WO2018038111A1 - インバータ制御装置およびドライブシステム - Google Patents

インバータ制御装置およびドライブシステム Download PDF

Info

Publication number
WO2018038111A1
WO2018038111A1 PCT/JP2017/029972 JP2017029972W WO2018038111A1 WO 2018038111 A1 WO2018038111 A1 WO 2018038111A1 JP 2017029972 W JP2017029972 W JP 2017029972W WO 2018038111 A1 WO2018038111 A1 WO 2018038111A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
current
axis
voltage
control device
Prior art date
Application number
PCT/JP2017/029972
Other languages
English (en)
French (fr)
Inventor
智秋 茂田
峻 谷口
鈴木 健太郎
結城 和明
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2018535703A priority Critical patent/JP6637185B2/ja
Priority to SG11201901395WA priority patent/SG11201901395WA/en
Priority to KR1020197004893A priority patent/KR102285399B1/ko
Priority to CN201780051149.4A priority patent/CN109804545B/zh
Priority to EP17843589.7A priority patent/EP3503375A4/en
Publication of WO2018038111A1 publication Critical patent/WO2018038111A1/ja
Priority to US16/281,373 priority patent/US10637381B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/08Indirect field-oriented control; Rotor flux feed-forward control
    • H02P21/09Field phase angle calculation based on rotor voltage equation by adding slip frequency and speed proportional frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • Embodiments described herein relate generally to an inverter control device and a drive system.
  • a rotation sensorless control method that does not use a rotation sensor such as a resolver or an encoder has been proposed in order to reduce the size, weight, cost, and reliability.
  • the rotation sensorless control it is desired that the rotation phase angle and the rotation speed can be estimated in a wide speed range from the inverter stop to the maximum speed.
  • the magnetic pole (at least one of N pole and S pole) position information is essential.
  • Embodiments of the present invention have been made in view of the above circumstances, and an object thereof is to provide an inverter control device and a drive system that improve the accuracy of rotation sensorless control of an electric motor.
  • the inverter control device includes a current command generation unit that generates a current command value, a current detection unit that detects a current value of an alternating current output from the inverter circuit to the electric motor, the current command value, and the current detection unit.
  • a gate command for the inverter circuit is generated so that the current value detected in step 1 matches the gate value, and a gate command generation unit for obtaining an output voltage target vector of the inverter circuit based on the gate command and detected by the current detection unit.
  • a rotation phase angle estimator for obtaining an estimated value of the rotation phase angle of the motor based on the current value and the output voltage target vector, and a rotation generated when a current synchronized with the rotor frequency of the motor is energized. Using magnetic flux or voltage synchronized with the child frequency or both, the magnetic pole of the motor is discriminated, and the rotation based on the discrimination result It includes a polarity determination unit that outputs a correction value of the phase angle estimate value.
  • FIG. 1 is a block diagram schematically illustrating a configuration example of an inverter control device and a drive system according to the first embodiment.
  • FIG. 2 is a diagram for describing the definitions of the d-axis, the q-axis, and the estimated rotational coordinate system in the embodiment.
  • FIG. 3 is a diagram for explaining a configuration example of the gate command generation unit shown in FIG.
  • FIG. 4 is a diagram for explaining a configuration example of a part of the electric motor shown in FIG. 1.
  • FIG. 5 is a block diagram schematically illustrating a configuration example of the polarity determination unit of the inverter control device of the first embodiment.
  • FIG. 6 is a diagram showing an example of the d-axis current-d-axis fundamental wave magnetic flux characteristics of the magnet type synchronous motor.
  • FIG. 7 is a diagram for explaining an example of a setting range of the d-axis inductance setting value in the inverter control device of the embodiment.
  • FIG. 8 is a diagram for explaining an example of the operation of the inverter control device of the embodiment.
  • FIG. 9 is a diagram illustrating an example of a simulation result for the inverter control apparatus of the first embodiment.
  • FIG. 10 is a diagram illustrating an example of a simulation result for the inverter control device of the first embodiment.
  • FIG. 11 is a block diagram schematically illustrating a configuration example of a polarity determination unit of the inverter control device of the second embodiment.
  • FIG. 12 is a block diagram schematically illustrating a configuration example of a polarity determination unit of the inverter control device according to the third embodiment.
  • FIG. 13 is a diagram illustrating an example of a relationship between a predetermined threshold and the absolute value of the magnetic flux difference ⁇ d_NS.
  • FIG. 14 is a block diagram schematically illustrating a configuration example of the inverter control device and the drive system according to the fourth embodiment.
  • FIG. 15 is a block diagram schematically illustrating another configuration example of the polarity determination unit of the inverter control device according to the fourth embodiment.
  • FIG. 16 is a diagram illustrating an example of a result of simulating the polarity determination operation of the inverter control device of the present embodiment.
  • FIG. 17 is a diagram illustrating an example of a result of simulating the polarity determination operation of the inverter control device of the present embodiment.
  • FIG. 18 is a block diagram schematically illustrating a configuration example of the inverter control device and the drive system according to the fifth embodiment.
  • FIG. 19 is a block diagram schematically illustrating another configuration example of the polarity determination unit of the inverter control device according to the fifth embodiment.
  • FIG. 20 is a diagram illustrating an example of a result of simulating the polarity determination operation of the inverter control device of the present embodiment.
  • FIG. 21 is a diagram illustrating an example of a result of simulating the polarity determination operation of the inverter control device of the present embodiment.
  • FIG. 1 is a block diagram schematically showing a configuration example of the inverter control device and the drive system of the first embodiment.
  • the inverter control device 1 of the present embodiment is an inverter control device that controls an inverter circuit that drives a permanent magnet synchronous motor having magnetic saliency, for example, and is mounted on a drive system that drives a vehicle.
  • the drive system shown in FIG. 1 includes an electric motor M, an inverter circuit INV, an inverter control device 1, and a host controller CTR.
  • the inverter control device 1 includes a current command generation unit 10, a dq / ⁇ conversion unit 20, an angle calculation unit 30, a gate command generation unit 40, a three-phase / ⁇ conversion unit 50, and a rotation phase angle estimation unit 60.
  • the polarity determination unit 70 and the current sensor 80 are provided.
  • the current command generator 10 receives a current amplitude command idq_ref, a current phase command ⁇ _ref, and a current energization flag Ion from the host controller CTR. Based on the current amplitude command and the current phase command, the current command generation unit 10 calculates the d-axis current command value id_ref and the q-axis current command value iq_ref for energizing the motor M, and the current energization flag Ion is turned on (high Level) is output.
  • FIG. 2 is a diagram for describing the definitions of the d-axis, the q-axis, and the estimated rotational coordinate system (dc-axis, qc-axis) in the embodiment.
  • the d-axis is a vector axis with the smallest static inductance in the rotor of the electric motor M
  • the q-axis is a vector axis that is an electrical angle and orthogonal to the d-axis.
  • the estimated rotational coordinate system corresponds to the d axis and the q axis at the estimated position of the rotor.
  • the vector axis rotated by the estimated error ⁇ from the d axis is the dc axis
  • the vector axis rotated by the estimated error ⁇ from the q axis is the qc axis.
  • the d-axis current command value id_ref obtained by the above equation is a vector value in a direction rotated 180 degrees from the dc axis
  • the q-axis current command value iq_ref is a vector value in the qc-axis direction.
  • the dq / ⁇ converter 20 receives the d-axis current command value id_ref, the q-axis current command value iq_ref, and the estimated rotational phase angle value ⁇ est.
  • the dq / ⁇ conversion unit 20 converts the d-axis current command value id_ref and the q-axis current command value iq_ref expressed in the dq-axis coordinate system into the ⁇ -axis current command value i ⁇ _ref expressed in the ⁇ -axis fixed coordinate system. It is a vector converter that converts to a ⁇ -axis current command value i ⁇ _ref.
  • the ⁇ axis indicates the U-phase winding axis of the electric motor M, and the ⁇ axis is an axis orthogonal to the ⁇ axis.
  • the values expressed in the ⁇ axis fixed coordinate system can be calculated without using the rotor phase angle of the motor.
  • the subtracter of the current control unit is arranged at the subsequent stage of the dq / ⁇ conversion unit 20.
  • the ⁇ -axis current command value i ⁇ _ref and the ⁇ -axis current command value i ⁇ _ref output from the dq / ⁇ conversion unit 20 are input to the subtractor.
  • the current sensor 80 detects at least two-phase current values output from the inverter circuit INV, and the three-phase / ⁇ conversion unit 50 converts the current values i ⁇ _FBK and i ⁇ _FBK converted into the ⁇ -axis fixed coordinate system to the subtractor. Entered.
  • the subtractor is a current vector deviation ⁇ i ⁇ between the ⁇ -axis current command value i ⁇ _ref and the current value i ⁇ _FBK output from the inverter circuit INV, and a current vector between the ⁇ -axis current command value i ⁇ _ref and the current value i ⁇ _FBK output from the inverter circuit INV.
  • Deviation ⁇ i ⁇ is output.
  • the angle calculation unit 30 receives the current vector deviation ⁇ i ⁇ and the current vector deviation ⁇ i ⁇ output from the subtractor.
  • the angle calculator 30 calculates the angle ⁇ i of the current vector deviation of the ⁇ axis (fixed coordinate system) from the input current vector deviations ⁇ i ⁇ and ⁇ i ⁇ .
  • the angle ⁇ i is obtained by the arc tangent (tan ⁇ 1 ) of the current vector deviations ⁇ i ⁇ and ⁇ i ⁇ .
  • FIG. 3 is a diagram for explaining a configuration example of the gate command generation unit 40 shown in FIG.
  • the gate command generator 40 outputs a gate command to be applied to the U-phase, V-phase, and W-phase switching elements of the inverter circuit INV so that the current command value matches the current value actually output from the inverter circuit INV. To do.
  • the phase difference of each phase is set to the output voltage of the inverter circuit INV.
  • eight voltage vectors corresponding to each switching state are assumed.
  • the eight voltage vectors can be expressed as six basic voltage vectors V1 to V6 that are different in phase and equal in magnitude by ⁇ / 3 and two zero voltage vectors V0 and V7.
  • the eight voltage vectors V0 to V7 correspond to eight switching states. For example, when the positive switching element of each phase is ON, it is expressed as “1”, and the negative switching element of each phase. This is expressed as “0” when is on.
  • a current tracking type PWM control that selects and generates a gate command will be described as an example.
  • the voltage vector V1 corresponds to (001) when expressed by a UVW gate command.
  • the voltage vectors V2 to V7, V0 are (010), (011), (100), (101), (110), (111), (000).
  • the voltage vector V0 and the voltage vector V7 are called zero voltage vectors because the UVW interphase voltage is 0V, and the voltage vectors V2 to V6 are called non-zero voltage vectors.
  • the inverter circuit INV outputs the zero voltage vector V0 or the zero voltage vector V7, the current changes only by the induced voltage of the rotor, and the amount of change becomes small. Therefore, in this embodiment, only the non-zero voltage vector is selected as the voltage vector in order to increase the current differential term when detecting the rotor position.
  • the gate command generation unit 40 includes a table TB storing U-phase, V-phase, and W-phase gate commands for the range of the angle ⁇ i, and a three-phase / ⁇ conversion unit 42.
  • the three-phase / ⁇ conversion unit 42 receives the gate command output from the table TB, ⁇ -converts the gate command corresponding to the UVW phase, and calculates the output voltage target vectors V ⁇ and V ⁇ of the ⁇ axis fixed coordinate system. Output.
  • the output voltage target vectors V ⁇ and V ⁇ are obtained by subjecting a three-phase AC voltage command that can be calculated from the gate command of the inverter circuit INV to ⁇ conversion, and the gate command is a vector value of the output voltage of the inverter circuit INV to be realized. .
  • the inverter circuit INV includes a DC power supply (DC load) and two switching elements for each of the U phase, the V phase, and the W phase. Two switching elements for each phase are connected in series between a DC line connected to the positive electrode of the DC power source and a DC line connected to the negative electrode of the DC power source.
  • the switching element of the inverter circuit INV is controlled by the gate command received from the gate command generation unit 40.
  • the inverter circuit INV is a three-phase AC inverter that outputs a U-phase current Iu, a V-phase current Iv, and a W-phase current Iw to an electric motor M that is an AC load. Further, the inverter circuit INV can charge the secondary battery, which is a DC power source, with the electric power generated by the electric motor M.
  • FIG. 4 is a diagram for explaining a configuration example of a part of the electric motor shown in FIG. 1.
  • the stator 100 and the rotor 200 of the electric motor M are, for example, a combination of a plurality of configurations shown in FIG.
  • the electric motor M is a permanent magnet synchronous motor having magnetic saliency.
  • the electric motor M is, for example, a magnet-type synchronous motor including a stator 100 and a rotor 200.
  • the rotor 200 has an air gap 210, an outer peripheral bridge BR1, a center bridge BR2, and a magnet MG.
  • the center bridge BR2 is disposed along a line extending from the center of the rotor 200 to the outer peripheral portion.
  • the line where the center bridge BR2 is arranged is the d-axis.
  • the outer peripheral bridge BR ⁇ b> 1 is located between the outer periphery of the rotor 200 and the air gap 210.
  • six air gaps 210 extending from the outer peripheral portion of the rotor 200 toward the central portion are provided.
  • the air gap 210 extends between the center bridge BR2 and the outer bridge BR1 in line symmetry with respect to the d axis.
  • a magnet MG for stabilizing the magnetic path is disposed at the end of the air gap 210 on the side of the center bridge BR2.
  • the rotational phase angle estimation unit 60 determines the current value detected by the current sensor 80, the output voltage target values V ⁇ and V ⁇ of the inverter circuit INV, and the estimated phase angle value ⁇ est in the initial estimation when the inverter circuit INV is activated. Based on this, the estimated rotational phase angle of the motor M is calculated.
  • the rotational phase angle estimation unit 60 includes an ⁇ / dq conversion unit 62, an estimation error calculation unit 64, a PLL calculation unit 66, a low-pass filter FL1, and an integrator 68.
  • the ⁇ / dq conversion unit 62 receives the rotational phase angle estimated value ⁇ est from the integrator 68, receives the output voltage target vectors V ⁇ and V ⁇ of the ⁇ axis fixed coordinate system from the gate command generation unit, and receives the three-phase / ⁇ conversion unit.
  • the current values i ⁇ _FBK and i ⁇ _FBK in the ⁇ axis fixed coordinate system are received from 50, and these vector values are converted into the dq axis coordinate system and output.
  • the values output from the ⁇ / dq converter 62 are the voltage vectors Vdc and Vqc of the dcqc coordinate system including the estimation error ⁇ , and the current vectors idc and iqc.
  • the estimation error calculation unit 64 receives the voltage vectors Vdc and Vqc and the current vectors idc and iqc from the ⁇ / dq conversion unit 62, and calculates the estimation error ⁇ based on these.
  • an arithmetic expression of the estimation error ⁇ will be described.
  • the rotational phase angle error ⁇ est can be calculated by rewriting the rotational speed ⁇ e in [Equation 7] to the estimated value ⁇ est. Further, the rotational speed estimated value ⁇ est is calculated by performing PLL control so that the rotational phase angle error ⁇ est becomes zero, and the rotational speed angle estimated value ⁇ est is calculated by integrating the calculated rotational speed estimated value ⁇ est.
  • the motor can be driven without a rotation angle sensor.
  • the above is a method of estimating the rotation phase angle and the rotation speed using the expansion induced voltage.
  • the magnetic synchronous motor is controlled without rotation sensor, it is necessary to determine the magnet polarity (NS determination). If the magnet polarity is incorrectly estimated, the motor may reversely rotate, so that it is required to perform highly accurate polarity estimation.
  • FIG. 5 is a block diagram schematically illustrating a configuration example of the polarity determination unit of the inverter control device of the first embodiment.
  • the polarity determination unit 70 uses a magnetic flux and / or voltage synchronized with the rotor frequency generated when a current synchronized with the rotor frequency of the motor M is applied in the initial estimation when starting the inverter circuit INV. Then, the magnetic pole is discriminated, and the correction value ⁇ NS of the estimated value ⁇ est ′ of the rotational phase angle based on the discrimination result is output.
  • the polarity determination unit 70 performs magnetic pole determination using a d-axis fundamental magnetic flux generated when a current in the d-axis direction is applied or a q-axis voltage generated by the fundamental magnetic flux.
  • FIG. 6 is a diagram illustrating an example of characteristics of the d-axis current and the d-axis fundamental wave magnetic flux of the magnet type synchronous motor.
  • the polarity determination unit 70 determines the magnet polarity of the electric motor M based on the difference in the d-axis linkage magnetic flux.
  • the difference in d-axis linkage magnetic flux occurs not only in motors with a small amount of magnets but also in motors with a large amount of magnets.
  • the polarity determination unit 70 calculates the q-axis voltage setting value Vd_FF by [Equation 8] and the voltage difference ⁇ Vq_NS that serves as a reference for NS determination by [Equation 9].
  • the q-axis voltage actual value Vqc can be expressed as [Equation 10].
  • FIG. 7 is a diagram for explaining an example of a setting range of the d-axis inductance setting value in the inverter control device of the embodiment.
  • the d-axis inductance set value L d_FF may be a value between the d-axis inductance when current is supplied in the + d-axis direction and the d-axis inductance when current is supplied in the ⁇ d-axis direction.
  • the d-axis inductance set value L d_FF is, for example, an average value of the d-axis inductance when a current is passed through the + d axis and the d-axis inductance when a current is passed through the ⁇ d axis.
  • the current command value id_ref is equal to the d-axis current actual value idc, and the voltage difference ⁇ Vq_NS has the relationship of [Formula 11].
  • the polarity determination unit 70 outputs the correction value ⁇ NS of the rotation angle estimated by the rotation phase and speed estimation means in accordance with the relationship of [Formula 11]. That is, the polarity determination unit 70 includes multipliers 71 and 72, a threshold setting unit Th, a subtractor 73, a filter FL2, and selectors 74 and 75. The polarity determination unit 70 receives the q-axis voltage Vqc, the d-axis current command id_ref, and the estimated rotational speed value ⁇ est.
  • the threshold setting unit Th outputs the d-axis inductance setting value Ld_FF for calculating the q-axis voltage setting value V q_FF to the multiplier 72.
  • Multiplier 71 multiplies d-axis current command id_ref and rotational speed estimated value ⁇ est, and outputs the result to multiplier 72.
  • the multiplier 72 multiplies the calculation result in the multiplier 71 by the d-axis inductance setting value L d_FF and outputs the result to the subtractor 73 as the q-axis voltage setting value V q_FF .
  • the subtractor 73 subtracts the q-axis voltage setting value V q_FF from the q-axis voltage Vqc and outputs the result as a voltage difference ⁇ Vq_NS.
  • the filter FL2 is a low-pass filter, for example, and removes a high frequency component included in the voltage difference ⁇ Vq_NS output from the subtractor 73 and outputs the result.
  • the selector 74 determines whether or not the voltage difference ⁇ Vq_NS output from the filter FL2 is zero or more, and outputs a value corresponding to the determination result. That is, the selector 74 sets the output value to “0” when the voltage difference ⁇ Vq_NS is greater than or equal to zero, and sets the output value to “1” when the voltage difference ⁇ Vq_NS is less than zero.
  • the selector 75 outputs a correction value ⁇ NS based on the value output from the selector 74. That is, the selector 75 outputs the correction value ⁇ NS as ⁇ (180 °) when the value output from the selector 74 is “1”, and the correction value ⁇ NS when the value output from the selector 74 is “0”. Is output as 0 °.
  • the correction value ⁇ NS output from the selector 75 is added to the rotation phase angle estimation value ⁇ est output from the rotation phase angle estimation unit 60, and the rotation phase angle estimation value ⁇ est is corrected.
  • the corrected rotational phase angle estimated value ⁇ est is supplied to the dq / ⁇ conversion unit 20 and the ⁇ / dq conversion unit 62 and used for vector conversion.
  • FIG. 8 is a diagram for explaining an example of the operation of the inverter control device of the embodiment.
  • polarity determination is performed in the initial estimation at the time of startup. That is, the calculation of the rotational phase angle estimation value by the rotational phase angle estimation unit 60 and the magnetic pole determination by the polarity determination unit 70 are executed according to the start command of the inverter circuit INV.
  • the inverter circuit INV is in a stopped state before starting and after being initialized after completion of the initial estimation, and the electric motor M is in a free run.
  • the host controller CTR sets current commands id_ref, iq_ref and current phase ⁇ _ref for energizing the motor, and reflects various flags (current energization flag (Ion), initialization flag, initial estimation flag, NS discrimination calculation flag, NS discrimination result reflection). Flag, normal control flag).
  • the host controller CTR supplies an initialization flag, an initial estimation flag, a normal control flag, and an NS discrimination calculation flag to the rotation phase angle estimation unit 60.
  • the host controller CTR supplies the NS determination result reflection flag to the polarity determination unit 70.
  • the host controller CTR supplies a current energization flag (Ion) to the current command generation unit 10.
  • the initialization flag is raised at the same time. Subsequently, the host controller CTR raises the initial estimation flag and the current energization flag (Ion), and lowers the initialization flag.
  • Rotational phase angle estimator 60 sets an initial value of the rotational phase angle and the rotational speed and initializes it when the initialization flag is raised. Subsequently, when the initial estimation flag rises, calculation of the rotational phase angle estimated value ⁇ est and the rotational speed estimated value ⁇ est is started.
  • the host controller CTR raises the NS discrimination calculation flag.
  • the polarity determination unit 70 calculates the voltage difference ⁇ Vq_NS.
  • the host controller CTR lowers the initial estimation flag and the NS discrimination calculation flag and raises the NS discrimination result reflection flag.
  • the polarity determination unit 70 outputs the rotation angle correction value ⁇ NS according to the value of the voltage difference ⁇ Vq_NS as shown in [Formula 17]. Subsequently, the host controller CTR lowers the NS determination result reflection flag and raises the initialization flag. When the initialization flag is raised, the rotational phase angle estimation unit 60 sets the estimated values of the rotational phase angle and the rotational speed to initial values and initializes them.
  • the host controller CTR lowers the initialization flag and raises the normal control flag.
  • the rotational phase angle estimator 60 ends the initial estimation process and starts the power running drive or regenerative drive operation.
  • 9 and 10 are diagrams showing an example of simulation results for the inverter control apparatus of the first embodiment. 9 and 10 show simulation results for a period including a period from the timing when the current energization flag Ion shown in FIG. 8 rises to the timing when the NS discrimination calculation flag falls.
  • the inverter control device starts energization at time 0 seconds, starts calculation of estimated values of the rotation phase angle and rotation speed, and completes initial estimation at time 0.1 seconds. ing. Further, the inverter control device starts the calculation of polarity determination at the time of 0.05 seconds.
  • the actual value and estimated value of the rotational phase angle are shifted by 180 °.
  • the current energization flag (Ion) rises and the polarity discrimination calculation flag rises 0.05 seconds later, the polarity discrimination is started, and the voltage difference ⁇ V q_NS is a negative value.
  • the correction value ⁇ NS is 180 °, the estimated value of the rotational phase angle is corrected, and the estimated value and the actual value become equal.
  • the actual value and estimated value of the rotational phase angle are not shifted.
  • the voltage difference ⁇ V q_NS is positive.
  • the correction value ⁇ NS is 0 °
  • the estimated value of the rotational phase angle is equal to the actual value.
  • the present embodiment it is possible to accurately determine the magnetic pole position even when driving a synchronous motor having a small no-load magnetic flux. Also, in the inverter control device 1 and the drive system of the present embodiment, unlike the method of determining the magnetic pole position using the harmonic voltage, it is possible to accurately determine the polarity even when the rotation speed increases. No noise is generated. That is, according to the inverter control device 1 and the drive system of the present embodiment, the accuracy of the rotation sensorless control of the electric motor can be improved.
  • the inverter control device 1 of the second embodiment is the same as that of the first embodiment except for the configuration of the polarity determination unit 70.
  • the polarity determination unit 70 performs polarity determination using the magnetic flux difference.
  • the same reference numerals are given to the same configurations as those in the first embodiment, and the description is omitted.
  • FIG. 11 is a block diagram schematically illustrating a configuration example of a polarity determination unit of the inverter control device of the second embodiment.
  • the polarity determination unit 70 of the present embodiment performs polarity determination using the q-axis voltage actual value Vqc, the d-axis current command id_ref, the rotation speed estimation value ⁇ est, and the inductance setting value L d_FF .
  • the polarity determination unit 70 sets the actual d-axis magnetic flux ⁇ d_act to the following [Formula 12], sets the d-axis magnetic flux set value ⁇ d_FF to the following [Formula 13], and sets the magnetic flux difference ⁇ d_NS that serves as a reference for polarity determination to the following [Formula 14].
  • the polarity determination unit 70 includes a divider 76, a multiplier 77, a subtractor 78, a filter FL2, a threshold setting unit Th, and selectors 79 and 75.
  • the multiplier 77 supplies calculates the d-axis magnetic flux setting value [Phi D_FF by multiplying the d-axis current command id_ref inductance setting value L D_FF to the subtractor 78.
  • the subtractor 78 calculates the magnetic flux difference ⁇ d_NS by subtracting the d-axis magnetic flux setting value ⁇ d_FF from the actual d-axis magnetic flux value ⁇ d_act and supplies the calculated difference to the filter FL2.
  • the filter FL2 is a low-pass filter, for example, and supplies the magnetic flux difference ⁇ d_NS from which the high frequency component has been removed to the selector 79.
  • the selector 79 determines whether or not the magnetic flux difference ⁇ d_NS output from the filter FL2 is zero or more, and outputs a value corresponding to the determination result. That is, the selector 79 sets the output value to “0” when the magnetic flux difference ⁇ d_NS is equal to or greater than zero, and sets the output value to “1” when the magnetic flux difference ⁇ d_NS is less than zero.
  • the correction value ⁇ NS output from the selector 75 is added to the rotation phase angle estimation value ⁇ est output from the rotation phase angle estimation unit 60, and the rotation phase angle estimation value ⁇ est is corrected.
  • the corrected rotational phase angle estimated value ⁇ est is supplied to the dq / ⁇ conversion unit 20 and the ⁇ / dq conversion unit 62 and used for vector conversion.
  • the magnetic pole position is accurately determined even when driving a synchronous motor having a small load magnetic flux, as in the first embodiment described above. It is possible. Also, in the inverter control device 1 and the drive system of the present embodiment, unlike the method of determining the magnetic pole position using the harmonic voltage, it is possible to accurately determine the polarity even when the rotation speed increases. No noise is generated. That is, according to the inverter control device 1 and the drive system of the present embodiment, the accuracy of the rotation sensorless control of the electric motor can be improved.
  • FIG. 12 is a block diagram schematically illustrating a configuration example of a polarity determination unit of the inverter control device according to the third embodiment.
  • the inverter control device 1 is different from the first and second embodiments described above in the configuration of the polarity determination unit 70.
  • the polarity determination unit 70 performs polarity determination using the q-axis voltage actual value Vqc, the d-axis current command id_ref, the estimated rotation speed ⁇ est, and the inductance setting value L d_FF .
  • the threshold setting unit Th sets the inductance setting value L d_FF so as to match the inductance when a current is passed through the + d axis or the inductance when a current is passed through the ⁇ d axis.
  • the polarity determination unit 70 determines that the actual d-axis magnetic flux ⁇ d_act is the above-mentioned [Equation 18] and the d-axis magnetic flux setting value ⁇ d_FF is the above-mentioned [Equation 19].
  • d_NS is calculated by the above [Equation 20].
  • the threshold value setting unit Th for example, when the inductance setting value L d_FF is set to an inductance value when a current is passed through the ⁇ d axis, the relationship of the magnetic flux difference when current control is performed with high precision [Formula 15 ].
  • FIG. 13 is a diagram illustrating an example of a relationship between a predetermined threshold and the absolute value of the magnetic flux difference ⁇ d_NS .
  • the polarity determination unit 70 matches the polarity (NS), and the absolute value of the magnetic flux difference ⁇ d_NS is equal to the predetermined threshold value ⁇ d_th.
  • the polarity (NS) is reversed.
  • the polarity determination unit 70 reverses the polarity (NS) when the absolute value of the magnetic flux difference ⁇ d_NS is below a predetermined threshold value, and reverses the polarity when the absolute value of the magnetic flux difference ⁇ d_NS is greater than or equal to the predetermined threshold value. (NS) is determined to match.
  • the predetermined threshold value ⁇ d_th may be determined according to the inductance difference and the voltage detection accuracy when the current is supplied to the ⁇ d axis, and for example, a configuration in which a table for the supplied current is referred to may be used.
  • the polarity determination unit 70 of the present embodiment includes a divider 76, a multiplier 77, a subtractor 78, a threshold setting unit Th, a filter FL2, an absolute value calculation unit ABS, selectors SL and 75, It has.
  • the multiplier 77 supplies calculates the d-axis magnetic flux setting value [Phi D_FF by multiplying the d-axis current command id_ref inductance setting value L D_FF to the subtractor 78.
  • the subtractor 78 calculates the magnetic flux difference ⁇ d_NS by subtracting the d-axis magnetic flux setting value ⁇ d_FF from the actual d-axis magnetic flux value ⁇ d_act and supplies the calculated difference to the filter FL2.
  • the filter FL2 is a low-pass filter, for example, and supplies the magnetic flux difference ⁇ d_NS from which the high frequency component has been removed to the absolute value calculation unit ABS.
  • the absolute value calculation unit ABS calculates the absolute value of the magnetic flux difference ⁇ d_NS output from the filter FL2 and outputs it to the selector SL.
  • the selector SL compares the absolute value of the magnetic flux difference ⁇ d_NS output from the absolute value calculation unit ABS with a predetermined threshold value ⁇ d_th to determine whether or not the magnetic flux difference ⁇ d_NS is greater than or equal to the threshold value ⁇ d_th, and according to the determination result Output the value. That is, the selector 79, the output value when the magnetic flux difference ⁇ d_NS is equal to or greater than the threshold ⁇ d_th is "1", the output value when the magnetic flux difference ⁇ d_NS is less than the threshold value ⁇ d_th to "0".
  • the selector 75 outputs a correction value ⁇ NS based on the value output from the selector SL. That is, the selector 75 outputs the correction value ⁇ NS as ⁇ (180 °) when the value output from the selector SL is “1”, and the correction value ⁇ NS when the value output from the selector SL is “0”. Is output as 0 °.
  • the correction value ⁇ NS output from the selector 75 is added to the rotation phase angle estimation value ⁇ est output from the rotation phase angle estimation unit 60, and the rotation phase angle estimation value ⁇ est is corrected.
  • the corrected rotational phase angle estimated value ⁇ est is supplied to the dq / ⁇ conversion unit 20 and the ⁇ / dq conversion unit 62 and used for vector conversion.
  • the magnetic pole position is accurately determined even when driving a synchronous motor having a small load magnetic flux, as in the first embodiment described above. It is possible. Also, in the inverter control device 1 and the drive system of the present embodiment, unlike the method of determining the magnetic pole position using the harmonic voltage, it is possible to accurately determine the polarity even when the rotation speed increases. No noise is generated. That is, according to the inverter control device and the drive system of the present embodiment, the accuracy of the rotation sensorless control of the electric motor can be improved.
  • FIG. 14 is a block diagram schematically illustrating a configuration example of the inverter control device and the drive system according to the fourth embodiment.
  • the polarity is determined from the q-axis voltage when a positive d-axis current is passed and the q-axis voltage when a negative d-axis current is passed. .
  • the polarity determination unit 70 compares the q-axis voltage value of the motor when the current is supplied with the target in the ⁇ d-axis direction and the q-axis voltage value of the motor when the current is supplied with the target in the + d-axis direction. Based on the result, the magnetic pole of the electric motor is discriminated, and the correction value of the rotational phase angle estimation value based on the discrimination result is output.
  • the inverter control device 1 and the drive system according to the present embodiment are different from the first to third embodiments described above in the flag supplied to the polarity determination unit 70 and the configuration of the polarity determination unit 70. That is, in the present embodiment, the host controller CTR supplies the current phase angle change flag to the polarity determination unit 70. The host controller CTR switches the current phase angle change flag from high (H) to low (L) in synchronization with the timing when the d-axis current command value switches from the positive direction to the negative direction, and the d-axis current command value is negative. The current phase angle change flag is switched from low (L) to high (H) in synchronization with the timing of switching from the direction to the positive direction.
  • FIG. 15 is a block diagram schematically illustrating another configuration example of the polarity determination unit of the inverter control device according to the fourth embodiment.
  • the polarity determination unit 70 includes a q-axis voltage difference calculation unit 710 and a correction value calculation unit 720.
  • the q-axis voltage difference calculation unit 710 includes an absolute value calculation unit 711, trigger output units 712 and 713, a first zero-order hold 714, a second zero-order hold 715, a subtractor 716, and a filter FL3. I have.
  • the correction value calculation unit 720 includes selectors 74 and 75.
  • the absolute value calculator 711 calculates the absolute value of the q-axis voltage actual value Vqc and supplies the calculation result to the first zero-order hold 714 and the second zero-order hold 715.
  • the trigger output unit 712 outputs a pulse to the first zero-order hold 714 in synchronization with the timing when the current phase angle change flag rises.
  • the first zero-order hold 714 When the first zero-order hold 714 receives a pulse from the trigger output unit 712, the first zero-order hold 714 holds the value supplied from the absolute value calculation unit 711 as an output value and outputs it to the subtracter 716.
  • the trigger output unit 713 outputs a pulse to the second zero-order hold 715 in synchronization with the timing when the current phase angle change flag falls.
  • the second zero-order hold 715 When the second zero-order hold 715 receives a pulse from the trigger output unit 713, the second zero-order hold 715 holds the value supplied from the absolute value calculation unit 711 as an output value and supplies it to the subtractor 716.
  • the subtractor 716 subtracts the value supplied from the second zero-order hold 715 from the value supplied from the first zero-order hold 714 and supplies the result to the filter FL3. That is, the subtracter 716 subtracts the q-axis voltage obtained by subtracting the q-axis voltage when the d-axis current command value changes from negative to positive from the q-axis voltage when the d-axis current command value changes from negative to positive. Output the difference.
  • the filter FL3 is a low-pass filter, for example, and outputs the q-axis voltage difference from which the high frequency component is removed to the selector 74.
  • the selector 74 determines whether or not the q-axis voltage difference output from the filter FL3 is equal to or less than zero, and outputs a value corresponding to the determination result. That is, the selector 74 sets the output value to “0” when the q-axis voltage difference is less than or equal to zero, and sets the output value to “1” when the q-axis voltage difference is greater than zero.
  • the selector 75 outputs a correction value ⁇ NS based on the value output from the selector 74. That is, the selector 75 outputs the correction value ⁇ NS as ⁇ (180 °) when the value output from the selector 74 is “1”, and the correction value ⁇ NS when the value output from the selector 74 is “0”. Is output as 0 °.
  • the correction value ⁇ NS output from the selector 75 is added to the rotation phase angle estimation value ⁇ est output from the rotation phase angle estimation unit 60, and the rotation phase angle estimation value ⁇ est is corrected.
  • the corrected rotational phase angle estimated value ⁇ est is supplied to the dq / ⁇ conversion unit 20 and the ⁇ / dq conversion unit 62 and used for vector conversion.
  • 16 and 17 are diagrams illustrating an example of a result of simulating the polarity determination operation of the inverter control device of the present embodiment. 16 and 17 show simulation results for a period including a period from the timing when the current energization flag Ion shown in FIG. 8 rises to the timing when the NS discrimination calculation flag falls.
  • FIG. 16 shows a simulation result when the actual value and the estimated value of the rotational phase angle are not shifted.
  • the host controller CTR changes the d-axis current command id_ref from negative to positive and raises the NS determination calculation flag and the current phase angle change flag.
  • the first zero-order hold 714 holds the absolute value of the q-axis voltage Vqc as an output value.
  • the d-axis current command id_ref changes from negative to positive, the absolute value of the q-axis voltage Vqc increases.
  • the host controller CTR changes the d-axis current command id_ref from positive to negative and lowers the current phase angle change flag.
  • the second zero-order hold 715 holds the absolute value of the q-axis voltage Vqc as an output value.
  • the d-axis current command id_ref changes from positive to negative, the absolute value of the q-axis voltage Vqc decreases.
  • the host controller CTR raises the NS determination result reflection flag, outputs the correction value ⁇ NS from the polarity determination unit 70, and ends the polarity determination.
  • the output value of the first zero-order hold 714 is smaller than the output value of the second zero-order hold 715, and the value output from the filter FL3 is less than or equal to zero, so the correction value ⁇ NS is 0 °. Obviously.
  • FIG. 17 shows a simulation result when the actual value and the estimated value of the rotational phase angle are shifted by 180 °.
  • the operation of the host controller CTR is the same as in the simulation shown in FIG. That is, when starting the polarity determination, the host controller CTR changes the d-axis current command id_ref from negative to positive and raises the NS determination calculation flag and the current phase angle change flag. When the current phase angle change flag rises, the first zero-order hold 714 holds the absolute value of the q-axis voltage Vqc as an output value. In this example, when the d-axis current command id_ref changes from negative to positive, the absolute value of the q-axis voltage Vqc decreases.
  • the host controller CTR changes the d-axis current command id_ref from positive to negative and lowers the current phase angle change flag.
  • the second zero-order hold 715 holds the absolute value of the q-axis voltage Vqc as an output value.
  • the host controller CTR raises the NS determination result reflection flag, outputs the correction value ⁇ NS from the polarity determination unit 70, and ends the polarity determination.
  • the output value of the first zero-order hold 714 is greater than the output value of the second zero-order hold 715, and the value output from the filter FL3 is greater than zero, so the correction value ⁇ NS is 180 °. It becomes. Therefore, the estimated value of the rotational phase angle is inverted by the correction value ⁇ NS, and the actual value of the rotational phase angle and the estimated value become equal.
  • the magnetic pole position is accurately determined even when driving a synchronous motor having a small load magnetic flux, as in the first embodiment described above. It is possible. Also, in the inverter control device 1 and the drive system of the present embodiment, unlike the method of determining the magnetic pole position using the harmonic voltage, it is possible to accurately determine the polarity even when the rotation speed increases. No noise is generated.
  • the inductance setting value is not used in the polarity determination, it is possible to make the parameter setting robust.
  • the estimated speed value and current value are not used for polarity determination, it is possible to make insensitive to speed fluctuation and current ripple.
  • the accuracy of the rotation sensorless control of the electric motor can be improved.
  • FIG. 18 is a block diagram schematically illustrating a configuration example of the inverter control device and the drive system according to the fifth embodiment.
  • the polarity is determined from the q-axis voltage when a positive d-axis current is passed and the q-axis voltage when a negative d-axis current is passed. . That is, the polarity determination unit 70 calculates the q-axis voltage value of the motor when 0 ° is added to the estimated rotational phase angle value and the q-axis voltage value of the motor when 180 ° is added to the estimated rotational phase angle value. Based on the comparison result, the magnetic pole of the motor is discriminated, and a correction value for the estimated rotational phase angle based on the discrimination result is output.
  • the inverter control device 1 of the present embodiment is different from the above-described first to fourth embodiments in the flag supplied to the polarity determination unit 70 and the configuration of the polarity determination unit 70. That is, in this embodiment, the host controller CTR supplies the phase inversion flag to the polarity determination unit 70. When starting the polarity determination, the host controller CTR switches the phase inversion flag from high (H) to low (L), and switches the phase inversion flag from low (L) to high (H) after a predetermined time has elapsed.
  • FIG. 19 is a block diagram schematically illustrating another configuration example of the polarity determination unit of the inverter control device according to the fifth embodiment.
  • the polarity determination unit 70 includes a phase inversion unit 730 and a correction value calculation unit 720.
  • the phase inversion unit 730 includes an absolute value calculation unit 731, trigger output units 732 and 733, a first zero-order hold 734, a second zero-order hold 735, a subtractor 736, a selector 737, and an adder 738.
  • a filter FL4 includes selectors 74 and 75.
  • the absolute value calculation unit 731 calculates the absolute value of the q-axis voltage actual value Vqc and supplies the calculation result to the first zero-order hold 734 and the second zero-order hold 735.
  • the trigger output unit 732 outputs a pulse to the first zero-order hold 734 in synchronization with the timing at which the phase inversion flag rises.
  • the first zero-order hold 734 receives a pulse from the trigger output unit 732, the first zero-order hold 734 holds the value supplied from the absolute value calculation unit 731 as an output value and outputs it to the subtracter 736.
  • the trigger output unit 733 outputs a pulse to the second zero-order hold 735 in synchronization with the timing when the phase inversion flag falls.
  • the second zero-order hold 735 receives a pulse from the trigger output unit 733, the second zero-order hold 735 holds the value supplied from the absolute value calculation unit 731 as an output value and supplies the output value to the subtracter 736.
  • the subtractor 736 subtracts the value supplied from the second zero-order hold 735 from the value supplied from the first zero-order hold 734 and supplies the result to the filter FL4.
  • the value output from the selector 737 is supplied to the adder 738.
  • the filter FL4 is a low-pass filter, for example, and outputs the q-axis voltage difference from which the high frequency component is removed to the selector 74.
  • the selector 74 determines whether or not the q-axis voltage difference output from the filter FL4 is equal to or less than zero, and outputs a value corresponding to the determination result. That is, the selector 74 sets the output value to “0” when the q-axis voltage difference is less than or equal to zero, and sets the output value to “1” when the q-axis voltage difference is greater than zero.
  • the selector 75 selects an output value based on the value output from the selector 74. That is, the selector 75 sets the output value to ⁇ (180 °) when the value output from the selector 74 is “1”, and sets the output value to 0 ° when the value output from the selector 74 is “0”. To do.
  • the value output from the selector 75 is supplied to the adder 738.
  • the adder 738 adds the value output from the selector 737 and the value output from the selector 75, and outputs a correction value ⁇ NS.
  • the correction value ⁇ NS output from the adder 738 is added to the rotation phase angle estimation value ⁇ est output from the rotation phase angle estimation unit 60 to correct the rotation phase angle estimation value ⁇ est.
  • the corrected rotational phase angle estimated value ⁇ est is supplied to the dq / ⁇ conversion unit 20 and the ⁇ / dq conversion unit 62 and used for vector conversion.
  • 20 and 21 are diagrams illustrating an example of a result of simulating the polarity discrimination operation of the inverter control device and the drive system of the present embodiment. 20 and 21 show simulation results for a period including a period from the timing when the current energization flag Ion shown in FIG. 8 rises to the timing when the NS discrimination calculation flag falls.
  • FIG. 20 shows a simulation result when the actual value and the estimated value of the rotational phase angle are not deviated.
  • the host controller CTR raises the NS determination calculation flag and the phase inversion flag when starting the polarity determination.
  • the first zero-order hold 734 holds the absolute value of the q-axis voltage Vqc as an output value.
  • the output value of the selector 737 becomes 180 °
  • the correction value ⁇ NS becomes 180 °
  • the estimated value of the rotational phase angle is inverted. This increases the absolute value of the q-axis voltage.
  • the host controller CTR lowers the phase inversion flag at 0.06 sec.
  • the second zero-order hold 735 holds the absolute value of the q-axis voltage Vqc as an output value.
  • the output value of the selector 737 becomes 0 °
  • the correction value ⁇ NS becomes 0 °
  • the estimated value of the rotational phase angle matches the actual value.
  • the host controller CTR raises the NS determination result reflection flag, outputs the correction value ⁇ NS from the polarity determination unit 70, and ends the polarity determination.
  • the output value of the first zero-order hold 734 is smaller than the output value of the second zero-order hold 735, and the value output from the filter FL4 is less than or equal to zero. °.
  • the output value of the selector 75 is the correction value ⁇ NS, which is 0 °. Therefore, a state where the estimated value of the rotational phase angle is equal to the actual value is maintained.
  • FIG. 21 shows a simulation result when the actual value and the estimated value of the rotational phase angle are shifted by 180 °.
  • the operation of the host controller CTR is the same as in the simulation shown in FIG. That is, the host controller CTR raises the NS determination calculation flag and the phase inversion flag when starting the polarity determination.
  • the first zero-order hold 734 holds the absolute value of the q-axis voltage Vqc as an output value.
  • the phase inversion flag rises, the output value of the selector 737 becomes 180 °, the correction value ⁇ NS becomes 180 °, and the estimated value of the rotational phase angle matches the actual value.
  • the host controller CTR lowers the phase inversion flag at 0.06 sec.
  • the second zero-order hold 735 holds the absolute value of the q-axis voltage Vqc as an output value.
  • the output value of the selector 737 becomes 0 °
  • the correction value ⁇ NS becomes 0 °
  • the estimated value of the rotational phase angle and the actual value are shifted by 180 °.
  • the host controller CTR raises the NS determination result reflection flag, outputs the correction value ⁇ NS from the polarity determination unit 70, and ends the polarity determination.
  • the output value of the first zero-order hold 734 is greater than the output value of the second zero-order hold 735, and the value output from the filter FL4 is greater than zero. 180 °.
  • the output value of the selector 75 is the correction value ⁇ NS, which is 180 °. Therefore, the estimated value of the rotational phase angle is inverted by the correction value ⁇ NS, and the actual value of the rotational phase angle and the estimated value become equal.
  • the magnetic pole position is accurately determined even when driving a synchronous motor having a small load magnetic flux, as in the first embodiment described above. It is possible. Also, in the inverter control device 1 and the drive system of the present embodiment, unlike the method of determining the magnetic pole position using the harmonic voltage, it is possible to accurately determine the polarity even when the rotation speed increases. No noise is generated.
  • the inductance setting value is not used in the polarity determination, so that it is possible to make the parameter setting error robust.
  • the estimated speed value and current value are not used for polarity determination, it is possible to make insensitive to speed fluctuation and current ripple. That is, according to the inverter control device 1 and the drive system of the present embodiment, the accuracy of the rotation sensorless control of the electric motor can be improved.
  • the polarity is determined by calculating the difference by subtracting the set value from the actual value.
  • the actual value may be subtracted from the set value. What is necessary is just to reverse the conditions which correct
  • any feature amount generated by the difference in d-axis magnetic flux can be used for polarity determination without being limited to magnetic flux and voltage.
  • the method of performing current control by current tracking type PWM control has been described as an example.
  • any means can be used as long as it can determine an inverter gate command that matches the current command and the current detection value.
  • the same effect can be obtained even in a triangular wave comparison type PWM modulation system using PI control.
  • sensorless control for estimating the rotational phase angle and the rotational speed has been described as an example.
  • a sensor whose magnet polarity is not known for example, a speed sensor such as a pulse generator (PG).
  • PG pulse generator
  • the rotation sensorless control method is changed by the normal control after the initial estimation, and the harmonic current is changed.
  • the polarity of the magnet may be determined again by a method using, a method using magnet induced voltage, or the like.
  • the inductance of the magnetic synchronous motor having magnetic saliency has the characteristics shown in FIG. 6, and the inductance increases when a + d-axis current is passed in the positive direction.
  • the inductance decreases. That is, when determining the polarity of the magnetic pole, a harmonic voltage is applied in the d-axis direction while energizing the ⁇ d-axis current, and the magnetic pole is determined based on the magnitude of the harmonic current at that time.
  • the inverter control device and the host controller may have a configuration realized by hardware, and include at least one processor and a memory, and have a configuration of the inverter control device and the drive system. It may be realized by software. In any case, the same effects as those of the above-described plurality of embodiments can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)

Abstract

電動機の回転センサレス制御の精度を向上するインバータ制御装置およびドライブシステムを提供するものであって、実施形態によるインバータ制御装置1は、電流指令値を生成する電流指令生成部10と、インバータ回路INVから電動機Mへ出力される交流電流の電流値を検出する電流検出部80と、電流指令値と電流検出部80で検出した電流値とが一致するようにインバータ回路INVに対するゲート指令を生成し、このゲート指令に基づいてインバータ回路INVの出力電圧目標ベクトルを求めるゲート指令生成部40と、電流検出部80で検出された電流値と出力電圧目標ベクトルとに基づいて、電動機Mの回転位相角推定値を求める回転位相角推定部60と、電動機Mの回転子周波数に同期した電流を通電したときに、発生する回転子周波数に同期した磁束もしくは電圧もしくはその両方を用いて、電動機Mの磁石磁極判別を行い、判別結果に基づく回転位相角推定値の補正値を出力する極性判定部70と、を備える。

Description

インバータ制御装置およびドライブシステム
 本発明の実施形態は、インバータ制御装置およびドライブシステムに関する。
 磁石式同期モータを駆動するインバータの制御装置において、小型軽量化、低コスト化、および、信頼性向上のため、レゾルバやエンコーダ等の回転センサを用いない回転センサレス制御法が提案されている。回転センサレス制御ではインバータ停止から最高速までの幅広い速度範囲で回転位相角および回転速度を推定できることが望まれる。
 例えば、回転子内部に磁石を有する同期電動機を回転センサレス制御する場合、磁石の磁極(N極とS極との少なくとも一方の)位置情報が必須である。
特許第4241218号公報
 しかしながら、高調波電流を用いた方式の場合、高速回転時に高調波電流が検出し難くなり、磁石の磁極位置の判別精度が低下することがあった。また、高調波電圧を印加することから騒音が発生することがあった。
 また、磁石誘起電圧を用いた方式の電動機であっても、磁石磁束が小さい、例えばリラクタンストルクを積極的に利用する電動機の場合、高速回転したとしても無負荷誘起電圧がほぼ発生せず、電圧符号を利用して磁石の磁極位置の判別を行うことが困難であった。
 本発明の実施形態は上記事情を鑑みて成されたものであって、電動機の回転センサレス制御の精度を向上するインバータ制御装置およびドライブシステムを提供することを目的とする。
 実施形態によるインバータ制御装置は、電流指令値を生成する電流指令生成部と、インバータ回路から電動機へ出力される交流電流の電流値を検出する電流検出部と、前記電流指令値と前記電流検出部で検出した電流値とが一致するように前記インバータ回路に対するゲート指令を生成し、このゲート指令に基づいて前記インバータ回路の出力電圧目標ベクトルを求めるゲート指令生成部と、前記電流検出部で検出された電流値と前記出力電圧目標ベクトルとに基づいて、前記電動機の回転位相角推定値を求める回転位相角推定部と、前記電動機の回転子周波数に同期した電流を通電したときに、発生する回転子周波数に同期した磁束もしくは電圧もしくはその両方を用いて、前記電動機の磁石磁極判別を行い、判別結果に基づく前記回転位相角推定値の補正値を出力する極性判定部と、を備える。
図1は、第1実施形態のインバータ制御装置およびドライブシステムの一構成例を概略的に示すブロック図である。 図2は、実施形態におけるd軸、q軸、および、推定回転座標系の定義を説明するための図である。 図3は、図1に示すゲート指令生成部の一構成例を説明するための図である。 図4は、図1に示す電動機の一部の構成例を説明するための図である。 図5は、第1実施形態のインバータ制御装置の極性判定部の一構成例を概略的に示すブロック図である。 図6は、磁石式同期モータのd軸電流-d軸基本波磁束特性の一例を示す図である。 図7は、実施形態のインバータ制御装置においてd軸インダクタンス設定値の設定範囲の一例を説明するための図である。 図8は、実施形態のインバータ制御装置の動作の一例を説明するための図である。 図9は、第1実施形態のインバータ制御装置についてシミュレーション結果の一例を示す図である。 図10は、第1実施形態のインバータ制御装置についてシミュレーション結果の一例を示す図である。 図11は、第2実施形態のインバータ制御装置の極性判定部の構成例を概略的に示すブロック図である。 図12は、第3実施形態のインバータ制御装置の極性判定部の構成例を概略的に示すブロック図である。 図13は、所定の閾値と磁束差ΔΦd_NSの絶対値との関係の一例を示す図である。 図14は、第4実施形態のインバータ制御装置およびドライブシステムの一構成例を概略的に示すブロック図である。 図15は、第4実施形態のインバータ制御装置の極性判定部の他の構成例を概略的に示すブロック図である。 図16は、本実施形態のインバータ制御装置の極性判定の動作をシミュレーションした結果の一例を示す図である。 図17は、本実施形態のインバータ制御装置の極性判定の動作をシミュレーションした結果の一例を示す図である。 図18は、第5実施形態のインバータ制御装置およびドライブシステムの一構成例を概略的に示すブロック図である。 図19は、第5実施形態のインバータ制御装置の極性判定部の他の構成例を概略的に示すブロック図である。 図20は、本実施形態のインバータ制御装置の極性判定の動作をシミュレーションした結果の一例を示す図である。 図21は、本実施形態のインバータ制御装置の極性判定の動作をシミュレーションした結果の一例を示す図である。
実施形態
 以下に、実施形態のインバータ制御装置およびドライブシステムについて図面を参照して詳細に説明する。
 図1は、第1実施形態のインバータ制御装置およびドライブシステムの一構成例を概略的に示すブロック図である。本実施形態のインバータ制御装置1は、例えば、磁気突極性を有する永久磁石同期モータを駆動するインバータ回路を制御するインバータ制御装置であって、車両を駆動するドライブシステムに搭載されている。
 図1に示すドライブシステムは、電動機Mと、インバータ回路INVと、インバータ制御装置1と、上位コントローラCTRと、を備えている。インバータ制御装置1は、電流指令生成部10と、dq/αβ変換部20と、角度演算部30と、ゲート指令生成部40と、3相/αβ変換部50と、回転位相角推定部60と、極性判定部70と、電流センサ80と、を備えている。
 電流指令生成部10は、上位コントローラCTRから、電流振幅指令idq_refと、電流位相指令β_refと、電流通電フラグIonと、を受信する。電流指令生成部10は、電流振幅指令と電流位相指令とに基づいて、電動機Mに通電するd軸電流指令値id_refとq軸電流指令値iq_refとを演算し、電流通電フラグIonがオン(ハイレベル)のときにその値を出力する。d軸電流指令値id_refとq軸電流指令値iq_refは下記式により求められる。 
 id_ref=-idq_ref・sinβ_ref 
 iq_ref=idq_ref・cosβ_ref
 図2は、実施形態における、d軸、q軸、および、推定回転座標系(dc軸、qc軸)の定義を説明するための図である。 
 d軸は、電動機Mの回転子において静的インダクタンスが最も小さくなるベクトル軸であり、q軸は電気角でd軸と直交するベクトル軸である。これに対し、推定回転座標系は回転子の推定位置におけるd軸とq軸とに対応する。すなわち、d軸から推定誤差Δθだけ回転したベクトル軸がdc軸であり、q軸から推定誤差Δθだけ回転してベクトル軸がqc軸である。上記式により求められるd軸電流指令値id_refはdc軸から180度回転した方向のベクトル値であって、q軸電流指令値iq_refはqc軸の方向のベクトル値である。
 dq/αβ変換部20には、d軸電流指令値id_refと、q軸電流指令値iq_refと、回転位相角の推定値θestとが入力される。dq/αβ変換部20は、dq軸の座標系で表されたd軸電流指令値id_refとq軸電流指令値iq_refとを、αβ軸の固定座標系で表されたα軸電流指令値iα_refとβ軸電流指令値iβ_refとに変換するベクトル変換器である。なお、α軸は、電動機MのU相巻線軸を示し、β軸はα軸に直交する軸である。αβ軸の固定座標系で表された値は、電動機の回転子位相角を用いることなく演算することが可能である。
 dq/αβ変換部20の後段には、電流制御部の減算器が配置されている。dq/αβ変換部20から出力されたα軸電流指令値iα_refおよびβ軸電流指令値iβ_refは減算器に入力される。また、電流センサ80により、インバータ回路INVから出力された少なくとも2相の電流値が検出され、3相/αβ変換部50によりαβ軸固定座標系に変換された電流値iα_FBK、iβ_FBKが減算器に入力される。減算器は、α軸電流指令値iα_refとインバータ回路INVから出力された電流値iα_FBKとの電流ベクトル偏差Δiαと、β軸電流指令値iβ_refとインバータ回路INVから出力された電流値iβ_FBKとの電流ベクトル偏差Δiβとを出力する。
 角度演算部30には、減算器から出力された電流ベクトル偏差Δiαと、電流ベクトル偏差Δiβとが入力される。角度演算部30は、入力された電流ベクトル偏差Δiα、Δiβからαβ軸(固定座標系)の電流ベクトル偏差の角度θiを演算する。角度θiは、電流ベクトル偏差Δiα、Δiβの逆正接(tan-1)により求められる。
 図3は、図1に示すゲート指令生成部40の一構成例を説明するための図である。
 ゲート指令生成部40は、電流指令値と実際にインバータ回路INVから出力された電流値とが一致するように、インバータ回路INVのU相、V相、W相のスイッチング素子に与えるゲート指令を出力する。
 本実施形態では、インバータ回路INVの6つ(各相2つ)のスイッチング素子(図示せず)のスイッチング状態の組み合わせは8通りあることから、インバータ回路INVの出力電圧に各相の位相差を考慮して、それぞれのスイッチング状態に対応する8つの電圧ベクトルを仮想している。8つの電圧ベクトルは、互いにπ/3だけ位相が異なり且つ大きさが等しい6つの基本電圧ベクトルV1~V6と、2つのゼロ電圧ベクトルV0、V7として表現することができる。ここで、8つの電圧ベクトルV0~V7は8通りのスイッチング状態に対応し、例えば、各相の正側のスイッチング素子がオンであるときに「1」と表し、各相の負側のスイッチング素子がオンであるときに「0」と表したものである。
 本実施形態では、電流指令値と検出電流の電流ベクトル偏差の角度θiに基づいて、非ゼロ電圧ベクトル(ゼロ電圧ベクトルV0=(000)およびV7=(111)以外の電圧ベクトルV1~V6)を選択してゲート指令を生成する電流追従型PWM制御を例として説明する。電圧ベクトルV1は、UVWのゲート指令で表すと、(001)に対応する。同様に、電圧ベクトルV2~V7、V0は、(010)、(011)、(100)、(101)、(110)、(111)、(000)である。このうち、電圧ベクトルV0と電圧ベクトルV7とは、UVWの相間電圧が0Vであるからゼロ電圧ベクトルといい、電圧ベクトルV2~V6は非ゼロ電圧ベクトルという。インバータ回路INVがゼロ電圧ベクトルV0又はゼロ電圧ベクトルV7を出力しているとき、電流は回転子の誘起電圧のみにより変化し、その変化量が小さくなる。したがって、本実施形態では、回転子位置を検出する際に電流微分項を大きくするため、電圧ベクトルとして非ゼロ電圧ベクトルのみを選択するものとしている。
 ゲート指令生成部40は、角度θiの範囲に対するU相、V相、W相のゲート指令を格納したテーブルTBと、3相/αβ変換部42と、を備えている。
 ゲート指令生成部40は、テーブルTBを用いて、電圧ベクトルV4を基準(=0)として、角度θiのベクトルに最も近い電圧ベクトルを選択し、選択した電圧ベクトルに対応するゲート指令を出力する。
 3相/αβ変換部42は、テーブルTBから出力されたゲート指令を受信し、UVW相に対応したゲート指令をαβ変換してαβ軸固定座標系の出力電圧目標ベクトルVα、Vβを演算して出力する。出力電圧目標ベクトルVα、Vβは、インバータ回路INVのゲート指令から演算できる3相交流電圧指令をαβ変換したものであって、ゲート指令が実現しようとしているインバータ回路INVの出力電圧のベクトル値である。
 インバータ回路INVは、直流電源(直流負荷)と、U相、V相、W相の各相2つのスイッチング素子と、を備えている。各相2つのスイッチング素子は、直流電源の正極に接続した直流ラインと、直流電源の負極に接続した直流ラインとの間に直列に接続している。インバータ回路INVのスイッチング素子は、ゲート指令生成部40から受信したゲート指令により制御される。インバータ回路INVは、U相電流Iu、V相電流Iv、W相電流Iwを交流負荷である電動機Mへ出力する3相交流インバータである。また、インバータ回路INVは、電動機Mで発電された電力を直流電源である二次電池へ充電することも可能である。
 図4は、図1に示す電動機の一部の構成例を説明するための図である。 
 なお、ここでは、電動機Mの一部のみを示しており、電動機Mの固定子100および回転子200は、例えば図4に示す構成を複数組み合わせたものとなる。
 電動機Mは、磁気突極性を有する永久磁石同期モータである。電動機Mは、例えば、固定子100と、回転子200とを備えた磁石式同期モータである。回転子200は、エアギャップ210と、外周ブリッジBR1と、センターブリッジBR2と、磁石MGと、を有している。
 センターブリッジBR2は、回転子200の中心から外周部に延びるラインに沿って配置されている。なお、センターブリッジBR2が配置されているラインがd軸となる。外周ブリッジBR1は、回転子200の外周とエアギャップ210との間に位置している。図4に示す電動機Mの部分には、回転子200の外周部から中心部に向かって延びた6つのエアギャップ210が設けられている。エアギャップ210は、d軸に対して線対称に、センターブリッジBR2と外周ブリッジBR1との間に延びている。エアギャップ210のセンターブリッジBR2側の端部には、磁路安定化のための磁石MGが配置されている。
 回転位相角推定部60は、インバータ回路INVが起動する際の初期推定において、電流センサ80で検出された電流値とインバータ回路INVの出力電圧目標値Vα、Vβと、位相角推定値θestとに基づいて、電動機Mの回転位相角推定値を演算する。 
 回転位相角推定部60は、αβ/dq変換部62と、推定誤差演算部64と、PLL演算部66と、ローパスフィルタFL1と、積分器68と、を備えている。
 αβ/dq変換部62は、積分器68から回転位相角推定値θestを受信し、ゲート指令生成部からαβ軸固定座標系の出力電圧目標ベクトルVα、Vβを受信し、3相/αβ変換部50からαβ軸固定座標系の電流値iα_FBK、iβ_FBKを受信し、これらのベクトル値をdq軸座標系に変換して出力する。αβ/dq変換部62から出力される値は、推定誤差Δθを含むdcqc座標系の電圧ベクトルVdc、Vqcと、電流ベクトルidc、iqcとである。
 推定誤差演算部64は、αβ/dq変換部62から電圧ベクトルVdc、Vqcと、電流ベクトルidc、iqcと、を受信し、これらに基づいて推定誤差Δθを演算する。以下に、推定誤差Δθの演算式について説明する。
 磁石式同期モータにおいて、回転位相角誤差Δθがゼロであるとき、すなわち、実際のdq軸と推定したdcqc軸とが一致するときの電圧方程式は、下記[数式1]で表現される。
Figure JPOXMLDOC01-appb-M000001
 なお、上記[数式1]において、vd,vq:dq軸電圧、id,iq:dq軸電流、R:電機子巻線抵抗、ωe:電気角角速度、Ld,Lq:dq軸インダクタンス、p:微分演算子(=d/dt)である。
 さらに[数式1]を推定座標系であるdcqc軸座標系に変換し、拡張誘起電圧方程式の形に変形すると、[数式2]乃至[数式4]となる。
Figure JPOXMLDOC01-appb-M000002
 ここで、[数式4]で演算されるE0xを拡張誘起電圧と呼ぶ。 
 さらに、回転速度の推定値をωestとし、回転位相角の推定値をθestとして、[数式2]を変形すると、
Figure JPOXMLDOC01-appb-M000003
 [数式5]のd軸をq軸で除算すると、[数式6]となる。
Figure JPOXMLDOC01-appb-M000004
 さらに上記[数式6]の逆正接をとることで、
Figure JPOXMLDOC01-appb-M000005
 となり、[数式7]中の回転速度ωeを推定値ωestに書き換えることで回転位相角誤差Δθestを演算することができる。さらに、回転位相角誤差ΔθestがゼロになるようにPLL制御を行うことで回転速度推定値ωestを演算し、さらに演算した回転速度推定値ωestを積分することで回転位相角推定値θestを演算し、モータを回転角度センサレスで駆動することが可能となる。
 以上が拡張誘起電圧を用い回転位相角と回転速度とを推定する方法であるが、磁石式同期モータを回転センサレス制御する場合、磁石極性判別(NS判別)をする必要がある。磁石極性の推定を誤るとモータが逆回転することがあるため、精度の高い極性推定を行うことが求められる。
 図5は、第1実施形態のインバータ制御装置の極性判定部の一構成例を概略的に示すブロック図である。
 極性判定部70は、インバータ回路INVを起動する際の初期推定において、モータMの回転子周波数に同期した電流を通電したときに、発生する回転子周波数に同期した磁束もしくは電圧もしくはその両方を用いて、磁石磁極判別を行い、判別結果に基づく回転位相角の推定値θest´の補正値θNSを出力する。本実施形態では、極性判定部70は、d軸方向の電流を通電した際に発生するd軸基本波磁束もしくは基本波磁束により発生するq軸電圧を用いて磁石磁極判別を行う。
 図6は、磁石式同期モータのd軸電流とd軸基本波磁束との特性の一例を示す図である。
 本実施形態において、電動機Mでは、+d軸に電流を通電した場合と-d軸に電流を通電した場合とでd軸鎖交磁束の大きさに差異が生じる。そこで、極性判定部70は、上記のd軸鎖交磁束の差異に基づいて電動機Mの磁石極性判別を行う。なお、上記d軸鎖交磁束の差異は、磁石量が少ないモータだけでなく、磁石量が多いモータにおいても発生する。
 極性判定部70は、q軸電圧設定値Vd_FFを[数式8]で、NS判別の基準となる電圧差分ΔVq_NSを[数式9]で、それぞれ演算する。なお、q軸電圧実際値Vqcは、[数式10]のように表すことができる。
Figure JPOXMLDOC01-appb-M000006
 図7は、実施形態のインバータ制御装置においてd軸インダクタンス設定値の設定範囲の一例を説明するための図である。
 d軸インダクタンス設定値Ld_FFは、+d軸方向に電流を通電したときのd軸インダクタンスと、-d軸方向に電流を通電したときのd軸インダクタンスとの間の値であればよい。本実施形態では、d軸インダクタンス設定値Ld_FFは、例えば、+d軸に電流を通電した場合のd軸インダクタンスと、-d軸に電流を通電した際のd軸インダクタンスとの平均値とする。
 d軸インダクタンス設定値Ld_FFを設定し、電流制御が正確に行われている場合、電流指令値id_refはd軸電流実際値idcと等しくなり、電圧差分ΔVq_NSは[数式11]の関係となる。
Figure JPOXMLDOC01-appb-M000007
 極性判定部70は、上記[数式11]の関係に則って回転位相、速度推定手段で推定した回転角度の補正値θNSを出力する。
 すなわち、極性判定部70は、乗算器71、72と、閾値設定部Thと、減算器73と、フィルタFL2と、セレクタ74、75と、を備えている。極性判定部70は、q軸電圧Vqcと、d軸電流指令id_refと、回転速度推定値ωestとを入力とする。
 閾値設定部Thは、q軸電圧設定値Vq_FFを演算するためのd軸インダクタンス設定値Ld_FFを乗算器72へ出力する。 
 乗算器71は、d軸電流指令id_refと回転速度推定値ωestとを乗じて乗算器72へ出力する。 
 乗算器72は、乗算器71での演算結果にd軸インダクタンス設定値Ld_FFを乗じて、q軸電圧設定値Vq_FFとして減算器73へ出力する。
 減算器73は、q軸電圧Vqcからq軸電圧設定値Vq_FFを減算して電圧差分ΔVq_NSとして出力する。
 フィルタFL2は、例えばローパスフィルタであって、減算器73から出力された電圧差分ΔVq_NSに含まれる高周波成分を除去して出力する。
 セレクタ74は、フィルタFL2から出力された電圧差分ΔVq_NSがゼロ以上か否かを判定し、判定結果に応じた値を出力する。すなわち、セレクタ74は、電圧差分ΔVq_NSがゼロ以上のときに出力値を「0」とし、電圧差分ΔVq_NSがゼロ未満のときに出力値を「1」とする。
 セレクタ75は、セレクタ74から出力された値に基づいて、補正値θNSを出力する。すなわち、セレクタ75は、セレクタ74から出力された値が「1」のときに補正値θNSをπ(180°)として出力し、セレクタ74から出力された値が「0」のときに補正値θNSを0°として出力する。
 セレクタ75から出力された補正値θNSは、回転位相角推定部60から出力された回転位相角推定値θestに加算され、回転位相角推定値θestが補正される。補正後の回転位相角推定値θestはdq/αβ変換部20、および、αβ/dq変換部62に供給され、ベクトル変換に用いられる。
 図8は、実施形態のインバータ制御装置の動作の一例を説明するための図である。
 本実施形態のインバータ制御装置1では、起動時の初期推定において極性判定を行っている。すなわち、回転位相角推定部60による回転位相角推定値の演算および極性判定部70による磁石磁極判別は、インバータ回路INVの起動指令に応じて実行される。起動前および初期推定完了後に初期化されるまでの間は、インバータ回路INVは停止した状態であり、電動機Mはフリーランとなっている。
 上位コントローラCTRは、モータに通電する電流指令id_ref、iq_refと電流位相β_refとを設定し、各種フラグ(電流通電フラグ(Ion)、初期化フラグ、初期推定フラグ、NS判別演算フラグ、NS判別結果反映フラグ、通常制御フラグ)を制御する。上位コントローラCTRは、初期化フラグ、初期推定フラグ、通常制御フラグおよびNS判別演算フラグを回転位相角推定部60に供給する。上位コントローラCTRは、NS判別結果反映フラグを極性判定部70に供給する。上位コントローラCTRは、電流通電フラグ(Ion)を電流指令生成部10に供給する。
 上位コントローラCTRが起動指令を受けると、同時に初期化フラグを立ち上がる。続いて、上位コントローラCTRは、初期推定フラグと電流通電フラグ(Ion)とを立ち上げ、初期化フラグを立ち下げる。
 回転位相角推定部60は、初期化フラグが立ち上がると、回転位相角と回転速度との推定値を初期値に設定し初期化する。続いて初期推定フラグが立ち上がると、回転位相角推定値θestおよび回転速度推定値ωestの演算を開始する。
 続いて、上位コントローラCTRは、NS判別演算フラグを立ち上げる。
 極性判定部70は、NS判別演算フラグが立ち上がると、電圧差分ΔVq_NSの演算を行う。
 続いて、上位コントローラCTRは、初期推定フラグとNS判別演算フラグとを立ち下げて、NS判別結果反映フラグを立ち上げる。
 極性判定部70は、NS判別結果反映フラグが立ち上がると、[数式17]に示すように電圧差分ΔVq_NSの値に応じて回転角度の補正値θNSを出力する。
 続いて、上位コントローラCTRは、NS判別結果反映フラグを立ち下げて、初期化フラグを立ち上げる。
 回転位相角推定部60は、初期化フラグが立ち上がると、回転位相角と回転速度との推定値を初期値に設定し初期化する。
 続いて、上位コントローラCTRは、初期化フラグを立ち下げて、通常制御フラグを立ち上げる。回転位相角推定部60は、通常制御フラグが立ち上がると初期推定処理を終了し、力行駆動あるいは回生駆動の動作を開始する。
 続いて、上述の実施形態のインバータ制御装置1についてシミュレーションを行った結果の一例について説明する。ここでは、回転位相角推定値、回転速度推定値、および、電圧差分ΔVq_NSを演算したシミュレーション結果について説明する。
 図9および図10は、第1実施形態のインバータ制御装置についてシミュレーション結果の一例を示す図である。図9および図10では、図8に示す電流通電フラグIonが立ち上がったタイミングから、NS判別演算フラグが立ち下がるタイミングまでの期間を含む期間のシミュレーション結果を示している。
 このシミュレーションでは、インバータ制御装置は、0秒の時点で電流通電を開始し、回転位相角および回転速度の推定値の演算を開始し、0.1秒の時点で初期推定を完了する例を示している。また、インバータ制御装置は、0.05秒の時点で極性判別の演算を開始している。
 図9に示す例では、回転位相角の実際値と推定値とが180°ずれている。この場合には、電流通電フラグ(Ion)が立ち上がり、0.05秒後に極性判別演算フラグが立ち上がったときに、極性判別を開始し、電圧差分ΔVq_NSがマイナスの値となっている。このとき、本実施形態のインバータ制御装置1では、補正値θNSが180°となり、回転位相角の推定値が修正され、推定値と実際値とが等しくなる。
 図10に示す例では、回転位相角の実際値と推定値とがずれていない。本結果では先の結果とは異なり電圧差分ΔVq_NSが正となっていることが分かる。このとき、本実施形態のインバータ制御装置1では、補正値θNSが0°となり、回転位相角の推定値は実際値と等しくなる。
 上記演算は初期推定が完了する0.1secまで実施し、初期推定が完了した際の電圧差を基にθNS=180°もしくは0°として推定回転位相角に足し合わせることで磁極補正を行うことができる。
 上記のように、本実施形態では、無負荷磁束が小さい同期モータを駆動する際にも、磁極位置を精度よく判別することが可能である。また、本実施形態のインバータ制御装置1およびドライブシステムでは、高調波電圧を利用して磁極位置を判別する方式と異なり、回転速度が増加した際にも精度よく極性判定を行うことが可能であり、騒音が発生することもない。
 すなわち、本実施形態のインバータ制御装置1およびドライブシステムによれば、電動機の回転センサレス制御の精度を向上することができる。
 次に、第2実施形態のインバータ制御装置およびドライブシステムについて図面を参照して説明する。 
 第2実施形態のインバータ制御装置1は、極性判定部70の構成以外は上述の第1実施形態と同様である。本実施形態では、極性判定部70は磁束の差を用いて極性判別を行う。なお、以下の説明において、第1実施形態と同様の構成にいては同じ符号を付して説明を省略する。
 図11は、第2実施形態のインバータ制御装置の極性判定部の構成例を概略的に示すブロック図である。
 本実施形態の極性判定部70は、q軸電圧実際値Vqcと、d軸電流指令id_refと、回転速度推定値ωestと、インダクタンス設定値Ld_FFと、を用いて極性判別を行う。
 極性判定部70は、実際のd軸磁束Φd_actを下記[数式12]で、d軸磁束設定値Φd_FFを下記[数式13]で、極性判別の基準となる磁束差ΔΦd_NSを下記[数式14]で演算する。
Figure JPOXMLDOC01-appb-M000008
 極性判定部70は、除算器76と、乗算器77と、減算器78と、フィルタFL2と、閾値設定部Thと、セレクタ79、75と、を備えている。
 除算器76は、d軸電圧実際値Vqc(=ωest・Ld・Idc)を回転速度推定値ωestで除して、実際のd軸磁束Φd_actを演算して減算器78へ供給する。
 乗算器77は、d軸電流指令id_refとインダクタンス設定値Ld_FFとを乗じてd軸磁束設定値Φd_FFを演算して減算器78へ供給する。
 減算器78は、実際のd軸磁束値Φd_actからd軸磁束設定値Φd_FFを減じて磁束差ΔΦd_NSを演算し、フィルタFL2へ供給する。
 フィルタFL2は、例えばローパスフィルタであって、高周波成分を除去した磁束差ΔΦd_NSをセレクタ79へ供給する。
 セレクタ79は、フィルタFL2から出力された磁束差ΔΦd_NSがゼロ以上か否かを判定し、判定結果に応じた値を出力する。すなわち、セレクタ79は、磁束差ΔΦd_NSがゼロ以上のときに出力値を「0」とし、磁束差ΔΦd_NSがゼロ未満のときに出力値を「1」とする。
 セレクタ75は、セレクタ79から出力された値に基づいて、補正値θNSを出力する。すなわち、セレクタ75は、セレクタ79から出力された値が「1」のときに補正値θNSをπ(=180°)として出力し、セレクタ79から出力された値が「0」のときに補正値θNSを0°として出力する。
 セレクタ75から出力された補正値θNSは、回転位相角推定部60から出力された回転位相角推定値θestに加算され、回転位相角推定値θestが補正される。補正後の回転位相角推定値θestはdq/αβ変換部20、および、αβ/dq変換部62に供給され、ベクトル変換に用いられる。
 上記のように、本実施形態のインバータ制御装置1およびドライブシステムによれば、上述の第1実施形態と同様に、負荷磁束が小さい同期モータを駆動する際にも、磁極位置を精度よく判別することが可能である。また、本実施形態のインバータ制御装置1およびドライブシステムでは、高調波電圧を利用して磁極位置を判別する方式と異なり、回転速度が増加した際にも精度よく極性判定を行うことが可能であり、騒音が発生することもない。
 すなわち、本実施形態のインバータ制御装置1およびドライブシステムによれば、電動機の回転センサレス制御の精度を向上することができる。
 次に、第3実施形態のインバータ制御装置およびドライブシステムについて図面を参照して説明する。
 図12は、第3実施形態のインバータ制御装置の極性判定部の構成例を概略的に示すブロック図である。
 本実施形態のインバータ制御装置1は、上述の第1実施形態および第2実施形態と極性判定部70の構成が異なっている。
 本実施形態では、極性判定部70は、q軸電圧実際値Vqcと、d軸電流指令id_refと、推定回転速度ωestとインダクタンス設定値Ld_FFとを用いて極性判別を行う。このとき、閾値設定部Thは、インダクタンス設定値Ld_FFを+d軸に電流を通電した際のインダクタンス、もしくは、-d軸に電流を通電した際のインダクタンスに一致するように設定する。
 この時、極性判定部70は、実際のd軸磁束Φd_actは上述の[数式18]で、d軸磁束設定値Φd_FFは上述の[数式19]で、極性判別の基準となる磁束差ΔΦd_NSを上述の[数式20]で演算する。
 閾値設定部Thにおいて、例えば、インダクタンス設定値Ld_FFを-d軸に電流を通電した際のインダクタンス値に設定したとき、電流制御が精度よく行われている場合の磁束差の関係を[数式15]に示す。
Figure JPOXMLDOC01-appb-M000009
 図13は、所定の閾値と磁束差ΔΦd_NSの絶対値との関係の一例を示す図である。
 極性判定部70は、所定のタイミングt1において、磁束差ΔΦd_NSの絶対値が所定の閾値Φd_thを下回る場合、極性(NS)は一致しており、磁束差ΔΦd_NSの絶対値が所定の閾値Φd_th以上となる場合、極性(NS)は反転していると判断する。
 なお、閾値設定部Thにおいて、インダクタンス設定値Ld_FFを+d軸電流通電時のインダクタンス値に設定した場合、上記とは逆の判定結果となる。すなわち、極性判定部70は、磁束差ΔΦd_NSの絶対値が所定の閾値を下回る場合、極性(NS)は反転しており、磁束差ΔΦd_NSの絶対値が所定の閾値以上となる場合、極性(NS)は一致していると判断する。
 また、所定の閾値Φd_thとしては、±d軸に電流を通電した際のインダクタンス差や電圧検出精度に応じて決定すればよく、例えば、通電電流に対するテーブルを参照する構成としても良い。
 すなわち、本実施形態の極性判定部70は、除算器76と、乗算器77と、減算器78と、閾値設定部Thと、フィルタFL2と、絶対値演算部ABSと、セレクタSL、75と、を備えている。
 除算器76は、d軸電圧実際値Vqc(=ωest・Ld・Idc)を回転速度推定値ωestで除して、実際のd軸磁束Φd_actを演算して減算器78へ供給する。
 乗算器77は、d軸電流指令id_refとインダクタンス設定値Ld_FFとを乗じてd軸磁束設定値Φd_FFを演算して減算器78へ供給する。
 減算器78は、実際のd軸磁束値Φd_actからd軸磁束設定値Φd_FFを減じて磁束差ΔΦd_NSを演算し、フィルタFL2へ供給する。
 フィルタFL2は、例えばローパスフィルタであって、高周波成分を除去した磁束差ΔΦd_NSを絶対値演算部ABSへ供給する。
 絶対値演算部ABSは、フィルタFL2から出力された磁束差ΔΦd_NSの絶対値を演算してセレクタSLへ出力する。
 セレクタSLは、絶対値演算部ABSから出力された磁束差ΔΦd_NSの絶対値と、所定の閾値Φd_thとを比較して、磁束差ΔΦd_NSが閾値Φd_th以上か否か判定し、判定結果に応じた値を出力する。すなわち、セレクタ79は、磁束差ΔΦd_NSが閾値Φd_th以上のときに出力値を「1」とし、磁束差ΔΦd_NSが閾値Φd_th未満のときに出力値を「0」とする。
 セレクタ75は、セレクタSLから出力された値に基づいて、補正値θNSを出力する。すなわち、セレクタ75は、セレクタSLから出力された値が「1」のときに補正値θNSをπ(180°)として出力し、セレクタSLから出力された値が「0」のときに補正値θNSを0°として出力する。
 セレクタ75から出力された補正値θNSは、回転位相角推定部60から出力された回転位相角推定値θestに加算され、回転位相角推定値θestが補正される。補正後の回転位相角推定値θestはdq/αβ変換部20、および、αβ/dq変換部62に供給され、ベクトル変換に用いられる。
 上記のように、本実施形態のインバータ制御装置1およびドライブシステムによれば、上述の第1実施形態と同様に、負荷磁束が小さい同期モータを駆動する際にも、磁極位置を精度よく判別することが可能である。また、本実施形態のインバータ制御装置1およびドライブシステムでは、高調波電圧を利用して磁極位置を判別する方式と異なり、回転速度が増加した際にも精度よく極性判定を行うことが可能であり、騒音が発生することもない。
 すなわち、本実施形態のインバータ制御装置およびドライブシステムによれば、電動機の回転センサレス制御の精度を向上することができる。
 次に、第4実施形態のインバータ制御装置およびドライブシステムについて図面を参照して説明する。
 図14は、第4実施形態のインバータ制御装置およびドライブシステムの一構成例を概略的に示すブロック図である。本実施形態のインバータ制御装置1およびドライブシステムでは、正方向のd軸電流を流したときのq軸電圧と、負方向のd軸電流を流したときのq軸電圧から極性を判別している。すなわち、極性判定部70は、-d軸方向を目標に電流を通電した際の電動機のq軸電圧値と、+d軸方向を目標に電流を通電した際の電動機のq軸電圧値との比較結果に基づいて、前記電動機の磁石磁極判別を行い、判別結果に基づく前記回転位相角推定値の補正値を出力する。
 本実施形態のインバータ制御装置1およびドライブシステムは、極性判定部70に供給されているフラグと、極性判定部70の構成とが上述の第1乃至第3実施形態と異なっている。すなわち、本実施形態では、上位コントローラCTRは電流位相角変更フラグを極性判定部70へ供給する。上位コントローラCTRは、d軸電流の指令値が正方向から負方向へ切り替わるタイミングと同期して電流位相角変更フラグをハイ(H)からロー(L)へ切り替え、d軸電流の指令値が負方向から正方向に切り替わるタイミングと同期して電流位相角変更フラグをロー(L)からハイ(H)へ切り替える。
 図15は、第4実施形態のインバータ制御装置の極性判定部の他の構成例を概略的に示すブロック図である。
 極性判定部70は、q軸電圧差演算部710と、補正値演算部720と、を備えている。q軸電圧差演算部710は、絶対値演算部711と、トリガ出力部712、713と、第1零次ホールド714と、第2零次ホールド715と、減算器716と、フィルタFL3と、を備えている。補正値演算部720は、セレクタ74、75を備えている。
 絶対値演算部711は、q軸電圧実際値Vqcの絶対値を演算して第1零次ホールド714および第2零次ホールド715へ演算結果を供給する。
 トリガ出力部712は、電流位相角変更フラグが立ち上がるタイミングと同期して、第1零次ホールド714へパルスを出力する。
 第1零次ホールド714は、トリガ出力部712からパルスを受信すると、絶対値演算部711から供給された値を出力値として保持し、減算器716へ出力する。
 トリガ出力部713は、電流位相角変更フラグが立ち下がるタイミングと同期して、第2零次ホールド715へパルスを出力する。
 第2零次ホールド715は、トリガ出力部713からパルスを受信すると、絶対値演算部711から供給された値を出力値として保持し、減算器716へ供給する。
 減算器716は、第1零次ホールド714から供給された値から、第2零次ホールド715から供給された値を減算してフィルタFL3へ供給する。すなわち、減算器716は、d軸電流指令値が負から正へ変化するときのq軸電圧から、d軸電流指令値が負から正へ変化するときのq軸電圧を引いた、q軸電圧差を出力する。
 フィルタFL3は、例えばローパスフィルタであって、高周波成分を除去したq軸電圧差を、セレクタ74へ出力する。
 セレクタ74は、フィルタFL3から出力されたq軸電圧差がゼロ以下か否かを判定し、判定結果に応じた値を出力する。すなわち、セレクタ74は、q軸電圧差がゼロ以下のときに出力値を「0」とし、q軸電圧差がゼロよりも大きいときに出力値を「1」とする。
 セレクタ75は、セレクタ74から出力された値に基づいて、補正値θNSを出力する。すなわち、セレクタ75は、セレクタ74から出力された値が「1」のときに補正値θNSをπ(180°)として出力し、セレクタ74から出力された値が「0」のときに補正値θNSを0°として出力する。
 セレクタ75から出力された補正値θNSは、回転位相角推定部60から出力された回転位相角推定値θestに加算され、回転位相角推定値θestが補正される。補正後の回転位相角推定値θestはdq/αβ変換部20、および、αβ/dq変換部62に供給され、ベクトル変換に用いられる。
 図16および図17は、本実施形態のインバータ制御装置の極性判定の動作をシミュレーションした結果の一例を示す図である。図16および図17では、図8に示す電流通電フラグIonが立ち上がったタイミングから、NS判別演算フラグが立ち下がるタイミングまでの期間を含む期間のシミュレーション結果を示している。
 0secで電流通電を開始し、回転位相角および回転速度の推定値の演算を開始し、0.1secで初期推定を完了する例を示している。また、0.04sec時点で極性判別の演算を開始している。
 図16では、回転位相角の実際値と推定値とがずれていないときのシミュレーション結果を示している。
 上位コントローラCTRは、極性判定を開始する際に、d軸電流指令id_refを負から正へと変化させるとともに、NS判別演算フラグと電流位相角変更フラグとを立ち上げる。電流位相角変更フラグが立ち上がると、第1零次ホールド714でq軸電圧Vqcの絶対値が出力値として保持される。また、d軸電流指令id_refが負から正に変化すると、q軸電圧Vqcの絶対値が大きくなる。
 続いて、上位コントローラCTRは、d軸電流指令id_refを正から負へと変化させるとともに、電流位相角変更フラグを立ち下げる。電流位相角変更フラグが立ち下がると、第2零次ホールド715でq軸電圧Vqcの絶対値が出力値として保持される。また、d軸電流指令id_refが正から負へ変化するとq軸電圧Vqcの絶対値が小さくなる。
 その後、上位コントローラCTRは、NS判別結果反映フラグを立ち上げて、極性判定部70から補正値θNSを出力し、極性判定を終了する。
 この例では、第1零次ホールド714の出力値は、第2零次ホールド715の出力値よりも小さくなり、フィルタFL3から出力される値はゼロ以下となるため、補正値θNSは0°となる。
 図17では、回転位相角の実際値と推定値とが180°ずれているときのシミュレーション結果を示している。
 上位コントローラCTRの動作は、図16に示すシミュレーションのときの同様である。すなわち、上位コントローラCTRは、極性判定を開始する際に、d軸電流指令id_refを負から正へと変化させるとともに、NS判別演算フラグと電流位相角変更フラグとを立ち上げる。電流位相角変更フラグが立ち上がると、第1零次ホールド714でq軸電圧Vqcの絶対値が出力値として保持される。この例では、d軸電流指令id_refが負から正に変化すると、q軸電圧Vqcの絶対値が小さくなる。
 続いて、上位コントローラCTRは、d軸電流指令id_refを正から負へと変化させるとともに、電流位相角変更フラグを立ち下げる。電流位相角変更フラグが立ち下がると、第2零次ホールド715でq軸電圧Vqcの絶対値が出力値として保持される。この例では、d軸電流指令id_refが正から負へ変化するとq軸電圧Vqcの絶対値が大きくなる。
 その後、上位コントローラCTRは、NS判別結果反映フラグを立ち上げて、極性判定部70から補正値θNSを出力し、極性判定を終了する。
 この例では、第1零次ホールド714の出力値は、第2零次ホールド715の出力値よりも大きくなり、フィルタFL3から出力される値はゼロよりも大きくなるため、補正値θNSは180°となる。したがって、補正値θNSにより回転位相角の推定値が反転し、回転位相角の実際値と推定値とが等しくなる。
 上記のように、本実施形態のインバータ制御装置1およびドライブシステムによれば、上述の第1実施形態と同様に、負荷磁束が小さい同期モータを駆動する際にも、磁極位置を精度よく判別することが可能である。また、本実施形態のインバータ制御装置1およびドライブシステムでは、高調波電圧を利用して磁極位置を判別する方式と異なり、回転速度が増加した際にも精度よく極性判定を行うことが可能であり、騒音が発生することもない。
 また、本実施形態のインバータ制御装置1およびドライブシステムによれば、極性判定においてインダクタンス設定値を用いないので、パラメータ設定の誤差に対してロバスト化が可能である。また、極性判定に推定速度値や電流値を用いないため、速度変動や電流リプルに対して不感化することができる。
 すなわち、本実施形態のインバータ制御装置1およびドライブシステムによれば、電動機の回転センサレス制御の精度を向上することができる。
 次に、第5実施形態のインバータ制御装置1およびドライブシステムについて図面を参照して説明する。
 図18は、第5実施形態のインバータ制御装置およびドライブシステムの一構成例を概略的に示すブロック図である。本実施形態のインバータ制御装置1およびドライブシステムでは、正方向のd軸電流を流したときのq軸電圧と、負方向のd軸電流を流したときのq軸電圧から極性を判別している。すなわち、極性判定部70は、回転位相角推定値に0°を加算したときの電動機のq軸電圧値と、回転位相角推定値に180°を加算したときの電動機のq軸電圧値との比較結果に基づいて、前記電動機の磁石磁極判別を行い、判別結果に基づく前記回転位相角推定値の補正値を出力する。
 本実施形態のインバータ制御装置1は、極性判定部70に供給されているフラグと、極性判定部70の構成とが上述の第1乃至第4実施形態と異なっている。すなわち、本実施形態では、上位コントローラCTRは位相反転フラグを極性判定部70へ供給する。上位コントローラCTRは、極性判定を開始すると、位相反転フラグをハイ(H)からロー(L)へ切り替え、所定時間経過後に位相反転フラグをロー(L)からハイ(H)へ切り替える。
 図19は、第5実施形態のインバータ制御装置の極性判定部の他の構成例を概略的に示すブロック図である。
 極性判定部70は、位相反転部730と、補正値演算部720と、を備えている。位相反転部730は、絶対値演算部731と、トリガ出力部732、733と、第1零次ホールド734と、第2零次ホールド735と、減算器736と、セレクタ737と、加算器738と、フィルタFL4と、を備えている。補正値演算部720は、セレクタ74、75を備えている。
 絶対値演算部731は、q軸電圧実際値Vqcの絶対値を演算して第1零次ホールド734および第2零次ホールド735へ演算結果を供給する。
 トリガ出力部732は、位相反転フラグが立ち上がるタイミングと同期して、第1零次ホールド734へパルスを出力する。
 第1零次ホールド734は、トリガ出力部732からパルスを受信すると、絶対値演算部731から供給された値を出力値として保持し、減算器736へ出力する。
 トリガ出力部733は、位相反転フラグが立ち下がるタイミングと同期して、第2零次ホールド735へパルスを出力する。
 第2零次ホールド735は、トリガ出力部733からパルスを受信すると、絶対値演算部731から供給された値を出力値として保持し、減算器736へ供給する。
 減算器736は、第1零次ホールド734から供給された値から、第2零次ホールド735から供給された値を減算してフィルタFL4へ供給する。
 セレクタ737は、位相反転フラグを受信し、位相反転フラグが「1」のときに出力値をπ(=180°)とし、位相反転フラグが「0」のときに出力値をゼロ(=0°)とする。セレクタ737から出力された値は、加算器738へ供給される。
 フィルタFL4は、例えばローパスフィルタであって、高周波成分を除去したq軸電圧差を、セレクタ74へ出力する。
 セレクタ74は、フィルタFL4から出力されたq軸電圧差がゼロ以下か否かを判定し、判定結果に応じた値を出力する。すなわち、セレクタ74は、q軸電圧差がゼロ以下のときに出力値を「0」とし、q軸電圧差がゼロよりも大きいときに出力値を「1」とする。
 セレクタ75は、セレクタ74から出力された値に基づいて、出力値を選択する。すなわち、セレクタ75は、セレクタ74から出力された値が「1」のときに出力値をπ(180°)とし、セレクタ74から出力された値が「0」のときに出力値を0°とする。セレクタ75から出力された値は、加算器738へ供給される。
 加算器738は、セレクタ737から出力された値と、セレクタ75から出力された値とを加算して補正値θNSを出力する。加算器738から出力された補正値θNSは、回転位相角推定部60から出力された回転位相角推定値θestに加算され、回転位相角推定値θestが補正される。補正後の回転位相角推定値θestはdq/αβ変換部20、および、αβ/dq変換部62に供給され、ベクトル変換に用いられる。
 図20および図21は、本実施形態のインバータ制御装置およびドライブシステムの極性判別の動作をシミュレーションした結果の一例を示す図である。図20および図21では、図8に示す電流通電フラグIonが立ち上がったタイミングから、NS判別演算フラグが立ち下がるタイミングまでの期間を含む期間のシミュレーション結果を示している。
 0secで電流通電を開始し、回転位相角および回転速度の推定値の演算を開始し、0.1secで初期推定を完了する例を示している。また、0.04sec時点で磁極判別の演算を開始している。また、以下のシミュレーションにおいて、d軸電流指令は負の一定値である。
 図20では、回転位相角の実際値と推定値とがずれていないときのシミュレーション結果を示している。
 上位コントローラCTRは、極性判定を開始する際に、NS判別演算フラグと位相反転フラグとを立ち上げる。位相反転フラグが立ち上がると、第1零次ホールド734でq軸電圧Vqcの絶対値が出力値として保持される。また、位相反転フラグが立ち上がると、セレクタ737の出力値が180°となり、補正値θNSが180°となり、回転位相角の推定値が反転する。このことにより、q軸電圧の絶対値が大きくなる。
 続いて、上位コントローラCTRは、0.06sec時点で、位相反転フラグを立ち下げる。位相反転フラグが立ち下がると、第2零次ホールド735でq軸電圧Vqcの絶対値が出力値として保持される。また、位相反転フラグが立ち下がると、セレクタ737の出力値が0°となり、補正値θNSが0°となり、回転位相角の推定値が実際値と一致する。
 その後、上位コントローラCTRは、NS判別結果反映フラグを立ち上げて、極性判定部70から補正値θNSを出力し、極性判定を終了する。
 この例では、第1零次ホールド734の出力値は、第2零次ホールド735の出力値よりも小さくなり、フィルタFL4から出力される値はゼロ以下となるため、セレクタ75の出力値は0°となる。この時点で、位相反転フラグは0となっているため、セレクタ75の出力値が補正値θNSであり0°である。したがって、回転位相角の推定値と実際値とが等しい状態が維持される。
 図21では、回転位相角の実際値と推定値とが180°ずれているときのシミュレーション結果を示している。
 上位コントローラCTRの動作は、図20に示すシミュレーションのときの同様である。すなわち、上位コントローラCTRは、極性判定を開始する際に、NS判別演算フラグと位相反転フラグとを立ち上げる。位相反転フラグが立ち上がると、第1零次ホールド734でq軸電圧Vqcの絶対値が出力値として保持される。また、位相反転フラグが立ち上がると、セレクタ737の出力値が180°となり、補正値θNSが180°となり、回転位相角の推定値が実際値と一致する。
 続いて、上位コントローラCTRは、0.06sec時点で、位相反転フラグを立ち下げる。位相反転フラグが立ち下がると、第2零次ホールド735でq軸電圧Vqcの絶対値が出力値として保持される。また、位相反転フラグが立ち下がると、セレクタ737の出力値が0°となり、補正値θNSが0°となり、回転位相角の推定値と実際値とが180°ずれる。
 その後、上位コントローラCTRは、NS判別結果反映フラグを立ち上げて、極性判定部70から補正値θNSを出力し、極性判定を終了する。
 この例では、第1零次ホールド734の出力値は、第2零次ホールド735の出力値よりも大きくなり、フィルタFL4から出力される値はゼロよりも大きくなるため、セレクタ75の出力値は180°となる。この時点で、位相反転フラグは0となっているため、セレクタ75の出力値が補正値θNSであり180°である。したがって、補正値θNSにより回転位相角の推定値が反転し、回転位相角の実際値と推定値とが等しくなる。
 上記のように、本実施形態のインバータ制御装置1およびドライブシステムによれば、上述の第1実施形態と同様に、負荷磁束が小さい同期モータを駆動する際にも、磁極位置を精度よく判別することが可能である。また、本実施形態のインバータ制御装置1およびドライブシステムでは、高調波電圧を利用して磁極位置を判別する方式と異なり、回転速度が増加した際にも精度よく極性判定を行うことが可能であり、騒音が発生することもない。
 また、本実施形態のインバータ制御装置1およびドライブシステムによれば、極性判定においてインダクタンス設定値を用いないので、パラメータ設定の誤差に対してロバスト化が可能である。また、極性判定に推定速度値や電流値を用いないため、速度変動や電流リプルに対して不感化することができる。
 すなわち、本実施形態のインバータ制御装置1およびドライブシステムによれば、電動機の回転センサレス制御の精度を向上することができる。
 なお、第1乃至第3実施形態では、実際値から設定値を引くことで差分を演算して極性判別を行ったが、設定値から実際値を減じてもよく、この場合には回転位相の補正を行う条件を逆にすればよい。更に、d軸磁束の差異により発生する特徴量であれば磁束や電圧に限らず、極性判定に用いることができる。
 また、第1乃至第5実施形態では、電流制御を電流追従型PWM制御にて行う方式を例に説明したが、電流指令と電流検出値を一致させるインバータゲート指令を決定できる手段であれば他の方式を採用してもよく、例えばPI制御を用いた三角波比較型のPWM変調方式であっても同様の効果が得られる。
 また、上述の第1乃至第5実施形態では、回転位相角と回転速度とを推定するセンサレス制御を例として説明したが、磁石極性が分からないセンサ、例えばパルスジェネレータ(PG)の様な速度センサを用いた磁石式同期モータドライブシステムに適用しても同様の効果が得られる。
 また、第1乃至第5実施形態では、電圧がある程度発生していることを前提としているが、回転速度が低い場合、初期推定の後の通常制御で回転センサレス制御方式を変更し、高調波電流を利用した方式や、磁石誘起電圧を利用した方式等により、再度磁石極性を判定してもよい。
 以下では高調波電流情報を基にNS判別する方式と、磁石回転により発生する誘起電圧を基にNS判別する方式とについて説明する。
 1)高調波電流を利用した方式
 推定回転位相角が真の回転位相角に一致している場合の電圧方程式[数式1]に対して、推定回転位相角と真の回転位相角が一致しない場合、dq軸電圧方程式は下記[数式16]に書き改められる。
Figure JPOXMLDOC01-appb-M000010
 さらに[数式16]を電流微分項についてまとめると[数式17]のようになる。
Figure JPOXMLDOC01-appb-M000011
 このとき、モータ回転数が充分に低く、抵抗による電圧降下が無視できる場合を例とする。この場合、[数式17]は下記[数式18]に書き改められる。
Figure JPOXMLDOC01-appb-M000012
 さらに、高周波電圧を推定されたd軸(dc軸)のみに印加すると、[数式18]は[数式19]に書き改められる。
Figure JPOXMLDOC01-appb-M000013
 上記[数式19]によると、qc軸の高調波電流は回転角度Δθに依存して変化し、この回転角度依存の特性を利用して回転位相角を推定することも可能である。ただし、本特性は回転子回転角度の2倍で変化するため、NSと言った180°の位相差を判別することには利用できない。
 これに対して、dc軸高調波電流がd軸インダクタンスの逆数で決まることを利用するNS判別方法がある。磁気突極性を有する磁石式同期モータのインダクタンスは図6の特性となり、+d軸電流を正方向に通電するとインダクタンスは大きくなる。逆に-d軸電流を通電するとインダクタンスは低くなる。つまり、磁極の極性を判別する場合、±d軸電流を通電しつつ高調波電圧をd軸方向に印加し、その際の高調波電流の大きさを基に磁極を判別する。
 2)磁石誘起電圧を利用した方式
 続いて磁石回転により発生する誘起電圧を用いた極性判別方法について説明する。
 永久磁石式同期モータが無負荷状態で回転する場合、[数式16]は[数式20]に書き改められる。
Figure JPOXMLDOC01-appb-M000014
 さらに、磁石のN極がd軸と合致した場合(θ=0°)とNS逆転した場合(θ=180°)の電圧を[数式21]に示す。
Figure JPOXMLDOC01-appb-M000015
 [数式21]に示した様に、磁極位置が反転した場合、qc軸に発生する誘起電圧の符号が反転する。理想的には+q軸方向に電圧が出るため、vqcの符号を見ることでNS判別が行える。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 なお、上記複数の実施形態において、インバータ制御装置および上位コントローラは、ハードウエアにより実現される構成であってもよく、少なくとも1つのプロセッサと、メモリとを備え、インバータ制御装置およびドライブシステムの構成をソフトウエアにより実現するものであってもよい。いずれの場合であっても上述の複数の実施形態と同様の効果を得ることができる。

Claims (7)

  1.  電流指令値を生成する電流指令生成部と、
     インバータ回路から電動機へ出力される交流電流の電流値を検出する電流検出部と、
     前記電流指令値と前記電流検出部で検出した電流値とが一致するように前記インバータ回路に対するゲート指令を生成し、このゲート指令に基づいて前記インバータ回路の出力電圧目標ベクトルを求めるゲート指令生成部と、
     前記電流検出部で検出された電流値と前記出力電圧目標ベクトルとに基づいて、前記電動機の回転位相角推定値を求める回転位相角推定部と、
     前記電動機の回転子周波数に同期した電流を通電したときに、発生する回転子周波数に同期した磁束もしくは電圧もしくはその両方を用いて、前記電動機の磁石磁極判別を行い、判別結果に基づく前記回転位相角推定値の補正値を出力する極性判定部と、を備えたインバータ制御装置。
  2.  前記極性判定部は、磁束の実際値と磁束の設定値との差、もしくは、電圧の実際値と電圧の設定値との差に基づいて、前記電動機の磁石磁極判別を行う請求項1記載のインバータ制御装置。
  3.  前記極性判定部は、正方向のd軸電流を前記電動機に通電した際のインダクタンス値と、負方向のd軸電流を前記電動機に通電した際のインダクタンス値との間の範囲で設定されたインダクタンス設定値を用いて、前記磁束の設定値もしくは前記電圧の設定値を求める、請求項2記載のインバータ制御装置。
  4.  前記極性判定部は、前記回転位相角推定値に0°を加算したときの前記電動機のq軸電圧値と、前記回転位相角推定値に180°を加算したときの前記電動機のq軸電圧値との比較結果に基づいて、前記電動機の磁石磁極判別を行う、請求項1記載のインバータ制御装置。
  5.  前記極性判定部は、-d軸方向を目標に電流を通電したときの前記電動機のq軸電圧値と、+d軸方向を目標に電流を通電したときの前記電動機のq軸電圧値との比較結果に基づいて、前記電動機の磁石磁極判別を行う、請求項1記載のインバータ制御装置。
  6.  前記回転位相角推定部による回転位相角推定値の演算および前記極性判定部による磁石磁極判別は、前記インバータ回路の起動指令に応じて実行される、請求項1記載のインバータ制御装置。
  7.  請求項1乃至請求項6のいずれか1項に記載のインバータ制御装置と、
     前記インバータ制御装置の動作を制御する上位コントローラと、
     前記インバータ回路と、
     前記電動機と、を備え、
     前記電動機は、磁石の回転子もしくは磁石が埋め込まれた固定子を備え、磁気的突極性を有するドライブシステム。
PCT/JP2017/029972 2016-08-22 2017-08-22 インバータ制御装置およびドライブシステム WO2018038111A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018535703A JP6637185B2 (ja) 2016-08-22 2017-08-22 インバータ制御装置およびドライブシステム
SG11201901395WA SG11201901395WA (en) 2016-08-22 2017-08-22 Inverter control device and drive system
KR1020197004893A KR102285399B1 (ko) 2016-08-22 2017-08-22 인버터 제어 장치 및 드라이브 시스템
CN201780051149.4A CN109804545B (zh) 2016-08-22 2017-08-22 逆变器控制装置以及驱动器系统
EP17843589.7A EP3503375A4 (en) 2016-08-22 2017-08-22 INVERTER CONTROL DEVICE AND DRIVE SYSTEM
US16/281,373 US10637381B2 (en) 2016-08-22 2019-02-21 Inverter control device and drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016162199 2016-08-22
JP2016-162199 2016-08-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/281,373 Continuation US10637381B2 (en) 2016-08-22 2019-02-21 Inverter control device and drive system

Publications (1)

Publication Number Publication Date
WO2018038111A1 true WO2018038111A1 (ja) 2018-03-01

Family

ID=61245197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029972 WO2018038111A1 (ja) 2016-08-22 2017-08-22 インバータ制御装置およびドライブシステム

Country Status (8)

Country Link
US (1) US10637381B2 (ja)
EP (1) EP3503375A4 (ja)
JP (1) JP6637185B2 (ja)
KR (1) KR102285399B1 (ja)
CN (1) CN109804545B (ja)
SG (1) SG11201901395WA (ja)
TW (1) TWI668953B (ja)
WO (1) WO2018038111A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014014B2 (ja) * 2018-03-30 2022-02-01 株式会社豊田自動織機 車載流体機械
CN110798061A (zh) * 2018-08-01 2020-02-14 台达电子工业股份有限公司 三相变频器及其死区补偿电路和死区补偿方法
GB2589336A (en) * 2019-11-26 2021-06-02 Trw Ltd Motor position calibration
US11165381B2 (en) * 2019-11-27 2021-11-02 Infineon Technologies Austria Ag Speed contant control and power constant control of a permanent magnet synchronous motor
JP7358277B2 (ja) * 2020-03-03 2023-10-10 株式会社東芝 駆動装置、駆動システム、及び、電動機の駆動方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204595A (ja) * 2001-01-09 2002-07-19 Nissan Motor Co Ltd 複合電流供給装置
JP2011217575A (ja) * 2010-04-02 2011-10-27 Mitsubishi Electric Corp 電力変換装置
WO2014192373A1 (ja) * 2013-05-27 2014-12-04 株式会社東芝 電力変換装置、電力変換装置の制御方法、回転センサレス制御装置及び回転センサレス制御装置の制御方法
WO2016121751A1 (ja) * 2015-01-28 2016-08-04 株式会社 東芝 インバータ制御装置及びモータ駆動システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3722948B2 (ja) 1996-05-15 2005-11-30 株式会社日本自動車部品総合研究所 永久磁石界磁同期電動機のセンサレス制御方法
JP3979561B2 (ja) 2000-08-30 2007-09-19 株式会社日立製作所 交流電動機の駆動システム
JP3480572B2 (ja) * 2001-11-27 2003-12-22 東洋電機製造株式会社 永久磁石同期電動機の制御装置
JP4241218B2 (ja) 2003-06-27 2009-03-18 株式会社日立産機システム 交流電動機の制御装置及び交流電動機システム
JP4413185B2 (ja) * 2005-12-08 2010-02-10 三洋電機株式会社 モータの駆動制御装置
US7602139B2 (en) * 2006-07-13 2009-10-13 International Rectifier Corporation Signal conditioning apparatus and method for determination of permanent magnet motor rotor position
US8179068B2 (en) * 2006-07-24 2012-05-15 Kabushiki Kaisha Toshiba Variable-flux motor drive system
JP2010022185A (ja) 2008-06-13 2010-01-28 Suri-Ai:Kk 同期機
JP5324159B2 (ja) * 2008-08-20 2013-10-23 三洋電機株式会社 モータ制御装置
JP2010057228A (ja) * 2008-08-27 2010-03-11 Hitachi Ltd モータ制御装置
WO2011077829A1 (ja) 2009-12-24 2011-06-30 株式会社安川電機 モータ制御装置及びその磁極位置検出方法
JP5435282B2 (ja) 2010-03-26 2014-03-05 アイシン・エィ・ダブリュ株式会社 モータ制御装置
JP5534935B2 (ja) * 2010-05-20 2014-07-02 株式会社東芝 回転センサレス制御装置
JP4823399B1 (ja) * 2010-12-02 2011-11-24 三菱電機株式会社 電力変換装置
JP5971707B2 (ja) * 2011-08-29 2016-08-17 株式会社東芝 同期電動機のセンサレス制御装置ならびにインバータ装置
JP5976421B2 (ja) * 2012-06-27 2016-08-23 株式会社東芝 磁極極性判定装置、永久磁石同期電動機制御装置及び磁極極性判定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204595A (ja) * 2001-01-09 2002-07-19 Nissan Motor Co Ltd 複合電流供給装置
JP2011217575A (ja) * 2010-04-02 2011-10-27 Mitsubishi Electric Corp 電力変換装置
WO2014192373A1 (ja) * 2013-05-27 2014-12-04 株式会社東芝 電力変換装置、電力変換装置の制御方法、回転センサレス制御装置及び回転センサレス制御装置の制御方法
WO2016121751A1 (ja) * 2015-01-28 2016-08-04 株式会社 東芝 インバータ制御装置及びモータ駆動システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3503375A4 *

Also Published As

Publication number Publication date
EP3503375A1 (en) 2019-06-26
CN109804545A (zh) 2019-05-24
KR102285399B1 (ko) 2021-08-04
JPWO2018038111A1 (ja) 2019-06-24
TWI668953B (zh) 2019-08-11
CN109804545B (zh) 2020-12-08
US10637381B2 (en) 2020-04-28
KR20190030734A (ko) 2019-03-22
US20190190421A1 (en) 2019-06-20
EP3503375A4 (en) 2020-04-01
TW201810922A (zh) 2018-03-16
JP6637185B2 (ja) 2020-01-29
SG11201901395WA (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US9590552B2 (en) Motor drive device and electric compressor
JP6637185B2 (ja) インバータ制御装置およびドライブシステム
KR102108911B1 (ko) 드라이브 시스템 및 인버터 장치
JP6367332B2 (ja) インバータ制御装置及びモータ駆動システム
JP4519864B2 (ja) 交流回転機の電気的定数測定方法およびこの測定方法の実施に使用する交流回転機の制御装置
US9929683B2 (en) Motor drive device and brushless motor
JP2001251889A (ja) 同期モータの回転子位置推定方法、位置センサレス制御方法及び制御装置
JP3783695B2 (ja) モーター制御装置
JP3832443B2 (ja) 交流電動機の制御装置
JP4660688B2 (ja) センサレス突極形ブラシレスdcモータの初期磁極位置推定方法及び制御装置
JP7361924B2 (ja) モータ制御装置、モータ制御方法
JP2000156993A (ja) 永久磁石型同期機の制御装置及びその制御方法
JP5648310B2 (ja) 同期モータの制御装置、及び同期モータの制御方法
JP7196469B2 (ja) 同期リラクタンスモータの制御装置
JP2006230200A (ja) 交流電動機の制御装置
JP2016220364A (ja) 永久磁石同期電動機の制御装置
JP5332305B2 (ja) 永久磁石形同期電動機の制御装置
JP2023048833A (ja) モータユニットの状態推定方法及び状態推定装置
JP5798513B2 (ja) 永久磁石同期電動機の初期磁極位置の検出方法および装置、並びに永久磁石同期電動機の制御装置
JP7529463B2 (ja) 電力変換装置、電力変換方法及びプログラム
JP7095760B1 (ja) 制御装置、磁束推定装置及び磁束推定方法
JP2019071709A (ja) インバータ制御装置およびセンサレスドライブシステム
JP2016036195A (ja) モータ制御装置及び冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018535703

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197004893

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017843589

Country of ref document: EP