WO2015115105A1 - 液圧式打撃装置 - Google Patents
液圧式打撃装置 Download PDFInfo
- Publication number
- WO2015115105A1 WO2015115105A1 PCT/JP2015/000408 JP2015000408W WO2015115105A1 WO 2015115105 A1 WO2015115105 A1 WO 2015115105A1 JP 2015000408 W JP2015000408 W JP 2015000408W WO 2015115105 A1 WO2015115105 A1 WO 2015115105A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- piston
- chamber
- port
- control port
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D9/00—Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
- B25D9/14—Control devices for the reciprocating piston
- B25D9/145—Control devices for the reciprocating piston for hydraulically actuated hammers having an accumulator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D9/00—Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
- B25D9/14—Control devices for the reciprocating piston
- B25D9/16—Valve arrangements therefor
- B25D9/18—Valve arrangements therefor involving a piston-type slide valve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D9/00—Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
- B25D9/14—Control devices for the reciprocating piston
- B25D9/16—Valve arrangements therefor
- B25D9/20—Valve arrangements therefor involving a tubular-type slide valve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D9/00—Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
- B25D9/14—Control devices for the reciprocating piston
- B25D9/26—Control devices for adjusting the stroke of the piston or the force or frequency of impact thereof
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/96—Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
- E02F3/966—Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements of hammer-type tools
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F5/00—Dredgers or soil-shifting machines for special purposes
- E02F5/30—Auxiliary apparatus, e.g. for thawing, cracking, blowing-up, or other preparatory treatment of the soil
- E02F5/305—Arrangements for breaking-up hard ground
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/08—Characterised by the construction of the motor unit
- F15B15/14—Characterised by the construction of the motor unit of the straight-cylinder type
- F15B15/1423—Component parts; Constructional details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D2209/00—Details of portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
- B25D2209/007—Details of portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously having a tubular-slide valve, which is not coaxial with the piston
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D2250/00—General details of portable percussive tools; Components used in portable percussive tools
- B25D2250/125—Hydraulic tool components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7051—Linear output members
Definitions
- the present invention relates to a hydraulic striking device such as a rock drill or a breaker, and more particularly to a hydraulic striking device that controls hydraulic pressure oil so that a front chamber and a rear chamber of a piston are alternately switched to a high pressure circuit and a low pressure circuit. .
- a striking system (hereinafter referred to as “piston front / rear chamber high / low pressure switching type) that controls the working pressure oil so that the front chamber and rear chamber of the piston are alternately switched to a high pressure circuit and a low pressure circuit. Is also effective. That is, if the piston front / rear chamber high-low pressure switching type hydraulic striking device is used, the hydraulic fluid on the front chamber side does not resist the movement of the piston in the striking direction. Therefore, it is suitable for realizing a high hitting number.
- the piston front / rear chamber high / low pressure switching striking device described in the same document includes a large-diameter portion 521, 522 at the center in the axial direction and a small-diameter portion formed before and after the large-diameter portion, as shown schematically in FIG. And a piston 520 having 523 and 524.
- the piston 520 is slidably fitted into the cylinder 500, whereby a piston front chamber 501 and a piston rear chamber 502 are defined in the cylinder 500, respectively.
- An oil drain groove 525 is formed in the center of the piston large diameter portions 521 and 522.
- the striking direction (left direction in the figure) is defined as “front”.
- the piston front chamber 501 is connected to a piston front chamber passage 506 that allows the piston front chamber 501 to communicate with the high-pressure circuit 538 and the low-pressure circuit 539 by switching the valve 526, which will be described later.
- a piston rear chamber passage 507 is connected to the piston rear chamber 502 to connect the piston rear chamber 502 to the high pressure circuit 538 and the low pressure circuit 539 by switching the valve 526 forward and backward.
- the high voltage circuit 538 is provided with a high pressure accumulator 540
- the low voltage circuit 539 is provided with a low pressure accumulator 543.
- a piston advance control port 503 is provided behind the piston front chamber 501 at a predetermined interval, and a piston reverse control port 504 is provided at a predetermined interval in front of the piston rear chamber 502.
- the piston advance control port 503 has two openings for normal stroke and short stroke, and the piston advance control port 503a on the piston front chamber 501 side is for short stroke with a variable throttle. is there.
- the normal stroke setting that is, the variable throttle is fully closed and the piston advance control port 503 on the piston rear chamber 502 side operates will be described.
- a piston retraction control interlocking port 508 is provided behind the piston advance control port 503 at a predetermined interval. Further, a piston advance control interlocking port 509 is provided in front of the piston retreat control port 504 with a predetermined interval. Between the piston reverse control interlocking port 508 and the piston advance control interlocking port 509, an oil discharge port 505 is provided with a predetermined distance therebetween. Further, the piston advance control port 503 and the piston retraction control interlocking port 508 are communicated with each other by a valve rear chamber 511 and a valve control passage 518, which will be described later, and the piston retraction control port 504 and the piston advance control interlocking port 509 are described later.
- the front chamber 510 communicates with the valve control passage 517.
- a valve chamber 541 is formed in the cylinder 500 non-coaxially with the piston 520, and a valve 526 is slidably fitted in the valve chamber 541.
- a valve front chamber 510, a valve retraction holding chamber 515, a main chamber 542, a valve advance holding chamber 516, and a valve rear chamber 511 are formed by an annular step in order from the front to the rear.
- the main chamber 542 is provided with a piston front chamber low pressure port 512, a piston high pressure port 514, and a piston rear chamber low pressure port 513 spaced apart from each other by a predetermined distance from the front to the rear.
- a piston front chamber passage 506 is connected between the piston front chamber low pressure port 512 and the piston high pressure port 514, and a piston rear chamber passage 507 is connected between the piston high pressure port 514 and the piston rear chamber low pressure port 513.
- the valve 526 includes large-diameter portions 527, 528, and 529, medium-diameter portions 530 and 531 provided in front and rear thereof, a small-diameter portion 532 provided on the front side of the medium-diameter portion 530, and a rear side of the medium-diameter portion 531.
- a solid valve body (spool) having a small-diameter portion 533 provided on the surface.
- a piston front chamber switching groove 534 is annularly provided between the large diameter portion 527 and the large diameter portion 528, and a piston rear chamber switching groove 535 is annular between the large diameter portion 528 and the large diameter portion 529. Is provided.
- the small diameter portion 532 and the piston front chamber switching groove 534 are in communication with each other through a communication passage 536, and the small diameter portion 533 and the piston rear chamber switching groove 535 are in communication with each other through a communication passage 537.
- the valve 526 has a small-diameter portion 532 positioned in the valve front chamber 510 with respect to the valve chamber 541, an intermediate-diameter portion 530 positioned in the valve receding holding chamber 515, and large-diameter portions 527, 528, and 529 in the main chamber 542. It is slidably fitted so that the medium diameter portion 531 is located in the valve advance holding chamber 516 and the small diameter portion 533 is located in the valve rear chamber 511.
- the large diameter portion 527 opens and closes the piston front chamber low pressure port 512, and the large diameter portion 528 communicates / closes the piston front chamber passage 506 and the piston high pressure port 514 at the same time as the piston rear chamber.
- the passage 507 and the piston high pressure port 514 are closed / communicated, and the large diameter portion 529 opens and closes the piston rear chamber low pressure port 513.
- valve receding holding chamber 515 When the piston front chamber passage 506 communicates with the piston high pressure port 514, the valve receding holding chamber 515 becomes high pressure. Conversely, when the piston rear chamber passage 507 communicates with the piston high pressure port 514, the valve advance holding chamber 516 becomes high pressure.
- the pressure receiving area of the valve front chamber 510 is set larger than the pressure receiving area of the valve advance holding chamber 516.
- the pressure receiving area of the valve rear chamber 511 is set larger than the pressure receiving area of the valve receding holding chamber 515.
- the passage in the high pressure state is indicated by “shaded”.
- the piston high pressure port 514 and the piston rear chamber passage 507 communicate with each other and the piston rear chamber 502 becomes high pressure.
- the piston front chamber low pressure port 512 and the piston front chamber passage 506 communicate with each other and the piston front chamber 501 is at a low pressure
- the piston 524 moves forward.
- both the valve front chamber 510 and the valve rear chamber 511 are at a low pressure
- the valve advance holding chamber 516 is at a high pressure
- the valve 526 is held at the advanced position (see FIG. 10A).
- valve front chamber 510 becomes high pressure.
- the valve front chamber 510 since the pressure receiving area of the valve front chamber 510 is larger than the pressure receiving area of the valve advance holding chamber 516, the valve 526 starts to move backward.
- the valve rear chamber 511 communicates with the low pressure circuit 539 via the valve control passage 518, the piston retraction control interlocking port 508, and the oil discharge port 505, so that the valve 526 can be retreated without any problem (see FIG. 10 (b)).
- valve 526 In the reverse phase of the valve 526 shown in FIG. 10B, assuming a hydraulic circuit in which the piston reverse control interlocking port 508 does not exist, the piston advance control port 503 is closed by the piston large diameter portion 521. Therefore, the valve rear chamber 511 and the valve control passage 518 become a closed circuit, and the valve 526 cannot be moved backward. That is, when the valve front chamber 510 communicates with the high pressure circuit 538 via the piston reverse control port 504 and the piston rear chamber 502, the valve rear chamber 511 is connected to the oil discharge port 505 in order to ensure the reverse operation of the valve 526. It can be seen that the piston retraction control interlocking port 508 communicating with the low-pressure circuit 539 via this is essential.
- the valve 526 is completely switched to its retracted position.
- the piston front chamber 501 communicates with the piston high pressure port 514 and the piston front chamber 501 becomes high pressure
- the piston rear chamber 502 communicates with the piston rear chamber low pressure port 513 and the piston rear chamber 502 becomes low pressure.
- the piston 520 turns backward.
- both the valve front chamber 510 and the valve rear chamber 511 are at a low pressure
- the valve retraction holding chamber 515 is at a high pressure
- the valve 526 is held at the retreat position (see FIG. 10C).
- valve rear chamber 511 becomes high pressure, and the pressure receiving area of the valve rear chamber 511 is larger than the pressure receiving area of the valve retraction holding chamber 515.
- the valve front chamber 510 communicates with the low pressure circuit 539 via the valve control passage 517, the piston advance control interlocking port 509, and the oil discharge port 505, so that the valve 526 can advance without any problem ( (Refer FIG.10 (d)).
- the valve 526 is switched to the forward position again, and the above cycle is repeated to perform a hit.
- the present inventor has studied the piston front / rear chamber high / low pressure switching system aiming at high output of the hydraulic striking device, but at the same time, it is important to improve the efficiency and cost of the hydraulic striking device. We regard it as an issue.
- the high efficiency of the hydraulic striking device which is the first problem, it is necessary to improve the responsiveness of the valve and keep the amount of hydraulic oil required for driving the valve low. For this purpose, it is effective to reduce the size and hollowness of the valve body.
- the hydraulic striking device which is the second problem, at low cost, it is effective to avoid complicated mechanisms and simplify the layout of ports and passages connecting the ports.
- the structure of the hydraulic striking device of the piston front / rear chamber high / low pressure switching type described in Patent Document 1 is summarized as follows. 1) The valve is driven by pressure oil from the rear / front chamber of the piston supplied to the front / rear chamber of the valve. In other words, in the technique described in this document, the front / rear chamber high / low pressure switching system is adopted for the valve as well as the piston. 2) After switching the valve, the front chamber and the rear chamber of the valve simultaneously become low pressure. Therefore, in the technique described in the document, a valve holding mechanism separate from a mechanism for moving the valve back and forth must be provided in order to hold the position of the valve.
- This valve holding mechanism is configured to supply and discharge pressure oil to and from a space formed by a valve inner diameter portion and a valve advance (retreat) holding chamber.
- a port that opens the path on the side to be pressurized (for example, the valve front chamber) and the side (valve rear chamber) opposite to the pressurization side must be provided.
- the above-mentioned 3) is provided with a port for opening a path and an oil discharge port for communicating with a low-pressure circuit.
- the valve holding mechanism in 2) above is configured to supply and discharge pressure oil to and from the space formed by the valve middle diameter portion and the valve advance (retreat) holding chamber. It is very difficult to form the supply / discharge passage on the cylinder side because the size of the valve is small. For this reason, in the technique described in this document, the pressure oil supply / discharge passage is realized as a communication passage provided inside the valve body, but this allows the valve to have a hollow structure (a structure having a hollow portion penetrating in the axial direction). ) Is impossible. Therefore, there is a problem that the responsiveness of the valve is improved and the amount of hydraulic oil required for driving the valve cannot be kept low, and the impact efficiency is low.
- Each configuration of the valve holding mechanism requires a high degree of processing accuracy, and has a multistage inner diameter surface (small diameter-medium diameter-large diameter-medium diameter-small diameter continuous valve) of the valve chamber in which the valve body is in sliding contact.
- the interior surface has a high degree of difficulty in processing itself, and it is difficult to make this part an integral structure. For this reason, there is a problem that a complicated structure in which a plurality of members are combined is inevitably increased.
- a piston advance control port 503, a piston reverse control interlocking port 508, an oil discharge port 505, a piston advance control interlocking port are arranged in order from the front between the front chamber 501 and the rear chamber 502 of the piston 520. Since 509 and the piston retraction control port 504 are opened as many as five ports, there is a problem that the processing cost of the port opened between the front and rear chambers of the piston increases.
- the two ports on the front side are configured such that one end communicates with the piston front chamber 501 and the other end communicates with the valve rear chamber 511 while merging in the valve control passage (front) 517.
- the port is configured so that one end communicates with the piston rear chamber 502 and the other end communicates with the valve front chamber 510 while merging in the valve control passage (rear) 518, so that the valve control passage (front) and the valve control are connected.
- the passage (rear) communicates the piston front / rear chamber and the valve rear / front chamber, respectively. Therefore, the passages must be arranged so as to cross each other. Therefore, there is a problem that the degree of freedom of the passage layout (port layout) is low, the passage layout is very complicated, and the processing cost is further increased.
- the present invention has been made paying attention to such problems, and an object thereof is to provide a low-cost piston front / rear chamber high / low pressure switching hydraulic hitting device while improving hitting efficiency.
- a hydraulic striking device includes a cylinder, a piston slidably fitted in the cylinder, an outer peripheral surface of the piston, and an inner peripheral surface of the cylinder.
- a piston front chamber and a piston rear chamber which are defined between the piston front chamber and the piston rear chamber, and a switching valve mechanism which switches the piston front chamber and the piston rear chamber alternately between a high pressure circuit and a low pressure circuit;
- the switching valve mechanism includes a valve chamber formed non-coaxially with the piston in the cylinder, Before and after being fitted in the valve chamber
- the piston front chamber and the piston rear chamber are alternately connected to a high pressure circuit and a low pressure circuit, and a valve having a piston high / low pressure switching portion is formed, and the valve is always attached in one direction of the forward / backward direction.
- Valve urging means for energizing, and valve control means for moving the valve in the opposite direction against the urging force of the valve urging means when pressurized oil is supplied.
- valve control port is connected to the valve control means.
- Pressure oil is communicated so as to be supplied and discharged, and is always isolated from the piston front chamber and the piston rear chamber.
- the piston advance control port communicates the valve control means with only one of the ports according to the back-and-forth movement of the valve switching groove due to the forward and backward movement of the piston, thereby supplying and discharging pressure oil to the valve control means.
- the switching valve mechanism moves the piston front chamber and the piston rear chamber alternately in accordance with the back-and-forth movement of the piston high / low pressure switching portion by the back-and-forth movement of the valve. And the hydraulic oil is supplied and discharged so that the forward and backward movements of the piston are repeated.
- the switching valve mechanism includes either the piston reverse control port or the piston forward control port according to the back-and-forth movement of the valve switching groove caused by the forward / backward movement of the piston.
- the valve control port is communicated only to this port, the piston front chamber and the piston rear chamber are alternately switched between the high pressure circuit and the low pressure circuit, and the hydraulic fluid is supplied and discharged so that the forward and backward movement of the piston is repeated. Therefore, the striking efficiency can be improved by striking the piston front / rear chamber high / low pressure switching system.
- valve urging means for constantly urging the valve in one direction in the forward / backward direction and the pressure oil are supplied.
- Valve control means that sometimes moves the valve in the opposite direction against the biasing force of the valve biasing means, so that the valve is always biased in one direction and pressure oil is supplied to the valve control means Then, the valve can be moved in the opposite direction against the biasing force. Therefore, unlike the hydraulic striking device disclosed in Patent Document 1 described above, a valve holding mechanism that is separate from the mechanism that moves the valve back and forth is unnecessary. Therefore, since the processing of the sliding contact portion of the valve is easy, the processing cost can be reduced.
- the valve has a hollow structure having a valve hollow passage penetrating in the axial direction.
- the valve hollow passage is always connected to a high-pressure circuit as a hydraulic fluid passage.
- a high-pressure circuit as a hydraulic fluid passage.
- the valve biasing means is configured by the pressure receiving area difference between the front end face and the rear end face of the valve, the configuration of the valve biasing means is simplified. This is more suitable for reducing the cost.
- the piston retraction control port is always connected to a high pressure.
- the piston retraction control port provided immediately after the piston front chamber is always connected to the high pressure circuit, so that high pressure oil always leaks to the large diameter portion of the piston located in front. Supplied. Therefore, it is suitable for reducing the occurrence of “scratching” of the piston due to the oil film running out of the large diameter portion of the piston.
- the control port on the piston front chamber side is always connected to the high-pressure circuit, it is possible to suppress the vicinity of the front chamber from being in a negative pressure state when the piston turns from backward to forward. Therefore, it is suitable for preventing cavitation from occurring and promoting the state of running out of the oil film.
- the piston advance control port is composed of a short stroke port and a long stroke port which are provided apart from each other in the front-rear direction, and the short stroke port and the valve It is preferable that a variable throttle that can be adjusted from fully closed to fully open is provided between the low pressure passages.
- a so-called “meter-out circuit” is configured to control the flow rate of the pressure oil discharged from the valve.
- the meter-out circuit has better controllability than the meter-in circuit, and is therefore suitable as a stroke adjustment mechanism for a striking device that requires linear controllability with respect to a limited adjustment amount.
- the hydraulic striking device between the path for supplying pressure oil to the valve urging means and the valve control means and the path for supplying pressure oil to the piston rear chamber. It is preferable to provide an accumulator.
- the accumulator is provided between the path for supplying the pressure oil to the valve urging means and the valve control means and the path for supplying the pressure oil to the piston rear chamber, the accumulator is generated in the piston rear chamber. The impact of pressure oil is buffered by the accumulator. Therefore, the impact of pressure oil is not transmitted to the valve urging means and the valve control means. Therefore, the behavior of the valve is not disturbed, which is suitable for stabilizing the hitting performance.
- a hydraulic striking device includes a cylinder, a piston slidably fitted in the cylinder, an outer peripheral surface of the piston, and an inside of the cylinder.
- a piston front chamber and a piston rear chamber which are defined between the circumferential surface and spaced apart in the axial direction, and a switching valve which switches the piston front chamber and the piston rear chamber alternately between a high pressure circuit and a low pressure circuit
- a valve formed with a piston high / low pressure switching portion for switching the piston front chamber and the piston rear chamber alternately between a high pressure circuit and a low pressure circuit by forward / backward movement of the piston, and directing the valve in one direction of the forward / backward direction
- a valve control means for moving the valve in the opposite direction against the urging force of the valve urging means when pressure oil is supplied, and the cylinder Has, in order from the front, between the piston front chamber and the piston rear chamber, three control ports of a piston reverse control port, a valve control port, and a piston forward control port, and the valve control port includes the valve
- the control means communicates with the pressure oil so as to be supplied and discharged, and is always isolated from the piston front chamber and the piston rear chamber.
- the valve switching groove communicates with the piston retreat control port and the valve control port to supply pressure oil to the valve control means to retreat the valve
- the valve switching groove communicates with the piston advance control port and the valve control port to discharge pressure oil from the valve control means to advance the valve.
- the hydraulic fluid is applied so that the piston front chamber and the piston rear chamber are alternately switched between a high pressure circuit and a low pressure circuit, and the forward and backward movements of the piston are repeated. It is characterized by supplying and discharging.
- the piston front chamber and the piston rear chamber are alternately arranged with a high pressure circuit and a low pressure circuit.
- This is a so-called “piston front / rear chamber high / low pressure switching type” hydraulic striking device that repeats the forward and backward movement of the piston, so that it is possible to increase the number of striking and increase the output.
- a valve holding mechanism separate from the mechanism for moving the valve back and forth is unnecessary, the sliding contact portion of the valve can be easily processed. Therefore, the processing cost can be reduced.
- the piston front chamber is isolated from both the valve biasing means and the valve control means of the switching valve mechanism, so that the piston is a striking rod.
- the pulsation of the pressure oil generated by the impact at the time of hitting the valve does not directly affect the driving of the valve.
- the forward movement of the valve is performed by discharging the pressure oil from the valve control chamber, it is possible to reduce the influence even if pulsation that cannot be attenuated remains in the entire high-pressure path. Valve behavior is stable.
- 1 is a schematic view of a first embodiment of a hydraulic striking device of a piston front / rear chamber high / low pressure switching type according to the present invention. It is explanatory drawing of the valve body in the hydraulic striking device concerning a first embodiment. It is an operation principle figure of the hydraulic striking device concerning a first embodiment. It is the 1st modification of 1st embodiment, and is a mimetic diagram of a hydraulic striking device which provided a high pressure passage inside a valve. It is a 2nd modification of 1st embodiment, and is a schematic diagram of the hydraulic striking device provided with the reverse action type valve
- the hydraulic striking device As shown in FIG. 1, the hydraulic striking device according to the first embodiment includes a cylinder 100 and a piston 200 slidably fitted in the cylinder 100 so as to be slidable along the axial direction.
- the piston 200 includes a large-diameter portion (front) 201 and a large-diameter portion (rear) 202 at the center in the axial direction, and small-diameter portions 203 and 204 formed before and after the large-diameter portions 201 and 202.
- An annular valve switching groove 205 is formed only at one location in the approximate center of the piston large diameter portions 201 and 202.
- the piston front chamber 110 and the piston rear chamber are separated from each other in the axial direction between the outer peripheral surface of the piston 200 and the inner peripheral surface of the cylinder 100.
- 111 are defined.
- the piston front chamber 110 and the piston rear chamber 111 are alternately switched between the high pressure circuit 101 and the low pressure circuit 102, and the hydraulic oil is supplied and discharged so that the forward and backward movements of the piston 200 are repeated.
- a valve mechanism 210 is provided.
- the switching valve mechanism 210 has a valve chamber 130 formed non-coaxially with the piston 200 and a valve (spool) 300 slidably fitted in the valve chamber 130 inside the cylinder 100.
- a valve chamber small-diameter portion 132, a valve chamber large-diameter portion 131, and a valve chamber intermediate-diameter portion 133 are formed by multistage annular grooves in order from the front to the rear.
- the valve chamber large-diameter portion 131 is provided with a valve control chamber 137, a piston front chamber low pressure port 135, a piston high pressure port 134, and a piston rear chamber low pressure port 136, which are spaced apart from each other by a predetermined distance from the front to the rear. Yes.
- the piston front chamber 110 is connected to a piston front chamber passage 120 that connects the piston front chamber 110 to the high pressure circuit 101 and the low pressure circuit 102 by switching the valve 300 forward and backward.
- a piston rear chamber passage 121 that connects the piston rear chamber 111 to the high pressure circuit 101 and the low pressure circuit 102 by switching the valve 300 forward and backward is connected to the piston rear chamber 111.
- the high voltage circuit 101 is provided with a high voltage accumulator 400
- the low voltage circuit 102 is provided with a low voltage accumulator 401.
- a piston reverse control port 113 Between the piston front chamber 110 and the piston rear chamber 111, a piston reverse control port 113, a valve control port 114, and piston forward control ports 112, 112a are provided at predetermined intervals from the front to the rear, respectively. Yes.
- a long stroke port 112 for a normal stroke and a short stroke port 112a are provided at two locations separated from each other in the front-rear direction.
- the piston advance control port on the piston front chamber 110 side is for a short stroke provided with a variable throttle 112b that can be adjusted from fully closed to fully open.
- the normal stroke setting that is, the variable throttle 112b is fully closed and the long stroke port on the piston rear chamber 111 side functions as the piston advance control port 112 will be described.
- the valve 300 is a hollow cylindrical valve body having a valve hollow passage 311 penetrating in the axial direction.
- the valve 300 includes valve large diameter portions 301, 302, and 303, a valve small diameter portion 304 provided on the front side of the valve large diameter portion 301, and a valve medium diameter portion 305 provided on the rear side of the valve large diameter portion 303.
- An annular piston front chamber switching groove 306 is provided between the valve large diameter portion 301 and the valve large diameter portion 302, and between the valve large diameter portion 302 and the valve large diameter portion 303, the annular piston rear chamber switching groove 306 is provided.
- a chamber switching groove 307 is provided.
- the piston front chamber switching groove 306 and the piston rear chamber switching groove 307 correspond to the “piston high / low pressure switching portion” described in the means for solving the above problems.
- the switching valve mechanism 210 is configured such that the valve large diameter portions 301, 302, and 303 are slidably fitted with the valve chamber large diameter portion 131, and the valve small diameter portion 304 is slidably fitted with the valve chamber small diameter portion 132.
- the valve middle diameter portion 305 is configured to be slidably fitted to the valve chamber middle diameter portion 133.
- the front is a valve front end face 308 and the rear is a valve rear end face 309.
- a valve stepped surface (front) 310 is formed at the boundary between the valve small diameter portion 304 and the valve large diameter portion 301, and a valve stepped surface (rear) is formed at the boundary between the valve large diameter portion 303 and the valve middle diameter portion 305. 312 is formed.
- ⁇ D1 to ⁇ D4 are as follows (Formula 1).
- ⁇ D4 ⁇ D2 ⁇ D3 ⁇ D1 (Formula 1)
- the pressure receiving area of the valve front end surface 308 is S1
- the pressure receiving area of the valve rear end surface 309 is S2
- the pressure receiving area S3 of the valve stepped surface (front) 310 is S4.
- the high pressure circuit 101 is connected to the piston high pressure port 134, and the low pressure circuit 102 is connected to the piston front chamber low pressure port 135 and the piston rear chamber low pressure port 136, respectively.
- One of the piston front chamber passages 120 is connected to the piston front chamber 110, and the other is connected to an intermediate portion between the piston high pressure port 134 and the piston front chamber low pressure port 135 of the valve chamber large diameter portion 131.
- One of the piston rear chamber passages 121 is connected to the piston rear chamber 111, and the other is connected to an intermediate portion between the piston high pressure port 134 and the piston rear chamber low pressure port 136 of the valve chamber large diameter portion 131.
- the valve high pressure passage (front) 123 connects the piston retraction control port 113 and the front end face of the valve chamber 130, and the valve high pressure passage (rear) 124 is connected to the rear end face of the valve chamber 130 and the high pressure accumulator 400 of the high pressure circuit 101.
- the position on the upstream side (right side in FIG. 1) is connected. Therefore, the valve hollow passage 311 is always at a high pressure.
- the valve high pressure passage (front) 123 may connect the piston reverse control port 113 and the valve high pressure passage (rear) 124.
- the valve low pressure passage 125 connects the piston advance control port 112 and the piston rear chamber low pressure port 136.
- the valve control passage 126 connects the valve control port 114 and the valve control chamber 137.
- the valve low pressure passage 125 may connect the piston advance control port 112 and the low pressure circuit 102.
- the passage in the high pressure state is indicated by “shaded”.
- the valve 300 of the switching valve mechanism 210 when the valve 300 of the switching valve mechanism 210 is switched to the forward position, the piston high pressure port 134 and the piston rear chamber passage 121 communicate with each other, and the piston rear chamber 111 becomes high pressure.
- the piston front chamber low pressure port 135 and the piston front chamber passage 120 communicate with each other, and the piston front chamber 110 becomes low pressure. Thereby, the piston 200 moves forward.
- valve chamber 130 is always connected to the high-pressure circuit 101 by a valve high-pressure passage (rear) 124, and both the valve front end surface 308 and the valve rear end surface 309 are at high pressure. Since high pressure is acting on both the valve front end surface 308 and the valve rear end surface 309, the valve 300 is held in the forward position by the above (Equation 3) (see FIG. 3A).
- valve control port 114 communicates with the piston reverse control port 113.
- the high pressure oil from the valve high pressure passage (front) 123 is supplied to the valve control chamber 137 through the valve control passage 126.
- the valve control chamber 137 becomes a high pressure, a high pressure acts on the stepped surface 310, and the valve 300 starts to retreat by the above (Equation 4) (see FIG. 3B).
- valve control means corresponds to "valve control means”.
- the piston 200 reaches the impact point when the impact efficiency is maximum (between FIGS. 3B to 3C), and at the impact point, the tip of the piston 200 moves the rear end of the impact rod (not shown). Blow. Thereby, the shock wave generated by the impact propagates to the bit at the tip through the rod and is used as energy for crushing the rock mass.
- the valve 300 Immediately after the piston 200 reaches the strike point, the valve 300 is completely switched to its retracted position. In the valve retracted position, the piston high pressure port 134 and the piston front chamber passage 120 communicate with each other, and the piston front chamber 110 becomes high pressure. On the other hand, the piston rear chamber low pressure port 136 and the piston rear chamber passage 121 communicate with each other, and the piston rear chamber 111 becomes low pressure. As a result, the piston 200 turns backward. While the valve control chamber 137 maintains a high pressure, the valve 300 is held in the retracted position (see FIG. 3C).
- valve control port 114 is connected to the low pressure circuit 102 via the valve control passage 126 and the valve low pressure passage 125.
- valve control chamber 137 becomes a low pressure
- the valve 300 starts moving forward according to the above (Equation 3) (see FIG. 3D). Then, the valve 300 is switched to the forward position again, and the hitting cycle is repeated.
- the mechanism for driving the valve 300 is the valve urging means and the valve control means as described above, and the hydraulic circuit of the valve urging means has nothing to do with the operation of the piston 200.
- the hydraulic circuits constituting the valve control means are not connected between the piston front chamber 110 and the piston rear chamber 111, and the piston front chamber 110 and the piston rear chamber 111 do not communicate with each other. (Always isolated so as not to be pulled in).
- the mechanism for driving the valve 300 is a valve urging means and a valve control means, and the valve urging means always urges the valve 300 in one direction to supply pressure oil to the valve control chamber 137.
- the forward / backward movement of the valve 300 is switched by supply / discharge.
- Item 3 Only one port of the valve control port 114 is connected to the valve control chamber 137.
- Item 4 The valve 300 has a hollow structure having a valve hollow passage 311 penetrating in the axial direction.
- the structure of the above items 1 to 4 of the present embodiment is compared with the conventional piston front / rear chamber high / low pressure switching hydraulic striking device described with reference to FIGS. Item 1)
- the relationship between the piston front and rear chambers and the respective circuits related to the valve drive is in a mutually communicating relationship. For this reason, the degree of freedom in the layout of the circuit configuration is low.
- the hydraulic circuit of the valve urging means has nothing to do with the operation of the piston 200 and is isolated from the piston front and rear chambers so as not to draw hydraulic oil. Therefore, the relationship between the piston front and rear chambers and the circuits related to the valve drive is independent. Therefore, it can be said that the structure of this embodiment has a high degree of freedom in the layout of the circuit configuration compared to the above-described conventional technology.
- a small number of passages directly leads to a reduction in processing costs.
- the high degree of freedom in the layout of the circuit configuration enables the passage length to be shortened by arranging piston rear chambers, valves, and accumulators together. Thereby, it is possible to improve hydraulic efficiency, and it is also possible to expand the passage area of the piston rear chamber passage 121 connected to the piston rear chamber 111 to cope with a large amount of oil.
- the hydraulic circuit of the above prior art has not only a large number of passages, but also connects the front chamber of the piston and the rear chamber of the valve, and the rear chamber of the piston and the front chamber of the valve as shown in FIG. Therefore, it can be seen that the hydraulic circuits are arranged so as to cross each other and have a very complicated layout.
- the structure of the present embodiment is a very simple circuit as shown in FIG. Therefore, the processing cost can be reduced.
- the piston front chamber 110 is isolated from both the “valve urging means” and the “valve control means” of the switching valve mechanism 210, so that the tip of the piston 200 is The pulsation of the pressure oil generated by the impact when hitting the striking rod does not directly affect the driving of the valve 300. Furthermore, since the forward movement of the valve 300 is performed by discharging the pressure oil from the valve control chamber 137, even if pulsation that cannot be attenuated remains in the entire high-pressure path, the influence thereof can be reduced. Therefore, the behavior of the valve 300 is stabilized.
- the hydraulic striking device switches the piston front chamber 110 and the piston rear chamber 111 alternately to the high pressure circuit 101 and the low pressure circuit 102 to repeat the forward and backward movement of the piston 200. Since it is a hydraulic pressure striking device of “low pressure switching type”, the number of impacts can be increased to increase the output. However, since the impact is high, the disturbance of the behavior of the valve 300 must be avoided. It can be said that a suitable hydraulic striking device was realized.
- the above prior art employs a valve front / rear chamber high / low pressure switching system and includes a holding mechanism for holding the valve at a timing when both the front and rear chambers of the valve are at a low pressure.
- the outer diameter shape that is in sliding contact with the valve chamber is required to have a multistage structure of five stages, ie, small diameter-medium diameter-large diameter-medium diameter-small diameter from the front to the rear. Further, it is necessary to provide pressure oil supply / exhaust passages for holding the valve at two locations in the front and rear.
- valve structure of this embodiment has only three stages of small diameter-large diameter-medium diameter, and the valve structure itself is not necessary because the valve does not require processing of the supply / discharge oil passage for its own holding mechanism. Can be made extremely simple. The simplicity of the valve structure of the present embodiment can not only reduce the processing cost of the valve itself, but naturally increases the processing cost of the corresponding valve chamber side, that is, the cylinder inner diameter processing. Can be reduced.
- the ports connected via the valve control passage are the two positions of the piston forward control port and the piston backward control interlocking port.
- the piston retraction control interlocking port is opposed to discharging the pressure oil in the valve front chamber in the valve advancement phase, which is its original function, to the oil discharge port.
- the pressure oil in the port leaks to the oil discharge port (this phenomenon is the same for the piston reverse control interlocking port in the valve reverse phase).
- the greater the number of ports the greater the number of places where pressure oil leaks.
- the structure of the present embodiment focusing on the valve control chamber 137, since the port connected through the valve control passage 126 is only one place of the valve control port 114, the amount of leakage is kept to a minimum. be able to.
- the period from FIG. 3C to FIG. 3D, that is, until the valve control port 114 communicates with the piston forward control port 112 after the communication state with the piston reverse control port 113 is interrupted.
- the valve control chamber 137 is closed by the piston large diameter part (rear) 202, and the pressure oil is sealed in the closed circuit to hold the valve 300 in the retracted position. If the amount of leak is large in a state where the valve is not supplied, the behavior of the valve 300 becomes unstable. Therefore, it can be said that one port is preferably connected to the valve control port 114.
- the valve control port 114 is set to stabilize the behavior of the valve 300 as well as reducing the amount of pressure oil leakage to increase the impact efficiency.
- the valve has a solid structure because the oil supply / discharge oil passage constituting the valve holding mechanism is provided inside the valve.
- the valve 300 since the valve 300 has a hollow structure having a valve hollow passage 311 penetrating in the axial direction, weight reduction is achieved by hollowing out the valve. Therefore, the amount of oil consumed for driving the valve can be reduced, and the impact efficiency is improved.
- the hydraulic striking device of the piston front / rear chamber high / low pressure switching system of the present embodiment has a high striking force by switching the piston front / rear chamber high / low pressure, but the machining cost is reduced compared to the conventional, Hydraulic efficiency can be improved.
- the pressure may be reduced to below atmospheric pressure due to the negative pressure acting on the low pressure circuit, in which case cavitation occurs May be a problem.
- the valve hollow passage 311, the valve front end surface 308, and the valve rear end surface 309 are constantly at high pressure, so that cavitation is generated compared to the case where some of these portions are switched to low pressure. Can be suppressed.
- the piston front chamber 110 becomes low pressure
- the piston rear chamber 111 becomes high pressure
- the piston 200 Since the piston front chamber 110 and the valve control port 114 both have low pressure during the retreat to the rear stroke end while decelerating, the piston large-diameter portion (front) 201 is prone to oil film breakage and cavitation also occurs. It is exposed to an easy condition.
- the piston retraction control port 113 is always at a high pressure and a small amount of pressure oil leaks therefrom, it is possible to suppress the occurrence of oil film breakage and cavitation.
- the piston advance control port 112 is connected to the low pressure circuit 102 via the valve low pressure passage 125, so the short stroke port 112a and the variable throttle 112b are connected to low pressure. . Therefore, when the variable throttle 112b is adjusted, when the piston 200 moves backward and the valve control port 114 and the short stroke port 112a communicate with each other through the valve switching groove 205, the valve control port 114, the valve control passage 126, and the valve The high-pressure oil in the control chamber 137 is discharged to the low-pressure circuit 102 via the short stroke port 112a and the variable throttle 112b, and the valve 300 turns forward.
- the hydraulic circuit of the present embodiment constitutes a so-called “meter-out circuit” that controls the flow rate of the pressure oil discharged from the valve 300 that is an actuator.
- the meter-out circuit has a good controllability compared to the meter-in circuit, and thus is a suitable configuration as a stroke adjustment mechanism for a striking device that requires linear controllability with respect to a limited adjustment amount.
- the switching valve mechanism 210 includes passages constituting valve control means and valve urging means, that is, a valve high pressure passage (rear) 124, a hollow passage 311, a valve high pressure passage ( Front) 123, piston retraction control port 113, valve control port 114, valve control passage 126 (hereinafter referred to as "valve drive circuit"), and a passage through which pressure oil is supplied to the piston rear chamber 111, that is, piston high pressure A high pressure accumulator 400 is interposed between the port 134 and the piston rear chamber passage 121.
- the valve high-pressure passage 124 connects the valve hollow passage 311 and the high-pressure accumulator 400 upstream of the high-pressure accumulator 400, so that a high pressure is provided between the piston rear chamber 111 and the valve drive circuit.
- An accumulator 400 is interposed. Therefore, it is possible to suppress the impact in the pressure oil from being transmitted to the valve front end surface 308 and the valve rear end surface 309 in the valve control chamber 137 and the valve chamber 130. Therefore, the forward biasing force of the valve 300 and the reverse thrust acting against the biasing force are stabilized. Therefore, since the behavior of the valve 300 is stabilized, the impact performance is stabilized.
- FIG. 4 shows a first modification of the first embodiment.
- a valve main body high-pressure passage 313 penetrating in the radial direction is provided in the valve large-diameter portion 302 of the valve 300a instead of the valve high-pressure passage 124 shown in FIG.
- one end of the valve high-pressure passage 123 ′ is connected to the piston high-pressure port 134.
- one end of the valve high-pressure passage 123 ′ may be connected to the front end surface of the valve chamber 130.
- one end of the valve high pressure passage 123 ′ may be connected to the upstream side of the high pressure accumulator 400 of the high pressure circuit 101. Good.
- the valve high-pressure passage (rear) 124 in FIG. 1 can be omitted. Therefore, the configuration of the hydraulic circuit can be further simplified, so that the processing cost is reduced. Since the valve main body high-pressure passage 313 is a through hole that penetrates in the radial direction and does not have a bent portion in the middle like the communication passage of the conventional valve holding mechanism, the processing of the valve main body high-pressure passage 313 is very easy. .
- the high pressure accumulator is provided between the valve urging means (hollow passage 311, valve front end surface 308, valve rear end surface 309) and the piston rear chamber 111. 400 is not interposed. Therefore, compared with the said 1st embodiment shown in FIG. 1, the behavior at the time of the water hammer effect
- FIG. 5 shows a second modification of the first embodiment.
- This second modification is an example in which the groove structure of the valve body and the circuit configuration of the valve control means are changed.
- the second modification is a case where the operation relationship of the piston-valve is opposite to that of the first embodiment shown in FIG.
- the valve 300b is a hollow cylindrical valve body provided with a valve hollow passage 311 ′ penetrating in the axial direction.
- the valve 300b is provided on the rear side of the valve large diameter portion 301 ′, 302 ′, 303 ′, the valve small diameter portion 304 ′ provided on the front side of the valve large diameter portion 301 ′, and the valve large diameter portion 303 ′.
- a piston front chamber oil drain groove 314 is provided between the valve large diameter portion 301 ′ and the valve large diameter portion 302 ′.
- a piston rear chamber oil drain groove 315 is provided between the valve large diameter portion 303 ′ and the valve middle diameter portion 305 ′.
- a piston front / rear chamber switching groove 316 is provided between the valve large diameter portion 302 ′ and the valve large diameter portion 303.
- the front is a valve front end surface 308 ′ and the rear is a valve rear end surface 309 ′.
- a valve stepped surface (front) 310 ′ is formed at the boundary between the valve small diameter portion 304 ′ and the valve large diameter portion 301 ′.
- the valve high pressure passage (front) 123 ′′ connects the piston advance control port 112 and the valve high pressure passage (rear) 124.
- the valve low-pressure passage 125 ′ connects the piston retraction control port 113 and the piston front chamber low-pressure port 135.
- the valve control passage 126 connects the valve control port 114 and the valve control chamber 137 as in the first embodiment shown in FIG.
- the piston-valve operating relationship is reversed from that of the first embodiment shown in FIG. 1 (reverse operation valve).
- the greatest feature of this second modification is that the piston advance control port 112 is always connected to the high-pressure circuit.
- cavitation is likely to occur at a location where low pressure is connected, and as a location where the generated cavitation ruptures and causes erosion, the cavitation stays closed or complicated
- the short stroke port 112a of the piston advance control port 112 corresponds to this.
- FIG. 6 shows a third modification of the first embodiment.
- the hydraulic passages, the ports, and the valve structure itself are not changed at all, and the high pressure line from the hydraulic source and the low pressure line to the tank are reversed and connected (that is, the high pressure circuit 101).
- the low-voltage circuit 102 ′ Is the low-voltage circuit 102 ′, and the low-voltage circuit 102 is the high-voltage circuit 101 ′).
- the valve high pressure passage (front) 123 and the valve high pressure passage (rear) 124 are low in pressure, so that the valve low pressure passage (front) 128 and the valve low pressure passage (rear) 129, respectively.
- valve low pressure passage 125 becomes high pressure, it is read as valve high pressure passage 127.
- piston high pressure port 134 becomes low pressure
- piston low pressure port 140, the piston front chamber low pressure port 135 and the piston rear chamber low pressure port 136 become high pressure, so that the piston front chamber high pressure port 138 and the piston rear chamber high pressure port 139 respectively.
- the accumulator 400 ′ is provided in the high voltage circuit 101 ′.
- the piston retreat control port 113, the valve hollow passage 311, the valve front end surface 308, and the valve rear end surface 309 are always at a low pressure. Therefore, the oil film breakage preventing effect, the cavitation suppressing effect, and the cavitation suppressing effect of both end faces of the valve of the large piston diameter portion (front) 201 are reduced.
- the piston advance control port 112 is always at a high pressure, the effect of suppressing cavitation at this point can be expected.
- valve high-pressure passage 127 is connected to the upstream side of the high-pressure accumulator 400 ′, it is possible to prevent the influence of the water hammer effect in the pressure oil generated when the piston is struck from being transmitted to the valve control chamber 137. is there.
- FIG. 7 is a schematic diagram of the second embodiment.
- a valve chamber 150 is formed in the cylinder 100 a non-coaxially with the piston 200, and a valve 350 is slidably fitted in the valve chamber 150.
- the valve chamber 150 includes a valve front chamber 152, a valve main chamber 151, and a valve rear chamber 153 in order from the front to the rear.
- a piston front chamber low pressure port 155, a piston high pressure port 154, and a piston rear chamber low pressure port 156 are provided in order from the front to the rear in order from each other with a predetermined interval.
- the valve 350 is a solid valve body, and includes a valve large diameter portion 351, 352, 353, a valve medium diameter portion 354 provided on the front side, and a valve small diameter portion 355 provided on the rear side. Have on the surface.
- An annular piston front chamber switching groove 356 is provided between the valve large diameter portion 351 and the valve large diameter portion 352.
- An annular piston rear chamber switching groove 357 is provided between the valve large diameter portion 352 and the valve large diameter portion 353.
- the piston front chamber switching groove 356 and the piston rear chamber switching groove 357 correspond to the “piston high / low pressure switching portion” described in the means for solving the above problems.
- valve large diameter portions 351, 352, and 353 are slidably fitted to the valve main chamber 151
- valve middle diameter portion 354 is slidably fitted to the valve front chamber 152
- valve small diameter portion 355 is slidably fitted to the valve rear chamber 153.
- the front is a valve front end surface 358
- the rear is a valve rear end surface 359.
- the outer diameter of the valve medium diameter portion 354 is set larger than the outer diameter of the valve small diameter portion 355. Therefore, the pressure receiving area of the valve front end surface 358 is larger than the pressure receiving area of the valve rear end surface 359.
- the high pressure circuit 101 is connected to the piston high pressure port 154, and the low pressure circuit 102 is connected to the piston front chamber low pressure port 155 and the piston rear chamber low pressure port 156.
- One of the piston front chamber passages 120 is connected to the piston front chamber 110, and the other is connected to an intermediate portion between the piston high pressure port 154 and the piston front chamber low pressure port 155 of the valve main chamber 151.
- One end of the piston rear chamber passage 121 is connected to the piston rear chamber 111, and the other end is connected to an intermediate portion between the piston high pressure port 154 and the piston rear chamber low pressure port 156 of the valve main chamber 151.
- the valve high pressure passage (front) 123 connects the piston reverse control port 113 and the valve high pressure passage (rear) 124.
- the valve high-pressure passage 124 connects the valve rear chamber 153 and the upstream side (right side in FIG. 7) of the high-pressure accumulator 400 of the high-pressure circuit 101. Therefore, the valve rear chamber 153 is always at a high pressure, and forward thrust is always applied to the valve 350 by supplying pressure oil to the pressure receiving area of the valve rear end surface 359.
- the configuration in which the forward thrust is always applied to the valve 350 by supplying the pressure oil to the pressure receiving area of the valve rear end surface 359 with the valve rear chamber 153 always at a high pressure solves the above problem. This corresponds to the “valve urging means” described in the means for doing this.
- the valve low pressure passage 125 connects the piston advance control port 112 and the piston rear chamber low pressure port 156.
- the valve control passage 126 connects the valve control port 114 and the valve front chamber 152.
- the valve low pressure passage 125 may connect the piston advance control port 112 and the low pressure circuit 102.
- the valve control port 114 communicates with the piston retraction control port 113, and high-pressure oil from the valve high-pressure passage (front) 123 is supplied to the valve front chamber 152 through the valve control passage 126.
- the valve 350 moves backward due to the pressure receiving area difference between the valve front end surface 358 and the valve rear end surface 359.
- valve control means the valve front chamber 152 of the present embodiment corresponds to the valve control chamber 137 of the first embodiment.
- This second embodiment is characterized in that the valve has a solid structure. Since the solid valve has higher rigidity than the hollow valve, it is possible to set a large difference in diameter between the large diameter portions 351, 352, and 353, the piston front chamber switching groove 356, and the piston rear chamber switching groove 357. The passage area of this part can be enlarged. Therefore, the configuration of the second embodiment is effective when a striking device with a high striking force specification with an ultra-high pressure and a large amount of oil is required even if the hydraulic efficiency is somewhat inferior. It should be noted that cavitation may occur at the valve switching stroke end (the front end surface of the large diameter portion 351 and the rear end surface of the large diameter portion 353), but other than that, basically the first shown in FIG. The same effects as the embodiment are achieved.
- FIG. 8 shows a modification of the second embodiment.
- This modification is an example in which the “valve urging means” is realized by a mechanical configuration rather than hydraulic pressure. That is, as shown in FIG. 8, the valve 350 a is provided with a small diameter portion 360 constituting valve urging means instead of the small diameter portion 355 of the valve 350, and the spring 361 is accommodated in the valve urging chamber 157. By pushing the end surface of the small diameter portion 360, the forward thrust is always applied to the valve 350a.
- valve high pressure passage (rear) 124 ′ is configured to connect the valve reverse control port 113 and the high pressure circuit 101.
- the “valve urging means” is realized with a mechanical configuration instead of a hydraulic pressure, so that one hydraulic passage can be omitted. Therefore, it is possible to reduce the processing cost of the hydraulic passage.
- the spring 361 is employed as the urging means constituting the “valve urging means”.
- the present invention is not limited to this, and other means (for example, high-pressure gas is filled in the valve urging chamber 157). ) May be adopted.
- the piston is driven by the front / rear chamber high / low pressure switching type, so that a high number of hits can be realized.
- a valve drive mechanism of the switching valve mechanism by adopting a method of switching the forward / reverse direction of the valve by supplying / discharging the control pressure while always energizing the valve in one direction, This simplifies the hydraulic circuit configuration, and enables the coexistence of the problem of reducing the machining cost and improving the hitting efficiency, and is a technique that is different from the conventional hitting device described above.
- the embodiment or modification of the present invention has been described above with reference to the drawings.
- the piston front / rear chamber high / low pressure switching hydraulic hitting device according to the present invention is not limited to the above embodiment or modification. Without departing from the spirit of the present invention, it is a matter of course that other various modifications and changes in each component are allowed.
- Valve control port 120 Piston front chamber passage 121 Piston rear chamber passage 123, 123 ', 123 "Valve high pressure passage (front) 124, 124 'Valve high pressure passage (rear) 125, 125 ′ Valve low pressure passage 126, 126 ′ Valve control passage 127 Valve high pressure passage 128 Valve low pressure passage (front) 129 Valve low pressure passage (rear) 130 Valve chamber 131 Valve chamber large diameter portion 132 Valve chamber small diameter portion 133 Valve chamber medium diameter portion 134 Piston high pressure port 135 Piston front chamber low pressure port 136 Piston rear chamber low pressure port 137 Valve control chamber 138 Piston front chamber high pressure port 139 Piston rear chamber High pressure port 140 Piston low pressure port 150 Valve chamber 151 Valve main
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Automation & Control Theory (AREA)
- Fluid-Pressure Circuits (AREA)
- Percussive Tools And Related Accessories (AREA)
- Portable Nailing Machines And Staplers (AREA)
Abstract
Description
今、バルブ526が前進位置に切換えられると、ピストン高圧ポート514とピストン後室通路507が連通してピストン後室502が高圧となる。一方、ピストン前室低圧ポート512とピストン前室通路506が連通してピストン前室501が低圧となっているので、ピストン524は前進する。このとき、バルブ前室510とバルブ後室511は共に低圧となるものの、バルブ前進保持室516は高圧となっており、バルブ526は前進位置に保持される(図10(a)参照)。
第一の課題である液圧式打撃装置の高効率化を実現するためには、バルブの応答性を向上させて、バルブ駆動に要する作動油量を低く抑えることが必要である。そのためには、バルブ本体の小型化と中空化が有効である。また、第二の課題である液圧式打撃装置を低コストで作製するためには、複雑な機構を避け、ポートやポート間を接続する通路のレイアウトを簡素化することが有効である。
1)バルブを駆動するのは、バルブの前/後室に供給されるピストンの後/前室からの圧油である。つまり、同文献記載の技術では、バルブについてもピストンと同様に前後室高低圧切換方式を採用している。
2)バルブ切換後には、バルブの前室と後室が同時に低圧となる。そのため、同文献記載の技術では、バルブの位置を保持するために、バルブを前後に移動させる機構とは別個のバルブ保持機構を備えなければならない。このバルブ保持機構は、バルブ中径部とバルブ前進(後退)保持室とで形成する空間に圧油を給排する構成である。
3)バルブを駆動するために、加圧する側(例えばバルブ前室)と対抗する側(バルブ後室)の経路を開放するポート(ピストン後退制御連動ポート)を備えなければならない。
4)上記3)の、経路を開放するポートと低圧回路を連通する排油ポートを備えている。
また、同文献記載の技術では、ピストン520の前室501と後室502の間に、前方から順に、ピストン前進制御ポート503、ピストン後退制御連動ポート508、排油ポート505、ピストン前進制御連動ポート509、およびピストン後退制御ポート504と5箇所ものポートが開口していることから、ピストンの前後室間に開口するポートの加工コストが嵩むという問題がある。
そこで、本発明は、このような問題点に着目してなされたものであって、打撃効率を向上させつつも低コストなピストン前後室高低圧切換方式の液圧式打撃装置を提供することを目的とする。
さらには、ピストンの前・後室とバルブを駆動するバルブ制御ポートの回路は、相互に作動油を引きこまないように隔絶(遮断)されているので、通路レイアウトの自由度が高く、加工コストをより低減することができる。また、通路レイアウトの自由度が高いので、ピストン側とバルブ側の各ポート間を接続する通路の最適化が可能となる。
ここで、本発明の第一の態様に係る液圧式打撃装置において、前記バルブが、軸方向に貫通するバルブ中空通路を有する中空構造であることは好ましい。このような構成であれば、バルブの重量が低減されるので、バルブの応答性を向上させて、バルブ駆動に要する作動油量を低く抑えるとともに、打撃効率を向上させることができる。
特に、本発明の第二の態様に係る液圧式打撃装置によれば、ピストン前室が切換弁機構のバルブ付勢手段およびバルブ制御手段のいずれとも隔絶されているので、ピストンが打撃用のロッドを打撃する際の衝撃によって発生する圧油の脈動がバルブの駆動に直接影響を及ぼすことはない。さらに、バルブの前進動作がバルブ制御室から圧油が排出されることによって行われるので、仮に高圧経路全体に減衰しきれない脈動が残存していてもその影響を減じることが可能となるので、バルブの挙動が安定する。
(第一実施形態)
図1に示すように、第一実施形態の液圧式打撃装置は、シリンダ100と、シリンダ100の内部に軸方向に沿ってスライド移動可能に摺嵌されたピストン200とを備えている。ピストン200は、軸方向中央の大径部(前)201、大径部(後)202と、その大径部201、202の前後に形成された小径部203、204とを有する。ピストン大径部201、202の略中央には、円環状のバルブ切換溝205が一箇所にのみ形成されている。
バルブ300の両端面は、前方がバルブ前端面308、後方がバルブ後端面309となっている。バルブ小径部304とバルブ大径部301との境界には、バルブ段付面(前)310が形成され、バルブ大径部303とバルブ中径部305の境界にはバルブ段付面(後)312が形成されている。
φD4<φD2<φD3<φD1・・・(式1)
また、バルブ前端面308の受圧面積をS1、バルブ後端面309の受圧面積をS2、バルブ段付面(前)310の受圧面積S3、およびバルブ段付面(後)312の受圧面積をS4とすると、以下の(式2)の通りとなる。
S1=π/4×(D22-D42)
S2=π/4×(D32-D42)
S3=π/4×(D12-D22)
S4=π/4×(D12-D32) ・・・(式2)
そして、受圧面積S1~S4の関係は、以下の(式3)~(式5)の通りとなる。
S1<S2 ・・・・・・・・・・・・・・(式3)
[S1+S3]>S2 ・・・・・・・・・(式4)
S3>S4 ・・・・・・・・・・・・・・(式5)
ピストン前室通路120は、一方がピストン前室110に接続され、他方が弁室大径部131のピストン高圧ポート134とピストン前室低圧ポート135との中間部に接続されている。ピストン後室通路121は、一方がピストン後室111に接続され、他方が弁室大径部131のピストン高圧ポート134とピストン後室低圧ポート136との中間部に接続されている。
バルブ低圧通路125は、ピストン前進制御ポート112とピストン後室低圧ポート136とを接続している。バルブ制御通路126はバルブ制御ポート114とバルブ制御室137とを接続している。なお、バルブ低圧通路125は、ピストン前進制御ポート112と低圧回路102とを接続してもよい。
今、図3(a)に示すように、切換弁機構210のバルブ300が前進位置に切換えられると、ピストン高圧ポート134とピストン後室通路121が連通してピストン後室111が高圧となる。一方、ピストン前室低圧ポート135とピストン前室通路120が連通してピストン前室110が低圧となる。これにより、ピストン200は前進する。
このとき、弁室130は、バルブ高圧通路(後)124によって高圧回路101に常時接続されており、バルブ前端面308とバルブ後端面309の両方が高圧となっている。バルブ前端面308とバルブ後端面309の両方に高圧が作用しているので、上記(式3)により、バルブ300は前進位置に保持される(図3(a)参照)。
次いで、ピストン200が前進して、バルブ制御ポート114とピストン前進制御ポート112の連通が途絶え、それに代わり、バルブ制御ポート114がピストン後退制御ポート113と連通する。これにより、バルブ高圧通路(前)123からの高圧油がバルブ制御通路126を経てバルブ制御室137に供給される。バルブ制御室137が高圧になると段付面310に高圧が作用し、上記(式4)によりバルブ300は後退を開始する(図3(b)参照)。
ピストン200は、打撃効率が最大のときに打撃点に達し(図3(b)から(c)の間)、打撃点にてピストン200の先端が打撃用のロッド(不図示)の後端を打撃する。これにより、打撃により発生する衝撃波がロッドを介して先端のビット等まで伝播して岩盤等を破砕するエネルギーとして使用される。
項目1) バルブ300を駆動するための機構は、上述のように、バルブ付勢手段とバルブ制御手段であるが、このうち、バルブ付勢手段の油圧回路は、ピストン200の動作とは一切関係が無く、バルブ制御手段を構成する各油圧回路は、ピストン前室110とピストン後室111との間に、かつピストン前室110とピストン後室111とは連通することなく(相互に作動油を引きこまないように常時隔絶されて)配設されている。
項目2) バルブ300を駆動するための機構は、バルブ付勢手段とバルブ制御手段であり、バルブ付勢手段は、バルブ300を常時一方向に付勢し、バルブ制御室137への圧油の給排でバルブ300の前進後退を切換える。
項目3) バルブ制御室137と接続されているポートは、バルブ制御ポート114の1箇所のみである。
項目4) バルブ300は軸方向に貫通するバルブ中空通路311を有する中空構造である。
項目1)について
上記従来技術では、ピストン前後室とバルブ駆動に関する各回路の関係が相互に連通する関係である。そのため、回路構成のレイアウトの自由度が低い。これに対し、本実施形態の構造は、バルブ付勢手段の油圧回路は、ピストン200の動作とは一切関係が無く、ピストン前後室とは相互に作動油を引きこまないように隔絶されているので、ピストン前後室とバルブ駆動に関する各回路の関係が独立している。したがって、上記従来技術に対して、本実施形態の構造は、回路構成のレイアウトの自由度が高いといえる。
さらに、上記従来技術の油圧回路は、通路本数が多い点のみならず、図9に示したように、ピストンの前室とバルブの後室、ピストンの後室とバルブの前室を接続しているので、油圧回路が互いに交差するように配設されて、非常に複雑なレイアウトであることが見て取れる。これに対し、本実施形態の構造は、図1に示したように、非常にシンプルな回路となっている。したがって、加工コストを低減することができる。
そして、本実施形態の液圧式打撃装置は、ピストン前室110およびピストン後室111を交互に高圧回路101と低圧回路102とに切換えてピストン200の前進および後退を繰り返す、所謂「ピストン前後室高低圧切換式」の液圧式打撃装置であるので、打撃数を増大させて高出力化が図られるが、高打撃数であるゆえにバルブ300の挙動の乱れは避けなければならないため、高出力用として好適な液圧式打撃装置を実現できたといえる。
上記従来技術は、バルブの前後室高低圧切換方式を採用し、且つ、バルブの前後室が共に低圧となるタイミングにおいてバルブを保持する保持機構を備えるため、バルブ構造は、図9に示したように、弁室と摺接する外径形状として、前方から後方へ向けて、小径-中径-大径-中径-小径と5段もの多段構造が必要である。さらに、バルブを保持するための圧油の給排気通路を前後2箇所に設けなければならない。これに対し、本実施形態のバルブ構造は、小径-大径-中径の僅か3段であり、また、バルブに自身の保持機構用の給排油通路の加工も不要なので、バルブの構造自体を極めて簡素にすることができる。本実施形態のバルブ構造の簡素さは、バルブ自体の加工コストを低減することが可能なだけではなく、当然のことながら、対応する弁室側の加工、すなわち、シリンダ内径加工の加工コストを大きく低減することができる。
上記従来技術では、バルブ前室は、バルブ制御通路(前)を介して接続しているポートが、ピストン前進制御ポートとピストン後退制御連動ポートの二箇所であるところ、バルブ後退局面(図10(b))においては、ピストン後退制御連動ポートは、その本来の機能であるバルブ前進局面でのバルブ前室の圧油を排油ポートへ排出するのとは裏腹に、ピストン前進制御ポート内の圧油が排油ポートへとリークする要因となっている(この現象は、バルブ後退局面におけるピストン後退制御連動ポートでも同様である)。一般に、打撃装置において、ポートの数が多い程、圧油のリークする箇所は多くなる。
これに対し、本実施形態の構造は、バルブ制御室137に着目すると、バルブ制御通路126を介して接続しているポートは、バルブ制御ポート114の一箇所のみなので、リーク量を最小限に留めることができる。
上記従来技術では、バルブ保持機構を構成する給排油通路をバルブ内部に設けているのでバルブが中実構造である。これに対し、本実施形態は、バルブ300が、軸方向に貫通するバルブ中空通路311を有する中空構造なので、バルブを中空化することで重量の軽減が図られている。そのため、バルブ駆動に消費する油量を低減することができ、打撃効率が向上する。
また、一般に、液圧式打撃装置のバルブの前後のストローク端では、低圧回路に接続されて負圧が作用して大気圧以下まで圧力が低下する場合があり、そのような場合は、キャビテーションの発生が問題となることがある。これに対し、本実施形態では、バルブ中空通路311、バルブ前端面308、およびバルブ後端面309は常時高圧なので、これらの箇所のうちのどこかが低圧に切り替わる場合に比べると、キャビテーションの発生を抑制することができる。
すなわち、本実施形態の油圧回路は、アクチュエータであるバルブ300から排出される圧油の流量を制御する、所謂「メータアウト回路」を構成していることになる。一般に、メータアウト回路は、メータイン回路と比べると制御性が良好なため、限られた調整量に対してリニアな制御性が求められる打撃装置のストローク調整機構として好適な構成である。
(第一の変形例)
図4に上記第一実施形態の第一の変形例を示す。同図に示すように、この第一の変形例では、図1に示したバルブ高圧通路124の代わりに、バルブ300aのバルブ大径部302に、径方向に貫通するバルブ本体高圧通路313を設けた例である。なお、この例では、バルブ高圧通路123’の一端は、ピストン高圧ポート134に接続している。但し、図1に示した例と同様に、バルブ高圧通路123’の一端を、弁室130の前端面に接続してもよい。また、前述したピストン打撃時に発生する圧油内の振動をバルブ制御室137に伝えないためには、バルブ高圧通路123’の一端を、高圧回路101の高圧アキュムレータ400の上流側に接続してもよい。
ただし、この第一の変形例においては、上記第一実施形態とは異なり、バルブ付勢手段(中空通路311、バルブ前端面308、バルブ後端面309)とピストン後室111との間に高圧アキュムレータ400が介在していない。そのため、図1に示した上記第一実施形態に比べると、バルブ300aの水撃作用時の挙動は安定性が低下する。
図5に上記第一実施形態の第二の変形例を示す。この第二の変形例は、バルブ本体の溝構造とバルブ制御手段の回路構成を変更した例である。同図に示すように、この第二の変形例は、ピストン-バルブの動作関係が、図1に示した第一実施形態とは、逆(逆作動バルブ)になる場合である。
詳しくは、図5に示すように、バルブ300bは、軸方向に貫通するバルブ中空通路311’が設けられた中空円筒形状の弁体である。バルブ300bは、バルブ大径部301’、302’、303’と、バルブ大径部301’の前側に設けられたバルブ小径部304’、およびバルブ大径部303’の後側に設けられたバルブ中径部305’とを有する。バルブ大径部301’とバルブ大径部302’の間には、ピストン前室排油溝314が設けられている。また、バルブ大径部303’とバルブ中径部305’の間には、ピストン後室排油溝315が設けられている。さらに、バルブ大径部302’とバルブ大径部303の間には、ピストン前後室切換溝316が設けられている。
バルブ高圧通路(前)123’’は、ピストン前進制御ポート112とバルブ高圧通路(後)124を接続している。バルブ低圧通路125’は、ピストン後退制御ポート113とピストン前室低圧ポート135とを接続している。バルブ制御通路126は、図1に示した第一実施形態と同様に、バルブ制御ポート114とバルブ制御室137とを接続している。これにより、この第二の変形例によれば、図1に示した第一実施形態とはピストン-バルブの動作関係が逆となる(逆作動バルブ)。
図6に上記第一実施形態の第三の変形例を示す。この第三の変形例は、各油圧通路や各ポート、バルブ構造そのものは全く変更しないで、油圧源からの高圧ラインとタンクへと向かう低圧ラインを逆転させて接続する場合(すなわち、高圧回路101を低圧回路102’とし、低圧回路102を高圧回路101’とした場合)ある。
なお、この第三の変形例の説明上は、バルブ高圧通路(前)123、バルブ高圧通路(後)124は低圧となるので、それぞれバルブ低圧通路(前)128、バルブ低圧通路(後)129と読み替える。また、バルブ低圧通路125は高圧となるのでバルブ高圧通路127と読み替える。同様に、ピストン高圧ポート134は低圧となるのでピストン低圧ポート140、ピストン前室低圧ポート135およびピストン後室低圧ポート136は高圧となるので、それぞれピストン前室高圧ポート138およびピストン後室高圧ポート139と読み替える。なお、アキュムレータ400’は高圧回路101’に設けるものとする。
また、バルブ高圧通路127の一端を高圧アキュムレータ400’の上流側に接続すれば、ピストン打撃時に発生する圧油内の水撃作用による影響をバルブ制御室137に伝えないようにすることは可能である。
次に、本発明に係るピストン前後室高低圧切換式の液圧式打撃装置の第二実施形態について説明する。図7は第二実施形態の模式図である。上記第一実施形態およびその変形例では、全て中空バルブを採用した例を示したが、本実施形態は、中実バルブを採用している例である。以下、第一実施形態との差異点のみを説明する。
図7に示すように、シリンダ100aには、ピストン200と非同軸に弁室150が形成されており、この弁室150にバルブ350が摺嵌されている。弁室150は、前方から後方へ向けて順に、バルブ前室152、バルブ主室151、およびバルブ後室153を有する。バルブ主室151には、前方から後方へ向けて順に、ピストン前室低圧ポート155、ピストン高圧ポート154、およびピストン後室低圧ポート156がそれぞれ所定間隔離隔して設けられている。
バルブ制御ポート114がピストン後退制御ポート113と連通して、バルブ高圧通路(前)123からの高圧油がバルブ制御通路126を経てバルブ前室152に供給される。これにより、バルブ前端面358とバルブ後端面359の受圧面積差によってバルブ350は後退する。ここで、この第二実施形態では、バルブ350に対する前進推力(=上述した常時作用する「バルブ付勢手段」の付勢力)に抗してバルブ350を後進させる構成が、上記課題を解決するための手段に記載の「バルブ制御手段」に対応している。すなわち、本実施形態のバルブ前室152は、上記第一実施形態のバルブ制御室137に相当する。
図8に上記第二実施形態の変形例を示す。この変形例は、「バルブ付勢手段」を油圧ではなく機械的な構成で実現した例である。すなわち、図8に示すように、このバルブ350aは、上記バルブ350の小径部355の代わりに、バルブ付勢手段を構成する小径部360を設けており、バルブ付勢室157にバネ361を収容して小径部360の端面を押圧することで、バルブ350aに常時前進推力が作用するようになっている。
この変形例の構成であれば、「バルブ付勢手段」を油圧ではなく機械的な構成で実現したので、油圧通路を1箇所省略することができる。そのため、油圧通路の加工コストを抑えることが可能である。なお、この変形例では、「バルブ付勢手段」を構成する付勢手段としてバネ361を採用しているが、これに限らず、他の手段(例えば高圧ガスをバルブ付勢室157に充填する)を採用しても構わない。
以上、本発明の実施形態ないし変形例について図面を参照して説明したが、本発明に係るピストン前後室高低圧切換方式の液圧式打撃装置は、上記実施形態ないし変形例に限定されるものではなく、本発明の主旨を逸脱しなければ、その他の種々の変形や各構成要素を変更することが許容されることは勿論である。
100a シリンダ
101、101’ 高圧回路
102、102’ 低圧回路
110 ピストン前室
111 ピストン後室
112 ピストン前進制御ポート
112a〃 (ショートストローク)
113 ピストン後退制御ポート
114 バルブ制御ポート
120 ピストン前室通路
121 ピストン後室通路
123、123’、123” バルブ高圧通路(前)
124、124’ バルブ高圧通路(後)
125、125’ バルブ低圧通路
126、126’ バルブ制御通路
127 バルブ高圧通路
128 バルブ低圧通路(前)
129 バルブ低圧通路(後)
130 弁室
131 弁室大径部
132 弁室小径部
133 弁室中径部
134 ピストン高圧ポート
135 ピストン前室低圧ポート
136 ピストン後室低圧ポート
137 バルブ制御室
138 ピストン前室高圧ポート
139 ピストン後室高圧ポート
140 ピストン低圧ポート
150 弁室
151 バルブ主室
152 バルブ前室
153 バルブ後室
154 ピストン高圧ポート
155 ピストン前室低圧ポート
156 ピストン後室低圧ポート
157 バルブ付勢室
200 ピストン
201 大径部(前)
202 大径部(後)
203 小径部(前)
204 小径部(後)
205 バルブ切換溝
210 切換弁機構
300 バルブ(中空)
300a バルブ(中空、通路内蔵)
300b バルブ(中空、逆作動)
301、301’ バルブ大径部(前)
302、302’ バルブ大径部(中)
303、303’ バルブ大径部(後)
304、304’ バルブ小径部
305、306’ バルブ中径部
306 ピストン前室切換溝(ピストン高低圧切換部)
307 ピストン後室切換溝(ピストン高低圧切換部)
308、308’ バルブ前端面
309、309’ バルブ後端面
310、310’ バルブ段付面(前)
311、311’ バルブ中空通路
312 バルブ段付面(後)
313 バルブ本体高圧通路
314 ピストン前室排油溝
315 ピストン後室排油溝
316 ピストン前後室切換溝
350 バルブ(中実)
350a バルブ(中実、バネ付勢)
351 バルブ大径部(前)
352 バルブ大径部(中)
353 バルブ大径部(後)
354 バルブ中径部
355 バルブ小径部
356 ピストン前室切換溝
357 ピストン後室切換溝
358 バルブ前端面
359 バルブ後端面
360 小径部(バルブ付勢手段)
361 バネ(バルブ付勢手段)
400、400’ 高圧アキュムレータ
401、401’ 低圧アキュムレータ
Claims (7)
- シリンダと、該シリンダの内部に摺嵌されたピストンと、前記ピストンの外周面と前記シリンダの内周面との間に画成されて軸方向の前後に離隔配置されたピストン前室およびピストン後室と、前記ピストン前室および前記ピストン後室を交互に高圧回路と低圧回路とに切換える切換弁機構とを備え、前記ピストンを前記シリンダ内で前後進させて打撃用のロッドを打撃する液圧式打撃装置であって、
前記ピストンは、大径部と、該大径部の前後にそれぞれ設けられた小径部と、前記大径部の軸方向の略中央に形成されたバルブ切換溝とを有し、
前記切換弁機構は、前記シリンダ内に前記ピストンとは非同軸に形成された弁室と、該弁室内に摺嵌されて自身の前後進によって前記ピストン前室および前記ピストン後室を交互に高圧回路と低圧回路とに切換えて連通させるピストン高低圧切換部が形成されたバルブと、前記バルブを前後進方向の一方向に向けて常時付勢するバルブ付勢手段と、圧油が供給されたときに前記バルブ付勢手段の付勢力に抗して前記バルブを反対方向へと移動させるバルブ制御手段とを有し、
前記シリンダは、前記ピストン前室と前記ピストン後室との間に、前方から順に、ピストン後退制御ポート、バルブ制御ポートおよびピストン前進制御ポートの3つの制御ポートを有し、
前記バルブ制御ポートは、前記バルブ制御手段に圧油を給排可能に連通するとともに前記ピストン前室および前記ピストン後室のそれぞれとは常時隔絶されており、
前記ピストン後退制御ポートおよび前記ピストン前進制御ポートは、前記ピストンの前後進による前記バルブ切換溝の前後移動に応じていずれか一方のポートに限って前記バルブ制御ポートと連通することにより前記バルブ制御手段に圧油を給排して前記バルブを前後進させ、前記切換弁機構は、当該バルブの前後進による前記ピストン高低圧切換部の前後移動に応じて前記ピストン前室および前記ピストン後室を交互に高圧回路と低圧回路とに切換えて前記ピストンの前進および後退が繰返されるように作動油を給排させることを特徴とする液圧式打撃装置。 - 前記バルブが、軸方向に貫通するバルブ中空通路を有する中空構造であることを特徴とする請求項1に記載の液圧式打撃装置。
- 前記バルブ中空通路が、作動油の通路として高圧回路に常時接続されていることを特徴とする請求項2に記載の液圧式打撃装置。
- 前記ピストン後退制御ポートが常時高圧接続されていることを特徴とする請求項1~3のいずれか一項に記載の液圧式打撃装置。
- 前記ピストン前進制御ポートは、前後に離隔して設けたショートストロークポートとロングストロークポートとで構成され、前記ショートストロークポートと前記バルブ低圧通路の間には全閉から全開まで調整可能な可変絞りが設けられていることを特徴とする請求項4に記載の液圧式打撃装置。
- 前記バルブ付勢手段と前記バルブ制御手段に圧油を供給する経路と前記ピストン後室に圧油を供給する経路との間にアキュムレータを設けたことを特徴とする請求項1~5のいずれか一項に記載の液圧式打撃装置。
- シリンダと、該シリンダの内部に摺嵌されたピストンと、前記ピストンの外周面と前記シリンダの内周面との間に画成されて軸方向の前後に離隔配置されたピストン前室およびピストン後室と、前記ピストン前室および前記ピストン後室を交互に高圧回路と低圧回路とに切換える切換弁機構とを備え、前記ピストンを前記シリンダ内で前後進させて打撃用のロッドを打撃する液圧式打撃装置であって、
前記ピストンは、大径部と、該大径部の前後にそれぞれ設けられた小径部と、前記大径部の軸方向の略中央に形成されたバルブ切換溝とを有し、
前記切換弁機構は、前記シリンダ内に前記ピストンとは非同軸に形成された弁室と、該弁室内に摺嵌されて自身の前後進によって前記ピストン前室および前記ピストン後室を交互に高圧回路と低圧回路とに切換えて連通させるピストン高低圧切換部が形成されたバルブと、前記バルブを前後進方向の一方向に向けて常時付勢するバルブ付勢手段と、圧油が供給されたときに前記バルブ付勢手段の付勢力に抗して前記バルブを反対方向へと移動させるバルブ制御手段とを有し、
前記シリンダは、前記ピストン前室と前記ピストン後室との間に、前方から順に、ピストン後退制御ポート、バルブ制御ポートおよびピストン前進制御ポートの3つの制御ポートを有し、
前記バルブ制御ポートは、前記バルブ制御手段に圧油を給排可能に連通するとともに前記ピストン前室および前記ピストン後室のそれぞれとは常時隔絶されており、
前記ピストン後退制御ポートおよび前記ピストン前進制御ポートは、前記ピストンの前進に伴い前記バルブ切換溝が前記ピストン後退制御ポートと前記バルブ制御ポートと連通し前記バルブ制御手段に圧油を供給して前記バルブを後退させ、前記ピストンの後退に伴い前記バルブ切換溝が前記ピストン前進制御ポートと前記バルブ制御ポートと連通し前記バルブ制御手段から圧油を排出して前記バルブを前進させ、前記切換弁機構は、当該バルブの前後進による前記ピストン高低圧切換部の前後移動に応じて前記ピストン前室および前記ピストン後室を交互に高圧回路と低圧回路とに切換えて前記ピストンの前進および後退が繰返されるように作動油を給排させることを特徴とする液圧式打撃装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21185535.8A EP3928927A1 (en) | 2014-01-30 | 2015-01-30 | Hydraulic hammering device |
KR1020167014343A KR102227817B1 (ko) | 2014-01-30 | 2015-01-30 | 액압식 타격 장치 |
EP15743549.6A EP3100829B1 (en) | 2014-01-30 | 2015-01-30 | Hydraulic hammering device |
JP2015559826A JP6438896B2 (ja) | 2014-01-30 | 2015-01-30 | 液圧式打撃装置 |
US15/113,645 US10150209B2 (en) | 2014-01-30 | 2015-01-30 | Hydraulic hammering device |
CN201580004624.3A CN105916634B (zh) | 2014-01-30 | 2015-01-30 | 液压式冲击装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014016092 | 2014-01-30 | ||
JP2014-016092 | 2014-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015115105A1 true WO2015115105A1 (ja) | 2015-08-06 |
Family
ID=53756684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/000408 WO2015115105A1 (ja) | 2014-01-30 | 2015-01-30 | 液圧式打撃装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10150209B2 (ja) |
EP (2) | EP3928927A1 (ja) |
JP (1) | JP6438896B2 (ja) |
KR (1) | KR102227817B1 (ja) |
CN (1) | CN105916634B (ja) |
WO (1) | WO2015115105A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015163426A (ja) * | 2014-01-30 | 2015-09-10 | 古河ロックドリル株式会社 | 液圧式打撃装置 |
WO2018043175A1 (ja) * | 2016-08-31 | 2018-03-08 | 古河ロックドリル株式会社 | 液圧式打撃装置 |
JP2020002604A (ja) * | 2018-06-27 | 2020-01-09 | 古河ロックドリル株式会社 | 穿孔制御装置 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3007154B1 (fr) * | 2013-06-12 | 2015-06-05 | Montabert Roger | Procede de commande de l’energie d’impact d’un piston de frappe d’un appareil a percussions |
CN107848360A (zh) | 2015-06-03 | 2018-03-27 | 动态清晰公司 | 用于控制交通工具本体运动和乘员体验的方法和系统 |
JP6463476B2 (ja) * | 2015-07-13 | 2019-02-06 | 古河ロックドリル株式会社 | 液圧式打撃装置 |
CN109414809B (zh) * | 2016-06-28 | 2022-04-15 | 古河凿岩机械有限公司 | 双活塞型液压冲击装置 |
FR3057483B1 (fr) * | 2016-10-14 | 2019-04-19 | Montabert | Appareil a percussions pourvu d’un palier de guidage equipe d’un dispositif de centrage |
US11207769B2 (en) * | 2017-01-12 | 2021-12-28 | Furukawa Rock Drill Co., Ltd. | Hydraulic hammering device |
US11680446B2 (en) | 2017-07-20 | 2023-06-20 | Mincon International Limited | Valve piloting arrangements for hydraulic percussion devices |
JP7210452B2 (ja) * | 2017-07-24 | 2023-01-23 | 古河ロックドリル株式会社 | 液圧式打撃装置 |
US10954966B2 (en) | 2017-10-25 | 2021-03-23 | Raytheon Company | Bootstrap accumulator containing integrated bypass valve |
CN110344329A (zh) * | 2019-06-18 | 2019-10-18 | 北京碧鑫水务有限公司 | 桥梁施工捣振装置 |
CN113522407B (zh) * | 2020-04-13 | 2023-07-25 | 中国石油天然气集团有限公司 | 破碎装置 |
EP4191016B1 (en) * | 2021-12-03 | 2024-10-23 | Sandvik Mining and Construction Oy | Valve cylinder, impact device and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS461590A (ja) | 1970-02-19 | 1971-09-28 | ||
US4466493A (en) * | 1981-12-17 | 1984-08-21 | Hed Corporation | Reciprocating linear fluid motor |
JPS61159386A (ja) * | 1984-12-27 | 1986-07-19 | 日本ニユ−マチツク工業株式会社 | 衝撃動工具 |
EP0335994A1 (en) * | 1988-04-06 | 1989-10-11 | Nippon Pneumatic Manufacturing Co. Ltd. | Hydraulic impact tool |
JPH02298476A (ja) * | 1989-05-10 | 1990-12-10 | Mazda Motor Corp | 打撃工具 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI50307C (fi) * | 1974-04-20 | 1976-02-10 | Xandor Ag | Hydraulisesti käytetty iskulaite |
US4006665A (en) * | 1974-06-11 | 1977-02-08 | Fa. Ingenieur Gunter Klemm Spezialuntrnehmen Fur Bohrtechnik | Percussion tool |
US4006783A (en) * | 1975-03-17 | 1977-02-08 | Linden-Alimak Ab | Hydraulic operated rock drilling apparatus |
ZA771338B (en) * | 1977-03-04 | 1978-06-28 | Steel Eng Co Ltd | Hydraulic percussive machines |
DE3443542A1 (de) * | 1984-11-29 | 1986-06-05 | Fried. Krupp Gmbh, 4300 Essen | Hydraulische schlagvorrichtung |
IT1208305B (it) | 1987-06-17 | 1989-06-12 | Fresia Spa | Dispositivo di sicurezza antinfortunistico per sgombraneve a frese rotanti |
JPH0236080A (ja) * | 1988-07-26 | 1990-02-06 | Nippon Pneumatic Mfg Co Ltd | 衝撃動装置 |
DD301814A7 (de) * | 1989-11-29 | 1994-03-31 | Sdag Wismut | Hydraulische schlagvorrichtung |
JPH03208215A (ja) * | 1990-01-10 | 1991-09-11 | Izumi Seiki Seisakusho:Kk | 油圧式ブレーカー |
FR2676953B1 (fr) * | 1991-05-30 | 1993-08-20 | Montabert Ets | Appareil hydraulique a percussions. |
US5293747A (en) * | 1992-07-27 | 1994-03-15 | Ingersoll-Rand Company | Power regulator for a pressure fluid motor |
JPH08281571A (ja) * | 1995-04-14 | 1996-10-29 | Komatsu Ltd | 振動発生装置 |
AT407280B (de) | 1995-04-27 | 2001-02-26 | Boehler Pneumatik Internat Gmb | Einrichtung zum verstellen des hubes von fluidgesteuerten schlageinrichtungen |
SE513325C2 (sv) * | 1998-04-21 | 2000-08-28 | Atlas Copco Rock Drills Ab | Slagverk |
US6974286B2 (en) * | 2003-07-25 | 2005-12-13 | Ati Industrial Automation, Inc. | Deburring tool |
JP2005177899A (ja) * | 2003-12-17 | 2005-07-07 | Konan Electric Co Ltd | 液圧式打撃装置 |
FI121139B (fi) * | 2004-02-02 | 2010-07-30 | Sandvik Mining & Constr Oy | Hydraulivasara ja työkaluholkki |
SE530524C2 (sv) * | 2006-09-13 | 2008-07-01 | Atlas Copco Rock Drills Ab | Slagverk, bergborrmaskin inkluderande ett dylikt slagverk och förfarande för styrning av ett slagverk |
SK932007A3 (sk) * | 2007-07-09 | 2009-02-05 | Konek, S. R. O. | Hydraulické rozrušovacie kladivo |
US8196674B2 (en) * | 2008-03-05 | 2012-06-12 | Makita Corporation | Impact tool |
US9038744B2 (en) * | 2008-06-06 | 2015-05-26 | Coil Tubing Technology, Inc. | Jet hammer |
FI125179B (fi) * | 2009-03-26 | 2015-06-30 | Sandvik Mining & Constr Oy | Tiivistyssovitelma painenestekäyttöisen iskulaitteen pyörivässä ohjausventtiilissä |
KR101058181B1 (ko) * | 2009-05-04 | 2011-08-22 | 대모 엔지니어링 주식회사 | 브레이커용 밸브 시스템 |
KR101072069B1 (ko) * | 2009-11-11 | 2011-10-10 | 주식회사수산중공업 | 브레이커의 타격력 조절 및 공타방지 시스템 |
JP2013233595A (ja) * | 2010-08-27 | 2013-11-21 | Teisaku:Kk | 流体圧式打撃装置 |
US8733468B2 (en) * | 2010-12-02 | 2014-05-27 | Caterpillar Inc. | Sleeve/liner assembly and hydraulic hammer using same |
KR101373547B1 (ko) * | 2012-07-03 | 2014-03-25 | 이일재 | 유압타격장치용 타격몸체 |
US9555531B2 (en) * | 2013-03-15 | 2017-01-31 | Caterpillar Inc. | Hydraulic hammer having co-axial accumulator and piston |
US9701003B2 (en) * | 2014-05-23 | 2017-07-11 | Caterpillar Inc. | Hydraulic hammer having delayed automatic shutoff |
-
2015
- 2015-01-30 US US15/113,645 patent/US10150209B2/en active Active
- 2015-01-30 CN CN201580004624.3A patent/CN105916634B/zh active Active
- 2015-01-30 EP EP21185535.8A patent/EP3928927A1/en not_active Withdrawn
- 2015-01-30 KR KR1020167014343A patent/KR102227817B1/ko active IP Right Grant
- 2015-01-30 EP EP15743549.6A patent/EP3100829B1/en active Active
- 2015-01-30 JP JP2015559826A patent/JP6438896B2/ja active Active
- 2015-01-30 WO PCT/JP2015/000408 patent/WO2015115105A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS461590A (ja) | 1970-02-19 | 1971-09-28 | ||
US4466493A (en) * | 1981-12-17 | 1984-08-21 | Hed Corporation | Reciprocating linear fluid motor |
JPS61159386A (ja) * | 1984-12-27 | 1986-07-19 | 日本ニユ−マチツク工業株式会社 | 衝撃動工具 |
EP0335994A1 (en) * | 1988-04-06 | 1989-10-11 | Nippon Pneumatic Manufacturing Co. Ltd. | Hydraulic impact tool |
JPH02298476A (ja) * | 1989-05-10 | 1990-12-10 | Mazda Motor Corp | 打撃工具 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3100829A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015163426A (ja) * | 2014-01-30 | 2015-09-10 | 古河ロックドリル株式会社 | 液圧式打撃装置 |
WO2018043175A1 (ja) * | 2016-08-31 | 2018-03-08 | 古河ロックドリル株式会社 | 液圧式打撃装置 |
JPWO2018043175A1 (ja) * | 2016-08-31 | 2019-02-21 | 古河ロックドリル株式会社 | 液圧式打撃装置 |
CN109641347A (zh) * | 2016-08-31 | 2019-04-16 | 古河凿岩机械有限公司 | 液压式冲击装置 |
EP3508308A4 (en) * | 2016-08-31 | 2019-09-04 | Furukawa Rock Drill Co., Ltd. | HYDRAULIC PERCUSSION DEVICE |
US11084155B2 (en) | 2016-08-31 | 2021-08-10 | Furukawa Rock Drill Co., Ltd. | Hydraulic striking device |
CN109641347B (zh) * | 2016-08-31 | 2021-08-31 | 古河凿岩机械有限公司 | 液压式冲击装置 |
JP2020002604A (ja) * | 2018-06-27 | 2020-01-09 | 古河ロックドリル株式会社 | 穿孔制御装置 |
JP7041454B2 (ja) | 2018-06-27 | 2022-03-24 | 古河ロックドリル株式会社 | 穿孔制御装置 |
Also Published As
Publication number | Publication date |
---|---|
US20170001293A1 (en) | 2017-01-05 |
EP3100829A4 (en) | 2017-05-10 |
CN105916634A (zh) | 2016-08-31 |
JP6438896B2 (ja) | 2018-12-19 |
US10150209B2 (en) | 2018-12-11 |
JPWO2015115105A1 (ja) | 2017-03-23 |
KR102227817B1 (ko) | 2021-03-12 |
CN105916634B (zh) | 2017-08-25 |
KR20160114046A (ko) | 2016-10-04 |
EP3100829A1 (en) | 2016-12-07 |
EP3928927A1 (en) | 2021-12-29 |
EP3100829B1 (en) | 2022-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6438896B2 (ja) | 液圧式打撃装置 | |
WO2017010400A1 (ja) | 液圧式打撃装置 | |
JP6480201B2 (ja) | 液圧式打撃装置 | |
JP6792034B2 (ja) | 油圧打撃装置 | |
KR20160118210A (ko) | 액압식 타격 장치 | |
JP6470058B2 (ja) | 液圧式打撃装置 | |
JP4912785B2 (ja) | 液圧式打撃装置 | |
KR102163473B1 (ko) | 액압식 타격장치 | |
JP6495672B2 (ja) | 液圧式打撃装置、並びにバルブタイミングの切換方法およびバルブポートの設定方法 | |
JP6757682B2 (ja) | 液圧式打撃装置 | |
JP7099964B2 (ja) | 液圧式打撃装置 | |
KR20090015232A (ko) | 완충구조를 갖는 증압실린더 | |
JP6594705B2 (ja) | 液圧式打撃装置 | |
JPS6119574A (ja) | 液圧式打撃機構 | |
JPH0957649A (ja) | 油圧打撃装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15743549 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015559826 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167014343 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015743549 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015743549 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15113645 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |