WO2010131412A1 - シリコンウェーハおよびその製造方法 - Google Patents

シリコンウェーハおよびその製造方法 Download PDF

Info

Publication number
WO2010131412A1
WO2010131412A1 PCT/JP2010/002613 JP2010002613W WO2010131412A1 WO 2010131412 A1 WO2010131412 A1 WO 2010131412A1 JP 2010002613 W JP2010002613 W JP 2010002613W WO 2010131412 A1 WO2010131412 A1 WO 2010131412A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
silicon wafer
silicon
polysilicon layer
forming
Prior art date
Application number
PCT/JP2010/002613
Other languages
English (en)
French (fr)
Inventor
行本靖史
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to US13/266,159 priority Critical patent/US20120049330A1/en
Publication of WO2010131412A1 publication Critical patent/WO2010131412A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a silicon wafer having high gettering ability that is suitably used for a substrate for a semiconductor device and the like, and a method for manufacturing the same.
  • a silicon wafer used as a substrate for a semiconductor device is generally cut out from a silicon single crystal ingot grown by the Czochralski method (hereinafter referred to as “CZ method”) and manufactured through a process such as polishing.
  • CZ method Czochralski method
  • the silicon wafer contains oxygen as an impurity, and this oxygen impurity forms an oxygen precipitate (hereinafter referred to as “BMD (Bulk Micro Defect)”) that causes dislocations, defects, and the like.
  • BMD Bulk Micro Defect
  • minute nuclei oxygen precipitation nuclei
  • a heat treatment such as an oxidation heat treatment in a device manufacturing process.
  • the BMD formed inside the wafer becomes a gettering site that captures contamination impurities (particularly metal impurities) and removes them from the wafer surface layer.
  • an apparatus that generates metal contamination such as a dry etching process, may be used, and it is extremely important that the wafer has an excellent gettering capability.
  • a wafer is heat-treated in an atmosphere containing a nitriding gas such as NH 3 to inject vacancies inside the wafer, and then subjected to high-temperature heat treatment to form a defect-free layer (hereinafter referred to as “DZ layer”) on the wafer surface.
  • a silicon wafer manufacturing method has been proposed in which oxygen precipitation heat treatment is performed to deposit BMD therein.
  • N 2 nitrogen
  • N 2 nitrogen
  • the nitriding gas can be reduced at a low heat treatment temperature or a short heat treatment time. It is said that it can be decomposed and holes can be injected inside, and the occurrence of slip during heat treatment can be suppressed.
  • Patent Document 2 after the wafer is subjected to extrinsic gettering by a poly back seal method, rapid heating and rapid cooling in a reducing atmosphere is performed in order to remove COP (Crystal Originated Particle) on the wafer surface.
  • a method of manufacturing a silicon wafer is described in which a rapid thermal annealing process, that is, an RTA (Rapid Thermal Annealing) process (hereinafter referred to as “RTA process”) is performed on a wafer using an apparatus.
  • RTA process Rapid Thermal Annealing
  • Patent Document 1 has a problem that the gettering ability is low after holes are injected into the wafer and oxygen precipitation heat treatment is performed to sufficiently precipitate BMD. Therefore, for example, the wafer may be contaminated (particularly metal contamination) while the oxygen precipitation heat treatment is performed in the heat treatment furnace.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a silicon wafer in which no crystal defects exist in the surface layer portion of the wafer and the gettering ability is further improved, and a manufacturing method thereof.
  • the gettering method includes external gettering for forming a gettering site for capturing contaminant impurities on the back surface of the wafer, and internal gettering for forming inside the wafer, for example, below the device formation layer. (Intrinsic Gettering).
  • the present inventor attempted to form a gettering site in the wafer and also to form a gettering site on the back surface of the wafer.
  • a silicon wafer is subjected to an RTA process in a nitriding gas atmosphere, and then a polysilicon layer is formed on the back side of the wafer to form an external gettering site, followed by the RTA process.
  • BMD is deposited inside the wafer to form an internal gettering site by performing heat treatment at a temperature lower than the processing temperature.
  • the gist of the present invention is the following (1) or (2) silicon wafer production method and the following (3) to (5) silicon wafer produced by the method.
  • a silicon wafer manufacturing method hereinafter referred to as “first manufacturing method”.
  • a wafer having a defect-free region as a silicon wafer to be subjected to the RTA process because a defect-free layer can be stably secured on the surface layer of the wafer.
  • the step of forming the oxide film includes a step of heating the wafer in an oxidizing atmosphere after treating the wafer surface with hydrofluoric acid, or After polishing, a process including an operation of heating the wafer in an oxidizing atmosphere can be employed.
  • a heat treatment is performed on the silicon wafer produced by the first or second production method at a temperature lower than the treatment temperature in the RTA treatment (this heat treatment is also referred to as “oxygen precipitation heat treatment”). It is desirable to adopt an embodiment in which a defect layer is formed and oxygen is deposited in the internal vacancies. By this manufacturing method, it is possible to obtain a silicon wafer having a high gettering capability subjected to external gettering and internal gettering and having a defect-free layer formed on the surface layer of the wafer.
  • a silicon wafer having a high gettering capability which is manufactured by the first or second manufacturing method.
  • a silicon wafer having high gettering capability wherein a precipitation nucleus that forms an oxygen precipitate layer by heat treatment performed in a semiconductor device manufacturing process inside the wafer, and a polysilicon layer on the back surface of the wafer
  • a silicon wafer having a high gettering capability wherein the silicon wafer has an oxygen precipitate layer inside the wafer and a polysilicon layer on the back surface of the wafer.
  • the method for producing a silicon wafer of the present invention it is possible to produce a silicon wafer having a defect-free layer in the surface layer portion and having improved gettering ability by performing external gettering and internal gettering. Further, by performing external gettering, it is possible to provide gettering ability until BMD is sufficiently formed inside the wafer by oxygen precipitation heat treatment or heat treatment performed in the device manufacturing process. External gettering is applied by forming a polysilicon layer on the back side of the wafer. The internal gettering is applied by a polysilicon layer forming process and further an oxygen precipitation heat treatment, or by a heat treatment in a device manufacturing process in which the wafer is used as a material.
  • the silicon wafer of the present invention is a wafer having a high gettering capability, which is manufactured by the manufacturing method of the present invention, is subjected to external gettering and internal gettering, and improves the gettering capability as a whole wafer. It can be suitably used for a substrate for a device. Further, by performing external gettering, it is possible to provide gettering ability until BMD is sufficiently formed inside the wafer by oxygen precipitation heat treatment or heat treatment performed in the device manufacturing process.
  • FIG. 1 shows the relationship between V (silicon single crystal pulling rate) / G (temperature gradient in the growth direction in the single crystal immediately after pulling) and interstitial silicon type point defect concentration and vacancy type point defect concentration.
  • FIG. 2 is a diagram showing the BMD density in the silicon wafer manufactured by the manufacturing method of the present invention in comparison with the comparative example as a result of the example.
  • the first manufacturing method of the present invention includes a step of subjecting a silicon wafer cut from a silicon single crystal ingot grown by the CZ method to RTA treatment in a nitriding gas atmosphere, and both surfaces of the wafer after the RTA treatment. Forming an oxide film on the surface, forming a polysilicon layer on both surfaces of the wafer on which the oxide film is formed, and removing a surface-side polysilicon layer from the polysilicon layers formed on both surfaces of the wafer It is the method characterized by having. Hereinafter, each step will be described in detail.
  • the wafer as the material of the silicon wafer of the present invention is a silicon wafer cut out from a silicon single crystal ingot grown by CZ method.
  • RTA treatment holes are injected from the surface layer portion to the inside of the material wafer, and as described later, a high density BMD can be formed inside the wafer by performing an oxygen precipitation heat treatment. It is also possible to form a high-density BMD inside the wafer by performing the heat treatment accompanying the process after the wafer is subjected to the device manufacturing process as a material such as a substrate for a semiconductor device without performing the oxygen precipitation heat treatment.
  • a silicon wafer obtained from a single crystal ingot containing a crystal defect such as COP grown by a normal CZ method can be used as a raw material as well as a wafer having a defect-free region on the entire surface described later.
  • the oxygen concentration in the wafer is preferably 7 ⁇ 10 17 to 16 ⁇ 10 17 atoms / cm 3 (ASTM F-121, 1979). If the oxygen concentration is less than 7 ⁇ 10 17 atoms / cm 3 , the formation of BMD precipitation nuclei itself is suppressed, and the amount of BMD inside the wafer decreases. Furthermore, there arises a problem that the strength of the wafer itself is weakened.
  • the RTA treatment is performed in a nitriding gas atmosphere.
  • a nitriding gas atmosphere By performing the RTA process in a nitriding gas atmosphere, holes can be injected into the wafer.
  • the composition of the atmospheric gas is not particularly defined, but it is a mixture of NH 3 (ammonia) and an inert gas that can decompose at a temperature lower than N 2 to form a nitride film on the wafer surface and inject holes into the wafer. Gas is preferred.
  • Ar gas containing 0.5% NH 3 used in Examples described later is suitable.
  • the temperature and time during the RTA treatment may be set to an appropriate temperature and time in consideration of the density of the oxygen precipitate (BMD) layer formed inside by heat treatment (oxygen precipitation treatment) to be performed later. If the treatment temperature is too low, the treatment takes time, and if it is too high, the silicon melts. Therefore, it is desirable to perform heat treatment in the range of 1150 ° C. to the melting point of silicon (1410 ° C.).
  • the treatment time depends on the treatment temperature, but is preferably 60 seconds or less from the viewpoint of reducing the occurrence of slip. Further, in the temperature raising process of the RTA treatment, it is desirable that the temperature raising rate is in the range of 10 to 150 ° C./sec.
  • the temperature decrease rate in the temperature decrease step is preferably in the range of 10 to 150 ° C./sec.
  • a conventionally used apparatus may be used.
  • Use of a lamp annealing furnace heated by a halogen lamp is desirable because it can quickly raise and lower the temperature, and can perform processing without applying an excessive amount of heat to the silicon wafer.
  • (B) Step of forming oxide film on both surfaces of silicon wafer after RTA treatment An oxide film is formed on both surfaces of the silicon wafer after the RTA treatment described above.
  • the method for forming the oxide film is not particularly limited. For example, a method in which the surface of a silicon wafer is treated with hydrofluoric acid and then the wafer is heated in an atmosphere containing oxygen (air) at 600 to 700 ° C. for about 10 minutes can be applied. Further, after the surface of the silicon wafer is polished, the heat treatment may be similarly performed.
  • Step of forming polysilicon layers on both surfaces of the silicon wafer A polysilicon layer is formed on both surfaces of the silicon wafer after the oxide film is applied.
  • BMD precipitation nuclei are grown, near the center of the wafer (in the vicinity of the center, within the range of 350 to 450 ⁇ m from the wafer surface) and near the surface (inside the wafer, 50 to 150 ⁇ m from the wafer surface). BMD can be increased within the range of
  • the polysilicon layer may be formed by a commonly used CVD method. That is, a source gas such as monosilane (SiH 4 ) is introduced into the reaction furnace, and Si is deposited and grown on the wafer surface heated to 600 to 700 ° C.
  • the layer thickness is preferably 0.1 to 10 ⁇ m.
  • the polysilicon layer is left as a gettering site in the next step and functions as a gettering site. However, if the layer thickness is 0.1 ⁇ m or more, the polysilicon layer has sufficient gettering ability. On the other hand, when the layer thickness exceeds 10 ⁇ m, productivity decreases.
  • the process of removing the surface side polysilicon layer The surface side polysilicon layer is removed from the polysilicon layers formed on both sides of the silicon wafer. This is because the front side of the wafer is secured as an active region for forming a device, and an external gettering site is formed on the back side of the wafer. Even if the active region of the wafer is contaminated with metal impurities before the BMD functioning as a gettering site is formed inside the wafer by the oxygen precipitation heat treatment performed later or the heat treatment performed in the device manufacturing process, Contaminating impurities can be removed from the active region by external gettering applied to the back side of the wafer.
  • the removal of the polysilicon layer may be performed by mechanical polishing, but is not limited thereto. Any method that can remove the polysilicon layer without affecting the flatness of the silicon wafer surface is applicable. For example, it is possible to apply chemical processing such as chemical mechanical polishing (CMP) and grinding, or chemical processing such as acid etching, which is well known as a processing technique for the silicon wafer surface.
  • CMP chemical mechanical polishing
  • grinding or chemical processing such as acid etching
  • the thickness to be removed should be several times the thickness of the formed polysilicon layer or more. Is desirable. For example, as shown in the examples described later, when a polysilicon layer having a thickness of 1.5 ⁇ m is formed, it is desirable to remove about 10 ⁇ m from the surface.
  • the second manufacturing method of the present invention includes a step of subjecting a silicon wafer cut from a silicon single crystal ingot grown by the CZ method to an RTA treatment in a nitriding gas atmosphere, and a back surface of the wafer after the RTA treatment. And forming a polysilicon layer on the back surface of the wafer on which the oxide film has been formed.
  • the RTA process in the nitriding gas atmosphere is the same as the RTA process in the first manufacturing method.
  • the formation of the next oxide film and the formation of the polysilicon layer are the same as those in the first manufacturing method except that the formation is performed only on the back surface, not on both surfaces of the silicon wafer. Since the polysilicon layer is formed on the rear surface while leaving the front surface side of the silicon wafer from the beginning, the step of removing the front surface side polysilicon layer performed in the first manufacturing method becomes unnecessary.
  • the formation of the polysilicon layer on the back side of the silicon wafer can be performed by a method such as covering the surface of the wafer with a specific jig or coating material and exposing only the back side.
  • the front side of the wafer can be secured as an active region for forming a device, and an external gettering site can be formed on the back side of the wafer.
  • a defect-free layer can be stably secured on the wafer surface layer portion.
  • wafer made of defect-free regions refers to interstitial silicon-type point defect aggregates (called “dislocation clusters”) introduced during single crystal growth, and vacancy-type point defect aggregates ( It is a silicon wafer consisting of a perfect region in which no nucleation region exists (referred to as “COP”) and OSF (Oxidation Induced Stacking Fault).
  • COP silicon wafer consisting of a perfect region in which no nucleation region exists
  • OSF Oxidation Induced Stacking Fault
  • the silicon single crystal ingot used for the production of a wafer composed of the defect-free region has a V / G of V / G, where V is the pulling speed of the single crystal and G is the temperature gradient in the growth direction in the single crystal immediately after pulling. It is obtained by maintaining within the proper range described below.
  • FIG. 1 is a diagram shown in the above-mentioned Patent Document 1 and schematically shows the relationship between V / G, interstitial silicon type point defect concentration, and vacancy type point defect concentration. This figure explains that the boundary between the vacancy region and the interstitial silicon region is determined by V / G, and is called the Boronkov theory.
  • a region where the horizontal axis V / G is smaller than the critical point is a region where interstitial silicon type point defects exist predominantly, and a region [I] where V / G is smaller than (V / G) I. Is a region where agglomerates (dislocation clusters) of interstitial silicon type point defects exist.
  • a region where V / G is larger than the critical point is a region where vacancy-type point defects exist predominantly, and a region [V] where V / G is larger than (V / G) V is a vacancy-type point defect. This is a region where aggregates (COP) exist.
  • the region [P] between (V / G) I and (V / G) V is a perfect region where there are no interstitial silicon type point defect aggregates or void type point defect aggregates.
  • the side where the interstitial silicon type point defects are dominant with respect to the critical point is the region [P I ]
  • the side where the vacancy type point defects are dominant is the region [P V ].
  • an OSF nucleus forming region where an OSF (Oxidation Induced Stacking Fault) nucleus is formed exists in the region [V] adjacent to the region [P].
  • this wafer does not contain crystal defects in COP, dislocation clusters, and OSF nucleation regions, some of these defects remain without being removed by oxygen precipitation heat treatment performed after RTA treatment and polysilicon layer formation.
  • the defect-free layer can be stably secured on the wafer surface layer. Further, since there are few interstitial silicon type point defects that eliminate vacancies, vacancies necessary for oxygen precipitation can be efficiently injected by the RTA treatment.
  • BMD is increased in the range of (1), and a defect-free layer is formed in the surface layer portion of the wafer on which the semiconductor device is formed.
  • This wafer is transferred to the device manufacturing process as a material such as a substrate for a semiconductor device, and during the heat treatment accompanying the process, oxygen precipitation continues to progress inside the wafer and the BMD density increases, and the polysilicon layer In addition to external gettering, internal gettering is also performed.
  • the oxygen precipitation heat treatment may be performed according to a commonly performed method.
  • the conditions employed in the examples described later that is, by performing a heat treatment in a heat treatment furnace at 1000 ° C. for 16 hours in an air atmosphere, oxygen precipitation is promoted inside the wafer and high density BMD is obtained. Is formed. Further, in the wafer surface layer portion, the voids are diffused outward, and COP and the like are removed by the interstitial silicon that is implanted to form a defect-free layer.
  • This oxygen precipitation heat treatment promotes oxygen precipitation inside the wafer to increase the BMD density, and in addition to external gettering by the polysilicon layer, internal gettering with high gettering ability is performed. On the other hand, a defect-free layer is formed in the wafer surface layer portion. Therefore, in addition to the external gettering, internal gettering having high capability is performed in addition to the heat treatment in the device manufacturing process, and a silicon wafer having a defect-free layer formed on the wafer surface layer portion is obtained.
  • a defect-free layer is formed on the wafer surface layer, and external gettering is performed by forming a polysilicon layer on the back side of the wafer, and BMD is deposited inside the wafer.
  • a silicon wafer having an improved gettering capability as a whole wafer that has been subjected to internal gettering can be manufactured.
  • the silicon wafer of the present invention is a silicon wafer having a high gettering capability and is manufactured by the method for manufacturing a silicon wafer of the present invention.
  • the silicon wafer of the present invention has a polysilicon layer functioning as an external gettering site on the back surface side of the wafer, and near the center of the wafer (from the wafer surface) during the formation process of the polysilicon layer.
  • BMDs acting as internal gettering sites are formed near the surface (within a range of 350 to 450 ⁇ m) and near the surface (within a range of 50 to 150 ⁇ m from the wafer surface).
  • a defect-free layer is formed on the surface layer portion of the wafer. While this wafer is subjected to heat treatment in the device manufacturing process as a device manufacturing material, oxygen precipitation continues to progress inside the wafer and the BMD density increases.
  • the silicon wafer of the present invention is a silicon wafer having a high gettering ability as a whole wafer subjected to external gettering and internal gettering.
  • the internal gettering site is not necessarily sufficient until the wafer is subjected to a heat treatment in the device manufacturing process or an oxygen precipitation heat treatment to sufficiently precipitate BMD.
  • the gettering site functions as a gettering site until BMD is sufficiently formed inside the wafer by heat treatment or oxygen precipitation heat treatment in the device manufacturing process.
  • the silicon wafer of the present invention is a wafer having a defect-free region, since there is no crystal defect of COP, OSF nucleation region and dislocation cluster from the material stage, there is a risk that some of these defects may remain. There is no. Further, as described above, vacancies necessary for oxygen precipitation can be efficiently injected by the RTA process, so that high-density BMD can be precipitated inside the wafer. Therefore, the wafer can be used for device manufacture as a wafer having external gettering capability and high internal gettering capability.
  • the silicon wafer of the present invention is a wafer that has been subjected to an oxygen precipitation heat treatment, the BMD density is increased, and in addition to external gettering by the polysilicon layer, internal gettering with high gettering capability is performed, It is a wafer having an excellent gettering ability as a whole wafer.
  • An RTA processing furnace using two types of silicon wafers having a defect-free region with a diameter of 200 mm and oxygen concentrations of 11 ⁇ 10 17 atoms / cm 3 and 15 ⁇ 10 17 atoms / cm 3 (ASTM F-121, 1979) was used to perform RTA treatment in a nitriding gas atmosphere (Ar gas containing 0.5% NH 3 ). Subsequently, an oxide film was formed on both surfaces of the wafer, a polysilicon layer having a thickness of 1.5 ⁇ m was formed, and then the polysilicon layer on the surface side of the wafer was removed (removed thickness: 15 ⁇ m).
  • the cross section of the wafer was selectively etched to measure the BMD density.
  • the same measurement was performed for only the RTA treatment (Comparative Example 1) and when the RTA treatment was performed after forming the polysilicon layer by changing the process order (Comparative Example 2).
  • the silicon wafers having an oxygen concentration of 11 ⁇ 10 17 atoms / cm 3 were designated as sample 3-1, sample 1-1, and sample 2-1, respectively, in the present invention example, comparative example 1, and comparative example 2.
  • the silicon wafers of 15 ⁇ 10 17 atoms / cm 3 were designated as sample 3-2, sample 1-2, and sample 2-2 in the present invention example, comparative example 1, and comparative example 2, respectively.
  • Table 1 shows the temperature raising conditions, the processing temperature and time during film formation, the temperature lowering conditions, and the like.
  • Formation of the oxide film was performed by etching both surfaces of the silicon wafer after RTA treatment with a 6% hydrofluoric acid solution and then heating at 665 ° C. for 10 minutes in an oxygen-containing atmosphere (air). .
  • BMD density is measured by cleaving a silicon wafer, and selectively etching the cleaved wafer cross section to a depth of 2 ⁇ m with Secco liquid, and then near the wafer surface (in the depth range from 50 to 150 ⁇ m from the wafer surface). And two locations in the vicinity of the center (sites within the range of 350 to 450 ⁇ m in the depth direction from the wafer surface) were observed with a microscope, and the BMD density was calculated based on the observation results.
  • Table 3 shows the BMD density measurement results.
  • FIG. 2 shows the measurement results, and shows the BMD density of the silicon wafer manufactured by the manufacturing method of the present invention in comparison with the comparative example.
  • the BMD density was high both near the wafer surface and near the wafer center. This is considered to be due to the growth of BMD precipitation nuclei in the polysilicon layer forming step.
  • the BMD density of the sample having an oxygen concentration of 15 ⁇ 10 17 atoms / cm 3 is higher than the BMD density of the sample having an oxygen concentration of 11 ⁇ 10 17 atoms / cm 3. This is probably because the number of BMD precipitation nuclei inside is large.
  • Example 2-1 and sample 2-2 formation of polysilicon layer ⁇ RTA process
  • the polysilicon layer prevents the holes from being injected into the silicon wafer during the RTA process, and Since oxygen precipitation nuclei generated inside the wafer in the process of forming the polysilicon layers on both surfaces of the wafer disappeared by the RTA treatment, both oxygen concentrations of 11 ⁇ 10 17 atoms / cm 3 and 15 ⁇ 10 17 atoms / cm 3 Also, no BMD was generated.
  • a silicon wafer having a defect-free layer at the wafer surface layer portion and having improved internal gettering ability can be obtained.
  • the polysilicon layer is formed after the oxide film is formed on both sides or the back surface of the silicon wafer after the RTA treatment, the single crystal silicon layer is not formed on both sides or the back surface of the wafer. Since the polysilicon layer is formed without hindrance, it has been confirmed that not only the internal gettering but also the external gettering effect by the polysilicon layer is given, and the gettering ability is further increased.
  • the silicon wafer manufacturing method of the present invention it is possible to manufacture a silicon wafer having a higher gettering capability that has a defect-free region in the surface layer portion and is subjected to external gettering and internal gettering.
  • External gettering is applied by forming a polysilicon layer on the back side of the wafer.
  • the internal gettering is applied by a polysilicon layer forming step, a subsequent oxygen precipitation heat treatment, or a heat treatment in a device manufacturing step in which the wafer is used as a material.
  • the silicon wafer of the present invention is a silicon wafer manufactured by the manufacturing method of the present invention, which has improved gettering ability as a whole wafer, and can be suitably used for a substrate for a semiconductor device or the like.
  • the present invention can be widely used in the manufacture of silicon wafers and semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(1)シリコンウェーハの製造方法において、チョクラルスキー法により育成されたシリコン単結晶インゴットから切り出されたシリコンウェーハに対して窒化ガス雰囲気中でRTA処理を施し、ウェーハの両面に酸化膜を形成した後、ポリシリコン層を形成し、その後、ウェーハの表面側のポリシリコン層を除去することにより、ウェーハの表層部には結晶欠陥が存在せず、しかもゲッタリング能力をより向上できる。ウェーハの両面ではなく、裏面にのみポリシリコン層を形成してもよい。無欠陥領域からなるウェーハを素材として用いることとすれば、ウェーハ表層部に無欠陥層を安定して確保できるので望ましい。(2)本発明のシリコンウェーハはこの方法を用いて製造することにより、ウェーハ全体としてのゲッタリング能力を向上させたウェーハである。

Description

シリコンウェーハおよびその製造方法
 本発明は、半導体デバイス用の基板等に好適に使用される高いゲッタリング能力を有するシリコンウェーハおよびその製造方法に関する。
 半導体デバイス用の基板として用いられるシリコンウェーハは、一般にチョクラルスキー法(以下、「CZ法」という)により育成されたシリコン単結晶インゴットから切り出され、研磨等の工程を経て製造される。
 シリコンウェーハには酸素が不純物として含まれており、この酸素不純物は、転位や欠陥等を生じさせる酸素析出物(以下、「BMD(Bulk Micro Defect)」という)を形成する。BMDは、シリコン単結晶を引き上げる際に結晶内に導入された微小な核(酸素析出核)が、例えばデバイス製造工程における酸化熱処理等の熱処理により成長して形成されることが知られている。このBMDが、半導体デバイスが形成されるウェーハの表層部にある場合、リーク電流の増大や酸化膜の絶縁性(酸化膜耐圧)低下の原因になるなど、デバイスの特性に大きな影響を及ぼす。
 一方、ウェーハの内部に形成されたBMDは、汚染不純物(特に、金属不純物)を捕獲してウェーハ表層部から取り除くゲッタリングサイトとなる。デバイス製造工程には、例えばドライエッチング工程など、金属汚染を発生させるような装置が使われる場合もあり、ウェーハが優れたゲッタリング能力を有していることは極めて重要である。
 そのため、従来から、ウェーハの表層部には酸素析出物などの欠陥が存在せず、ウェーハの内部または裏面には、酸素析出物や、多結晶シリコン(ポリシリコン)層、高濃度リン拡散層などのゲッタリングサイトを存在させるシリコンウェーハの製造方法が開発されてきた。
 例えば、特許文献1では、ウェーハをNHなどの窒化ガスを含む雰囲気中で熱処理してウェーハ内部に空孔を注入した後に、高温熱処理を行ってウェーハ表面に無欠陥層(以下、「DZ層」―Denuded Zone―ともいう)を形成するとともに、その後、酸素析出熱処理を行って、内部にBMDを析出させるシリコンウェーハの製造方法が提案されている。窒化ガスとして、従来はN(窒素)が主に用いられていたが、NHなど、Nよりも分解温度の低いガスを使用することにより、低い熱処理温度または短い熱処理時間で窒化ガスを分解し、内部に空孔を注入することができ、また熱処理時のスリップ発生を抑制できるとしている。
 また、特許文献2には、ウェーハにポリ・バック・シール法によりエクストリンシックゲッタリングを施した後、ウェーハ表面のCOP(Crystal Originated Particle)を除去するために、還元性雰囲気下で急速加熱急速冷却装置を用いてウェーハに対して急速昇降温熱処理、即ち、RTA(Rapid Thermal Annealling)処理(以下、「RTA処理」という)を施すシリコンウェーハの製造方法が記載されている。これにより、ゲッタリング能力を低下させることなく確実にCOPを消滅させることができるとしている。
 しかしながら、前記特許文献1に記載される方法では、ウェーハ内部に空孔を注入した後、酸素析出熱処理を行ってBMDを十分に析出させるまではゲッタリング能力が低いという問題があった。そのため、例えば、熱処理炉内で酸素析出熱処理が施される間にウェーハが汚染(特に金属汚染)されるおそれがある。
 また、特許文献2に記載される方法においては、還元性雰囲気下で熱処理を行っているため、その後の処理で新たに空孔を注入することができず、ウェーハの内部にゲッタリングサイトとしてのBMDを生じさせることができない。
特開2003-31582号公報 特開2000-31153号公報
 本発明は、前述の問題を解決し、ウェーハの表層部には結晶欠陥が存在せず、しかもゲッタリング能力をより向上させたシリコンウェーハ、およびその製造方法を提供することを目的とする。
 シリコンウェーハがデバイス製造工程で受ける汚染不純物などによる悪影響を排除するためには、ウェーハのデバイス形成領域から汚染不純物(特に、金属不純物)を除去することが必要である。そのために、工程からの汚染物の混入を極力排除するとともに、ウェーハ自身にゲッタリング能力をもたせる方法が採られている。この場合のゲッタリング法には、汚染不純物を捕獲するゲッタリングサイトをウェーハの裏面に形成する外部ゲッタリング(Extrinsic Getterring)と、ウェーハの内部、例えばデバイス形成層の下側に形成する内部ゲッタリング(Intrinsic Getterring)とがある。
 シリコンウェーハのゲッタリング能力をより向上させるために、本発明者は、ウェーハの内部にゲッタリングサイトを形成するとともに、ウェーハの裏面にもゲッタリングサイトを形成することを試みた。具体的には、シリコンウェーハに対して、窒化ガス雰囲気中でRTA処理を施し、その後、ウェーハの裏面側にポリシリコン層を形成して外部ゲッタリングサイトを形成し、続いて、前記RTA処理における処理温度よりも低い温度で熱処理を施すことにより、ウェーハ内部にBMDを析出させて内部ゲッタリングサイトとする方法である。
 検討の結果、特にRTA処理を施した後のウェーハ表面に酸化膜を形成する工程を付加することにより、単結晶シリコン層が形成されることなく、ウェーハの両面もしくは裏面にポリシリコン層を形成できることを知見し、外部ゲッタリングおよび内部ゲッタリングが施され、表層部に無欠陥層を有するシリコンウェーハを製造できることを確認した。
 本発明は、下記(1)または(2)のシリコンウェーハの製造方法、およびその方法により製造された下記(3)~(5)のシリコンウェーハを要旨とする。
 (1)CZ法により育成されたシリコン単結晶インゴットから切り出されたシリコンウェーハに対して、窒化ガス雰囲気中でRTA処理を施す工程と、前記RTA処理後のウェーハの両面に酸化膜を形成する工程と、前記酸化膜を形成したウェーハの両面にポリシリコン層を形成する工程と、前記ウェーハの両面に形成したポリシリコン層のうち表面側のポリシリコン層を除去する工程とを有することを特徴とするシリコンウェーハの製造方法(以下、「第1の製造方法」という)。
 (2)CZ法により育成されたシリコン単結晶インゴットから切り出されたシリコンウェーハに対して、窒化ガス雰囲気中でRTA処理を施す工程と、前記RTA処理後のウェーハの裏面に酸化膜を形成する工程と、前記酸化膜を形成したウェーハの裏面にポリシリコン層を形成する工程とを有することを特徴とするシリコンウェーハの製造方法(以下、「第2の製造方法」という)。
 前記第1または第2の製造方法において、前記RTA処理を施すシリコンウェーハとして無欠陥領域からなるウェーハを用いることとすれば、ウェーハ表層部に無欠陥層を安定して確保できるので望ましい。
 前記第1または第2の製造方法において、前記酸化膜を形成する工程として、ウェーハ表面をふっ酸で処理した後、当該ウェーハを酸化性雰囲気中で加熱する操作を含む工程、または、ウェーハ表面を研磨した後、当該ウェーハを酸化性雰囲気中で加熱する操作を含む工程を採用することができる。
 前記第1または第2の製造方法で製造されたシリコンウェーハに対して前記RTA処理における処理温度よりも低い温度で熱処理を施し(この熱処理を、「酸素析出熱処理」ともいう)、ウェーハ表面に無欠陥層を形成するとともに内部の空孔に酸素を析出させる実施の形態を採ることが望ましい。この製造方法により、外部ゲッタリングおよび内部ゲッタリングが施されたゲッタリング能力の高い、しかもウェーハ表層部には無欠陥層が形成されたシリコンウェーハを得ることができる。
 (3)高いゲッタリング能力を有するシリコンウェーハであって、前記第1または第2の製造方法で製造されたことを特徴とするシリコンウェーハ。
 (4)高いゲッタリング能力を有するシリコンウェーハであって、前記ウェーハ内部に半導体デバイスの製造工程で施される熱処理により酸素析出物層を形成する析出核と、前記ウェーハ裏面にポリシリコン層とを有することを特徴とするシリコンウェーハ。
 (5)高いゲッタリング能力を有するシリコンウェーハであって、前記ウェーハ内部に酸素析出物層と、前記ウェーハ裏面にポリシリコン層とを有することを特徴とするシリコンウェーハ。
 本発明のシリコンウェーハの製造方法によれば、表層部に無欠陥層を有し、外部ゲッタリングおよび内部ゲッタリングを施すことによりゲッタリング能力を向上させたシリコンウェーハを製造することができる。また、外部ゲッタリングを施すことによって、酸素析出熱処理またはデバイス製造工程で行われる熱処理によってウェーハ内部にBMDが十分に形成されるまでの間のゲッタリング能力を付与することができる。外部ゲッタリングは、ウェーハの裏面側へのポリシリコン層の形成により付与される。内部ゲッタリングは、ポリシリコン層形成工程、さらにその後の酸素析出熱処理により、または当該ウェーハが素材として供せられるデバイス製造工程での熱処理により付与される。
 本発明のシリコンウェーハは、本発明の製造方法で製造されて外部ゲッタリングおよび内部ゲッタリングが施され、ウェーハ全体としてのゲッタリング能力を向上させた、高いゲッタリング能力を有するウェーハであり、半導体デバイス用の基板等に好適に使用することができる。また、外部ゲッタリングを施すことによって、酸素析出熱処理またはデバイス製造工程で行われる熱処理によってウェーハ内部にBMDが十分に形成されるまでの間のゲッタリング能力を付与することができる。
図1は、V(シリコン単結晶の引き上げ速度)/G(引き上げ直後の単結晶内の成長方向の温度勾配)と格子間シリコン型点欠陥濃度および空孔型点欠陥濃度との関係を示した図である。 図2は、実施例の結果で、本発明の製造方法により製造したシリコンウェーハにおけるBMD密度を比較例と対比して示す図である。
 本発明の第1の製造方法は、CZ法により育成されたシリコン単結晶インゴットから切り出されたシリコンウェーハに対して、窒化ガス雰囲気中でRTA処理を施す工程と、前記RTA処理後のウェーハの両面に酸化膜を形成する工程と、前記酸化膜を形成したウェーハの両面にポリシリコン層を形成する工程と、前記ウェーハの両面に形成したポリシリコン層のうち表面側のポリシリコン層を除去する工程とを有することを特徴とする方法である。以下、各工程について詳細に説明する。
 (a)窒化ガス雰囲気中でシリコンウェーハにRTA処理を施す工程
 本発明のシリコンウェーハの素材としてのウェーハは、CZ法により育成されたシリコン単結晶インゴットから切り出されたシリコンウェーハである。RTA処理でこの素材ウェーハの表層部から内部にわたって空孔を注入し、後述するように、酸素析出熱処理を行ってウェーハ内部に高密度のBMDを形成することができる。酸素析出熱処理を行わず、ウェーハが半導体デバイス用の基板等の素材としてデバイス製造工程に供された後の同工程に伴う熱処理で、ウェーハ内部に高密度のBMDを形成することも可能である。そのため、後述する全面が無欠陥領域からなるウェーハは勿論、通常のCZ法により育成された、COPなどの結晶欠陥が含まれる単結晶インゴットから得られたシリコンウェーハも素材として使用できる。
 ウェーハ中の酸素濃度は、7×1017~16×1017atoms/cm(ASTM F-121,1979)が望ましい。酸素濃度が7×1017atoms/cm未満では、BMD析出核の形成そのものが抑制されてしまい、ウェーハ内部のBMD量が減少する。さらに、ウェーハの強度そのものが弱くなるという問題が発生する。
 RTA処理は、窒化ガス雰囲気中で行う。RTA処理を窒化ガス雰囲気中で行うことによりウェーハ内部に空孔を注入することができる。雰囲気ガスの組成は特に規定しないが、Nよりも低い温度で分解されてウェーハ表面に窒化膜を形成し、ウェーハ内部に空孔を注入できるNH(アンモニア)などと不活性ガスとの混合ガスが望ましい。例えば、後述する実施例で使用したNH0.5%を含むArガス等が好適である。
 RTA処理時の温度と時間は、後に施される熱処理(酸素析出処理)により内部に形成させる酸素析出物(BMD)層の密度等を考慮して、適切な温度と時間を設定すればよい。処理温度が低すぎると処理に時間がかかり、高すぎるとシリコンが溶融するので、1150℃~シリコンの融点(1410℃)の範囲で熱処理することが望ましい。処理時間は、処理温度にもよるが、スリップ発生を低減する観点からは、60秒以下とするのが望ましい。また、RTA処理の昇温工程では昇温速度を10~150℃/secの範囲とすることが望ましい。10℃/sec未満では生産性が悪く、150℃/secを超えるとウェーハにスリップ転位が発生しやすくなる。降温工程における降温速度も昇温速度と同様の観点から、降温速度を10~150℃/secの範囲とすることが望ましい。
 RTA処理には、従来から使用されている装置を用いればよい。ハロゲンランプにより加熱する方式のランプアニール炉の使用が、昇温・降温を迅速に行い、またシリコンウェーハに過大な熱量を与えることなく処理を行えるので望ましい。
 (b)RTA処理後のシリコンウェーハの両面に酸化膜を形成する工程
 前述のRTA処理を施した後のシリコンウェーハの両面に酸化膜を形成する。
 酸化膜の形成方法は特に限定されない。例えば、シリコンウェーハの表面をふっ酸で処理した後、当該ウェーハを、酸素を含む雰囲気(空気)中で、600~700℃で10分間程度加熱する方法が適用できる。また、シリコンウェーハの表面を研磨した後、同様に加熱処理を行ってもよい。
 (c)シリコンウェーハの両面にポリシリコン層を形成する工程
 酸化膜付けを行った後のシリコンウェーハの両面にポリシリコン層を形成する。このポリシリコン層形成工程で、BMDの析出核を成長させ、ウェーハの中心付近(中心部近傍で、ウェーハ表面から350~450μmの範囲内)および表面近傍(ウェーハ内部で、ウェーハ表面から50~150μmの範囲内)においてBMDを増加させることができる。
 ポリシリコン層の形成は、一般的に用いられているCVD法により行えばよい。すなわち、モノシラン(SiH)等の原料ガスを反応炉内に導入し、600~700℃に熱せられたウェーハ表面にSiを析出、成長させる。層厚は、0.1~10μmとするのが望ましい。ポリシリコン層は、次の工程で一方を残し、ゲッタリングサイトとして機能させるが、層厚が0.1μm以上であれば十分にゲッタリング能力がある。一方、層厚が10μmを超えると、生産性が低下する。
 (d)表面側のポリシリコン層を除去する工程
 シリコンウェーハの両面に形成したポリシリコン層のうち表面側のポリシリコン層を除去する。これは、ウェーハの表面側をデバイスを形成する活性領域として確保するとともに、ウェーハの裏面側に外部ゲッタリングサイトを形成するためである。後に施される酸素析出熱処理またはデバイス製造工程で行われる熱処理でウェーハ内部にゲッタリングサイトとして機能するBMDが形成されるまでの間にウェーハの活性領域に金属不純物による汚染が生じたとしても、このウェーハの裏面側に施した外部ゲッタリングによって当該活性領域から汚染不純物を除去することができる。
 ポリシリコン層の除去は、機械的な研磨により行えばよいが、これに限定されない。シリコンウェーハ表面の平坦度に影響を与えることなくポリシリコン層を除去できる方法であればいずれも適用可能である。例えば、シリコンウェーハ表面の加工技術として周知の化学機械研磨(CMP)や研削などの機械加工処理、あるいは酸エッチングなどの化学加工処理などを適用することができる。
 なお、ポリシリコン層の形成により、ポリシリコン層と接するウェーハ表面近傍にはダメージ(歪み)が導入されるため、除去する厚さは、形成したポリシリコン層の厚さの数倍程度以上とするのが望ましい。例えば、後述する実施例で示すように、厚さ1.5μmのポリシリコン層を形成したときは、表面から約10μmを除去することが望ましい。
 本発明の第2の製造方法は、CZ法により育成されたシリコン単結晶インゴットから切り出されたシリコンウェーハに対して、窒化ガス雰囲気中でRTA処理を施す工程と、前記RTA処理後のウェーハの裏面に酸化膜を形成する工程と、前記酸化膜を形成したウェーハの裏面にポリシリコン層を形成する工程とを有することを特徴とする方法である。
 窒化ガス雰囲気中でのRTA処理は、第1の製造方法におけるRTA処理と同じである。次の酸化膜の形成およびポリシリコン層の形成も、シリコンウェーハの両面ではなく、裏面においてのみ行うことを除き、第1の製造方法と同じである。最初からシリコンウェーハの表面側を残して、裏面にポリシリコン層を形成するので、第1の製造方法で実施する表面側のポリシリコン層を除去する工程は不要になる。
 シリコンウェーハの裏面側へのポリシリコン層の形成は、特定の治具や被覆材を用いてウェーハの表面を覆い、裏面のみを露出させる等の方法により実施できる。
 本発明の第2の製造方法によっても、ウェーハの表面側をデバイスを形成する活性領域として確保するとともに、ウェーハの裏面側に外部ゲッタリングサイトを形成することができる。
 本発明のシリコンウェーハの製造方法において、前記RTA処理を施すシリコンウェーハとして無欠陥領域からなるウェーハを用いることとすれば、ウェーハ表層部に無欠陥層を安定して確保することができる。
 ここで言う「無欠陥領域からなるウェーハ」とは、単結晶育成時に導入された格子間シリコン型点欠陥の凝集体(「転位クラスター」と称される)、空孔型点欠陥の凝集体(「COP」と称される)およびOSF(Oxidation Induced Stacking Fault)核形成領域が存在しないパーフェクト領域からなるシリコンウェーハである。
 前記の無欠陥領域からなるウェーハの製造に供されるシリコン単結晶インゴットは、単結晶の引き上げ速度をV、引き上げ直後の単結晶内の成長方向の温度勾配をGとしたとき、V/Gを、以下に述べる適正な範囲に維持することにより得られる。
 図1は、前掲の特許文献1に示されている図で、V/Gと格子間シリコン型点欠陥濃度および空孔型点欠陥濃度との関係を図式的に表現したものである。この図は、空孔領域と格子間シリコン領域の境界がV/Gにより決定されることを説明しており、ボロンコフ(Voronkov)理論と呼ばれている。
 図1において、横軸のV/Gが臨界点より小さい領域は格子間シリコン型点欠陥が優勢に存在する領域であり、さらにV/Gが(V/G)よりも小さい領域[I]は格子間シリコン型点欠陥の凝集体(転位クラスター)が存在する領域である。一方、V/Gが臨界点より大きい領域は空孔型点欠陥が優勢に存在する領域であり、さらにV/Gが(V/G)よりも大きい領域[V]は空孔型点欠陥の凝集体(COP)が存在する領域である。(V/G)と(V/G)の間の領域[P]は格子間シリコン型点欠陥の凝集体や空孔型点欠陥の凝集体の存在しないパーフェクト領域である。なお、領域[P]のうち、臨界点を境にして格子間シリコン型点欠陥が優勢な側は領域[P]、空孔型点欠陥が優勢な側は領域[P]である。また、領域[P]に隣接する領域[V]にはOSF(Oxidation Induced Stacking Fault)核が形成されるOSF核形成領域が存在する。
 図1に示すように、単結晶の引き上げ速度を調整して、V/Gを(V/G)~(V/G)の範囲内に維持することにより、全体がパーフェクト領域[P]からなるシリコン単結晶インゴットが得られ、このインゴットから全面が無欠陥領域からなるウェーハを切り出すことができる。
 このウェーハにはCOP、転位クラスターおよびOSF核形成領域の結晶欠陥が含まれていないので、RTA処理およびポリシリコン層形成の後に施される酸素析出熱処理等でこれら欠陥が一部除去されずに残存するなどのおそれがなく、ウェーハ表層部に無欠陥層を安定して確保することができる。また、空孔を消滅させる格子間シリコン型点欠陥がほとんど含まれていないので、RTA処理で酸素析出に必要な空孔を効率的に注入することができる。
 このように本発明のシリコンウェーハの製造方法により得られたシリコンウェーハにおいては、前述のように、ウェーハの中心付近(ウェーハ表面から350~450μmの範囲内)および表面近傍(ウェーハ表面から50~150μmの範囲内)においてBMDが増加しており、半導体デバイスが形成されるウェーハの表層部では無欠陥層が形成されている。このウェーハは、半導体デバイス用の基板等の素材としてデバイス製造工程に移送され、同工程に伴う熱処理を受ける間に、ウェーハ内部では酸素析出が引き続き進行してBMD密度が増大し、ポリシリコン層による外部ゲッタリングに加えて内部ゲッタリングも施されることとなる。
 本発明のシリコンウェーハの製造方法においては、前述の一連の処理(RTA処理、酸化膜形成、ポリシリコン層形成およびウェーハ表面側ポリシリコン層の除去)の後、さらに、前記RTA処理における処理温度よりも低い温度で熱処理(この熱処理は、ウェーハ内部にBMDを析出させるので、「酸素析出熱処理」ともいう)を施し、ウェーハ表面に無欠陥層を形成するとともにウェーハ内部の空孔にBMDを析出させる実施の形態を採ることが望ましい。
 この酸素析出熱処理は、通常行われている方法に準じて行えばよい。例えば、後述する実施例で採用している条件、すなわち、熱処理炉内で、大気雰囲気下、1000℃で16時間加熱する熱処理を行うことにより、ウェーハ内部では酸素析出が促進されて高密度のBMDが形成される。また、ウェーハ表層部では、空孔を外方拡散させるとともに、注入される格子間シリコンによりCOPなどが除去されて無欠陥層が形成される。
 この酸素析出熱処理により、ウェーハ内部では酸素析出が促進されてBMD密度が増大し、ポリシリコン層による外部ゲッタリングに加えて、ゲッタリング能力の高い内部ゲッタリングが施されることとなる。一方、ウェーハ表層部では無欠陥層が形成される。したがって、デバイス製造工程での熱処理によらずに、外部ゲッタリングに加えて高い能力をもった内部ゲッタリングも施され、ウェーハ表層部には無欠陥層が形成されたシリコンウェーハが得られる。
 以上述べた本発明のシリコンウェーハの製造方法によれば、ウェーハ表層部に無欠陥層が形成され、ウェーハの裏面側へのポリシリコン層の形成による外部ゲッタリング、およびウェーハ内部におけるBMDの析出による内部ゲッタリングが施された、ウェーハ全体としてのゲッタリング能力を向上させたシリコンウェーハを製造することができる。
 本発明のシリコンウェーハは、高いゲッタリング能力を有するシリコンウェーハであって、本発明のシリコンウェーハの製造方法で製造されたことを特徴とするシリコンウェーハである。
 本発明のシリコンウェーハは、前述のとおり、ウェーハの裏面側に外部ゲッタリングサイトとして機能するポリシリコン層を有しており、ポリシリコン層の形成過程を経る間にウェーハの中心付近(ウェーハ表面から350~450μmの範囲内)および表面近傍(ウェーハ表面から50~150μmの範囲内)において、内部ゲッタリングサイトとして作用するBMDが形成されている。また、ウェーハの表層部では無欠陥層が形成されている。このウェーハは、デバイス製造の素材としてデバイス製造工程内で熱処理を施される間に、ウェーハ内部で酸素析出が引き続き進行してBMD密度が増大する。
 このように、本発明のシリコンウェーハは、外部ゲッタリングおよび内部ゲッタリングが施された、ウェーハ全体としてのゲッタリング能力の高いシリコンウェーハである。このうち、内部ゲッタリングサイトは、ウェーハがデバイス製造工程内で熱処理を施され、または酸素析出熱処理を行って、BMDを十分に析出させるまでは必ずしも十分ではないが、ポリシリコン層の形成による外部ゲッタリングサイトが、デバイス製造工程内での熱処理または酸素析出熱処理によってウェーハ内部にBMDが十分に形成されるまでの間のゲッタリングサイトとして機能する。
 本発明のシリコンウェーハが、無欠陥領域からなるウェーハであれば、素材段階からCOP、OSF核形成領域および転位クラスターの結晶欠陥が含まれていないので、これらの欠陥が一部残存するなどのおそれが全くない。また、前述のように、RTA処理で酸素析出に必要な空孔を効率的に注入することができるので、ウェーハ内部に高密度のBMDを析出させることが可能である。したがって、外部ゲッタリング能力を有するとともに、内部ゲッタリング能力の高いウェーハとしてデバイス製造に供することができる。
 本発明のシリコンウェーハが、酸素析出熱処理が施されたウェーハであれば、BMD密度が増大し、ポリシリコン層による外部ゲッタリングに加えて、ゲッタリング能力の高い内部ゲッタリングが施されており、ウェーハ全体として優れたゲッタリング能力を備えたウェーハである。
 直径200mmの無欠陥領域からなり、酸素濃度が11×1017atoms/cmおよび15×1017atoms/cm(ASTM F-121,1979)の2種類のシリコンウェーハを使用し、RTA処理炉を用いて窒化ガス雰囲気(NH0.5%を含むArガス)中でRTA処理を行った。続いて、ウェーハの両面に酸化膜を形成し、厚さ1.5μmのポリシリコン層を形成した後、ウェーハの表面側のポリシリコン層を除去した(除去厚さ15μm)。このウェーハにBMDを形成させる析出熱処理を施した後、ウェーハの断面を選択エッチングしてBMD密度を測定した。また、比較のため、RTA処理のみの場合(比較例1)、および、工程順を変えて、ポリシリコン層形成後にRTA処理した場合(比較例2)についても、同様の測定を行った。なお、酸素濃度が11×1017atoms/cmのシリコンウェーハは、本発明例、比較例1および比較例2において、それぞれ、サンプル3-1、サンプル1-1およびサンプル2-1とした。また、15×1017atoms/cmのシリコンウェーハは、本発明例、比較例1および比較例2において、それぞれ、サンプル3-2、サンプル1-2およびサンプル2-2とした。
 RTA処理にはランプアニール炉を使用した。表1に、昇温条件、成膜時の処理温度および時間ならびに降温条件等を示す。
Figure JPOXMLDOC01-appb-T000001
 酸化膜の形成(酸化膜付け)は、RTA処理後のシリコンウェーハの両面を6%フッ酸溶液でエッチングした後、酸素含有雰囲気(空気)中で、665℃で10分間加熱することにより行った。
 ポリシリコン層の形成においては、モノシランを原料として、CVD法によりシリコンウェーハの両面にポリシリコン層を形成した。表2に、酸化膜付けおよびポリシリコン層形成の際の実施条件を示す。
Figure JPOXMLDOC01-appb-T000002
 ウェーハ内部のBMD密度を測定するため、BMDを形成させる析出熱処理として、大気雰囲気下で、1000℃で16時間加熱する処理を行った。この析出処理により、ウェーハ内部に微小な酸素析出核が存在していた場合にはBMDとして検出可能なサイズにまで成長させることができる。
 BMD密度の測定は、シリコンウェーハをへき開し、へき開ウェーハの断面をSecco液で深さ2μmまで選択エッチングした後、ウェーハの表面近傍(ウェーハ表面から深さ方向に50~150μmの範囲内の部位)および中心付近(ウェーハ表面から深さ方向に350~450μmの範囲内の部位)の2箇所について顕微鏡で観察し、観察結果に基づいてBMD密度を算出することにより行った。
 表3にBMD密度の測定結果を示す。また、図2はこの測定結果を図示したものであり、本発明の製造方法により製造したシリコンウェーハにおけるBMD密度を比較例と対比して示す図である。
Figure JPOXMLDOC01-appb-T000003
 表3および図2に示したように、同一の酸素濃度で比較した場合、本発明例(サンプル3-1およびサンプル3-2:RTA処理→ポリシリコン層形成)では、比較例1(サンプル1-1およびサンプル1-2:RTA処理のみ)に比べて、ウェーハ表面近傍およびウェーハ中心付近のいずれにおいてもBMD密度が高かった。これは、ポリシリコン層形成工程でBMDの析出核が成長したことによるものと考えられる。ここで、酸素濃度が11×1017atoms/cmのサンプルのBMD密度よりも酸素濃度が15×1017atoms/cmのサンプルのBMD密度が高くなったのは、酸素濃度が高いほどウェーハ内部におけるBMDの析出核の数が多いためと考えられる。なお、比較例2(サンプル2-1およびサンプル2-2:ポリシリコン層形成→RTA処理)では、RTA処理過程においてポリシリコン層によって空孔がシリコンウェーハ内部に注入されることが妨げられ、さらに、ウェーハの両面にポリシリコン層を形成する過程でウェーハ内部に生成した酸素析出核がRTA処理によって消滅したため、11×1017atoms/cmおよび15×1017atoms/cmのいずれの酸素濃度においてもBMDは発生しなかった。
 上記調査により、本発明のシリコンウェーハの製造方法を適用することによって、ウェーハ表層部において無欠陥層を有するとともに、内部ゲッタリング能力を向上させたシリコンウェーハが得られることが確認できた。また、本発明では、RTA処理後のシリコンウェーハの両面もしくは裏面に酸化膜を形成した後にポリシリコン層を形成しているため、ウェーハの両面もしくは裏面に、単結晶シリコン層が形成されることなく支障なくポリシリコン層が形成されるので、内部ゲッタリングのみならずポリシリコン層による外部ゲッタリング効果が付与され、ゲッタリング能力がより高くなることが確認された。
 本発明のシリコンウェーハの製造方法によれば、表層部に無欠陥領域を有するとともに、外部ゲッタリングおよび内部ゲッタリングが施された、より高いゲッタリング能力を有するシリコンウェーハを製造することができる。外部ゲッタリングは、ウェーハの裏面側へのポリシリコン層の形成により付与される。内部ゲッタリングは、ポリシリコン層形成工程、さらに、その後の酸素析出熱処理または当該ウェーハが素材として供せられるデバイス製造工程での熱処理により付与される。本発明のシリコンウェーハは、本発明の製造方法で製造されたシリコンウェーハで、ウェーハ全体としてのゲッタリング能力を向上させたウェーハであり、半導体デバイス用の基板等に好適に使用することができる。
 したがって、本発明は、シリコンウェーハならびに半導体デバイスの製造において広く利用することができる。

Claims (9)

  1.  チョクラルスキー法により育成されたシリコン単結晶インゴットから切り出されたシリコンウェーハに対して、窒化ガス雰囲気中でRTA処理を施す工程と、
     前記RTA処理後のウェーハの両面に酸化膜を形成する工程と、
     前記酸化膜を形成したウェーハの両面にポリシリコン層を形成する工程と、
     前記ウェーハの両面に形成したポリシリコン層のうちの表面側のポリシリコン層を除去する工程と
    を有することを特徴とするシリコンウェーハの製造方法。
  2.  チョクラルスキー法により育成されたシリコン単結晶インゴットから切り出されたシリコンウェーハに対して、窒化ガス雰囲気中でRTA処理を施す工程と、
     前記RTA処理後のウェーハの裏面に酸化膜を形成する工程と、
     前記酸化膜を形成したウェーハの裏面にポリシリコン層を形成する工程と
    を有することを特徴とするシリコンウェーハの製造方法。
  3.  前記RTA処理を施すシリコンウェーハが無欠陥領域からなるウェーハであることを特徴とする請求項1または2に記載のシリコンウェーハの製造方法。
  4.  前記酸化膜を形成する工程が、ウェーハ表面をふっ酸で処理した後、当該ウェーハを酸化性雰囲気中で加熱する操作を含むことを特徴とする請求項1~3のいずれかに記載のシリコンウェーハの製造方法。
  5.  前記酸化膜を形成する工程が、ウェーハ表面を研磨した後、当該ウェーハを酸化性雰囲気中で加熱する操作を含むことを特徴とする請求項1~3のいずれかに記載のシリコンウェーハの製造方法。
  6.  請求項1~5のいずれかに記載の製造方法で製造されたシリコンウェーハに対して前記RTA処理における処理温度よりも低い温度で熱処理を施し、ウェーハ表面に無欠陥層を形成するとともに内部の空孔に酸素を析出させることを特徴とするシリコンウェーハの製造方法。
  7.  高いゲッタリング能力を有するシリコンウェーハであって、
     請求項1~6のいずれかに記載の製造方法で製造されたことを特徴とするシリコンウェーハ。
  8.  高いゲッタリング能力を有するシリコンウェーハであって、
     前記ウェーハ内部に半導体デバイスの製造工程で施される熱処理により酸素析出物層を形成する析出核と、
     前記ウェーハ裏面にポリシリコン層とを有することを特徴とするシリコンウェーハ。
  9.  高いゲッタリング能力を有するシリコンウェーハであって、
     前記ウェーハ内部に酸素析出物層と、
     前記ウェーハ裏面にポリシリコン層とを有することを特徴とするシリコンウェーハ。
PCT/JP2010/002613 2009-05-15 2010-04-09 シリコンウェーハおよびその製造方法 WO2010131412A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/266,159 US20120049330A1 (en) 2009-05-15 2010-04-09 Silicon wafer and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009118674 2009-05-15
JP2009-118674 2009-05-15

Publications (1)

Publication Number Publication Date
WO2010131412A1 true WO2010131412A1 (ja) 2010-11-18

Family

ID=43084798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002613 WO2010131412A1 (ja) 2009-05-15 2010-04-09 シリコンウェーハおよびその製造方法

Country Status (4)

Country Link
US (1) US20120049330A1 (ja)
JP (1) JP2010287885A (ja)
KR (1) KR20120023056A (ja)
WO (1) WO2010131412A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5583053B2 (ja) * 2011-02-28 2014-09-03 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハの熱処理方法
JP6100226B2 (ja) * 2014-11-26 2017-03-22 信越半導体株式会社 シリコン単結晶ウェーハの熱処理方法
KR101962174B1 (ko) * 2016-08-11 2019-03-26 에스케이실트론 주식회사 웨이퍼 제조방법
CN113496869A (zh) * 2020-04-03 2021-10-12 重庆超硅半导体有限公司 一种外延基底用硅晶片之背面膜层及制造方法
CN113793800B (zh) * 2021-08-18 2024-04-09 万华化学集团电子材料有限公司 一种半导体单晶硅片的除杂工艺及制造工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315144A (ja) * 1988-03-30 1989-12-20 Nippon Steel Corp ゲッタリング能力の優れたシリコンウェーハおよびその製造方法
JPH0574784A (ja) * 1991-09-17 1993-03-26 Mitsubishi Materials Corp シリコン基板の製造方法
JPH0951001A (ja) * 1995-08-04 1997-02-18 Hitachi Ltd 半導体ウエーハの製造方法
JP2000277525A (ja) * 1999-03-26 2000-10-06 Toshiba Ceramics Co Ltd 半導体用シリコンウエハ及びその製造方法
JP2003224130A (ja) * 2002-01-29 2003-08-08 Sumitomo Mitsubishi Silicon Corp シリコンウェーハの製造方法及びシリコンウェーハ
WO2006025409A1 (ja) * 2004-08-31 2006-03-09 Sumco Corporation シリコンエピタキシャルウェーハ及びその製造方法
JP2008016652A (ja) * 2006-07-06 2008-01-24 Shin Etsu Handotai Co Ltd シリコンウェーハの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189508A (en) * 1988-03-30 1993-02-23 Nippon Steel Corporation Silicon wafer excelling in gettering ability and method for production thereof
JP4720058B2 (ja) * 2000-11-28 2011-07-13 株式会社Sumco シリコンウェーハの製造方法
JP2003188176A (ja) * 2001-12-18 2003-07-04 Komatsu Electronic Metals Co Ltd シリコンウェーハおよびシリコンウェーハの製造方法
JP2006261632A (ja) * 2005-02-18 2006-09-28 Sumco Corp シリコンウェーハの熱処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315144A (ja) * 1988-03-30 1989-12-20 Nippon Steel Corp ゲッタリング能力の優れたシリコンウェーハおよびその製造方法
JPH0574784A (ja) * 1991-09-17 1993-03-26 Mitsubishi Materials Corp シリコン基板の製造方法
JPH0951001A (ja) * 1995-08-04 1997-02-18 Hitachi Ltd 半導体ウエーハの製造方法
JP2000277525A (ja) * 1999-03-26 2000-10-06 Toshiba Ceramics Co Ltd 半導体用シリコンウエハ及びその製造方法
JP2003224130A (ja) * 2002-01-29 2003-08-08 Sumitomo Mitsubishi Silicon Corp シリコンウェーハの製造方法及びシリコンウェーハ
WO2006025409A1 (ja) * 2004-08-31 2006-03-09 Sumco Corporation シリコンエピタキシャルウェーハ及びその製造方法
JP2008016652A (ja) * 2006-07-06 2008-01-24 Shin Etsu Handotai Co Ltd シリコンウェーハの製造方法

Also Published As

Publication number Publication date
KR20120023056A (ko) 2012-03-12
US20120049330A1 (en) 2012-03-01
JP2010287885A (ja) 2010-12-24

Similar Documents

Publication Publication Date Title
WO2010119614A1 (ja) アニールウエーハおよびアニールウエーハの製造方法ならびにデバイスの製造方法
TWI471940B (zh) Silicon substrate manufacturing method and silicon substrate
JP5251137B2 (ja) 単結晶シリコンウェーハおよびその製造方法
JP3381816B2 (ja) 半導体基板の製造方法
WO2010131412A1 (ja) シリコンウェーハおよびその製造方法
KR100847925B1 (ko) 어닐웨이퍼의 제조방법 및 어닐웨이퍼
JPH06295912A (ja) シリコンウエハの製造方法およびシリコンウエハ
JP2009170940A (ja) 半導体ウェーハの製造方法及び半導体ウェーハ
JP2006040980A (ja) シリコンウェーハおよびその製造方法
JPH11204534A (ja) シリコンエピタキシャルウェーハの製造方法
JP4035886B2 (ja) シリコンエピタキシャルウェーハとその製造方法
JP2011044505A (ja) シリコンエピタキシャルウェーハの製造方法
US11761118B2 (en) Carbon-doped silicon single crystal wafer and method for manufacturing the same
JP6317700B2 (ja) シリコンウェーハの製造方法
JP5211550B2 (ja) シリコン単結晶ウェーハの製造方法
JP2008227060A (ja) アニールウエハの製造方法
JPH06295913A (ja) シリコンウエハの製造方法及びシリコンウエハ
WO2021166895A1 (ja) 半導体シリコンウェーハの製造方法
JP5434239B2 (ja) シリコンウェーハの製造方法
TW201909246A (zh) 晶圓製造方法和晶圓
JPH0897222A (ja) シリコンウェーハの製造方法およびシリコンウェーハ
JPH09199507A (ja) 半導体基板およびその製造方法
WO2021166896A1 (ja) 半導体シリコンウェーハの製造方法
JP3944958B2 (ja) シリコンエピタキシャルウェーハとその製造方法
JP4069554B2 (ja) エピタキシャルシリコンウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774672

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13266159

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117028935

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10774672

Country of ref document: EP

Kind code of ref document: A1