WO2018037755A1 - シリコン単結晶ウェーハの製造方法、シリコンエピタキシャルウェーハの製造方法、シリコン単結晶ウェーハ及びシリコンエピタキシャルウェーハ - Google Patents

シリコン単結晶ウェーハの製造方法、シリコンエピタキシャルウェーハの製造方法、シリコン単結晶ウェーハ及びシリコンエピタキシャルウェーハ Download PDF

Info

Publication number
WO2018037755A1
WO2018037755A1 PCT/JP2017/025625 JP2017025625W WO2018037755A1 WO 2018037755 A1 WO2018037755 A1 WO 2018037755A1 JP 2017025625 W JP2017025625 W JP 2017025625W WO 2018037755 A1 WO2018037755 A1 WO 2018037755A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon single
wafer
crystal wafer
silicon
Prior art date
Application number
PCT/JP2017/025625
Other languages
English (en)
French (fr)
Inventor
小林 武史
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2018037755A1 publication Critical patent/WO2018037755A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections

Definitions

  • the present invention relates to a method for manufacturing a silicon single crystal wafer, a method for manufacturing a silicon epitaxial wafer, a silicon single crystal wafer, and a silicon epitaxial wafer.
  • interstitial-silicon point defects In silicon single crystals, there are vacancy-type point defects called vacancy incorporated into the silicon single crystal during crystal growth and interstitial-silicon point defects called interstitial-silicon. Exists.
  • the V region is a region where many voids are generated due to a shortage of silicon atoms
  • the I region is an aggregate of silicon atoms or dislocation loop clusters generated due to the presence of extra silicon atoms. It is a lot of areas.
  • a neutral region hereinafter abbreviated as N region in which there is little excess or deficiency of atoms exists between the V region and the I region.
  • the N region is divided into an Nv region where vacancy is dominant and an Ni region where interstitial-silicon is dominant (see Patent Document 1), and high density BMD (Bulk Micro Defect) is formed in the Nv region. BMD is unlikely to occur in the area.
  • the epitaxial wafer using the V region crystal has a high density BMD uniformly formed in the surface and has a high oxide film breakdown voltage characteristic, but has a lower flatness than the polished wafer, particularly in the outer peripheral region. Because of the low, there is a possibility of causing photolithography failure in the latest device.
  • the flatness of the outer peripheral region can be improved.
  • the COP Crystal Originated Particle
  • the nitrogen-doped crystal does not generate OSF between the N region and the OSF (Oxidation Induced Stacking Fault) region, and has a small void defect of 100 nm or less, and in many cases, 50 nm or less.
  • OSF Oxidation Induced Stacking Fault
  • a high-density BMD can be uniformly formed in the wafer surface.
  • the crystal polished wafer in this region has a problem that the oxide film pressure resistance is remarkably worse than that in the N region.
  • the present invention has been made in view of the above-described problems, and can form a high-density BMD uniformly in the surface, has few void-like defects, does not generate PID, has a sufficient DZ width, and is oxidized.
  • An object of the present invention is to provide a method for producing a silicon single crystal wafer and a silicon epitaxial wafer having good film pressure resistance characteristics and good peripheral flatness of the wafer.
  • Another object of the present invention is to provide a silicon single crystal wafer and a silicon epitaxial wafer having the characteristics as described above.
  • the present invention provides a method for producing a silicon single crystal wafer,
  • the nitrogen concentration in the silicon single crystal is 5 ⁇ 10 11 atoms / cm 3 or more and 5 ⁇ 10 14 atoms / cm 3 or less
  • the silicon single crystal is oxidized in two steps of 1000 ° C., 180 minutes, 1150 ° C., 100 minutes.
  • heat treatment is performed in a neutral atmosphere, oxidation-induced stacking faults are not detected inside the silicon single crystal, and void defects having a size of 100 nm or more are not detected inside the silicon single crystal.
  • the heat treatment time at a temperature of 1050 ° C. or more and 1350 ° C. or less is 5 seconds or more and 600 seconds or less.
  • the rate of temperature rise to the heat treatment temperature of 1050 ° C. or more and 1350 ° C. or less is 1 ° C./second or more.
  • the present invention produces a silicon single crystal wafer using the above-described method for producing a silicon single crystal wafer, and has a thickness on the main surface of the produced silicon single crystal wafer.
  • a method for producing a silicon epitaxial wafer wherein a single crystal silicon film of 1.0 ⁇ m or less is epitaxially grown.
  • a silicon epitaxial wafer is manufactured by such a method, the flatness of the outer peripheral region of the wafer is not deteriorated even though it is an epitaxial wafer, so that high-density BMD is uniformly distributed in the surface, and there are few void defects, It is possible to manufacture a silicon epitaxial wafer in which no PID is generated, the DZ width is sufficiently wide, the oxide film withstand voltage characteristic is good, and the wafer outer peripheral flatness is good.
  • the present invention is a silicon single crystal wafer
  • the nitrogen concentration in the silicon single crystal wafer is 5 ⁇ 10 11 atoms / cm 3 or more and 5 ⁇ 10 14 atoms / cm 3 or less, and in a two-step oxidizing atmosphere of 1000 ° C. for 180 minutes and 1150 ° C. for 100 minutes. No oxidation-induced stacking faults were detected in the silicon single crystal wafer when the heat treatment was performed, the non-defective rate of ⁇ mode of TDDB characteristics was 90% or more, and the number of void defects of 10 nm or more on the surface of the silicon single crystal wafer.
  • a silicon single crystal wafer characterized by having 10 or less, 0 PID, average BMD density of bulk part of 1 ⁇ 10 9 pieces / cm 3 or more, and width of DZ layer of 1.0 ⁇ m or more To do.
  • Such a silicon single crystal wafer is extremely suitable as a silicon single crystal wafer for a state-of-the-art device.
  • the present invention is a silicon epitaxial wafer obtained by epitaxially growing a single crystal silicon film on a main surface of a silicon single crystal wafer,
  • the nitrogen concentration in the silicon single crystal wafer is 5 ⁇ 10 11 atoms / cm 3 or more and 5 ⁇ 10 14 atoms / cm 3 or less in a two-step oxidizing atmosphere of 1000 ° C. for 180 minutes and 1150 ° C. for 100 minutes.
  • No oxidation-induced stacking fault was detected in the silicon single crystal wafer when the heat treatment was performed, the non-defective rate of ⁇ mode of TDDB characteristics was 90% or more, and 10 or less epi defects on the surface of the silicon epitaxial wafer were 10 or less.
  • the silicon epitaxial wafer is characterized in that the average BMD density in the bulk portion is 1 ⁇ 10 9 pieces / cm 3 or more and the ESFQRmax (edge exclusion 2 mm) is 20 nm or less.
  • Such a silicon epitaxial wafer is extremely suitable as a silicon epitaxial wafer for cutting-edge devices.
  • high-density BMD by performing heat treatment in a reducing gas atmosphere on a wafer prepared from a silicon single crystal doped with nitrogen, high-density BMD can be uniformly formed in the surface, and void defects are reduced.
  • the DZ width is sufficient, the oxide film withstand voltage characteristics are good, and the wafer outer peripheral flatness is good.
  • FIG. 1 is a diagram showing a process flow of a method for producing a silicon single crystal wafer according to the present invention.
  • the nitrogen concentration in the silicon single crystal is 5 ⁇ 10 11 atoms / cm 3 or more and 5 ⁇ 10 14 atoms / cm 3 or less.
  • the heat treatment is performed in a two-step oxidizing atmosphere of 180 minutes and 1150 ° C. for 100 minutes, oxidation-induced stacking faults are not detected inside the silicon single crystal, and void defects having a size of 100 nm or more are observed.
  • nitrogen is doped to generate a minute void-like defect region between the Nv region and the OSF region, and only the minute void-like defect region or the minute void-like defect region and the Nv region including the Ni region are formed.
  • the crystal not containing is used as a silicon single crystal.
  • the nitrogen concentration is set to 5 ⁇ 10 11 atoms / cm 3 or more and 5 ⁇ 10 14 atoms / cm 3 or less.
  • the silicon single crystal used in the method for producing a silicon single crystal wafer of the present invention has oxidation-induced stacking faults when subjected to heat treatment in a two-step oxidizing atmosphere at 1000 ° C. for 180 minutes and 1150 ° C. for 100 minutes. It is not detected inside the silicon single crystal. Further, void defects having a size of 100 nm or more are not detected inside the silicon single crystal, and void defects having a size of 10 nm or more and less than 100 nm are contained in the silicon single crystal by 0.01 / cm 2 or more. .
  • the upper limit of the size of the void defect having a size of 100 nm or more is not particularly limited, and can be, for example, 300 nm or less. Further, the upper limit of the number of void defects having a size of 10 nm or more and less than 100 nm is not particularly limited, but can be, for example, 100 pieces / cm 2 or less.
  • the void defect of 100 nm or more is not detected in the micro void defect region between the Nv region and the OSF region, but is detected when the V region is entered, and cannot be completely eliminated by a short heat treatment. Since the silicon single crystal used in the method for producing a silicon single crystal wafer of the present invention does not include void defects having a size of 100 nm or more, the void defects can be eliminated by heat treatment in a reducing gas atmosphere. . On the other hand, microvoid defects of less than 10 nm hardly pose a problem.
  • the method for producing a silicon single crystal wafer according to the present invention includes a step of slicing the prepared silicon single crystal and then polishing and processing it into a silicon single crystal wafer (step B in FIG. 1).
  • the process of processing a silicon single crystal into a silicon single crystal wafer may generally include various steps such as lapping, etching, cleaning, and inspection in addition to slicing and polishing.
  • the method for producing a silicon single crystal wafer according to the present invention further includes a step of heat-treating the processed silicon single crystal wafer at a temperature of 1050 ° C. to 1350 ° C. in a gas atmosphere containing at least one of H 2 gas and Ar gas. (Step C in FIG. 1). At this time, if the temperature of the heat treatment is less than 1050 ° C., the effect of eliminating the microvoid defects is not sufficient, and if it exceeds 1350 ° C., slip is generated in the crystal, which is not preferable.
  • Gas used in the heat treatment atmosphere is, H 2 gas, a mixed gas containing H 2, Ar gas, a mixed gas containing Ar, a mixed gas of H 2 and Ar, a mixed gas containing H 2 and Ar preferably, these Other rare gases may be contained therein. Moreover, some silane gas and HCl gas may be contained. However, it is not preferable that a gas that reacts with Si and forms a thin film different from the silicon crystal, such as O 2 , N 2 , and NH 3 , is not preferable.
  • polishing is not performed after heat treatment at 1050 ° C. or higher and 1350 ° C. or lower (step C in FIG. 1). Since the polishing process is not performed after the heat treatment, the width of the DZ layer does not decrease and PID does not occur. Further, after the heat treatment, the silicon single crystal wafer may be cleaned.
  • high-density BMD can be uniformly formed in the surface. Further, since the fine void-like defects on the surface layer of the silicon single crystal wafer disappear by the heat treatment with the reducing gas atmosphere gas, the LLS quality is good. In addition, a sufficiently thick DZ layer is formed, and the oxide film breakdown voltage characteristic is good over the entire wafer surface. Further, the same flatness as that of the polished wafer is obtained, and the flatness of the outer peripheral region is particularly high as compared with a general epitaxial wafer. Further, PID disappears by heat treatment in a reducing gas atmosphere, and polishing is not performed after the heat treatment, so that the number of LLS is significantly smaller than that of a polished wafer using N-region crystals.
  • the silicon single crystal wafer can be produced in a simple heat treatment furnace by performing a short time heat treatment with an inexpensive gas once. Moreover, since the frequency of adjustment and maintenance of the heat treatment furnace is low, the production cost can be kept lower than that of the epitaxial wafer.
  • the heat treatment time at a temperature of 1050 ° C. or higher and 1350 ° C. or lower is preferably 5 seconds or longer and 600 seconds or shorter. With such a heat treatment time, microvoid defects can be almost completely eliminated, the width of the DZ layer can be increased, and productivity is not reduced.
  • the rate of temperature rise to a heat treatment temperature of 1050 ° C. or higher and 1350 ° C. or lower is 1 ° C./second or higher.
  • the upper limit of the temperature increase rate at this time can be set to 200 ° C./second, for example.
  • the high density BMD is uniformly distributed in the surface by using the above-described method for producing a silicon single crystal wafer, there are few void-like defects, no PID occurs, and the DZ width. Is manufactured, and a single crystal silicon film having a thickness of 1.0 ⁇ m or less is epitaxially grown on the main surface of the manufactured silicon single crystal wafer. If a silicon epitaxial wafer is manufactured by such a method, an epitaxial wafer having an extremely high surface quality can be manufactured.
  • the wafer is an epitaxial wafer
  • the flatness of the wafer outer peripheral region is not deteriorated, so that a silicon epitaxial wafer having good oxide film pressure resistance and good wafer outer flatness can be manufactured.
  • the lower limit of the thickness of the single crystal silicon film to be grown is not particularly limited, and can be larger than 0 ⁇ m.
  • the nitrogen concentration in the silicon single crystal wafer is 5 ⁇ 10 11 atoms / cm 3 or more and 5 ⁇ 10 14 atoms / cm 3 or less, 1000 ° C., 180 minutes and 1150 ° C.,
  • heat treatment in a two-step oxidizing atmosphere for 100 minutes is performed, oxidation-induced stacking faults are not detected in the silicon single crystal wafer, and the non-defective rate of ⁇ mode (intrinsic breakdown) of TDDB characteristics is 90% or more.
  • the number of void defects of 10 nm or more on the crystal wafer surface is 10 or less, the PID is 0, the average BMD density of the bulk part is 1 ⁇ 10 9 pieces / cm 3 or more, and the width of the DZ layer is 1.0 ⁇ m or more. is there.
  • Such a silicon single crystal wafer is extremely suitable as a silicon single crystal wafer for a state-of-the-art device.
  • the lower limit of the number of void defects of 10 nm or more on the surface of the silicon single crystal wafer is, for example, 0 or more
  • the upper limit of the average BMD density of the bulk portion is, for example, 1 ⁇ 10 11 pieces / cm 3 or less
  • the width of the DZ layer The upper limit of can be set to 150 ⁇ m or less, for example.
  • the nitrogen concentration in the silicon single crystal wafer is 5 ⁇ 10 11 atoms / cm 3 or more and 5 ⁇ 10 14 atoms / cm 3 or less, 1000 ° C., 180 minutes, 1150 ° C., 100
  • the non-defective ratio of ⁇ mode of TDDB characteristics is 90% or more
  • the surface of the silicon epitaxial wafer is 10 nm or more.
  • the number of epitaxial defects is 10 or less, the average BMD density in the bulk portion is 1 ⁇ 10 9 pieces / cm 3 or more, and the ESFQRmax (edge exclusion 2 mm) is 20 nm or less.
  • ESFQR Edge site front squares range
  • ESFQRmax is the maximum value among the plurality of ESFQRs at the wafer peripheral site.
  • the lower limit of the number of epitaxial defects of 10 nm or more on the surface of the silicon epitaxial wafer is, for example, 0 or more
  • the upper limit of the average BMD density of the bulk portion is, for example, 1 ⁇ 10 11 pieces / cm 3 or less
  • the lower limit of ESFQRmax is, for example It can be 3 nm or more.
  • Example 1 The nitrogen concentration in the silicon single crystal was set to 1 ⁇ 10 13 atoms / cm 3 , and the oxygen concentration was set to 1 ⁇ 10 18 atoms / cm 3 .
  • the crystal region of the silicon single crystal was confirmed as follows. After performing precipitation heat treatment at 800 ° C. for 4 hours and 1000 ° C. for 16 hours, BMD was measured by measuring the cleaved cross section with MO-441 manufactured by Raytex Co., and the BMD density was 1 ⁇ 10 7 pieces / cm 3. It was confirmed that the Ni region and the I region that were 3 or less were not included. Furthermore, it was confirmed that the V region having COP was not included by the FPD method.
  • the FPD (Flow Pattern Defect) method is a method in which a sample is selectively etched to reveal defects and be evaluated. Next, this silicon single crystal was subjected to two-step heat treatment at 1000 ° C. for 180 minutes and 1150 ° C. for 100 minutes in an oxidizing atmosphere, and then selective etching was performed to measure oxidation-induced stacking faults. It was confirmed that it was not included.
  • the silicon single crystal was processed to produce a polished wafer, and the LLS detected at a particle counter of 13 nm or more was observed by SEM (Scanning Electron Microscope) to count the number of microvoid defects.
  • a region where a microvoid defect having a size of 10 nm or more was not detected was determined as an Nv region, and a silicon single crystal wafer composed of a microvoid defect region and an Nv region was used.
  • the average number of microvoid defects on the 10 wafers was 178 (0.25 / cm 2 ). If the ratio of the Nv region is increased, the number of microvoid defects can be reduced, but if it is less than 0.01 / cm 2 , the Ni region is included, and the BMD cannot be formed uniformly in the plane.
  • a wafer having a diameter of 300 mm made from this silicon single crystal is put into a 600 ° C. chamber (heat treatment furnace) in an H 2 atmosphere, heated at 5 ° C./sec, and each of 1050, 1100, 1200, 1300, 1350 ° C. Heat treatment was performed at a temperature of 180 seconds, and then RCA cleaning was performed.
  • a 600 ° C. chamber heat treatment furnace
  • H 2 atmosphere heated at 5 ° C./sec
  • the yield rate of ⁇ mode was 91 for each heat treatment temperature of 1050, 1100, 1200, 1300, and 1350 ° C. 95, 98, 98, and 98%, and the heat treatment at 1050 to 1350 ° C. all increased to 90% or more.
  • the number of void defects detected as 10 nm or more on the wafer surface was 10 or less, and no PID was detected.
  • the average density of BMD measured by MO-441 after performing the precipitation heat treatment at 800 ° C. for 4 hours and 1000 ° C. for 16 hours on the wafer heat treated with H 2 is 1.0 to 1.3 ⁇ 10 6.
  • the in- plane uniformity of the NMD / cm 3 BMD density was in the in-plane variation of 11 to 16%, which is 20% or less, and a high-density and highly uniform BMD quality was obtained.
  • the BMD density distribution in the radial direction of a wafer heat-treated at 1200 ° C. is shown in FIG. ESFQRmax (edge exclusion 2 mm) was 12 to 16 nm and 20 nm or less.
  • the DZ width is 1.5, 2.3, 3.7, 5.3, and 8.1 ⁇ m for each heat treatment temperature of 1050, 1100, 1200, 1300, and 1350 ° C., and increases as the heat treatment temperature increases. did.
  • the above results are summarized in Table 1.
  • Example 2 An epitaxial layer having a thickness of 1 ⁇ m was formed on a silicon single crystal wafer having a diameter of 300 mm manufactured under the same conditions as those of the wafer manufactured in Example 1 and subjected to heat treatment at 1100 ° C. for 180 seconds in an H 2 atmosphere.
  • the non-defective product rate in the ⁇ mode of the TDDB method was 98%, and the number of void defects (epi defects) on the epitaxial wafer surface was zero.
  • the average density and in-plane uniformity of BMD in the bulk part were almost the same as those of the wafer in which the epitaxial layer was not formed as shown in Example 1.
  • the DZ width was 3.4 ⁇ m and was sufficiently wide, and ESFQRmax was 17 nm and 20 nm or less.
  • the results obtained in Example 2 are shown in Table 1.
  • Example 1 A wafer having a diameter of 300 mm polished from the same silicon single crystal as in Example 1 was put into a chamber at 600 ° C. in an H 2 atmosphere, heated at 5 ° C./sec, and subjected to heat treatment at 1000 ° C. for 180 sec. RCA cleaning was performed.
  • the non-defective product rate in the ⁇ mode of the TDDB method was 88% and 90% or less, 31 void defects detected as 10 nm or more on the wafer surface, and 16 PIDs.
  • Comparative Example 2 A wafer having a diameter of 300 mm polished from the same silicon single crystal as in Example 1 was evaluated without heat treatment.
  • the non-defective product rate in the ⁇ mode of the TDDB method was 57%, which was significantly worse than that in the case of heat treatment in an H 2 atmosphere, and 182 void defects and 92 PIDs were detected on the wafer surface.
  • the average density and in-plane uniformity of BMD (see FIG. 2) and ESFQRmax were almost the same as those heat-treated at 1050 to 1350 ° C., but the DZ width was 0 ⁇ m.
  • the results obtained in Comparative Example 2 are shown in Table 1.
  • Comparative Example 3 An epitaxial layer having a thickness of 3 ⁇ m was formed on a 300 mm diameter wafer polished from the same silicon single crystal as in Example 1, and evaluated.
  • the non-defective product rate in the ⁇ mode of the TDDB method was 98%, and the number of void defects (epi defects) on the epitaxial wafer surface was zero.
  • the average density and in-plane uniformity of BMD in the bulk part are almost the same as those heat-treated at 1050 to 1350 ° C. (see FIG. 2), and the DZ width was 5.2 ⁇ m, but the ESFQRmax was 21 nm, 20 nm or more. Became.
  • the results obtained in Comparative Example 3 are shown in Table 1.
  • Comparative Example 4 A polished wafer having a diameter of 300 mm was prepared using a silicon single crystal not doped with nitrogen, having an oxygen concentration of 0.9 ⁇ 10 18 atoms / cm 3 and mixed with an Nv region and an Ni region, and was evaluated without heat treatment.
  • the non-defective product rate in the ⁇ mode of the TDDB method was 87% and 90% or less. No void defects on the wafer surface were detected, but 104 PIDs were detected.
  • the average density of BMD was 2.8 ⁇ 10 8 pieces / cm 3 and 1 ⁇ 10 9 pieces / cm 3 or less, and the in-plane uniformity of the BMD density was extremely poor with in-plane variation of 100% (see FIG. 2). ).
  • the results obtained in Comparative Example 4 are shown in Table 1.
  • the DZ width was 1.8 ⁇ m, and ESFQRmax was 18 nm and 20 nm or less. However, the number of void defects (epi defects) on the surface of the epitaxial wafer was very high at 247.
  • the results obtained in Comparative Example 5 are shown in Table 1.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本発明は、シリコン単結晶ウェーハの製造方法であって、窒素濃度が5×1011~5×1014atoms/cmであり、1000℃と1150℃の2段階の酸化性雰囲気の熱処理を行ったときに酸化誘起積層欠陥が検出されず、100nm以上のボイド状欠陥が検出されず、10nm以上100nm未満のボイド状欠陥を0.01個/cm以上有するシリコン単結晶を準備する工程と、該シリコン単結晶をスライス後に研磨加工してシリコン単結晶ウェーハに加工する工程と、該シリコン単結晶ウェーハをH及びArの少なくともいずれかを含むガス雰囲気で、1050℃以上1350℃以下の温度で熱処理する工程を有し、熱処理後に、研磨加工を実施しないシリコン単結晶ウェーハの製造方法である。これにより、高密度BMDを面内均一に形成することができ、ボイド状欠陥が少なく、PIDが発生せず、DZ幅が広く、酸化膜耐圧特性が良好で、ウェーハの外周平坦度の良いシリコン単結晶ウェーハが提供される。

Description

シリコン単結晶ウェーハの製造方法、シリコンエピタキシャルウェーハの製造方法、シリコン単結晶ウェーハ及びシリコンエピタキシャルウェーハ
 本発明は、シリコン単結晶ウェーハの製造方法、シリコンエピタキシャルウェーハの製造方法、シリコン単結晶ウェーハ及びシリコンエピタキシャルウェーハに関する。
 シリコン単結晶中には、結晶成長中にシリコン単結晶に取り込まれるベイカンシイ(Vacancy)と呼ばれる空孔型の点欠陥と、インタースティシアル-シリコン(Interstitial-Si)と呼ばれる格子間シリコン型の点欠陥が存在する。
 シリコン単結晶において、V領域とは、シリコン原子の不足から発生するボイドが多い領域であり、I領域とは、シリコン原子が余分に存在することにより発生するシリコン原子の凝集体や転位ループクラスタが多い領域のことである。また、V領域とI領域の間には、原子の過不足が少ないニュートラル(Neutral)領域(以下、N領域と略記する)が存在している。
 N領域はベイカンシイが優勢なNv領域とインタースティシアル-シリコンが優勢なNi領域に区分され(特許文献1参照)、Nv領域には高密度のBMD(Bulk Micro Defect)が形成されるが、Ni領域にはBMDが発生しにくい。
 ウェーハ全面で酸化膜耐圧特性が高く、かつ、高密度のBMDを面内均一に形成するためには、ウェーハ全面をNv領域にすることが望ましいが、これは技術的に非常に難しい。
 また、Nv領域とNi領域が混在しても、NHガスでRTP処理をしてBMD面内分布を均一にする技術があるが、DZ(Denuded Zone)幅が不十分なため、酸化膜耐圧が悪化する問題があった。さらに、NHガスでRTP処理をした後に研磨加工を行うと、PID(Polishing Induced Defect)が発生し(特許文献2参照)、最先端デバイスへの悪影響が懸念される。
 また、V領域の結晶を用いたエピタキシャルウェーハは、高密度のBMDが面内均一に形成されており、酸化膜耐圧特性も高いが、研磨ウェーハよりも平坦性が低く、特に外周領域で平坦性が低いために、最先端デバイスではフォトリソグラフィー不良を起こす可能性がある。エピタキシャルウェーハのエピタキシャル膜を薄膜化すると、外周領域の平坦性を改善できる。しかしながら、高密度のBMDが面内均一に形成できるV領域の結晶をエピタキシャル膜成長用ウェーハとして用いた場合、エピタキシャル膜の膜厚を1μm以下にすると、COP(Crystal Originated Particle)の形状を完全に消去できず、LLS(Localized Light Scatters)が多発する問題がある。
 一方、窒素ドープ結晶では、N領域とOSF(Oxidation Induced Stacking Fault:酸化誘起積層欠陥)領域の間に、OSFが発生せず、100nm以下、多くの場合は50nm以下の微小なボイド状欠陥を有する結晶領域(以下、微小ボイド状欠陥領域と略記)が存在する(特許文献3の[0012]段落参照)。この領域の結晶を用いると、高密度のBMDをウェーハ面内に均一に形成できる。しかし、この領域の結晶の研磨ウェーハは、N領域の研磨ウェーハと比べて酸化膜耐圧特性が著しく悪いという問題がある。
特開2008-207991号公報 国際公開第2010/150547号パンフレット 特開2000-053497号公報
 本発明は、上記問題点に鑑みてなされたものであって、高密度BMDを面内均一に形成することができ、ボイド状欠陥が少なく、PIDが発生せず、DZ幅が十分あり、酸化膜耐圧特性が良好で、かつ、ウェーハの外周平坦度の良いシリコン単結晶ウェーハ及びシリコンエピタキシャルウェーハの製造方法を提供することを目的とする。また、本発明は前述したような特性を有するシリコン単結晶ウェーハ及びシリコンエピタキシャルウェーハを提供することを目的とする。
 上記目的を達成するために、本発明は、シリコン単結晶ウェーハの製造方法であって、
 シリコン単結晶中の窒素濃度が5×1011atoms/cm以上5×1014atoms/cm以下であり、該シリコン単結晶に1000℃、180分間と1150℃、100分間の2段階の酸化性雰囲気での熱処理を行ったときに酸化誘起積層欠陥が該シリコン単結晶内部に検出されず、さらに、100nm以上の大きさのボイド状欠陥が該シリコン単結晶内部に検出されず、10nm以上100nm未満の大きさのボイド状欠陥を0.01個/cm以上該シリコン単結晶内部に有するシリコン単結晶を準備する工程と、
 前記準備したシリコン単結晶をスライスした後に研磨加工してシリコン単結晶ウェーハに加工する工程と、
 該加工したシリコン単結晶ウェーハをHガス及びArガスの少なくともいずれかを含むガス雰囲気で、1050℃以上1350℃以下の温度で熱処理を行う工程とを有し、
 該1050℃以上1350℃以下の温度での熱処理後に、前記加工したシリコン単結晶ウェーハに研磨加工を実施しないことを特徴とするシリコン単結晶ウェーハの製造方法を提供する。
 このように、窒素をドープしてNv領域とOSF領域の間に微小ボイド状欠陥領域を発生させ、微小ボイド状欠陥領域のみ、又は、微小ボイド状欠陥領域とNv領域を含みNi領域を含まないシリコン単結晶を準備し、該シリコン単結晶から作製したシリコン単結晶ウェーハをHガス及びArガスの少なくともいずれかを含むガス雰囲気で、1050℃以上1350℃以下の温度で熱処理を行うことにより、高密度BMDを面内均一に形成でき、ボイド状欠陥が少なく、PIDが発生せず、DZ幅が十分に広く、酸化膜耐圧特性が良好で、かつ、ウェーハの外周平坦度の良いシリコン単結晶ウェーハを製造することができる。
 このとき、前記1050℃以上1350℃以下の温度の熱処理の時間が、5秒以上600秒以下であることが好ましい。
 このような熱処理の時間であれば、微小ボイド状欠陥をほぼ完全に消滅させることができ、DZ層の幅を広くすることができ、また、生産性を低下させることがない。
 このとき、前記1050℃以上1350℃以下の熱処理温度までの昇温速度が、1℃/秒以上であることが好ましい。
 このような昇温速度であれば、生産性を低下させることがなく、安価にシリコン単結晶ウェーハを製造することができる。
 また、上記目的を達成するために、本発明は、上述したシリコン単結晶ウェーハの製造方法を用いてシリコン単結晶ウェーハを製造し、該製造されたシリコン単結晶ウェーハの主面上に、厚さ1.0μm以下の単結晶シリコン膜をエピタキシャル成長させることを特徴とするシリコンエピタキシャルウェーハの製造方法を提供する。
 このような方法でシリコンエピタキシャルウェーハを製造すれば、エピタキシャルウェーハでありながら、ウェーハ外周領域の平坦性が悪化することがないため、高密度BMDが面内均一に分布し、ボイド状欠陥が少なく、PIDが発生せず、DZ幅が十分広く、酸化膜耐圧特性が良好で、かつ、ウェーハの外周平坦度の良いシリコンエピタキシャルウェーハを製造することができる。
 また、上記目的を達成するために、本発明は、シリコン単結晶ウェーハであって、
 該シリコン単結晶ウェーハ中の窒素濃度が5×1011atoms/cm以上5×1014atoms/cm以下であり、1000℃、180分間と1150℃、100分間の2段階の酸化性雰囲気での熱処理を行ったときに前記シリコン単結晶ウェーハに酸化誘起積層欠陥が検出されず、TDDB特性のγモードの良品率が90%以上、前記シリコン単結晶ウェーハ表面の10nm以上のボイド状欠陥個数が10個以下、PIDが0個、バルク部の平均BMD密度が1×10個/cm以上、DZ層の幅が1.0μm以上のものであることを特徴とするシリコン単結晶ウェーハを提供する。
 このようなシリコン単結晶ウェーハであれば、最先端デバイス用のシリコン単結晶ウェーハとして極めて好適である。
 また、上記目的を達成するために、本発明は、シリコン単結晶ウェーハの主面上に単結晶シリコン膜をエピタキシャル成長させたシリコンエピタキシャルウェーハであって、
 前記シリコン単結晶ウェーハ中の窒素濃度が5×1011atoms/cm以上5×1014atoms/cm以下であり、1000℃、180分間と1150℃、100分間の2段階の酸化性雰囲気での熱処理を行ったときに前記シリコン単結晶ウェーハに酸化誘起積層欠陥が検出されず、TDDB特性のγモードの良品率が90%以上、前記シリコンエピタキシャルウェーハ表面の10nm以上のエピ欠陥が10個以下、バルク部の平均BMD密度が1×10個/cm以上、ESFQRmax(エッジエクスクルージョン2mm)が20nm以下のものであることを特徴とするシリコンエピタキシャルウェーハを提供する。
 このようなシリコンエピタキシャルウェーハであれば、最先端デバイス用のシリコンエピタキシャルウェーハとして極めて好適である。
 本発明によれば、窒素をドープしたシリコン単結晶から作製したウェーハに、還元性ガス雰囲気での熱処理を行うことにより、高密度BMDを面内均一に形成することができ、ボイド状欠陥が少なく、PIDが発生せず、DZ幅が十分あり、酸化膜耐圧特性が良好で、かつ、ウェーハの外周平坦度の良いシリコン単結晶ウェーハ及びシリコンエピタキシャルウェーハを提供することができる。
本発明のシリコン単結晶ウェーハの製造方法の工程フローを示す図である。 実施例及び比較例2-4のシリコン単結晶ウェーハの半径方向のBMD密度分布(析出熱処理後)を示す図である。
 以下、本発明について、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 まず、本発明のシリコン単結晶ウェーハの製造方法について、図1を参照して説明する。図1は本発明のシリコン単結晶ウェーハの製造方法の工程フローを示す図である。本発明のシリコン単結晶ウェーハの製造方法は、最初に、シリコン単結晶中の窒素濃度が5×1011atoms/cm以上5×1014atoms/cm以下であり、シリコン単結晶に1000℃、180分間と1150℃、100分間の2段階の酸化性雰囲気での熱処理を行ったときに酸化誘起積層欠陥がシリコン単結晶内部に検出されず、さらに、100nm以上の大きさのボイド状欠陥がシリコン単結晶内部に検出されず、10nm以上100nm未満の大きさのボイド状欠陥を0.01個/cm以上シリコン単結晶内部に有するシリコン単結晶を準備する工程を有している(図1のA工程)。
 一般的に、ウェーハ全面がNv領域のみの結晶の作製は非常に難しい。そこで、本発明では、窒素をドープしてNv領域とOSF領域の間に微小ボイド状欠陥領域を発生させ、微小ボイド状欠陥領域のみ、又は、微小ボイド状欠陥領域とNv領域を含みNi領域を含まない結晶をシリコン単結晶として用いる。
 ここで、窒素濃度が5×1011atoms/cm未満の場合は、微小ボイド状欠陥領域が発生する引き上げ速度の範囲が非常に狭く、微小ボイド状欠陥領域のみ、又は、微小ボイド状欠陥領域とNv領域を含みNi領域を含まないシリコン単結晶を作製するのが非常に難しい。また、窒素濃度が5×1014atoms/cmを超える場合は、ウェーハに熱処理を施した時に異常酸素析出のような窒素の弊害が発生する場合がある。従って、窒素濃度は5×1011atoms/cm以上5×1014atoms/cm以下とする。
 また、本発明のシリコン単結晶ウェーハの製造方法で用いるシリコン単結晶は、1000℃、180分間と1150℃、100分間の2段階の酸化性雰囲気での熱処理を行ったときに酸化誘起積層欠陥がシリコン単結晶内部に検出されない。さらに、100nm以上の大きさのボイド状欠陥がシリコン単結晶内部に検出されず、10nm以上100nm未満の大きさのボイド状欠陥を0.01個/cm以上シリコン単結晶内部に有している。100nm以上の大きさのボイド状欠陥の大きさの上限は特に限定されず、例えば、300nm以下とすることができる。また、10nm以上100nm未満の大きさのボイド状欠陥数の上限は特に限定されないが、例えば、100個/cm以下とすることができる。
 100nm以上のボイド状欠陥は、Nv領域とOSF領域の間の微小ボイド状欠陥領域には検出されず、V領域が入ったときに検出され、短時間の熱処理では完全に消失させることができない。本発明のシリコン単結晶ウェーハの製造方法で用いるシリコン単結晶は、100nm以上の大きさのボイド状欠陥を含まないので、還元性のガス雰囲気での熱処理により、ボイド状欠陥を消滅させることができる。一方、10nm未満の微小ボイド状欠陥はほとんど問題となることがない。
 本発明のシリコン単結晶ウェーハの製造方法は、次に、準備したシリコン単結晶をスライスした後に研磨加工してシリコン単結晶ウェーハに加工する工程を有する(図1のB工程)。尚、シリコン単結晶をシリコン単結晶ウェーハに加工する工程には、一般的に、スライスや研磨に加えて種々のラッピング、エッチング、洗浄、検査等のステップが含まれてよい。
 本発明のシリコン単結晶ウェーハの製造方法は、さらに、加工したシリコン単結晶ウェーハをHガス及びArガスの少なくともいずれかを含むガス雰囲気で、1050℃以上1350℃以下の温度で熱処理を行う工程を有する(図1のC工程)。このとき、熱処理の温度が1050℃未満では、微小ボイド状欠陥の消滅効果が十分ではなく、1350℃を超えると、結晶内にスリップが発生するので好ましくない。熱処理雰囲気に使用されるガスは、Hガス、Hを含む混合ガス、Arガス、Arを含む混合ガス、HとArの混合ガス、HとArを含む混合ガスが好ましく、これらの中に他の希ガスが含まれていてもよい。また、多少のシランガスやHClガスが含まれていてもよい。ただし、O、N、NHなど、Siと反応してシリコン結晶とは別の薄膜を形成するガスが含まれることは好ましくない。
 また、本発明のシリコン単結晶ウェーハの製造方法では、1050℃以上1350℃以下の熱処理の後に、研磨加工を実施しない(図1のC工程)。熱処理後に研磨加工を行わないため、DZ層の幅が減少することがなく、PIDが発生することもない。また、熱処理後に、シリコン単結晶ウェーハの洗浄を行ってもよい。
 以上で説明した本発明のシリコン単結晶ウェーハの製造方法によれば、高密度BMDを面内均一に形成できる。また、シリコン単結晶ウェーハの表層の微小ボイド状欠陥は還元性ガス雰囲気ガスでの熱処理で消失するため、LLS品質は良好である。また、十分な厚さのDZ層が形成され、酸化膜耐圧特性がウェーハ全面で良好である。また、研磨ウェーハと同じ平坦性が得られ、一般的なエピタキシャルウェーハと比べ、特に外周領域の平坦性が高い。さらに、還元性ガス雰囲気での熱処理によりPIDが消失し、熱処理後に研磨加工を行わないので、N領域結晶を用いた研磨ウェーハよりLLS数が大幅に少ない。
 このように、本発明のシリコン単結晶ウェーハの製造方法では、シリコン単結晶ウェーハに対して、安価なガスで短時間の熱処理を1回行うだけであり、簡単な熱処理炉で製造することができ、また、熱処理炉の調整やメンテナンスの頻度も少ないため、エピタキシャルウェーハよりも生産コストを低く抑えることができる。
 また、1050℃以上1350℃以下の温度の熱処理の時間は、5秒以上600秒以下であることが好ましい。このような熱処理時間であれば、微小ボイド状欠陥をほぼ完全に消滅させることができ、DZ層の幅を広くすることができ、また、生産性を低下させることがない。
 また、1050℃以上1350℃以下の熱処理温度までの昇温速度が、1℃/秒以上であることが好ましい。このような昇温速度であれば、生産性を低下させることがなく、安価にシリコン単結晶ウェーハを製造することができる。このときの昇温速度の上限は、例えば200℃/秒とすることができる。
 また、本発明のシリコンエピタキシャルウェーハの製造方法では、上述したシリコン単結晶ウェーハの製造方法を用いて高密度BMDが面内均一に分布し、ボイド状欠陥が少なく、PIDが発生せず、DZ幅が十分広いシリコン単結晶ウェーハを製造し、製造されたシリコン単結晶ウェーハの主面上に、厚さ1.0μm以下の単結晶シリコン膜をエピタキシャル成長させる。このような方法でシリコンエピタキシャルウェーハを製造すれば、極めて高品質な表層品質を有するエピタキシャルウェーハを製造することができる。また、エピタキシャルウェーハでありながら、ウェーハ外周領域の平坦性が悪化することがないため、酸化膜耐圧特性が良好で、かつ、ウェーハの外周平坦度の良いシリコンエピタキシャルウェーハを製造することができる。成長させる単結晶シリコン膜の厚さの下限は特に限定されず、0μmより大きいものとすることができる。
 また、本発明のシリコン単結晶ウェーハは、シリコン単結晶ウェーハ中の窒素濃度が5×1011atoms/cm以上5×1014atoms/cm以下であり、1000℃、180分間と1150℃、100分間の2段階の酸化性雰囲気での熱処理を行ったときにシリコン単結晶ウェーハに酸化誘起積層欠陥が検出されず、TDDB特性のγモード(真性破壊)の良品率が90%以上、シリコン単結晶ウェーハ表面の10nm以上のボイド状欠陥個数が10個以下、PIDが0個、バルク部の平均BMD密度が1×10個/cm以上、DZ層の幅が1.0μm以上のものである。このようなシリコン単結晶ウェーハであれば、最先端デバイス用のシリコン単結晶ウェーハとして極めて好適である。この場合のシリコン単結晶ウェーハ表面の10nm以上のボイド状欠陥個数の下限は、例えば0個以上、バルク部の平均BMD密度の上限は、例えば1×1011個/cm以下、DZ層の幅の上限は、例えば150μm以下とすることができる。
 また、本発明のシリコンエピタキシャルウェーハは、シリコン単結晶ウェーハ中の窒素濃度が5×1011atoms/cm以上5×1014atoms/cm以下であり、1000℃、180分間と1150℃、100分間の2段階の酸化性雰囲気での熱処理を行ったときにシリコン単結晶ウェーハに酸化誘起積層欠陥が検出されず、TDDB特性のγモードの良品率が90%以上、シリコンエピタキシャルウェーハ表面の10nm以上のエピ欠陥が10個以下、バルク部の平均BMD密度が1×10個/cm以上、ESFQRmax(エッジエクスクルージョン2mm)が20nm以下のものである。ここで、ESFQR(Edge site front least squares range)は、サイトフラットネスのうち、平坦度の悪化しやすいエッジに注目した指標であり、厚さの分布から最小2乗法により求められた基準面からの偏差の最大、最小の幅で定義される。ESFQRmaxは、ウェーハ周辺部のサイトの複数のESFQRのうちの最大値である。そして、このようなシリコンエピタキシャルウェーハであれば、最先端デバイス用のシリコンエピタキシャルウェーハとして極めて好適である。この場合のシリコンエピタキシャルウェーハ表面の10nm以上のエピ欠陥個数の下限は、例えば0個以上、バルク部の平均BMD密度の上限は、例えば1×1011個/cm以下、ESFQRmaxの下限は、例えば3nm以上とすることができる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 シリコン単結晶中の窒素濃度を1×1013atoms/cmとし、酸素濃度を1×1018atoms/cmとした。このシリコン単結晶の結晶領域の確認は以下のようにして行った。800℃、4時間と1000℃、16時間の析出熱処理を行ってから、劈開した断面をレイテックス社製MO-441で測定することによりBMDを計測し、BMD密度が1×10個/cm以下となるNi領域及びI領域が含まれないことを確認した。さらに、FPD法によりCOPを有するV領域が含まれないことを確認した。FPD(Flow Pattern Defect)法は、サンプルに選択エッチを施して欠陥を顕在化させ、評価する方法である。次に、このシリコン単結晶に、酸化性雰囲気で1000℃、180分間と1150℃、100分間の2段階熱処理を行ってから、選択エッチングを行うことにより酸化誘起積層欠陥を計測し、OSF領域が含まれないことを確認した。
 このシリコン単結晶を加工して研磨ウェーハを作製し、パーティクルカウンターで13nm以上として検出されたLLSをSEM(Scanning Electron Microscope)観察して、微小ボイド状欠陥数をカウントした。ここで、10nm以上の大きさの微小ボイド状欠陥が検出されない領域をNv領域と判定し、微小ボイド状欠陥領域とNv領域からなるシリコン単結晶ウェーハを用いた。このウェーハ10枚の微小ボイド状欠陥数は、平均178個(0.25個/cm)であった。Nv領域の割合を増やせば微小ボイド状欠陥数を低減できるが、0.01個/cm未満の場合はNi領域が含まれてしまい、BMDを面内均一に形成できなくなる。
 このシリコン単結晶から作製した直径300mmのウェーハをH雰囲気で600℃のチャンバ(熱処理炉)に投入し、5℃/secで昇温して、1050、1100、1200、1300、1350℃の各温度で180secの熱処理を行い、その後、RCA洗浄を行った。
 これらのウェーハについて、TDDB(Time Dependent Dielectric Breakdown)法で酸化膜耐圧評価を行ったところ、γモードの良品率は、1050、1100、1200、1300、1350℃の各熱処理温度に対して、それぞれ91、95、98、98、98%となり、1050~1350℃の熱処理で全て90%以上となった。また、いずれのウェーハも、ウェーハ表面に10nm以上として検出されたボイド状欠陥は10個以下であり、PIDはひとつも検出されなかった。
 また、Hで熱処理したウェーハに対して、800℃、4時間と1000℃、16時間の析出熱処理を行ってからMO-441で測定したBMDの平均密度は1.0~1.3×10個/cm、BMD密度の面内均一性は面内バラツキが11~16%と20%以下となり、高密度で均一性の高いBMD品質が得られた。一例として、1200℃で熱処理したウェーハの半径方向のBMD密度分布を図2に示した。また、ESFQRmax(エッジエクスクルージョン2mm)は12~16nmと20nm以下となった。DZ幅は1050、1100、1200、1300、1350℃の各熱処理温度に対して、それぞれ1.5、2.3、3.7、5.3、8.1μmと、熱処理温度が上昇するとともに拡大した。以上の結果をまとめて表1に示した。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 実施例1で作製した、H雰囲気で1100℃、180secの熱処理を行ったウェーハと同条件で作製した直径300mmのシリコン単結晶ウェーハに、厚さ1μmのエピタキシャル層を形成して評価した。TDDB法のγモードの良品率は98%、エピタキシャルウェーハ表面のボイド状欠陥(エピ欠陥)は0個であった。バルク部のBMDの平均密度と面内均一性は実施例1に示したエピタキシャル層を形成していないウェーハとほぼ同じであった。DZ幅は3.4μmであり十分広く、ESFQRmaxは17nmと20nm以下であった。実施例2において得られた結果を表1に示した。
(比較例1)
 実施例1と同じシリコン単結晶から研磨加工した直径300mmのウェーハをH雰囲気で600℃のチャンバに投入し、5℃/secで昇温して、1000℃で180secの熱処理を行い、その後、RCA洗浄を行った。そのウェーハを評価したところ、TDDB法のγモードの良品率は88%と90%以下となり、ウェーハ表面で10nm以上として検出されたボイド状欠陥は31個、PIDは16個であった。BMDの平均密度と面内均一性、及び、ESFQRmaxは、1050~1350℃で熱処理をしたものとほぼ同じであったが、DZ幅は0.5μmと、1μm以下であった。比較例1において得られた結果を表1に示した。
(比較例2)
 実施例1と同じシリコン単結晶から研磨加工した直径300mmのウェーハに熱処理を行わずに評価した。TDDB法のγモードの良品率は57%とH雰囲気で熱処理をした場合より著しく悪化し、ウェーハ表面にはボイド状欠陥が182個、PIDが92個検出された。BMDの平均密度と面内均一性(図2参照)、及び、ESFQRmaxは、1050~1350℃で熱処理をしたものとほぼ同じであったが、DZ幅は0μmであった。比較例2において得られた結果を表1に示した。
(比較例3)
 実施例1と同じシリコン単結晶から研磨加工した直径300mmのウェーハに厚さ3μmのエピタキシャル層を形成して評価した。TDDB法のγモードの良品率は98%、エピタキシャルウェーハ表面のボイド状欠陥(エピ欠陥)は0個であった。バルク部のBMDの平均密度と面内均一性は1050~1350℃で熱処理をしたものとほぼ同じであり(図2参照)、DZ幅は5.2μmであったが、ESFQRmaxが21nmと20nm以上になった。比較例3において得られた結果を表1に示した。
(比較例4)
 窒素をドープせず、酸素濃度が0.9×1018atoms/cmで、Nv領域とNi領域が混合したシリコン単結晶を用いて直径300mmの研磨ウェーハを作製し、熱処理なしで評価した。TDDB法のγモードの良品率は87%と90%以下であった。ウェーハ表面のボイド状欠陥は検出されなかったが、PIDが104個検出された。BMDの平均密度は2.8×10個/cmと1×10個/cm以下であり、BMD密度の面内均一性は面内バラツキが100%と著しく悪かった(図2参照)。比較例4において得られた結果を表1に示した。
(比較例5)
 シリコン単結晶中の窒素濃度を1×1013atoms/cm、酸素濃度を1×1018atoms/cmとし、全面V領域のシリコン単結晶を作製した。このシリコン単結晶から研磨加工した直径300mmのウェーハにH雰囲気で1100℃の熱処理を行った後、厚さ1μmのエピタキシャル層を形成して評価した。TDDB法のγモードの良品率は98%であった。バルク部のBMDの平均密度と面内均一性は実施例とほぼ同じであった。DZ幅は1.8μmであり、ESFQRmaxが18nmと20nm以下であった。しかしながら、エピタキシャルウェーハ表面のボイド状欠陥(エピ欠陥)は247個と極めて多かった。比較例5において得られた結果を表1に示した。
 以上で説明したように、実施例1及び2では、1)TDDB法のγモードの良品率:90%以上、2)ウェーハ面内のボイド状欠陥数:10個以下、3)PID数:0個、4)BMDの平均密度:1.0~1.3×10個/cmの範囲内、5)BMD密度の面内均一性:20%以下、6)DZ幅:1.5μm以上、7)ESFQRmax:20nm以下の全基準を満足した。これに対し、比較例1~5では、全基準を満足したものはなかった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 

Claims (6)

  1.  シリコン単結晶ウェーハの製造方法であって、
     シリコン単結晶中の窒素濃度が5×1011atoms/cm以上5×1014atoms/cm以下であり、該シリコン単結晶に1000℃、180分間と1150℃、100分間の2段階の酸化性雰囲気での熱処理を行ったときに酸化誘起積層欠陥が該シリコン単結晶内部に検出されず、さらに、100nm以上の大きさのボイド状欠陥が該シリコン単結晶内部に検出されず、10nm以上100nm未満の大きさのボイド状欠陥を0.01個/cm以上該シリコン単結晶内部に有するシリコン単結晶を準備する工程と、
     前記準備したシリコン単結晶をスライスした後に研磨加工してシリコン単結晶ウェーハに加工する工程と、
     該加工したシリコン単結晶ウェーハをHガス及びArガスの少なくともいずれかを含むガス雰囲気で、1050℃以上1350℃以下の温度で熱処理を行う工程とを有し、
     該1050℃以上1350℃以下の温度での熱処理後に、前記加工したシリコン単結晶ウェーハに研磨加工を実施しないことを特徴とするシリコン単結晶ウェーハの製造方法。
  2.  前記1050℃以上1350℃以下の温度の熱処理の時間が、5秒以上600秒以下であることを特徴とする請求項1に記載のシリコン単結晶ウェーハの製造方法。
  3.  前記1050℃以上1350℃以下の熱処理温度までの昇温速度が、1℃/秒以上であることを特徴とする請求項1又は請求項2に記載のシリコン単結晶ウェーハの製造方法。
  4.  請求項1から請求項3のいずれか一項に記載のシリコン単結晶ウェーハの製造方法を用いてシリコン単結晶ウェーハを製造し、該製造されたシリコン単結晶ウェーハの主面上に、厚さ1.0μm以下の単結晶シリコン膜をエピタキシャル成長させることを特徴とするシリコンエピタキシャルウェーハの製造方法。
  5.  シリコン単結晶ウェーハであって、
     該シリコン単結晶ウェーハ中の窒素濃度が5×1011atoms/cm以上5×1014atoms/cm以下であり、1000℃、180分間と1150℃、100分間の2段階の酸化性雰囲気での熱処理を行ったときに前記シリコン単結晶ウェーハに酸化誘起積層欠陥が検出されず、TDDB特性のγモードの良品率が90%以上、前記シリコン単結晶ウェーハ表面の10nm以上のボイド状欠陥個数が10個以下、PIDが0個、バルク部の平均BMD密度が1×10個/cm以上、DZ層の幅が1.0μm以上のものであることを特徴とするシリコン単結晶ウェーハ。
  6.  シリコン単結晶ウェーハの主面上に単結晶シリコン膜をエピタキシャル成長させたシリコンエピタキシャルウェーハであって、
     前記シリコン単結晶ウェーハ中の窒素濃度が5×1011atoms/cm以上5×1014atoms/cm以下であり、1000℃、180分間と1150℃、100分間の2段階の酸化性雰囲気での熱処理を行ったときに前記シリコン単結晶ウェーハに酸化誘起積層欠陥が検出されず、TDDB特性のγモードの良品率が90%以上、前記シリコンエピタキシャルウェーハ表面の10nm以上のエピ欠陥が10個以下、バルク部の平均BMD密度が1×10個/cm以上、ESFQRmax(エッジエクスクルージョン2mm)が20nm以下のものであることを特徴とするシリコンエピタキシャルウェーハ。
     
PCT/JP2017/025625 2016-08-25 2017-07-13 シリコン単結晶ウェーハの製造方法、シリコンエピタキシャルウェーハの製造方法、シリコン単結晶ウェーハ及びシリコンエピタキシャルウェーハ WO2018037755A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016164964A JP2018030765A (ja) 2016-08-25 2016-08-25 シリコン単結晶ウェーハの製造方法、シリコンエピタキシャルウェーハの製造方法、シリコン単結晶ウェーハ及びシリコンエピタキシャルウェーハ
JP2016-164964 2016-08-25

Publications (1)

Publication Number Publication Date
WO2018037755A1 true WO2018037755A1 (ja) 2018-03-01

Family

ID=61245577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025625 WO2018037755A1 (ja) 2016-08-25 2017-07-13 シリコン単結晶ウェーハの製造方法、シリコンエピタキシャルウェーハの製造方法、シリコン単結晶ウェーハ及びシリコンエピタキシャルウェーハ

Country Status (2)

Country Link
JP (1) JP2018030765A (ja)
WO (1) WO2018037755A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054811A1 (ja) * 2018-09-14 2020-03-19 株式会社Sumco ウェーハの鏡面面取り方法、ウェーハの製造方法、及びウェーハ
JPWO2020213230A1 (ja) * 2019-04-16 2020-10-22

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6884898B1 (ja) * 2020-01-22 2021-06-09 日本酢ビ・ポバール株式会社 研磨用組成物
JP7384264B1 (ja) * 2022-11-10 2023-11-21 信越半導体株式会社 エピタキシャル成長用シリコンウェーハ及びエピタキシャルウェーハ

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697251A (ja) * 1992-09-10 1994-04-08 Shin Etsu Handotai Co Ltd シリコン単結晶の品質評価方法
JPH11135514A (ja) * 1997-10-30 1999-05-21 Shin Etsu Handotai Co Ltd シリコンウエーハの熱処理方法及びシリコンウエーハ
JP2000053497A (ja) * 1998-06-04 2000-02-22 Shin Etsu Handotai Co Ltd 窒素ド―プした低欠陥シリコン単結晶ウエ―ハおよびその製造方法
JP2000211995A (ja) * 1998-11-17 2000-08-02 Shin Etsu Handotai Co Ltd シリコン単結晶ウエ―ハおよびシリコン単結晶ウエ―ハの製造方法
JP2002043241A (ja) * 2000-07-27 2002-02-08 Mitsubishi Materials Silicon Corp シリコンウェーハの熱処理方法及びシリコンウェーハ
JP2002201093A (ja) * 2000-12-28 2002-07-16 Shin Etsu Handotai Co Ltd シリコン単結晶ウエーハおよびシリコン単結晶の製造方法
WO2004083496A1 (ja) * 2003-02-25 2004-09-30 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハ及びその製造方法、並びにシリコン単結晶育成方法
JP2007088473A (ja) * 2005-09-22 2007-04-05 Siltronic Ag エピタキシャルシリコンウェハおよびエピタキシャルシリコンウェハの製造方法
JP2009249205A (ja) * 2008-04-02 2009-10-29 Shin Etsu Handotai Co Ltd シリコン単結晶ウエーハおよびシリコン単結晶の製造方法またはシリコン単結晶ウエーハの製造方法ならびに半導体デバイス
JP2011222842A (ja) * 2010-04-13 2011-11-04 Shin Etsu Handotai Co Ltd エピタキシャルウェーハの製造方法、エピタキシャルウェーハ及び撮像用デバイスの製造方法
JP2014212213A (ja) * 2013-04-18 2014-11-13 信越半導体株式会社 シリコンウエーハの研磨方法およびエピタキシャルウエーハの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697251A (ja) * 1992-09-10 1994-04-08 Shin Etsu Handotai Co Ltd シリコン単結晶の品質評価方法
JPH11135514A (ja) * 1997-10-30 1999-05-21 Shin Etsu Handotai Co Ltd シリコンウエーハの熱処理方法及びシリコンウエーハ
JP2000053497A (ja) * 1998-06-04 2000-02-22 Shin Etsu Handotai Co Ltd 窒素ド―プした低欠陥シリコン単結晶ウエ―ハおよびその製造方法
JP2000211995A (ja) * 1998-11-17 2000-08-02 Shin Etsu Handotai Co Ltd シリコン単結晶ウエ―ハおよびシリコン単結晶ウエ―ハの製造方法
JP2002043241A (ja) * 2000-07-27 2002-02-08 Mitsubishi Materials Silicon Corp シリコンウェーハの熱処理方法及びシリコンウェーハ
JP2002201093A (ja) * 2000-12-28 2002-07-16 Shin Etsu Handotai Co Ltd シリコン単結晶ウエーハおよびシリコン単結晶の製造方法
WO2004083496A1 (ja) * 2003-02-25 2004-09-30 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハ及びその製造方法、並びにシリコン単結晶育成方法
JP2007088473A (ja) * 2005-09-22 2007-04-05 Siltronic Ag エピタキシャルシリコンウェハおよびエピタキシャルシリコンウェハの製造方法
JP2009249205A (ja) * 2008-04-02 2009-10-29 Shin Etsu Handotai Co Ltd シリコン単結晶ウエーハおよびシリコン単結晶の製造方法またはシリコン単結晶ウエーハの製造方法ならびに半導体デバイス
JP2011222842A (ja) * 2010-04-13 2011-11-04 Shin Etsu Handotai Co Ltd エピタキシャルウェーハの製造方法、エピタキシャルウェーハ及び撮像用デバイスの製造方法
JP2014212213A (ja) * 2013-04-18 2014-11-13 信越半導体株式会社 シリコンウエーハの研磨方法およびエピタキシャルウエーハの製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054811A1 (ja) * 2018-09-14 2020-03-19 株式会社Sumco ウェーハの鏡面面取り方法、ウェーハの製造方法、及びウェーハ
KR20200139777A (ko) * 2018-09-14 2020-12-14 가부시키가이샤 사무코 웨이퍼의 경면 모따기 방법, 웨이퍼의 제조 방법 및, 웨이퍼
CN112218737A (zh) * 2018-09-14 2021-01-12 胜高股份有限公司 晶片的镜面倒角方法、晶片的制造方法及晶片
JPWO2020054811A1 (ja) * 2018-09-14 2021-02-18 株式会社Sumco ウェーハの鏡面面取り方法、ウェーハの製造方法、及びウェーハ
US10971351B2 (en) 2018-09-14 2021-04-06 Sumco Corporation Wafer surface beveling method, method of manufacturing wafer, and wafer
JP7047924B2 (ja) 2018-09-14 2022-04-05 株式会社Sumco ウェーハの鏡面面取り方法、ウェーハの製造方法、及びウェーハ
KR102444720B1 (ko) * 2018-09-14 2022-09-16 가부시키가이샤 사무코 웨이퍼의 경면 모따기 방법, 웨이퍼의 제조 방법 및, 웨이퍼
JPWO2020213230A1 (ja) * 2019-04-16 2020-10-22
JP7388434B2 (ja) 2019-04-16 2023-11-29 信越半導体株式会社 シリコン単結晶ウェーハの製造方法及びシリコン単結晶ウェーハ
US11959191B2 (en) 2019-04-16 2024-04-16 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon single crystal wafer and silicon single crystal wafer

Also Published As

Publication number Publication date
JP2018030765A (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
KR100581047B1 (ko) 실리콘 단결정 웨이퍼의 제조방법 및 실리콘 단결정 웨이퍼
WO2018037755A1 (ja) シリコン単結晶ウェーハの製造方法、シリコンエピタキシャルウェーハの製造方法、シリコン単結晶ウェーハ及びシリコンエピタキシャルウェーハ
KR101750688B1 (ko) 실리콘 단결정 웨이퍼의 제조방법 및 어닐링된 웨이퍼
US7273647B2 (en) Silicon annealed wafer and silicon epitaxial wafer
JP5160023B2 (ja) シリコンウェーハ及びシリコンウェーハの製造方法
KR20100036155A (ko) 실리콘 웨이퍼 및 그의 제조방법
JP4854936B2 (ja) シリコンウエーハの製造方法及びシリコンウエーハ
KR20110036010A (ko) 실리콘 단결정 웨이퍼, 실리콘 단결정 웨이퍼의 제조방법 및 실리콘 단결정 웨이퍼의 평가방법
KR20140001815A (ko) 실리콘 기판의 제조 방법 및 실리콘 기판
JP6448805B2 (ja) エピタキシャルにコーティングされた半導体ウェハとエピタキシャルにコーティングされた半導体ウェハの製造方法
JP2005317973A (ja) Soi基板及びその製造方法
KR100847925B1 (ko) 어닐웨이퍼의 제조방법 및 어닐웨이퍼
KR100885762B1 (ko) 에피텍셜 웨이퍼 및 그 제조방법
WO2016006145A1 (ja) エピタキシャルシリコンウェーハおよびその製造方法
WO2010131412A1 (ja) シリコンウェーハおよびその製造方法
JP2004043256A (ja) エピタキシャル成長用シリコンウエーハ及びエピタキシャルウエーハ並びにその製造方法
JP2007242920A (ja) 窒素ドープアニールウェーハの製造方法及び窒素ドープアニールウェーハ
WO2011007678A1 (ja) エピタキシャルシリコンウェーハとその製造方法
JP5338559B2 (ja) シリコンエピタキシャルウェーハの製造方法
JP6493105B2 (ja) エピタキシャルシリコンウェーハ
KR100704945B1 (ko) 실리콘 웨이퍼 및 그 제조방법
JP5584959B2 (ja) シリコンウェーハの製造方法
JP2009302140A (ja) シリコンエピタキシャルウェーハ及びその製造方法
JP5012721B2 (ja) シリコンエピタキシャルウェーハ
JP3944958B2 (ja) シリコンエピタキシャルウェーハとその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843242

Country of ref document: EP

Kind code of ref document: A1