
CN107275028B (zh) 晶界扩散钕铁硼磁体的界面调控方法
US20140311902A1 (en) Magnetic Material Sputtering Target and Manufacturing Method Thereof
CN106920669B (zh) 一种R-Fe-B系烧结磁体的制备方法
CN107492429A (zh) 一种耐高温钕铁硼磁体及其制备方法
WO2014101880A1 (zh) 基于蒸镀处理的稀土磁铁用合金粉末的制造方法和稀土磁铁的制造方法
TW201812063A (zh) 強磁性材濺鍍靶
CN111916284B (zh) 一种高矫顽力烧结钕铁硼磁体的制备方法
WO2016086777A1 (zh) 一种制备性能改善的稀土永磁材料的方法及稀土永磁材料
JP5643355B2 (ja) NdFeB焼結磁石の製造方法
CN105513734A (zh) 钕铁硼磁体用轻重稀土混合物、钕铁硼磁体及其制备方法
TWI753073B (zh) 磁性材濺鍍靶及其製造方法
US8663781B2 (en) Ceramic article and method for making same, and electronic device using same
WO2016175069A1 (ja) 希土類磁石の製造方法
WO2022193464A1 (zh) 一种钕铁硼磁体及一种三维晶界扩散制备钕铁硼磁体的方法
CN112652480A (zh) 一种钕铁硼晶界扩散热处理方法
CN109604618A (zh) 一种表面附有耐磨涂层的钕铁硼磁体的制备方法
CN106935390B (zh) 一种稀土烧结磁铁的表面处理方法
JP2019062156A (ja) R−t−b系焼結磁石の製造方法
CN104575896B (zh) 用于制备R‑Fe‑B系烧结磁体的粉末组合物及方法
JP2019062152A (ja) 拡散源
CN108962579A (zh) 制备高矫顽力钕铁硼磁体的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017852382

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017852382

Country of ref document: EP

Effective date: 20181102

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514245

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197007636

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE