WO2018037870A1 - 再生式イオン交換装置及びその運転方法 - Google Patents

再生式イオン交換装置及びその運転方法 Download PDF

Info

Publication number
WO2018037870A1
WO2018037870A1 PCT/JP2017/028177 JP2017028177W WO2018037870A1 WO 2018037870 A1 WO2018037870 A1 WO 2018037870A1 JP 2017028177 W JP2017028177 W JP 2017028177W WO 2018037870 A1 WO2018037870 A1 WO 2018037870A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
ion
regenerative
water
treated water
Prior art date
Application number
PCT/JP2017/028177
Other languages
English (en)
French (fr)
Inventor
横井 生憲
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020187036211A priority Critical patent/KR102440909B1/ko
Priority to CN201780051316.5A priority patent/CN109641764A/zh
Publication of WO2018037870A1 publication Critical patent/WO2018037870A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/022Column or bed processes characterised by the construction of the column or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/08Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic and anionic exchangers in separate beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/09Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds of mixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/53Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for cationic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/57Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for anionic exchangers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a regenerative ion exchange apparatus used in a primary pure water system in an ultrapure water production facility used in the process of manufacturing electronic products and the like, and particularly to a sub-system in a subsequent stage of the primary pure water system.
  • the present invention relates to a regenerative ion exchange apparatus capable of suppressing short-term fluctuations in the ion concentration of treated water of a non-regenerative ion exchange apparatus and an operation method thereof.
  • the ultrapure water production apparatus is generally composed of a pretreatment system, a primary pure water system, and a secondary pure water system (subsystem).
  • the pretreatment system is composed of agglomeration, pressurized flotation (precipitation), filtration (membrane filtration) apparatus, etc., and removes suspended substances and colloidal substances in raw water. In this process, high molecular organic substances, hydrophobic organic substances and the like can be removed.
  • the primary pure water system basically includes a reverse osmosis (RO) membrane separation device and a regenerative ion exchange device (such as a mixed bed type or a four-bed five-column type), and the RO membrane separation device removes salts. At the same time, ionic and colloidal TOC are removed.
  • the TOC component adsorbed or ion exchanged by the ion exchange resin is removed while removing salts.
  • the subsystem basically includes a low-pressure ultraviolet (UV) oxidizer, a non-regenerative mixed-bed ion exchanger, and an ultrafiltration (UF) membrane separator, further increasing the purity of primary pure water and ultrapure.
  • UV ultraviolet
  • UF ultrafiltration
  • make water In the low-pressure UV oxidizer, TOC is decomposed into an organic acid and further to CO 2 by 185 nm ultraviolet rays emitted from a low-pressure ultraviolet lamp.
  • the organics and CO 2 produced by the decomposition are removed by the non-regenerative mixed bed ion exchanger of the subsequent stage.
  • the UF membrane separation apparatus the fine particles are removed, and the outflow particles of the ion exchange resin are also removed.
  • the regenerative ion exchange apparatus of the primary pure water system is composed of one tower or a plurality of towers including a degassing apparatus, and thus according to the required quality of treated water. It can be a water treatment device, and generally has a reverse osmosis (RO) membrane device in the previous stage.
  • the ultrapure water can be manufactured by arranging the secondary pure water system (subsystem) provided with the non-regenerative ion exchange apparatus in the latter part of the regenerative ion exchange apparatus.
  • the treated water ion concentration in the ion exchange device that mainly removes ions in the water is determined by the feed water ion concentration and the treated water amount (space velocity and linear velocity).
  • Conventional regenerative ion exchange devices set a threshold value for the resistivity (or electrical conductivity) of treated water, and remove ions in the water while repeating regeneration and sampling.
  • the ion exchange resin filled in such an ion exchange device electrochemically removes ions in water, but because of its capacity, the regenerative ion exchange device periodically regenerates with chemicals. Reviving their abilities.
  • the regeneration constituting the primary pure water system is performed.
  • the concentration of sodium ions (Na + ) and chloride ions (Cl ⁇ ) remaining in the treated water of the ion exchanger affects the quality of the treated water of the non-regenerative ion exchanger of the subsequent subsystem. It has been found that the yield of semiconductor products manufactured by using and cleaning the product is affected.
  • the present invention has been made in view of the above problems, and it is possible to remove sodium ions (Na + ) and chloride ions (Cl ⁇ ) in the treated water of the secondary pure water system (subsystem) in the latter stage of the regenerative ion exchanger.
  • An object of the present invention is to provide a regenerative ion exchange apparatus capable of suppressing short-term fluctuations in concentration and an operation method thereof.
  • the present invention is a regenerative ion exchange apparatus having a regenerative ion exchange column alone, and is equipped with an ion electrode for measuring the ion concentration of treated water in the regenerative ion exchange column alone.
  • An exchange device is provided (Invention 1).
  • the resistance of the treated water during regeneration of the treated water of the regenerative ion exchange tower alone is By measuring not only the rate but also the ion concentration (measured by the ion electrode) and managing the appropriateness of regeneration based on this, the concentration of ions flowing into the subsystem at the subsequent stage can be controlled. Short-term fluctuations in the ion concentration of the treated water of the non-regenerative ion exchange apparatus to be configured can be suppressed, and the ion concentration itself can be suppressed low.
  • the present invention also relates to a regenerative ion exchange apparatus comprising a plurality of towers including a plurality of regenerative ion exchange towers and a deaeration device, wherein the ion concentration of treated water in the last stage of the plurality of regenerative ion exchange towers
  • a regenerative ion exchange apparatus provided with an ion electrode for measuring (invention 2).
  • invention 2 when the regenerative ion exchange apparatus constituting the primary pure water system is composed of a plurality of towers including a regenerative ion exchange tower and a degassing apparatus, the last-stage regenerative ion exchange is performed.
  • the concentration of ions flowing into the subsystem at the subsequent stage is controlled. Therefore, it is possible to suppress short-term fluctuations in the ion concentration of the treated water of the non-regenerative ion exchange apparatus constituting the subsystem, and to suppress the ion concentration itself.
  • the regenerative ion exchange tower which measures ion concentration with the said ion electrode is filled with the anion exchange resin at least, and the said ion electrode is a sodium ion (Na ⁇ +> ) of treated water A sodium ion electrode for measuring the concentration is preferred (Invention 3).
  • the anion exchange resin not only resistivity reproduction of the treated water of the filled regenerative ion exchange column, the sodium ions (Na +) concentration with sodium ions (Na +) electrode
  • the sodium ions (Na +) concentration with sodium ions (Na +) electrode By measuring and managing the appropriateness of regeneration based on this measured value, it is possible to control short-term fluctuations in the sodium ion (Na + ) concentration of the treated water of the non-regenerative ion exchanger of the subsequent subsystem, In addition, the ion concentration itself can be kept low.
  • the present invention measures the ion concentration of treated water after regeneration of a regenerative ion exchange apparatus having a regenerative ion exchange tower alone by using an ion electrode, and regenerates based on the ion concentration measured by the ion electrode.
  • An operation method of a regenerative ion exchange apparatus that manages regeneration of an ion exchange tower is provided (invention 4).
  • the present invention measures the ion concentration of treated water after regeneration of the last tower of a regenerative ion exchange apparatus comprising a plurality of towers including a plurality of regenerative ion exchange towers and a deaeration device, using an ion electrode,
  • a method for operating a regenerative ion exchange apparatus that manages regeneration of a regenerative ion exchange column based on the ion concentration measured by the ion electrode (Invention 5).
  • the regenerative ion exchange tower for measuring the ion concentration at the ion electrode is filled with at least an anion exchange resin, and the ion electrode measures the sodium ion (Na + ) concentration. It is preferable to manage the regeneration of the regenerative ion exchange column by measuring the sodium ion concentration of the treated water after regeneration of the anion exchange resin with the sodium ion electrode (Invention 6).
  • anion exchange resins not only the resistivity of the reproduction of the treated water of the filled regenerative ion exchange column, the sodium ions (Na +) concentration with sodium ions (Na +) electrode
  • the sodium ions (Na +) concentration with sodium ions (Na +) electrode By measuring and managing the appropriateness of regeneration based on this measured value, it is possible to control short-term fluctuations in the sodium ion (Na + ) concentration of the treated water of the non-regenerative ion exchanger of the subsequent subsystem, In addition, the ion concentration itself can be kept low.
  • the present invention since not only the resistivity of the treated water during sampling of the regenerative ion exchange tower but also the ion concentration (measured value by the ion electrode) is managed, Short-term fluctuations in the ion concentration in the treated water of the non-regenerative ion exchange device can be suppressed, and the ion concentration can be kept low.
  • it is suitable to manage the appropriateness of regeneration of the anion exchange resin based on the sodium ion concentration with the sodium electrode.
  • the yield of the manufactured semiconductor product can be maintained high by washing with the ultrapure water obtained.
  • FIG. 1 is a schematic system diagram showing a regenerative ion exchange apparatus according to a first embodiment of the present invention. It is a schematic system diagram which shows the regenerative ion exchange apparatus which concerns on 2nd embodiment of this invention. It is a schematic system diagram which shows the regenerative ion exchange apparatus which concerns on 3rd embodiment of this invention. It is a schematic system diagram which shows the regenerative ion exchange apparatus which concerns on 4th embodiment of this invention. It is a schematic system diagram which shows the regenerative ion exchange apparatus which concerns on 5th embodiment of this invention. It is a schematic system diagram which shows the regenerative ion exchange apparatus which concerns on the 6th embodiment of this invention.
  • the regenerative ion exchange apparatus shown in FIG. 1 is an embodiment in which the regenerative ion exchange apparatus is composed of a single regenerative ion exchange column.
  • the regenerative ion exchange tower 1 includes an ion exchange resin layer 2 made of a mixed resin of a cation exchange resin and an anion exchange resin in a cylindrical tower body 1A.
  • a supply pipe 3 for pretreatment water W for performing ion exchange treatment is connected to the upper part of the tower body 1A, and a discharge pipe 4 for ion exchange treatment water W1 is connected to the lower part.
  • the supply pipe 3 and the discharge pipe 4 are respectively connected with an NaOH solution supply pipe 5 as an alkali as a regenerative chemical solution and a hydrochloric acid (HCl) supply pipe 6 as an acid. Furthermore, the discharge pipe 7 of the regeneration wastewater is connected to the side part of the tower body 1A.
  • the supply pipe 3, the discharge pipe 4, the NaOH solution supply pipe 5, the hydrochloric acid supply pipe 6 and the regeneration waste water discharge pipe 7 are provided with open / close valves (not shown). Further, the discharge pipe 4 is provided with a resistivity meter 8 and a sodium ion electrode 9 as an ion electrode for measuring the sodium ion (Na + ) concentration of the ion exchange treated water W1.
  • reference numeral 10 denotes a heater (plate heat exchanger) provided in the NaOH solution supply pipe 5.
  • the cation exchange resin constituting the ion exchange resin layer 2 includes a strongly acidic cation exchange resin having a sulfone group as a cation exchange group and a weakly acidic cation having a carboxylic acid group. Any exchange resin can be used, and a gel-type resin is generally used in that the elution of PSA is small.
  • divinylbenzene serves as a cross-linking agent, and a chain structure is cross-linked to form a network resin. The more divinylbenzene, the more chain branches and the denser the structure, and the smaller the divinylbenzene, the larger the network with less branching.
  • Resins used for normal water treatment have a degree of crosslinking of about 8% and are called standard crosslinked resins. On the other hand, those having a crosslinking degree of 9% or more are called highly crosslinked resins. In the present embodiment, any of them can be used, but a standard cross-linked resin is preferable.
  • anion exchange resin a gel type resin is used in that the elution of PSA is small.
  • Strongly basic anion exchange resin with quaternary ammonium group such as trimethylammonium group or dimethylethanolammonium group on styrene skeleton based on styrene-divinylbenzene copolymer, styrene-divinylbenzene copolymer, etc.
  • Any weakly basic anion exchange resin having a primary to tertiary amino group as a functional group can be used for a styrene skeleton or a polyacrylate skeleton, but a strong basic anion exchange resin is preferably used. it can.
  • the exchange group of the anion exchange resin is preferably in the OH form.
  • the mixing ratio of the cation exchange resin and the anion exchange resin in the mixed resin constituting the ion exchange resin layer 2 is 30:70 to 70:30, particularly 30:70 to 50:50, and the anion is cation exchange resin: anion exchange resin. It is preferable to mix a large amount of exchange resin.
  • the pretreatment water W flows downward from the supply pipe 3 while the supply pipe 3 and the discharge pipe 4 are opened and the NaOH solution supply pipe 5, the hydrochloric acid supply pipe 6 and the discharge pipe 7 are closed.
  • the pretreated water W is discharged from the discharge pipe 4 as the ion exchange treated water W1 after the cationic component and the anionic component are removed by the ion exchange resin layer 2 made of the mixed resin, and is supplied to a subsystem (not shown). Supplied.
  • Water passing condition at this time may be the same as the processing by the conventional ion exchange, the space velocity 5 ⁇ 100h -1 relative to the volume of the ion exchange resin of the ion exchange resin layer 2, in particular 5 ⁇ 50h -1 And it is sufficient.
  • the regeneration mode is switched to the inside of the regenerative ion exchange tower 1. Recycle the mixed resin.
  • the ion exchange treated water W1 is supplied from the discharge pipe 4 and discharged from the supply pipe 3, so that the mixed resin constituting the ion exchange resin layer 2 is back-washed.
  • the anion exchange resin is separated on the upper side and the cation exchange resin is separated on the lower side due to a slight difference in specific gravity between the anion exchange resin and the cation exchange resin.
  • a sodium hydroxide aqueous solution is supplied from the NaOH solution supply pipe 5 to regenerate the anion exchange resin unevenly distributed on the upper side
  • Hydrochloric acid is supplied from the hydrochloric acid supply pipe 6 to regenerate the cation exchange resin unevenly distributed on the lower side.
  • the aqueous sodium hydroxide solution is preferably heated to about 30 to 50 ° C. by the heater 10. The waste water after regeneration of these sodium hydroxide aqueous solution and hydrochloric acid is discharged from the discharge pipe 7 of the recycled waste water.
  • the supply pipe 3 and the discharge pipe 4 are opened, and the ion exchange treated water W1 is supplied from the supply pipe 3 with the NaOH solution supply pipe 5, the hydrochloric acid supply pipe 6 and the regeneration waste water discharge pipe 7 closed.
  • the chemical solution (sodium hydroxide aqueous solution and hydrochloric acid) used for regeneration is extruded in a transient manner.
  • the regeneration operation so far is preferably carried out continuously twice or more when the resistivity of the ion exchange treated water W1 is lowered or the sodium concentration is greatly increased.
  • the pretreated water W is supplied from the supply pipe 3 and discharged from the discharge pipe 4 to produce the ion exchange treated water W1.
  • the ion exchange treated water W1 produced here is not supplied to the subsystem, and the sodium ion (Na + ) concentration of the ion exchange treated water W1 is measured by the sodium ion electrode 9. If the circulation cleaning is insufficient, sodium ions are included in the ion exchange treated water W1 due to the NaOH solution used for the regeneration. Therefore, it is determined that the regeneration is suitable when the sodium ion concentration becomes a predetermined value or less.
  • the regeneration work is finished, and the mode returns to the water sampling mode.
  • the suitability of regeneration may be determined based on both the resistivity of the ion exchange treated water W1 by the resistivity meter 8.
  • what is necessary is just to continue circulation washing
  • the regenerative ion exchange apparatus can be operated by alternately repeating the water sampling mode and the regeneration mode.
  • the ion exchange treated water W1 is supplied to the subsystem, so that ultrapure water ( The sodium ion (Na + ) concentration of the subsystem treated water) can be kept low and stabilized to the desired value.
  • the regenerative ion exchange apparatus shown in FIG. 2 is an embodiment in which the regenerative ion exchange apparatus is composed of a single regenerative ion exchange column.
  • the regenerative ion exchange tower 1 is a system in which water flows in an upward flow, and the anion exchange resin layer 2A and the cation exchange resin layer 2B are separated from the upper side in the cylindrical tower body 1A.
  • the two-layer type ion exchange tower formed in this manner is connected to the lower part of the tower body 1A with a supply pipe 3 for pre-treatment water W for performing ion exchange treatment, while the upper part is made of ion exchange treated water W1.
  • a discharge pipe 4 is connected.
  • the discharge pipe 4 is connected with a NaOH solution supply pipe 5 as alkali as a regenerative chemical solution, and a discharge pipe 7A of NaOH regeneration waste water is connected to the side of the tower body 1A.
  • a hydrochloric acid (HCl) supply pipe 6 as an acid communicates with a side portion of the tower body 1A, and a hydrochloric acid waste water discharge pipe 7B is connected to the supply pipe 3.
  • the supply pipe 3, the discharge pipe 4, the NaOH solution supply pipe 5, the hydrochloric acid supply pipe 6, the NaOH regeneration waste water discharge pipe 7A, and the hydrochloric acid waste water discharge pipe 7B are provided with open / close valves (not shown).
  • the discharge pipe 4 is provided with a resistivity meter 8 and a sodium ion electrode 9 for measuring the sodium ion (Na + ) concentration of the ion exchange treated water W1.
  • 10 is a heater (plate type heat exchanger) provided in the NaOH solution supply pipe 5, and 1B is a shielding plate having many holes smaller than the anion exchange resin constituting the anion exchange resin layer 2A.
  • the supply pipe 3 and the discharge pipe 4 are opened, the NaOH solution supply pipe 5, the hydrochloric acid supply pipe 6, the NaOH regeneration waste water discharge pipe 7A, and the hydrochloric acid waste water discharge pipe 7B are closed.
  • the treated water W is supplied from the supply pipe 3 at the lower part of the tower main body 1A and passed in an upward flow, the cationic component is removed from the pretreated water W by the cation exchange resin layer 2B, and then the anion exchange resin layer 2A.
  • the ion exchange treated water W1 is supplied from the discharge pipe 3 to a subsystem (not shown).
  • the water flow conditions at this time can be the same as those in the treatment by ordinary ion exchange, and the space velocity may be 5 to 100 h ⁇ 1 , particularly 5 to 50 h ⁇ 1 with respect to the ion exchange resin.
  • the mode is switched to the regeneration mode, and the anion exchange resin layer 2A and the cation exchange resin layer 2B in the regenerative tower body 1A are regenerated.
  • the NaOH solution supply pipe 5, the hydrochloric acid supply pipe 6, the NaOH regeneration waste water discharge pipe 7A and the hydrochloric acid waste water discharge pipe 7B are opened, and an aqueous solution of sodium hydroxide is supplied from the NaOH solution supply pipe 5 to perform anion exchange.
  • the resin layer 2A is regenerated, and the regenerated chemical solution is discharged from the discharge pipe 7A of the NaOH regeneration waste water.
  • the aqueous sodium hydroxide solution is preferably heated to about 30 to 50 ° C. by the heater 10.
  • hydrochloric acid is supplied from the hydrochloric acid supply pipe 6 connected to the side of the tower body 1A to regenerate the cation exchange resin layer 2B, and the regenerated chemical solution is discharged from the hydrochloric acid waste water discharge pipe 7B.
  • the ion exchange treated water W1 is supplied from the NaOH solution supply pipe 5 and discharged from the discharge pipe 7A of the NaOH regeneration waste water to push out the NaOH solution used for regeneration in a transient manner, while the ion from the hydrochloric acid supply pipe 6 is ionized.
  • the replacement treated water W1 is supplied and discharged from the hydrochloric acid waste water discharge pipe 7B, thereby extruding hydrochloric acid used for regeneration in a transient manner. So far, it is preferable to perform the regeneration continuously twice or more when the resistivity of the ion exchange treated water W1 is greatly reduced or the sodium concentration is greatly increased.
  • the supply pipe 3 and the discharge pipe 4 are opened, and the NaOH solution supply pipe 5, the hydrochloric acid supply pipe 6, the NaOH regeneration waste water discharge pipe 7A and the hydrochloric acid waste water discharge pipe 7B are closed and pretreated from the supply pipe 3.
  • the NaOH solution supply pipe 5 the hydrochloric acid supply pipe 6, the NaOH regeneration waste water discharge pipe 7A and the hydrochloric acid waste water discharge pipe 7B are closed and pretreated from the supply pipe 3.
  • the ion exchange resin is circulated and washed.
  • the ion exchange treated water W1 produced here is not supplied to the subsystem, and the sodium ion (Na + ) concentration of the ion exchange treated water W1 is measured by the sodium ion electrode 9. If the circulation cleaning is insufficient, sodium ions are included in the ion exchange treated water W1 due to the NaOH solution used for the regeneration. Therefore, it is determined that the regeneration is suitable when the sodium ion concentration becomes a predetermined value or less. Then, the regeneration work is finished, and the mode returns to the water sampling mode. At this time, the suitability of regeneration may be determined based on both the resistivity of the ion exchange treated water W1 by the resistivity meter 8. In addition, what is necessary is just to continue circulation washing
  • the regenerative ion exchange apparatus can be operated by alternately repeating the water sampling mode and the regeneration mode.
  • the ion exchange treated water W1 is supplied to the subsystem, so that ultrapure water ( The sodium ion (Na + ) concentration of the subsystem treated water) can be kept low and stabilized to the desired value.
  • the regenerative ion exchange apparatus shown in FIG. 3 is an embodiment in which the regenerative ion exchange apparatus is composed of a single regenerative ion exchange column.
  • the regenerative ion exchange column 1 is a system in which water flows in an upward flow, and the cation exchange resin layer 2B and the anion exchange resin layer 2A are separated from the upper side in the cylindrical tower body 1A.
  • the two-layer type ion exchange tower formed in this manner is connected to the lower part of the tower body 1A with a supply pipe 3 for pre-treatment water W for performing ion exchange treatment, while the upper part is made of ion exchange treated water W1.
  • a discharge pipe 4 is connected.
  • the discharge pipe 4 communicates with a hydrochloric acid (HCl) supply pipe 6 as an acid as a regenerative chemical solution, and a hydrochloric acid waste water discharge pipe 7B is connected to the side of the tower body 1A. Further, a NaOH solution supply pipe 5 as an alkali is connected to the side of the tower main body 1A, and a discharge pipe 7A of NaOH waste water is connected to the supply pipe 3.
  • the supply pipe 3, the discharge pipe 4, the NaOH solution supply pipe 5, the hydrochloric acid supply pipe 6, the NaOH waste water discharge pipe 7A, and the hydrochloric acid waste water discharge pipe 7B are provided with open / close valves (not shown).
  • the discharge pipe 4 is provided with a resistivity meter 8 and a chlorine ion electrode 9A for measuring the chlorine ion (Cl ⁇ ) concentration of the ion exchange treated water W1.
  • 10 is a heater (plate type heat exchanger) provided in the NaOH solution supply pipe 5, and 1B is a shielding plate having many holes smaller than the cation exchange resin constituting the cation exchange resin layer 2B.
  • the pretreatment is performed with the supply pipe 3 and the discharge pipe 4 opened, and the NaOH solution supply pipe 5, the hydrochloric acid supply pipe 6, the NaOH waste water discharge pipe 7A, and the hydrochloric acid waste water discharge pipe 7B closed.
  • the pretreated water W removes an anionic component in the anion exchange resin layer 2A, and then in the cation exchange resin layer 2B.
  • the ion exchange treated water W1 is discharged from the discharge pipe 3 and supplied to a subsystem (not shown).
  • the water flow conditions at this time can be the same as those in the treatment by ordinary ion exchange, and the space velocity may be 5 to 100 h ⁇ 1 , particularly 5 to 50 h ⁇ 1 with respect to the ion exchange resin.
  • the mode is switched to the regeneration mode, and the anion exchange resin layer 2A and the cation exchange resin layer 2B of the regenerative ion exchange tower 1A are regenerated.
  • the NaOH solution supply pipe 5, the hydrochloric acid supply pipe 6, the NaOH waste water discharge pipe 7A and the hydrochloric acid waste water discharge pipe 7B are opened, and the NaOH solution supply pipe 5 connected to the side of the tower body 1A is hydroxylated.
  • An aqueous sodium solution is supplied to regenerate the anion exchange resin layer 2A, and the regenerated chemical solution is discharged from the discharge pipe 7A of the NaOH waste water.
  • the aqueous sodium hydroxide solution is preferably heated to about 30 to 50 ° C. by the heater 10.
  • hydrochloric acid is supplied from the acid supply pipe 6 at the top of the tower body 1A to regenerate the cation exchange resin layer 2B, and the regenerated chemical solution is discharged from the hydrochloric acid waste water discharge pipe 7B.
  • the ion exchange treated water W1 is supplied from the NaOH solution supply pipe 5 and discharged from the NaOH waste water discharge pipe 7A to extrude the NaOH solution used for the regeneration in a transient manner, while the hydrochloric acid supply pipe 6 performs the ion exchange.
  • the hydrochloric acid used for the regeneration is extruded in a transient manner.
  • the regeneration so far is preferably carried out continuously twice or more when the resistivity of the ion exchange treated water W1 is lowered or the sodium concentration is greatly increased.
  • the supply pipe 3 and the discharge pipe 4 are opened, and the NaOH solution supply pipe 5, the hydrochloric acid supply pipe 6, the NaOH regeneration waste water discharge pipe 7A and the hydrochloric acid waste water discharge pipe 7B are closed and pretreated from the supply pipe 3.
  • the ion exchange resin is circulated and washed.
  • the ion exchange treated water W1 produced here is not supplied to the subsystem, and the chlorine ion (Cl ⁇ ) concentration of the ion exchange treated water W1 is measured with the chlorine ion electrode 9A.
  • the regenerative ion exchange apparatus can be operated by alternately repeating the water sampling mode and the regeneration mode.
  • the ion exchange treated water W1 is used as a subsystem.
  • the chlorine ion (Cl ⁇ ) concentration of ultrapure water (subsystem treated water) can be kept low to a desired value and stabilized.
  • the regenerative ion exchange apparatus shown in FIG. 4 is a so-called two-bed / three-column ion exchange apparatus.
  • the regenerative ion exchange apparatus includes a two-layer regenerative cation exchange resin tower (H tower) 11
  • a gas apparatus 12 and a two-layer regenerative anion exchange resin tower (OH tower) 13 are provided.
  • a supply pipe 14 for pretreatment water W for performing ion exchange treatment is connected to the lower side of the H tower 11, while a discharge pipe 15 for ion exchange treatment water W1 is connected to the upper side of the OH tower 13.
  • the discharge pipe 15 is provided with a resistivity meter 16 and a sodium ion electrode 17 for measuring the sodium ion (Na + ) concentration of the ion exchange treated water W1.
  • a hydrochloric acid (HCl) supply pipe 18 as an acid is connected to the upper side of the H column 11, and a hydrochloric acid (HCl) waste water discharge pipe 19 is connected to the supply pipe 14 for the pretreated water W on the lower side of the H tower 11.
  • a NaOH solution supply pipe 20 as an alkali is connected to the upper side (discharge side) of the OH tower 13, and a NaOH solution discharge pipe 21 is connected to the lower side (supply side) of the OH tower 13.
  • 22 is a heater (plate type heat exchanger) provided in the NaOH solution supply pipe 20, and 23 is a pump for supplying treated water treated by the degassing device 12 to the OH tower 13.
  • the H tower 11 has a two-layer structure of a weak cation exchange resin layer 11A and a strong cation exchange resin layer 11B
  • the OH tower 13 has a weak cation exchange resin layer 13A and a strong cation. It has a two-layer structure with the exchange resin layer 13B.
  • the shielding board which has many holes smaller than anion exchange resin and cation exchange resin between weak cation exchange resin layer 11A and strong cation exchange resin layer 11B, weak cation exchange resin layer 13A, and strong cation exchange resin layer 13B (Not shown) is provided.
  • the pretreatment water W is passed through the supply pipe 14, and in the H tower 11, a weakly acidic cation component is formed in the weak cation exchange resin layer 11A, and a neutral salt is formed in the strong cation exchange resin layer 11B.
  • a weakly acidic cation component is formed in the weak cation exchange resin layer 11A
  • a neutral salt is formed in the strong cation exchange resin layer 11B.
  • Each of the cation components is removed, and subsequently, gas such as carbon dioxide dissolved in the pretreated water W is removed by the degassing device 12, and further, the weakly anion exchange resin layer 13 ⁇ / b> A in the OH tower 13 is weakly acidic anion component.
  • the anion component of the neutral salt can be removed by the strong anion exchange resin layer 13B to produce the ion exchange treated water W1.
  • This ion exchange treated water W1 is supplied to the subsystem after further removing various treatments and fine particles as necessary.
  • the mode is switched to the regeneration mode, and the flow path of the H tower 11 is appropriately opened and closed, and hydrochloric acid is supplied to the H tower 11 from the hydrochloric acid supply pipe 18.
  • the hydrochloric acid waste water is discharged from the discharge pipe 19 while being regenerated.
  • the anion exchange resins 13A and 13B are regenerated and discharged from the NaOH solution discharge pipe 21.
  • the aqueous sodium hydroxide solution is preferably heated to about 30 to 50 ° C. by the heater 22.
  • the ion exchange treated water W1 is supplied from the hydrochloric acid supply pipe 18 to the H tower 11 and the hydrochloric acid used for the regeneration is pushed out from the hydrochloric acid waste water discharge pipe 19 in a transient manner, while the ion exchange treated water is introduced from the upper side of the OH tower 13.
  • W1 is supplied, and the NaOH solution used for regeneration is pushed out from the NaOH solution discharge pipe 21 in a transient manner.
  • the hydrochloric acid supply pipe 18 and the NaOH solution supply pipe 20 are closed, and the pretreated water W is passed through the supply pipe 14, and the H tower 11, the deaerator 12 and the OH tower 13 are circulated and washed.
  • the ion exchange treated water W1 produced here is not supplied to the subsystem, and the sodium ion (Na + ) concentration of the ion exchange treated water W1 is measured by the sodium ion electrode 17. If the circulation cleaning is insufficient, sodium ions are included in the ion exchange treated water W1 due to the NaOH solution used for the regeneration. Therefore, it is determined that the regeneration is suitable when the sodium ion concentration becomes a predetermined value or less. Then, the regeneration work is finished, and the mode returns to the water sampling mode.
  • the regenerative ion exchange apparatus can be operated by alternately repeating the water sampling mode and the regeneration mode.
  • the ion exchange treated water W1 of the regenerative anion exchange resin tower (OH tower) 13 which is the last stage of two or more regenerative ion exchange towers.
  • the sodium ion electrode 17 for measuring the sodium ion concentration whether or not the anion exchange resins 13A and 13B are regenerated is determined based on the sodium ion concentration, and this ion exchange treated water W1 is supplied to the subsystem.
  • the sodium ion (Na + ) concentration of ultrapure water (subsystem treated water) can be controlled to a desired value.
  • the regenerative ion exchanger shown in FIG. 5 is a so-called three-bed, four-column ion exchanger.
  • the regenerative ion exchange apparatus includes a two-layer type first regenerative cation exchange resin tower (H1 tower) 31, a degassing apparatus 32, and a two-layer regenerative anion exchange resin tower (OH). Tower) 33 and a single-layer second regenerative cation exchange resin tower (H2 tower) 34.
  • a supply pipe 35 for pretreated water W for performing ion exchange treatment is connected to the lower side of the H1 tower 31, while a discharge pipe 36 for ion exchange treated water W1 is connected to the lower side of the H2 tower 34.
  • the discharge pipe 36 is provided with a resistivity meter 37 and a chlorine ion electrode 38 for measuring the chlorine ion (Cl ⁇ ) concentration of the ion exchange treated water W1.
  • a hydrochloric acid (HCl) supply pipe 39 as an acid is connected to the upper side of the H2 tower 34, and a hydrochloric acid waste water discharge pipe 40 is connected to the discharge pipe 36.
  • the discharge pipe 40 of this hydrochloric acid waste water is connected to the upper side (discharge side) of the H1 tower 31, and the waste pipe 41 of the hydrochloric acid (HCl) waste water is connected to the lower side (supply side) of the H1 tower 31.
  • an NaOH solution supply pipe 42 as an alkali is connected to the upper side (discharge side) of the OH tower 33, and an NaOH waste water discharge pipe 43 is connected to the lower side (supply side) of the OH tower 33.
  • 44 is a heater (plate type heat exchanger) provided in the NaOH solution supply pipe 42, and 45 is a pump for supplying treated water treated by the deaeration device 12 to the OH tower 13.
  • the H1 tower 31 has a two-layer structure of a weak cation exchange resin layer 31A and a strong cation exchange resin layer 31B, and the OH tower 33 has a weak cation exchange resin layer 33A and a strong cation. It has a two-layer structure with the exchange resin layer 33B.
  • a shielding plate (not shown) having a larger number of holes than the anion exchange resin and the cation exchange resin is provided between the weak cation exchange resin layer 31A and the strong cation exchange resin layer 31B.
  • the pretreated water W is supplied from the H1 tower 31 and discharged from the H2 tower 34 to produce the ion exchange treated water W1.
  • Reproduction can be performed in the same manner as in the fourth embodiment.
  • the chlorine ion concentration similarly by providing the chlorine ion electrode 38 which measures the chlorine ion concentration of the ion exchange treated water W1 of the H2 column 34 which is the last column of two or more regenerative ion exchange columns, By judging the appropriateness of regeneration of the cation exchange resin and supplying the ion exchange treated water W1 to the subsystem, the chlorine ion concentration of the ultrapure water (subsystem treated water) is controlled to a desired value. Can do.
  • the regenerative ion exchange apparatus shown in FIG. 6 is a so-called four-bed five-column ion exchange apparatus. Basically, the regenerative cation exchange of the three-bed four-column ion exchange apparatus of the fifth embodiment described above.
  • a single-layer second regenerative anion exchange resin tower (OH2 tower) 46 is provided in the subsequent stage of the resin tower (H2 tower) 34.
  • a discharge pipe 36 for the ion exchange treated water W1 is connected to the lower side of the OH2 tower 46, and the sodium chloride (Na + ) concentration of the resistivity meter 37 and the ion exchange treated water W1 is measured on the discharge pipe 36.
  • a sodium ion electrode 38A is provided.
  • An NaOH solution supply pipe 47 as an alkali is connected to the upper side of the OH 2 tower 46, and an NaOH solution discharge pipe 48 is connected to the lower discharge pipe 36.
  • the discharge pipe 48 is connected to the upper side (discharge side) of the first regenerative anion exchange resin tower (OH1 tower) 33 as a NaOH solution supply pipe, and the NaOH regeneration pipe is connected to the lower side (supply side) of the OH1 tower 33.
  • a wastewater disposal pipe 49 is connected.
  • the pre-treated water W is supplied from the H1 tower 31 and discharged from the OH2 tower 44 to produce the ion-exchange treated water W1. Playback can be performed in the same manner as in the first to fifth embodiments.
  • the chlorine ion concentration of the ultrapure water (subsystem treated water) is controlled to a desired value. Can do.
  • the present invention has been described above with reference to the accompanying drawings.
  • the configuration of the regenerative ion exchange apparatus is not limited to the above-described embodiments, and can be variously changed.
  • a known water treatment element such as a reverse osmosis membrane separation device can be provided in the previous stage of the regenerative ion exchange device.
  • the mode is switched to the regeneration mode.
  • the regeneration may be performed. .
  • the regeneration timing may be measured by means other than the resistivity meter.
  • pretreatment water W is passed through the volume of the ion exchange resin layer 2 at a space velocity (SV) of 40 h ⁇ 1 in the water sampling mode to perform ion exchange treatment.
  • the resistivity and the sodium ion (Na + ) concentration of water W1 were measured.
  • the ion exchange treated water W1 is supplied to a subsystem equipped with a non-regenerative ion exchange apparatus provided in the latter stage, and the sodium ion concentration of this subsystem treated water is determined by ICP-MS (“7500cs” manufactured by Agilent Technologies). Was used for analysis.
  • the sodium hydroxide aqueous solution prepared to 4% is supplied from the NaOH solution supply pipe 5 and the anion exchange is unevenly distributed on the upper side.
  • Regenerate the resin supply industrial hydrochloric acid (HCl) prepared to 5% from the hydrochloric acid (HCl) supply pipe 6 to regenerate the cation exchange resin unevenly distributed on the lower side, and regenerate these sodium hydroxide aqueous solution and hydrochloric acid Waste water was discharged from the discharge pipe 7.
  • the aqueous sodium hydroxide solution was heated to 40 ° C. by the heater 10.
  • the supply pipe 3 and the discharge pipe 4 are opened, and the ion exchange treated water W1 is supplied from the discharge pipe 4 with the NaOH solution supply pipe 5, the hydrochloric acid supply pipe 6 and the regeneration waste water discharge pipe 7 closed.
  • the chemical solution (sodium hydroxide aqueous solution and hydrochloric acid) used for regeneration was extruded in a transient manner, and the pretreatment water W was then circulated to circulate and wash the ion exchange resin.
  • the resistivity of the treated water W1 is measured by the resistivity meter 8 and the sodium ion (Na + ) concentration is measured by the sodium ion electrode 9, and the resistivity is 18.0 M ⁇ ⁇ cm or more and the sodium ion (Na + ).
  • the concentration reached 300 ng / L or less, the regeneration operation was completed assuming that the regeneration was completed.
  • the regenerative ion exchange apparatus is switched to the sampling mode again, the pretreatment water W is circulated through the regenerative ion exchange apparatus to resume sampling, and the non-regenerative ion provided with the ion exchange treated water W1 in the subsequent stage. Supplied to a subsystem equipped with switching equipment. Then, when the resistivity measured by the resistivity meter 8 of the treated water of the ion exchange treated water W1 was less than 18.0 M ⁇ ⁇ cm, the sampling was stopped, and the operation of regenerating and sampling again was repeated eight times in the same manner.
  • Table 1 shows the results of measuring the resistivity and sodium ion (Na + ) concentration of the ion exchange treated water W1 12 hours after the start of water collection in this regenerative ion exchange apparatus. Moreover, the sodium ion (Na ⁇ +> ) density
  • Example 1 In Example 1, the sodium ion electrode 9 is not provided, and the regeneration mode of the regenerative ion exchange device is terminated when the resistivity measured by the resistivity meter 8 becomes 18.0 M ⁇ ⁇ cm or more and switched to the water sampling mode. In the same manner, except that the pretreated water W was circulated through the regenerative ion exchanger and the water sampling was restarted, the regeneration / water sampling operation was repeated eight times in the same manner.
  • Table 1 shows the results of measuring the resistivity and sodium ion (Na + ) concentration of the ion exchange treated water W1 12 hours after the start of water collection in this regenerative ion exchange apparatus. Moreover, the sodium ion (Na ⁇ +> ) density
  • Example 1 regeneration was stopped when the resistivity of the ion exchange treated water W1 of the regenerative ion exchange apparatus was less than 18.0 M ⁇ ⁇ cm, and regeneration was performed in the regeneration mode. This regeneration is regenerated with a by-product hydrochloric acid (HCl) aqueous solution in which only the cation exchange resin of the anion exchange resin and the cation exchange resin separated by backwashing is adjusted to 5%, and the resistivity during circulation washing is 18.0 M ⁇ ⁇ cm. In the same manner, the regeneration / water sampling operation was repeated eight times in the same manner except that the regeneration operation was terminated when the sodium ion (Na + ) concentration became 300 ng / L or less.
  • HCl hydrochloric acid
  • the suitability of the regeneration of the ion exchange treated water W1 is judged by the sodium ion (Na + ) concentration measured by the sodium ion electrode 9.
  • the sodium ion (Na + ) concentration after 12 hours from the start of water sampling can be controlled to 300 ng / L or less, it is controlled by resistivity or the like as in Comparative Examples 1 and 2.
  • the sodium ion (Na + ) concentration sometimes exceeded 300 ng / L, and could not be controlled sufficiently.
  • the anion exchange resin was not regenerated, and thus the sodium ion concentration was high.
  • the suitability of the regeneration of the ion exchange treated water W1 is judged by the sodium ion (Na + ) concentration measured by the sodium ion electrode 9.
  • the sodium (Na + ) concentration of the treated water of the non-regenerative ion exchange apparatus in the subsequent subsystem can be controlled to be low and the fluctuation range can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

再生式イオン交換塔1の上部にはイオン交換処理を行う前処理水Wの供給管3が接続されている一方、下部にはイオン交換処理水W1の排出管4が接続されている。そして、これら供給管3及び排出管4にはそれぞれ再生薬液であるNaOH溶液供給管5と、塩酸(HCl)供給管6とがそれぞれ接続している。さらに塔本体1Aの側部には、再生廃水の排出管7が接続されている。また、排出管4には、抵抗率計8及びイオン交換処理水W1のナトリウムイオン(Na)濃度を測定するナトリウムイオン電極9が設けられている。かかる再生式イオン交換装置によれば、再生式イオン交換装置の後段の二次純水システム(サブシステム)の処理水中のナトリウムイオン(Na)や塩化物イオン(Cl)の濃度の短期変動を抑制することができる。

Description

再生式イオン交換装置及びその運転方法
 本発明は、電子製品等を製造する過程で使用する超純水製造設備における一次純水システムに用いる再生式イオン交換装置及びその運転方法に関し、特に一次純水システムの後段のサブシステムなどに用いる非再生式イオン交換装置の処理水中イオン濃度の短期変動を抑制可能な再生式イオン交換装置およびその運転方法に関する。
 超純水製造装置は、一般的に、前処理システム、一次純水システム、二次純水システム(サブシステム)により構成される。前処理システムは、凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などにより構成され、原水中の懸濁物質やコロイド物質の除去を行う。この過程では高分子系有機物、疎水性有機物などを除去することもできる。また、一次純水システムは、基本的に逆浸透(RO)膜分離装置及び再生型イオン交換装置(混床式又は4床5塔式など)を備え、RO膜分離装置では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。再生型イオン交換装置では、塩類を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。
 さらに、サブシステムは、基本的に低圧紫外線(UV)酸化装置、非再生型混床式イオン交換装置及び限外濾過(UF)膜分離装置を備え、一次純水の純度をより一層高め超純水にする。低圧UV酸化装置では、低圧紫外線ランプより出される185nmの紫外線によりTOCを有機酸、さらにはCOにまで分解する。そして、分解により生成した有機物及びCOは後段の非再生型混床式イオン交換装置で除去される。UF膜分離装置では、微粒子が除去され、イオン交換樹脂の流出粒子も除去される。
 上述したような超純水製造装置において、一次純水システムの再生式イオン交換装置は、1塔もしくは脱気装置を含む複数の塔で構成することにより、要求される処理水の水質に応じた水処理装置とすることができ、さらに逆浸透(RO)膜装置を前段に有するのが一般的である。そして、この再生式イオン交換装置の後段には、非再生式イオン交換装置を備えた二次純水システム(サブシステム)を配することで超純水を製造することができる。
 水中のイオン類を主に除去するイオン交換装置における処理水イオン濃度は、給水イオン濃度と処理水量(空間速度と線速度)とにより決まる。従来再生式イオン交換装置は処理水の抵抗率(もしくは電気伝導度)に閾値を設定し、再生と採水を繰り返しながら水中のイオンを除去している。このようなイオン交換装置に充填されているイオン交換樹脂は電気化学的に水中のイオン類を除去するが、その能力に容量があるため、再生式イオン交換装置では、定期的に薬品で再生して、その能力を回生している。
 再生式イオン交換装置に充填しているイオン交換樹脂を再生するには、アニオン交換樹脂あるいはカチオン交換樹脂など充填されているイオン交換樹脂に応じて、塩酸(HCl)もしくは水酸化ナトリウム(NaOH)などの薬品を使用するが、これらの再生薬品が再生後のイオン交換樹脂中に残り、水中のイオンを除去した後の処理水にナトリウムイオン(Na)もしくは塩化物イオン(Cl)が検出される。
 最近、このような再生式イオン交換装置の後段のサブシステム(二次純水装置)の非再生式イオン交換装置の処理水中のナトリウムイオン(Na)濃度や塩化物イオン(Cl)濃度が変動することが顕在化し、その水を使って洗浄して製造した半導体製品の歩留まりに影響する、という問題があることがわかった。
 そこで、この非再生式イオン交換装置の処理水中のナトリウムイオン(Na)濃度や塩化物イオン(Cl)濃度の変動の原因について本発明者が検討した結果、一次純水システムを構成する再生式イオン交換装置の処理水に残存するナトリウムイオン(Na)濃度や塩化物イオン(Cl)濃度が後段のサブシステムの非再生式イオン交換装置の処理水の水質に影響し、その水を使って洗浄することにより製造した半導体製品の歩留まりに影響することがわかった。
 本発明は上記課題に鑑みてなされたものであり、再生式イオン交換装置の後段の二次純水システム(サブシステム)の処理水中のナトリウムイオン(Na)や塩化物イオン(Cl)の濃度の短期変動を抑制することの可能な再生式イオン交換装置およびその運転方法を提供することを目的とする。
 上記目的に鑑み、第一に本発明は再生式イオン交換塔を単独で有する再生式イオン交換装置において、該再生式イオン交換塔単独の処理水のイオン濃度を測定するイオン電極を備える再生式イオン交換装置を提供する(発明1)。
 かかる発明(発明1)によれば、一次純水システムを構成する再生式イオン交換装置が再生式イオン交換塔単独の場合において、再生式イオン交換塔単独の処理水の再生時の処理水の抵抗率だけでなく、イオン濃度(イオン電極による測定値)を測定し、これに基づき再生の適否を管理することにより、後段のサブシステムに流入するイオン濃度を制御することができるので、サブシステムを構成する非再生式イオン交換装置の処理水のイオン濃度の短期変動を抑制することができ、かつイオン濃度自体も低く抑えることができる。
 また、本発明は複数の再生式イオン交換塔と脱気装置とを含む複数の塔からなる再生式イオン交換装置において、前記複数の再生式イオン交換塔の最後段の塔の処理水のイオン濃度を測定するイオン電極を備える再生式イオン交換装置を提供する(発明2)。
 かかる発明(発明2)によれば、一次純水システムを構成する再生式イオン交換装置が再生式イオン交換塔と脱気装置とを含む複数の塔からなる場合において、最後段の再生式イオン交換塔の再生時の処理水の抵抗率だけでなく、イオン濃度(イオン電極による測定値)を測定し、これに基づき再生の適否を管理することにより、後段のサブシステムに流入するイオン濃度を制御することができるので、サブシステムを構成する非再生式イオン交換装置の処理水のイオン濃度の短期変動を抑制することができ、かつイオン濃度自体も低く抑えることができる。
 上記発明(発明1,2)においては、前記イオン電極でイオン濃度を測定する再生式イオン交換塔が、少なくともアニオン交換樹脂を充填しており、前記イオン電極が処理水のナトリウムイオン(Na)濃度を測定するナトリウムイオン電極であることが好ましい(発明3)。
 かかる発明(発明3)によれば、アニオン交換樹脂を充填した再生式イオン交換塔の再生時の処理水の抵抗率だけでなく、ナトリウムイオン(Na)電極によりナトリウムイオン(Na)濃度を測定し、この測定値に基づいて再生の適否を管理することで、後段のサブシステムの非再生式イオン交換装置の処理水のナトリウムイオン(Na)濃度の短期変動を制御することができ、かつイオン濃度自体も低く抑えることができる。
 第二に本発明は再生式イオン交換塔を単独で有する再生式イオン交換装置の再生後の処理水のイオン濃度をイオン電極により測定し、該イオン電極により測定されたイオン濃度に基づいて再生式イオン交換塔の再生を管理する再生式イオン交換装置の運転方法を提供する(発明4)。また、本発明は複数の再生式イオン交換塔と脱気装置とを含む複数の塔からなる再生式イオン交換装置の最後段の塔の再生後の処理水のイオン濃度をイオン電極により測定し、該イオン電極により測定されたイオン濃度に基づき再生式イオン交換塔の再生を管理する再生式イオン交換装置の運転方法を提供する(発明5)。
 かかる発明(発明4,5)によれば、再生式イオン交換塔の再生と採水の切り替えを行いながら、再生時の処理水の抵抗率だけでなく、イオン濃度(イオン電極による測定値)を測定し、これに基づき再生の適否を管理することにより後段のサブシステムの非再生式イオン交換装置の処理水中にあるイオン濃度の短期変動を抑制し、かつ低く抑えることができる。
 上記発明(発明4,5)においては、前記イオン電極でイオン濃度を測定する再生式イオン交換塔が、少なくともアニオン交換樹脂が充填されており、前記イオン電極がナトリウムイオン(Na)濃度を測定するナトリウムイオン電極であり、前記アニオン交換樹脂の再生後の処理水のナトリウムイオン濃度を前記ナトリウムイオン電極により測定して、再生式イオン交換塔の再生を管理することが好ましい(発明6)。
 かかる発明(発明6)によれば、アニオン交換樹脂を充填した再生式イオン交換塔の再生時の処理水の抵抗率だけでなく、ナトリウムイオン(Na)電極によるナトリウムイオン(Na)濃度を測定し、この測定値に基づいて再生の適否を管理することで、後段のサブシステムの非再生式イオン交換装置の処理水のナトリウムイオン(Na)濃度の短期変動を制御することができ、かつイオン濃度自体も低く抑えることができる。
 本発明によれば、再生式イオン交換塔の採水時の処理水の抵抗率だけでなく、イオン濃度(イオン電極による測定値)で管理するので、再生式イオン交換装置の後段のサブシステムの非再生式イオン交換装置の処理水中にあるイオン濃度の短期変動を抑制し、かつイオン濃度を低く抑えることができる。特にアニオン交換樹脂の再生の適否をナトリウム電極によりナトリウムイオン濃度に基づいて管理することに好適である。これにより得られた超純水を使って洗浄することにより製造した半導体製品の歩留まりを高く維持することができる。
本発明の第一の実施形態に係る再生式イオン交換装置を示す概略系統図である。 本発明の第二の実施形態に係る再生式イオン交換装置を示す概略系統図である。 本発明の第三の実施形態に係る再生式イオン交換装置を示す概略系統図である。 本発明の第四の実施形態に係る再生式イオン交換装置を示す概略系統図である。 本発明の第五の実施形態に係る再生式イオン交換装置を示す概略系統図である。 本発明の第六の実施形態に係る再生式イオン交換装置を示す概略系統図である。
 以下、本発明の再生式イオン交換装置の第一の実施形態について図1を参照にして詳細に説明する。
 図1に示す再生式イオン交換装置は、該再生式イオン交換装置が再生式イオン交換塔単独で構成される態様である。本実施形態において、再生式イオン交換塔1は、円筒状の塔本体1A内にカチオン交換樹脂とアニオン交換樹脂との混合樹脂によるイオン交換樹脂層2が配置されている。塔本体1Aの上部にはイオン交換処理を行う前処理水Wの供給管3が接続されている一方、下部にはイオン交換処理水W1の排出管4が接続されている。そして、これら供給管3及び排出管4にはそれぞれ再生薬液であるアルカリとしてのNaOH溶液供給管5と、酸としての塩酸(HCl)供給管6とがそれぞれ接続している。さらに塔本体1Aの側部には、再生廃水の排出管7が接続されている。これら供給管3、排出管4、NaOH溶液供給管5、塩酸供給管6及び再生廃水の排出管7にはそれぞれ図示しない開閉バルブが設けられている。また、排出管4には、抵抗率計8及びイオン交換処理水W1のナトリウムイオン(Na)濃度を測定するイオン電極たるナトリウムイオン電極9が設けられている。なお、図1において10はNaOH溶液供給管5に設けられた加熱器(プレート式熱交換器)である。
 上述したような再生式イオン交換装置において、イオン交換樹脂層2を構成するカチオン交換樹脂としては、陽イオン交換基としてスルホン基を付けた強酸性カチオン交換樹脂、カルボン酸基を付けた弱酸性カチオン交換樹脂いずれも使用可能であり、PSAの溶出が少ない点でゲル型樹脂を用いるのが一般的である。また、上記のカチオン交換樹脂はジビニルベンゼンが架橋剤となって、鎖状構造が架橋されて網目構造の樹脂が形成されている。ジビニルベンゼンが多いほど鎖の分岐が多く、密な構造になり、ジビニルベンゼンが少ないと分枝の少ない網目の大きい樹脂が得られる。通常の水処理に使用する樹脂は架橋度が8%程度で標準架橋樹脂と呼ばれている。これに対して、架橋度9%以上のものは高架橋度樹脂と呼ばれている。本実施形態においては、いずれも用いることができるが、標準架橋樹脂が好適である。
 また、アニオン交換樹脂としては、PSAの溶出が少ない点でゲル型樹脂を用いる。スチレン-ジビニルベンゼン共重合体などを母体としたスチレン骨格にトリメチルアンモニウム基やジメチルエタノールアンモニウム基などの四級アンモニウム基を持つ強塩基性アニオン交換樹脂、スチレン-ジビニルベンゼン共重合体などを母体としたスチレン骨格にまたはポリアクリル酸エステル骨格に、一級~三級アミノ基を官能基として持つ弱塩基性アニオン交換樹脂、のいずれも用いることができるが、強塩基性アニオン交換樹脂を好適に用いることができる。アニオン交換樹脂の交換基は、OH形であるのが好ましい。
 イオン交換樹脂層2を構成する混合樹脂におけるカチオン交換樹脂とアニオン交換樹脂との混合割合は、カチオン交換樹脂:アニオン交換樹脂が30:70~70:30、特に30:70~50:50とアニオン交換樹脂を多く混合するのが好ましい。
 上述したような再生式イオン交換装置の運転方法について説明する。まず、採水モードでは、供給管3及び排出管4を開成し、NaOH溶液供給管5、塩酸供給管6及び排出管7を閉鎖した状態で、前処理水Wを供給管3から下向流で通水すると、前処理水Wは混合樹脂によるイオン交換樹脂層2でカチオン性成分及びアニオン性成分を除去された後、イオン交換処理水W1として排出管4より排出し、図示しないサブシステムに供給される。このときの通水条件は、通常のイオン交換による処理と同様とすることができ、イオン交換樹脂層2のイオン交換樹脂の容積に対して空間速度5~100h-1、特に5~50h-1とすればよい。
 そして、抵抗率計8によるイオン交換処理水W1の抵抗率が所定の値を超えたら、イオン交換樹脂層2のイオン交換能が低下してきたとみなして再生モードに切り替え、再生式イオン交換塔1内の混合樹脂の再生を行う。この再生モードでは、まず排出管4からイオン交換処理水W1を供給して供給管3から排出することで、イオン交換樹脂層2を構成する混合樹脂を逆洗する。この逆洗ではアニオン交換樹脂とカチオン交換樹脂のわずかな比重差によりアニオン交換樹脂が上側にカチオン交換樹脂が下側に分離する。
 そうしたらNaOH溶液供給管5、塩酸供給管6及び再生廃水の排出管7を開成した状態で、NaOH溶液供給管5から水酸化ナトリウム水溶液を供給して上側に偏在したアニオン交換樹脂を再生し、塩酸供給管6から塩酸を供給して下側に偏在したカチオン交換樹脂を再生する。このときアニオン交換樹脂を効率よく再生するために、水酸化ナトリウム水溶液は加熱器10により30~50℃程度に加熱することが好ましい。これらの水酸化ナトリウム水溶液及び塩酸の再生後の廃水は、再生廃水の排出管7から排出する。
 続いて、供給管3及び排出管4を開成し、NaOH溶液供給管5、塩酸供給管6及び再生廃水の排出管7を閉鎖した状態で、供給管3からイオン交換処理水W1を供給して排出管4から排出することで、再生に使用した薬液(水酸化ナトリウム水溶液及び塩酸)を一過式で押し出す。ここまでの再生操作はイオン交換処理水W1の抵抗率の低下やナトリウム濃度の上昇が大きい場合には2回以上連続して行うのが好ましい。
 次にイオン交換樹脂層2を構成する分離したイオン交換樹脂を混合したら、供給管3から前処理水Wを供給して排出管4から排出してイオン交換処理水W1を製造することでイオン交換樹脂の循環洗浄を行う。ここで製造されるイオン交換処理水W1はサブシステムには供給せず、該イオン交換処理水W1のナトリウムイオン(Na)濃度をナトリウムイオン電極9で測定する。循環洗浄が不十分であると再生に用いたNaOH溶液に起因してナトリウムイオンがイオン交換処理水W1に多く含まれるので、ナトリウムイオン濃度が所定の値以下となった時点で再生を好適と判断し、再生作業を終了し、採水モードに戻る。このとき、抵抗率計8によるイオン交換処理水W1の抵抗率との両方で再生の適否を判断してもよい。なお、ナトリウムイオン濃度が所定の値を超える場合には循環洗浄を継続すればよい。この採水モードと再生モードを交互に繰り返すことで再生式イオン交換装置を運転することができる。
 このようにナトリウムイオン濃度に基づいて、アニオン交換樹脂の再生の適否を判断して、再生が好適であると判断された後イオン交換処理水W1をサブシステムに供給することにより、超純水(サブシステム処理水)のナトリウムイオン(Na)濃度を所望の値にまで低く維持して安定化させることができる。
 次に本発明の再生式イオン交換装置の第二の実施形態について図2を参照にして説明する。本実施形態においては、前述した第一の実施形態と同一の構成には同一の符号を付しその詳細な説明は省略する。
 図2に示す再生式イオン交換装置は、該再生式イオン交換装置が再生式イオン交換塔単独で構成される態様である。本実施形態において、再生式イオン交換塔1は、上向流で通水する方式であり、円筒状の塔本体1A内に上側からアニオン交換樹脂層2Aとカチオン交換樹脂層2Bとがそれぞれ離間して形成された2層式のイオン交換塔であり、塔本体1Aの下部にはイオン交換処理を行う前処理水Wの供給管3が接続されている一方、上部にはイオン交換処理水W1の排出管4が接続されている。そして、排出管4には再生薬液であるアルカリとしてのNaOH溶液供給管5が接続しており、塔本体1Aの側部にはNaOH再生廃水の排出管7Aが接続している。一方、塔本体1Aの側部には酸としての塩酸(HCl)供給管6が連通しており、供給管3には塩酸廃水の排出管7Bが接続している。これら供給管3、排出管4、NaOH溶液供給管5、塩酸供給管6、NaOH再生廃水の排出管7A及び塩酸廃水の排出管7Bには、それぞれ図示しない開閉バルブが設けられている。また、排出管4には、抵抗率計8及びイオン交換処理水W1のナトリウムイオン(Na)濃度を測定するナトリウムイオン電極9が設けられている。なお、10はNaOH溶液供給管5に設けられた加熱器(プレート式熱交換器)であり、1Bはアニオン交換樹脂層2Aを構成するアニオン交換樹脂よりも小さい孔を多数有する遮蔽板である。
 上述したような再生式イオン交換装置の運転方法について説明する。まず、採水モードでは、供給管3及び排出管4を開成し、NaOH溶液供給管5、塩酸供給管6、NaOH再生廃水の排出管7A及び塩酸廃水の排出管7Bを閉鎖した状態で、前処理水Wを塔本体1Aの下部の供給管3から供給して上向流で通水すると、前処理水Wはカチオン交換樹脂層2Bでカチオン性成分が除去され、続いてアニオン交換樹脂層2Aでアニオン性成分を除去された後イオン交換処理水W1として排出管3より図示しないサブシステムに供給される。このときの通水条件は、通常のイオン交換による処理と同様とすることができ、イオン交換樹脂に対して空間速度5~100h-1、特に5~50h-1とすればよい。
 そして、抵抗率計8によるイオン交換処理水W1の抵抗率が所定の値を超えたら、再生モードに切り替え、再生式塔本体1A内のアニオン交換樹脂層2A及びカチオン交換樹脂層2Bの再生を行う。この再生はNaOH溶液供給管5、塩酸供給管6、NaOH再生廃水の排出管7A及び塩酸廃水の排出管7Bを開成した状態で、NaOH溶液供給管5から水酸化ナトリウム水溶液を供給してアニオン交換樹脂層2Aを再生し、その再生薬液をNaOH再生廃水の排出管7Aから排出する。このときアニオン交換樹脂を効率よく再生するために、水酸化ナトリウム水溶液は加熱器10により30~50℃程度に加熱することが好ましい。一方、塔本体1Aの側部に接続した塩酸供給管6から塩酸を供給してカチオン交換樹脂層2Bを再生し、その再生薬液を塩酸廃水の排出管7Bから排出する。
 続いて、NaOH溶液供給管5からイオン交換処理水W1を供給してNaOH再生廃水の排出管7Aから排出することで再生に使用したNaOH溶液を一過式で押し出す一方、塩酸供給管6からイオン交換処理水W1を供給して塩酸廃水の排出管7Bから排出することで再生に使用した塩酸を一過式で押し出す。ここまで再生はイオン交換処理水W1の抵抗率の低下やナトリウム濃度の上昇が大きい場合には2回以上連続して行うのが好ましい。続いて供給管3及び排出管4を開成し、NaOH溶液供給管5、塩酸供給管6、NaOH再生廃水の排出管7A及び塩酸廃水の排出管7Bを閉鎖した状態で、供給管3から前処理水Wを供給して排出管4から排出してイオン交換処理水W1を製造することでイオン交換樹脂の循環洗浄を行う。
 ここで製造されるイオン交換処理水W1はサブシステムには供給せず、該イオン交換処理水W1のナトリウムイオン(Na)濃度をナトリウムイオン電極9で測定する。循環洗浄が不十分であると再生に用いたNaOH溶液に起因してナトリウムイオンがイオン交換処理水W1に多く含まれるので、ナトリウムイオン濃度が所定の値以下となった時点で再生を好適と判断し、再生作業を終了し、採水モードに戻る。このとき、抵抗率計8によるイオン交換処理水W1の抵抗率との両方で再生の適否を判断してもよい。なお、ナトリウムイオン濃度が所定の値を超える場合には循環洗浄を継続すればよい。この採水モードと再生モードを交互に繰り返すことで再生式イオン交換装置を運転することができる。
 このようにナトリウムイオン濃度に基づいて、アニオン交換樹脂の再生の適否を判断して、再生が好適であると判断された後イオン交換処理水W1をサブシステムに供給することにより、超純水(サブシステム処理水)のナトリウムイオン(Na)濃度を所望の値にまで低く維持して安定化させることができる。
 次に本発明の再生式イオン交換装置の第三の実施形態について図3を参照にして説明する。本実施形態においては、前述した第一の実施形態と同一の構成には同一の符号を付しその詳細な説明は省略する。
 図3に示す再生式イオン交換装置は、該再生式イオン交換装置が再生式イオン交換塔単独で構成される態様である。本実施形態において、再生式イオン交換塔1は、上向流で通水する方式であり、円筒状の塔本体1A内に上側からカチオン交換樹脂層2Bとアニオン交換樹脂層2Aとがそれぞれ離間して形成された2層式のイオン交換塔であり、塔本体1Aの下部にはイオン交換処理を行う前処理水Wの供給管3が接続されている一方、上部にはイオン交換処理水W1の排出管4が接続されている。そして、排出管4には再生薬液である酸としての塩酸(HCl)供給管6が連通しており、塔本体1Aの側部には塩酸廃水の排出管7Bが接続している。また、塔本体1Aの側部にはアルカリとしてのNaOH溶液供給管5が接続しており、供給管3にはNaOH廃水の排出管7Aが接続している。これら供給管3、排出管4、NaOH溶液供給管5、塩酸供給管6、NaOH廃水の排出管7A及び塩酸廃水の排出管7Bには、それぞれ図示しない開閉バルブが設けられている。また、排出管4には、抵抗率計8及びイオン交換処理水W1の塩素イオン(Cl)濃度を測定する塩素イオン電極9Aが設けられている。なお、10はNaOH溶液供給管5に設けられた加熱器(プレート式熱交換器)であり、1Bはカチオン交換樹脂層2Bを構成するカチオン交換樹脂よりも小さい孔を多数有する遮蔽板である。
 上述したような再生式イオン交換装置の運転方法について説明する。まず、採水モードでは、供給管3及び排出管4を開成し、NaOH溶液供給管5、塩酸供給管6、NaOH廃水の排出管7A及び塩酸廃水の排出管7Bを閉鎖した状態で、前処理水Wを塔本体1Aの下部の供給管3から供給して上向流で通水すると、前処理水Wはアニオン交換樹脂層2Aでアニオン性成分を除去し、続いてカチオン交換樹脂層2Bでカチオン性成分を除去した後イオン交換処理水W1を排出管3より排出して図示しないサブシステムに供給する。このときの通水条件は、通常のイオン交換による処理と同様とすることができ、イオン交換樹脂に対して空間速度5~100h-1、特に5~50h-1とすればよい。
 そして、抵抗率計8によるイオン交換処理水W1の抵抗率が所定の値を超えたら再生モードに切り替え、再生式イオン交換塔1Aのアニオン交換樹脂層2A及びカチオン交換樹脂層2Bの再生を行う。この再生はNaOH溶液供給管5、塩酸供給管6、NaOH廃水の排出管7A及び塩酸廃水の排出管7Bを開成した状態で、塔本体1Aの側部に接続したNaOH溶液供給管5から水酸化ナトリウム水溶液を供給してアニオン交換樹脂層2Aを再生し、その再生薬液をNaOH廃水の排出管7Aから排出する。このときアニオン交換樹脂を効率よく再生するために、水酸化ナトリウム水溶液は加熱器10により30~50℃程度に加熱することが好ましい。一方、塔本体1Aの上部の酸供給管6から塩酸を供給してカチオン交換樹脂層2Bを再生し、その再生薬液を塩酸廃水の排出管7Bから排出する。
 続いて、NaOH溶液供給管5からイオン交換処理水W1を供給してNaOH廃水の排出管7Aから排出することで再生に使用したNaOH溶液を一過式で押し出す一方、塩酸供給管6からイオン交換処理水W1を供給して塩酸廃水の排出管7Bを開成することで再生に使用した塩酸を一過式で押し出す。ここまでの再生はイオン交換処理水W1の抵抗率の低下やナトリウム濃度の上昇が大きい場合には2回以上連続して行うのが好ましい。続いて供給管3及び排出管4を開成し、NaOH溶液供給管5、塩酸供給管6、NaOH再生廃水の排出管7A及び塩酸廃水の排出管7Bを閉鎖した状態で、供給管3から前処理水Wを供給して排出管4から排出してイオン交換処理水W1を製造することでイオン交換樹脂の循環洗浄を行う。ここで製造されるイオン交換処理水W1はサブシステムには供給せず、該イオン交換処理水W1の塩素イオン(Cl)濃度を塩素イオン電極9Aで測定する。循環洗浄が不十分であると再生に用いた塩酸溶液に起因して塩素イオンがイオン交換処理水W1に多く含まれるので、塩素イオン濃度が所定の値以下となった時点で再生を好適と判断し、再生作業を終了し、採水モードに戻る。この採水モードと再生モードを交互に繰り返すことで再生式イオン交換装置を運転することができる。
 このようにナトリウムイオン濃度に限らず、カチオン交換樹脂の再生の適否を、塩素イオン電極9Aの塩素イオン濃度により判断して、再生が好適であると判断された後イオン交換処理水W1をサブシステムに供給することにより、超純水(サブシステム処理水)の塩素イオン(Cl)濃度を所望の値にまで低く維持して安定化させることができる。
 本発明の再生式イオン交換装置の第四の実施形態について図4を参照にして詳細に説明する。
 図4に示す再生式イオン交換装置は、いわゆる2床3塔式のイオン交換装置であり、該再生式イオン交換装置は、2層型の再生式カチオン交換樹脂塔(H塔)11と、脱気装置12と、2層型の再生式アニオン交換樹脂塔(OH塔)13とを備える。H塔11の下側にはイオン交換処理を行う前処理水Wの供給管14が接続されている一方、OH塔13の上側にはイオン交換処理水W1の排出管15が接続されていて、この排出管15には抵抗率計16及びイオン交換処理水W1のナトリウムイオン(Na+)濃度を測定するナトリウムイオン電極17が設けられている。そして、H塔11の上側には酸としての塩酸(HCl)供給管18が接続しているとともにH塔11の下側の前処理水Wの供給管14に塩酸(HCl)廃水の排出管19が接続している。さらに、OH塔13の上側(排出側)には、アルカリとしてのNaOH溶液供給管20が接続しており、OH塔13の下側(供給側)にはNaOH溶液の排出管21が接続している。なお、22はNaOH溶液供給管20に設けられた加熱器(プレート式熱交換器)であり、23は脱気装置12で処理した処理水をOH塔13に供給するためのポンプである。
 この2床3塔式のイオン交換装置において、H塔11は弱カチオン交換樹脂層11Aと強カチオン交換樹脂層11Bとの2層構造であり、OH塔13は弱カチオン交換樹脂層13Aと強カチオン交換樹脂層13Bとの2層構造となっている。なお、弱カチオン交換樹脂層11A及び強カチオン交換樹脂層11B、弱カチオン交換樹脂層13A及び強カチオン交換樹脂層13Bの間には、アニオン交換樹脂及びカチオン交換樹脂よりも小さい孔を多数有する遮蔽板(図示せず)が設けられている。
 次に上述したような再生式イオン交換装置の運転方法について説明する。まず、採水モードでは、供給管14から前処理水Wを通水して、H塔11では、弱カチオン交換樹脂層11Aで弱酸性のカチオン成分を、強カチオン交換樹脂層11Bで中性塩のカチオン成分をそれぞれ除去し、続いて脱気装置12で前処理水Wに溶存している二酸化炭素などの気体を除去し、さらにOH塔13では弱アニオン交換樹脂層13Aで弱酸性のアニオン成分を、強アニオン交換樹脂層13Bで中性塩のアニオン成分をそれぞれ除去してイオン交換処理水W1を製造することができる。このイオン交換処理水W1を必要に応じさらに種々の処理や微粒子を除去した後サブシステムに供給する。
 そして、抵抗率計16によるイオン交換処理水W1の抵抗率が所定の値を超えたら再生モードに切り替えて、H塔11の流路を適宜開閉してH塔11に塩酸供給管18から塩酸を供給することでカチオン交換樹脂11A,11Bを再生しながら塩酸廃水の排出管19から排出する。一方、OH塔13の流路を適宜開閉してNaOH溶液供給管20からNaOH溶液を供給することでアニオン交換樹脂13A,13Bを再生しながらNaOH溶液の排出管21から排出する。このときアニオン交換樹脂13A,13Bを効率よく再生するために、水酸化ナトリウム水溶液は加熱器22により30~50℃程度に加熱することが好ましい。
 続いて塩酸供給管18からH塔11にイオン交換処理水W1を供給して塩酸廃水の排出管19から再生に使用した塩酸を一過式で押し出す一方、OH塔13の上側からイオン交換処理水W1を供給してNaOH溶液の排出管21から再生に使用したNaOH溶液を一過式で押し出す。続いて、塩酸供給管18及びNaOH溶液供給管20を閉鎖して、前処理水Wを供給管14から通水し、H塔11、脱気装置12及びOH塔13の循環洗浄を行う。ここで製造されるイオン交換処理水W1はサブシステムには供給せず、該イオン交換処理水W1のナトリウムイオン(Na)濃度をナトリウムイオン電極17で測定する。循環洗浄が不十分であると再生に用いたNaOH溶液に起因してナトリウムイオンがイオン交換処理水W1に多く含まれるので、ナトリウムイオン濃度が所定の値以下となった時点で再生を好適と判断し、再生作業を終了し、採水モードに戻る。この採水モードと再生モードを交互に繰り返すことで再生式イオン交換装置を運転することができる。
 このように再生式イオン交換塔単独で構成した場合に限らず、二以上の再生式イオン交換塔の最後段の塔である再生式アニオン交換樹脂塔(OH塔)13のイオン交換処理水W1のナトリウムイオン濃度を測定するナトリウムイオン電極17設けることによっても同様にナトリウムイオン濃度に基づいて、アニオン交換樹脂13A,13Bの再生の適否を判断して、このイオン交換処理水W1をサブシステムに供給することにより、超純水(サブシステム処理水)のナトリウムイオン(Na)濃度を所望の値にまで低く制御することができる。
 次に、本発明の再生式イオン交換装置の第五の実施形態について図5を参照にして詳細に説明する。
 図5に示す再生式イオン交換装置は、いわゆる3床4塔式のイオン交換装置である。本実施形態において、再生式イオン交換装置は、2層型の第一の再生式カチオン交換樹脂塔(H1塔)31と、脱気装置32と、2層型の再生式アニオン交換樹脂塔(OH塔)33と、単層型の第二の再生式カチオン交換樹脂塔(H2塔)34とを備える。H1塔31の下側にはイオン交換処理を行う前処理水Wの供給管35が接続されている一方、H2塔34の下側にはイオン交換処理水W1の排出管36が接続されていて、この排出管36には抵抗率計37及びイオン交換処理水W1の塩素イオン(Cl)濃度を測定する塩素イオン電極38が設けられている。そして、H2塔34の上側には酸としての塩酸(HCl)供給管39が接続していて、排出管36には塩酸廃水の排出管40が接続している。この塩酸廃水の排出管40はH1塔31の上側(排出側)に接続していて、H1塔31の下側(供給側)には塩酸(HCl)廃水の廃棄管41が接続している。さらに、OH塔33の上側(排出側)には、アルカリとしてのNaOH溶液供給管42が接続しており、OH塔33の下側(供給側)にはNaOH廃水の排出管43が接続している。なお、44はNaOH溶液供給管42に設けられた加熱器(プレート式熱交換器)であり、45は脱気装置12で処理した処理水をOH塔13に供給するためのポンプである。
 この3床4塔式のイオン交換装置において、H1塔31は弱カチオン交換樹脂層31Aと強カチオン交換樹脂層31Bとの2層構造であり、OH塔33は弱カチオン交換樹脂層33Aと強カチオン交換樹脂層33Bとの2層構造となっている。なお、弱カチオン交換樹脂層31A及び強カチオン交換樹脂層31Bの間には、アニオン交換樹脂及びカチオン交換樹脂よりも小さい孔を多数有する遮蔽板(図示せず)が設けられている。
 上述したような3床4塔式のイオン交換装置であっても前処理水WをH1塔31から供給してH2塔34から排出することによりイオン交換処理水W1を製造し、前述した第一~第四の実施形態と同様に再生することができる。そして、2以上の再生式イオン交換塔の最後段の塔であるH2塔34のイオン交換処理水W1の塩素イオン濃度を測定する塩素イオン電極38を設けることによって同様に塩素イオン濃度に基づいて、カチオン交換樹脂の再生の適否を判断して、このイオン交換処理水W1をサブシステムに供給することにより、超純水(サブシステム処理水)の塩素イオン濃度を所望の値にまで低く制御することができる。
 さらに、本発明の再生式イオン交換装置の第六の実施形態について図6を参照にして詳細に説明する。本実施形態においては、前述した第五の実施形態と同一の構成には同一の符号を付しその詳細な説明は省略する。
 図6に示す再生式イオン交換装置は、いわゆる4床5塔式のイオン交換装置であり、基本的には前述した第五の実施形態の3床4塔式のイオン交換装置の再生式カチオン交換樹脂塔(H2塔)34の後段に単層型の第二の再生式アニオン交換樹脂塔(OH2塔)46を設けた構成を有する。このOH2塔46の下側にはイオン交換処理水W1の排出管36が接続されていて、この排出管36には抵抗率計37及びイオン交換処理水W1のナトリウムイオン(Na)濃度を測定するナトリウムイオン電極38Aが設けられている。そして、OH2塔46の上側にはアルカリとしてのNaOH溶液供給管47が接続し、下側の排出管36にはNaOH溶液の排出管48が接続している。この排出管48は第一の再生式アニオン交換樹脂塔(OH1塔)33の上側(排出側)にNaOH溶液供給管として接続していて、OH1塔33の下側(供給側)にはNaOH再生廃水の廃棄管49が接続している。
 上述したような4床5塔式のイオン交換装置であっても、前処理水WをH1塔31から供給してOH2塔44から排出することによりイオン交換処理水W1を製造し、前述した第一~第五の実施形態と同様に再生することができる。そして、2以上の再生式イオン交換塔の最後段の塔であるOH2塔44のイオン交換処理水W1のナトリウムイオン濃度を測定するナトリウムイオン電極38Aを設けることによって同様にナトリウムイオン濃度に基づいて、カチオン交換樹脂の再生の適否を判断して、このイオン交換処理水W1をサブシステムに供給することにより、超純水(サブシステム処理水)の塩素イオン濃度を所望の値にまで低く制御することができる。
 以上、本発明について添付図面を参照して説明してきたが、本発明は前記実施形態に限らず種々の変更実施が可能である。例えば、再生式イオン交換装置の構成は前述した各実施例に限らず、種々変更可能である。また、再生式イオン交換装置の前段には逆浸透膜分離装置など公知の水処理用のエレメントを設けることができる。また、抵抗率計によるイオン交換処理水W1の抵抗率が所定の値を超えたら再生モードに切り替えているが、所定の体積のイオン交換処理水W1を製造したら再生するように運転してもよい。さらに、抵抗率計以外で再生のタイミンを測ってもよい。
 以下の具体的実施例により本発明をさらに詳細に説明する。
[実施例1]
 図1において、カチオン交換樹脂として三菱化学社製「PK228L」(ポーラス型)と、アニオン交換樹脂として三菱化学社製「PA312L」(ポーラス型)とをカチオン交換樹脂:アニオン交換樹脂=1:2(容積比)で混合した樹脂を充填してイオン交換樹脂層2を形成し、1塔型の再生式イオン交換装置を構成した。なお、抵抗率計8としては栗田工業社製「MX-3」を、ナトリウムイオン(Na)電極9としてはティー・アンド・シー・テクニカル社製「swan AMI Soditrace」をそれぞれ用いた。
 この1塔型の再生式イオン交換装置をまず採水モードで前処理水Wをイオン交換樹脂層2の体積に対して空間速度(Space Velocity;SV)40h-1で通水してイオン交換処理水W1の抵抗率とナトリウムイオン(Na)濃度を測定した。また、イオン交換処理水W1を後段に設けた非再生式イオン交換装置を備えたサブシステムに供給し、このサブシステム処理水のナトリウムイオン濃度をICP-MS(アジレント・テクノロジー社製「7500cs」)を用いて分析した。なお、非再生式イオン交換装置としては、カチオン交換樹脂:アニオン交換樹脂=1:1.6(容積比)で充填したものを用い、SV=80h-1で通水した。
 そして、抵抗率計8によるイオン交換処理水W1の抵抗率が18.0MΩ・cm未満となったら採水を停止し、次に再生モードに切り替えて、排出管4からイオン交換処理水W1を供給して供給管3から排出することで、イオン交換樹脂層2を構成する混合樹脂を逆洗し、アニオン交換樹脂を上側にカチオン交換樹脂を下側に分離した。
 そうしたらNaOH溶液供給管5、塩酸供給管6及び再生廃水の排出管7を開成した状態で、NaOH溶液供給管5から4%に調製した水酸化ナトリウム水溶液を供給して上側に偏在したアニオン交換樹脂を再生し、塩酸(HCl)供給管6から5%に調製した工業用塩酸(HCl)を供給して下側に偏在したカチオン交換樹脂を再生し、これらの水酸化ナトリウム水溶液及び塩酸の再生廃水は排出管7から排出した。このときアニオン交換樹脂を効率よく再生するために、水酸化ナトリウム水溶液は加熱器10により40℃に加熱した。
 続いて、供給管3及び排出管4を開成し、NaOH溶液供給管5、塩酸供給管6及び再生廃水の排出管7を閉鎖した状態で、排出管4からイオン交換処理水W1を供給して供給管3から排出することで、再生に使用した薬液(水酸化ナトリウム水溶液及び塩酸)を一過式で押し出し、続けて前処理水Wを流通してイオン交換樹脂の循環洗浄を行った。このとき処理水W1の抵抗率を抵抗率計8で計測するとともにナトリウムイオン(Na)濃度をナトリウムイオン電極9で測定し、抵抗率が18.0MΩ・cm以上、かつナトリウムイオン(Na)濃度が300ng/L以下になった時点で再生が完了したとして再生作業を終了した。
 次に再生式イオン交換装置を再度採水モードに切り替えて、再生式イオン交換装置に前処理水Wを流通させて採水を再開し、イオン交換処理水W1を後段に設けた非再生式イオン交換装置を備えたサブシステムに供給した。そして、イオン交換処理水W1の処理水の抵抗率計8による抵抗率が18.0MΩ・cm未満となったら採水を停止し、再度の再生・採水する操作を同様に8回繰り返した。この再生式イオン交換装置の採水開始から12時間後のイオン交換処理水W1の抵抗率とナトリウムイオン(Na)濃度を測定した結果を表1に示す。また、このときの後段に設けたサブシステムの非再生式イオン交換装置の処理水のナトリウムイオン(Na)濃度をそれぞれ測定した。結果を表2に示す。
[比較例1]
 実施例1において、ナトリウムイオン電極9を設けずに、再生式イオン交換装置の再生モードを抵抗率計8による抵抗率が18.0MΩ・cm以上になった時点で終了して採水モードに切り替えて、再生式イオン交換装置に前処理水Wを流通させて採水を再開する以外は同様にして、再生・採水の操作を同様に8回繰り返した。この再生式イオン交換装置の採水開始から12時間後のイオン交換処理水W1の抵抗率とナトリウムイオン(Na)濃度を測定した結果を表1にあわせて示す。また、このときの後段に設けたサブシステムの非再生式イオン交換装置の処理水のナトリウムイオン(Na)濃度をそれぞれ測定した。結果を表2にあわせて示す。
[参考例]
 実施例1において、再生式イオン交換装置のイオン交換処理水W1の抵抗率が18.0MΩ・cm未満になった時点で再生を停止し、再生モードで再生を行った。この再生は逆洗により分離したアニオン交換樹脂とカチオン交換樹脂のうちカチオン交換樹脂のみを5%に調整した副生塩酸(HCl)水溶液で再生し、循環洗浄時の抵抗率が18.0MΩ・cm以上、かつナトリウムイオン(Na)濃度が300ng/L以下になった時点で再生作業を終了した以外は同様にして再生・採水の操作を同様に8回繰り返した。なお、採水時のイオン交換処理水W1のナトリウムイオン(Na)濃度が500ng/L以上だった5回目と8回目については再生作業を2回繰り返した。この再生式イオン交換装置の採水開始から12時間後のイオン交換処理水W1の抵抗率とナトリウムイオン(Na)濃度を測定した結果を表1にあわせて示す。また、このときの後段に設けたサブシステムの非再生式イオン交換装置の処理水のナトリウムイオン(Na)濃度をそれぞれ測定した。結果を表2にあわせて示す。
[比較例2]
 参考例において、ナトリウムイオン電極9を設けずに、再生式イオン交換装置の再生モードを抵抗率が18.0MΩ・cm以上になった時点で終了して採水モードに切り替えて、再生式イオン交換装置に前処理水Wを流通させて採水を再開する以外は同様にして、再生・採水の操作を同様に8回繰り返した。この再生式イオン交換装置の採水開始から12時間後のイオン交換処理水W1の抵抗率とナトリウムイオン(Na)濃度を測定した結果を表1にあわせて示す。また、このときの後段に設けたサブシステムの非再生式イオン交換装置の処理水のナトリウムイオン(Na)濃度をそれぞれ測定した。結果を表2にあわせて示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかな通り、実施例1の再生式イオン交換装置の運転方法によれば、イオン交換処理水W1の再生の適否をナトリウムイオン電極9で測定したナトリウムイオン(Na)濃度により判断することで、採水開始後12時間経過後のナトリウムイオン(Na)濃度を300ng/L以下に制御することができるのに対し、比較例1、2のように抵抗率等で制御した場合には、ナトリウムイオン(Na)濃度が300ng/Lを超えることがあり、十分に制御できなかった。なお、参考例のようにカチオン交換樹脂のみを再生した場合にはアニオン交換樹脂が再生されないため、ナトイウムイオン濃度が大きかった。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなとおり、実施例1の再生式イオン交換装置の運転方法によれば、イオン交換処理水W1の再生の適否をナトリウムイオン電極9で測定したナトリウムイオン(Na)濃度により判断することで、後段のサブシステムの非再生式イオン交換装置の処理水のナトリウム(Na)濃度を低くかつ変動幅を小さく制御することができることがわかる。
 これらの結果から再生式イオン交換装置の再生時の水質をナトリウムイオン電極9で測定したナトリウムイオン(Na)濃度により管理することで、再生条件を見直すことができ、後段のサブシステムの非再生式イオン交換装置の処理水のナトリウムイオン(Na)濃度の短期的変動を制御することができることがわかる。
1 再生式イオン交換塔
5 NaOH溶液供給管
6 塩酸(HCl)供給管
7 再生廃水の排出管
7A NaOH再生廃水の排出管
7B HCl廃水の排出管
8,16,37 抵抗率計
9,17,38A ナトリウムイオン電極(イオン電極)
9A,38 塩素イオン電極(イオン電極)
11 2層型の再生式カチオン交換樹脂塔(H塔)
12,32 脱気装置
13 2層型の再生式アニオン交換樹脂塔(OH塔)
18 塩酸(HCl)供給管
19 塩酸(HCl)廃水の排出管
20 NaOH溶液供給管
21 NaOH溶液の排出管
31 2層型の第一の再生式カチオン交換樹脂塔(H1塔)
33 再生式アニオン交換樹脂塔(OH塔)(第二の再生式アニオン交換樹脂塔(OH1塔))
34 第二の再生式カチオン交換樹脂塔(H2塔)
39 塩酸(HCl)供給管
40 塩酸(HCl)廃水の排出管
41 塩酸(HCl)廃水の廃棄管
42 NaOH溶液の供給管
43 NaOH廃水の排出管
46 第二の再生式アニオン交換樹脂塔(OH2塔)
47 NaOH溶液供給管
48 NaOH溶液の排出管
W 前処理水
W1 イオン交換処理水

Claims (6)

  1.  再生式イオン交換塔を単独で有する再生式イオン交換装置において、該再生式イオン交換塔単独の処理水のイオン濃度を測定するイオン電極を備える再生式イオン交換装置。
  2.  複数の再生式イオン交換塔と脱気装置とを含む複数の塔からなる再生式イオン交換装置において、前記複数の再生式イオン交換塔の最後段の塔の処理水のイオン濃度を測定するイオン電極を備える再生式イオン交換装置。
  3.  前記イオン電極でイオン濃度を測定する再生式イオン交換塔が、少なくともアニオン交換樹脂を充填しており、前記イオン電極が処理水のナトリウムイオン(Na)濃度を測定するナトリウムイオン電極である請求項1又は2に記載の再生式イオン交換装置。
  4.  再生式イオン交換塔を単独で有する再生式イオン交換装置の再生後の処理水のイオン濃度をイオン電極により測定し、該イオン電極により測定されたイオン濃度に基づいて再生式イオン交換塔の再生を管理する再生式イオン交換装置の運転方法。
  5.  複数の再生式イオン交換塔と脱気装置とを含む複数の塔からなる再生式イオン交換装置の最後段の塔の再生後の処理水のイオン濃度をイオン電極により測定し、該イオン電極により測定されたイオン濃度に基づき再生式イオン交換塔の再生を管理する再生式イオン交換装置の運転方法。
  6.  前記イオン電極でイオン濃度を測定する再生式イオン交換塔が、少なくともアニオン交換樹脂が充填されており、前記イオン電極がナトリウムイオン(Na)濃度を測定するナトリウムイオン電極であり、前記アニオン交換樹脂の再生後の処理水のナトリウムイオン濃度を前記ナトリウムイオン電極により測定して、再生式イオン交換塔の再生を管理する請求項4又は5に記載の再生式イオン交換装置の運転方法。
PCT/JP2017/028177 2016-08-23 2017-08-03 再生式イオン交換装置及びその運転方法 WO2018037870A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187036211A KR102440909B1 (ko) 2016-08-23 2017-08-03 재생식 이온 교환 장치 및 그 운전 방법
CN201780051316.5A CN109641764A (zh) 2016-08-23 2017-08-03 再生式离子交换装置以及其运转方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016163141A JP6402754B2 (ja) 2016-08-23 2016-08-23 再生式イオン交換装置及びその運転方法
JP2016-163141 2016-08-23

Publications (1)

Publication Number Publication Date
WO2018037870A1 true WO2018037870A1 (ja) 2018-03-01

Family

ID=61245739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028177 WO2018037870A1 (ja) 2016-08-23 2017-08-03 再生式イオン交換装置及びその運転方法

Country Status (5)

Country Link
JP (1) JP6402754B2 (ja)
KR (1) KR102440909B1 (ja)
CN (1) CN109641764A (ja)
TW (1) TWI756249B (ja)
WO (1) WO2018037870A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291959A (zh) * 2022-03-09 2022-04-08 中国电子工程设计院有限公司 一种有效去除总有机碳和弱离子化杂质的超纯水制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138177A (ja) * 2019-03-01 2020-09-03 株式会社ディスコ 純水生成装置
JP2021191566A (ja) * 2020-06-05 2021-12-16 オルガノ株式会社 純水製造方法及び製造装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS489792U (ja) * 1971-06-14 1973-02-02
JPS4813540U (ja) * 1971-07-02 1973-02-15
JPH09117679A (ja) * 1995-10-24 1997-05-06 Japan Organo Co Ltd イオン交換樹脂塔の再生方法
JPH1128462A (ja) * 1997-07-10 1999-02-02 Kurita Water Ind Ltd 水系の金属の腐食抑制方法
JP2014168743A (ja) * 2013-03-04 2014-09-18 Nomura Micro Sci Co Ltd 純水製造方法
JP2014172795A (ja) * 2013-03-11 2014-09-22 Japan Organo Co Ltd 溶解塩類の回収方法、溶解塩類の回収装置及び塩化カルシウムの製造方法
JP2016076588A (ja) * 2014-10-06 2016-05-12 オルガノ株式会社 炭酸ガス溶解水供給システム、炭酸ガス溶解水供給方法、およびイオン交換装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066204B2 (ja) * 1992-11-24 2000-07-17 オルガノ株式会社 アンモニア型復水脱塩装置の運転方法
CN100389075C (zh) * 2004-08-10 2008-05-21 株式会社神钢环境舒立净 排水处理方法和排水处理装置
US7658828B2 (en) * 2005-04-13 2010-02-09 Siemens Water Technologies Holding Corp. Regeneration of adsorption media within electrical purification apparatuses
CN101450331B (zh) * 2008-12-17 2011-07-27 牛继星 一种可节省酸碱的离子交换树脂再生工艺
JP5518433B2 (ja) * 2009-11-04 2014-06-11 オルガノ株式会社 純水製造システムおよび純水製造方法
JP2012239927A (ja) * 2011-05-16 2012-12-10 Omega:Kk 排水処理方法
CN105439244A (zh) * 2016-01-06 2016-03-30 上海振世能源科技有限公司 一种离子交换树脂脱盐装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS489792U (ja) * 1971-06-14 1973-02-02
JPS4813540U (ja) * 1971-07-02 1973-02-15
JPH09117679A (ja) * 1995-10-24 1997-05-06 Japan Organo Co Ltd イオン交換樹脂塔の再生方法
JPH1128462A (ja) * 1997-07-10 1999-02-02 Kurita Water Ind Ltd 水系の金属の腐食抑制方法
JP2014168743A (ja) * 2013-03-04 2014-09-18 Nomura Micro Sci Co Ltd 純水製造方法
JP2014172795A (ja) * 2013-03-11 2014-09-22 Japan Organo Co Ltd 溶解塩類の回収方法、溶解塩類の回収装置及び塩化カルシウムの製造方法
JP2016076588A (ja) * 2014-10-06 2016-05-12 オルガノ株式会社 炭酸ガス溶解水供給システム、炭酸ガス溶解水供給方法、およびイオン交換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291959A (zh) * 2022-03-09 2022-04-08 中国电子工程设计院有限公司 一种有效去除总有机碳和弱离子化杂质的超纯水制备方法
CN114291959B (zh) * 2022-03-09 2022-07-01 中国电子工程设计院有限公司 一种有效去除总有机碳和弱离子化杂质的超纯水制备方法

Also Published As

Publication number Publication date
TW201806876A (zh) 2018-03-01
JP2018030079A (ja) 2018-03-01
JP6402754B2 (ja) 2018-10-10
KR20190039886A (ko) 2019-04-16
CN109641764A (zh) 2019-04-16
TWI756249B (zh) 2022-03-01
KR102440909B1 (ko) 2022-09-06

Similar Documents

Publication Publication Date Title
KR100784438B1 (ko) 연속 전기탈이온화 장치 및 방법
JP3200301B2 (ja) 純水又は超純水の製造方法及び製造装置
JP5081690B2 (ja) 超純水の製造方法
JP2011194402A (ja) 超純水製造装置
CN110451704B (zh) 一种含氟回用水的处理方法
WO2018037870A1 (ja) 再生式イオン交換装置及びその運転方法
KR20170002047A (ko) 음용수 및 초순수급 냉각수 제조시스템
TWI808053B (zh) 超純水製造系統及超純水製造方法
TWI391331B (zh) 純水製造裝置
JP6228471B2 (ja) 被処理水の処理装置、純水の製造装置および被処理水の処理方法
JPWO2018092395A1 (ja) 電気脱イオン装置及び脱イオン水の製造方法
JP2008068198A (ja) 電気脱イオン装置
JP5499433B2 (ja) 超純水製造方法及び装置並びに電子部品部材類の洗浄方法及び装置
JP5729062B2 (ja) 水処理方法及び水処理システム
JP5915295B2 (ja) 純水製造方法
TWI814710B (zh) 水質管理系統及水質管理系統的運轉方法
JP2018038943A (ja) 非再生型イオン交換樹脂の洗浄装置及び超純水製造システム
JP2019030839A (ja) 再生式イオン交換装置及びその運転方法
JP6924300B1 (ja) 排水処理方法、超純水製造方法及び排水処理装置
JP2019118891A (ja) 純水製造装置及び純水製造方法
JP3613376B2 (ja) 純水製造装置及び純水製造方法
CN112759031A (zh) 一种超纯水的处理工艺及系统
JP6883501B2 (ja) 被処理水の処理方法および陽イオン交換樹脂の逆洗方法
JP2742975B2 (ja) イオン交換装置の再生方法
US20070144974A1 (en) Method of reducing trace organic matter in ultrapure water and system therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036211

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843356

Country of ref document: EP

Kind code of ref document: A1