WO2018043175A1 - 液圧式打撃装置 - Google Patents

液圧式打撃装置 Download PDF

Info

Publication number
WO2018043175A1
WO2018043175A1 PCT/JP2017/029752 JP2017029752W WO2018043175A1 WO 2018043175 A1 WO2018043175 A1 WO 2018043175A1 JP 2017029752 W JP2017029752 W JP 2017029752W WO 2018043175 A1 WO2018043175 A1 WO 2018043175A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
piston
chamber
switching
circuit
Prior art date
Application number
PCT/JP2017/029752
Other languages
English (en)
French (fr)
Inventor
年雄 松田
Original Assignee
古河ロックドリル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河ロックドリル株式会社 filed Critical 古河ロックドリル株式会社
Priority to EP17846183.6A priority Critical patent/EP3508308B1/en
Priority to US16/329,160 priority patent/US11084155B2/en
Priority to CN201780052007.XA priority patent/CN109641347B/zh
Priority to ES17846183T priority patent/ES2927066T3/es
Priority to JP2018537137A priority patent/JP6588651B2/ja
Priority to KR1020197005780A priority patent/KR102163473B1/ko
Publication of WO2018043175A1 publication Critical patent/WO2018043175A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/26Control devices for adjusting the stroke of the piston or the force or frequency of impact thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/145Control devices for the reciprocating piston for hydraulically actuated hammers having an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/16Valve arrangements therefor
    • B25D9/18Valve arrangements therefor involving a piston-type slide valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/16Valve arrangements therefor
    • B25D9/20Valve arrangements therefor involving a tubular-type slide valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2209/00Details of portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D2209/002Pressure accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2209/00Details of portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D2209/007Details of portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously having a tubular-slide valve, which is not coaxial with the piston
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2222/00Materials of the tool or the workpiece
    • B25D2222/72Stone, rock or concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/125Hydraulic tool components

Definitions

  • the present invention relates to a hydraulic hitting device such as a rock drill or a breaker.
  • Patent Document 1 a technique described in Patent Document 1 is disclosed as this type of hydraulic striking device.
  • the hydraulic striking device described in this document will be described with reference to FIG. 9 as appropriate.
  • the piston (arranged in the upper part of the figure) and the valve (arranged in the lower part of the figure) in the same figure show the state in which the upper side of each axis turns the piston from forward to backward, and the lower side of the axis indicates that the piston is The state of the phase which turns from backward to forward is shown.
  • This hydraulic striking device includes a cylinder 500 and a piston 522 as shown in FIG.
  • the piston 522 is a solid cylindrical body, and has piston large-diameter portions 523 and 524 at substantially the center thereof.
  • a piston intermediate diameter portion 525 is provided on the front side of the piston large diameter portion 523, and a piston small diameter portion 526 is provided on the rear side of the piston large diameter portion 524.
  • An annular valve switching groove 527 is formed in the approximate center between the piston large diameter portion 523 and the piston large diameter portion 524.
  • the outer diameter of the piston middle diameter portion 525 is set larger than the outer diameter of the piston small diameter portion 526.
  • the piston 522 is slidably fitted into the cylinder 500, whereby a piston front chamber 501 and a piston rear chamber 502 are defined in the cylinder 500, respectively.
  • the piston front chamber 501 is always connected to the high-pressure circuit 513 via the piston front chamber passage 516.
  • the piston rear chamber 502 can communicate with the high-pressure circuit 513 and the low-pressure circuit 519 alternately by forward / reverse switching of a switching valve mechanism 540 described later.
  • the high voltage circuit 513 is provided with a high pressure accumulator 536, and the low voltage circuit 519 is provided with a low pressure accumulator 537.
  • the switching valve mechanism 540 has a valve chamber 506 formed non-coaxially with the piston 522 and a valve 528 slidably fitted in the valve chamber 506 in the cylinder 500.
  • the valve chamber 506 has a valve front chamber 508, a valve main chamber 507, and a valve rear chamber 509 in order from the front to the rear.
  • a piston rear chamber high-pressure port 510, a piston rear chamber switching port 511, and a piston rear chamber low-pressure port 512 are provided in order from the front to the rear, respectively, with predetermined intervals.
  • the valve 528 is a solid cylindrical body and has valve large-diameter portions 529 and 530 at substantially the center thereof.
  • a valve middle diameter portion 531 is provided on the front side of the valve large diameter portion 529, and a valve small diameter portion 532 is provided on the rear side of the valve large diameter portion 530.
  • a valve retraction restricting portion 533 for restricting the backward movement of the valve 528 is provided.
  • An annular piston rear chamber high-pressure switching groove 534 is provided between the valve large-diameter portion 529 and the valve large-diameter portion 530, and between the valve large-diameter portion 530 and the valve retraction regulating portion 533, A room low pressure switching groove 535 is provided.
  • valve large diameter portions 529 and 530 are slidably fitted to the valve main chamber 507, the valve middle diameter portion 531 is slidably fitted to the valve front chamber 508, and the valve small diameter portion 532 is slidably fitted to the valve rear chamber 509. Yes.
  • the outer diameter of the valve middle diameter portion 531 is set larger than the outer diameter of the valve small diameter portion 532. Therefore, the pressure receiving area on the valve middle diameter portion 531 side is larger than the pressure receiving area on the valve small diameter portion 532 side.
  • An oil drain port 505 is provided between the piston front chamber 501 and the piston rear chamber 502, a piston forward control port (short stroke) 503a, a piston forward control port 503, a piston reverse control port 504, and a predetermined space apart from the front to the rear, respectively.
  • An oil drain port 505
  • the high pressure circuit 513 is connected to the piston rear chamber high pressure port 510 via the high pressure passage 514.
  • the high pressure circuit 513 is connected to the piston front chamber 501 via a piston front chamber passage 516 branched from the high pressure passage 514 and is connected to the valve rear chamber 509 via a valve rear chamber passage 517 branched from the high pressure passage 514. It is connected.
  • valve control passage 518 One end of a valve control passage 518 is connected to the valve front chamber 508, and the other end of the valve control passage 518 is a valve front chamber high pressure passage (short stroke) 518a, a valve front chamber high pressure passage 518b, and a valve front chamber low pressure. It branches to the passage 518c.
  • the valve front chamber high-pressure passage (short stroke) 518a is connected to the piston forward control port (short stroke) 503a.
  • the valve front chamber high pressure passage 518b is connected to the piston advance control port 503, and the valve front chamber low pressure passage 518c is connected to the piston reverse control port 504.
  • the piston rear chamber 502 is connected to the piston rear chamber switching port 511 by a piston rear chamber passage 515.
  • the oil discharge port 505 is connected to a low pressure circuit 519 through a valve low pressure passage 520.
  • the piston rear chamber low pressure port 512 is connected to a low pressure circuit 519 via a piston low pressure passage 521.
  • the piston advance control port (short stroke) 503a, the piston advance control port 503, the valve front chamber high pressure passage (short stroke) 518a and the valve front chamber high pressure passage 518b constitute a known stroke switching mechanism.
  • the piston stroke can be changed continuously between the short stroke (variable throttle fully open state) and the normal stroke (variable throttle fully closed state). It can be adjusted.
  • valve control passage 518 communicates with the valve front chamber 508 and the valve front chamber 508 is connected to a high pressure
  • the valve 528 retreats due to a pressure receiving area difference, and the valve control passage 518 communicates with the oil discharge port 505 to connect to the valve front chamber.
  • Valve 528 moves forward when 508 is low pressure connected.
  • a pressure adjustment valve is provided to reduce the pressure of the pressure oil supplied to the hydraulic striking device, and the stroke speed is reduced by operating the stroke switching mechanism to shorten the stroke. Measures to reduce can be considered.
  • the measure for providing the pressure adjusting valve has a problem that the controllability is poor, and the measure by the stroke switching mechanism has a problem that the operability is bad. Therefore, the present invention has been made paying attention to such problems, and an object thereof is to provide a hydraulic striking device capable of easily changing striking characteristics.
  • a hydraulic striking device includes a cylinder, a piston slidably fitted in the cylinder, an outer peripheral surface of the piston, and an inner peripheral surface of the cylinder.
  • a piston front chamber and a piston rear chamber that are defined between and spaced apart in the axial direction; and a switching valve mechanism that alternately switches the piston front chamber and the piston rear chamber between a high pressure state and a low pressure state.
  • a hydraulic striking device for striking a striking rod by moving the piston back and forth in the cylinder wherein the switching valve mechanism includes a valve chamber formed non-coaxially with the piston in the cylinder; A valve that is slidably fitted in the valve chamber to form a high / low pressure switching portion that alternately switches the piston front chamber and the piston rear chamber between a high pressure state and a low pressure state, and constantly biases the valve forward.
  • Valve energizer And valve control means for moving the valve rearward against the urging force of the valve urging means when pressure oil is supplied, and the switching valve mechanism has a reverse operation circuit and a forward operation.
  • a circuit is connected, and the reverse operation circuit and the forward operation circuit can switch a connection state between the high pressure circuit and the low pressure circuit via an operation switching valve, and the valve urging means includes the reverse operation circuit A reverse actuating means that operates when connected to the high pressure circuit; and a forward actuating means that operates when the forward actuating circuit is connected to the high pressure circuit.
  • the apparatus can select a reverse operation mode in which the phases of the valve and the piston are operated in opposite phases and a forward operation mode in which the phases of the valve and the piston are operated in the same phase.
  • the high / low pressure switching operation time of the piston front chamber and the piston rear chamber accompanying the backward movement of the valve, and the high / low pressure of the piston front chamber and the piston rear chamber accompanying the forward movement of the valve are provided.
  • Shortening means for shortening the switching operation time is provided.
  • the high / low pressure switching operation time during forward / backward movement of the piston accompanying the forward movement of the valve in the forward operation mode is shortened.
  • the high / low pressure switching operation time when the piston moves back and forth is extended. That is, when focusing on the piston rear chamber, the time required for switching from the low pressure state to the high pressure state is shorter in the forward operation mode than in the reverse operation mode, and the piston reverse stroke is shortened in the forward operation mode.
  • the piston reverse stroke in the reverse operation mode is extended. Therefore, when the forward operation mode is selected by the operation switching valve, a short stroke is obtained, and when the reverse operation mode is selected, a long stroke is obtained.
  • the above-described conventional stroke adjusting mechanism adjusts the opening of the variable throttle provided in the cylinder body, and is not suitable for use in switching between a long stroke and a short stroke in accordance with the work content.
  • a stroke switching valve that can be remotely operated, in this case, a new actuator is provided in the cylinder. Therefore, it is necessary to add hose piping on the guide shell, which is problematic.
  • the operation switching valve can be provided on the cart body side, so that there is no need for modification around the guide shell.
  • the shortening means includes an opening width of a port closed by the valve when the valve is advanced, and an opening of a port closed by the valve when the valve is moved backward A difference from the width is preferred.
  • the shortening means is the difference between the opening width of the port closed by the valve when the valve moves forward and the opening width of the port closed by the valve when the valve moves backward, so there is no need to provide a separate actuator. This is suitable for realizing the stroke switching mechanism with a simple configuration.
  • the valve control unit is not restricted when pressure oil is supplied, and is a delay composed of a throttle that adjusts the flow rate when the pressure oil is discharged. It is preferable to have a means.
  • the valve control means is not restricted when the pressure oil is supplied, and is provided with a delay means that adjusts the flow rate when the pressure oil is discharged. Piston stroke can be extended in mode. Therefore, it is suitable for increasing the rate of change between the short stroke in the forward operation mode and the long stroke in the reverse operation mode.
  • the hydraulic striking device it is preferable to include a high-pressure accumulator provided in the reverse operation circuit and a low-pressure accumulator provided in the forward operation circuit.
  • the connection state of the reverse operation mode used in normal work that is, the reverse operation circuit is the high voltage circuit and the forward operation.
  • a high-pressure accumulator is disposed on the high-voltage circuit side
  • a low-pressure accumulator is disposed on the low-voltage circuit side.
  • the high pressure accumulator and the low pressure accumulator provided in each of the reverse operation circuit and the forward operation circuit, the high pressure accumulator and the low pressure accumulator, it is preferable that the high-pressure accumulators are arranged side by side so as to be on the switching valve mechanism side. In such a configuration, since the high pressure accumulator and the low pressure accumulator are arranged side by side in the reverse operation circuit and the forward operation circuit so that the high pressure accumulator is on the switching valve mechanism side, either the reverse operation mode or the forward operation mode is provided. This is preferable because the accumulator operates normally even in the connected state.
  • FIG. 9 is an operation principle diagram ((a) to (d)) of the hydraulic striking device according to the second embodiment, and shows the reverse operation mode.
  • FIG. 6 is an operation principle diagram ((a) to (d)) of the hydraulic striking device according to the second embodiment, and shows the forward operation mode. It is a piston stroke-speed diagram of each operation mode. It is a schematic diagram explaining an example of the conventional hydraulic striking device.
  • the “forward operation mode” is a mode in which the forward / backward movement of the piston and the forward / backward movement of the valve are operated in the same phase
  • the “reverse operation mode” is the forward / backward movement of the piston. This is a mode in which the forward / backward movement of the valve operates in reverse phase.
  • the reverse operation mode is often adopted in anticipation of the reaction force being canceled by setting the piston forward and backward movement and the valve forward and backward movement in opposite phases. Also in the specification, the reverse operation mode will be described as a normal operation mode.
  • the hydraulic striking device according to the first embodiment includes a cylinder 100 and a piston 200 slidably fitted in the cylinder 100 so as to be slidable along the axial direction.
  • the piston 200 includes a large-diameter portion (front) 201 and a large-diameter portion (rear) 202 at the center in the axial direction, and small-diameter portions 203 and 204 formed before and after the large-diameter portions 201 and 202.
  • An annular valve switching groove 205 is formed in the approximate center of the piston large diameter portions 201 and 202.
  • the piston front chamber 110 and the piston rear chamber are separated from each other in the axial direction between the outer peripheral surface of the piston 200 and the inner peripheral surface of the cylinder 100.
  • 111 are defined.
  • the piston front chamber 110 and the piston rear chamber 111 are alternately switched between the high pressure circuit 103 and the low pressure circuit 104, and the hydraulic oil is supplied and discharged so that the forward and backward movements of the piston 200 are repeated.
  • a valve mechanism 210 is provided.
  • the switching valve mechanism 210 has a valve chamber 130 formed non-coaxially with the piston 200 and a valve (spool) 300 slidably fitted in the valve chamber 130 inside the cylinder 100.
  • the valve chamber 130 is formed with a valve chamber small-diameter portion 132, a valve chamber large-diameter portion 131, and a valve chamber intermediate-diameter portion 133 in order from the front to the rear.
  • the valve chamber large-diameter portion 131 is provided with a valve control chamber 137, a piston front chamber forward operation port 135, a piston reverse operation port 134, and a piston rear chamber forward operation port 136, which are spaced apart from each other by a predetermined distance from the front to the rear. It has been.
  • the base end side of the high-pressure circuit 103 (the cart body side) is connected to the pump P, and the base end side of the low-pressure circuit 104 is connected to the tank T. Further, the tip side (cylinder 100 side) of the high-pressure circuit 103 is connected to a reverse operation circuit 101 and a forward operation circuit 102 via an operation switching valve 105 so as to be switchable.
  • the reverse operation circuit 101 and the forward operation circuit 102 are provided with a high-pressure accumulator 400 and a low-pressure accumulator 401, respectively.
  • the piston front chamber 110 is connected to a piston front chamber passage 120 that connects the piston front chamber 110 to the reverse operation circuit 101 and the forward operation circuit 102 by switching the valve 300 forward and backward.
  • a piston rear chamber passage 121 that connects the piston rear chamber 111 to the reverse operation circuit 101 and the forward operation circuit 102 by switching the valve 300 forward and backward is connected to the piston rear chamber 111.
  • a piston reverse control port 113 Between the piston front chamber 110 and the piston rear chamber 111, a piston reverse control port 113, a valve control port 114, and a piston forward control port 112 are provided at predetermined intervals from the front to the rear.
  • the piston advance control port 112 has two openings for a normal stroke and a short stroke.
  • the piston advance control port 112 a on the piston front chamber 110 side is for a short stroke provided with a variable throttle 127.
  • the normal stroke setting that is, the variable throttle 127 is fully closed and the piston advance control port 112 on the piston rear chamber 111 side operates will be described.
  • the valve 300 is a hollow cylindrical valve body having a valve hollow passage 311 penetrating in the axial direction.
  • the upper side of the axis shows a state in which the piston retraction control port 113 communicates while the piston 200 moves forward when the reverse operation circuit 101 is connected to the high pressure circuit 103, and the valve 300 starts moving backward ( FIG. 6B, which will be described later, or when the forward operation circuit 102 is connected to the high voltage circuit 103, the piston advance control port 112 communicates while the piston 200 is moving backward, and the valve 300 starts moving backward.
  • the state (FIG. 7D described later) is shown.
  • the piston advance control port 112 communicates while the piston 200 moves backward when the reverse operation circuit 101 is connected to the high voltage circuit 103, and the valve 300 starts moving forward (described later).
  • FIG. 6 (d) or when the forward operation circuit 102 is connected to the high voltage circuit 103, the piston retraction control port 113 communicates while the piston 200 is moving forward, and the valve 300 starts moving forward ( FIG. 7B described later is shown.
  • the valve 300 includes valve large diameter portions 301, 302, and 303, a valve small diameter portion 304 provided on the front side of the valve large diameter portion 301, and a valve medium diameter portion 305 provided on the rear side of the valve large diameter portion 303.
  • An annular piston front chamber switching groove 306 is provided between the valve large diameter portion 301 and the valve large diameter portion 302.
  • An annular piston rear chamber switching groove 307 is provided between the valve large diameter portion 302 and the valve large diameter portion 303.
  • the piston front chamber switching groove 306 and the piston rear chamber switching groove 307 correspond to the “high / low pressure switching portion” described in the means for solving the above problems.
  • the switching valve mechanism 210 is configured such that the valve large diameter portions 301, 302, and 303 are slidably fitted with the valve chamber large diameter portion 131, and the valve small diameter portion 304 is slidably fitted with the valve chamber small diameter portion 132.
  • the valve middle diameter portion 305 is configured to be slidably fitted to the valve chamber middle diameter portion 133.
  • the front is a valve front end face 308 and the rear is a valve rear end face 309.
  • a valve stepped surface (front) 310 is formed at the boundary between the valve small diameter portion 304 and the valve large diameter portion 301, and a valve stepped surface (rear) is formed at the boundary between the valve large diameter portion 303 and the valve middle diameter portion 305. ) 312 is formed.
  • a valve main body reverse operation passage 313 that penetrates the valve large diameter portion 302 in the radial direction is provided in the central portion of the valve large diameter portion 302 so as to communicate with the valve hollow passage 311.
  • the pressure receiving area of the valve front end surface 308 is S1
  • the pressure receiving area of the valve rear end surface 309 is S2
  • the pressure receiving area S3 of the valve stepped surface (front), and the pressure receiving area of the valve stepped surface (rear) 312 is S4.
  • the following (Formula 2) is obtained.
  • S1 ⁇ / 4 ⁇ (D2 2 ⁇ D4 2 )
  • S2 ⁇ / 4 ⁇ (D3 2 ⁇ D4 2 )
  • S3 ⁇ / 4 ⁇ (D1 2 ⁇ D2 2 )
  • S4 ⁇ / 4 ⁇ (D1 2 ⁇ D3 2 )
  • the difference between the pressure receiving area S2 and the pressure receiving area S1 corresponds to the “reverse operation urging means” that operates when the reverse operation circuit is connected to the high pressure circuit, as described in the means for solving the above problems.
  • the pressure receiving area S4 corresponds to the “forward operation urging means” that operates when the forward operation circuit is connected to the high voltage circuit, as described in the means for solving the above problems.
  • the “reverse operation urging means” and the “forward operation urging means” correspond to the “valve urging means” described in the means for solving the above problems.
  • the pressure receiving area S3 is a “valve control means” that moves the valve backward against the urging force of the valve urging means when pressure oil is supplied, as described in the means for solving the above problems. It corresponds to.
  • the front side wall of the piston reverse operation port 134 is 134a
  • the rear side wall of the piston reverse operation port 134 is 134b
  • the rear side wall of the piston front chamber forward operation port 135 is 135b
  • the piston rear chamber order is 136a
  • the front side wall of the operation port 136 is 136a
  • the front side wall of the piston front chamber switching groove is 306a
  • the rear side wall of the piston front chamber switching groove is 306b
  • the front side wall of the piston rear chamber switching groove 307 is 307a
  • the piston suming that the rear side wall of the rear chamber switching groove 307 is 307b
  • the relationship between the opening width of the port formed by the valve 300 and the valve chamber 130 in cooperation with the seal length is as follows.
  • the reverse operation circuit 101 is connected to the piston reverse operation port 134, and the forward operation circuit 102 is connected to the piston front chamber forward operation port 135 and the piston rear chamber forward operation port 136, respectively.
  • One of the piston front chamber passages 120 is connected to the piston front chamber 110, and the other is connected to an intermediate portion between the piston reverse operation port 134 and the piston front chamber forward operation port 135 of the valve chamber large diameter portion 131.
  • One of the piston rear chamber passages 121 is connected to the piston rear chamber 111, and the other is connected to an intermediate portion between the piston reverse operation port 134 and the piston rear chamber forward operation port 136 of the valve chamber large diameter portion 131.
  • the valve reverse operation passage 123 connects the piston reverse control port 113 and the front end face of the valve chamber 130, and the valve forward operation passage 125 connects the piston advance control port 112 and the piston rear chamber forward operation port 136 to control the valve.
  • the passage 126 connects the valve control port 114 and the valve control chamber 137. Accordingly, the valve hollow passage 311 is always at a high pressure in the reverse operation mode, and is always at a low pressure in the forward operation mode.
  • the valve reverse operation passage 123 may be directly connected to the piston reverse control port 113 and the piston reverse operation port 134, or may be directly connected to the reverse operation circuit 101. Further, the valve forward operation passage 125 may directly connect the piston advance control port 112 and the piston front chamber forward operation port 135, or may be directly connected to the forward operation circuit 102.
  • a variable throttle 128 and a check valve 129 are arranged in parallel in the valve control passage 126 that connects the valve control port 114 and the valve control chamber 137 in the first embodiment.
  • the valve control passage 126 ' is provided.
  • the check valve 129 allows the pressure oil to flow into the valve control chamber 137 from the valve control port 114 side, and restricts the pressure oil from flowing into the valve control port 114 from the valve control chamber 137 side. It is provided as follows.
  • variable throttle 128 and the check valve 129 corresponds to the “delay means” described in the means for solving the above problems.
  • This delay means is a means for extending the high / low pressure switching operation time of the piston front / rear chamber associated with the valve retreating to be longer than the high / low pressure switching operation time of the piston front / rear chamber associated with the valve advancement. Therefore, the second embodiment includes both “shortening means” and “delay means”.
  • 1st Embodiment and 2nd Embodiment it mentions later in detail, referring the action
  • the reverse operation circuit 101 is provided with a high pressure accumulator 400 and a low pressure accumulator 402 side by side so that the switching valve mechanism 210 side becomes a high pressure accumulator, and the forward operation circuit 102 has a high pressure accumulator 403.
  • the low-pressure accumulator 401 are arranged side by side so that the switching valve mechanism 210 side becomes a high-pressure accumulator.
  • a hydraulic striking device according to a fourth embodiment of the present invention will be described with reference to FIG.
  • the difference from the first embodiment is that the high-pressure accumulator 400 and the low-pressure accumulator 401 are eliminated, the back head 410 is provided in the rear part of the cylinder 100, and the space through which the piston 200 inside the back head 410 is inserted is a gas chamber filled with gas. 411.
  • the operation switching valve 105 is switched to the reverse operation mode, that is, the position where the reverse operation circuit 101 and the high pressure circuit 103 are connected (the position where the forward operation circuit 102 and the low pressure circuit 104 are connected).
  • valve chamber 130 is always connected to the reverse operation circuit 101 by the valve main body reverse operation passage 313, and both the valve front end surface 308 and the valve rear end surface 309 are at high pressure. Since high pressure is acting on both the valve front end surface 308 and the valve rear end surface 309, the valve 300 is held in the forward position by the above (Equation 3) (see FIG. 6A).
  • valve control port 114 communicates with the piston reverse control port 113.
  • the high pressure oil from the valve reverse operation passage 123 is supplied to the valve control chamber 137 through the valve control passage 126 '.
  • the pressure oil passes through the check valve 129 in the valve control passage 126 ′ and is not adjusted by the variable throttle 128.
  • the piston 200 reaches the impact point when the impact efficiency is maximum (between FIGS. 6B to 6C), and at the impact point, the tip of the piston 200 moves the rear end of the impact rod (not shown). Blow. Thereby, the shock wave generated by the impact propagates to the bit at the tip through the rod and is used as energy for crushing the rock mass.
  • the valve 300 Immediately after the piston 200 reaches the strike point, the valve 300 is completely switched to its retracted position. In the valve retracted position, the piston reverse operation port 134 and the piston front chamber passage 120 communicate with each other, and the piston front chamber 110 becomes high pressure. On the other hand, the piston rear chamber forward operation port 136 and the piston rear chamber passage 121 communicate with each other, and the piston rear chamber 111 has a low pressure. As a result, the piston 200 turns backward. While the valve control chamber 137 maintains a high pressure, the valve 300 is held in the retracted position (see FIG. 6C).
  • valve control port 114 communicates with the piston advance control port 112.
  • the valve control chamber 137 is connected to the low pressure circuit 104 via the valve control passage 126 ′ and the valve forward operation passage 125.
  • the valve 300 starts moving forward according to the above (Equation 3).
  • the high / low pressure switching operation time of the piston front chamber 110 and the piston rear chamber 111 accompanying the forward movement of the valve 300 is proportional to Lr according to the above (Expression 7).
  • the pressure oil passes through the variable throttle 128 side by the check valve 129, so that the flow rate is adjusted, and the low pressure state is passed from the high pressure state to the intermediate pressure state (the passage is indicated by “broken line”). Transition to. (See FIG. 6D). Then, the valve 300 is switched to the forward position again, and the hitting cycle is repeated.
  • the backward movement of the valve 300 is shortened by the above (Equation 8).
  • the flow rate of the pressure oil in the valve control passage 126 ′ is adjusted by the variable throttle 128, so that the forward movement of the valve 300 is delayed.
  • the operation switching valve 105 is switched to the forward operation mode, that is, the position where the forward operation circuit 102 and the high voltage circuit 103 are connected to each other (the reverse operation circuit 101 and the low pressure circuit 104 are connected).
  • the piston rear chamber forward operation port 136 and the piston rear chamber passage 125 communicate with each other, and the piston rear chamber 111 opens. High pressure.
  • the piston front chamber forward operation port 135 and the piston front chamber passage 120 communicate with each other, and the piston front chamber 110 becomes low pressure. Thereby, the piston 200 moves forward.
  • valve chamber 130 is always connected to the reverse operation circuit 101 by the valve main body reverse operation passage 313, and both the valve front end surface 308 and the valve rear end surface 309 are at low pressure, but the valve stepped surface ( Since high pressure acts on both the front 310 and the valve stepped surface 312, the valve 300 is held in the retracted position by the above (Formula 5) (see FIG. 7A).
  • valve control port 114 communicates with the piston reverse control port 113.
  • the high pressure oil in the valve control chamber 137 flows out to the valve reverse operation passage 123 through the valve control passage 126 '.
  • the high / low pressure switching operation time of the piston front chamber 110 and the piston rear chamber 111 accompanying the advancement of the valve 300 is proportional to Lr according to the above (Equation 7).
  • the pressure oil passes through the variable throttle 128 side by the check valve 129, so that the flow rate is adjusted and transitions from the high pressure state to the low pressure state through the intermediate pressure state.
  • the valve control chamber 137 becomes low pressure, high pressure acts only on the valve stepped surface 312 and the valve 300 starts to advance (see FIG. 7B).
  • the piston 200 reaches the striking point while increasing the striking efficiency (between FIGS. 7B to 7C), and the front end of the piston 200 strikes the rear end of the striking rod (not shown) at the striking point. .
  • the shock wave generated by the impact is propagated to the bit at the tip through the rod and used as energy for crushing the rock.
  • the piston front chamber forward operation port 135 and the piston front chamber passage 120 communicate with each other, and the piston front chamber 110 becomes high pressure.
  • the piston reverse operation port 134 and the piston rear chamber passage 121 communicate with each other, and the piston rear chamber 111 becomes a low pressure.
  • valve 300 is held at the forward movement position. The switching of the valve 300 to its forward position is completed slightly after the piston 200 reaches the strike point, as will be described later, but since the piston 200 has already started to move backward due to the repulsion of hitting the rod, (See FIG. 7C).
  • valve control port 114 communicates with the piston advance control port 112.
  • valve control chamber 137 is connected to the forward operation circuit 102 via the valve control passage 126 ′ and the valve forward operation passage 125.
  • the high / low pressure switching operation time of the piston front chamber 110 and the piston rear chamber 111 due to the backward movement of the valve 300 is proportional to Ln according to the above (formula 6).
  • the pressure oil passes through the check valve 129 and is not adjusted by the variable throttle 128 (see FIG. 7D). Then, the valve 300 is switched to the retracted position again, and the hitting cycle is repeated.
  • the forward operation mode can be shortened compared to the reverse operation mode. Therefore, the normal operation is performed in the reverse operation mode, and the operation can be performed by switching to the forward operation mode with the operation switching valve 105 in the case of the operation that requires a light impact with a low impact force.
  • the first embodiment includes only the “shortening means” described above.
  • a ′ Phase in which the piston 200 turns from backward to forward In the reverse operation mode (FIG. 6A), the valve 300 is held in the forward position, and in the forward operation mode (FIG. 7A), the valve 300 is held in the backward position. Therefore, there is no difference in the forward movement of the piston 200 in both cases.
  • the reverse operation mode can achieve a longer stroke than the forward operation mode.
  • the stroke extension amount can be controlled by the adjustment amount of the variable aperture 128.
  • the setting can be changed from a standard stroke (Snormal) to a long stroke (Slong).
  • the horizontal axis S is piston stroke
  • the vertical axis V is the piston speed, Vlong, Vnormal, Vshort the speed at impact in each piston stroke, the maximum speed during retraction S 0 from striking point Is shown.
  • the reverse operation mode is adopted as the normal operation mode. Therefore, in the first embodiment, the high pressure accumulator 400 is disposed in the reverse operation circuit 101 and the low pressure accumulator 401 is disposed in the forward operation circuit 102. ing.
  • the high-pressure accumulator 400 and the low-pressure accumulator 401 share the same components such as a pressure vessel and a diaphragm.
  • the set value of the gas pressure to be sealed is set to a high pressure for the high-pressure accumulator 400 and the low-pressure accumulator 401 is set to a low pressure. .
  • the high-pressure accumulator 400 absorbs the shock and pulsation propagating through the high-pressure oil by accumulating it, and in the circuit Insufficient supply of pressure oil is compensated by releasing the accumulated pressure oil when the amount of oil is insufficient.
  • the low pressure accumulator 401 absorbs the impact and pulsation propagating through the low pressure oil by accumulating.
  • the operation switching valve 105 when the operation switching valve 105 is switched to select the forward operation mode, the high pressure accumulator 400 side becomes low pressure, the low pressure accumulator 401 side becomes high pressure, and particularly, the low pressure accumulator 401 that accumulates high pressure oil. There is concern about the lack of capacity.
  • the piston stroke is shortened, so that the impact and pulsation in the pipeline are relatively gentle. Therefore, the low pressure accumulator 401 does not have a big trouble.
  • a pair of high-pressure accumulators 400 and 403 and low-pressure accumulators 401 and 402 are provided in the reverse operation circuit 101 and the forward operation circuit 102, respectively, and the high-pressure accumulators 400 and 403 are on the switching valve mechanism 210 side. Therefore, the original performance of the high-pressure accumulator and the low-pressure accumulator can be exhibited regardless of whether the reverse operation mode or the forward operation mode is selected.
  • the effect of the accumulator in this type of hydraulic striking device is that the shock that propagates the pressure oil in the circuit and the shock absorption that absorbs the pulsation to prevent damage to the equipment, and the amount of oil in the circuit is the pump This is an “energy accumulating action” in which the pressure is accumulated when the amount is excessive with respect to the discharge amount, and the accumulated pressure oil is released when the amount is insufficient.
  • the energy accumulating action in which the pressure is accumulated when the amount is excessive with respect to the discharge amount, and the accumulated pressure oil is released when the amount is insufficient.
  • the excess or deficiency of the oil amount in the circuit is caused by the forward and backward movement of the piston 200. Therefore, the accumulator accumulates and releases the kinetic energy of the piston 200 using pressure oil as a medium. By doing so, it can be said that it has been passed on to blow energy.
  • the kinetic energy of the piston 200 is not transferred to the striking energy using pressure oil as a medium, but the kinetic energy when the piston 200 is retracted is directly transferred into the gas chamber 411 of the back head 410. By accumulating and releasing, it is passed on to striking energy.
  • the basic concept of the present invention is to change the impact characteristics by switching the high voltage circuit 103 and the low voltage circuit 104 to each other.
  • the high voltage accumulator 400 is provided in the high voltage circuit 103
  • the low voltage accumulator 401 is provided in the low voltage circuit 104, and the original performance of each accumulator may not be exhibited due to circuit switching.
  • the energy storage action by the back head 410 is not affected by the circuit switching, and thus is suitable for the present invention.
  • the fourth embodiment is preferably employed in a compact hydraulic striking mechanism in which the impact and pulsation of the pressure oil in the circuit are relatively small.
  • the hydraulic striking device since the accumulator is omitted, it is preferable because the hydraulic striking device can be downsized and the configuration can be simplified.
  • the opening width (seal length) of the valve and the port is used as a measure for creating a time difference between the valve forward operation and the backward operation as in the switching valve mechanism shown in FIG.
  • piston axis and the valve axis are parallel to each other, they may be set in the orthogonal direction.
  • first embodiment and the fourth embodiment may be carried out simultaneously, that is, an accumulator may be provided in each of the high-pressure circuit and the low-pressure circuit, and a back head having a gas chamber at the rear of the cylinder may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

打撃特性を容易に変更可能な液圧式打撃装置を提供する。この液圧式打撃装置は、逆作動回路(101)と順作動回路(102)が切換弁機構(210)に接続され、これら回路は作動切換弁(105)を介して高圧回路(103)と低圧回路(104)との接続状態を切り換え可能であり、バルブ付勢手段は、逆作動回路(101)が高圧回路(103)と接続された場合に作動する逆作動付勢手段と、順作動回路(102)が高圧回路(103)に接続された場合に作動する順作動付勢手段とを備え、作動切換弁(105)の操作によって逆作動モードと順作動モードとを選択可能に構成され、高低圧切換部にはバルブ(300)の後退に伴うピストン前後室の高低圧切換動作時間をバルブ(300)の前進に伴うピストン前後室の高低圧切換動作時間よりも短くする短縮手段が設けられている。

Description

液圧式打撃装置
 本発明は、さく岩機やブレーカ等の液圧式打撃装置に関する。
 この種の液圧式打撃装置としては、例えば特許文献1記載の技術が開示されている。同文献記載の液圧式打撃装置について、図9を適宜参照しつつ説明する。なお、同図におけるピストン(図中上方に配置)およびバルブ(図中下方に配置)は、それぞれの軸線上側が、ピストンが前進から後退へと転じる局面の状態を示し、軸線下側が、ピストンが後退から前進へと転じる局面の状態を示している。
 この液圧式打撃装置は、図9に示すように、シリンダ500と、ピストン522とを備える。ピストン522は、中実の円筒体であり、その略中央にピストン大径部523、524を有する。ピストン大径部523の前側にはピストン中径部525が設けられ、ピストン大径部524の後側にはピストン小径部526が設けられている。
 ピストン大径部523とピストン大径部524との略中央には、円環状のバルブ切換溝527が形成されている。ピストン中径部525の外径は、ピストン小径部526の外径よりも大きく設定されている。これにより、後述するピストン前室501およびピストン後室502におけるピストン522の受圧面積、すなわち、ピストン大径部523とピストン中径部525の径差、およびピストン大径部524とピストン小径部526の段差は、ピストン後室502側の方が大きくなっている。
 このピストン522が、シリンダ500の内部に摺嵌されることで、シリンダ500内にピストン前室501とピストン後室502とがそれぞれ画成されている。ピストン前室501は、ピストン前室通路516を介して高圧回路513に常時接続されている。一方、ピストン後室502は、後述する切換弁機構540の前後進切換えによって、高圧回路513と低圧回路519とにそれぞれ交互に連通可能になっている。高圧回路513には高圧アキュムレータ536が設けられ、低圧回路519には低圧アキュムレータ537が設けられている。
 切換弁機構540は、シリンダ500内に、ピストン522と非同軸に形成された弁室506と、弁室506に摺嵌されたバルブ528とを有する。弁室506は、前方から後方へ向けて順に、バルブ前室508、バルブ主室507およびバルブ後室509を有する。バルブ主室506には、前方から後方へ向けて順に、ピストン後室高圧ポート510、ピストン後室切換ポート511およびピストン後室低圧ポート512がそれぞれ所定間隔離隔して設けられている。
 バルブ528は、中実の円筒体であり、その略中央に、バルブ大径部529、530を有する。バルブ大径部529の前側には、バルブ中径部531が設けられ、バルブ大径部530の後側にはバルブ小径部532が設けられている。バルブ大径部530とバルブ小径部532との間には、バルブ528の後方への移動を規制するバルブ後退規制部533が設けられている。バルブ大径部529とバルブ大径部530との間には、円環状のピストン後室高圧切換溝534が設けられ、バルブ大径部530とバルブ後退規制部533との間には、ピストン後室低圧切換溝535が設けられている。
 バルブ大径部529、530がバルブ主室507と摺嵌し、バルブ中径部531がバルブ前室508と摺嵌し、バルブ小径部532がバルブ後室509と摺嵌するように構成されている。ここで、バルブ中径部531の外径は、バルブ小径部532の外径よりも大きく設定されている。したがって、バルブ中径部531側の受圧面積は、バルブ小径部532側の受圧面積よりも大きくなっている。
 ピストン前室501とピストン後室502との間には、前方から後方に向けてそれぞれ所定間隔離隔して、ピストン前進制御ポート(ショートストローク)503a、ピストン前進制御ポート503、ピストン後退制御ポート504および排油ポート505が設けられている。
 高圧回路513は、高圧通路514を介してピストン後室高圧ポート510に接続されている。また、高圧回路513は、高圧通路514から分岐したピストン前室通路516を介してピストン前室501に接続されるとともに、高圧通路514から分岐したバルブ後室通路517を介してバルブ後室509と接続されている。
 バルブ前室508には、バルブ制御通路518の一端が接続されており、バルブ制御通路518の他端は、バルブ前室高圧通路(ショートストローク)518a、バルブ前室高圧通路518bおよびバルブ前室低圧通路518cに分岐している。バルブ前室高圧通路(ショートストローク)518aは、ピストン前進制御ポート(ショートストローク)503aと接続されている。
 バルブ前室高圧通路518bは、ピストン前進制御ポート503と接続され、バルブ前室低圧通路518cは、ピストン後退制御ポート504に接続されている。ピストン後室502は、ピストン後室通路515によってピストン後室切換ポート511に接続されている。排油ポート505は、バルブ低圧通路520を介して低圧回路519に接続されている。ピストン後室低圧ポート512は、ピストン低圧通路521を介して低圧回路519に接続されている。
 ここで、ピストン前進制御ポート(ショートストローク)503a、ピストン前進制御ポート503、バルブ前室高圧通路(ショートストローク)518aおよびバルブ前室高圧通路518bは、公知のストローク切換機構を構成しており、バルブ前室高圧通路(ショートストローク)518a内に設けられた可変絞りを操作することで、ショートストローク(可変絞り全開状態)から通常のストローク(可変絞り全閉状態)の間でピストンストロークを無断階に調整可能である。
 この液圧式打撃装置は、ピストン前室501が常時高圧接続されているので、ピストン522は常時後方へと付勢される。ピストン後室502がバルブ528の作動により高圧接続されると受圧面積差によってピストン522は前進し、ピストン後室502がバルブ528の作動により低圧接続されるとピストン522は後退する。
 また、バルブ528は、バルブ後室509が常時高圧接続されているので常時前方へと付勢される。バルブ制御通路518がバルブ前室508と連通して、バルブ前室508が高圧接続されると受圧面積差によってバルブ528は後退し、バルブ制御通路518が排油ポート505と連通してバルブ前室508が低圧接続されるとバルブ528は前進する。
特許第4912785号公報
 ところで、この種の液圧式打撃装置では、打撃力を調整することが求められる場合がある。打撃力を調整する方策としては、圧力調整弁を設けて液圧式打撃装置に供給する圧油の圧力を減ずる方策と、ストローク切換機構を操作してショートストローク化することによって打撃時のピストン速度を減ずる方策が考えられる。しかし、圧力調整弁を設ける方策は、制御性が悪いという問題があり、また、ストローク切換機構による方策は、操作性が悪いという問題がある。
 そこで、本発明は、このような問題点に着目してなされたものであって、打撃特性を容易に変更可能な液圧式打撃装置を提供することを課題とする。
 上記課題を解決するために、本発明の一態様に係る液圧式打撃装置は、シリンダと、該シリンダの内部に摺嵌されたピストンと、該ピストンの外周面と前記シリンダの内周面との間に画成されて軸方向の前後に離隔配置されたピストン前室およびピストン後室と、前記ピストン前室および前記ピストン後室を交互に高圧状態と低圧状態とに切換える切換弁機構とを備え、前記ピストンを前記シリンダ内で前後進させて打撃用のロッドを打撃する液圧式打撃装置であって、前記切換弁機構は、前記シリンダ内にピストンとは非同軸に形成された弁室と、該弁室内に摺嵌されて前記ピストン前室と前記ピストン後室とを交互に高圧状態と低圧状態とに切換える高低圧切換部が形成されたバルブと、該バルブを前方へと常時付勢するバルブ付勢手段と、圧油が供給されたときに前記バルブ付勢手段の付勢力に抗して前記バルブを後方へと移動させるバルブ制御手段とを備え、前記切換弁機構には、逆作動回路と順作動回路が接続され、前記逆作動回路と前記順作動回路は、作動切換弁を介して高圧回路と低圧回路との接続状態を切り換え可能であり、前記バルブ付勢手段は、前記逆作動回路が前記高圧回路と接続された場合に作動する逆作動付勢手段と、前記順作動回路が前記高圧回路に接続された場合に作動する順作動付勢手段とを備えており、さらに、当該液圧式打撃装置は、前記作動切換弁の操作によって、前記バルブと前記ピストンの位相を逆位相で作動させる逆作動モードと、前記バルブと前記ピストンの位相を同位相で作動させる順作動モードとを選択可能に構成されており、前記高低圧切換部には、前記バルブの後退に伴う前記ピストン前室および前記ピストン後室の高低圧切換動作時間を、前記バルブの前進に伴う前記ピストン前室および前記ピストン後室の高低圧切換動作時間よりも短くする短縮手段が設けられていることを特徴とする。
 本発明の一態様に係る液圧式打撃装置によれば、順作動モードにおけるバルブ前進に伴うピストン前後進時の高低圧切換動作時間が短縮されるので、相対的に、逆作動モードにおけるバルブ前進に伴うピストン前後進時の高低圧切換動作時間が延長される。
 すなわち、ピストン後室に着目すると、低圧状態から高圧状態への切換えに要する時間は、逆作動モードよりも順作動モードの方が短くなり、順作動モードはピストン後退ストロークが短縮され、相対的に逆作動モードのピストン後退ストロークは延長されることになる。したがって、作動切換弁によって順作動モードを選択するとショートストロークとなり、逆作動モードを選択するとロングストロークとなる。
 上述した従来のストローク調整機構は、シリンダ本体に設けられた可変絞りの開度を調整するものであり、作業内容に即してロングストロークとショートストロークを切換えるという使用には適さない。
 遠隔操作可能なストローク切換弁を別途備えることも提案されているものの、この場合、シリンダ内に新たなアクチュエータを設けることになる。そのため、ガイドシェル上にホース配管を増設する必要もあり問題がある。
 これに対し、本発明の一態様に係る液圧式打撃装置であれば、作動切換弁を台車本体側に設けることができるため、ガイドシェル回りは特に改造が不要である。
 ここで、本発明の一態様に係る液圧式打撃装置において、前記短縮手段は、前記バルブの前進時に前記バルブによって閉塞するポートの開口幅と、前記バルブの後退時に前記バルブによって閉塞するポートの開口幅との差であることは好ましい。
 このような構成であれば、短縮手段が、バルブ前進時にバルブによって閉塞するポートの開口幅とバルブ後退時にバルブによって閉塞するポートの開口幅との差なので、別途にアクチュエータを設けるようなことが不要であり、簡素な構成でストローク切換機構を実現する上で好適である。
 また、本発明の一態様に係る液圧式打撃装置において、前記バルブ制御手段は、圧油が供給される際には規制がなく、圧油が排出される際に流量を調整する絞りからなる遅延手段を有することは好ましい。
 このような構成であれば、バルブ制御手段に、圧油が供給される際には規制がなく、圧油が排出される際に流量を調整する絞りからなる遅延手段を設けたので、逆動作モードにおいてピストンストロークを延長できる。そのため、順作動モードのショートストロークと逆作動モードのロングストロークの変化の割合を大きくする上で好適である。
 また、本発明の一態様に係る液圧式打撃装置において、前記逆作動回路に設けられた高圧アキュムレータと、前記順作動回路に設けられた低圧アキュムレータとを有することは好ましい。
 このような構成であれば、逆作動回路に高圧アキュムレータ、順作動回路に低圧アキュムレータをそれぞれ設けたので、通常の作業で用いる逆作動モードの接続状態、すなわち、逆作動回路が高圧回路、順作動回路が低圧回路に接続された状態で、高圧回路側に高圧アキュムレータ、低圧回路側に低圧アキュムレータが配設されるので好適である。
 また、本発明の一態様に係る液圧式打撃装置において、前記逆作動回路および前記順作動回路のそれぞれに設けられた高圧アキュムレータおよび低圧アキュムレータを有し、前記高圧アキュムレータと前記低圧アキュムレータとは、前記高圧アキュムレータが前記切換弁機構側となるように並べて設けられていることは好ましい。
 このような構成であれば、逆作動回路と順作動回路のそれぞれに、高圧アキュムレータと低圧アキュムレータを高圧アキュムレータが切換弁機構側となるように並べて設けたので、逆作動モードと順作動モードのどちらの接続状態においてもアキュムレータが正常に作動するので好適である。
 上述のように、本発明によれば、打撃特性を容易に変更可能な液圧式打撃装置を提供できる。
本発明に係る液圧式打撃装置の第1実施形態の模式図である。 第1実施形態に係る液圧式打撃装置におけるバルブ本体とポートとの関係の説明図である。 本発明に係る液圧式打撃装置の第2実施形態の模式図である。 本発明に係る液圧式打撃装置の第3実施形態の模式図である。 本発明に係る液圧式打撃装置の第4実施形態の模式図である。 第2実施形態に係る液圧式打撃装置の作動原理図((a)~(d))であって、同図では、逆作動モードを表している。 第2実施形態に係る液圧式打撃装置の作動原理図((a)~(d))であって、同図では、順作動モードを表している。 各動作モードのピストンストローク-速度線図である。 従来の液圧式打撃装置の一例を説明する模式図である。
 以下、本発明の各実施形態について図面を適宜参照しつつ説明する。但し、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
 また、以下に示す各実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。なお、全ての図面において、同様の構成要素には同一の符号を付している。また、同一の機能を有しながらもレイアウトや形状の変更がなされた構成要素については、同一の符号にアポストロフィを付している。
 ここで、本明細書で「順作動モード」とは、ピストンの前後進動作とバルブの前後進動作が同位相で作動するモードであり、「逆作動モード」とは、ピストンの前後進動作とバルブの前後進動作が逆位相で作動するモードである。一般的な液圧式打撃装置では、ピストンの前後進動とバルブの前後進動を逆位相にすることで反力が相殺されることを期待して逆作動モードが採用されることが多く、本明細書においても逆作動モードを通常の作動モードとして説明をする。
 まず、本発明の第1実施形態の液圧式打撃装置の構成について、図1および図2を参照して説明する。
 図1に示すように、第1実施形態の液圧式打撃装置は、シリンダ100と、シリンダ100の内部に軸方向に沿ってスライド移動可能に摺嵌されたピストン200とを備える。ピストン200は、軸方向中央の大径部(前)201、大径部(後)202と、その大径部201、202の前後に形成された小径部203、204とを有する。ピストン大径部201、202の略中央には、円環状のバルブ切換溝205が形成されている。
 ピストン200が、シリンダ100内に摺嵌して設けられることで、ピストン200の外周面とシリンダ100の内周面との間に、軸方向の前後に離隔してピストン前室110とピストン後室111とがそれぞれ画成されている。そして、シリンダ100の内部には、ピストン前室110およびピストン後室111を交互に高圧回路103と低圧回路104とに切換えてピストン200の前進および後退が繰返されるように作動油を給排させる切換弁機構210が設けられている。
 切換弁機構210は、シリンダ100の内部に、ピストン200と非同軸に形成された弁室130と、この弁室130に摺嵌されたバルブ(スプール)300とを有する。弁室130は、前方から後方へ向けて順に、弁室小径部132、弁室大径部131および弁室中径部133が形成されている。弁室大径部131には、前方から後方へ向けてそれぞれ所定間隔離隔して、バルブ制御室137、ピストン前室順作動ポート135、ピストン逆作動ポート134およびピストン後室順作動ポート136が設けられている。
 高圧回路103の基端側(台車本体側)は、ポンプPに接続され、低圧回路104の基端側はタンクTに接続されている。また、高圧回路103の先端側(シリンダ100側)は、作動切換弁105を介して逆作動回路101と順作動回路102とに切換可能に接続されている。逆作動回路101および順作動回路102には、それぞれ高圧アキュムレータ400および低圧アキュムレータ401が設けられている。
 ピストン前室110には、バルブ300の前後進切換によってピストン前室110を逆作動回路101と順作動回路102へとそれぞれ連通させるピストン前室通路120が接続されている。一方、ピストン後室111には、ピストン後室111をバルブ300の前後進切換えによって逆作動回路101と順作動回路102とにそれぞれ連通させるピストン後室通路121が接続されている。
 ピストン前室110とピストン後室111の間には、前方から後方へ向けてそれぞれ所定間隔隔離して、ピストン後退制御ポート113、バルブ制御ポート114およびピストン前進制御ポート112が設けられている。ピストン前進制御ポート112は、通常ストローク用とショートストローク用として開口部が二箇所に設けられている。ピストン前室110側のピストン前進制御ポート112aが、可変絞り127を備えたショートストローク用である。本明細書では、通常ストロークの設定、すなわち、可変絞り127を全閉状態として、ピストン後室111側のピストン前進制御ポート112が作用する設定で説明をする。
 バルブ300は、図2に示すように、軸方向に貫通するバルブ中空通路311を有する中空円筒形状の弁体である。
 同図において、軸線上側は、逆作動回路101が高圧回路103に接続された場合のピストン200が前進中にピストン後退制御ポート113が連通し、バルブ300が後方へと移動を開始する状態(後述する図6(b))、または、順作動回路102が高圧回路103に接続された場合のピストン200が後退中にピストン前進制御ポート112が連通し、バルブ300が後方へと移動を開始する状態(後述する図7(d))を示している。
 また、軸線下側は、逆作動回路101が高圧回路103に接続された場合のピストン200が後退中にピストン前進制御ポート112が連通し、バルブ300が前方へと移動を開始する状態(後述する図6(d))、または、順作動回路102が高圧回路103に接続された場合のピストン200が前進中にピストン後退制御ポート113が連通し、バルブ300が前方へと移動を開始する状態(後述する図7(b))を示している。
 バルブ300は、バルブ大径部301、302、303と、バルブ大径部301の前側に設けられたバルブ小径部304と、バルブ大径部303の後側に設けられたバルブ中径部305とを外周面に有する。バルブ大径部301とバルブ大径部302との間には、円環状のピストン前室切換溝306が設けられている。また、バルブ大径部302とバルブ大径部303の間には、円環状のピストン後室切換溝307が設けられている。本実施形態では、これらピストン前室切換溝306およびピストン後室切換溝307が、上記課題を解決するための手段に記載の「高低圧切換部」に対応している。
 この切換弁機構210は、バルブ大径部301、302、303が弁室大径部131と摺嵌するように構成され、バルブ小径部304が弁室小径部132と摺嵌するように構成され、バルブ中径部305が弁室中径部133と摺嵌するように構成されている。
 バルブ300の両端面は、前方がバルブ前端面308、後方がバルブ後端面309となっている。バルブ小径部304とバルブ大径部301との境界には、バルブ段付面(前)310が形成され、バルブ大径部303とバルブ中径部305の境界には、バルブ段付面(後)312が形成されている。バルブ大径部302の中央部には、バルブ大径部302を径方向に貫通するバルブ本体逆作動通路313がバルブ中空通路311に連通するように設けられている。
 いま、バルブ大径部301、302、303の外径をφD1、バルブ小径部304の外径をφD2、バルブ中径部305の外径をφD3、およびバルブ中空通路311の内径をφD4とすると、φD1~φD4の関係は以下の(式1)の通りとなる。
  φD4<φD2<φD3<φD1・・・(式1)
 また、バルブ前端面308の受圧面積をS1、バルブ後端面309の受圧面積をS2、バルブ段付面(前)の受圧面積S3、および、バルブ段付面(後)312の受圧面積をS4とすると、以下の(式2)の通りとなる。
  S1=π/4×(D2-D4
  S2=π/4×(D3-D4
  S3=π/4×(D1-D2
  S4=π/4×(D1-D3) ・・・(式2)
 そして、受圧面積S1~S4の関係は、以下の(式3)~(式5)の通りとなる。
  S1<S2 ・・・・・・・・・・・・・・(式3)
  [S1+S3]>S2 ・・・・・・・・・(式4)
  S3>S4 ・・・・・・・・・・・・・・(式5)
 ここで、受圧面積S2と受圧面積S1との差が、上記課題を解決するための手段に記載の、逆作動回路が高圧回路と接続された場合に作動する「逆作動付勢手段」に対応し、受圧面積S4が、上記課題を解決するための手段に記載の、順作動回路が高圧回路に接続された場合に作動する「順作動付勢手段」に対応している。また、これら「逆作動付勢手段」と「順作動付勢手段」とが、上記課題を解決する手段に記載の「バルブ付勢手段」に対応している。また、受圧面積S3が、上記課題を解決するための手段に記載の、圧油が供給されたときにバルブ付勢手段の付勢力に抗してバルブを後方へと移動させる「バルブ制御手段」に対応している。
 いま、図2において、ピストン逆作動ポート134の前側の側壁を134a、ピストン逆作動ポート134の後側の側壁を134b、ピストン前室順作動ポート135の後側の側壁を135b、ピストン後室順作動ポート136の前側の側壁を136aとし、ピストン前室切換溝の前側の側壁を306a、ピストン前室切換溝の後側の側壁を306b、ピストン後室切換溝307の前側の側壁を307a、ピストン後室切換溝307の後側の側壁を307bとすると、バルブ300と弁室130とが協同して形成するポートの開口幅とシール長の関係は以下の通りとなる。
(1)バルブ300の後退時
 Ln1:ピストン前室順作動ポート溝側面(後)135bとピストン前室切換溝側壁(前)306aが形成する開口幅
 Ln2:ピストン逆作動ポート溝側面(前)134aとピストン前室切換溝側壁(後)306bが形成するシール長
 Ln3:ピストン逆作動ポート溝側面(後)134bと ピストン後室切換溝側壁(前)307aが形成する開口幅
 Ln4:のピストン後室順作動ポート溝側面(前)136aとピストン後室切換溝側壁(後)307bが形成するシール長
(2)バルブ300の前進時
 Lr1:ピストン前室順作動ポート溝側面(後)135bとピストン前室切換溝側壁(前)306aが形成するシール長
 Lr2:ピストン逆作動ポート溝側面(前)134aとピストン前室切換溝側壁(後)306bが形成する開口幅
 Lr3:ピストン逆作動ポート溝側面(後)134bと ピストン後室切換溝側壁(前)307aが形成するシール長
 Lr4:ピストン後室順作動ポート溝側面(前)136aとピストン後室切換溝側壁(後)307bが形成する開口幅
  Ln=Ln1=Ln2=Ln3=Ln4・・・(式6)
 (ただし、シール長Ln2およびLn4は、開口幅Ln1およびLn3よりも若干長く設定している。)
  Lr=Lr1=Lr2=Lr3=Lr4・・・(式7)
 (ただし、シール長Lr2およびLr4は、開口幅Lr1およびLr3よりも若干長く設定している。)
  Ln<Lr・・・・・・・・・・・・・・・・(式8)
となり、このLnとLrの差が、上記課題を解決するための手段に記載の、バルブの後退に伴うピストン前室およびピストン前室の高低圧切換動作時間を、バルブの前進に伴うピストン前室およびピストン前室の高低圧切換動作時間よりも短くする「短縮手段」に対応している。
 図1に示すように、逆作動回路101は、ピストン逆作動ポート134に接続されており、順作動回路102は、ピストン前室順作動ポート135およびピストン後室順作動ポート136にそれぞれ接続されている。ピストン前室通路120は、一方がピストン前室110に接続され、他方が弁室大径部131のピストン逆作動ポート134とピストン前室順作動ポート135との中間部に接続されている。ピストン後室通路121は、一方がピストン後室111に接続され、他方が弁室大径部131のピストン逆作動ポート134とピストン後室順作動ポート136との中間部に接続されている。
 バルブ逆作動通路123は、ピストン後退制御ポート113と弁室130の前側端面を接続し、バルブ順作動通路125は、ピストン前進制御ポート112とピストン後室順作動ポート136とを接続し、バルブ制御通路126は、バルブ制御ポート114とバルブ制御室137とを接続している。したがって、バルブ中空通路311は、逆作動モードにおいて常時高圧となり、順作動モードにおいて常時低圧となっている。
 なお、バルブ逆作動通路123は、ピストン後退制御ポート113とピストン逆作動ポート134とを直接接続してもよく、あるいは、逆作動回路101に直接接続してもよい。また、バルブ順作動通路125は、ピストン前進制御ポート112とピストン前室順作動ポート135とを直接接続してもよく、あるいは、順作動回路102に直接接続してもよい。
 次に、本発明の第2実施形態の液圧式打撃装置の構成について、図3を参照して説明する。第2実施形態と第1実施形態との差異は、第1実施形態におけるバルブ制御ポート114とバルブ制御室137とを接続するバルブ制御通路126に、可変絞り128と、逆止弁129とを並列に設けてバルブ制御通路126´とした点である。ここで、逆止弁129は、バルブ制御ポート114側からバルブ制御室137へ圧油が流入することを許容し、バルブ制御室137側からバルブ制御ポート114へ圧油が流出することを規制するように設けられている。
 この可変絞り128と逆止弁129の構成が、上記課題を解決するための手段に記載の「遅延手段」に対応している。この遅延手段は、バルブ後退に伴うピストン前後室の高低圧切換動作時間を、バルブ前進に伴うピストン前後室の高低圧切換動作時間よりも延長する手段となる。したがって、第2実施形態は、「短縮手段」および「遅延手段」の両方を備えていることになる。
 なお、第1実施形態と第2実施形態の作用効果については、図6および図7の作動原理図を参照しながら詳細を後述する。
 次に、本発明の第3実施形態の液圧式打撃装置について図4を参照して説明する。第1実施形態との差異は、逆作動回路101には、高圧アキュムレータ400と低圧アキュムレータ402を、切換弁機構210側が高圧アキュムレータとなるように並べて設けるとともに、順作動回路102には、高圧アキュムレータ403と低圧アキュムレータ401を、切換弁機構210側が高圧アキュムレータとなるように並べて設けた点である。
 次に、本発明の第4実施形態の液圧式打撃装置について図5を参照して説明する。第1実施形態との差異は、高圧アキュムレータ400と低圧アキュムレータ401を廃止し、バックヘッド410をシリンダ100の後部に設け、バックヘッド410内部のピストン200が挿通する空間を、ガスを充填したガス室411とした点である。
 次に、本発明の液圧式打撃装置の動作および作用効果を、第2実施形態を例に図6および図7を参照しつつ説明する。なお、両図では、高圧状態のときの通路を「太い網掛け」にて図示し、低圧状態のときの通路を「細い網掛け」にて図示している。
 図6において、作動切換弁105は、逆作動モード、すなわち、逆作動回路101と高圧回路103とを接続する位置(順作動回路102と低圧回路104とを接続する位置)に切換えられている。
 今、図6(a)に示すように、切換弁機構210のバルブ300が前進位置に切換えられると、ピストン逆作動ポート134とピストン後室通路121とが連通してピストン後室111が高圧となる。一方、ピストン前室順作動ポート135とピストン前室通路120とが連通してピストン前室110が低圧となる。これにより、ピストン200は前進する。
 このとき、弁室130は、バルブ本体逆作動通路313によって逆作動回路101に常時接続されており、バルブ前端面308とバルブ後端面309の両方が高圧となっている。バルブ前端面308とバルブ後端面309の両方に高圧が作用しているので、上記(式3)により、バルブ300は前進位置に保持される(図6(a)参照)。
 次いで、図6(b)に示すように、ピストン200が前進して、バルブ制御ポート114とピストン前進制御ポート112との連通が途絶え、それに代わり、バルブ制御ポート114がピストン後退制御ポート113と連通する。これにより、バルブ逆作動通路123からの高圧油がバルブ制御通路126´を経てバルブ制御室137に供給される。このとき、バルブ制御通路126´内において、圧油は逆止弁129を通過するので、可変絞り128によって調整されることはない。
 バルブ制御室137が高圧になるとバルブ段付面310に高圧が作用し、上記(式4)によりバルブ300は後退を開始する(図6(b)参照)。このとき、バルブ300の後退に伴うピストン前室110およびピストン後室111の高低圧切換動作時間は上記(式6)によりLnに比例する。
 ピストン200は、打撃効率が最大のときに打撃点に達し(図6(b)から(c)の間)、打撃点にてピストン200の先端が打撃用のロッド(不図示)の後端を打撃する。これにより、打撃により発生する衝撃波がロッドを介して先端のビット等まで伝播して岩盤等を破砕するエネルギーとして使用される。
 ピストン200が打撃点まで達した直後に、バルブ300は、その後退位置への切換が完了する。バルブ後退位置では、ピストン逆作動ポート134とピストン前室通路120が連通してピストン前室110が高圧となる。一方、ピストン後室順作動ポート136とピストン後室通路121とが連通してピストン後室111が低圧となる。これにより、ピストン200は後退に転じる。バルブ制御室137が高圧を維持している間は、バルブ300は後退位置に保持される(図6(c)参照)。
 次いで、ピストン200が後退して、バルブ制御ポート114とピストン後退制御ポート113との連通が途絶え、それに代わり、バルブ制御ポート114がピストン前進制御ポート112に連通する。これにより、バルブ制御室137がバルブ制御通路126´とバルブ順作動通路125を経て低圧回路104に接続される。バルブ制御室137が低圧になると、上記(式3)によりバルブ300は前進を開始する。
 このとき、バルブ300の前進に伴うピストン前室110およびピストン後室111の高低圧切換動作時間は、上記(式7)によりLrに比例する。また、バルブ制御通路126´内において、圧油は逆止弁129によって可変絞り128側を通過するので流量が調整され、高圧状態から中圧状態(通路を「破線」で示す)を経て低圧状態へと推移する。(図6(d)参照)。そして、バルブ300が再び前進位置に切換えられ、上記の打撃サイクルが繰り返される。
 ここで、図6(b)におけるバルブ300の後退に伴うピストン前室110およびピストン後室111の高低圧切換動作時間と、図6(d)におけるバルブ300の前進に伴うピストン前室110およびピストン後室111の高低圧切換動作時間は、上記(式8)により、バルブ300の後退の方が短縮される。さらには、図6(d)においてバルブ制御通路126´内の圧油の流速が可変絞り128によって調整されるので、バルブ300の前進動作が遅延する。
 一方、図7において、作動切換弁105は順作動モード、すなわち、順作動回路102と高圧回路103相互(逆作動回路101と低圧回路104相互)を接続する位置に切換えられている。今、図7(a)に示すように、切換弁機構210のバルブ300が後退位置に切換えられると、ピストン後室順作動ポート136とピストン後室通路125とが連通してピストン後室111が高圧となる。一方、ピストン前室順作動ポート135とピストン前室通路120とが連通してピストン前室110が低圧となる。これにより、ピストン200は前進する。
 このとき、弁室130は、バルブ本体逆作動通路313によって逆作動回路101に常時接続されており、バルブ前端面308とバルブ後端面309の両方が低圧となっているが、バルブ段付面(前)310とバルブ段付面312の両方に高圧が作用しているので、上記(式5)により、バルブ300は後退位置に保持される(図7(a)参照)。
 次いで、ピストン200が前進して、バルブ制御ポート114とピストン前進制御ポート112の連通が途絶え、それに代わり、バルブ制御ポート114がピストン後退制御ポート113と連通する。これにより、バルブ制御室137の高圧油がバルブ制御通路126´を経てバルブ逆作動通路123へと流出する。
 このとき、バルブ300の前進に伴うピストン前室110およびピストン後室111の高低圧切換動作時間は、上記(式7)によりLrに比例する。また、バルブ制御通路126´内において、圧油は逆止弁129によって可変絞り128側を通過するので流量が調整され、高圧状態から中圧状態を経て低圧状態へと推移する。バルブ制御室137が低圧になると、バルブ段付面312のみに高圧が作用し、バルブ300は前進を開始する(図7(b)参照)。
 ピストン200は、打撃効率を高めながら打撃点に達し(図7(b)から(c)の間)、打撃点にてピストン200の先端が打撃用のロッド(不図示)の後端を打撃する。これにより、打撃により発生する衝撃波が、ロッドを介して先端のビット等まで伝播して岩盤等を破砕するエネルギーとして使用される。
 バルブ前進位置では、ピストン前室順作動ポート135とピストン前室通路120とが連通してピストン前室110が高圧となる。一方、ピストン逆作動ポート134とピストン後室通路121とが連通してピストン後室111が低圧となる。
 これにより、ピストン200は後退に転じる。バルブ制御室137が低圧を維持している間は、バルブ300は前進位置に保持される。バルブ300がその前進位置へと切換えが完了するのは、後述する通り、ピストン200が打撃点まで達した若干後になるが、ピストン200がロッドを打撃した反発によって既に後退を開始するので、打撃力に及ぼす影響は少ない(図7(c)参照)。
 次いで、ピストン200が後退して、バルブ制御ポート114とピストン後退制御ポート113との連通が途絶え、それに代わり、バルブ制御ポート114がピストン前進制御ポート112と連通する。これにより、バルブ制御室137がバルブ制御通路126´とバルブ順作動通路125とを経て順作動回路102に接続される。バルブ制御室137が高圧状態になると、上記(式5)によりバルブ300は後退を開始する。
 このとき、バルブ300の後退に伴うピストン前室110およびピストン後室111の高低圧切換動作時間は、上記(式6)によりLnに比例する。また、バルブ制御通路126´内において、圧油は逆止弁129を通過するので可変絞り128によって調整されることはない(図7(d)参照)。そして、バルブ300が再び後退位置に切換えられ、上記の打撃サイクルが繰り返される。
 ここで、図7(b)におけるバルブ300の前進に伴うピストン前室110およびピストン後室111の高低圧切換動作時間と、図7(d)におけるバルブ300の後退に伴うピストン前室110およびピストン後室111の高低圧切換動作時間は、上記(式8)によりバルブ300の後退の方が短縮される。さらには、図7(b)においてバルブ制御通路126´内の圧油の流速が、可変絞り128によって調整されるので、バルブ300の前進動作が遅延する。
 次に、図6に示す逆作動モードと図7に示す順作動モードについて、本発明の主要構成要素である「短縮手段」に着目して対比する。
a)ピストン200が後退から前進に転じる局面
 逆作動モード(図6(a))ではバルブ300は前進位置、順作動モード(図7(a))ではバルブ300は後退位置にそれぞれ保持されており、両者において、ピストン200の前進動作に差異はない。
b)ピストン200が前進してピストン後退制御ポート113が連通する局面
 逆作動モード(図6(b))では、バルブ300は後退に転じ、順作動モード(図7(b))では、バルブ300は前進に転じる。
 上記(式8)により、バルブ後退に伴うピストン前室110およびピストン後室111の高低圧切換動作時間は、バルブ前進に伴うピストン前室110およびピストン後室111の高低圧切換動作時間よりも短くなる。前述した通り、一般的な液圧式打撃装置では、逆作動モードを採用しているので、この局面においては、逆作動モードのバルブ300の切換えが正規のタイミングに設定されており、相対的に順作動モードのバルブ300切換えタイミングが遅くなることになる。
c)ピストン200が打撃点に達し、バルブ300の切換が完了する局面
 上記b)の通り、順作動モード(図7の(b)から(c)の間)は、逆作動モード(図6の(b)から(c)の間)に対して、ピストン200が前進から後退に転じる際のバルブ300の切換えが正規のタイミングから遅延していても、ピストン200が打撃点に達してロッドを打撃すると、反発により後退に転ずるので打撃特性に大きな影響は与えない。
d)ピストン200が後退してピストン前進制御ポート112が連通する局面
 逆作動モード(図6(b))では、バルブ300は前進に転じ、順作動モード(図7(b))では、バルブ300は後退に転じる。
 上記b)と同様に、バルブ後退に伴うピストン前室110およびピストン後室111の高低圧切換動作時間は、バルブ前進に伴うピストン前室110およびピストン後室111の高低圧切換動作時間よりも短くなる。したがって、順作動モードのバルブ300の切換えが逆作動モードのバルブ300切換えのタイミングよりも早くなるので、ピストン200の後退完了位置、すなわち、後死点は前方へと移動し、ピストンストロークが短縮される。
 以上をまとめると、切換弁機構210に「短縮手段」を設けることで、順作動モードは、逆作動モードに比べるとショートストローク化が図られる。したがって、通常の作業は、逆作動モードで行い、打撃力の低い軽打撃が必要となる作業の場合に、作動切換弁105で順作動モードに切換えて作業を行うことが可能である。なお、第1実施形態は、上述した「短縮手段」のみを備えたものである。
 次に、図6に示す逆作動モードと図7に示す順作動モードについて、本発明の主要構成要素である「遅延手段」に着目して対比する。
a´)ピストン200が後退から前進に転じる局面
 逆作動モード(図6(a))ではバルブ300は前進位置、順作動モード(図7(a))ではバルブ300は後退位置にそれぞれ保持されており、両者においてピストン200の前進動作に差異はない。
b´)ピストン200が前進してピストン後退制御ポート113が連通する局面
 逆作動モード(図6(b))では可変絞り128は作用しないが、順作動モード(図7(b))では可変絞り128によってバルブ制御室137から高圧油が流出する速度が調整されるので、順作動モードのバルブ300切換えタイミングが遅くなることになる。
c´)ピストン200が打撃点に達し、バルブ300の切換が完了する局面
 上記b)の通り、順作動モード(図7の(b)から(c)の間)は逆作動モード(図6の(b)から(c)の間)に対して、ピストン200が前進から後退に転じる際のバルブ300の切換えが、正規のタイミングから遅延していても、ピストン200が打撃点に達してロッドを打撃すると、反発により後退に転ずるので打撃特性に大きな影響は与えない。
d´)ピストン200が後退してピストン前進制御ポート112が連通する局面
 逆作動モード(図6(b))では、可変絞り128によってバルブ制御室137から高圧油が流出する速度が調整され、順作動モード(図7(b))では、可変絞り128は作用しないので、逆作動モードでのバルブ300の切換えのタイミングが遅くなり、ピストン200の後退完了位置、すなわち、後死点は後方へと移動し、ピストンストロークが延長される。
 以上をまとめると、切換弁機構210に「遅延手段」を設けることで、逆作動モードは、順作動モードに比べるとロングストローク化が図られる。そして、ストロークの延長量は、可変絞り128の調整量によって制御可能である。
 したがって、本実施形態の液圧式打撃装置によれば、短縮手段と遅延手段を設けることで、図8にピストンストローク-速度線図を示すように、順作動モードにあっては、ショートストローク(同図のSshort)とすることができ、また、逆作動モードにあっては、標準ストローク(同図のSnormal)からロングストローク(同図のSlong)までの設定変更が可能となる。
 なお、同図において、横軸Sはピストンストローク、縦軸Vはピストン速度であり、Vlong、Vnormal、Vshortは、それぞれのピストンストロークにおける打撃時の速度、Sは打撃点から後退時の最大速度を示している。
 次に、本発明の第1実施形態と第3実施形態の対比、すなわち、アキュムレータのレイアウトの差異がもたらす作用効果について説明する。
 前述した通り、本発明では、逆作動モードを通常の作動モードとして採用しているので、第1実施形態では、逆作動回路101に高圧アキュムレータ400、順作動回路102に低圧アキュムレータ401を配設している。高圧アキュムレータ400と低圧アキュムレータ401は、圧力容器やダイヤフラムといった構成部材は共通しており、封入するガス圧の設定値を、高圧アキュムレータ400は高圧に設定し、低圧アキュムレータ401は低圧に設定している。
 第1実施形態においては、通常の動作モードとして、作動切換弁105は逆作動モード位置に切換えられるので、高圧アキュムレータ400は高圧油を伝播する衝撃や脈動を蓄圧することで吸収し、回路内で油量が不足すると蓄圧した圧油を放出することで圧油の供給不足を補っている。一方、低圧アキュムレータ401は低圧油を伝播する衝撃や脈動を蓄圧することで吸収している。
 ここで、第1実施形態において、作動切換弁105を切換えて順作動モードを選択すると、高圧アキュムレータ400側が低圧に、低圧アキュムレータ401側が高圧になり、特に高圧油を蓄圧することになる低圧アキュムレータ401の能力不足が懸念される。しかし、作動原理図で説明した通り、順作動モードは、ピストンストロークがショートストローク化されるので、管路内の衝撃や脈動は相対的に穏やかとなる。そのため、低圧アキュムレータ401でも大きな支障はない。
 これに対し、第3実施形態は、逆作動回路101、順作動回路102それぞれに一対の高圧アキュムレータ400、403と低圧アキュムレータ401、402を、高圧アキュムレータ400、403が切換弁機構210側となるように並べて設けているので、逆作動モードと順作動モードのどちらが選択されても、高圧アキュムレータと低圧アキュムレータの本来のパフォーマンスを発揮することが可能となる。
 次に、本発明の第4実施形態の作用効果について説明する。
 この種の液圧式打撃装置におけるアキュムレータの作用効果は、回路内の圧油を伝搬する衝撃や、脈動を吸収することで機器の損傷を防止する「緩衝作用」と、回路内の油量がポンプの吐出量に対して過剰な場合は蓄圧し、不足する場合は蓄圧した圧油を放出する「エネルギー蓄積作用」である。
 ここで、エネルギー蓄積作用に着目すると、回路内の油量の過不足はピストン200が前進後退することによって引き起こされることから、アキュムレータは、ピストン200の運動エネルギーを、圧油を媒体として蓄圧・放出することで打撃エネルギーに転嫁しているといえる。
 一方で、第4実施形態は、ピストン200の運動エネルギーを、圧油を媒体として打撃エネルギーに転嫁するのではなく、ピストン200の後退時における運動エネルギーを、直接、バックヘッド410のガス室411内で蓄圧・放出することで打撃エネルギーに転嫁するものである。
 本発明の基本コンセプトは、高圧回路103と低圧回路104とを相互に切換えて打撃特性を変化させるというものである。第1実施形態では、高圧回路103には高圧アキュムレータ400が設けられ、低圧回路104には低圧アキュムレータ401が設けられており、回路切換えにより、それぞれのアキュムレータの本来の性能が発揮できない場合が起こりうることは上述した通りであるが、バックヘッド410によるエネルギー蓄積作用は、回路切換えの影響を受けないので本発明に好適である。
 しかし、回路内の圧油の衝撃や脈動から機器の損傷を防止する緩衝作用に関しては、アキュムレータの代替手段として、バックヘッド410側で、ある程度緩衝することができるものの、アキュムレータに比べるとその効果は限定的である。そのため、第4実施形態は、回路内の圧油の衝撃や脈動が比較的に小さい小型の液圧式打撃機構で採用することが好ましい。
 なお、第4実施形態はアキュムレータを省略することから、液圧式打撃装置を小型化、かつ構成を簡素化することが可能となるので好ましい。
 以上、本発明の各実施形態について図面を参照して説明したが、本発明に係るピストン前後室高低圧切換方式の液圧式打撃装置は、上記実施形態に限定されるものではなく、本発明の主旨を逸脱しなければ、その他の種々の変形や各構成要素を変更することが許容されることは勿論である。
 例えば、上記実施形態では、図2に示す切換弁機構のように、バルブ前進動作と後退動作に時間差を創出する方策として、バルブとポートの開口幅(シール長)を用いた例を説明したが、これに限らず、受圧面積差の設定によっても時間差を創出可能であり、また、逆作動回路と順作動回路の管路面積差、すなわち、管路抵抗の差を利用することでも可能である。
 また、ピストンの軸線とバルブの軸線は互いに平行であるが、これを直交方向に設定しても構わない。また、第1実施形態と第4実施形態を同時に実施、すなわち、高圧回路と低圧回路にそれぞれアキュムレータを設けるとともに、シリンダ後部にガス室を備えたバックヘッドを設けてもよい。
100  シリンダ
101  逆作動回路
102  順作動回路
103  高圧回路
104  低圧回路
105  作動切換弁
110  ピストン前室
111  ピストン後室
112  ピストン前進制御ポート
112a ピストン前進制御ポート(ショートストローク)
113  ピストン後退制御ポート
114  バルブ制御ポート
120  ピストン前室通路
121  ピストン後室通路
123  バルブ逆作動通路
125  バルブ順作動通路
126、126´ バルブ制御通路
127  可変絞り
128  可変絞り
129  逆止弁
130  弁室
131  弁室大径部
132  弁室小径部
133  弁室中径部
134  ピストン逆作動ポート
134a ピストン逆作動ポート溝側面(前)
134b ピストン逆作動ポート溝側面(後)
135  ピストン前室順作動ポート
135b ピストン前室順作動ポート溝側面(後)
136  ピストン後室順作動ポート
136a ピストン後室順作動ポート溝側面(前)
137  バルブ制御室
200  ピストン
201  大径部(前)
202  大径部(後)
203  小径部(前)
204  小径部(後)
205  バルブ切換溝
210  切換弁機構
300  バルブ
301  バルブ大径部(前)
302  バルブ大径部(中)
303  バルブ大径部(後)
304  バルブ小径部
305  バルブ中径部
306  ピストン前室切換溝
306a ピストン前室切換溝側壁(前)
306b ピストン前室切換溝側壁(後)
307  ピストン後室切換溝
307a ピストン後室切換溝側壁(前)
307b ピストン後室切換溝側壁(後)
308  バルブ前端面
309  バルブ後端面
310  バルブ段付面(前)
311  バルブ中空通路
312  バルブ段付面(後)
313  バルブ本体逆作動通路
400  高圧アキュムレータ
401  低圧アキュムレータ
402  低圧アキュムレータ
403  高圧アキュムレータ
410  バックヘッド
411  ガス室
Ln1~4 順作動開口幅(シール長)
Lr1~4 逆作動開口幅(シール長)
P    ポンプ
T    タンク
500  シリンダ
501  ピストン前室
502  ピストン後室
503  ピストン前進制御ポート
503a ピストン前進制御ポート(ショートストローク)
504  ピストン後退制御ポート
505  排油ポート
506  切換弁機構
507  バルブ主室
508  バルブ前室
509  バルブ後室
510  ピストン後室高圧ポート
511  ピストン後室切換ポート
512  ピストン後室低圧ポート
513  高圧回路
514  高圧通路
515  ピストン後室通路
516  ピストン前室通路
517  バルブ後室通路
518  バルブ制御通路
518a バルブ前室高圧通路(ショートストローク)
518b バルブ前室高圧通路
518c バルブ前室低圧通路
519  低圧回路
520  バルブ低圧通路
521  ピストン低圧通路
522  ピストン
523  大径部(前)
524  大径部(後)
525  中径部
526  小径部
527  バルブ切換溝
528  バルブ
529  バルブ大径部(前)
530  バルブ大径部(後)
531  バルブ中径部
532  バルブ小径部
533  バルブ後退規制部
534  ピストン後室高圧切換溝
535  ピストン後室低圧切換溝
536  高圧アキュムレータ
537  低圧アキュムレータ
540  切換弁機構

Claims (5)

  1.  シリンダと、該シリンダの内部に摺嵌されたピストンと、該ピストンの外周面と前記シリンダの内周面との間に画成されて軸方向の前後に離隔配置されたピストン前室およびピストン後室と、前記ピストン前室および前記ピストン後室を交互に高圧状態と低圧状態とに切換える切換弁機構とを備え、前記ピストンを前記シリンダ内で前後進させて打撃用のロッドを打撃する液圧式打撃装置であって、
     前記切換弁機構は、前記シリンダ内にピストンとは非同軸に形成された弁室と、該弁室内に摺嵌されて前記ピストン前室と前記ピストン後室とを交互に高圧状態と低圧状態とに切換える高低圧切換部が形成されたバルブと、該バルブを前方へと常時付勢するバルブ付勢手段と、圧油が供給されたときに前記バルブ付勢手段の付勢力に抗して前記バルブを後方へと移動させるバルブ制御手段とを備え、
     前記切換弁機構には、逆作動回路と順作動回路が接続され、前記逆作動回路と前記順作動回路は、作動切換弁を介して高圧回路と低圧回路との接続状態を切り換え可能であり、
     前記バルブ付勢手段は、前記逆作動回路が前記高圧回路と接続された場合に作動する逆作動付勢手段と、前記順作動回路が前記高圧回路に接続された場合に作動する順作動付勢手段とを備えており、
     さらに、当該液圧式打撃装置は、前記作動切換弁の操作によって、前記バルブと前記ピストンの位相を逆位相で作動させる逆作動モードと、前記バルブと前記ピストンの位相を同位相で作動させる順作動モードとを選択可能に構成されており、
     前記高低圧切換部には、前記バルブの後退に伴う前記ピストン前室および前記ピストン後室の高低圧切換動作時間を、前記バルブの前進に伴う前記ピストン前室および前記ピストン後室の高低圧切換動作時間よりも短くする短縮手段が設けられていることを特徴とする液圧式打撃装置。
  2.  前記短縮手段は、前記バルブの前進時に前記バルブによって閉塞するポートの開口幅と、前記バルブの後退時に前記バルブによって閉塞するポートの開口幅との差である請求項1に記載の液圧式打撃装置。
  3.  前記バルブ制御手段は、圧油が供給される際には規制がなく、圧油が排出される際に流量を調整する絞りからなる遅延手段を有する請求項1または2に記載の液圧式打撃装置。
  4.  前記逆作動回路に設けられた高圧アキュムレータと、前記順作動回路に設けられた低圧アキュムレータとを有する請求項1~3のいずれか一項に記載の液圧式打撃装置。
  5.  前記逆作動回路および前記順作動回路のそれぞれに設けられた高圧アキュムレータおよび低圧アキュムレータを有し、
     前記高圧アキュムレータと前記低圧アキュムレータとは、前記高圧アキュムレータが前記切換弁機構側となるように並べて設けられている請求項1~3のいずれか一項に記載の液圧式打撃装置。
PCT/JP2017/029752 2016-08-31 2017-08-21 液圧式打撃装置 WO2018043175A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17846183.6A EP3508308B1 (en) 2016-08-31 2017-08-21 Hydraulic striking device
US16/329,160 US11084155B2 (en) 2016-08-31 2017-08-21 Hydraulic striking device
CN201780052007.XA CN109641347B (zh) 2016-08-31 2017-08-21 液压式冲击装置
ES17846183T ES2927066T3 (es) 2016-08-31 2017-08-21 Dispositivo percutor hidráulico
JP2018537137A JP6588651B2 (ja) 2016-08-31 2017-08-21 液圧式打撃装置
KR1020197005780A KR102163473B1 (ko) 2016-08-31 2017-08-21 액압식 타격장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-168995 2016-08-31
JP2016168995 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043175A1 true WO2018043175A1 (ja) 2018-03-08

Family

ID=61301633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029752 WO2018043175A1 (ja) 2016-08-31 2017-08-21 液圧式打撃装置

Country Status (7)

Country Link
US (1) US11084155B2 (ja)
EP (1) EP3508308B1 (ja)
JP (1) JP6588651B2 (ja)
KR (1) KR102163473B1 (ja)
CN (1) CN109641347B (ja)
ES (1) ES2927066T3 (ja)
WO (1) WO2018043175A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016931A (ja) * 2019-07-23 2021-02-15 古河ロックドリル株式会社 液圧式打撃装置
RU2784268C1 (ru) * 2022-06-27 2022-11-23 Федеральное государственное бюджетное учреждение науки Институт горного дела им. Н.А. Чинакала Сибирского отделения Российской академии наук (ИГД СО РАН) Система гидроударных устройств исполнительного органа базовой машины

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043175A1 (ja) * 2016-08-31 2018-03-08 古河ロックドリル株式会社 液圧式打撃装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111401A (en) * 1975-03-26 1976-10-01 Linden Alimak Ab Device for drilling rock
JPH02298477A (ja) * 1989-05-10 1990-12-10 Mazda Motor Corp 打撃工具
EP0739691A1 (de) * 1995-04-27 1996-10-30 Böhler Druckluft und Hydraulik Baugeräte GmbH Einrichtung zum Verstellen des Hubes von fluidgesteuerten Schlageinrichtungen
JP2005177899A (ja) * 2003-12-17 2005-07-07 Konan Electric Co Ltd 液圧式打撃装置
WO2015115105A1 (ja) * 2014-01-30 2015-08-06 古河ロックドリル株式会社 液圧式打撃装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB171944A (en) 1921-04-20 1921-12-01 George Henry Turton Rayner Improvements in or relating to valve apparatus for rock drills and like fluid pressure operated tools
DE1703061C3 (de) * 1968-03-27 1974-02-14 Fried. Krupp Gmbh, 4300 Essen Hydraulisch betriebener Schubkolbenmotor
JPS4912785B1 (ja) 1969-11-19 1974-03-27
US3759335A (en) * 1971-12-30 1973-09-18 Bell Lab Inc Mole hammer-cycle control
US4006783A (en) * 1975-03-17 1977-02-08 Linden-Alimak Ab Hydraulic operated rock drilling apparatus
US4314612A (en) * 1978-07-20 1982-02-09 Battelle Development Corporation Hydraulic linear impact tool
DE3443542A1 (de) * 1984-11-29 1986-06-05 Fried. Krupp Gmbh, 4300 Essen Hydraulische schlagvorrichtung
WO1987003925A1 (fr) * 1985-12-23 1987-07-02 Spetsialnoe Konstruktorskoe Bjuro Gidroimpulsnoi T Dispositif de percussion
FR2618092B1 (fr) * 1987-07-17 1989-11-10 Montabert Ets Distributeur hydraulique pour appareil a percussions mu par un fluide incompressible sous pression
DE3913866A1 (de) * 1989-04-27 1990-10-31 Krupp Maschinentechnik Hydraulisches schlagwerk
FR2647870B1 (fr) * 1989-06-06 1991-09-06 Eimco Secoma Appareil de percussion hydraulique avec dispositif d'amortissement des ondes de choc en retour
DE4027021A1 (de) * 1990-08-27 1992-03-05 Krupp Maschinentechnik Hydraulisch betriebene schlagdrehbohrvorrichtung, insbesondere zum ankerlochbohren
SE9202105L (sv) * 1992-07-07 1994-01-08 Atlas Copco Rocktech Ab Slagverk
EP0672506B1 (de) * 1994-02-19 2001-07-11 Klemm, Günter, Prof Dr. Hydraulischer Schlaghammer
FI104961B (fi) * 1996-07-19 2000-05-15 Sandvik Tamrock Oy Painenestekäyttöinen iskuvasara
JP3817617B2 (ja) * 1999-05-10 2006-09-06 新日本製鐵株式会社 さく孔装置
FI20010976A (fi) 2001-05-09 2002-11-10 Sandvik Tamrock Oy Menetelmä iskulaitteen työkierron ohjaamiseksi ja iskulaite
JP3967182B2 (ja) * 2002-04-17 2007-08-29 古河機械金属株式会社 液圧式打撃装置のストローク調整機構
JP4488694B2 (ja) * 2003-06-25 2010-06-23 甲南電機株式会社 液圧式打撃装置
SE528745C2 (sv) * 2005-06-22 2007-02-06 Atlas Copco Rock Drills Ab Ventilanordning för slagverk och slagverk för bergborrmaskin
SE529615C2 (sv) * 2006-02-20 2007-10-09 Atlas Copco Rock Drills Ab Slagverk och bergborrmaskin samt förfarande för att styra slagkolvens slaglängd
JP4912785B2 (ja) 2006-08-03 2012-04-11 古河ロックドリル株式会社 液圧式打撃装置
SE530524C2 (sv) * 2006-09-13 2008-07-01 Atlas Copco Rock Drills Ab Slagverk, bergborrmaskin inkluderande ett dylikt slagverk och förfarande för styrning av ett slagverk
SE530885C2 (sv) * 2007-02-23 2008-10-07 Atlas Copco Rock Drills Ab Förfarande vid slagverk, slagverk och bergborrmaskin
FI123634B (fi) * 2007-10-05 2013-08-30 Sandvik Mining & Constr Oy Kallionrikkomislaite, suojaventtiili sekä menetelmä kallionrikkomislaitteen käyttämiseksi
CA2810914A1 (en) * 2010-09-10 2012-03-15 Rockdrill Services Australia Pty Ltd Improved rock drill
FR2983760B1 (fr) * 2011-12-09 2014-08-15 Montabert Roger Procede de commutation de la course de frappe d'un piston de frappe d’un appareil a percussions
WO2015092875A1 (ja) * 2013-12-18 2015-06-25 日本ニューマチック工業株式会社 衝撃動工具
WO2015115106A1 (ja) * 2014-01-31 2015-08-06 古河ロックドリル株式会社 液圧式打撃装置
US9701003B2 (en) * 2014-05-23 2017-07-11 Caterpillar Inc. Hydraulic hammer having delayed automatic shutoff
DE102014108849B9 (de) * 2014-06-25 2022-12-22 Construction Tools Gmbh Drucküberwachungsvorrichtung
FR3027543B1 (fr) * 2014-10-28 2016-12-23 Montabert Roger Appareil a percussions
US20160199969A1 (en) * 2015-01-12 2016-07-14 Caterpillar Inc. Hydraulic hammer having variable stroke control
FR3044572B1 (fr) * 2015-12-02 2017-12-29 Montabert Roger Dispositif brise roches
WO2018043175A1 (ja) * 2016-08-31 2018-03-08 古河ロックドリル株式会社 液圧式打撃装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111401A (en) * 1975-03-26 1976-10-01 Linden Alimak Ab Device for drilling rock
JPH02298477A (ja) * 1989-05-10 1990-12-10 Mazda Motor Corp 打撃工具
EP0739691A1 (de) * 1995-04-27 1996-10-30 Böhler Druckluft und Hydraulik Baugeräte GmbH Einrichtung zum Verstellen des Hubes von fluidgesteuerten Schlageinrichtungen
JP2005177899A (ja) * 2003-12-17 2005-07-07 Konan Electric Co Ltd 液圧式打撃装置
WO2015115105A1 (ja) * 2014-01-30 2015-08-06 古河ロックドリル株式会社 液圧式打撃装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508308A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016931A (ja) * 2019-07-23 2021-02-15 古河ロックドリル株式会社 液圧式打撃装置
JP7359584B2 (ja) 2019-07-23 2023-10-11 古河ロックドリル株式会社 液圧式打撃装置
RU2784268C1 (ru) * 2022-06-27 2022-11-23 Федеральное государственное бюджетное учреждение науки Институт горного дела им. Н.А. Чинакала Сибирского отделения Российской академии наук (ИГД СО РАН) Система гидроударных устройств исполнительного органа базовой машины

Also Published As

Publication number Publication date
JP6588651B2 (ja) 2019-10-09
US11084155B2 (en) 2021-08-10
CN109641347A (zh) 2019-04-16
KR20190034290A (ko) 2019-04-01
ES2927066T3 (es) 2022-11-02
US20190224835A1 (en) 2019-07-25
EP3508308B1 (en) 2022-08-17
KR102163473B1 (ko) 2020-10-08
JPWO2018043175A1 (ja) 2019-02-21
EP3508308A1 (en) 2019-07-10
CN109641347B (zh) 2021-08-31
EP3508308A4 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6438896B2 (ja) 液圧式打撃装置
JP4689478B2 (ja) 一体化されたアキュムレータを備えた液圧シリンダ
JP6588651B2 (ja) 液圧式打撃装置
JP6463476B2 (ja) 液圧式打撃装置
JP6713778B2 (ja) 液圧式打撃装置
JP6713853B2 (ja) 液圧式打撃装置
JP6792034B2 (ja) 油圧打撃装置
JP2015163426A (ja) 液圧式打撃装置
JP4912785B2 (ja) 液圧式打撃装置
JP6470058B2 (ja) 液圧式打撃装置
JP2017217727A (ja) 油圧ダウンザホールドリルの打撃機構
JP6757682B2 (ja) 液圧式打撃装置
JP6495672B2 (ja) 液圧式打撃装置、並びにバルブタイミングの切換方法およびバルブポートの設定方法
JP2021016931A (ja) 液圧式打撃装置
JP6594705B2 (ja) 液圧式打撃装置
JP6502076B2 (ja) 増速弁およびこれを備える折り曲げ式クレーン
JP2009097582A (ja) バルブ装置
JP7057171B2 (ja) 液圧式打撃装置
JP2005207508A (ja) 流体圧回路
JPH06307413A (ja) 油圧シリンダ装置
JP2009079769A (ja) 油圧制御装置
JPH05190B2 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537137

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005780

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017846183

Country of ref document: EP

Effective date: 20190401