WO2018034341A1 - 列車位置検出装置及び方法 - Google Patents

列車位置検出装置及び方法 Download PDF

Info

Publication number
WO2018034341A1
WO2018034341A1 PCT/JP2017/029633 JP2017029633W WO2018034341A1 WO 2018034341 A1 WO2018034341 A1 WO 2018034341A1 JP 2017029633 W JP2017029633 W JP 2017029633W WO 2018034341 A1 WO2018034341 A1 WO 2018034341A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
position detection
design standard
self
contained navigation
Prior art date
Application number
PCT/JP2017/029633
Other languages
English (en)
French (fr)
Inventor
広幸 小林
英明 行木
直人 瀬戸
雄史 鴨
蘇蘇 江
陽平 服部
Original Assignee
株式会社東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社東芝
Priority to US16/325,813 priority Critical patent/US11505223B2/en
Priority to EP17841562.6A priority patent/EP3502748B1/en
Priority to CN201780050658.5A priority patent/CN109642955B/zh
Publication of WO2018034341A1 publication Critical patent/WO2018034341A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal
    • B61L3/02Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control
    • B61L3/08Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically
    • B61L3/12Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0072On-board train data handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/22Multipath-related issues
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0244Accuracy or reliability of position solution or of measurements contributing thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/04Satellite based navigation systems, e.g. global positioning system [GPS]

Definitions

  • Embodiments of the present invention relate to a train position detection apparatus and method.
  • a position detection system that detects the position of a train using a GNSS (Global Navigation Satellite System) is installed on a railway vehicle
  • GNSS Global Navigation Satellite System
  • the present invention has been made in view of the above, and is a place where a direct wave of satellite positioning radio waves cannot be received when a position detection system must be provided on a train vehicle after vehicle authentication.
  • it is providing the train position detection apparatus and method which can suppress the fall of position accuracy.
  • the railway design standard storage unit of the train position detection apparatus stores in advance railroad design standards for the track on which the train travels.
  • the position detector receives the positioning radio waves from a plurality of satellites via the receiving antennas and detects the train position in parallel with the operation of detecting the train position based on the input signal from the autonomous navigation sensor. To detect. At this time, the position detection unit corrects the detection result of the train position by the positioning radio wave with the position detection result by the self-contained navigation when the detection result of the train position by the positioning radio wave does not satisfy the railway design standard. To do.
  • FIG. 1 is a schematic configuration block diagram (plan view) of the train position detection system of the embodiment.
  • FIG. 2 is a schematic configuration block diagram of the train position detection apparatus.
  • FIG. 3 is a processing flowchart of a GNSS positioning signal in the train position detection apparatus.
  • FIG. 4 is an explanatory diagram of setting the elevation angle range.
  • FIG. 5 is an overall processing flowchart in the arithmetic processing unit.
  • FIG. 1 is a schematic block diagram (plan view) of a train position detection system according to an embodiment.
  • the train position detection system 10 is disposed in each of the leading vehicle 11F and the trailing vehicle 11R of the train 11, and a GNSS receiving antenna 12 that outputs a GNSS (Global Navigation Satellite System) positioning signal corresponding to positioning radio waves, and will be described later.
  • a train position detection device 16 that calculates a position based on a GNSS positioning signal, a direction signal, an acceleration signal, an azimuth signal, and an attitude signal as input signals.
  • the train 11 includes an intermediate vehicle 11M.
  • FIG. 2 is a schematic configuration block diagram of the train position detection apparatus.
  • the train position detection device 16 is configured as a gyro sensor or the like, detects a moving direction of the train 11 and outputs a direction signal, and detects an acceleration of the train 11 to detect an acceleration signal.
  • an azimuth sensor 15 that is configured as a geomagnetic sensor or the like and detects the azimuth of the train 11 or the attitude (tilt) of the train 11 and outputs an azimuth signal and an attitude signal.
  • the train position detection device 16 mixes the high frequency amplification unit 21 that performs high frequency amplification of the GNSS positioning signal input via the GNSS receiving antenna 12 and the local oscillation frequency generated by the local oscillator 22 to generate an intermediate frequency signal.
  • a mixer 23 for converting the signal into the intermediate frequency an intermediate frequency amplifier 24 for amplifying the intermediate frequency signal output from the mixer 23, and an AD converter for performing analog / digital conversion of the amplified intermediate frequency signal output from the intermediate frequency amplifier 24.
  • 25 and a code correlator 26 that demodulates the C / A code based on the output data of the A / D converter 25 and controls the local oscillator 22.
  • the train position detection device 16 demodulates the navigation message data from the C / A code demodulated by the code correlation unit 26, calculates the orbit of the satellite and the position of the satellite, and thus the position of the GNSS receiving antenna 12, that is, the train 11
  • the position, speed and time of the leading vehicle 11F of the vehicle or the position, speed and time of the trailing vehicle 11R are obtained, and the position of the leading vehicle 11F of the train 11 is determined based on the input direction data, acceleration data, direction data and attitude data.
  • a railway design standard database (DB) 28 stored as a database.
  • the selection method of the satellite which is transmitting the radio wave for positioning used for the position detection of the train 11 in the train position detection device 16 will be described.
  • the train position detection system 10 is additionally installed later on the leading vehicle 11F and the trailing vehicle 11R constituting the train 11, and the GNSS receiving antenna 12 is, for example, It is installed around the driver's cab provided in each of the leading vehicle 11F and the trailing vehicle 11R (for example, in the vicinity of the front window).
  • the traveling direction front (in FIG. 1, in the train 11 that travels along the train traveling direction, with respect to the GNSS receiving antenna 12 installed around the cab of the leading vehicle 11 ⁇ / b> F, the traveling direction front (in FIG.
  • the positioning radio waves from (shown) are received as direct waves, but many satellite signals of reflected waves enter from the surroundings (especially in the left-right direction of the vehicle) other than in front of the leading vehicle 11F in the traveling direction.
  • FIG. 3 is a processing flowchart of a GNSS positioning signal in the train position detection apparatus.
  • the train position detection device 16 receives positioning radio waves from the satellite via the GNSS receiving antenna 12 (step S11).
  • the arithmetic processing unit 27 of the train position detection device 16 determines the radio field intensity of the positioning radio wave for each satellite, and whether or not it is equal to or greater than a predetermined radio field intensity threshold for determining whether or not it is sufficient for use in position calculation. Is determined (step S12).
  • step S12 If it is less than the predetermined radio field intensity threshold value in the determination in step S12 (step S12; No), the arithmetic processing unit 27 excludes the positioning radio waves of the satellite because they are not suitable for position measurement (step S13). ).
  • step S12 If it is determined in step S12 that the signal strength is equal to or greater than the predetermined radio wave intensity threshold (step S12; Yes), the arithmetic processing unit 27 calculates an approximate elevation angle at the current position of the satellite from the almanac data included in the positioning radio wave. (Step S14). Next, the calculation processing unit 27 of the GNSS position calculation device 13 determines whether or not the calculated elevation angle is included in a predetermined elevation angle range that can be a position calculation target (step S15).
  • FIG. 4 is an explanatory diagram of setting the elevation angle range.
  • the minimum elevation angle ⁇ 1 is set.
  • the maximum elevation angle ⁇ 2 is set in accordance with the opening of the front window (window glass in front of the cab) FW. Therefore, positioning radio waves of satellites having an elevation angle between the minimum elevation angle ⁇ 1 and the maximum elevation angle ⁇ 2 are targeted for position calculation.
  • step S15 when the calculated elevation angle is outside the predetermined elevation angle range that can be a position calculation target (step S15; No), the calculation processing unit 27 uses the positioning radio wave of the satellite for position measurement. Therefore, it is excluded (step S13), and the process proceeds to step S17.
  • step S15 when the calculated elevation angle is included within a predetermined elevation angle range that can be a position calculation target (step S15; Yes), the calculation processing unit 27 determines that the positioning radio wave of the satellite is the position Since it is considered suitable for measurement, the satellite is combined with positioning data (for example, radio wave intensity) and added to the list of position calculation target satellites (step S16). Next, the arithmetic processing unit 27 determines whether or not the processing is completed for the GNSS positioning signals corresponding to the positioning radio waves of all the received satellites (step S17).
  • positioning data for example, radio wave intensity
  • step S17 If it is determined in step S17 that the processing has not been completed for the GNSS positioning signals corresponding to the positioning radio waves of all the received satellites (step S17; No), the arithmetic processing unit 27 performs the processing in step S12. The same processing is performed thereafter.
  • step S17 when the processing is completed for the GNSS positioning signals corresponding to all the received satellites (step S17; Yes), the arithmetic processing unit 27 is added to the list of position calculation target satellites. The current position of the train is calculated using a GNSS positioning signal corresponding to the satellite positioning radio wave (step S18).
  • the arithmetic processing unit 27 of the train position detection device 16 provided in the cab of the leading vehicle 11F calculates the current position of the leading vehicle 11F using the GNSS positioning signal, and the cab of the trailing vehicle 11R.
  • the arithmetic processing unit 27 of the train position detection device 16 provided in the vehicle calculates the current position of the rear vehicle 11R using the GNSS positioning signal.
  • GNSS positioning radio waves are not always stably received by the surrounding environment.
  • the design standard of the installation of the track is determined based on the width between the wheels (between the gauges) and the traveling speed of the train.
  • railway design standards such as minimum curve radius (based on the maximum design speed and the main track, a curve with a turnout, or a curve along the station platform), relaxation curve, slack, cant, and gradient. It is fixed.
  • the railway design standard differs depending on the traveling speed of the vehicle 11 (train)
  • the railway design standard referred to in accordance with the detected traveling speed of the vehicle 11 is different.
  • the position calculation accuracy is reduced. It is assumed that the own vehicle position obtained by the GNSS positioning signal is corrected at the own vehicle position based on the self-contained navigation.
  • FIG. 5 is an overall processing flowchart in the arithmetic processing unit. The operation of the embodiment will be described below with reference to FIG. First, the arithmetic processing unit 27 performs position measurement according to the GNSS positioning signal processing flowchart shown in FIG. 3 using the GNSS positioning signal input via the GNSS receiving antenna 12, and calculates the current position of the train ( Step S21). Then, the current position calculated sequentially is stored as movement trajectory data.
  • the arithmetic processing unit 27 detects the linearity and the turning radius of the movement locus of the vehicle 11 based on the movement locus data obtained from the GNSS positioning signal (step S22). Subsequently, the arithmetic processing unit 27 refers to the railway design standard database 28 for the movement trajectory data obtained from the GNSS positioning signal (step S23).
  • the arithmetic processing unit 27 performs the position, speed, and moving direction of the vehicle 11 by the self-contained navigation method based on the input direction data, acceleration data, direction data, and attitude data. Then, posture measurement is performed (step S24).
  • the arithmetic processing unit 27 calculates movement trajectory data based on the input direction data, acceleration data, azimuth data, and attitude data, and refers to the railway design standard database 28 for the calculated movement trajectory data (step S25). ).
  • the arithmetic processing unit 27 determines whether the movement trajectory data obtained from the GNSS positioning signal is within the railway design standard based on the reference result of step S23, that is, whether the railway design standard is satisfied. (Step S26). Specifically, it is determined whether the curve radius satisfies the minimum curve radius corresponding to the speed of the vehicle 11, whether the track corresponding to the relaxation curve satisfies a predetermined railway design standard, or the like.
  • step S26 when the movement trajectory data obtained from the GNSS positioning signal is within the railway design standard (step S26; Yes), the arithmetic processing unit 27 performs the position measurement obtained from the GNSS positioning signal. The result is adopted as it is (step S30). And the arithmetic processing part 27 transfers a process again to step S21 and step S24, and performs a position measurement process similarly below.
  • step S26 when the movement trajectory data obtained from the GNSS positioning signal is outside the railway design standard, that is, when the railway design standard is not satisfied (step S26; No), the arithmetic processing unit 27 is Whether or not the movement trajectory data as the measurement result of the position, speed, movement direction and posture by the self-contained navigation method obtained in the processing of step S24 is within the railway design standard, that is, whether or not the railway design standard is satisfied. A determination is made (step S27).
  • the arithmetic processing unit 27 determines whether the curve radius satisfies the minimum curve radius corresponding to the speed of the vehicle 11, whether the track corresponding to the relaxation curve satisfies a predetermined railway design standard, Accordingly, it is determined whether a corresponding cant is provided, a gradient satisfying a predetermined railway design standard is detected, or the like.
  • step S27 the movement trajectory data as the measurement result of the position, speed, movement direction, and posture by the self-contained navigation method obtained in the process of step S24 is outside the railway design standard, that is, the railway design standard is satisfied. If not (step S27; No), the arithmetic processing unit 27 is obtained from the GNSS positioning signal because the GNSS position measurement result is considered to be more reliable than the position measurement result by the self-contained navigation method. The obtained position measurement result is adopted as it is (step S30).
  • the arithmetic processing part 27 transfers a process again to step S21 and step S24, and performs a position measurement process similarly below.
  • step S27 the movement trajectory data as the measurement result of the position, speed, movement direction, and posture by the self-contained navigation method obtained in the process of step S24 is within the railway design standard, that is, the railway design standard is determined.
  • step S27; Yes the arithmetic processing unit 27 corrects the position measurement result by GNSS with the position measurement result by the self-contained navigation method (step S28), and the corrected result is the position measurement result by GNSS. (Step S29).
  • the position measurement result by the GNSS in the section where the position measurement result by the GNSS does not satisfy the railway design standard is replaced with the position measurement result by the self-contained navigation method, and the position measurement result is adopted.
  • the result of simple averaging of the measurement results is adopted as the position measurement result, and the result of weighted averaging of each position measurement result based on the magnitude of the difference from the railway design standard is adopted as the position measurement result. Is possible.
  • the position measurement result is corrected by the position measurement result by the self-contained navigation method. Therefore, the accuracy of the position measurement result can be improved, and the train position can be specified more accurately.
  • the position measurement result by GNSS is correctly corrected with the position measurement result by the self-contained navigation method, and the accuracy of the position measurement result can be improved.
  • the train position can be specified accurately.
  • the train position detection system 10 (the train position detection device 16) has a hardware configuration using a control device such as an MPU and a normal computer including a storage device such as a ROM (Read Only Memory) and a RAM. Yes.
  • the program executed by the train position detection apparatus of the present embodiment is an installable or executable file, a semiconductor memory device such as a CD-ROM or USB memory, a flexible disk (FD), a CD-R, or a DVD. (Digital Versatile Disk) or the like may be recorded on a computer-readable recording medium and provided.
  • a semiconductor memory device such as a CD-ROM or USB memory, a flexible disk (FD), a CD-R, or a DVD. (Digital Versatile Disk) or the like may be recorded on a computer-readable recording medium and provided.
  • the program executed by the train position detection apparatus of the present embodiment may be stored on a computer connected to a network such as the Internet and provided by being downloaded via the network. Moreover, you may comprise so that the program performed with the train position detection apparatus of this embodiment may be provided or distributed via networks, such as the internet.
  • train position detection apparatus program of the present embodiment may be provided by being incorporated in advance in a ROM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

実施形態の列車位置検出装置の鉄道設計基準記憶部は、列車が走行する線路の鉄道設計基準を予め記憶する。そして、位置検出部は、複数の衛星から受信アンテナを介して測位用電波を受信して列車の位置を検出する動作と並行して自立航法センサからの入力信号に基づいて列車の位置を自立航法により検出する。この際に位置検出部は、測位用電波による列車の位置の検出結果が鉄道設計基準を満たしていない場合に、自立航法による位置の検出結果で測位用電波による列車の位置の検出結果を補正するので、列車の車両に車両の認証後に位置検出システムを設けなければならない場合に、衛星の測位用電波の直接波を受信できない場所であっても位置精度の低下を抑制することができる。

Description

列車位置検出装置及び方法
 本発明の実施形態は、列車位置検出装置及び方法に関する。
 GNSS(Global Navigation Satellite System)を用いて列車の位置検知を行う位置検知システムを鉄道車両に設置する場合、車両の認証時に装備されていなかったGNSSの受信アンテナを車両の屋根に装備することはできない。
 このため、車両の認証後に位置検知システムを導入しようとする場合には、室内にアンテナを設置することになり、屋根等の障害物により衛星を十分捕捉できない虞がある。
 結果として電波の受信状態が悪くなり、衛星数が足りない場合や反射波の影響を受け位置精度が低下することが多かった。駅でも屋根がある場所が多いため衛星による位置精度が低くなることが多い。
特開2003-294825号公報
 このため、障害物により衛星を十分捕捉できない場所、特に駅やトンネルなどにおいては、衛星の測位用電波の直接波を受信できず、十分な衛星数と電波強度を得られずに位置精度が低下することとなっていた。
 そこで、本発明は、上記に鑑みてなされたものであって、列車の車両に車両の認証後に位置検出システムを設けなければならない場合に、衛星の測位用電波の直接波を受信できない場所であっても位置精度の低下を抑制することが可能な列車位置検出装置及び方法を提供することにある。
 実施形態の列車位置検出装置の鉄道設計基準記憶部は、列車が走行する線路の鉄道設計基準を予め記憶する。そして、位置検出部は、複数の衛星から受信アンテナを介して測位用電波を受信して列車の位置を検出する動作と並行して自立航法センサからの入力信号に基づいて列車の位置を自立航法により検出する。
 この際に位置検出部は、測位用電波による列車の位置の検出結果が鉄道設計基準を満たしていない場合に、自立航法による位置の検出結果で測位用電波による前記列車の位置の検出結果を補正する。
図1は、実施形態の列車位置検出システムの概要構成ブロック図(平面図)である。 図2は、列車位置検出装置の概要構成ブロック図である。 図3は、列車位置検出装置におけるGNSS測位用信号の処理フローチャートである。 図4は、仰角範囲の設定の説明図である。 図5は、演算処理部における全体処理フローチャートである。
 次に図面を参照して実施形態について説明する。
[1]実施形態
 図1は、実施形態の列車位置検出システムの概要構成ブロック図(平面図)である。
 列車位置検出システム10は、列車11の先頭車両11F及び後尾車両11Rのそれぞれに配置され、測位用電波に対応するGNSS(Global Navigation Satellite System)測位用信号を出力するGNSS受信アンテナ12と、後述する入力信号としてのGNSS測位用信号、方向信号、加速度信号、方位信号及び姿勢信号に基づいて位置算出を行う列車位置検出装置16と、を備えている。
 ここで、列車11は、中間車両11Mを備えている。
 図2は、列車位置検出装置の概要構成ブロック図である。
 列車位置検出装置16には、図2に示すように、ジャイロセンサ等として構成され列車11の移動方向を検出して方向信号を出力する方向センサ13と、列車11の加速度を検出して加速度信号を出力する加速度センサ14と、地磁気センサ等として構成され列車11の方位あるいは列車11の姿勢(傾き)を検出して方位信号及び姿勢信号を出力する方位センサ15と、が接続されている。
 そして、列車位置検出装置16は、GNSS受信アンテナ12を介して入力されるGNSS測位用信号の高周波増幅を行う高周波増幅部21と、局部発振器22が生成した局部発振周波数と混合して中間周波数信号に変換するミキサ23と、ミキサ23の出力した中間周波数信号の増幅を行う中間周波増幅部24と、中間周波増幅部24の出力した増幅中間周波数信号のアナログ/ディジタル変換を行うA-D変換器25と、A-D変換器25の出力データに基づいてC/Aコードの復調を行うとともに、局部発振器22の制御を行うコード相関部26と、を備えている。
 さらに列車位置検出装置16は、コード相関部26が復調したC/Aコードから航法メッセージデータを復調し、衛星の軌道演算及び衛星の位置を演算してGNSS受信アンテナ12の位置、すなわち、列車11の先頭車両11Fの位置、速度及び時刻あるいは後尾車両11Rの位置、速度及び時刻を求めるとともに、入力された方向データ、加速度データ、方位データ及び姿勢データに基づいて、列車11の先頭車両11Fの位置、速度、方位及び車両の傾斜あるいは後尾車両11Rの位置、速度、方位及び車両の傾斜を求め、通信ラインを介して、列車制御装置に通知する演算処理部27と、予め鉄道の線路設計基準をデータベースとして格納した鉄道設計基準データベース(DB)28と、を備えている。
 まず、列車位置検出装置16における列車11の位置検出に用いる測位用電波を送信している衛星の選択方法について説明する。
 この場合において、列車位置検出システム10は、列車11を構成している先頭車両11F及び後尾車両11Rに対して後から追加して設置されることを前提としており、GNSS受信アンテナ12は、例えば、先頭車両11F及び後尾車両11Rのそれぞれに設けられた運転台の周辺(例えば、フロントウィンドウの近傍)に設置される。
 ここで、図1に示すように、列車進行方向に沿って進む列車11において、先頭車両11Fの運転台周辺に設置したGNSS受信アンテナ12に対して、進行方向前方(図1中、破線三角形で示す)からの測位用電波は、直接波として受信されるが、先頭車両11Fの進行方向前方以外の周囲(特に車両の左右方向)からは、反射波の衛星信号が多く入ることとなる。
 特に列車の場合には急に曲がるような曲率を有するカーブは存在しないため、線路の前方には、障害物が少ない。
 これに対して線路上を走る列車では左右の幅は比較的狭くても問題がないため、周囲に位置する建物や壁からの反射での測位用電波が入射する可能性は高い。
 そこで、本実施形態においては、直接波を受信可能な衛星のみを選択し、位置検出を行うようにしている。
 図3は、列車位置検出装置におけるGNSS測位用信号の処理フローチャートである。
 まず、列車位置検出装置16は、GNSS受信アンテナ12を介して衛星から測位用電波を受信する(ステップS11)。
 列車位置検出装置16の演算処理部27は、衛星毎に測位用電波の電波強度を判定し、位置計算に用いるのに十分か否かを判別するための所定の電波強度閾値以上であるか否かを判別する(ステップS12)。
 ステップS12の判別において、所定の電波強度閾値未満である場合には(ステップS12;No)、演算処理部27は、当該衛星の測位用電波は、位置測定に適していないため除外する(ステップS13)。
 ステップS12の判別において、所定の電波強度閾値以上である場合には(ステップS12;Yes)、演算処理部27は、測位用電波に含まれるアルマナックデータから当該衛星の現在位置におけるおおよその仰角を算出する(ステップS14)。
 次にGNSS位置演算装置13の演算処理部27は、算出した仰角が位置演算対象となり得る所定の仰角範囲内に含まれているか否かを判別する(ステップS15)。
 図4は、仰角範囲の設定の説明図である。
 車両の運転室内に設置されたGNSS受信アンテナ12に対し、図4に示すように、仰角が小さすぎる(水平線に近すぎる)と位置精度が低下する可能性が高いため、最小仰角θ1を設定するとともに、フロントウィンドウ(運転台前方の窓ガラス)FWの開口に合わせた最大仰角θ2を設定している。したがって、この最小仰角θ1~最大仰角θ2の間の仰角を有する衛星の測位用電波を位置演算対象としている。
 ステップS15の判別において、算出した仰角が位置演算対象となり得る所定の仰角範囲外である場合には(ステップS15;No)、演算処理部27は、当該衛星の測位用電波は、位置測定に適していないため除外し(ステップS13)、処理をステップS17に移行する。
 ステップS15の判別において、算出した仰角が位置演算対象となり得る所定の仰角範囲内に含まれている場合には(ステップS15;Yes)、演算処理部27は、当該衛星の測位用電波は、位置測定に適していると考えられるので、当該衛星を測位用データ(例えば、電波強度)と組みにして位置算出対象衛星のリストに追加する(ステップS16)。
 次に演算処理部27は、受信した全ての衛星の測位用電波に対応するGNSS測位用信号について処理が完了したか否かを判別する(ステップS17)。
 ステップS17の判別において、未だ受信した全ての衛星の測位用電波に対応するGNSS測位用信号について処理が完了していない場合には(ステップS17;No)、演算処理部27は、処理をステップS12に移行して、以下同様の処理を行う。
 ステップS17の判別において、受信した全ての衛星に対応するGNSS測位用信号について処理が完了した場合には(ステップS17;Yes)、演算処理部27は、位置算出対象衛星のリストに追加されている衛星の測位用電波に対応するGNSS測位用信号を用いて、列車の現在位置を算出する(ステップS18)。
 具体的には、先頭車両11Fの運転室に設けられた列車位置検出装置16の演算処理部27は、GNSS測位用信号を用いて先頭車両11Fの現在位置を算出し、後尾車両11Rの運転室に設けられた列車位置検出装置16の演算処理部27は、GNSS測位用信号を用いて後尾車両11Rの現在位置を算出することとなる。
 GNSS測位用電波は、上述したように周囲環境により安定して受信できるとは限らない。
 ところで、鉄道においては、車輪間の幅(軌間)及び列車の走行速度に基づいて線路の設置の設計基準が定まっている。
 具体的には、最小曲線半径(設計最高速度及び本線路、分岐器付帯曲線あるいは駅ホームに沿った曲線のいずれであるかに基づく)、緩和曲線、スラック、カント、勾配等の鉄道設計基準が定まっている。
 ここで、鉄道設計基準は、車両11(列車)の走行速度により異なるので、検出した車両11の走行速度に従って参照する鉄道設計基準は異なる。
 そこで、本実施形態においては、GNSS測位用信号を用いて得られた車両11の移動軌跡が、鉄道の設計基準に則って得られる情報に対して逸脱しているか否か、すなわち、鉄道の設計基準からあり得る移動軌跡か否かを判別し、GNSS測位用信号により得られる自車両の移動軌跡が鉄道の設計基準に対して想定されない移動軌跡である場合には、位置演算精度が低下しているものとして、自立航法に基づく自車両位置でGNSS測位用信号により得られる自車両位置を補正するようにしている。
 図5は、演算処理部における全体処理フローチャートである。
 以下、図5を参照して実施形態の動作を説明する。
 まず演算処理部27は、GNSS受信アンテナ12を介して入力されたGNSS測位用信号を用いて図3に示したGNSS測位用信号の処理フローチャートにしたがって位置計測を行い列車の現在位置を算出する(ステップS21)。
 そして、順次算出した現在位置を移動軌跡データとして記憶する。
 続いて演算処理部27は、GNSS測位用信号により得られた移動軌跡データに基づいて車両11の移動軌跡の直線性及び回転半径を検出する(ステップS22)。
 続いて、演算処理部27は、GNSS測位用信号により得られた移動軌跡データについて鉄道設計基準データベース28を参照する(ステップS23)。
 上記ステップS21~ステップS23の処理と並行して、演算処理部27は、入力された方向データ、加速度データ、方位データ及び姿勢データに基づいて、自立航法方式により車両11の位置、速度、移動方向及び姿勢計測を行う(ステップS24)。
 続いて、演算処理部27は、入力された方向データ、加速度データ、方位データ及び姿勢データに基づいて移動軌跡データを算出し、算出した移動軌跡データについて鉄道設計基準データベース28を参照する(ステップS25)。
 これにより、演算処理部27は、ステップS23の参照結果に基づいてGNSS測位用信号により得られた移動軌跡データについて鉄道設計基準内であるか、すなわち、鉄道設計基準を満たしているか否かを判別する(ステップS26)。
 具体的には、曲線半径が車両11の速度に応じた最小曲線半径を満たしているか、緩和曲線に対応するとされる線路が所定の鉄道設計基準を満たしているか等を判別する。
 ステップS26の判別において、GNSS測位用信号により得られた移動軌跡データについて鉄道設計基準内である場合には(ステップS26;Yes)、演算処理部27は、GNSS測位用信号により得られた位置計測結果をそのまま採用する(ステップS30)。
 そして、演算処理部27は、処理を再びステップS21、ステップS24に移行して、以下同様に位置計測処理を行う。
 ステップS26の判別において、GNSS測位用信号により得られた移動軌跡データについて鉄道設計基準外である場合、すなわち、鉄道設計基準を満たしていない場合には(ステップS26;No)、演算処理部27は、ステップS24の処理において求めた自立航法方式による位置、速度、移動方向及び姿勢についての計測結果としての移動軌跡データについて鉄道設計基準内であるか、すなわち、鉄道設計基準を満たしているか否かを判別する(ステップS27)。
 具体的には、演算処理部27は、曲線半径が車両11の速度に応じた最小曲線半径を満たしているか、緩和曲線に対応するとされる線路が所定の鉄道設計基準を満たしているか、曲線に応じて対応するカントが設けられているか、所定の鉄道設計基準を満たす勾配が検出されているか等を判別する。
 ステップS27の判別において、ステップS24の処理において求めた自立航法方式による位置、速度、移動方向及び姿勢についての計測結果としての移動軌跡データについて鉄道設計基準外である、すなわち、鉄道設計基準を満たしていない場合には(ステップS27;No)、演算処理部27は、自立航法方式による位置計測結果よりもGNSSによる位置計測結果の方が信頼性が高いと考えられるので、GNSS測位用信号により得られた位置計測結果をそのまま採用する(ステップS30)。
 そして、演算処理部27は、処理を再びステップS21、ステップS24に移行して、以下同様に位置計測処理を行う。
 一方、ステップS27の判別において、ステップS24の処理において求めた自立航法方式による位置、速度、移動方向及び姿勢についての計測結果としての移動軌跡データについて鉄道設計基準内である、すなわち、鉄道設計基準を満たしている場合には(ステップS27;Yes)、演算処理部27は、GNSSによる位置計測結果を自立航法方式による位置計測結果で補正し(ステップS28)、補正した結果を、GNSSによる位置計測結果として採用する(ステップS29)。
 具体的な補正方法としては、GNSSによる位置計測結果が鉄道設計基準を満たしていない区間のGNSSによる位置計測結果を自立航法方式による位置計測結果で置換して位置計測結果として採用したり、両位置計測結果を単純平均した結果を位置計測結果として採用したり、それぞれの位置計測結果に鉄道設計基準との差の大きさに基づいて重み付けをして加重平均した結果を位置計測結果として採用したりすることが可能である。
 以上の説明のように、本実施形態によれば、所定の鉄道設計基準を満たしていないGNSSによる位置計測結果が得られた場合には、自立航法方式による位置計測結果により位置計測結果を補正するので、位置計測結果の精度向上が図れ、より正確に列車位置を特定することができる。
[2]実施形態の変形例
 上記実施形態においては、GNSSによる位置計測結果が所定の鉄道設計基準を満たさなかった場合にその都度、自立航法方式による位置計測結果により位置計測結果を補正する構成としていたが、線路は所定の位置に設置されているため、基本的に毎回同様の場所でGNSSによる位置計測結果が所定の鉄道設計基準を満たさなくなる可能性が高い。
 そこで、過去の補正履歴から自立航法方式による位置計測結果により位置計測結果を補正した場所を列車が運行する場合には、過去の列車の走行履歴に基づいて、当該場所に至ったことを検出し、当該場所において自立航法方式による位置計測結果により位置計測結果を補正する構成とすることも可能である。
 上記実施形態においては、軌間については考慮していなかったが、軌間が変更される区間を同一の車両が走行する場合、軌間によって鉄道設計基準が異なることとなる。
 そこで、鉄道設計基準データベース28に予め複数の軌間に対応する鉄道設計基準を記憶しておき、GNSSによる位置計測結果あるいはGNSSによる位置計測結果を自立航法方式による位置計測結果で補正した結果により軌間が変更される区間に車両11が移動したことを検出した場合には、参照する鉄道設計基準を変更し、対応する軌間の鉄道設計基準にしたがって同様に処理を行うように構成することが可能である。
 このように構成することにより、運行区間の途中で軌間が異なる場合であっても、GNSSによる位置計測結果を自立航法方式による位置計測結果で正しく補正し、位置計測結果の精度向上が図れ、より正確に列車位置を特定することができる。
 列車位置検出システム10(の列車位置検出装置16)は、MPUなどの制御装置と、ROM(Read Only Memory)やRAMなどの記憶装置等を備えた通常のコンピュータを利用したハードウェア構成となっている。
 本実施形態の列車位置検出装置で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、USBメモリ等の半導体メモリ装置、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供されるようにしてもよい。
 また、本実施形態の列車位置検出装置で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の列車位置検出装置で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
 また、本実施形態の列車位置検出装置のプログラムを、ROM等に予め組み込んで提供するように構成してもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (6)

  1.  複数の衛星から受信アンテナを介して測位用電波を受信して列車の位置を検出する列車位置検出装置であって、
     前記列車が走行する線路の鉄道設計基準を予め記憶する鉄道設計基準記憶部と、
     自立航法センサからの入力信号に基づいて前記列車の位置を自立航法により検出する位置検出部と、を備え、
     前記位置検出部は、前記測位用電波による前記列車の位置の検出結果が前記鉄道設計基準を満たしていない場合に、前記自立航法による位置の検出結果で前記測位用電波による前記列車の位置の検出結果を補正する、
     列車位置検出装置。
  2.  前記位置検出部は、前記列車の位置の検出結果が前記鉄道設計基準を満たしていない場合、かつ、前記自立航法による位置の検出結果が前記鉄道設計基準を満たしている場合に
    前記自立航法による位置の検出結果で前記測位用電波による前記列車の位置の検出結果を補正する、
     請求項1記載の列車位置検出装置。
  3.  前記位置検出部は、前記列車の速度に従って対応する前記鉄道設計基準を参照する、
     請求項1記載の列車位置検出装置。
  4.  前記位置検出部は、過去の列車の走行履歴に基づいて、列車の位置の検出結果が前記鉄道設計基準を満たさない場所に至ったことを検出し、当該場所において自立航法方式による位置計測結果により位置計測結果を補正する、
     請求項1記載の列車位置検出装置。
  5.  前記自立航法センサからの入力信号は、方向信号、加速度信号、方位信号あるいは姿勢信号を含む、
     請求項1記載の列車位置検出装置。
  6.  列車が走行する線路の鉄道設計基準を予め記憶する鉄道設計基準記憶部を有し、前記列車の位置を検出する列車位置検出装置で実行される方法であって、
     複数の衛星から受信アンテナを介して測位用電波を受信して前記列車の位置を検出する過程と、
     自立航法センサからの入力信号に基づいて前記列車の位置を自立航法により検出する過程と、
     前記測位用電波による前記列車の位置の検出結果が前記鉄道設計基準を満たしていない場合に、前記自立航法による位置の検出結果で前記測位用電波による前記列車の位置の検出結果を補正する過程と、
     を備えた方法。
PCT/JP2017/029633 2016-08-19 2017-08-18 列車位置検出装置及び方法 WO2018034341A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/325,813 US11505223B2 (en) 2016-08-19 2017-08-18 Train position detection apparatus and method
EP17841562.6A EP3502748B1 (en) 2016-08-19 2017-08-18 Train position detection device and method
CN201780050658.5A CN109642955B (zh) 2016-08-19 2017-08-18 列车位置检测装置以及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-161468 2016-08-19
JP2016161468A JP6822800B2 (ja) 2016-08-19 2016-08-19 列車位置検出装置及び方法

Publications (1)

Publication Number Publication Date
WO2018034341A1 true WO2018034341A1 (ja) 2018-02-22

Family

ID=61196825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029633 WO2018034341A1 (ja) 2016-08-19 2017-08-18 列車位置検出装置及び方法

Country Status (5)

Country Link
US (1) US11505223B2 (ja)
EP (1) EP3502748B1 (ja)
JP (1) JP6822800B2 (ja)
CN (1) CN109642955B (ja)
WO (1) WO2018034341A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019221081A (ja) * 2018-06-21 2019-12-26 株式会社東芝 計測装置
WO2021235178A1 (ja) * 2020-05-22 2021-11-25 株式会社 東芝 位置測位装置、速度計測装置、及び位置測位方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189157A (ja) * 2018-04-27 2019-10-31 株式会社東芝 鉄道用走行位置検知装置及び方法
JP7328905B2 (ja) * 2020-01-17 2023-08-17 株式会社日立製作所 センシングシステム及びセンシング制御方法
JP2021190850A (ja) 2020-05-29 2021-12-13 株式会社東芝 監視装置、及び監視方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867122A (en) * 1996-10-23 1999-02-02 Harris Corporation Application of GPS to a railroad navigation system using two satellites and a stored database
JP2001010524A (ja) * 1999-06-29 2001-01-16 Honda Motor Co Ltd 走行車両の挙動予測装置
JP2006069306A (ja) * 2004-08-31 2006-03-16 Takahagi Jiko:Kk 軌道レール保守システムおよび軌道レール保守方法
JP2008247245A (ja) * 2007-03-30 2008-10-16 Kyosan Electric Mfg Co Ltd 列車位置異常検知システム
JP2012208033A (ja) * 2011-03-30 2012-10-25 Mitsubishi Electric Corp 航法計算システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294622A (ja) * 1994-04-21 1995-11-10 Japan Radio Co Ltd 列車位置測定方法
JPH09198360A (ja) 1996-01-18 1997-07-31 Shimadzu Corp プロセス制御装置
KR100742967B1 (ko) * 2001-04-09 2007-07-25 주식회사 포스코 디지피에스 정보 및 철도 선로 정보를 이용한 철도차량위치 추적장치 및 방법
JP3816018B2 (ja) * 2002-03-28 2006-08-30 財団法人鉄道総合技術研究所 列車自車位置検出方法、及び列車自車位置検出システム
JP2004271255A (ja) * 2003-03-06 2004-09-30 Railway Technical Res Inst 列車自車位置検出方法、及び列車自車位置検出システム
JP4426874B2 (ja) * 2004-03-02 2010-03-03 三菱電機株式会社 列車位置検出管理用の運行サーバ及び列車位置検出管理用の車載機器
JP4345545B2 (ja) 2004-03-31 2009-10-14 横河電機株式会社 シミュレーション装置
JP5244490B2 (ja) 2008-07-28 2013-07-24 独立行政法人交通安全環境研究所 Gps位置特定装置及びそのための方法
JP2010163118A (ja) 2009-01-19 2010-07-29 Toshiba Corp 列車位置検知システム
US8296065B2 (en) 2009-06-08 2012-10-23 Ansaldo Sts Usa, Inc. System and method for vitally determining position and position uncertainty of a railroad vehicle employing diverse sensors including a global positioning system sensor
RU2584957C2 (ru) * 2010-07-12 2016-05-20 Телеспацио С.П.А Система для определения местонахождения поездов с проверкой в режиме реального времени достоверности оценки положения
US9266543B2 (en) * 2010-12-07 2016-02-23 Mitsubishi Electric Corporation Train protection device and train position decision method
JP5452569B2 (ja) * 2011-11-07 2014-03-26 三菱電機株式会社 列車位置確定装置および列車位置確定方法
JP5990502B2 (ja) 2013-10-11 2016-09-14 Mywayプラス株式会社 電力機器の制御装置、制御システム、制御方法および制御プログラム
KR101535873B1 (ko) * 2013-11-29 2015-07-24 현대모비스 주식회사 위성측위시스템과 추측 항법을 융합한 차량 위치 추정 시스템 및 방법
JP6239160B2 (ja) * 2015-01-28 2017-11-29 三菱電機株式会社 列車位置検知装置
JP7016276B2 (ja) * 2018-03-05 2022-02-04 株式会社日立製作所 列車位置推定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867122A (en) * 1996-10-23 1999-02-02 Harris Corporation Application of GPS to a railroad navigation system using two satellites and a stored database
JP2001010524A (ja) * 1999-06-29 2001-01-16 Honda Motor Co Ltd 走行車両の挙動予測装置
JP2006069306A (ja) * 2004-08-31 2006-03-16 Takahagi Jiko:Kk 軌道レール保守システムおよび軌道レール保守方法
JP2008247245A (ja) * 2007-03-30 2008-10-16 Kyosan Electric Mfg Co Ltd 列車位置異常検知システム
JP2012208033A (ja) * 2011-03-30 2012-10-25 Mitsubishi Electric Corp 航法計算システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3502748A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019221081A (ja) * 2018-06-21 2019-12-26 株式会社東芝 計測装置
JP7114363B2 (ja) 2018-06-21 2022-08-08 株式会社東芝 計測装置
WO2021235178A1 (ja) * 2020-05-22 2021-11-25 株式会社 東芝 位置測位装置、速度計測装置、及び位置測位方法

Also Published As

Publication number Publication date
CN109642955A (zh) 2019-04-16
US20190185033A1 (en) 2019-06-20
EP3502748A1 (en) 2019-06-26
EP3502748A4 (en) 2020-04-22
JP2018028516A (ja) 2018-02-22
EP3502748B1 (en) 2023-06-21
US11505223B2 (en) 2022-11-22
CN109642955B (zh) 2023-07-28
JP6822800B2 (ja) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2018034341A1 (ja) 列車位置検出装置及び方法
US20210165104A1 (en) Method and device for detecting correction information for an antenna of a vechicle
US11287524B2 (en) System and method for fusing surrounding V2V signal and sensing signal of ego vehicle
US20190302272A1 (en) Global Navigation Satellite System (GNSS) Spoofing Detection & Mitigation
KR102263185B1 (ko) 차량의 위치 결정 방법
KR101041850B1 (ko) 이동형 위성추적시스템 및 방법
JP5973024B1 (ja) 位置検出装置
US9050983B2 (en) Onboard apparatus and train-position calculation method
JPWO2007043479A1 (ja) レーダ装置
US11046341B2 (en) Satellite positioning apparatus and train control system capable of determining accurate and limited position range of moving object
JP2019189157A (ja) 鉄道用走行位置検知装置及び方法
JP2012112738A (ja) 追尾装置及び追尾方法
JP5605539B2 (ja) 移動体位置推定追尾装置、移動体位置推定追尾方法、及び移動体位置推定追尾プログラム
JP4931748B2 (ja) 列車位置検知装置および移動無線機
CN110914710B (zh) 位置检测系统
JPH07294622A (ja) 列車位置測定方法
JP2007271584A (ja) 方位角度検出方法
JP2008089309A (ja) 位置情報取得装置、位置情報取得方法、および、端末装置用プログラム
JP2016217710A (ja) 列車位置検知装置、及び方法
JP4657050B2 (ja) 速度ベクトル決定システム
KR102678989B1 (ko) V2x 및 센서 기반 포지셔닝 장치 및 방법
KR20090049501A (ko) 차량의 위치 보정 방법 및 장치
JP4662158B2 (ja) 自車位置判定装置
JP5479761B2 (ja) 車載用モノパルス式レーダ装置
JP4530929B2 (ja) 現在位置算出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017841562

Country of ref document: EP

Effective date: 20190319