WO2018043334A1 - エポキシ変性ビニル系共重合体、それを含む熱可塑性樹脂組成物およびその成形品 - Google Patents

エポキシ変性ビニル系共重合体、それを含む熱可塑性樹脂組成物およびその成形品 Download PDF

Info

Publication number
WO2018043334A1
WO2018043334A1 PCT/JP2017/030544 JP2017030544W WO2018043334A1 WO 2018043334 A1 WO2018043334 A1 WO 2018043334A1 JP 2017030544 W JP2017030544 W JP 2017030544W WO 2018043334 A1 WO2018043334 A1 WO 2018043334A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy
vinyl
thermoplastic resin
resin composition
copolymer
Prior art date
Application number
PCT/JP2017/030544
Other languages
English (en)
French (fr)
Inventor
雄介 深町
Original Assignee
ユーエムジー・エービーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61301527&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018043334(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ユーエムジー・エービーエス株式会社 filed Critical ユーエムジー・エービーエス株式会社
Priority to KR1020197005434A priority Critical patent/KR20190035780A/ko
Priority to CN201780049519.0A priority patent/CN109641993B/zh
Priority to JP2017549095A priority patent/JP6369641B2/ja
Priority to CA3035496A priority patent/CA3035496A1/en
Priority to US16/328,147 priority patent/US20190185601A1/en
Priority to EP17846339.4A priority patent/EP3508507A4/en
Priority to MX2019002261A priority patent/MX2019002261A/es
Publication of WO2018043334A1 publication Critical patent/WO2018043334A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • C08F212/10Styrene with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate

Definitions

  • the present invention relates to an epoxy-modified vinyl copolymer capable of effectively improving its molding processability, heat resistance and hydrolysis resistance by blending with a thermoplastic resin such as a thermoplastic polyester resin.
  • the present invention also relates to a thermoplastic resin composition containing the epoxy-modified vinyl copolymer and a thermoplastic resin such as a thermoplastic polyester resin, and a molded article formed by molding the thermoplastic resin composition.
  • Thermoplastic polyester resin is a polymer with excellent physical properties such as transparency, mechanical properties, gas barrier properties, heat resistance, chemical properties such as solvent resistance, acid resistance, alkali resistance, etc., economy and reusability. It is.
  • Thermoplastic polyester resins are used in a wide range of fields such as electrical and electronic equipment parts, automobile parts, and packaging materials such as bottles. Recently, taking advantage of its surface properties, it has been applied to extrusion applications such as film, sheet, and profile extrusion.
  • Thermoplastic polyester resins such as polyethylene terephthalate and polybutylene terephthalate generally have a large temperature dependence of melt viscosity. For this reason, the thermoplastic polyester resin has a disadvantage that the melt viscosity is low and the processability is inferior in melt processing such as profile extrusion performed in a temperature range higher than the melting point. In addition, the thermoplastic polyester resin has a disadvantage that the thermal deformation temperature is low when a reinforcing material such as glass fiber is not used.
  • Patent Document 1 for the purpose of improving the molding processability of thermoplastic polyester resins, as a copolymer having good compatibility with these resins, epoxy group-containing alkyl (meth) acrylate, other alkyl methacrylates, Proposals have been made to blend an acrylic copolymer having a weight average molecular weight of 40,000 to 400,000, which is copolymerized with an aromatic vinyl monomer, as a melt viscosity modifier (thickener).
  • Patent Document 1 does not discuss improvement of heat resistance, and there is a concern about deformation in a high temperature environment.
  • Patent Document 2 discloses an aromatic vinyl monomer and / or a methacrylic acid ester monomer unit as a copolymer having good compatibility with these resins for the purpose of improving the heat resistance of a thermoplastic polyester resin. And a maleimide copolymer composed of a maleimide monomer unit and an epoxy group-containing monomer unit have been proposed. However, in order to provide sufficient heat resistance, it is necessary to increase the blending amount of the maleimide copolymer, and as a result, the fluidity tends to decrease remarkably.
  • Patent Document 1 In Patent Document 1 and Patent Document 2, no investigation has been made on the epoxy equivalent of the copolymer as an improving agent to be blended with the thermoplastic polyester resin. Patent Document 1 does not describe or suggest any vinyl cyanide monomer as a copolymerization component. Patent Document 2 exemplifies vinyl cyanide monomers such as acrylonitrile as other copolymerizable components that can be used, but there is no specific example using vinyl cyanide monomers.
  • the present invention relates to an epoxy-modified vinyl copolymer that can improve the molding processability of a thermoplastic resin such as a thermoplastic polyester resin and can provide a thermoplastic resin composition having good heat resistance and hydrolysis resistance.
  • the purpose is to provide.
  • the present invention also provides a thermoplastic resin composition containing the epoxy-modified vinyl copolymer and a thermoplastic resin such as a thermoplastic polyester resin, and a molded article formed by molding the thermoplastic resin composition. Objective.
  • the present inventor has disclosed an epoxy group-containing vinyl monomer, an aromatic vinyl monomer, a vinyl cyanide monomer, and one or more vinyl monomers selected from vinyl monomers copolymerizable therewith. It was found that an epoxy-modified vinyl copolymer having a weight average molecular weight Mw and an epoxy equivalent within a predetermined range can be solved by copolymerizing the product with a predetermined ratio.
  • the gist of the present invention is as follows.
  • One type selected from 0.1 to 95 parts by mass of an epoxy group-containing vinyl monomer, an aromatic vinyl monomer, a vinyl cyanide monomer, and other vinyl monomers copolymerizable therewith A copolymer comprising 5 to 99.9 parts by weight of the above vinyl monomer (however, an epoxy group-containing vinyl monomer, an aromatic vinyl monomer, a vinyl cyanide monomer, and these can be copolymerized)
  • One or more vinyl monomers selected from the aromatic vinyl monomer, vinyl cyanide monomer, and other vinyl monomers copolymerizable therewith are at least aromatic vinyl monomers
  • the epoxy-modified vinyl copolymer (A) according to [1] including a vinyl cyanide monomer.
  • thermoplastic resin composition comprising the epoxy-modified vinyl copolymer (A) according to any one of [1] to [3] and a thermoplastic resin (C).
  • thermoplastic resin composition according to [4] or [5] comprising 0.1 to 15 parts by mass of the epoxy-modified vinyl copolymer (A) with respect to 100 parts by mass of the thermoplastic resin (C). object.
  • thermoplastic resin composition according to any one of [4] to [6].
  • thermoplastic resins such as thermoplastic polyester resins
  • tensile strength can be obtained. Therefore, stable processing is possible in extrusion molding, blow molding, and the like, and further, an effect of suppressing burrs during injection molding can be expected, and the quality of a molded product can be improved.
  • Epoxy-modified vinyl copolymer (A) The epoxy-modified vinyl copolymer (A) of the present invention comprises an epoxy group-containing vinyl monomer, an aromatic vinyl monomer, a vinyl cyanide monomer, and other vinyl monomers copolymerizable therewith. (Hereinafter, it may be referred to as “another vinyl monomer”.) Is obtained by copolymerizing with one or more vinyl monomers selected from the group consisting of:
  • the epoxy-modified vinyl copolymer (A) of the present invention is preferably obtained by copolymerizing a monomer mixture containing at least an epoxy group-containing vinyl monomer, an aromatic vinyl monomer, and a vinyl cyanide monomer. Obtained. When a vinyl monomer such as an aromatic vinyl monomer or a vinyl cyanide monomer has an epoxy group, these are included in the epoxy group-containing vinyl monomer.
  • epoxy group-containing vinyl monomer constituting the epoxy-modified vinyl copolymer (A) examples include glycidyl acrylate, glycidyl methacrylate, glycidyl itaconate, allyl glycidyl ether, styrene-p-glycidyl ether, 3,4 -Epoxybutene, 3,4-epoxy-3-methyl-1-butene, 3,4-epoxy-1-pentene, 3,4-epoxy-3-methylpentene, 5,6-epoxy-1-hexene, vinyl Cyclohexene monooxide, p-glycidyl styrene, 2-methylallyl glycidyl ether, epoxy stearyl acrylate, epoxy stearyl methacrylate, 3,4-epoxycyclohexylmethyl methacrylate, 3,4-epoxycyclohexylmethyl acrylate, 2,6
  • aromatic vinyl monomers examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, ethylstyrene, vinyltoluene, vinylxylene, methyl- ⁇ -methylstyrene, t-butylstyrene, divinyl.
  • Chlorinated styrene such as benzene, 1,1-diphenylstyrene, N, N-diethyl-p-aminomethylstyrene, N, N-diethyl-p-aminoethylstyrene, vinylnaphthalene, vinylpyridine, monochlorostyrene, dichlorostyrene; Brominated styrene such as monobromostyrene and dibromostyrene; monofluorostyrene and the like. Of these, styrene and ⁇ -methylstyrene are preferable. These aromatic vinyl monomers can be used singly or in combination of two or more.
  • vinyl cyanide monomer examples include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile and the like. Of these, acrylonitrile is preferred. These vinyl cyanide monomers can be used individually by 1 type or in mixture of 2 or more types.
  • vinyl monomers include acrylic esters (methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, etc.), methacrylate esters (methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate). Etc.), maleimide compounds (N-cyclohexylmaleimide, N-phenylmaleimide, etc.) and the like. These other vinyl monomers can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the epoxy group-containing vinyl monomer in the epoxy-modified vinyl copolymer (A) is 0.1 to 95 parts by mass, more preferably 1 to 30 parts by mass, and particularly preferably 2 to 15 parts by mass. .
  • the content of the epoxy group-containing vinyl monomer in the epoxy-modified vinyl copolymer (A) is less than 0.1 parts by mass, the thickening effect, heat resistance and hydrolysis resistance of the thermoplastic resin composition obtained are improved. The effect is low. If the content of the epoxy group-containing vinyl monomer in the epoxy-modified vinyl copolymer (A) exceeds 95 parts by mass, the fluidity of the thermoplastic resin composition obtained by gelation may be impaired.
  • the vinyl monomer component excluding the epoxy group-containing vinyl monomer in the epoxy-modified vinyl copolymer (A) is composed of aromatic vinyl monomer, vinyl cyanide monomer and other vinyl monomers. One or more selected vinyl monomers.
  • the total content of vinyl monomer components excluding the epoxy group-containing vinyl monomer in the epoxy-modified vinyl copolymer (A) is 5 to 99.9 parts by mass, and further 70 to 99 parts by mass. Particularly preferred is 85 to 98 parts by mass. When the content of these vinyl monomers exceeds 99.9 parts by mass, the thickening effect and heat resistance improvement effect of the thermoplastic resin composition obtained are low. When the content of these vinyl monomers is less than 5 parts by mass, the fluidity of the resulting thermoplastic resin composition may be impaired.
  • the content of each vinyl monomer in the epoxy-modified vinyl copolymer (A) is an epoxy group-containing vinyl monomer, an aromatic vinyl monomer, a vinyl cyanide monomer, and This is the content when the total of one or more vinyl monomers selected from other vinyl monomers is 100 parts by mass.
  • the content of the vinyl monomer in the epoxy-modified vinyl copolymer (A) is the content of structural units derived from the vinyl monomer constituting the epoxy-modified vinyl copolymer (A).
  • an epoxy group-containing vinyl monomer which is a copolymerization raw material for producing the epoxy-modified vinyl copolymer (A), an aromatic vinyl monomer, a vinyl cyanide monomer and other vinyl monomers. This corresponds to the content of each vinyl monomer in 100 parts by mass of a mixture with one or more vinyl monomers selected from a monomer.
  • the epoxy-modified vinyl copolymer (A) of the present invention contains at least an aromatic as at least one vinyl monomer selected from an aromatic vinyl monomer, a vinyl cyanide monomer, and another vinyl monomer. It is preferable to contain an aromatic vinyl monomer and a vinyl cyanide monomer. In particular, the inclusion of a vinyl cyanide monomer is preferable because the thermoplastic resin composition containing the epoxy-modified vinyl copolymer (A) has an excellent balance between fluidity and heat resistance.
  • Patent Documents 1 and 2 described above since the vinyl cyanide monomer is not included, even though the fluidity and heat resistance of the thermoplastic resin composition can be improved, they are heat resistant. When the flow rate is improved, the fluidity is lowered, and when the flowability is improved, the heat resistance is in a trade-off relationship, and the effect of improving both the flowability and the heat resistance cannot be obtained.
  • the content of the aromatic vinyl monomer in the epoxy-modified vinyl copolymer (A) is 4.1 to 99 parts by mass, more preferably 30 to 95 parts by mass, and particularly preferably 60 to 80 parts by mass. If the content of the aromatic vinyl monomer is less than 4.1 parts by mass, the resulting molded product may be inferior in rigidity and moldability. When the content of the aromatic vinyl monomer exceeds 99 parts by mass, the impact resistance of the obtained molded product may be lowered.
  • the content of the vinyl cyanide monomer in the epoxy-modified vinyl copolymer (A) is preferably 0.9 to 95.8 parts by mass, more preferably 4.9 to 40 parts by mass, and particularly preferably 5 to 38 parts by mass. If the content of the vinyl cyanide monomer is less than 0.9 parts by mass, the toughness and chemical resistance of the resulting molded product may be inferior. When the content of the vinyl cyanide monomer exceeds 95.8 parts by mass, coloring of the obtained molded product may be a problem. By including the vinyl cyanide monomer in the above range, the heat resistance can be improved while improving the fluidity of the thermoplastic resin composition.
  • the content of the other vinyl monomer in the epoxy-modified vinyl copolymer (A) is preferably 0 to 30 parts by mass, particularly preferably 0 to 20 parts by mass.
  • the weight average molecular weight Mw of the epoxy-modified vinyl copolymer (A) of the present invention is 50,000 to 300,000, preferably 70,000 to 280,000. When the weight average molecular weight Mw is in this range, the effect of improving the fluidity and heat resistance of the thermoplastic resin composition obtained by blending the epoxy-modified vinyl copolymer (A) can be exhibited.
  • the molecular weight distribution Mw / Mn of the epoxy-modified vinyl copolymer (A) of the present invention is preferably 1.8 to 2.8, more preferably 1.9 to 2.4.
  • the molecular weight distribution Mw / Mn is within this range, the fluidity and heat resistance improvement effect of the thermoplastic resin composition obtained by blending the epoxy-modified vinyl copolymer (A) can be expressed more effectively. Can do.
  • the weight average molecular weight Mw and molecular weight distribution Mw / Mn of the epoxy-modified vinyl copolymer (A) are measured by the methods described in the Examples section below.
  • the epoxy equivalent of the epoxy-modified vinyl copolymer (A) of the present invention is 150 to 143,000 g / eq. It is. When the epoxy equivalent is in this range, the effect of improving the fluidity, heat resistance and hydrolysis resistance of the thermoplastic resin composition can be exhibited.
  • the epoxy equivalent of the epoxy-modified vinyl copolymer (A) is measured by the method described in the Examples section below.
  • the reduced viscosity of the epoxy-modified vinyl copolymer (A) is 0.2 to 1.2 dL / g, particularly 0.3. It is preferably ⁇ 1.1 dL / g.
  • the reduced viscosity of the epoxy-modified vinyl copolymer (A) is at least the above lower limit, the impact strength becomes higher.
  • the reduced viscosity of the epoxy-modified vinyl copolymer (A) is not more than the above upper limit, good molded product appearance and moldability can be maintained.
  • the reduced viscosity of the epoxy-modified vinyl copolymer (A) is measured by the method described in the Examples section below.
  • the epoxy-modified vinyl copolymer (A) of the present invention uses a differential scanning calorimetry (DSC) and has a measurement temperature of 90 ° C. under an atmosphere at a heating rate of 10 ° C./min and Air of 50 ml / min. It can be observed that an endothermic behavior is exhibited at a temperature of from 120 ° C. to 120 ° C., and an exothermic behavior is exhibited at a measurement temperature of 260 ° C. to 300 ° C. Further, those that exhibit a sudden endothermic behavior between the measurement temperatures of 100 ° C. and 120 ° C. and a rapid heat generation behavior between the measurement temperatures of 280 ° C. and 300 ° C. are more preferred. In these temperature ranges, the thermoplastic resin composition containing the epoxy-modified vinyl copolymer (A) exhibiting endothermic and exothermic behavior more effectively exhibits the effect of improving heat resistance and hydrolysis resistance. can do.
  • DSC differential scanning calorimetry
  • Examples of the polymerization method for producing the epoxy-modified vinyl copolymer (A) include suspension polymerization, bulk polymerization, emulsion polymerization, and solution polymerization. Of these, suspension polymerization is preferred.
  • thermoplastic resin (C) examples include thermoplastic polyester resin (B), ABS resin, ASA resin, AES resin, polycarbonate, polyvinyl chloride, polystyrene, polyacetal, and modified polyphenylene ether. (Modified PPE), ethylene-vinyl acetate copolymer, polyarylate, liquid crystal polyester, polyethylene, polypropylene, fluororesin, polyamide and the like.
  • the thermoplastic resin composition of the present invention may contain one of these thermoplastic resins (C), or may contain two or more.
  • thermoplastic resin composition of the present invention preferably contains the thermoplastic polyester resin (B) described below as the thermoplastic resin (C).
  • thermoplastic resin (C) other than the thermoplastic polyester resin (B) for example, when ABS resin is mixed with the thermoplastic polyester resin (B) and used, the effect of improving mechanical strength such as impact resistance can be achieved. it can.
  • thermoplastic polyester resin (B) contains a thermoplastic polyester resin (B) and a thermoplastic resin (C) other than the thermoplastic polyester resin (B), the thermoplastic polyester resin (B) is used.
  • the content of the thermoplastic resin (C) other than the thermoplastic polyester resin (B) is preferably 40 parts by mass or less with respect to 100 parts by mass of the thermoplastic polyester resin (B). .
  • thermoplastic polyester resin (B) examples include a polymer or copolymer obtained by a polycondensation reaction mainly comprising a dicarboxylic acid (or an ester-forming derivative thereof) and a diol (or an ester-forming derivative thereof). Can be used.
  • dicarboxylic acid terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,2′-biphenyldicarboxylic acid, 3,3 ′ -Biphenyl dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenylmethane dicarboxylic acid, 4,4'-diphenyl sulfonic dicarboxylic acid, 4,4'-diphenylisopropylidene Dicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4′-dicarboxylic acid, 2,5-anthracene dicarboxylic acid, 2,6-anthracene dicarboxylic acid, 4,4′-p-ter
  • dicarboxylic acid components may be used in combination of two or more. A small amount of these dicarboxylic acid components are used together with one or more aliphatic dicarboxylic acid components such as adipic acid, azelaic acid, dodecanedioic acid and sebacic acid, and alicyclic dicarboxylic acid components such as cyclohexanedicarboxylic acid. can do.
  • aliphatic dicarboxylic acid components such as adipic acid, azelaic acid, dodecanedioic acid and sebacic acid
  • alicyclic dicarboxylic acid components such as cyclohexanedicarboxylic acid.
  • diol component examples include ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, 2-methyl-1,3-propanediol, diethylene glycol, triethylene glycol and other aliphatic diols, 1,4-cyclohexanedi Examples thereof include alicyclic diols such as methanol, and mixtures thereof. Of these, ethylene glycol, propylene glycol, and butylene glycol are preferred.
  • a long-chain diol having a molecular weight of 400 to 6,000 that is, one or more of polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol and the like may be mixed and used.
  • Preferred examples of these polymers or copolymers include polyethylene terephthalate (PET), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyethylene- Examples include aromatic polyester resins such as 1,2-bis (phenoxy) ethane-4,4′-dicarboxylate and copolymer aromatic polyester resins such as polybutylene terephthalate / isophthalate and polybutylene terephthalate / decane dicarboxylate. .
  • thermoplastic resin composition comprises the epoxy-modified vinyl copolymer (A) of the present invention and a thermoplastic resin (C) such as the above-described thermoplastic polyester resin (B).
  • thermoplastic resin composition of the present invention may contain only one type of the epoxy-modified vinyl copolymer (A) of the present invention.
  • the type and composition of the copolymer component, the weight average molecular weight Mw, the epoxy Two or more different ones such as equivalents may be included.
  • the thermoplastic resin composition of the present invention may contain only one kind of thermoplastic resin (C) such as the above-mentioned thermoplastic polyester resin (B), or two or more kinds. Also good.
  • the content of the epoxy-modified vinyl copolymer (A) in the thermoplastic resin composition of the present invention is 0.1 to 15 parts by mass, particularly 1 to 10 parts by mass with respect to 100 parts by mass of the thermoplastic resin (C). In particular, it is preferably 1 to 7 parts by mass.
  • the content of the epoxy-modified vinyl copolymer (A) with respect to 100 parts by mass of the thermoplastic resin (C) is less than 0.1 parts by mass, the thermoplastic polyester resin (B) by the epoxy-modified vinyl copolymer (A), etc.
  • the thermoplastic resin (C) may not have sufficient thickening effect, heat resistance improvement effect, and hydrolysis resistance improvement effect.
  • thermoplastic resin (C) If the content of the epoxy-modified vinyl copolymer (A) with respect to 100 parts by mass of the thermoplastic resin (C) exceeds 15 parts by mass, the fluidity of the thermoplastic resin composition obtained by gelation may be lost. Moreover, heat resistance may fall depending on the kind of thermoplastic resin (C).
  • thermoplastic resin composition of the present invention may contain other resins and elastomers other than the epoxy-modified vinyl copolymer (A) and the thermoplastic resin (C) to the extent that the effects of the present invention are not impaired. it can.
  • the thermoplastic resin composition of the present invention may contain various additives as necessary.
  • additives include antioxidants such as hindered phenols, sulfur-containing organic compounds, and phosphorus-containing organic compounds, thermal stabilizers such as phenols and acrylates, monostearyl acid phosphate, and distearyl acid phosphate.
  • Various stabilizers such as transesterification inhibitors such as a mixture of fats, ultraviolet absorbers such as benzotriazoles, benzophenones and salicylates, light stabilizers such as organic nickels and hindered amines, metal salts of higher fatty acids, Lubricants such as higher fatty acid amides, plasticizers such as phthalates and phosphates, halogen-containing compounds such as polybromodiphenyl ether, tetrabromobisphenol-A, brominated epoxy oligomers and brominated polycarbonate oligomers, phosphorus Flame retardants such as compounds and antimony trioxide Retardant agent, a carbon black, titanium oxide, pigments and dyes.
  • reinforcing agents and fillers such as talc, calcium carbonate, aluminum hydroxide, glass fiber, glass flake, glass bead, carbon fiber, and metal fiber can be added.
  • thermoplastic resin composition of the present invention can be obtained by mixing the above-described epoxy-modified vinyl copolymer (A), the thermoplastic resin (C), and other components used as necessary.
  • a known kneading apparatus such as an extruder, roll, Banbury mixer, kneader or the like is used.
  • melt-kneading it is preferable to melt-knead at 180 to 300 ° C. using various known extruders.
  • the molded article of the present invention is molded using the thermoplastic resin composition of the present invention.
  • the molding method is not limited at all. Examples of the molding method include an injection molding method, an extrusion molding method, a compression molding method, an insert molding method, a vacuum molding method, and a blow molding method.
  • thermoplastic resin composition of the present invention is excellent in moldability, and the molded product of the present invention formed by molding this is excellent in hydrolysis resistance, heat resistance and molded appearance.
  • the molded product of the present invention is suitably used for a wide variety of applications including electrical and electronic equipment parts, automobile parts, packaging materials such as bottles, building materials, daily necessities, home appliances and office equipment parts.
  • DSC differential scanning calorimeter
  • melt volume rate (MVR)> The pellets of the thermoplastic resin composition were measured using a melt indexer (F-F01 manufactured by Toyo Seiki Seisakusho Co., Ltd.) under the conditions of cylinder temperature: 240 ° C. and load: 2.18 kg. Melt volume rate (MVR), formability, particularly preferably in the range from the point of view of the mold transferability of 20 ⁇ 80cm 3 / 10min in the case of forming a thin molded article.
  • melt indexer F-F01 manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • HDT deflection temperature under load
  • a reaction vessel was charged with 0.045 part of a polymer dispersant and 0.5 part of sodium sulfate in 150 parts of distilled water and stirred.
  • a mixture of 3.0 parts of glycidyl methacrylate, 24.2 parts of acrylonitrile, 72.8 parts of styrene, 0.25 part of t-dodecyl mercaptan, and 0.18 part of 2,2′-azobis (2-methylbutyronitrile). was added to form a suspension, the temperature was raised, and polymerization was started when the internal temperature reached 77 ° C.
  • a bead-like non-modified vinyl copolymer (A) was produced in the same manner as the production of the epoxy-modified vinyl copolymer (A-1) except that the ratio of GMA / AN / ST was changed to 0/29/71. -3) was obtained.
  • a bead-like epoxy-modified vinyl copolymer (A-4) was prepared in the same manner as in the production of the epoxy group-containing vinyl monomer (A-1) except that the number of parts of t-dodecyl mercaptan was changed to 0.8 parts. )
  • a bead-like epoxy-modified vinyl copolymer (A-6) was prepared in the same manner as in the production of the epoxy group-containing vinyl monomer (A-2) except that the number of parts of t-dodecyl mercaptan was changed to 0.1 part. )
  • Epoxy-modified vinyl copolymers (A-1), (A-2), (A-4), (A-5), (A-6) and non-modified vinyl copolymers (A-3) Table 1 summarizes the copolymer raw materials and physical properties.
  • FIG. 1 shows DSC charts of the epoxy-modified vinyl copolymers (A-1) and (A-2) and the unmodified vinyl copolymer (A-3).
  • thermoplastic resin (C) Thermoplastic polyester resin (B)> Polybutylene terephthalate "Duranex 2000" manufactured by Polyplastics ⁇ ABS graft resin (D)> UMG ABS “B602N” (ABS graft resin with 65% rubber content)
  • thermoplastic resin composition pellets are molded by an injection molding machine (“IS55FP-1.5A” manufactured by Toshiba Machine Co., Ltd.) under conditions of a cylinder temperature of 220 to 250 ° C. and a mold temperature of 60 ° C., and a deflection temperature under load.
  • a test piece for measurement and a test piece for measurement of tensile test (Type A1) were obtained.
  • the melt volume rate (MVR) was measured using the pellets of the obtained thermoplastic resin composition.
  • the deflection temperature under load (HDT) was measured using the test piece for measuring the deflection temperature under load. Using the above test pieces for tensile test measurement, the tensile strength was measured and the hydrolysis resistance was evaluated. These results are shown in Tables 2 to 4.
  • Table 5 shows the epoxy-modified vinyl copolymer (A-1) or the epoxy-modified vinyl copolymer (A-2) for 90 parts of the thermoplastic polyester resin (B) and 10 parts of the ABS graft resin (D).
  • Table 5 shows the epoxy-modified vinyl copolymer (A-1) or the epoxy-modified vinyl copolymer (A-2) for 90 parts of the thermoplastic polyester resin (B) and 10 parts of the ABS graft resin (D).
  • Table 5 shows the epoxy-modified vinyl copolymer (A-1) or the epoxy-modified vinyl copolymer (A-2) for 90 parts of the thermoplastic polyester resin (B) and 10 parts of the ABS graft resin (D).
  • a twin screw extruder Pellets were obtained by melting and kneading with an apparatus: TEX28V manufactured by Nippon Steel, Ltd., cylinder temperature: 250 ° C., screw rotation speed: 300 rpm.
  • thermoplastic resin composition pellets are molded by an injection molding machine (“IS55FP-1.5A” manufactured by Toshiba Machine Co., Ltd.) under conditions of a cylinder temperature of 220 to 250 ° C. and a mold temperature of 60 ° C., and a deflection temperature under load. A test piece for measurement and a test piece for Charpy impact test measurement were obtained.
  • the melt volume rate (MVR) was measured using the pellets of the obtained thermoplastic resin composition.
  • the deflection temperature under load (HDT) was measured using the test piece for measuring the deflection temperature under load.
  • the Charpy impact strength with V notch was measured using the above test piece for Charpy impact test measurement.
  • Examples 1 to 16 are all improved as compared with Comparative Example 1. From Table 5, even when the thermoplastic polyester resin (B) and the ABS graft resin (D) are blended as the thermoplastic resin (C), it is possible to express a significant improvement in heat resistance after increasing the impact strength. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

エポキシ基含有ビニル単量体0.1~95質量部と、芳香族ビニル単量体、シアン化ビニル単量体およびこれらと共重合可能な他のビニル単量体から選ばれる1種以上のビニル単量体5~99.9質量部とからなる共重合体であって、その共重合体の重量平均分子量Mwが50,000~300,000であり、エポキシ当量が150~143,000g/eq.であるエポキシ変性ビニル系共重合体(A)。このエポキシ変性ビニル系共重合体(A)と熱可塑性ポリエステル樹脂(B)等の熱可塑性樹脂(C)とを含む熱可塑性樹脂組成物。この熱可塑性樹脂組成物の成形品。

Description

エポキシ変性ビニル系共重合体、それを含む熱可塑性樹脂組成物およびその成形品
 本発明は、熱可塑性ポリエステル樹脂等の熱可塑性樹脂に配合することにより、その成形加工性と耐熱性および耐加水分解性を効果的に改善することができるエポキシ変性ビニル系共重合体に関する。本発明はまた、このエポキシ変性ビニル系共重合体と熱可塑性ポリエステル樹脂等の熱可塑性樹脂を含む熱可塑性樹脂組成物と、この熱可塑性樹脂組成物を成形してなる成形品に関する。
 熱可塑性ポリエステル樹脂は、透明性、機械的特性、ガスバリヤー性、耐熱性などの物理的性質、耐溶剤性、耐酸性、耐アルカリ性などの化学的性質、経済性および再利用性に優れたポリマーである。熱可塑性ポリエステル樹脂は、電気電子機器部品や自動車部品、ボトル等の包装材料等の広い分野で利用されている。最近では、その表面性を活かし、フィルム、シート、異形押出などの押出用途へ適用されている。
 ポリエチレンテレフタレートやポリブチレンテレフタレート等の熱可塑性ポリエステル樹脂は、一般に溶融粘度の温度依存性が大きい。このため、熱可塑性ポリエステル樹脂は、融点以上の温度領域で実施される異形押出成形などの溶融加工において、溶融粘度が低く加工性に劣る欠点がある。また、熱可塑性ポリエステル樹脂は、ガラス繊維などの強化材を使用しない場合、熱変形温度が低いという欠点がある。
 熱可塑性ポリエステル樹脂の欠点を改善するために、以下の提案がなされている。
 特許文献1には、熱可塑性ポリエステル樹脂の成形加工性の向上を目的に、これらの樹脂と相溶性の良い共重合体として、エポキシ基含有アルキル(メタ)アクリレートと、他のアルキルメタアクリレートと、芳香族ビニルモノマーとを共重合してなる、重量平均分子量が4万~40万のアクリル系共重合体を溶融粘度調整剤(増粘剤)として配合する提案がなされている。しかし、特許文献1では耐熱性の改善についての検討はなされておらず、高温環境下における変形が懸念される。
 特許文献2には、熱可塑性ポリエステル樹脂の耐熱性の向上を目的に、これらの樹脂と相溶性の良い共重合体として、芳香族ビニル系単量体及び/又はメタクリル酸エステル系単量体単位と、マレイミド系単量体単位と、エポキシ基含有単量体単位とで構成されるマレイミド系共重合体を配合する提案がなされている。しかし、十分な耐熱性を持たせるためには、マレイミド系共重合体の配合量を多くする必要があり、この結果、流動性が著しく低下する傾向がある。
 特許文献1や特許文献2では、熱可塑性ポリエステル樹脂に配合する改良剤としての共重合体のエポキシ当量についての検討は全くなされていない。特許文献1には、共重合成分としてのシアン化ビニル単量体については全く記載も示唆もない。特許文献2には、使用可能な他の共重合成分としてアクリロニトリル等のシアン化ビニル単量体の例示はなされているが、具体的にシアン化ビニル単量体を用いた実施例はない。
特開2005-60593号公報 特開平7-207084号公報
 本発明は、熱可塑性ポリエステル樹脂等の熱可塑性樹脂の成形加工性を向上させ、且つ耐熱性および耐加水分解性の良好な熱可塑性樹脂組成物を提供することができるエポキシ変性ビニル系共重合体を提供することを目的とする。本発明はまた、このエポキシ変性ビニル系共重合体と熱可塑性ポリエステル樹脂等の熱可塑性樹脂を含む熱可塑性樹脂組成物、及びこの熱可塑性樹脂組成物を成形してなる成形品を提供することを目的とする。
 本発明者は、エポキシ基含有ビニル系単量体と、芳香族ビニル単量体、シアン化ビニル単量体およびこれらと共重合可能なビニル系単量体から選ばれる1種以上のビニル単量体とを所定の割合で共重合してなり、重量平均分子量Mwとエポキシ当量が所定の範囲内であるエポキシ変性ビニル系共重合体が、上記課題を解決し得ることを見出した。
 本発明は以下を要旨とする。
[1] エポキシ基含有ビニル単量体0.1~95質量部と、芳香族ビニル単量体、シアン化ビニル単量体およびこれらと共重合可能な他のビニル単量体から選ばれる1種以上のビニル単量体5~99.9質量部とからなる共重合体(ただし、エポキシ基含有ビニル単量体と、芳香族ビニル単量体、シアン化ビニル単量体およびこれらと共重合可能な他のビニル単量体から選ばれる1種以上のビニル単量体との合計で100質量部)であって、その共重合体の重量平均分子量Mwが50,000~300,000であり、エポキシ当量が150~143,000g/eq.であるエポキシ変性ビニル系共重合体(A)。
[2] 前記芳香族ビニル単量体、シアン化ビニル単量体およびこれらと共重合可能な他のビニル単量体から選ばれる1種以上のビニル単量体が、少なくとも芳香族ビニル単量体とシアン化ビニル単量体を含む、[1]に記載のエポキシ変性ビニル系共重合体(A)。
[3] [2において、芳香族ビニル単量体を4.1~99質量部、シアン化ビニル単量体を0.9~95.8質量部含む、[2]に記載のエポキシ変性ビニル系共重合体(A)。
[4] [1]ないし[3]のいずれかに記載のエポキシ変性ビニル系共重合体(A)と熱可塑性樹脂(C)とを含む熱可塑性樹脂組成物。
[5] [4]において、熱可塑性樹脂(C)が熱可塑性ポリエステル樹脂(B)を含む熱可塑性樹脂組成物。
[6] エポキシ変性ビニル系共重合体(A)を、熱可塑性樹脂(C)100質量部に対して0.1~15質量部含む、[4]又は[5]に記載の熱可塑性樹脂組成物。
[7] [4]ないし[6]のいずれかに記載の熱可塑性樹脂組成物からなる成形品。
 本発明のエポキシ変性ビニル系共重合体によれば、熱可塑性ポリエステル樹脂等の熱可塑性樹脂の流動性を大きく損なうことなく、耐熱性および耐加水分解性を向上させることができ、更には引張強度や耐衝撃性等の機械強度の向上効果をも得ることができる。従って、押出成形やブロー成形等において安定した加工を可能とし、さらには射出成形時のバリ抑制の効果も期待できる上に、成形品の品質を高めることができる。
実施例及び比較例で用いたエポキシ変性ビニル系共重合体(A-1),(A-2)及び非変性ビニル系共重合体(A-3)のDSCチャートである。
 以下に本発明の実施の形態について詳細に記載する。
[エポキシ変性ビニル系共重合体(A)]
 本発明のエポキシ変性ビニル系共重合体(A)は、エポキシ基含有ビニル単量体と、芳香族ビニル単量体、シアン化ビニル単量体およびこれらと共重合可能な他のビニル単量体(以下、「他のビニル単量体」と称す場合がある。)から選ばれる1種以上のビニル単量体とを共重合して得られるものである。本発明のエポキシ変性ビニル系共重合体(A)は、好ましくは、少なくともエポキシ基含有ビニル単量体と芳香族ビニル単量体及びシアン化ビニル単量体を含む単量体混合物を共重合して得られる。芳香族ビニル単量体、シアン化ビニル単量体等のビニル単量体がエポキシ基を有する場合、これらは、エポキシ基含有ビニル単量体に含まれるものとする。
<ビニル単量体>
 エポキシ変性ビニル系共重合体(A)を構成するエポキシ基含有ビニル単量体としては、例えば、グリシジルアクリレート、グリシジルメタクリレート、イタコン酸グリシジルエステル、アリルグリシジルエーテル、スチレン-p-グリシジルエーテル、3,4-エポキシブテン、3,4-エポキシ-3-メチル-1-ブテン、3,4-エポキシ-1-ペンテン、3,4-エポキシ-3-メチルペンテン、5,6-エポキシ-1-ヘキセン、ビニルシクロヘキセンモノオキシド、p-グリシジルスチレン、2-メチルアリルグリシジルエーテル、エポキシステアリルアクリレート、エポキシステアリルメタクレート、3,4-エポキシシクロヘキシルメチルメタアクリレート、3,4-エポキシシクロヘキシルメチルアクリレート、2,6-キシレノール-N-メチロールアクリルアミドのグリシジルエーテル等が挙げられる。なかでもグリシジルメタクリレートが好ましい。これらのエポキシ基含有ビニル系単量体は、1種を単独でまたは2種以上を混合して使用することができる。
 芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、エチルスチレン、ビニルトルエン、ビニルキシレン、メチル-α-メチルスチレン、t-ブチルスチレン、ジビニルベンゼン、1,1-ジフェニルスチレン、N,N-ジエチル-p-アミノメチルスチレン、N,N-ジエチル-p-アミノエチルスチレン、ビニルナフタレン、ビニルピリジン、モノクロルスチレン、ジクロロスチレン等の塩素化スチレン;モノブロモスチレン、ジブロモスチレン等の臭素化スチレン;モノフルオロスチレン等が挙げられる。なかでもスチレン、α-メチルスチレンが好ましい。これらの芳香族ビニル系単量体は、1種を単独でまたは2種以上を混合して使用することができる。
 シアン化ビニル単量体としては、例えば、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フマロニトリルなどが挙げられる。なかでもアクリロニトリルが好ましい。これらのシアン化ビニル単量体は、1種を単独でまたは2種以上を混合して使用することができる。
 他のビニル単量体としては、アクリル酸エステル(アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等)、メタクリル酸エステル(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等)、マレイミド系化合物(N-シクロヘキシルマレイミド、N-フェニルマレイミド等)等が挙げられる。これらの他のビニル単量体は、1種を単独でまたは2種以上を混合して使用することができる。
<エポキシ変性ビニル系共重合体(A)中の各ビニル単量体の含有量>
 エポキシ変性ビニル系共重合体(A)中のエポキシ基含有ビニル単量体の含有量は0.1~95質量部であり、さらに1~30質量部が好ましく、特に2~15質量部が好ましい。エポキシ変性ビニル系共重合体(A)中のエポキシ基含有ビニル単量体の含有量が0.1質量部未満では得られる熱可塑性樹脂組成物の増粘効果、耐熱性および耐加水分解性向上効果が低い。エポキシ変性ビニル系共重合体(A)中のエポキシ基含有ビニル単量体の含有量が95質量部を超えるとゲル化により得られる熱可塑性樹脂組成物の流動性が損なわれることがある。
 エポキシ変性ビニル系共重合体(A)中のエポキシ基含有ビニル単量体を除いたビニル単量体成分は、芳香族ビニル単量体、シアン化ビニル単量体および他のビニル単量体から選ばれる1種以上のビニル単量体である。エポキシ変性ビニル系共重合体(A)中のエポキシ基含有ビニル単量体を除いたビニル単量体成分の含有量の合計は5~99.9質量部であり、さらに70~99質量部が好ましく、特に85~98質量部が好ましい。これらのビニル単量体の含有量が99.9質量部を超えると得られる熱可塑性樹脂組成物の増粘効果、耐熱性向上効果が低い。これらのビニル単量体の含有量が5質量部未満の場合は得られる熱可塑性樹脂組成物の流動性が損なわれることがある。
 本発明において、エポキシ変性ビニル系共重合体(A)中の各ビニル単量体の含有量とは、エポキシ基含有ビニル単量体と、芳香族ビニル単量体、シアン化ビニル単量体及び他のビニル単量体から選ばれる1種以上のビニル単量体との合計を100質量部としたときの含有量である。
 エポキシ変性ビニル系共重合体(A)中のビニル単量体の含有量とは、エポキシ変性ビニル系共重合体(A)を構成する当該ビニル単量体に由来する構成単位の含有量であり、通常、エポキシ変性ビニル系共重合体(A)を製造する際の共重合原料であるエポキシ基含有ビニル単量体と、芳香族ビニル単量体、シアン化ビニル単量体及び他のビニル単量体から選ばれる1種以上のビニル単量体との混合物100質量部中の各ビニル単量体の含有量に相当する。
 本発明のエポキシ変性ビニル系共重合体(A)は、芳香族ビニル単量体、シアン化ビニル単量体及び他のビニル単量体から選ばれる1種以上のビニル単量体として、少なくとも芳香族ビニル単量体とシアン化ビニル単量体を含むことが好ましい。特に、シアン化ビニル単量体を含有することで、エポキシ変性ビニル系共重合体(A)を配合した熱可塑性樹脂組成物の流動性と耐熱性のバランスに優れたものとなり、好ましい。これに対して、前掲の特許文献1,2では、シアン化ビニル単量体を含まないため、熱可塑性樹脂組成物の流動性や耐熱性を各々向上させることはできても、それらは耐熱性を向上させると流動性が低下し、流動性を向上させると耐熱性が低下するトレードオフの関係にあり、流動性と耐熱性の両方を向上させる効果は得られない。
 エポキシ変性ビニル系共重合体(A)中の芳香族ビニル単量体の含有量は4.1~99質量部、さらに30~95質量部、特に60~80質量部が好ましい。芳香族ビニル単量体の含有量が4.1質量部未満では得られる成形品の剛性、成形性に劣ることがある。芳香族ビニル単量体の含有量が99質量部を超える場合は得られる成形品の耐衝撃性が低下することがある。
 エポキシ変性ビニル系共重合体(A)中のシアン化ビニル単量体の含有量は0.9~95.8質量部、さらに4.9~40質量部、特に5~38質量部が好ましい。シアン化ビニル単量体の含有量が0.9質量部未満では得られる成形品の靭性、耐薬品性に劣ることがある。シアン化ビニル単量体の含有量が95.8質量部を超える場合は得られる成形品の着色が問題となることがある。シアン化ビニル単量体を上記範囲で含むことにより、熱可塑性樹脂組成物の流動性を向上させつつ、耐熱性も向上させることができる。
 他のビニル単量体は、発色性や耐熱性の向上などの目的に応じて配合することができる。他のビニル単量体のエポキシ変性ビニル系共重合体(A)中の含有量は0~30質量部、特に0~20質量部であることが好ましい。
<重量平均分子量Mw>
 本発明のエポキシ変性ビニル系共重合体(A)の重量平均分子量Mwは50,000~300,000、好ましくは70,000~280,000である。重量平均分子量Mwがこの範囲にあることで、このエポキシ変性ビニル系共重合体(A)を配合してなる熱可塑性樹脂組成物の流動性と耐熱性の向上効果を発現することができる。
<分子量分布Mw/Mn>
 本発明のエポキシ変性ビニル系共重合体(A)の分子量分布Mw/Mnは好ましくは1.8~2.8、より好ましくは1.9~2.4である。分子量分布Mw/Mnがこの範囲にあることで、このエポキシ変性ビニル系共重合体(A)を配合してなる熱可塑性樹脂組成物の流動性と耐熱性の向上効果をより有効に発現することができる。
 エポキシ変性ビニル系共重合体(A)の重量平均分子量Mwおよび分子量分布Mw/Mnは、後掲の実施例の項に記載される方法で測定される。
<エポキシ当量>
 本発明のエポキシ変性ビニル系共重合体(A)のエポキシ当量は150~143,000g/eq.である。エポキシ当量がこの範囲にあることで、熱可塑性樹脂組成物の流動性と耐熱性および耐加水分解性の向上効果を発現することができる。
 エポキシ変性ビニル系共重合体(A)のエポキシ当量は、後掲の実施例の項に記載される方法で測定される。
 得られる熱可塑性樹脂組成物の耐衝撃性と成形性のバランスを確保するために、エポキシ変性ビニル系共重合体(A)の還元粘度は0.2~1.2dL/g、特に0.3~1.1dL/gであることが好ましい。エポキシ変性ビニル系共重合体(A)の還元粘度が上記下限以上であると衝撃強度がより高くなる。エポキシ変性ビニル系共重合体(A)の還元粘度が上記上限以下であると良好な成形品外観および成形性を保つことができる。
 エポキシ変性ビニル系共重合体(A)の還元粘度は、後掲の実施例の項に記載される方法で測定される。
<吸熱および発熱の挙動>
 本発明のエポキシ変性ビニル系共重合体(A)は、示差走査熱量測定(DSC)を使用して、測定条件として、昇温速度10℃/分、Air50ml/分の雰囲気下において、測定温度90℃~120℃の間に吸熱挙動、測定温度260℃~300℃の間に発熱挙動を示すことを観測することができる。さらに、測定温度100℃~120℃の間に急激な吸熱挙動、測定温度280℃~300℃の間に急激な発熱挙動を示すものがより好ましい。
 これらの温度範囲で、吸熱および発熱の挙動を示すエポキシ変性ビニル系共重合体(A)を配合してなる熱可塑性樹脂組成物は、耐熱性と耐加水分解性の向上効果をより有効に発現することができる。
 エポキシ変性ビニル系共重合体(A)の吸熱および発熱の挙動は、後掲の実施例の項に記載される測定方法で観測する。
<エポキシ変性ビニル系共重合体(A)の製造方法>
 エポキシ変性ビニル系共重合体(A)を製造する際の重合方法としては、懸濁重合、塊状重合、乳化重合および溶液重合等の方法が挙げられる。これらのうち懸濁重合法が好ましい。
[熱可塑性樹脂(C)]
 本発明の熱可塑性樹脂組成物に含まれる熱可塑性樹脂(C)としては、熱可塑性ポリエステル樹脂(B)、ABS樹脂、ASA樹脂、AES樹脂、ポリカーボネート、ポリ塩化ビニル、ポリスチレン、ポリアセタール、変性ポリフェニレンエーテル(変性PPE)、エチレン-酢酸ビニル共重合体、ポリアリレート、液晶ポリエステル、ポリエチレン、ポリプロピレン、フッ素樹脂、ポリアミドなどが挙げられる。本発明の熱可塑性樹脂組成物は、これらの熱可塑性樹脂(C)の1種を含有するものであってもよく、2種以上を含有するものであってもよい。
 これらの熱可塑性樹脂(C)のうち、本発明の熱可塑性樹脂組成物は、特に以下に記載する熱可塑性ポリエステル樹脂(B)を熱可塑性樹脂(C)として含有することが好ましい。
 熱可塑性ポリエステル樹脂(B)以外の熱可塑性樹脂(C)として、例えばABS樹脂を熱可塑性ポリエステル樹脂(B)と共に混合して用いると、耐衝撃性等の機械的強度の向上効果を図ることができる。
 本発明の熱可塑性樹脂組成物が、熱可塑性ポリエステル樹脂(B)と、熱可塑性ポリエステル樹脂(B)以外の熱可塑性樹脂(C)とを含む場合、熱可塑性ポリエステル樹脂(B)を用いることによる効果を確実に得るために、熱可塑性ポリエステル樹脂(B)以外の熱可塑性樹脂(C)の含有量は、熱可塑性ポリエステル樹脂(B)100質量部に対して40質量部以下とすることが好ましい。
[熱可塑性ポリエステル樹脂(B)]
 熱可塑性ポリエステル樹脂(B)としては、ジカルボン酸(あるいは、そのエステル形成誘導体)とジオール(あるいは、そのエステル形成誘導体)とを主成分とする重縮合反応によって得られる重合体ないしは共重合体などが使用できる。
 上記ジカルボン酸としてテレフタル酸、イソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,2’-ビフェニルジカルボン酸、3,3’-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルスルフォンジカルボン酸、4,4’-ジフェニルイソプロピリデンジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、2,5-アントラセンジカルボン酸、2,6-アントラセンジカルボン酸、4,4’-p-ターフェニレンジカルボン酸、2,5-ピリジンジカルボン酸などの芳香族ジカルボン酸が挙げられる。これらのなかでもテレフタル酸が好ましい。
 これらのジカルボン酸成分は2種以上を混合して使用してもよい。少量であればこれらのジカルボン酸成分とともにアジピン酸、アゼライン酸、ドデカンジオン酸、セバシン酸などの脂肪族ジカルボン酸成分、シクロヘキサンジカルボン酸などの脂環族ジカルボン酸成分の1種以上を混合して使用することができる。
 ジオール成分としては、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ネオペンチルグリコール、2-メチル-1,3-プロパンジオール、ジエチレングリコール、トリエチレングリコールなどの脂肪族ジオール、1,4-シクロヘキサンジメタノールなどの脂環族ジオール、およびそれらの混合物などが挙げられる。これらのうち、エチレングリコール、プロピレングリコール、ブチレングリコールが好ましい。少量であれば、分子量400~6,000の長鎖ジオール、すなわち、ポリエチレングリコール、ポリ-1,3-プロピレングリコール、ポリテトラメチレングリコールなどの1種以上を混合して使用してもよい。
 これらの重合体ないし共重合体の好ましい例としては、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート(PPT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリエチレン-1,2-ビス(フェノキシ)エタン-4,4’-ジカルボキシレートなど芳香族ポリエステル樹脂やポリブチレンテレフタレート/イソフタレート、ポリブチレンテレフタレート/デカンジカルボキシレートなどの共重合芳香族ポリエステル樹脂が挙げられる。
[熱可塑性樹脂組成物]
 本発明の熱可塑性樹脂組成物は、本発明のエポキシ変性ビニル系共重合体(A)と、上述の熱可塑性ポリエステル樹脂(B)等の熱可塑性樹脂(C)とを含むものである。
 本発明の熱可塑性樹脂組成物には、本発明のエポキシ変性ビニル系共重合体(A)の1種のみが含まれていてもよく、共重合成分の種類や組成、重量平均分子量Mw、エポキシ当量等の異なるものの2種以上が含まれていてもよい。
 また、本発明の熱可塑性樹脂組成物には、上述の熱可塑性ポリエステル樹脂(B)等の熱可塑性樹脂(C)の1種のみが含まれていてもよく、2種以上が含まれていてもよい。
<各成分の含有量>
 本発明の熱可塑性樹脂組成物中のエポキシ変性ビニル系共重合体(A)の含有量は、熱可塑性樹脂(C)100質量部に対し0.1~15質量部、特に1~10質量部、とりわけ1~7質量部であることが好ましい。熱可塑性樹脂(C)100質量部に対するエポキシ変性ビニル系共重合体(A)の含有量が0.1質量部未満ではエポキシ変性ビニル系共重合体(A)による熱可塑性ポリエステル樹脂(B)等の熱可塑性樹脂(C)の増粘効果、耐熱性向上効果、および耐加水分解性向上効果が十分でない場合がある。熱可塑性樹脂(C)100質量部に対するエポキシ変性ビニル系共重合体(A)の含有量が15質量部を超えると、ゲル化により得られる熱可塑性樹脂組成物の流動性が失われることがあり、また、熱可塑性樹脂(C)の種類によっては耐熱性が低下する場合がある。
<その他の成分>
 本発明の熱可塑性樹脂組成物には、本発明の効果を損なわない程度に、エポキシ変性ビニル系共重合体(A)及び熱可塑性樹脂(C)以外の他の樹脂、エラストマーを配合することができる。
 本発明の熱可塑性樹脂組成物には、必要に応じて各種添加剤を配合してもよい。添加剤としては、ヒンダードフェノール系、含硫黄有機化合物系および含リン有機化合物系等の酸化防止剤、フェノール系やアクリレート系等の熱安定剤、モノステアリルアシッドホスフェ-トとジステアリルアシッドホスフェ-トの混合物等のエステル交換抑制剤、ベンゾトリアゾール系、ベンゾフェノン系およびサリシレート系等の紫外線吸収剤、有機ニッケル系やヒンダードアミン系等の光安定剤等の各種安定剤、高級脂肪酸の金属塩類、高級脂肪酸アミド類等の滑剤、フタル酸エステル類やリン酸エステル類等の可塑剤、ポリブロモジフェニルエーテル、テトラブロモビスフェノール-A、臭素化エポキシオリゴマーおよび臭素化ポリカーボネートオリゴマー等の含ハロゲン系化合物、リン系化合物、三酸化アンチモン等の難燃剤・難燃助剤、カーボンブラック、酸化チタン、顔料および染料等が挙げられる。更に、タルク、炭酸カルシウム、水酸化アルミニウム、ガラス繊維、ガラスフレーク、ガラスビーズ、炭素繊維、金属繊維等の補強剤や充填剤を添加することもできる。
<熱可塑性樹脂組成物の製造方法>
 本発明の熱可塑性樹脂組成物は、上述のエポキシ変性ビニル系共重合体(A)、熱可塑性樹脂(C)、及び必要に応じて用いられるその他の成分を混合することで得ることができる。これらの成分の混合には、例えば、押出機、ロール、バンバリーミキサー、ニーダー等の公知の混練装置を用いる。
 エポキシ変性ビニル系共重合体(A)、熱可塑性樹脂(C)及び必要に応じて用いられるその他の成分の混合順序、方法には何ら制限はない。溶融混練に際しては各種公知の押出機を用い、180~300℃で溶融混練することが好ましい。
[成形品]
 本発明の成形品は、本発明の熱可塑性樹脂組成物を用いて成形されたものである。その成形方法は、何等限定されるものではない。成形方法としては、例えば、射出成形法、押出成形法、圧縮成形法、インサート成形法、真空成形法、ブロー成形法などが挙げられる。
 本発明の熱可塑性樹脂組成物は成形性に優れ、これを成形してなる本発明の成形品は、耐加水分解性、耐熱性及び成形外観に優れる。
 本発明の成形品は、電気電子機器部品や自動車部品、ボトル等の包装材料、建材、日用品、家庭電化製品・事務機器部品をはじめとする多種多様な用途に好適に用いられる。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 以下の例中の「%」および「部」は明記しない限りは質量基準である。
 グリシジルメタクリレートは「GMA」、アクリロニトリルは「AN」、スチレンは「ST」とそれぞれ略記する。
[評価・測定方法]
 実施例および比較例における各種測定および評価方法は、以下の通りである。
<エポキシ当量の測定>
 エポキシ変性ビニル系共重合体(A)についてJIS K 7236:2009に従ってエポキシ当量(g/eq.)を測定した。エポキシ当量からエポキシ価(eq./kg)を算出した。
<重量平均分子量Mw、分子量分布Mw/Mn>
 GPC(GPC:Waters社製「GPC/V2000」、カラム:昭和電工社製「Shodex AT-G+AT-806MS」)を用い、ポリスチレン換算での重量平均分子量Mw、および、分子量分布Mw/Mnを測定した。
<還元粘度>
 ビニル系共重合体の濃度が0.2dL/gとなるように調製したN,N-ジメチルホルムアミド溶液について、ウベローデ粘度計を用いて25℃での還元粘度:ηsp/C(単位:dL/g)を測定した。
<示差走査熱量測定(DSC)>
 示差走査熱量計DSC(Differential scanning calorimetry(株式会社Rigaku製「DSC8230」)を用いて、昇温速度10℃/分、Air50ml/分の雰囲気下で30℃~300℃の範囲で測定を実施し、この測定により得られた示差走査熱量測定チャートにおける、測定温度100℃~120℃の間の吸熱挙動の有無、さらに、測定温度280℃~300℃の間の発熱挙動の有無について観測した。
<メルトボリュームレート(MVR)の測定>
 熱可塑性樹脂組成物のペレットについて、メルトインデクサー(東洋精機製作所株式会社製F-F01)を使用して、シリンダ温度:240℃、荷重:2.18kgの条件下で測定した。
 メルトボリュームレート(MVR)は、成形性、特に薄肉の成形品を成形する場合での金型転写性の観点から20~80cm/10minの範囲であることが好ましい。
<荷重たわみ温度(HDT)の測定>
 ISO75-2に準拠して測定した。荷重は0.45MPaとした。
 荷重たわみ温度(HDT)は高い程耐熱性に優れる。
<引張強度の測定>
 ISO527に準拠し、23℃、引張速度50mm/minの条件で引張強度(MPa)を測定した。数値は高いほど優れる。
<耐加水分解性の評価>
 温度90℃、湿度90%のプログラム恒温恒湿槽に引張試験片をセットし、その後、250時間後及び500時間後の引張強度(MPa)をそれぞれ測定した。
 プログラム恒温恒湿槽にセットしていない引張試験片の引張強度に対する、プログラム恒温恒湿槽セット500時間後の引張試験片の引張強度の割合を保持率として算出した。保持率(%)は高いほど耐加水分解性に優れる。
<衝撃試験>
 ISO試験法179に準拠し、測定温度23℃、試験片厚さ4mmの条件で、Vノッチ付きシャルピー衝撃強さ(kJ/m)を測定した。
[エポキシ変性ビニル系共重合体の製造]
 実施例及び比較例で用いたエポキシ変性ビニル系共重合体又は非変性ビニル系共重合体の製造方法は以下の通りである。
<エポキシ変性ビニル系共重合体(A-1)の製造>
 蒸留水150部に高分子分散剤0.045部、硫酸ナトリウム0.5部を反応釜に仕込み攪拌した。これにグリシジルメタクリレート3.0部、アクリロニトリル24.2部、スチレン72.8部、t-ドデシルメルカプタン0.25部、2,2’-アゾビス(2-メチルブチロニトリル)0.18部の混合物を加え懸濁液状にした後、昇温し、内温が77℃になった時点で重合を開始した。重合発熱ピークを温度計にて確認した後、内温95℃の状態で120分保持した。その後、冷却し、得られたスラリー状の生成物を濾過した後、水洗、乾燥させてビーズ状のエポキシ変性ビニル系共重合体(A-1)を得た。
<エポキシ変性ビニル系共重合体(A-2)の製造>
 GMA/AN/ST比率を8.5/22.9/68.6に変えたこと以外はエポキシ基含有ビニル単量体(A-1)の製造と同様の方法でビーズ状のエポキシ変性ビニル系共重合体(A-2)を得た。
<非変性ビニル系共重合体(A-3)の製造>
 GMA/AN/STの比率を0/29/71に変えたこと以外はエポキシ変性ビニル系共重合体(A-1)の製造と同様の方法でビーズ状の非変性ビニル系共重合体(A-3)を得た。
<エポキシ変性ビニル系共重合体(A-4)の製造>
 t-ドデシルメルカプタンの部数を0.8部に変えたこと以外はエポキシ基含有ビニル単量体(A-1)の製造と同様の方法でビーズ状のエポキシ変性ビニル系共重合体(A-4)を得た。
<エポキシ変性ビニル系共重合体(A-5)の製造>
 GMA/AN/ST比率を8.5/22.9/68.6に変えたこと以外はエポキシ基含有ビニル単量体(A-4)の製造と同様の方法でビーズ状のエポキシ変性ビニル系共重合体(A-5)を得た。
<エポキシ変性ビニル系共重合体(A-6)の製造>
 t-ドデシルメルカプタンの部数を0.1部に変えたこと以外はエポキシ基含有ビニル単量体(A-2)の製造と同様の方法でビーズ状のエポキシ変性ビニル系共重合体(A-6)を得た。
 エポキシ変性ビニル系共重合体(A-1),(A-2),(A-4),(A-5),(A-6)及び非変性ビニル系共重合体(A-3)の共重合原料及び物性を表1にまとめて示す。
 また、エポキシ変性ビニル系共重合体(A-1),(A-2)及び非変性ビニル系共重合体(A-3)のDSCチャートを図1に示す。
Figure JPOXMLDOC01-appb-T000001
 熱可塑性樹脂(C)としては、以下のものを用いた。
<熱可塑性ポリエステル樹脂(B)>
 ポリプラスチック社製ポリブチレンテレフタレート「ジュラネックス2000」
<ABSグラフト樹脂(D)>
 UMG ABS社製「B602N」(ゴム含有量65%のABSグラフト樹脂)
[実施例1~16、比較例1~4]
<溶融混練>
 熱可塑性ポリエステル樹脂(B)100部に対し、エポキシ変性ビニル系共重合体(A-1)、エポキシ変性ビニル系共重合体(A-2)、エポキシ変性ビニル系共重合体(A-4)、エポキシ変性ビニル系共重合体(A-5)、エポキシ変性ビニル系共重合体(A-6)又は非変性ビニル系共重合体(A-3)を表2~表4に示す配合で添加、混合し(ただし、比較例1では熱可塑性ポリエステル樹脂(B)のみ)、二軸押出機(装置:株式会社日本製鋼所製TEX28V、シリンダ温度:250℃、スクリュー回転数:300rpm)で溶融混練してペレットを得た。
<射出成形>
 得られた熱可塑性樹脂組成物のペレットを射出成形機(東芝機械社製「IS55FP-1.5A」)によってシリンダ温度220~250℃、金型温度60℃の条件で成形して、荷重たわみ温度測定用の試験片と引張試験測定用の試験片(Type A1)を得た。
 得られた熱可塑性樹脂組成物のペレットを用いてメルトボリュームレート(MVR)を測定した。
 上記の荷重たわみ温度測定用の試験片を用いて荷重たわみ温度(HDT)を測定した。
 上記の引張試験測定用の試験片を用いて引張強度の測定と耐加水分解性の評価を行った。
 これらの結果を表2~表4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[実施例17~22、比較例5、6]
<溶融混練>
 熱可塑性ポリエステル樹脂(B)90部、ABSグラフト樹脂(D)10部に対し、エポキシ変性ビニル系共重合体(A-1)、又はエポキシ変性ビニル系共重合体(A-2)を表5に示す配合で添加、混合し(ただし、比較例5では熱可塑性ポリエステル樹脂(B)のみ、比較例6では熱可塑性ポリエステル樹脂(B)とABSグラフト樹脂(D)のみ)、二軸押出機(装置:株式会社日本製鋼所製TEX28V、シリンダ温度:250℃、スクリュー回転数:300rpm)で溶融混練してペレットを得た。
<射出成形>
 得られた熱可塑性樹脂組成物のペレットを射出成形機(東芝機械社製「IS55FP-1.5A」)によってシリンダ温度220~250℃、金型温度60℃の条件で成形して、荷重たわみ温度測定用の試験片とシャルピー衝撃試験測定用の試験片を得た。
 得られた熱可塑性樹脂組成物のペレットを用いてメルトボリュームレート(MVR)を測定した。
 上記の荷重たわみ温度測定用の試験片を用いて荷重たわみ温度(HDT)を測定した。
 上記のシャルピー衝撃試験測定用の試験片を用いてVノッチ付きシャルピー衝撃強さを測定した。
 これらの結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表2~表4より明らかなように、熱可塑性ポリエステル樹脂(B)に本発明のエポキシ変性ビニル系共重合体(A)を配合した実施例1~16の熱可塑性樹脂組成物では、エポキシ変性ビニル系共重合体(A)を配合していない比較例1に比べて、流動性はわずかに低下するものの、耐熱性を大きく向上させることができる。
 エポキシ変性ビニル系共重合体(A)の代りに非変性ビニル系共重合体(A-3)を配合した比較例2~4では、十分な耐熱性の向上効果は得られず、また、非変性ビニル系共重合体(A-3)の配合量の増加に伴い、耐熱性はむしろ低下してしまう。
 耐加水分解性、引張強度についても、比較例1に比べて実施例1~16は全て向上している。
 表5より、熱可塑性樹脂(C)として熱可塑性ポリエステル樹脂(B)とABSグラフト樹脂(D)を配合した場合でも、衝撃強度を高めた上で、耐熱性の大幅な向上を発現させることができる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2016年9月1日付で出願された日本特許出願2016-171056に基づいており、その全体が引用により援用される。

Claims (7)

  1.  エポキシ基含有ビニル単量体0.1~95質量部と、芳香族ビニル単量体、シアン化ビニル単量体およびこれらと共重合可能な他のビニル単量体から選ばれる1種以上のビニル単量体5~99.9質量部とからなる共重合体(ただし、エポキシ基含有ビニル単量体と、芳香族ビニル単量体、シアン化ビニル単量体およびこれらと共重合可能な他のビニル単量体から選ばれる1種以上のビニル単量体との合計で100質量部)であって、その共重合体の重量平均分子量Mwが50,000~300,000であり、エポキシ当量が150~143,000g/eq.であるエポキシ変性ビニル系共重合体(A)。
  2.  前記芳香族ビニル単量体、シアン化ビニル単量体およびこれらと共重合可能な他のビニル単量体から選ばれる1種以上のビニル単量体が、少なくとも芳香族ビニル単量体とシアン化ビニル単量体を含む、請求項1に記載のエポキシ変性ビニル系共重合体(A)。
  3.  請求項2において、芳香族ビニル単量体を4.1~99質量部、シアン化ビニル単量体を0.9~95.8質量部含む、請求項2に記載のエポキシ変性ビニル系共重合体(A)。
  4.  請求項1ないし3のいずれか1項に記載のエポキシ変性ビニル系共重合体(A)と熱可塑性樹脂(C)とを含む熱可塑性樹脂組成物。
  5.  請求項4において、熱可塑性樹脂(C)が熱可塑性ポリエステル樹脂(B)を含む熱可塑性樹脂組成物。
  6.  エポキシ変性ビニル系共重合体(A)を、熱可塑性樹脂(C)100質量部に対して0.1~15質量部含む、請求項4又は5に記載の熱可塑性樹脂組成物。
  7.  請求項4ないし6のいずれか1項に記載の熱可塑性樹脂組成物からなる成形品。
PCT/JP2017/030544 2016-09-01 2017-08-25 エポキシ変性ビニル系共重合体、それを含む熱可塑性樹脂組成物およびその成形品 WO2018043334A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020197005434A KR20190035780A (ko) 2016-09-01 2017-08-25 에폭시 변성 비닐계 공중합체, 그것을 포함하는 열가소성 수지 조성물 및 그 성형품
CN201780049519.0A CN109641993B (zh) 2016-09-01 2017-08-25 环氧改性乙烯基系共聚物、包含该共聚物的热塑性树脂组合物及其成型品
JP2017549095A JP6369641B2 (ja) 2016-09-01 2017-08-25 エポキシ変性ビニル系共重合体、それを含む熱可塑性樹脂組成物およびその成形品
CA3035496A CA3035496A1 (en) 2016-09-01 2017-08-25 Epoxy-modified vinyl copolymer, thermoplastic resin composition including said copolymer, and shaped article of said composition
US16/328,147 US20190185601A1 (en) 2016-09-01 2017-08-25 Epoxy-modified vinyl copolymer, thermoplastic resin composition including said copolymer, and shaped article of said composition
EP17846339.4A EP3508507A4 (en) 2016-09-01 2017-08-25 EPOXY MODIFIED VINYLCOPOLYMER, THERMOPLASTIC RESIN COMPOSITION THEREFORE AND MOLDED ARTICLES FROM THIS THERMOPLASTIC RESIN COMPOSITION
MX2019002261A MX2019002261A (es) 2016-09-01 2017-08-25 Copolimero de vinilo modificado, composición de resina termoplastuica con epoxy, composicion de resina termoplástica que incluye dicho copolímero y artículo formado de dicha composición.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016171056 2016-09-01
JP2016-171056 2016-09-01

Publications (1)

Publication Number Publication Date
WO2018043334A1 true WO2018043334A1 (ja) 2018-03-08

Family

ID=61301527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030544 WO2018043334A1 (ja) 2016-09-01 2017-08-25 エポキシ変性ビニル系共重合体、それを含む熱可塑性樹脂組成物およびその成形品

Country Status (9)

Country Link
US (1) US20190185601A1 (ja)
EP (1) EP3508507A4 (ja)
JP (1) JP6369641B2 (ja)
KR (1) KR20190035780A (ja)
CN (1) CN109641993B (ja)
CA (1) CA3035496A1 (ja)
MX (1) MX2019002261A (ja)
TW (1) TW201815840A (ja)
WO (1) WO2018043334A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031567A (ja) * 2019-08-22 2021-03-01 テクノUmg株式会社 熱可塑性樹脂組成物およびその成形品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366147A (ja) * 1991-06-13 1992-12-18 Tonen Corp 熱可塑性樹脂組成物
JPH06293849A (ja) * 1993-04-09 1994-10-21 Mitsubishi Petrochem Co Ltd 熱可塑性樹脂組成物
JP2010106186A (ja) * 2008-10-31 2010-05-13 Toray Ind Inc 樹脂用相溶化剤
WO2014050734A1 (ja) * 2012-09-25 2014-04-03 東レ株式会社 天然ゴム含有熱可塑性樹脂組成物およびその成形品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518447B1 (en) * 1991-06-12 1996-11-13 Tonen Corporation Thermoplastic resin composition
JPH0543766A (ja) * 1991-08-13 1993-02-23 Tonen Corp 熱可塑性樹脂組成物
JPH06299020A (ja) * 1993-04-13 1994-10-25 Mitsubishi Petrochem Co Ltd 熱可塑性樹脂組成物
JPH07207084A (ja) 1994-01-14 1995-08-08 Nippon Shokubai Co Ltd 耐熱性樹脂組成物
JP2005060593A (ja) 2003-08-18 2005-03-10 Kaneka Corp 非晶質ポリエステル樹脂用増粘剤およびそれを含む非晶性ポリエステル樹脂組成物およびそれからなる成形体
KR101552740B1 (ko) * 2010-02-10 2015-09-14 (주)엘지하우시스 하드코팅 형성 방법
TW201343763A (zh) * 2012-02-29 2013-11-01 Toray Industries 熱塑性樹脂組成物及其成形品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366147A (ja) * 1991-06-13 1992-12-18 Tonen Corp 熱可塑性樹脂組成物
JPH06293849A (ja) * 1993-04-09 1994-10-21 Mitsubishi Petrochem Co Ltd 熱可塑性樹脂組成物
JP2010106186A (ja) * 2008-10-31 2010-05-13 Toray Ind Inc 樹脂用相溶化剤
WO2014050734A1 (ja) * 2012-09-25 2014-04-03 東レ株式会社 天然ゴム含有熱可塑性樹脂組成物およびその成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508507A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031567A (ja) * 2019-08-22 2021-03-01 テクノUmg株式会社 熱可塑性樹脂組成物およびその成形品
JP7423935B2 (ja) 2019-08-22 2024-01-30 テクノUmg株式会社 熱可塑性樹脂組成物およびその成形品

Also Published As

Publication number Publication date
EP3508507A4 (en) 2020-04-15
EP3508507A1 (en) 2019-07-10
CA3035496A1 (en) 2018-03-08
CN109641993A (zh) 2019-04-16
US20190185601A1 (en) 2019-06-20
MX2019002261A (es) 2019-09-02
TW201815840A (zh) 2018-05-01
JPWO2018043334A1 (ja) 2018-09-06
JP6369641B2 (ja) 2018-08-08
CN109641993B (zh) 2021-06-22
KR20190035780A (ko) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6378211B2 (ja) 耐衝撃性または耐熱性に優れた高分子樹脂組成物
EP2231777B1 (en) Chemical and impact resistant thermoplastic resin composition having improved extrudability.
KR101233373B1 (ko) 폴리유산 수지 조성물
US20120129989A1 (en) Thermoplastic Resin Composition and Molded Product Using the Same
WO2007015448A1 (ja) 樹脂組成物およびそれからなる成形品
JP2010116501A (ja) 表面硬度向上剤、熱可塑性樹脂組成物及びその成形体
JP6667253B2 (ja) センターフェイシア用耐薬品性高分子樹脂組成物
KR20130073002A (ko) 열가소성 수지 조성물 및 그 성형품
JP5107163B2 (ja) 熱可塑性樹脂組成物、及びこれを用いた射出成形品
WO2009153878A1 (ja) 熱可塑性組成物
JP6369641B2 (ja) エポキシ変性ビニル系共重合体、それを含む熱可塑性樹脂組成物およびその成形品
JP2015503630A (ja) 熱可塑性樹脂組成物
WO1997002302A1 (fr) Copolymere ethylene-acetate de vinyle greffe et composition de resine le contenant
JP3376753B2 (ja) 熱可塑性樹脂組成物
JPH0232143A (ja) 熱可塑性樹脂組成物
CN111269464A (zh) 树脂组合物和树脂成型体
JP4935222B2 (ja) 樹脂組成物およびそれからなる成形品
KR20190080603A (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
JP6163862B2 (ja) 熱可塑性樹脂組成物およびその製造方法
JP7423935B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP2775471B2 (ja) 耐衝撃性が改良された熱可塑性樹脂組成物
JP2011099048A (ja) 熱可塑性樹脂組成物およびその成形品
JP2017125187A (ja) 樹脂組成物およびそれからなる成形体
JP5318390B2 (ja) 熱可塑性樹脂組成物及び成形品
JP6429762B2 (ja) 表面硬度向上剤、熱可塑性樹脂組成物及びその成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017549095

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005434

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3035496

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017846339

Country of ref document: EP

Effective date: 20190401