WO2021235178A1 - 位置測位装置、速度計測装置、及び位置測位方法 - Google Patents

位置測位装置、速度計測装置、及び位置測位方法 Download PDF

Info

Publication number
WO2021235178A1
WO2021235178A1 PCT/JP2021/016574 JP2021016574W WO2021235178A1 WO 2021235178 A1 WO2021235178 A1 WO 2021235178A1 JP 2021016574 W JP2021016574 W JP 2021016574W WO 2021235178 A1 WO2021235178 A1 WO 2021235178A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
vehicle
unit
speed
satellite
Prior art date
Application number
PCT/JP2021/016574
Other languages
English (en)
French (fr)
Inventor
達哉 大嶽
広幸 小林
直人 瀬戸
世支明 山崎
雄介 高橋
紀康 加藤
陽平 服部
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to EP21807624.8A priority Critical patent/EP4155780A1/en
Priority to CN202180037131.5A priority patent/CN115667998A/zh
Publication of WO2021235178A1 publication Critical patent/WO2021235178A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/28Satellite selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/396Determining accuracy or reliability of position or pseudorange measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/52Determining velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/04Satellite based navigation systems, e.g. GPS

Definitions

  • An embodiment of the present invention relates to a positioning device, a speed measuring device, and a positioning method.
  • the measurement accuracy is up to ⁇ 10 m due to problems such as multipath in the environment along railway lines, and it is suitable for autonomous driving.
  • the measurement accuracy will be low.
  • underpasses such as tunnels and bridge station buildings, and underground sections.
  • a positioning device capable of further improving the measurement accuracy.
  • the positioning device is a positioning device for positioning the position of the vehicle, and includes a first positioning unit, a second positioning unit, and a discrimination unit.
  • the first positioning unit receives the positioning signal from the satellite and positions the first position of the vehicle.
  • the second positioning unit positions the second position of the vehicle based on the output of the self-sustaining positioning sensor.
  • the discriminating unit sets the second position as the position of the vehicle when the first position is in the range based on the predetermined position and when the change in the traveling direction of the vehicle is at least one of the cases where the change is a predetermined amount.
  • the outline block diagram of the traveling position detection system 10 which concerns on 1st Embodiment.
  • the processing flowchart of the positioning signal calculation processing unit of 1st Embodiment. The figure which shows typically the processing environment when an invisible area is set. Processing flowchart of star reception control processing and self-sustaining measurement switching discrimination processing (No. 1).
  • the flowchart of the branch process D Processing flowchart of satellite reception control processing and self-sustaining measurement switching discrimination processing (Part 2).
  • Part 2 Processing flowchart of satellite reception control processing and self-sustaining measurement switching discrimination processing (Part 2).
  • Part 2 Processing flowchart of satellite reception control processing and self-sustaining measurement switching discrimination processing (Part 2).
  • Part 2 The figure which shows typically the processing environment when the invisible region is detected by the radio wave signal for positioning.
  • the flowchart of another branch process D The flowchart when the process shown in FIG. 10 is used.
  • FIG. 13 The figure which shows typically the processing environment when switching to an invisible region by the information of a map data and a radio wave signal for positioning.
  • FIG. 13 Processing flowchart when the process shown in FIG. 13 is used.
  • Explanatory drawing of elevation angle control The processing flowchart of the running state determination processing unit.
  • the processing flowchart of the vehicle course prediction calculation unit (No. 1).
  • FIG. 1 is a schematic block diagram of the traveling position detection system 10 according to the first embodiment.
  • the traveling position detection system 10 is mounted on a railroad vehicle 11 and is based on positioning radio signals SX1 to SX4 transmitted from transmitters of artificial satellites (hereinafter sometimes referred to as positioning satellites) 12-1 to 12-4. It is possible to perform positioning.
  • the traveling position detection system 10 includes a reception antenna device 13, an external device 14, and a reception calculation processing device (position positioning device) 15.
  • n may be a natural number of 5 or more.
  • the receiving antenna device 13 is an antenna device capable of receiving the radio wave signals SX1 to SX4 for positioning.
  • the external device 14 is a device that controls the traveling of the railway vehicle 11 based on the positioning result, and is, for example, a train integrated management device (TCMS), a driver support control device for automatic driving, and an on-vehicle monitor.
  • the reception calculation processing device 15 performs positioning processing based on the positioning radio wave signals SX1 to SX4 output by the receiving antenna device 13, and outputs the positioning result to the external device 14.
  • FIG. 2 is a block diagram showing a configuration example of the reception arithmetic processing unit 15 according to the first embodiment.
  • the reception calculation processing unit 15 includes a positioning signal calculation processing unit (first positioning unit) 21, a satellite reception control unit 22, an independent measurement calculation processing unit (first measurement unit) 23, a traveling state determination processing unit 24, and the like.
  • the vehicle position correction unit (second positioning unit) 25 the independent measurement switching determination unit (determination unit) 26, the storage device 27, the communication connection device 28, and the positioning signal speed calculation unit (second measurement unit) 29.
  • FIG. 2 further illustrates the 3-axis sensor unit CSU.
  • the 3-axis sensor unit CSU is a 3-axis sensor including, for example, a 3-axis acceleration sensor, a 3-axis gyro sensor, and a 3-axis geomagnetic sensor.
  • the positioning signal calculation processing unit 21 calculates the position coordinates of the railroad vehicle 11 based on the positioning radio wave signals SX1 to SX4 received by the receiving antenna device 13, and outputs the positioning data group DG.
  • the positioning data group DG includes the time, sanitary orbit information (for example, satellite Armanac information and satellite ephemeris information) included in the positioning radio signals SX1 to SX4, the received signal strength of the positioning radio signals SX1 to SX4, and the railroad vehicle 11.
  • the position coordinates of are included.
  • the satellite reception control unit 22 performs arithmetic processing for estimating the position error based on the radio wave signals SX1 to SX4 for positioning from the artificial satellites 12-1 to 12-4 included in the positioning data group DG and their signal strengths. As a result, the satellite reception control unit 22 performs reception control such as the corresponding satellite reception elevation angle and reception intensity based on the obtained estimation calculation error. Details of the satellite reception control unit 22 will be described later with reference to FIGS. 15 to 19.
  • the independent measurement calculation processing unit 23 outputs the independent positioning data group DS based on the output of the 3-axis sensor unit CSU.
  • the self-sustaining positioning data group DS includes a time, a speed, a travel vector in three axial directions, and the like. That is, the self-sustaining measurement calculation processing unit 23 calculates and processes the speed and the traveling vector in the three-axis direction by using a general calculation method. For example, the travel vector in the 3-axis direction is calculated by accumulating the acceleration in the 3-axis direction over time based on the output of the 3-axis acceleration sensor. Further, the speed can be calculated as, for example, the absolute value of the traveling vector in the three-axis direction.
  • the traveling state determination processing unit 24 mainly uses the self-sustained positioning data group DS to determine the traveling state of the railway vehicle 11 (for example, the traveling state includes speed information and information indicating a stopped state). A detailed processing example of the traveling state determination processing unit 24 will be described later with reference to FIG.
  • the vehicle position correction unit 25 corrects the position coordinates of the railroad vehicle 11 based on the positioning data group DG using the information of the self-sustaining positioning data group DS, and outputs the position information of the railroad vehicle 11. That is, the vehicle position correction unit 25 calculates the time-series change of the position coordinates of the railway vehicle 11 from the reference position by using the information of the self-sustaining positioning data group DS.
  • This reference position is an average position of positions that have been positioned or calculated independently in the past. For example, the reference position is the average value of the past 10 positioning positions when passing through the same ground element.
  • the self-sustaining measurement switching determination unit 26 determines the position coordinates output by the positioning signal calculation processing unit 21 and the vehicle position correction unit 25 according to at least one of the radio wave conditions of the positioning radio signals SX1 to SX4 and the position of the railcar 11. It is determined which of the position coordinates output by is used as the position coordinate of the railroad vehicle 11. For example, the self-sustaining measurement switching determination unit 26 determines whether or not the railroad vehicle 11 exists in an environment where the artificial satellites 12-1 to 12-4 cannot be captured by using the positioning data group DG, and the artificial satellite 12- When the vehicle exists in an environment where 1 to 12-4 cannot be captured, the position coordinates output by the vehicle position correction unit 25 are automatically switched to the self-sustaining measurement process.
  • the self-sustaining measurement switching determination unit 26 mainly uses the position coordinates output by the positioning signal calculation processing unit 21 for the positioning calculation state (State 1), and the self-sustaining measurement processing state (State 2) mainly using the position coordinates output by the vehicle position correction unit 25. ) Is stored in the storage device 27 together with the time.
  • the storage device 27 is realized by, for example, a RAM (Random Access Memory), a semiconductor memory element such as a flash memory, a hard disk, an optical disk, or the like.
  • the storage device 27 stores various types of information.
  • the communication connection device 28 communicates between the storage device 27 and the external device 14.
  • the positioning signal speed calculation unit 29 calculates the speed of the railway vehicle 11 using the radio waves of the positioning radio waves SX1 to SX4.
  • the railroad vehicle 11 may slip during acceleration and deceleration. Therefore, the speed calculated using radio waves is generally more accurate than the speed based on frequency conversion by the speed generator (tachogenerator) of the railway vehicle 11.
  • FIG. 3 is a processing flowchart of the positioning signal calculation processing unit 21 of the first embodiment.
  • the positioning signal calculation processing unit 21 of the reception calculation processing device 15 receives the positioning radio wave signals SX1 to SX4 via the reception antenna device 13 (step S11).
  • the positioning signal calculation processing unit 21 extracts and acquires a time signal from the positioning radio wave signals SX1 to SX4 (step S12). Subsequently, the positioning signal calculation processing unit 21 acquires position information including latitude information and longitude information based on satellite orbit information (for example, satellite ephemeris information and satellite ephemeris information) and the obtained time signal (step). S13).
  • satellite orbit information for example, satellite ephemeris information and satellite ephemeris information
  • the positioning signal calculation processing unit 21 calculates the position coordinates (x, y, z) of the railroad vehicle 11 using, for example, the orbit information from the artificial satellites 12-1 to 12-4. That is, the position coordinates of the railroad vehicle 11 ( It is possible to calculate x, y, z). In this case, if the set of information on the position of the artificial satellite and the distance between the artificial satellite and the reception arithmetic processing unit 15 at that moment is 3 or more, the coordinates (x, y, z) can be calculated. This generally requires a fourth satellite to ensure time accuracy.
  • the positioning signal calculation processing unit 21 is based on the sanitary orbit information (for example, satellite Armanac information and satellite ephemeris information) and the obtained time signal, and the railroad vehicle according to the following equation (2).
  • the position coordinates (x, y, z) of 11 are calculated.
  • (x, y, z) is a parameter of the coordinate value of the desired position
  • (x n , y n , z n ) is a parameter of the coordinate value of the position of the satellite that transmits the positioning signal.
  • t is a parameter of the time of positioning
  • t n is a parameter of the time when the artificial satellites 12-1 to 12-4 transmit the positioning signal.
  • the positioning signal calculation processing unit 21 may receive the positioning signal via a base station on the ground or the like.
  • the positioning signal calculation processing unit 21 calculates the position information to be detected by the least squares method or the like for these four parameters.
  • the positioning signal calculation processing unit 21 acquires the number of positioning satellites based on the calculation result (step S14). Further, the positioning signal calculation processing unit 21 calculates the positioning satellite elevation angle based on the satellite almanac information, and acquires the information on the reception intensity at the time of receiving the positioning radio wave signals SX1 to SX4 from the receiving antenna device 13 (step S15). ). For example, the positioning signal calculation processing unit 21 can calculate the elevation angle of the positioning satellite from the relationship between the positions of the artificial satellites 12-1 to 12-4 and the position coordinates (x, y, z) of the railway vehicle 11. be.
  • the positioning signal calculation processing unit 21 acquires the positioning satellite direction angle (step S16). For example, the positioning signal calculation processing unit 21 is directed to the positioning satellite based on the relationship between the positions of the artificial satellites 12-1 to 12-4, the position coordinates (x, y, z) of the railroad vehicle 11, and the direction of the railroad vehicle 11. It is possible to calculate the angle. Further, the positioning signal calculation processing unit 21 acquires other satellite reception information (step S17). The positioning signal calculation processing unit 21 outputs a positioning data group DG including these information and stores it in the storage device 27.
  • the self-sustaining measurement calculation processing unit 23 acquires the output of the 3-axis accelerometer from the 3-axis sensor unit CSU (step S18), acquires the output of the 3-axis gyro sensor (step S19), and obtains the output of the 3-axis geomagnetic sensor. Acquire the output (step S20).
  • the self-sustaining measurement calculation processing unit 23 calculates the speed and the traveling vector in the three-axis directions, outputs the self-sustaining positioning data group DS including these information, and stores it in the storage device 27 together with the time.
  • the vehicle position correction unit (second positioning unit) 25 calculates the position coordinates of the railroad vehicle 11 based on the self-sustaining positioning data group DS and stores them in the storage device 27 together with the time.
  • the satellite reception control of the satellite reception control unit 22 and the traveling state determination process when the location of the reception failure of the radio wave signals SX1 to SX4 for positioning due to a tunnel or the like is known.
  • a processing example of the self-sustaining measurement switching determination process of the unit 24 will be described. In the following, the same processing may be assigned the same number and the description may be omitted.
  • FIG. 4 is a diagram schematically showing a processing environment when invisible regions B1 and B2 are set.
  • the railroad vehicle 11 travels on the track of the track L1 in the real space. Further, the railroad vehicle 11 stores in advance the track information of the track L2 on the map and the information of the invisible regions B1 to B2. Further, in FIG. 4, GNSS (Global Navigation Satellite System) compartments S1 and S3, which are regions other than the invisible regions B1 to B2, and independent measurement compartments S2 corresponding to the invisible regions B1 to B2 are shown.
  • the invisible regions B1 to B2 mean regions where reception failure of the positioning radio wave signals SX1 to SX4 occurs.
  • FIG. 5 is a processing flowchart (No. 1) of satellite reception control processing and independent measurement switching discrimination processing.
  • the traveling state determination processing unit 24 acquires the positioning satellite elevation angle and reception intensity included in the positioning data group DG (step S31).
  • the position signal calculation processing unit 21 calculates the estimated position error, and the traveling state determination processing unit 24 acquires the estimated position error (step S32).
  • the position signal calculation processing unit 21 calculates a PDOP (accuracy reduction rate due to the geometric arrangement of satellites) value as the distance measurement accuracy.
  • the DOP Digital of Precision
  • the DOP is an index of the arrangement state of satellites, and the DOP value has a higher correlation with the positioning accuracy than the number of satellites, and the smaller the value, the higher the positioning accuracy tends to be.
  • the DOP values include HDOP (Horizontal DOP) that indexes only the horizontal component of the geometrical arrangement of the satellite, VDOP (Vertical DOP) that indexes only the vertical component, and PDOP (Position DOP) that synthesizes them. ..
  • the PDOP value is used in the normal measurement.
  • a VDOP value may be used.
  • the traveling state determination processing unit 24 may use EHPE (estimated horizontal positioning accuracy) calculated by the position signal calculation processing unit 21 as the estimated position error value.
  • the traveling state determination processing unit 24 sets the reception azimuth angle based on the acquired traveling direction of the railway vehicle 11 (step S33).
  • the traveling direction of the railroad vehicle 11 is calculated by the self-sustaining positioning calculation processing unit (second positioning unit) 23 based on the output signal from the 3-axis sensor unit CSU.
  • the reception azimuth angle (step S33) does not necessarily have to be set at this stage.
  • the traveling state determination processing unit 24 compares the measured reception intensity db with the reception intensity determination threshold value db_thr stored in the storage device 27 (step S34).
  • step S34 When db_thr ⁇ db (Yes in step S34), it means that the reception intensity is sufficiently strong and the sensitivity is good, and the process shifts to the control of the sanitary elevation angle of the satellite to be received.
  • the traveling state determination processing unit 24 uses the determination threshold value pdop_thr of a predetermined PDOP read from the storage device 27 and compares it with the measured PDOP value (pdop) (. Step S35).
  • step S35 When pdop ⁇ pdop_thr (No in step S35), it means that the position accuracy reduction rate is high and the accuracy is relatively poor.
  • the upper limit angle of the elevation angle and the lower limit angle of the elevation angle are calculated (step S36), and the elevation angle is controlled (reset) (step S37).
  • the calculation of the upper limit angle of the elevation angle and the lower limit angle of the elevation angle is performed by a method using the parameters of the regression equation obtained from the predetermined elevation angle and the estimated position error stored in the storage device 27, or the regression equation obtained from the elevation angle and the PDOP value.
  • a method using the parameters of is mentioned. Since these methods are relational expressions that improve the estimated position error, any method may be used.
  • the traveling state determination processing unit 24 causes the processes of steps S31 and S32 to be performed in a predetermined time range in a predetermined time range, and acquires the reception intensity and the PDOP value in a time series (step S38). ). Then, the traveling state determination processing unit 24 determines whether or not db1_thr ⁇ db1, div ⁇ div_thr, and pdop ⁇ pdop_thr are satisfied when a predetermined time has elapsed (step S39).
  • db1 is the average value of the reception intensity
  • div is the dispersion of the reception intensity
  • db1_thr and div_thr are the average of the reception intensity and the determination threshold value of the reception intensity, respectively.
  • the fluctuation of the reception intensity becomes large in the regions before and after the invisible regions B1 to B2 shown in FIG. 4, and the reception intensity decreases in the invisible regions B1 to B2. Therefore, by evaluating the average and dispersion values of the reception intensity, it is possible to avoid controlling (resetting) the elevation angle before and after the invisible regions B1 to B2 and within the invisible regions B1 to B2 when the evaluation is low. can.
  • the traveling state determination processing unit 24 sets the elevation angle to return in the case of db1_thr ⁇ db1, div ⁇ div_thr, pdop ⁇ pdop_thr (Yes in step S39), and repeats the processing from step S31. In this case, it is determined that the rate of decrease in position accuracy is high and the signal strength of the satellite in the selected elevation range is high. Therefore, the upper limit angle of the elevation angle and the lower limit angle of the elevation angle reset as the control values of the positioning satellite elevation angle and the reception intensity are changed, and the process from step S31 is repeated. At this time, the traveling state determination processing unit 24 stores in the storage device 27 that it is in the positioning calculation state (State 1) together with the time.
  • the position coordinates calculated by the positioning signal calculation processing unit 21 and the speed calculated by the positioning signal speed calculation unit 29. Can be preferentially used as the position information of the railroad vehicle 11.
  • step S39 when db1_thr ⁇ db1 and div ⁇ div_thr, but pdop ⁇ pdop_thr (NO in step S39), it is determined that the quality of the received signal of the satellite in the selected elevation range is low, so that the satellite reception control unit 22 is allowed to control (reset) the elevation angle (step S37), and the process from step S38 is repeated. If db1_thr> db1 or div> div_thr, it is determined that the radio wave reception environment is poor, so the determination of pdop ⁇ pdop_thr is not performed and the system is put on standby.
  • the elevation angle when resetting the elevation angle, the signal strength of the satellite and the arrangement state of the satellite are confirmed, and the elevation angle is controlled (reset) when the communication state is good, so that the elevation angle can be set more accurately.
  • the upper limit angle and the lower limit angle of the elevation angle can be set. This makes it possible to obtain a more accurate positioning signal by controlling the upper limit angle of the elevation angle and the lower limit angle of the elevation angle.
  • step S34 when db_thr ⁇ db (No in step S34), it means that the reception strength is weak and the sensitivity is poor, and the traveling state determination processing unit 24 controls the reception strength and the branch processing A of the self-sustaining measurement processing. Transition to.
  • FIG. 6 is a flowchart of branch processing A. As shown in FIG. 6, in order to determine whether reception intensity control is necessary, the traveling state determination processing unit 24 determines that the measured EHPE value (ehpe) is less than the predetermined EHPE determination threshold value ehpe_thr stored in the storage device 27. It is determined whether or not there is (step S41).
  • the traveling state determination processing unit 24 determines that the measured EHPE value (ehpe) is less than the predetermined EHPE determination threshold value ehpe_thr stored in the storage device 27. It is determined whether or not there is (step S41).
  • step S38 When ehpe ⁇ ehpe_thr (Yes in step S38), it means that the position accuracy reduction rate is low and the accuracy is relatively good, but the reception strength is poor, and the traveling state determination processing unit 24 is a satellite reception control unit. 22 is made to calculate the upper limit strength and the lower limit strength of the reception strength (step S42), and the reception strength is controlled (reset) (step S43).
  • the calculation of the upper limit value and the lower limit value of the reception strength is performed by a method using the parameters of the regression equation obtained from the predetermined reception strength and the estimated position error stored in the storage device 27, or the regression obtained from the reception strength and the EHPE value.
  • parameters of the expression and so on are relational expressions that improve the estimated position error, any method may be used.
  • steps S31 and S32 are performed in chronological order within a predetermined time range, and the reception intensity and the EHPE value (ehipe) are acquired in chronological order (step S44).
  • the reception strength is set to be restored, and the process from step S31 is repeated.
  • the reception strength is changed to the reset reception strength as the control value, and the process from step S31 is repeated.
  • the traveling state determination processing unit 24 stores in the storage device 27 that it is in the positioning calculation state (State 1) together with the time.
  • the position coordinates calculated by the vehicle position correction unit 25 and the speed calculated by the self-sustaining measurement calculation processing unit 23 are calculated by the railway vehicle 11. It can be preferentially used as position information.
  • step S45 when the number of data in which db1_thr ⁇ db1 and div ⁇ div_thr but ehpe ⁇ ehpe_thr does not exceed a predetermined value (NO in step S45), the quality of the received signal of the satellite in the selected elevation range is low. This means that the reception strength is controlled (reset) (step S43), and the processing from step S44 is repeated. If db1_thr> db1 or div> div_thr, it means that the reception environment of the radio wave is bad, and the determination of ehpe ⁇ ehpe_thr is not performed and the device is made to stand by.
  • the signal strength of the satellite and the rate of decrease in the position accuracy of the satellite in the selected strength range are tried and confirmed for a predetermined period, so that the upper limit value of the signal strength can be confirmed with higher accuracy.
  • the lower limit can be set. This makes it possible to obtain a more accurate positioning signal by controlling the upper limit value and the lower limit value of the signal strength.
  • reception intensity control and elevation angle control are performed. It is considered that the estimated position error does not improve even if both of the above are performed. That is, since it is considered that the positioning accuracy is not improved, the positioning method is switched to the independent measurement (step S47), and the transition is made to the independent measurement process (step S84) (see FIG. 8). At this time, the traveling state determination processing unit 24 stores in the storage device 27 that it is in the self-sustaining measurement processing state (State 2) together with the time.
  • the position coordinates calculated by the vehicle position correction unit 25 and the speed calculated by the self-sustaining measurement calculation processing unit 23 are used. It can be preferentially used as the position information of the railroad vehicle 11.
  • step S35 when pdop ⁇ pdop_thr in the determination in step S35 (Yes in step S35), the reception intensity is sufficiently strong and the estimated position error is small, so that control of the hygienic elevation angle is not necessary at this point. Yes, it transitions to branch processing D.
  • FIG. 7 is a flowchart of branch processing D.
  • branch processing D a processing example of switching to the self-sustaining measurement processing in the invisible region will be described with reference to FIG.
  • the railroad vehicle 11 is a position positioning of the railroad vehicle 11 using the radio wave signals SX1 to SX4 for positioning in the positioning signal calculation processing unit 21, and a 3-axis sensor unit CSU in the self-sustaining positioning calculation processing unit (second positioning unit) 23. Positioning of the railway vehicle 11 based on the output signal is performed in parallel (step S610).
  • the self-sustaining measurement switching determination unit 26 sequentially acquires the track information of the line L2 on the map acquired from the storage device 27 and the information of the invisible regions B1 to B2 (step S620), and the self-sustaining positioning calculation processing unit (second positioning unit). ) The traveling direction of the railway vehicle 11 obtained in 23 is acquired (step S630).
  • the self-sustaining measurement switching determination unit 26 collates the current position of the railway vehicle 11 on the track L2 based on the traveling direction of the railway vehicle 11 and the positioning of the railway vehicle 11 obtained in step S610 (step). S640). Subsequently, the self-sustaining measurement switching determination unit 26 determines whether or not the current position of the railroad vehicle 11 corresponds to the start points B1 or B2 of the invisible regions B1 to B2 (step S650). For example, if the railroad vehicle 11 is up, the point B1 is the start point of the invisible regions B1 to B2, and if the railroad vehicle 11 is down, the point B2 is the start point of the invisible regions B1 to B2. On the contrary, if the railroad vehicle 11 is up, the point B2 is the end point of the invisible regions B1 to B2, and if the railroad vehicle 11 is down, the point B1 is the end point of the invisible regions B1 to B2.
  • the self-sustaining measurement switching discriminating unit 26 switches to the self-sustaining measurement even when the reception intensity is sufficiently strong and the estimated position error is small (yes).
  • Step S47 the process proceeds to the self-sustaining measurement process (step S84) (FIG. 8).
  • the traveling state determination processing unit 24 stores in the storage device 27 that it is in the self-sustaining measurement processing state (State 2) together with the time.
  • the position coordinates calculated by the vehicle position correction unit 25 and the speed calculated by the self-sustaining measurement calculation processing unit 23 can be preferentially used as the position information of the railway vehicle 11.
  • the position where the decrease occurs may be after entering the invisible areas B1 and B2, and the switching may be delayed. be.
  • the speed information of the railroad vehicle 11 is also used to determine the invisible regions B1 to B2. It is also possible to calculate the time point at which the start point B1 or B2 of B2 is reached and shift to the self-sustaining measurement process according to the time point at which the start point B1 or B2 is reached. As a result, the delay in the transition to the self-sustaining measurement process is suppressed.
  • the transition to the self-sustaining measurement process may be started before the starting point B1 is reached, and the switching point P1 may be matched with the starting point B1. It is possible, and in the past, even if switching is delayed, more stable positioning can be continued. Further, the position of the starting point B1 or B2 may be set in front of the invisible regions B1 to B2 in accordance with the specified speed of the railway vehicle 11. In this case, it is possible to shift to the self-sustaining measurement process without using the speed information.
  • step S65 when it is determined that the railroad vehicle 11 does not enter the invisible regions B1 to B2 (No in step S65), the transition to the branch processing C is performed, and the processing from step S31 (FIG. 4) is repeated. In this case, the measurement using the information of the position positioning of the railroad vehicle 11 using the radio wave signals SX1 to SX4 for positioning in the positioning signal calculation processing unit 21 is continued.
  • the accuracy of the positioning by the positioning signal calculation processing unit 21 is high, the information of the positioning by the positioning signal calculation processing unit 21 is mainly used, and the independent positioning calculation processing unit (second positioning unit) is used. In the region where the accuracy of the position positioning in the 23 is higher than the accuracy of the position positioning in the positioning signal calculation processing unit 21, the position positioning report in the positioning signal calculation processing unit 21 can be mainly used.
  • FIG. 8 is a processing flowchart (No. 2) of satellite reception control processing and independent measurement switching discrimination processing.
  • the positioning method is switched to the independent measurement (step S46), and the process shifts to the independent measurement process (step S840).
  • the positioning signal of the satellite etc. is also received in parallel, but the positioning accuracy is considered to be poor, but as soon as the situation becomes such as after leaving the tunnel where the positioning accuracy improves. , Need to switch to satellite positioning.
  • the acquired positioning signal is used to acquire the positioning satellite elevation angle and the reception intensity, and the estimated position error is calculated and acquired (steps S31 and S32).
  • the reception azimuth angle is set based on the direction of the traveling direction of the railroad vehicle 11 corresponding to the acquired positioning signal (step S33).
  • the self-sustaining measurement switching determination unit 26 uses the determination threshold value db_thr of the predetermined reception intensity stored in the storage device 27 to determine whether or not the measured reception intensity db is less than the determination threshold value db_thr. Determination (step S810).
  • db-thr ⁇ db it means that the reception intensity is sufficiently strong and the sensitivity is good, and the positioning accuracy is relatively good, and the reception intensity control is necessary.
  • the measured EHPE value ehipe
  • ehpe_thr stored in the storage device 27.
  • step S820 When ehpe ⁇ ehpe_thr (Yes in step S820), it means that the position accuracy reduction rate is low and the accuracy is relatively good, and the self-supporting measurement switching determination unit 26 issues a self-supporting measurement end command in order to end the self-supporting measurement.
  • the output is output and the process proceeds to step S31 (see FIG. 4), and satellite positioning is started with the position calculated at the end of the self-sustaining measurement process as the first point of satellite positioning (step S830).
  • the traveling state determination processing unit 24 stores in the storage device 27 that it is in the self-sustaining measurement processing state (State 2) together with the time.
  • the position coordinates calculated by the vehicle position correction unit 25 and the speed calculated by the self-sustaining measurement calculation processing unit 23 are used. It can be preferentially used as the position information of the railroad vehicle 11.
  • step S810 it means that the position accuracy reduction rate is high and the accuracy is relatively poor, and the self-sustaining measurement process is continued (step S840), and the calculation is performed by the self-sustaining measurement processing unit 23.
  • the speed is used (step S840).
  • step S840 the speed calculated by the self-sustaining measurement processing unit 23 is used (step S840).
  • steps 610 to S660 are also performed in parallel. That is, the railcar 11 is based on the positioning of the railcar 11 using the positioning radio signals SX1 to SX4 in the positioning signal calculation processing unit 21 and the output signal from the 3-axis sensor unit CSU in the vehicle position correction unit 25. Positioning of the railroad vehicle 11 is performed in parallel (step S610). Here, since it is within the invisible regions B1 and B2, the position information by the vehicle position correction unit 25 is mainly used.
  • the self-sustaining measurement switching determination unit 26 sequentially acquires the track information of the line L2 on the map acquired from the storage device 27 and the information of the invisible regions B1 to B2 (step S620), and is obtained by the self-sustaining measurement calculation processing unit 23. Acquire the traveling direction of the railroad vehicle 11 (step S630).
  • the self-sustaining measurement switching determination unit 26 collates the current position of the railway vehicle 11 on the track L2 based on the traveling direction of the railway vehicle 11 and the positioning of the railway vehicle 11 obtained in step S610 (step). S640). Subsequently, the self-sustaining measurement switching determination unit 26 determines whether or not the current position of the railroad vehicle 11 corresponds to the end points B1 or B2 of the invisible regions B1 to B2 (step S660). For example, if the railroad vehicle 11 is up, the point B2 is the end point of the invisible regions B1 to B2, and if the railroad vehicle 11 is down, the point B1 is the end point of the invisible regions B1 to B2.
  • the self-sustaining measurement switching determination unit 26 determines that the railroad vehicle 11 is out of the invisible regions B1 to B2 (No in step S650)
  • the self-sustaining measurement switching determination unit 26 outputs a self-sustaining measurement end command to end the self-sustaining measurement, and processes the process in step S31 (No). (See FIG. 4), and satellite positioning is started with the position calculated at the end of the self-sustaining measurement process as the first point of satellite positioning (step S830).
  • the position where the disturbance is resolved may be immediately after the invisible areas B1 and B2, and the switching may be delayed.
  • the speed information of the railroad vehicle 11 is also used to determine the invisible region B1. It is possible to calculate the time point at which the end point B1 or B2 of B2 is reached. As a result, it is possible to shift to satellite positioning at the time when the end point B2 is reached. In this way, the delay in the transition to satellite positioning is suppressed.
  • the transition to satellite positioning may be started before the end point B2 is reached, and the switching point P2 may be matched with the end point B2. It is possible. As a result, even if switching is delayed in the past, it is possible to continue position positioning more stably. Further, the position of the end point B1 or B2 may be set in front of the invisible regions B1 and B2 in accordance with the specified speed of the railway vehicle 11. In this case, it is possible to shift to satellite positioning processing without using speed information.
  • branch processing D Next, another example of branch processing D will be described with reference to FIG.
  • FIG. 9 a processing example of switching to the self-sustaining measurement processing in the invisible regions B1 to B2 based on the information of the positioning radio wave signals SX1 to SX4 will be described.
  • FIG. 9 is a diagram schematically showing a processing environment when the invisible regions B1 to B2 are detected by the positioning radio wave signals SX1 to SX4.
  • the railroad vehicle 11 travels on the track of the track L1 in the real space.
  • the positioning signal calculation processing unit 21 calculates the locus L3 of the traveling vector of the railway vehicle 11 using the positioning radio wave signal R3.
  • the positioning radio wave signal R3 schematically shows the positioning radio wave signals SX1 to SX4.
  • FIG. 10 is a flowchart of another branch process D.
  • a processing example of switching to the self-sustaining measurement processing in the invisible region will be described with reference to FIG.
  • the self-sustaining measurement switching determination unit 26 calculates the average value db1 and the variance value dv1 of the time-series values measured for the positioning radio wave signal R3 for a predetermined period (step S910). As described above, the average value db1 decreases in the invisible regions B1 to B2, and the dispersion value dv1 increases in the region including the front and back of the invisible regions B1 to B2.
  • the road vehicle 11 is a railway vehicle based on the positioning of the railway vehicle 11 using the positioning radio signals SX1 to SX4 in the positioning signal calculation processing unit 21 and the output signal from the 3-axis sensor unit CSU in the vehicle position correction unit 25. Positioning of 11 is performed in parallel (step S920). Subsequently, the positioning signal calculation processing unit 21 calculates the traveling direction of the road vehicle 11 as the traveling vector L3 based on the positioning radio wave signals SX1 to SX4 (step S930).
  • the positioning signal calculation processing unit 21 calculates the amount of change r1 of the progress vector L3 per unit time (step S940).
  • the self-sustaining measurement switching determination unit 26 determines that it is the start point B1 of the invisible regions B1 to B2 (step S950).
  • the traveling vector L3 has high sensitivity to disturbance of the intensity of the positioning radio wave signals SX1 to SX4, and the amount of change r1 fluctuates more in the vicinity of the starting point B1 of the invisible regions B1 to B2. This makes it possible to determine that the starting point B1 has been approached. In this case, it may be determined whether or not the current position of the railway vehicle 11 corresponds to the start points B1 or B2 of the invisible regions B1 to B2 by using the dispersion value dv1 and the average value db1 of the positioning radio wave signal R3. ..
  • db1 ⁇ db1_thr and dv1> dv1_thr are determined conditions.
  • the intensity of the positioning radio wave signals SX1 to SX4 is less disturbed, it is possible to further suppress the erroneous determination that the signal is the starting point B1 of the invisible regions B1 to B2.
  • the start point B1 of the invisible regions B1 to B2 without using the track information of the line L1.
  • the invisible areas B1 and B2 can be determined even when there is no map data or there is a building that is not on the map information.
  • the self-sustaining measurement switching determination unit 26 determines that the railroad vehicle 11 enters the invisible regions B1 to B2 (Yes in step S950), the self-sustaining measurement switching determination unit 26 switches to the self-sustaining measurement (step S47), and shifts to the self-sustaining measurement process (step S84) (step S84). FIG. 11).
  • step S950 when it is determined that the railroad vehicle 11 does not enter the invisible regions B1 to B2 (No in step S950), the transition to the branch processing C is performed, and the processing from step S31 (FIG. 4) is repeated. In this case, the measurement is continued mainly using the information of the position positioning of the railroad vehicle 11 using the positioning radio wave signals SX1 to SX4 in the positioning signal calculation processing unit 21.
  • the accuracy of the position positioning in the positioning signal calculation processing unit 21 is high, the information of the position positioning in the positioning signal calculation processing unit 21 is mainly used, and the accuracy of the position positioning in the vehicle position correction unit 25 is used. Is higher than the accuracy of the positioning by the positioning signal calculation processing unit 21, the information of the positioning by the vehicle position correction unit 25 can be mainly used.
  • FIG. 11 is a flowchart when the process shown in FIG. 10 is used. It differs from FIG. 8 in that the method described with reference to FIG. 10 is used as the method for determining the invisible region. Hereinafter, the differences from FIG. 8 will be described.
  • the self-sustaining measurement switching determination unit 26 determines that it is the end point B2 of the invisible regions B1 to B2 (step S960).
  • the traveling vector L3 has high sensitivity to the disturbance of the intensity of the positioning radio wave signals SX1 to SX4, and the disturbance of the intensity decreases in the vicinity of the end point B2 of the invisible regions B1 to B2, so that the amount of change r1 becomes small. As a result, it becomes possible to determine that the end point B2 has been approached.
  • the current position of the railway vehicle 11 corresponds to the start points B1 or B2 of the invisible regions B1 to B2 by using the dispersion value dv1 and the average value db1 of the radio wave signal R3 for positioning. .. That is, it may be added that db1 ⁇ db1_thr and dv1 ⁇ dv1_thr are determined conditions.
  • db1 ⁇ db1_thr and dv1 ⁇ dv1_thr are determined conditions.
  • the positioning method is switched to the independent measurement (step S46), and the process shifts to the independent measurement process (step S840).
  • the positioning signal of the satellite etc. is also received in parallel, but the positioning accuracy is considered to be poor, but as soon as the situation becomes such as after leaving the tunnel where the positioning accuracy improves. , Need to switch to satellite positioning.
  • FIG. 12 is a diagram schematically showing a processing environment when switching to the invisible regions B1 to B based on the map data and the information of the radio wave signals SX1 to SX4 for positioning.
  • the railroad vehicle 11 travels on the track of the track L1 in the real space. Further, the positioning signal calculation processing unit 21 calculates the locus L3 of the traveling vector of the railway vehicle 11 using the positioning radio wave signal R3.
  • the positioning radio wave signal R3 schematically shows the positioning radio wave signals SX1 to SX4.
  • FIG. 13 is a flowchart of yet another branch process D.
  • FIG. 13 is a flowchart corresponding to FIG.
  • the differences from the processing of FIG. 8 will be described.
  • the self-sustaining measurement switching determination unit 26 also uses the dispersion value dv1 and the average value db1 of the radio wave signal R3 for positioning to determine whether or not the current position of the railway vehicle 11 corresponds to the start points B1 or B2 of the invisible regions B1 to B2. Determination (step S1300). For example, the self-sustaining measurement switching determination unit 26 uses the dispersion value dv1 and the average value db1 of the radio wave signal R3 for positioning to determine whether or not the current position of the railway vehicle 11 corresponds to the start points B1 or B2 of the invisible regions B1 to B2. Is determined. For example, when the determination conditions are db1 ⁇ db1_thr and dv1 ⁇ dv1_thr, or when the railroad vehicle 11 reaches a predetermined position, it is determined that the invisible regions B1 to B2.
  • FIG. 14 is a flowchart when the process shown in FIG. 13 is used. It differs from FIG. 8 in that the method described with reference to FIG. 13 is used as the method for determining the invisible region. Hereinafter, the differences from FIG. 8 will be described.
  • the self-sustaining measurement switching determination unit 26 also uses the dispersion value dv1 and the average value db1 of the radio wave signal R3 for positioning to determine whether or not the current position of the railway vehicle 11 corresponds to the end points B1 or B2 of the invisible regions B1 to B2. Determination (step S1400). For example, the self-sustaining measurement switching determination unit 26 determines that the determination conditions are db1 ⁇ db1_thr and dv1 ⁇ dv1_thr, or when the railroad vehicle 11 reaches a predetermined position, it is determined to be the end point B1 or B2 of the invisible regions B1 to B2. do. As a result, it is possible to determine that the railroad vehicle 11 has gone out of the invisible region even when another invisible region is generated from a building that is not stored in the storage device 27, a building under construction, or the like. ..
  • FIG. 15 is a processing flowchart of the receiving satellite control process in the satellite reception control unit 22.
  • the satellite reception control unit 22 executes a function of selecting an artificial satellite to be used for position detection according to the positioning environment.
  • the antenna 13 that receives the positioning signal (hereinafter, may be simply referred to as the antenna 13) is inside the railroad vehicle 11, it is particularly from a satellite that is in the opposite direction to the traveling direction, a satellite that exists in the side direction, or the like. Since the positioning signal is likely to be reflected or diffracted and received, it will immediately affect the measurement accuracy. Therefore, the satellite reception control unit 22 performs the reception satellite control process in order to maintain the measurement accuracy.
  • the satellite reception control unit 22 acquires the positioning satellite elevation angle and reception intensity by using the acquired positioning signal (step S61).
  • the satellite reception control unit 22 acquires the satellite ephemeris information and the satellite ephemeris information from a receivable artificial satellite, and acquires the orbit information of the artificial satellites 12-1 to 12-4 (step S62).
  • FIG. 16 is an explanatory diagram of a reception state of positioning information.
  • FIG. 16A is an image diagram of satellite orbit information.
  • the antenna 13 of the railway vehicle 11 is arranged at the center of the circle.
  • the circles indicate the current position of the artificial satellite, and the curve passing through the current position of the artificial satellite indicates the satellite orbit information of each artificial satellite.
  • the satellite reception control unit 22 sets the reception effective area AE and the reception invalid area AN, and is clockwise and counterclockwise with respect to the traveling direction DR based on the traveling direction DR of the railway vehicle 11.
  • the reception azimuth is set so that each direction is, for example, 135 degrees.
  • FIG. 17 is a diagram showing a setting example of a reception effective area AE and a reception invalid area AN in the case of speed measurement in the positioning signal speed calculation unit (second measurement unit) 29.
  • the reception effective area AE is further restricted in the traveling direction and the DR direction.
  • the reception azimuth is set so as to be, for example, 45 degrees in the clockwise direction and the counterclockwise direction, respectively (step S63).
  • the satellite reception control unit 22 has a clockwise direction and a counterclockwise direction with respect to the traveling direction DR of the railway vehicle 11 with respect to the reception effective area AE corresponding to the set reception azimuth, as shown in FIG. 16 (c).
  • Process to specify the artificial satellite to be selected next time by setting the satellite arrangement determination area AD for determining the artificial satellite arrangement position to select the artificial satellite after progressing so that it becomes 90 degrees in each clockwise direction. Is continuously performed (step S64).
  • FIG. 18 is an explanatory diagram of the selection process of the artificial satellite.
  • the traveling direction of the railroad vehicle 11 is forward in the vertical direction of the paper.
  • the satellite reception control unit 22 effectively artificially selects an artificial satellite belonging to the set reception intensity (range specified by the reception intensity upper limit value and the reception intensity lower limit value) from the artificial satellite located in the reception effective area AE. Select as satellite 12E.
  • artificial satellites 12N1, 12N21, and 12N2 that do not belong to the set reception intensity range are judged to be invalid and excluded from the selection.
  • the artificial satellite selected as the effective artificial satellite 12E is a satellite located in the reception effective area AE that can directly receive the positioning signal via the antenna 13.
  • the invalid artificial satellite 12N1 is an artificial satellite that cannot receive the positioning signal because the positioning signal does not reach due to the obstacle BR such as a building or a mountain.
  • the positioning signal is reflected by the obstacle BR such as a building or a mountain and reaches the antenna 13, so that a time delay occurs and the reception intensity is lowered, so that the positioning accuracy is lowered. It is an artificial satellite.
  • the positioning signal is diffracted by the obstacle BR such as a building or a mountain and reaches the antenna 13, so that a time delay occurs and the reception intensity is lowered, so that the positioning accuracy is lowered. It is an artificial satellite.
  • FIG. 19 is an explanatory diagram of elevation angle control in the satellite reception control unit 22.
  • the effective elevation range AEL is shown in FIG. 19 (b). Therefore, the artificial satellite located in the reception effective area AE shown in FIG. 16 is identified and the corresponding positioning signal is used. Perform processing. As a result, the positioning accuracy can be maintained above a desired value.
  • the satellite reception control unit 22 periodically acquires the traveling direction of the railroad vehicle 11 from the receiving azimuth for a certain period of time (for example, 1 second), and acquires the averaged azimuth as the traveling direction angle.
  • the satellite existing at this traveling direction angle may be selected from the satellite orbit information.
  • the traveling direction angle may be acquired at any time and the artificial satellite may be selected from the satellite orbit information. .. As a result, it becomes possible to select only the positioning signal that can further improve the position detection accuracy.
  • the self-sustaining measurement calculation processing unit 23 has a function of performing initial value calculation processing for calibration based on acceleration information, gyro information, and geomagnetic information output by the 3-axis sensor unit CSU, and a correction calculation for the cumulative error of the 3-axis sensor value. It has a function to process and a function to calculate and process the speed information of the railroad vehicle 11 based on the value processed by the correction calculation and the 3-axis sensor value.
  • the traveling state determination processing unit 24 is the traveling of the railway vehicle 11 estimated to be within the error tolerance range based on the speed information of the railway vehicle 11 obtained from the satellite reception information and the speed information calculated by the self-sustaining measurement calculation processing unit 23. It has a function of selecting information and a function of discriminating between stopping and traveling based on the speed information of the railway vehicle 11.
  • FIG. 20 is a processing flowchart of the self-sustained measurement calculation processing unit 23 and the traveling state determination processing unit 24.
  • the self-sustaining measurement calculation processing unit 23 acquires acceleration information, gyro information, and geomagnetic information output by the 3-axis sensor unit CSU (step S71).
  • the self-sustaining measurement calculation processing unit 23 performs initial value calculation processing based on the acquired acceleration information, gyro information, and geomagnetic information (step S72). It is preferable that this initial value calculation process is basically performed while the railway vehicle 11 is stopped.
  • the reason why the railway vehicle 11 is executed while the vehicle is stopped is that performing the initial value calculation process while moving not only affects the measured value but also makes it difficult to initialize the cumulative error.
  • the initial value calculation process is performed during the stop in order to obtain a more accurate measured value and to initialize the cumulative error.
  • Acceleration information, gyro information, and geomagnetic information output by the 3-axis sensor unit CSU while the rolling stock 11 is stopped are integrated and averaged, and the obtained integrated averaged value is used as the offset value of each 3-axis sensor. Obtain it and use it as the initial value calculation process.
  • the function of correcting the cumulative error for each value of the acceleration information, gyro information, and geomagnetic information output by the 3-axis sensor unit CSU is applied to each value of the 3-axis sensor that has acquired this offset value. By doing so, it becomes possible to offset the accumulated error.
  • the initial value calculation processing is the same not only before the start of traveling of the railway vehicle 11 but also when the railway vehicle 11 is stopped at a station or the like and the stopped state continues after a predetermined set time has elapsed.
  • the offset amount is reacquired and the cumulative error is offset at any time, so that the cumulative error can be reduced.
  • the cumulative error isn of the 3-axis sensor value output by the 3-axis sensor unit CSU is monitored (step S73), the output value of the 3-axis sensor value is corrected, and the corrected 3-axis sensor value is calculated (step S74).
  • the self-sustaining measurement calculation processing unit 23 calculates the speed of the railway vehicle 11 from the obtained corrected 3-axis sensor value (step S75).
  • the speed calculation of the railroad vehicle 11 is calculated as the speed information of the railroad vehicle 11 by integrating the acceleration value which is the output of the 3-axis acceleration sensor output by the 3-axis sensor unit CSU at the acquired time interval.
  • Each information is output in chronological order as independent positioning data DS.
  • the traveling state determination processing unit 24 acquires the speed information of the railway vehicle 11 obtained from the satellite reception information (step S76).
  • the traveling state determination processing unit 24 compares the cumulative error permissible value isn_thr of the 3-axis sensor with the cumulative error isn obtained by monitoring, and whether or not the cumulative error isn is less than the cumulative error permissible value isn_thr. (Step S77).
  • the traveling state determination processing unit 24 is a 3-axis sensor unit when the cumulative error is less than the cumulative error tolerance isn_thr, that is, when isn ⁇ esn_thr (step S77; Yes). Since it is considered that the speed information of the rolling stock 11 corresponding to the output of the 3-axis accelerometer output by CSU is highly reliable, the speed information spd of the rolling stock 11 corresponding to the output of the 3-axis accelerometer is selected. (Step S78), the railcar 11 is based on the speed information spd of the railcar 11 corresponding to the output of the 3-axis acceleration sensor and the predetermined railcar 11 speed determination value spd_thr stored in the storage device 27.
  • step S80 It is determined whether or not the speed information spd ⁇ railway vehicle 11 speed determination value spd_th (step S80).
  • spd ⁇ spd_thr the railroad vehicle 11 is in the stopped state
  • spd ⁇ spd_thr the railroad vehicle 11 is in the running state.
  • step S80 If it is determined in step S80 that spd ⁇ spd_thr (step S80; Yes), the railway vehicle 11 is in a stopped state, so that the traveling state determination processing unit 24 stops the railway vehicle 11. The process is terminated by outputting the speed information of the railroad vehicle 11 corresponding to the fact and the output of the 3-axis accelerometer output by the 3-axis sensor unit CSU (step S81).
  • step S80 When it is determined in the determination of step S80 that spd ⁇ spd_thr (step S80; No), the traveling state determination processing unit 24 is in a traveling state, so that the railway vehicle 11 is traveling. The process is terminated by outputting the speed information of the railroad vehicle 11 corresponding to the fact and the output of the 3-axis accelerometer output by the 3-axis sensor unit CSU (step S82).
  • step S77 when the cumulative error sensor is equal to or greater than the cumulative error tolerance sensor_thr, that is, when sensor ⁇ sensor_thr (step S77; No), the rolling stock 11 is in a continuous running state. If the speed information of the railroad vehicle 11 corresponding to the output of the 3-axis acceleration sensor output by the 3-axis sensor unit CSU is low in reliability and the state stored in the storage device 27 is Stat1, the railroad vehicle corresponding to the satellite information. It is a situation where the reliability of the speed information of 11 is considered to be high. Therefore, the speed information spd of the railroad vehicle 11 corresponding to the satellite information is selected (step S79), and if the state is Stat2, the process is waited until the state changes to Stat1. Further, if the state stored in the storage device 27 is Status 1, the traveling state determination processing unit 24 can preferentially use the speed calculated by the positioning signal speed calculation unit 29.
  • the speed information spd of the railroad vehicle 11 ⁇ railway It is determined whether or not the vehicle 11 speed determination value is spd_th (step S80).
  • the railway vehicle 11 is determined to be in the stopped state, and if spd ⁇ spd_thr, the railway vehicle 11 is determined to be in the traveling state.
  • step S80 If it is determined in step S80 that spd ⁇ spd_thr (step S80; Yes), the railroad vehicle 11 is in a stopped state, so that the railroad vehicle 11 is stopped and from the three artificial satellites. The speed information of the railway vehicle 11 corresponding to the received data is output, and the process ends (step S81).
  • step S80 When it is determined in the determination of step S80 that spd ⁇ spd-thr (step S40; No), the railway vehicle 11 is in a traveling state, so that the railway vehicle 11 is traveling and from the artificial satellite. The speed information of the railroad vehicle 11 corresponding to the received data of the above is output, and the process is terminated (step S82).
  • FIG. 21 is a processing flowchart of the vehicle position correction unit 25.
  • the vehicle position correction unit 25 acquires the estimated position error (EHPE and PDOP) pos calculated by the satellite reception control unit 22 (step S91).
  • EHPE and PDOP estimated position error
  • the vehicle position correction unit 25 acquires a predetermined position error tolerance value pos-thr stored in the storage device 27, compares the acquired estimated position error pos with the position error tolerance value pos_thr, and estimates the position error. It is determined whether or not pos ⁇ permissible position error value pos_thr, that is, whether or not the position detection accuracy is relatively good (step S92).
  • step S92 if the estimated position error pos ⁇ position error permissible value pos_thr (step S92; Yes), the position detection accuracy is considered to be relatively good.
  • the stop information or the running information of the vehicle is acquired (step S93).
  • the vehicle position correction unit 25 determines whether the railway vehicle 11 is in the stopped state or the running state (step S94).
  • step S94 when the estimated position error pos ⁇ position error allowable value pos_thr and the railway vehicle 11 is in the stopped state (step S94; Yes), the 3-axis sensor unit CSU initializes the 3-axis sensor value. (Step S95), the vehicle position correction unit 25 shifts the process to step S91 again.
  • step S94 if the estimated position error pos ⁇ the position error permissible value pos_thr (step S94; No), the position detection accuracy is considered to be relatively poor, so the traveling state determination processing unit 24 outputs.
  • the speed information is acquired (step S96).
  • the self-sustaining measurement calculation processing unit 23 calculates the speed of the railway vehicle 11 from the obtained corrected 3-axis sensor value (step S75).
  • the speed calculation of the railroad vehicle 11 is calculated as the speed information of the railroad vehicle 11 by integrating the acceleration value which is the output of the 3-axis acceleration sensor output by the 3-axis sensor unit CSU at the acquired time interval.
  • Each information is output in chronological order as independent positioning data DS.
  • the self-sustaining measurement calculation processing unit 23 performs an azimuth angle calculation (step S97), and the vehicle position correction unit 25 acquires the value.
  • the self-sustaining measurement calculation processing unit 23 calculates a travel vector in the three-axis direction (step S98), and the vehicle position correction unit 25 acquires the value.
  • the vehicle position correction unit 25 acquires the position information (position coordinates) including the latitude information and the longitude information when the state is Stat1 from the positioning signal calculation processing unit 21, and specifies the current position of the railway vehicle 11. (Step S99). If the state is Stat2, the vehicle position correction unit 25 waits for the process of specifying the current position until the state changes to Stat1.
  • the vehicle position correction unit 25 obtains the magnitude of the traveling vector in the azimuth direction from the speed information according to the positioning time interval by the radio wave received from the artificial satellite, and cumulatively calculates the current position of the railway vehicle 11. Perform the correction calculation (step S100).
  • the traveling position of the railway vehicle 11 can be reliably acquired, and even in the speed measurement of the railroad vehicle 11 in a situation where satellite information such as a tunnel cannot be obtained, it is possible to switch to speed measurement by independent positioning with little delay. It becomes possible to provide more accurate speed data.
  • the course of the railroad vehicle 11 is predicted, whether the railroad vehicle 11 is traveling in a straight section or a curved section is determined, and further compared with the travel section information of the railroad vehicle 11 stored in advance.
  • it differs from the first embodiment in that it provides information for performing appropriate traveling based on whether or not the actual traveling state of the railway vehicle 11 is suitable for the actual traveling section. do.
  • the differences from the first embodiment will be described.
  • FIG. 22 is a functional configuration block diagram of the reception arithmetic processing unit of the second embodiment. As shown in FIG. 22, in addition to the configuration of the first embodiment shown in FIG. 2, a vehicle course prediction calculation unit 30 for predicting an actual course (traveling position in a predetermined traveling section) of the railway vehicle 11 is provided. The point is different from the first embodiment.
  • FIG. 23 is a processing flowchart (No. 1) of the vehicle course prediction calculation unit.
  • the vehicle course prediction calculation unit 30 acquires and stores position information (position coordinates) including latitude information and longitude information output by the positioning signal calculation processing unit 21 (step S101).
  • the vehicle course prediction calculation unit 30 performs an averaging calculation of position information based on the averaging target time stored in advance in the storage device 27, and obtains the average position of the railway vehicle 11 for each averaging target time. Calculate (step S102). Then, the vehicle course prediction calculation unit 30 acquires the traveling direction angle of the railway vehicle 11 (direction in the traveling direction of the railway vehicle 11) based on the obtained averaged position information (step S103). Further, the vehicle course prediction calculation unit 30 calculates the attitude angle (for example, cant) of the railway vehicle 11 based on the acceleration information, the gyro information, and the geomagnetic information output by the 3-axis sensor unit CSU (step S104).
  • the vehicle course prediction calculation unit 30 acquires the stop / travel state and speed information of the railway vehicle 11 output by the travel state determination processing unit 24 (step S105). Subsequently, the vehicle course prediction calculation unit 30 calculates and stores the traveling direction vector of the railway vehicle 11 (step S106).
  • the vehicle course prediction calculation unit 30 sets a vector azimuth angle shp, which is an average value of the traveling direction vectors, for each predetermined vector calculation target time stored in advance in the storage device 27 for the traveling direction vector of the stored railway vehicle 11.
  • the desired traveling direction vector averaging operation is performed (step S107).
  • FIG. 24 is a processing flowchart (No. 2) of the vehicle course prediction calculation unit.
  • the vehicle course prediction calculation unit 30 calculates the vector azimuth angle shp (step S111).
  • the vehicle course prediction calculation unit 30 determines the current traveling section of the railway vehicle 11 based on the speed information of the railway vehicle 11 and the linear determination value shp_thr for discriminating the straight line section or the curved section stored in advance in the storage device 27. It is determined whether it is a straight section or a curved section (step S112).
  • step S112 it is determined whether or not the vector azimuth angle is less than the linear determination value shp_thr.
  • the current train traveling section is a straight line section, so that the vehicle course prediction calculation unit 30 outputs the straight line section determination (step). S113).
  • the vehicle course prediction calculation unit 30 acquires the stop / travel state and speed information of the current railway vehicle 11 output by the travel state determination processing unit 24 (step S114). Further, the vehicle course prediction calculation unit 30 is based on the current travel section database that stores the travel history up to that point and the travel route shape and distance information for specifying the travel section stored in advance in the storage device 27. The traveling position and traveling section of the railway vehicle 11 are specified and acquired (step S115).
  • step S116 the speed limit data xspd_thr1 in the traveling position and traveling section of the specified railway vehicle 11 is read out from the storage device 27, compared with the speed spd of the railway vehicle 11, and whether or not the railway vehicle 11 is overspeeding is determined. Determination (step S116).
  • step S116 if pd ⁇ xspd_thr1 (step S116; No), it is determined that the railway vehicle 11 is traveling within the speed limit, so that the determination output within the speed limit is performed and processed. Is terminated (step S117).
  • step S116 if spd ⁇ xspd_thr1 (step S116; Yes), it is determined that the railroad vehicle 11 is traveling at the speed limit, so that the determination output for exceeding the speed limit and the current speed are output. And end the process (step S118).
  • FIG. 25 is a processing flowchart (No. 3) of the vehicle course prediction calculation unit.
  • step S112 when shp ⁇ shp-thr (step S112; No), the current train traveling section is a curved section, and therefore, as shown in FIG. 25, the vehicle course prediction calculation unit 30 , Curve section determination output is performed (step S121).
  • the vehicle course prediction calculation unit 30 calculates the curve radius (radius of curvature) (step S122), and from the database showing the correspondence between the radius of curvature and the cant amount according to the design standard stored in advance in the storage device 27.
  • the cant amount corresponding to the calculated curvature radius is acquired (step S123).
  • the vehicle course prediction calculation unit 30 is based on the current railway section database that stores the travel history up to that point and the travel route shape and distance information for specifying the travel section stored in advance in the storage device 27.
  • the traveling position and traveling section of the vehicle 11 are specified and acquired (step S124).
  • the vehicle course prediction calculation unit 30 acquires the stop / travel state and speed information of the current railway vehicle 11 output by the travel state determination processing unit 24 (step S125).
  • the speed limit data xspd-thr2 in the radius of curvature and the cant amount according to the design standard in the traveling position and the traveling section of the specified railway vehicle 11 is read from the storage device 27, and the speed spd of the railway vehicle 11 is read. (Step S126), it is determined whether or not the speed of the railroad vehicle 11 is exceeded.
  • step S126 if pd ⁇ xspd_thr2 (step S126; No), it is determined that the railway vehicle 11 is traveling within the speed limit range, so that a determination output within the speed limit is performed and processing is performed. Is terminated (step S127).
  • step S126 if pd ⁇ xspd-thr2 (step S126; Yes), it is determined that the railway vehicle 11 is traveling at the speed limit, so that the determination output for exceeding the speed limit and the current speed Is output to end the process (step S128).
  • the traveling position of the railway vehicle 11 and predicting the course of the railway vehicle 11 from the acquired data, the setting of the forward detection range, the course prediction, and the traveling are performed. It is possible to provide data that can be used for position detection, overspeed detection, and the like. In addition, it will be possible to create a travel route map, which can be expanded to support travel support and railway equipment information creation support.
  • the overspeed information is output, but it can also be used to set the range of the detection area when the obstacle in front is detected by a camera or the like.
  • the detection area such as a camera is usually the area of the construction limit on the railroad track or the limit of 11 railroad cars, but the detection area such as stations and railroad crossings is permanently used due to renovation or temporary construction. Since it is possible to position the position of the line section where the railway vehicle 11 is currently traveling, if you want to expand it temporarily or temporarily, if you record the detection target position of the station, railroad crossing, etc. in the database of the traveling section. , The detection area can be expanded from a certain distance in front.
  • the configuration including the 3-axis acceleration sensor, the 3-axis gyro sensor, and the 3-axis geomagnetic sensor in the 3-axis sensor unit CSU has been described, but since the 3-axis geomagnetic sensor is not an essential configuration, at least 3-axis acceleration has been described. It may be configured to include at least one of a sensor or a 3-axis gyro sensor.
  • the reception elevation angle, reception intensity, and satellite selection are controlled according to the status of the positioning signal from the artificial satellite or the like, and the switching of the self-sustaining measurement process is determined. This makes it possible to detect the position of the railway vehicle 11 even in a poor reception environment.
  • the traveling position can be easily grasped even in areas where satellite reception is not possible such as underpasses such as tunnels and bridge station buildings and underground sections. Further, by acquiring the traveling position of the railway vehicle 11 and predicting the course of the railway vehicle 11 from the acquired data, it can be used for setting the forward detection range, predicting the course, detecting the traveling position, detecting the overspeed, and the like. Furthermore, it will be possible to create a travel route map, which can be expanded to support travel support and railway equipment information creation support.
  • the railroad traveling position detection device of the present embodiment includes a control device such as an MPU, a storage device such as a ROM and a RAM, an external storage device such as an HDD and a CD drive device, a display device for displaying various information, and various types. It has a hardware configuration that uses a normal computer equipped with an input device for inputting information.
  • the program executed by the traveling position detection device for railroads of the present embodiment is a file in an installable format or an executable format, such as a semiconductor storage device such as a CD-ROM or a USB memory device, a DVD (Digital Versail Disc), or the like. It is recorded and provided on a computer-readable recording medium.
  • the program executed by the railroad traveling position detecting device of the present embodiment may be stored on a computer connected to a network such as the Internet and provided by downloading via the network. Further, the program executed by the railroad traveling position detecting device of the present embodiment may be configured to be provided or distributed via a network such as the Internet. Further, the program of the railroad traveling position detecting device of the present embodiment may be configured to be provided by incorporating it into a ROM or the like in advance.

Abstract

[解決手段]実施形態に従った位置測位装置は、車両の位置を測位する位置測位装置であって、第1測位部と、第2測位部と、判別部と、を備える。第1測位部は、衛星からの測位用信号を受信し、車両の第1位置を測位する。第2測位部は、自立測位用センサの出力に基づいて、車両の第2位置を測位する。判別部は、第1位置が所定の位置に基く範囲である場合、及び車両の進行方向の変化が所定量である場合の少なくとも一方である場合に、第2位置を記車両の位置とする。

Description

位置測位装置、速度計測装置、及び位置測位方法
 本発明の実施形態は、位置測位装置、速度計測装置、及び位置測位方法に関する。
 鉄道向け自動運転に向けて、位置測位と速度計測を同時に行う装置及び高精度化が求められている。列車の位置測位には、地上子を通過したことによる信号区間内の在線検知が一般に行われている。また、速度計測では、速度発電機(タコジェネレータ、以下TGと記す)による周波数変換により速度を計測する方法が一般に用いられている。
 また、人工衛星から送信された測位用電波信号を用いて測位する方法もあるが、この場合、鉄道沿線環境ではマルチパス等の問題から計測精度が最大±10mとなっており、自動運転向けの位置測位としては計測精度が低くなってしまう。また、トンネル、橋上駅舎等の高架下や地下区間等の衛星受信不可領域においても走行位置を把握できない恐れがある。
特開2010-100239号公報 特許第5973024号公報 特許第4121897号公報 特許第5185575号公報
 計測精度をより向上可能な位置測位装置、速度計測装置、及び位置測位方法を提供する。
 実施形態に従った位置測位装置は、車両の位置を測位する位置測位装置であって、第1測位部と、第2測位部と、判別部と、を備える。第1測位部は、衛星からの測位用信号を受信し、車両の第1位置を測位する。第2測位部は、自立測位用センサの出力に基づいて、車両の第2位置を測位する。判別部は、第1位置が所定の位置に基づく範囲である場合、及び車両の進行方向の変化が所定量である場合の少なくとも一方である場合に、第2位置を記車両の位置とする。
第1実施形態に係る走行位置検知システム10の概要構成ブロック図。 第1実施形態の受信演算処理装置の機能構成ブロック図。 第1実施形態の測位信号演算処理部の処理フローチャート。 不可視領域が設定されている場合の処理環境を模式的に示す図。 星受信制御処理及び自立計測切替判別処理の処理フローチャート(その1)。 分岐処理Aのフローチャート。 分岐処理Dのフローチャート。 衛星受信制御処理及び自立計測切替判別処理の処理フローチャート(その2)。 測位用電波信号により不可視領域を検知する場合の処理環境を模式的に示す図。 別の分岐処理Dのフローチャート。 図10で示す処理を用いる場合のフローチャート。 地図データ及び測位用電波信号の情報により不可視領域に切り換える場合の処理環境を模式的に示す図。 更に別の分岐処理Dのフローチャート。 図13で示す処理を用いる場合のフローチャート。 受信衛星制御処理の処理フローチャート。 測位用情報の受信状態の説明図。 速度計測の場合の受信有効エリア7及び受信無効エリアの設定例を示す図。 人工衛星の選択処理の説明図。 仰角制御の説明図。 走行状態判別処理部の処理フローチャート。 車両位置補正部の処理フローチャート。 第2実施形態の受信演算処理装置の機能構成ブロック図。 車両進路予測演算部の処理フローチャート(その1)。 車両進路予測演算部の処理フローチャート(その2)。 車両進路予測演算部の処理フローチャート(その3)。
 以下、図面を参照して、本発明の実施形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺及び縦横の寸法比等を、実物のそれらから変更し誇張してある。
(第1実施形態)
 図1は、第1実施形態に係る走行位置検知システム10の概要構成ブロック図である。走行位置検知システム10は、鉄道車両11に搭載され、人工衛星(以下では測位衛星と呼ぶ場合がある)12-1~12-4の送信機から送信された測位用電波信号SX1~SX4に基づき測位を行うことが可能である。この走行位置検知システム10は、受信アンテナ装置13と、外部機器14と、受信演算処理装置(位置測位装置)15と、を備える。なお、本実施形態では、人工衛星12-1~12-nをn=4で説明するが、これに限定されない。例えば、nは5以上の自然数でもよい。
 受信アンテナ装置13は、測位用電波信号SX1~SX4を受信可能なアンテナ装置である。外部機器14は、測位結果に基づき、鉄道車両11の走行制御を行う機器であり、例えば、列車統合管理装置(TCMS)、自動運転向け運転士支援制御装置、車上モニタである。受信演算処理装置15は、受信アンテナ装置13の出力した測位用電波信号SX1~SX4に基づいて測位処理を行い、測位結果を外部機器14に出力する。
 図2は、第1実施形態に係る受信演算処理装置15の構成例を示すブロック図である。受信演算処理装置15は、測位信号演算処理部(第1測位部)21と、衛星受信制御部22と、自立計測演算処理部(第1計測部)23と、走行状態判別処理部24と、車両位置補正部(第2測位部)25と、自立計測切替判別部(判定部)26と、記憶装置27と、通信接続装置28と、測位信号速度演算部(第2計測部)29とを、有する。図2には、3軸センサ部CSUが更に図示されている。3軸センサ部CSUは、例えば3軸加速度センサ、3軸ジャイロセンサ、及び3軸地磁気センサを含む3軸センサである。
 測位信号演算処理部21は、受信アンテナ装置13の受信した測位用電波信号SX1~SX4に基づいて、鉄道車両11の位置座標を演算し、測位データ群DGを出力する。測位データ群DGには、時刻、測位用電波信号SX1~SX4に含まれる衛生軌道情報(例えば衛星アルマナック情報、及び衛星エフェメリス情報)、測位用電波信号SX1~SX4の受信信号強度、及び鉄道車両11の位置座標などが含まれる。
 衛星受信制御部22は、測位データ群DGに含まれる人工衛星12-1~12-4からの測位用電波信号SX1~SX4及びその信号強度に基づいて、位置誤差を推定する演算処理を行う。これにより、衛星受信制御部22は、得られた推定演算誤差に基づいて、対応する衛星受信仰角及び受信強度等の受信制御を行う。衛星受信制御部22の詳細は図15乃至19を用いて後述する。
 自立計測演算処理部23は、3軸センサ部CSUの出力に基づいて自立測位データ群DSを出力する。自立測位データ群DSには、時刻、速度、3軸方向の走行ベクトルなどが含まれる。すなわち、この自立計測演算処理部23は、速度、3軸方向の走行ベクトルを一般的な演算方法を用いて演算処理する。例えば、3軸方向の走行ベクトルは、3軸加速度センサの出力に基づき、3軸方向の加速度を時間積算することで演算される。また、速度は、例えば3軸方向の走行ベクトルの絶対値として演算可能である。
 走行状態判別処理部24は、自立測位データ群DSを主として用いて、鉄道車両11の走行状態(例えば走行状態には速度情報、停止状態を示す情報が含まれる)を判別する。走行状態判別処理部24の詳細な処理例は図20を用いて後述する。
 車両位置補正部25は、測位データ群DGに基づく鉄道車両11の位置座標を自立測位データ群DSの情報を用いて補正演算し、鉄道車両11の位置情報を出力する。すなわち、車両位置補正部25は、基準位置からの鉄道車両11の位置座標の時系列な変化を、自立測位データ群DSの情報を用いて演算する。この基準位置とは、過去に測位または自立演算をした位置の、平均位置である。例えば、基準位置は、同一の地上子を通過した際の測位位置の過去10回分の平均値である。また、車両位置補正部25の詳細な処理例は図21を用いて後述する。
 自立計測切替判別部26は、測位用電波信号SX1~SX4の電波状態、及び鉄道車両11の位置の少なくともいずれかに応じて、測位信号演算処理部21の出力する位置座標及び車両位置補正部25の出力する位置座標のいずれを鉄道車両11の位置座標とするか判別する。例えば、自立計測切替判別部26は、測位データ群DGを用いて、鉄道車両11が人工衛星12-1~12-4を捕捉できない環境下に存在するか否かを判別し、人工衛星12-1~12-4を捕捉できない環境下に存在する場合に、車両位置補正部25の出力する位置座標を主として用いる自立計測処理に自動的に切り替える。
 また、自立計測切替判別部26は、測位信号演算処理部21の出力する位置座標を主として用いる測位演算状態(State1)、車両位置補正部25の出力する位置座標を主として用いる自立計測処理状態(State2)のいずれであるかを示す情報を記憶装置に27に時刻とともに記憶する。
 記憶装置27は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等により実現される。記憶装置27は、各種の情報を記憶する。
 通信接続装置28は、記憶装置27と、外部装置14との間を通信する。
 測位信号速度演算部29は、測位用電波信号SX1~SX4の電波を用いて鉄道車両11の速度を演算する。鉄道車両11では、加速時、及び減速時に空転滑走する場合がある。このため、鉄道車両11の速度発電機(タコジェネレータ)による周波数変換に基づく速度よりも、電波を用いて演算した速度の方が、一般的に精度がより高くなる。
 測位信号速度演算部29は、例えば人工衛星12-1~12-4から出力されている搬送波のドップラー効果により道車両11の速度を演算する。人工衛星12-1~12-4の搬送波周波数(L1帯 fs=1.5754 GHz)は厳密に管理されているため、この周波数を測って式(1)により、速度Vを演算する。一方で、人工衛星12-1~12-4は高速で移動しているため、1個の人工衛星の搬送波周波数だけでは対地速度を求めることはできない。このため、複数(例えば4個以上)の人工衛星12-1~12-4からの搬送波周波数を測定し、対地速度が演算される。また、測位信号演算処理部21と同様に、不可視領域を鉄道車両11が通過すると、搬送波周波数を使用して速度を計測することは不可能となる。
Figure JPOXMLDOC01-appb-M000001
 以上が走行位置検知システム10の構成の説明であるが、次に各構成部の動作を説明する。
 まず、図3に基づき、測位信号演算処理部21及び自立計測演算処理部23の処理例を説明する。図3は、第1実施形態の測位信号演算処理部21の処理フローチャートである。
 受信演算処理装置15の測位信号演算処理部21は、受信アンテナ装置13を介して測位用電波信号SX1~SX4を受信する(ステップS11)。
 次に、測位信号演算処理部21は、測位用電波信号SX1~SX4から時刻信号を抽出し取得する(ステップS12)。続いて、測位信号演算処理部21は、衛星軌道情報(例えば、衛星アルマナック情報、及び衛星エフェメリス情報)、及び得られた時刻信号に基づいて緯度情報及び経度情報を含む位置情報を取得する(ステップS13)。
 ここで、位置情報の取得方法の詳細を説明する。測位信号演算処理部21は、例えば人工衛星12-1~12-4からの軌道情報を用いて鉄道車両11の位置座標(x、y、z)を算出する。すなわち、人工衛星12-1~12-4の位置と、その瞬間における人工衛星12-1~12-4と受信演算処理装置15との距離をセットとした情報により、鉄道車両11の位置座標(x、y、z)を算出することが可能である。この場合、人工衛星の位置と、その瞬間における人工衛星と受信演算処理装置15との距離の情報のセットは、3以上あれば、座標(x、y、z)を算出可能である。これに、時刻の正確さを保証するため4つ目の衛星が一般に必要となる。
 より詳細には、測位信号演算処理部21は、衛生軌道情報(例えば、衛星アルマナック情報、及び衛星エフェメリス情報)、及び得られた時刻信号に基づいて、以下に示す、(2)式により鉄道車両11の位置座標(x、y、z)を算出する。
 (2)式において、(x、y、z)は、求めたい位置の座標値のパラメータであり、(x、y、z)は測位信号を送信する衛星の位置の座標値のパラメータである。また、tは、測位した時刻のパラメータであり、tは、人工衛星12-1~12-4が測位用信号を送信した時刻のパラメータである。なお、測位信号演算処理部21は、地上の基地局などを経由して、測位用信号を受信してもよい。測位信号演算処理部21は、この4パラメータを最小二乗法などにより、検知したい位置情報を算出する。
Figure JPOXMLDOC01-appb-M000002
 続いて、測位信号演算処理部21は、演算結果に基づいて測位衛星数を取得する(ステップS14)。さらに、測位信号演算処理部21は、衛星アルマナック情報に基づいて測位衛星仰角を算出するとともに、受信アンテナ装置13から測位用電波信号SX1~SX4の受信時の受信強度の情報を取得する(ステップS15)。例えば、測位信号演算処理部21は、人工衛星12-1~12-4の位置と、鉄道車両11の位置座標(x、y、z)との関係から測位衛星仰角を算出することが可能である。
 次に、測位信号演算処理部21は、測位衛星方向角を取得する(ステップS16)。例えば、測位信号演算処理部21は、人工衛星12-1~12-4の位置と、鉄道車両11の位置座標(x、y、z)と、鉄道車両11の方向との関係から測位衛星方向角を算出することが可能である。さらに、測位信号演算処理部21は、その他の衛星受信情報を取得する(ステップS17)。測位信号演算処理部21は、これらの情報を含む測位データ群DGを出力し、記憶装置27に記憶する。
 次に、自立計測演算処理部23は、3軸センサ部CSUから3軸加速度センサの出力を取得し(ステップS18)、3軸ジャイロセンサの出力を取得し(ステップS19)、3軸地磁気センサの出力を取得する(ステップS20)。自立計測演算処理部23は、速度、3軸方向の走行ベクトルを演算し、これらの情報を含む自立測位データ群DSを出力し、時刻とともに記憶装置27に記憶する。この際に、車両位置補正部(第2測位部)25は、自立測位データ群DSに基づき、鉄道車両11の位置座標を演算し、時刻とともに記憶装置27に記憶する。
 ここで、図4乃至図8を用いて、トンネルなどによる測位用電波信号SX1~SX4の受信障害の発生箇所が既知である場合の、衛星受信制御部22の衛星受信制御、及び走行状態判別処理部24の自立計測切替判別処理の処理例について説明する。以下では、同等の処理には同一の番号を付し、説明を省略する場合がある。
 図4は、不可視領域B1~B2が設定されている場合の処理環境を模式的に示す図である。鉄道車両11は、実空間の線路L1の軌道上を走行する。また、鉄道車両11は、地図上の線路L2の軌道情報と不可視領域B1~B2の情報を予め記憶している。また、図4では、不可視領域B1~B2以外の領域であるGNSS(全球測位衛星システム:Global Navigation Satellite System)区画S1、S3と、不可視領域B1~B2に対応する自立計測区画S2が図示されている。なお、本実施形態では、不可視領域B1~B2は、測位用電波信号SX1~SX4の受信障害が発生する領域を意味する。
 図5は衛星受信制御処理及び自立計測切替判別処理の処理フローチャート(その1)である。
 図5に示すように、本実施形態においては、まず、走行状態判別処理部24は、測位データ群DGに含まれる測位衛星仰角及び受信強度を取得する(ステップS31)。
 次に、位信号演算処理部21は、推定位置誤差を演算し、走行状態判別処理部24は、推定位置誤差を取得する(ステップS32)。位信号演算処理部21は、測距精度としてPDOP(衛星の幾何配置による精度低下率)値を演算する。
 DOP(Dilution of Precision)は、衛星の配置状態を指標化したものであり、DOP値は、衛星数よりも測位精度との相関関係が高く、値が小さいほど測位精度が高い傾向を示す。このDOP値には、衛星の幾何学的配置の水平成分だけを指標化したHDOP(Horizontal DOP)、垂直成分だけ指数化したVDOP(Vertical DOP)、それらを合成したPDOP(Position DOP)等がある。本実施形態では、通常計測においてはPDOP値を用いる。一方で、「高さ」に高い精度を求める場合には、VDOP値を用いてもよい。また、走行状態判別処理部24は、推定位置誤差値として、位信号演算処理部21が演算するEHPE(推定水平測位精度)を用いる場合がある。
 続いて、走行状態判別処理部24は、取得した鉄道車両11の進行方向に基づいて受信方位角を設定する(ステップS33)。鉄道車両11の進行方向は、3軸センサ部CSUからの出力信号に基づき、自立測位演算処理部(第2測位部)23により演算される。なお、受信方位角の設定(ステップS33)は、この段階では必ずしも行う必要はない。
 次に、走行状態判別処理部24は、測位した受信強度dbと記憶装置27に記憶されている受信強度の判定閾値db_thrとを比較する(ステップS34)。
 db_thr<dbである場合(ステップS34のYes)、受信強度が充分強く、感度が良い状態であることを意味しており、受信対象とする衛星の衛生仰角の制御に遷移する。
 次に、走行状態判別処理部24は、仰角制御が必要であるか判別するため、記憶装置27から読み出した所定のPDOPの判定閾値pdop_thrを用いて、測位したPDOP値(pdop)と比較する(ステップS35)。
 pdop≧pdop_thrである場合(ステップS35のNo)、位置精度低下率が高く、精度が比較的悪い状態であることを意味しており、走行状態判別処理部24は、衛星受信制御部22に、仰角の上限角度及び仰角の下限角度を演算させ(ステップS36)、仰角の制御(再設定)を行う(ステップS37)。この場合において、仰角の上限角度及び仰角の下限角度の演算は、記憶装置27に記憶した所定の仰角と推定位置誤差から得られる回帰式のパラメータを用いる方法や仰角とPDOP値から得られる回帰式のパラメータを用いる方法等が挙げられる。これらの方法は、推定位置誤差が向上する関係式となるため、どの方法を用いて良い。
 次に、走行状態判別処理部24は、所定の時間範囲においてステップS31とステップS32の処理を時系列に所定の時間範囲で行わせ、受信強度及びPDOPの値を時系列に取得する(ステップS38)。そして、走行状態判別処理部24は、所定の時間が経過した際に、db1_thr<db1、div<div_thr、且つpdop<pdop_thrであるか否かを判定する(ステップS39)。ここで、db1は、受信強度の平均値であり、divは、受信強度の分散であり、db1_thr、div_thrはそれぞれ受信強度の平均、受信強度の判定閾値である。例えば、図4で示す不可視領域B1~B2の前後の領域では受信強度の変動が大きくなり、不可視領域B1~B2内では受信強度が低下する。このため、受信強度の平均、及び分散の値を評価することにより、評価が低い場合に不可視領域B1~B2の前後、不可視領域B1~B2内での仰角の制御(再設定)を避けることができる。
 走行状態判別処理部24は、db1_thr<db1、div<div_thr、pdop<pdop_thrである場合に(ステップS39のYes)に仰角を復帰設定し、ステップS31からの処理を繰り返す。この場合、位置精度低下率が高く、且つ選択した仰角範囲の衛星の信号強度が高いと判断される。このため、測位衛星仰角及び受信強度の制御値として再設定した仰角の上限角度及び仰角の下限角度に変更し、ステップS31からの処理を繰り返す。この際に走行状態判別処理部24は、時刻とともに測位演算状態(State1)であることを記憶装置27に記憶する。また、位置精度低下率が高く、且つ選択した仰角範囲の衛星の信号強度が高いと判断されるため、測位信号演算処理部21の演算した位置座標、及び測位信号速度演算部29が演算した速度を鉄道車両11の位置情報として優先的に用いることが可能となる。
 一方で、db1_thr<db1、div<div_thrであるが、pdop<pdop_thrである場合(ステップS39のNO)、選択した仰角範囲の衛星の受信信号の質が低いと判断されるので、衛星受信制御部22に、仰角の制御(再設定)を行わせ(ステップS37)、ステップS38からの処理を繰り返す。なお、db1_thr>db1、又はdiv>div_thrである場合には、電波の受信環境が悪いと判断されるため、pdop<pdop_thrの判定を行わず、待機させる。
  このように、仰角を再設定する際に、衛星の信号強度及び衛星の配置状態を確認し、通信状態のよい状態の時に仰角の制御(再設定)を行うので、より高精度に、仰角の上限角度及び仰角の下限角度の設定を行うことができる。これにより、仰角の上限角度及び仰角の下限角度を制御することで、より精度の高い測位信号を得ることが可能となる。
 一方、db_thr≧dbの場合(ステップS34のNo)、受信強度が弱く、感度が悪い状態であることを意味し、走行状態判別処理部24は、受信強度の制御や自立計測処理の分岐処理Aに遷移する。
 図6は、分岐処理Aのフローチャートである。図6に示すように、走行状態判別処理部24は、受信強度制御が必要であるか判別するため、測位したEHPE値(ehpe)が記憶装置27に記憶した所定のEHPEの判定閾値ehpe_thr未満であるか否かを判別する(ステップS41)。
 ehpe<ehpe_thrである場合(ステップS38のYes)、位置精度低下率が低く精度が比較的良いが、受信強度が悪い状況であることを意味し、走行状態判別処理部24は、衛星受信制御部22に受信強度の上限強度及び下限強度を演算させ(ステップS42)、受信強度の制御(再設定)を行う(ステップS43)。
 この場合において、受信強度の上限値及び下限値の演算は、記憶装置27に記憶した所定の受信強度と推定位置誤差から得られる回帰式のパラメータを用いる方法や受信強度とEHPE値から得られる回帰式のパラメータ等がある。これらの方法は、推定位置誤差が向上する関係式となるため、いずれの方法を用いて良い。
 次に、所定の時間範囲においてステップS31とステップS32(図4)の処理を時系列に行い、受信強度及びEHPE値(ehpe)を時系列に取得する(ステップS44)。所定の時間の経過後にdb1_thr<db1、div<div_thr、且つehpe<ehpe_thrであるか否かを判定する(ステップS45)。
 db1_thr<db1、div<div_thr、且つehpe<ehpe_thrである場合に(ステップS45のYes)受信強度を復帰設定し、ステップS31からの処理を繰り返す。この場合、選択した強度範囲の衛星の位置精度低下率が低く、精度が比較的良いことを意味する。このため、制御値として再設定した受信強度に変更し、ステップS31からの処理を繰り返す。この際に走行状態判別処理部24は、時刻とともに測位演算状態(State1)であることを記憶装置27に記憶する。また、選択した強度範囲の衛星の位置精度低下率が低く、精度が比較的良い場合、車両位置補正部25の演算した位置座標、及び自立計測演算処理部23が演算した速度を鉄道車両11の位置情報として優先的に用いることが可能となる。
 一方で、db1_thr<db1、div<div_thrであるが、ehpe<ehpe_thrであるデータ数が所定値を超えない場合(ステップS45のNO)、選択した仰角範囲の衛星の受信信号の質が低いことを意味し、受信強度の制御(再設定)を行い(ステップS43)、ステップS44からの処理を繰り返す。なお、db1_thr>db1、又はdiv>div_thrである場合は、電波の受信環境が悪いことを意味し、ehpe<ehpe_thrの判定を行わず、待機させる。
 このように、受信強度を再設定する際に、衛星の信号強度及び選択した強度範囲の衛星の位置精度低下率を所定の期間試行して確認するので、より高精度に、信号強度の上限値及び下限値の設定を行うことができる。これにより、信号強度の上限値及び下限値を制御することで、より精度の高い測位信号を得ることが可能となる。
 ところで、ステップS34の判別(図5参照)においてdb≦db-thrとなる場合、かつ、ステップS41の判別(図6参照)においてehpe-thr≦ehpeとなる場合には、受信強度制御及び仰角制御の双方を実施しても推定位置誤差は改善しない状況にあると考えられる。すなわち、測位精度は向上しない状況下にあると考えられるので、測位方法を自立計測に切り替え(ステップS47)、自立計測処理(ステップS84)(図8参照)に遷移する。この際に走行状態判別処理部24は、時刻とともに自立計測処理状態(State2)であることを記憶装置27に記憶する。受信強度制御及び仰角制御の双方を実施しても推定位置誤差は改善しない状況にあると考えられるので、車両位置補正部25の演算した位置座標、及び自立計測演算処理部23が演算した速度を鉄道車両11の位置情報として優先的に用いることが可能となる。
 一方で、ステップS35の判別(図4)においてpdop<pdop_thrである場合(ステップS35のYes)、受信強度が充分強く、且つ推定位置誤差が少ないことから、この時点では衛生仰角の制御は不要であり、分岐処理Dに遷移する。
 図7は、分岐処理Dのフローチャートである。ここでは、図4を参照しつつ、不可視領域では自立計測処理に切り換える処理例を説明する。
 鉄道車両11は、測位信号演算処理部21での測位用電波信号SX1~SX4を用いた鉄道車両11の位置測位と、自立測位演算処理部(第2測位部)23での3軸センサ部CSUから出力信号に基づく鉄道車両11の位置測位とを、並行して行っている(ステップS610)。
 自立計測切替判別部26は、記憶装置27から取得される地図上の線路L2の軌道情報と不可視領域B1~B2の情報を逐次取得し(ステップS620)、自立測位演算処理部(第2測位部)23で得られた鉄道車両11の進行方位を取得する(ステップS630)。
 次に、自立計測切替判別部26は、鉄道車両11の進行方位及びステップS610で得られた鉄道車両11の位置測位に基づき、鉄道車両11の線路L2の軌道上の現在位置を照合する(ステップS640)。続けて、自立計測切替判別部26は、鉄道車両11の現在位置が不可視領域B1~B2の開始点B1又はB2に対応するか否かを判定する(ステップS650)。例えば、鉄道車両11が上りであれば、地点B1が不可視領域B1~B2の開始点であり、鉄道車両11が下りであれば、地点B2が不可視領域B1~B2の開始点である。逆に、鉄道車両11が上りであれば、地点B2が不可視領域B1~B2の終了点であり、鉄道車両11が下りであれば、地点B1が不可視領域B1~B2の終了点である。
 自立計測切替判別部26は、鉄道車両11が不可視領域B1~B2に入ると判別した場合(ステップS650のYes)、受信強度が充分強く、且つ推定位置誤差が少ない場合でも、自立計測に切り換え(ステップS47)、自立計測処理に移行する(ステップS84)(図8)。これにより、電波が劣化する前に、より正確に自立計測処理に移行することができる。この際に走行状態判別処理部24は、時刻とともに自立計測処理状態(State2)であることを記憶装置27に記憶する。車両位置補正部25の演算した位置座標、及び自立計測演算処理部23が演算した速度を鉄道車両11の位置情報として優先的に用いることが可能となる。
 例えば従来のように、電波の受信強度の低下を検知して、切り換える場合には、低下が生じる位置が不可視領域B1~B2内に入った後である場合もあり、切替が遅れてしまう恐れがある。これに対して、鉄道車両11の現在位置が不可視領域B1~B2の開始点B1又はB2に対応するか否かを判定する場合には、鉄道車両11の速度情報も用いて、不可視領域B1~B2の開始点B1又はB2に到達する時点を算出して、開始点B1又はB2に到達する時点に合わせて、自立計測処理に移行することも可能である。これにより、自立計測処理への移行が遅れることが抑制される。例えば、鉄道車両11が時速200キロメートルなどで上り方向に高速走行中には、開始点B1に到達する前に自立計測処理への移行を開始し、切替点P1を開始点B1に一致させることも可能であり、従来では切替が遅れてしまう場合にも、より安定して位置測位を継続して行うことができる。また、開始点B1又はB2の位置を鉄道車両11の規定速度に合わせて不可視領域B1~B2の手前に設置してもよい。この場合、速度情報を用いなくとも自立計測処理に移行することが可能である。
 一方で、鉄道車両11が不可視領域B1~B2に入らないと判別した場合(ステップS65のNo)、分岐処理Cに遷移し、ステップS31(図4)からの処理を繰り返す。この場合、測位信号演算処理部21での測位用電波信号SX1~SX4を用いた鉄道車両11の位置測位の情報を主として用いる計測を継続する。このように、測位信号演算処理部21での位置測位の精度が高い場合には、測位信号演算処理部21での位置測位の情報を主として使用し、自立測位演算処理部(第2測位部)23での位置測位の精度が測位信号演算処理部21での位置測位の精度よりも高くなる領域では、測位信号演算処理部21での位置測位の報を主として使用することが可能となる。
 図8は、衛星受信制御処理及び自立計測切替判別処理の処理フローチャート(その2)である。上述のように、測位精度は向上しない状況下にある場合、測位方法を自立計測に切り替え(ステップS46)、自立計測処理(ステップS840)に遷移する。この場合において、自立計測処理に遷移中、衛星等の測位信号も並行して受信しているが測位精度は悪いと考えられるが、測位精度が改善するトンネルから出た後等の状況になり次第、衛星測位に切り替える必要がある。
 そこで、図8に示すように、自立測位と並行して、取得した測位信号を用い、測位衛星仰角及び受信強度を取得し、推定位置誤差の演算及び取得を行う(ステップS31、S32)そして、取得した測位信号に対応する鉄道車両11の進行方向の方位に基づいて受信方位角を設定する(ステップS33)。
 次に、自立計測切替判別部26は、は、記憶装置27に記憶されている所定の受信強度の判定閾値db_thrを用いて、測位した受信強度dbが判定閾値db_thr未満となっているか否かを判別する(ステップS810)。db-thr<dbである場合には(ステップS810のNo)、受信強度が充分強く、感度が良い状態となっており、測位精度が比較的良いことを意味し、受信強度制御が必要であるか判別するため、測位したEHPE値(ehpe)が記憶装置27に記憶した所定のEHPEの判定閾値ehpe_thr未満であるか否かを判別する(ステップS82)。
 ehpe<ehpe_thrである場合(ステップS820のYes)、位置精度低下率が低く、精度が比較的良いことを意味し、自立計測切替判別部26は、自立計測を終了させるために自立計測終了命令を出力して処理をステップS31(図4参照)に移行し、自立計測処理の最後に演算した位置を衛星測位の最初の点として衛星測位を開始する(ステップS830)。この際に走行状態判別処理部24は、時刻とともに自立計測処理状態(State2)であることを記憶装置27に記憶する。受信強度制御及び仰角制御の双方を実施しても推定位置誤差は改善しない状況にあると考えられるので、車両位置補正部25の演算した位置座標、及び自立計測演算処理部23が演算した速度を鉄道車両11の位置情報として優先的に用いることが可能となる。
 一方、ehpe≧ehpe_thrの場合(ステップS810のYes)、位置精度低下率が高く、精度が比較的悪いことを意味し、自立計測処理を継続し(ステップS840)、自立計測処理部23により演算された速度を用いる(ステップS840)。
 同様に、db_thr≧dbと判別された場合にも(ステップS820のNo)、受信強度が弱く、感度が悪い状態であり、測位精度が比較的悪いことから、自立計測処理を継続し(ステップS840)、自立計測処理部23により演算された速度を用いる(ステップS840)。
 ステップ31~S83の処理と並行して、ステップ610~S660の処理も並行して行う。すなわち、鉄道車両11は、測位信号演算処理部21での測位用電波信号SX1~SX4を用いた鉄道車両11の位置測位と、車両位置補正部25での3軸センサ部CSUから出力信号に基づく鉄道車両11の位置測位とを、並行して行っている(ステップS610)。ここでは、不可視領域B1~B2内であるので、車両位置補正部25による位置情報が主として使用される。
 自立計測切替判別部26は、記憶装置27から取得される地図上の線路L2の軌道情報と不可視領域B1~B2の情報を逐次取得し(ステップS620)、自立計測演算処理部23で得られた鉄道車両11の進行方位を取得する(ステップS630)。
 次に、自立計測切替判別部26は、鉄道車両11の進行方位及びステップS610で得られた鉄道車両11の位置測位に基づき、鉄道車両11の線路L2の軌道上の現在位置を照合する(ステップS640)。続けて、自立計測切替判別部26は、鉄道車両11の現在位置が不可視領域B1~B2の終了点B1又はB2に対応するか否かを判定する(ステップS660)。例えば、鉄道車両11が上りであれば、地点B2が不可視領域B1~B2の終了点であり、鉄道車両11が下りであれば、地点B1が不可視領域B1~B2の終了点である。
 自立計測切替判別部26は、鉄道車両11が不可視領域B1~B2からでると判別した場合(ステップS650のNo)、自立計測を終了させるために自立計測終了命令を出力して処理をステップS31(図4参照)に移行し、自立計測処理の最後に演算した位置を衛星測位の最初の点として衛星測位を開始する(ステップS830)。これにより、電波の乱れが解消するタイミングに合わせて、より正確に衛星測位に移行することができる。
 電波の乱れを評価して、切り換える場合には、乱れが解消する位置が不可視領域B1~B2の直後である場合もあり、切替が遅れてしまう恐れがある。これに対して、鉄道車両11の現在位置が不可視領域B1~B2の終了点B1又はB2に対応するか否かを判定する場合には、例えば鉄道車両11の速度情報も用いて、不可視領域B1~B2の終了点B1又はB2に到達する時点を算出可能である。これにより、終了点B2に到達する時点に合わせて、衛星測位に移行することも可能である。このように、衛星測位への移行が遅れることが抑制される。例えば、鉄道車両11が時速200キロメートルなどの高速で上り方向に走行中には、終了点B2に到達する前に衛星測位への移行を開始し、切替点P2を終了点B2に一致させることも可能である。これにより、従来では切替が遅れてしまう場合にも、より安定して位置測位を継続して行うことができる。また、終了点B1又はB2の位置を鉄道車両11の規定速度に合わせて不可視領域B1~B2の手前に設置してもよい。この場合、速度情報を用いなくとも衛星測位処理に移行することが可能である。
 また、ステップ31~S830の処理を並行しているため、測位用電波信号SX1~SX4の状態が悪い場合には、自立計測が維持される。このため、測位用電波信号SX1~SX4の状態が悪い場合に衛星測位処理に移行することも抑制される。
 次に、図9を参照にしつつ、別の分岐処理Dの例を説明する。ここでは、図9を参照しつつ、測位用電波信号SX1~SX4の情報により不可視領域B1~B2では自立計測処理に切り換える処理例を説明する。
 図9は、測位用電波信号SX1~SX4により不可視領域B1~B2を検知する場合の処理環境を模式的に示す図である。鉄道車両11は、実空間の線路L1の軌道上を走行する。また、測位信号演算処理部21は、測位用電波信号R3を用いて鉄道車両11の進行ベクトルの軌跡L3を演算する。測位用電波信号R3は、測位用電波信号SX1~SX4を模式的に示している。
 図10は、別の分岐処理Dのフローチャートである。ここでは、図9を参照しつつ、不可視領域では自立計測処理に切り換える処理例を説明する。
 自立計測切替判別部26は、測位用電波信号R3を所定期間計測した時系列値の平均値db1と分散値dv1を演算する(ステップS910)。上述したように平均値db1は、不可視領域B1~B2では減少し、不可視領域B1~B2の前後を含めた領域内では分散値dv1は増加する。
 道車両11は、測位信号演算処理部21での測位用電波信号SX1~SX4を用いた鉄道車両11の位置測位と、車両位置補正部25での3軸センサ部CSUから出力信号に基づく鉄道車両11の位置測位とを、並行して行っている(ステップS920)。続けて、測位信号演算処理部21では、測位用電波信号SX1~SX4に基づき道車両11の進行方向を進行ベクトルL3として演算する(ステップS930)。
 次に、測位信号演算処理部21は、進行ベクトルL3の単位時間あたりの変化量r1を演算する(ステップS940)。
 自立計測切替判別部26は、例えば、r1>r1_thrである場合に、不可視領域B1~B2の開始点B1であると判別する(ステップS950)。進行ベクトルL3は測位用電波信号SX1~SX4の強度の乱れに対する感度が高く、不可視領域B1~B2の開始点B1付近では、変化量r1がより大きく変動する。これにより、開始点B1に近づいたことを判別可能となる。この場合、測位用電波信号R3の分散値dv1、及び平均値db1も用いて鉄道車両11の現在位置が不可視領域B1~B2の開始点B1又はB2に対応するか否かを判定してもよい。すなわち、判定条件にdb1≦db1_thr且つ、dv1>dv1_thrであることを加えてもよい。これにより、測位用電波信号SX1~SX4の強度の乱れが少ない場合には、不可視領域B1~B2の開始点B1であることの誤判定をより抑制可能となる。こように、線路L1の軌道情報を用いなくとも、不可視領域B1~B2の開始点B1を判定可能となる。地図データがない場合や、地図情報上にない建築物などがある場合にも不可視領域B1~B2の判定が可能となる。
 自立計測切替判別部26は、鉄道車両11が不可視領域B1~B2に入ると判別した場合(ステップS950のYes)、自立計測に切り換え(ステップS47)、自立計測処理に移行する(ステップS84)(図11)。
 一方で、鉄道車両11が不可視領域B1~B2に入らないと判別した場合(ステップS950のNo)、分岐処理Cに遷移し、ステップS31(図4)からの処理を繰り返す。この場合、測位信号演算処理部21での測位用電波信号SX1~SX4を用いた鉄道車両11の位置測位の情報を主として用いて計測を継続する。このように、測位信号演算処理部21での位置測位の精度が高い場合には、測位信号演算処理部21での位置測位の情報を主として使用し、車両位置補正部25での位置測位の精度が測位信号演算処理部21での位置測位の精度よりも高くなる領域では、車両位置補正部25での位置測位の情報を主として使用することが可能となる。
 図11は、図10で示す処理を用いる場合のフローチャートである。図8とは、不可視領域の判定方法に図10で説明した方法を用いる点で相違する。以下では、図8と相違する点を説明する。
 自立計測切替判別部26は、例えば、r1<r1_thrである場合に、不可視領域B1~B2の終了点B2であると判別する(ステップS960)。進行ベクトルL3は測位用電波信号SX1~SX4の強度の乱れに対する感度が高く、不可視領域B1~B2の終了点B2付近では、強度の乱れが減少するので変化量r1が小さくなる。これにより、終了点B2に近づいたことが判別可能となる。この場合、測位用電波信号R3の分散値dv1、及び平均値db1も用いて鉄道車両11の現在位置が不可視領域B1~B2の開始点B1又はB2に対応するか否かを判定してもよい。すなわち、判定条件にdb1≧db1_thr且つ、dv1<dv1_thrであることを加えてもよい。これにより、測位用電波信号SX1~SX4の強度の乱れが大きい場合には、不可視領域B1~B2の終了点B2であることの誤判定をより抑制可能となる。上述のように、測位精度は向上しない状況下にある場合、測位方法を自立計測に切り替え(ステップS46)、自立計測処理(ステップS840)に遷移する。この場合において、自立計測処理に遷移中、衛星等の測位信号も並行して受信しているが測位精度は悪いと考えられるが、測位精度が改善するトンネルから出た後等の状況になり次第、衛星測位に切り替える必要がある。
 次に、図12を参照しつつ、地図データ及び測位用電波信号SX1~SX4の情報により自立計測処理に切り換える処理例を説明する。
 図12は、地図データ及び測位用電波信号SX1~SX4の情報により不可視領域B1~Bに切り換える場合の処理環境を模式的に示す図である。鉄道車両11は、実空間の線路L1の軌道上を走行する。また、測位信号演算処理部21は、測位用電波信号R3を用いて鉄道車両11の進行ベクトルの軌跡L3を演算する。測位用電波信号R3は、測位用電波信号SX1~SX4を模式的に示している。
 図13は、更に別の分岐処理Dのフローチャートである。ここでは、図12を参照しつつ、不可視領域では自立計測処理に切り換える処理例を説明する。図13は、図8に対応するフローチャートである。以下では図8の処理と相違する点を説明する。
 自立計測切替判別部26は、測位用電波信号R3の分散値dv1、及び平均値db1も用いて鉄道車両11の現在位置が不可視領域B1~B2の開始点B1又はB2に対応するか否かを判定する(ステップS1300)。例えば、自立計測切替判別部26は、測位用電波信号R3の分散値dv1、及び平均値db1も用いて鉄道車両11の現在位置が不可視領域B1~B2の開始点B1又はB2に対応するか否かを判定する。例えば、判定条件にdb1≧db1_thr且つ、dv1<dv1_thrであるか、鉄道車両11が所定の位置に到達した場合に、不可視領域B1~B2であると判定する。
 これにより、例えば、移動物、工事中の建物などより、例えば記憶装置27には記憶されていない予定外の不可視領域が発生した場合にも、鉄道車両11が不可視領域内にいることを判定可能となる。
 図14は、図13で示す処理を用いる場合のフローチャートである。図8とは、不可視領域の判定方法に図13で説明した方法を用いる点で相違する。以下では、図8と相違する点を説明する。
 自立計測切替判別部26は、測位用電波信号R3の分散値dv1、及び平均値db1も用いて鉄道車両11の現在位置が不可視領域B1~B2の終了点B1又はB2に対応するか否かを判定する(ステップS1400)。例えば、自立計測切替判別部26は判定条件にdb1≧db1_thr且つ、dv1<dv1_thrであるか、鉄道車両11が所定の位置に到達した場合に、不可視領域B1~B2の終了点B1又はB2と判定する。これにより、記憶装置27には記憶されていない建築物、工事中の建物などより、例えば別の不可視領域が発生した場合にも、鉄道車両11が不可視領域外にでたことを判定可能となる。
 次に衛星受信制御の詳細について説明する。
 図15は、衛星受信制御部22における受信衛星制御処理の処理フローチャートである。衛星受信制御部22は、測位環境に応じて、位置検知に用いる人工衛星を選択する機能を実行する。
 測位信号を受信するアンテナ13(以下単にアンテナ13と記す場合がある)が、鉄道車両11の内部にある場合は、特に進行方向に対して、逆向きの衛星や側面方向に存在する衛星等からの測位信号は、反射や回折して受信される可能性が高いため、測定精度に直ちに影響を及ぼすこととなる。そこで、衛星受信制御部22は、測定精度を維持するために、受信衛星制御処理を行う。
 図15に示すように、まず、衛星受信制御部22は、取得した測位信号を用い、測位衛星仰角及び受信強度を取得する(ステップS61)。
 次に、衛星受信制御部22は、衛星アルマナック情報及び衛星エフェメリス情報を受信可能な人工衛星から取得し、人工衛星12-1~12-4の軌道情報を取得する(ステップS62)。
 図16は、測位用情報の受信状態の説明図である。図16(a)は、衛星軌道情報のイメージ図である。図16(a)において円の中心に鉄道車両11のアンテナ13が配置されている。図16(a)中、○印は人工衛星の現在位置、人工衛星の現在位置を通る曲線は各人工衛星の衛星軌道情報を表している。
 図16(a)のような状況において、実際に鉄道車両11のアンテナ13において受信可能な範囲は、アンテナ13の配置位置及び鉄道車両11の走行位置により異なるものとなり、例えば、図16(b)に示すように、衛星受信制御部22は、受信有効エリアAE及び受信無効エリアANを設定し、鉄道車両11の進行方向DRに基づいて、進行方向DRに対して、時計回り方向及び反時計回り方向にそれぞれ例えば135度となるように受信方位角が設定される。
 図17は、測位信号速度演算部(第2計測部)29における速度計測の場合の受信有効エリアAE及び受信無効エリアANの設定例を示す図である。測位信号速度演算部(第2計測部)29における速度計測の場合は、ドップラーにより速度測定を行うため、受信有効エリアAEはより進行方向DR方向に制限される。この場合、時計回り方向及び反時計回り方向にそれぞれ例えば45度となるように受信方位角が設定される(ステップS63)。
 さらに、衛星受信制御部22は、設定した受信方位角に対応する受信有効エリアAEに対し、図16(c)に示すように、鉄道車両11の進行方向DRに対して、時計回り方向及び反時計回り方向にそれぞれ90度となるように進行後に人工衛星を選択するための人工衛星配置位置を判定するための衛星配置判定エリアADを設定して、次回に選択すべき人工衛星を特定する処理を継続的に行う(ステップS64)。
 ここで、衛星受信制御部22における人工衛星の選択処理について詳細に説明する。
 図18は、人工衛星の選択処理の説明図である。図18に示すように、鉄道車両11の進行方向は、紙面垂直方向前方である。そして、衛星受信制御部22は、受信有効エリアAEに位置している人工衛星から、設定した受信強度(受信強度上限値及び受信強度下限値で特定される範囲)に属する人工衛星を有効な人工衛星12Eとして選択する。
 逆に、設定した受信強度範囲に属しない人工衛星12N1、12N21、12N2を無効と判断し、選択から除外する。より詳細には、有効な人工衛星12Eとして選択される人工衛星は、受信有効エリアAEに位置する人工衛星のうち、アンテナ13を介して直接、測位用信号を受信可能な衛星である。
 一方、無効な人工衛星12N1は、ビルや山などの障害物BRにより測位用信号が届かず、測位用信号を受信できない人工衛星である。
 また、無効な人工衛星12N21は、ビルや山などの障害物BRにより測位用信号が反射されてアンテナ13に届くため、時間遅延が発生するとともに、受信強度が低下して、測位精度が低下する人工衛星である。
 また、無効な人工衛星12N22は、ビルや山などの障害物BRにより測位用信号が回折してアンテナ13に届くため、時間遅延が発生するとともに、受信強度が低下して、測位精度が低下する人工衛星である。
 図19は、衛星受信制御部22における仰角制御の説明図である。
 衛星受信制御部22は、図19(a)に示すように、上述した人工衛星選択処理によって選択した有効な人工衛星12Eを全て含むとともに、無効な人工衛星12N(=人工衛星12N21及び人工衛星12N22)を含まないように仰角ELを制御する。
 この結果、有効な仰角範囲AELは、図19(b)に示すようになるので、さらに図16に示した、受信有効エリアAEに位置している人工衛星を特定して対応する測位用信号の処理を行う。この結果、測位精度を所望の値以上に維持することが可能となる。
 この場合において、衛星受信制御部22は、鉄道車両11の進行方向を受信方位角から一定時間(例えば、1秒間)について定期的に取得し、平均化した方位角を進行方向角として取得する。この進行方向角に存在する衛星を衛星軌道情報から選定するようにしてもよい。
 さらに、進行方向の方位角がカーブや経路変更等により、大きく変わった場合(例えば、10°)は随時、進行方向角を取得して、人口衛星を衛星軌道情報から選定するようにしてもよい。
 これらにより、より位置検知精度を向上可能とする測位信号のみを選定することが可能になる。
 次に、自立計測演算処理部23及び走行状態判別処理部24の機能について詳細に説明する。
 自立計測演算処理部23は、3軸センサ部CSUが出力した加速度情報、ジャイロ情報及び地磁気情報に基づいて、キャリブレーションとなる初期値演算処理する機能と、3軸センサ値の累計誤差を補正演算処理する機能と、補正演算処理した値と3軸センサ値を基に、鉄道車両11の速度情報を演算処理する機能を有する。走行状態判別処理部24は、衛星受信情報から得られる鉄道車両11の速度情報と、自立計測演算処理部23が演算処理した速度情報に基づいて誤差許容範囲内と推定される鉄道車両11の走行情報を選別処理する機能と、鉄道車両11の速度情報に基づいて停止と走行を判別する機能を備えている。
 図20は、自立計測演算処理部23及び走行状態判別処理部24の処理フローチャートである。
 まず自立計測演算処理部23は、3軸センサ部CSUが出力した加速度情報、ジャイロ情報及び地磁気情報を取得する(ステップS71)。
 次に、自立計測演算処理部23は、取得した加速度情報、ジャイロ情報及び地磁気情報に基づいて、初期値演算処理を行う(ステップS72)。この初期値演算処理は、基本的に鉄道車両11が停止中に実施するのが好ましい。ここで、鉄道車両11が停止中に実施する理由は、初期値演算処理を移動中に実施することは測定値に影響するだけでなく、累積誤差の初期化が困難になるためだからである。
 以下の説明においては、より正確な測定値を得ることができるとともに、累積誤差の初期化を行うために、停止中に初期値演算処理を実施するものとして説明する。鉄道車両11が停止中に3軸センサ部CSUが出力した加速度情報、ジャイロ情報及び地磁気情報のそれぞれの値を積算、平均化し、得られた積算平均化値をそれぞれの3軸センサのオフセット値として取得して初期値演算処理とする。
 そして、3軸センサ部CSUが出力した加速度情報、ジャイロ情報及び地磁気情報のそれぞれの値について累計誤差を補正演算処理する機能は、このオフセット値を取得した3軸センサの各値に対して、適用することで累積する誤差をオフセットすることが可能になる。
 また、初期値演算処理は、鉄道車両11の走行開始前のみならず、鉄道車両11が駅等において停止した場合においても、所定の設定時間が経過して停止状態が継続した場合には、同様の初期値演算処理を実施することで、オフセット量を再取得し、累積誤差を随時オフセットすることで、累積誤差を低減することが可能となる。
 3軸センサ部CSUが出力した3軸センサ値の累計誤差esnを監視し(ステップS73)、3軸センサ値の出力値を補正して補正3軸センサ値を演算する(ステップS74)。
 次に、自立計測演算処理部23は、得られた補正3軸センサ値から鉄道車両11の速度を演算する(ステップS75)。ここで、鉄道車両11の速度演算は、3軸センサ部CSUが出力した3軸加速度センサの出力である加速度の値を取得した時刻間隔において積分処理することで鉄道車両11の速度情報として演算し、各情報を自立測位データDSとして時系列に出力する。
 一方、走行状態判別処理部24は、衛星受信情報から得られる鉄道車両11の速度情報を取得する(ステップS76)。
 次に、走行状態判別処理部24は、3軸センサの累積誤差許容値esn_thrと監視して得られた累積誤差esnとを比較して、累積誤差esnが累積誤差許容値esn_thr未満であるか否かを判別する(ステップS77)。
 より詳細には、前回の鉄道車両11の停止から所定時間以上連続して走行していない状況であり、3軸センサの累積誤差が許容範囲内であると考えられる状況であるか否かを判別している。
 走行状態判別処理部24は、ステップS77の判別において、累積誤差esnが累積誤差許容値esn_thr未満である場合には、すなわち、esn<esn_thrある場合には(ステップS77;Yes)、3軸センサ部CSUが出力した3軸加速度センサの出力に対応する鉄道車両11の速度情報の信頼性が高いと考えられる状況であるので、3軸加速度センサの出力に対応する鉄道車両11の速度情報spdを選択し(ステップS78)、当該3軸加速度センサの出力に対応する鉄道車両11の速度情報spd及び記憶装置27に記憶しておいた所定の鉄道車両11速度判定値spd_thrに基づいて、鉄道車両11の速度情報spd<鉄道車両11速度判定値spd_thであるか否かを判別する(ステップS80)。ここで、spd<spd_thrであれば鉄道車両11は停止状態、spd≧spd_thrであれば鉄道車両11は走行状態である。
 ステップS80の判別において、spd<spd_thrであると判別された場合には(ステップS80;Yes)、鉄道車両11は停止状態であるので、走行状態判別処理部24は、鉄道車両11が停止している旨及び3軸センサ部CSUが出力した3軸加速度センサの出力に対応する鉄道車両11の速度情報を出力して処理を終了する(ステップS81)。
 ステップS80の判別において、spd≧spd_thrであると判別された場合には(ステップS80;No)、走行状態判別処理部24は、鉄道車両11は走行状態であるので、鉄道車両11が走行している旨及び3軸センサ部CSUが出力した3軸加速度センサの出力に対応する鉄道車両11の速度情報を出力して処理を終了する(ステップS82)。
 一方、ステップS77の判別において、累積誤差esnが累積誤差許容値esn_thr以上である場合には、すなわち、esn≧esn_thrである場合には(ステップS77;No)、鉄道車両11の連続走行状態であり、3軸センサ部CSUが出力した3軸加速度センサの出力に対応する鉄道車両11の速度情報の信頼性が低く、記憶装置27に記憶される状態がStat1であれば衛星情報に対応する鉄道車両11の速度情報の信頼性が高いと考えられる状況である。このため、衛星情報に対応する鉄道車両11の速度情報spdを選択する(ステップS79)、なお、状態がStat2であれば、状態がStat1に変わるまで処理を待機する。また、走行状態判別処理部24は、記憶装置27に記憶される状態がStat1であれば、測位信号速度演算部29が演算した速度を優先的に用いることが可能である。
 人工衛星からの受信データに対応する鉄道車両11の速度情報spd及び記憶装置27に記憶しておいた所定の鉄道車両11速度判定値spd-thrに基づいて、鉄道車両11の速度情報spd<鉄道車両11速度判定値spd_thであるか否かを判別する(ステップS80)。ここで、spd<spd_thrであれば鉄道車両11は停止状態、spd≧spd_thrであれば鉄道車両11は走行状態であると判別される。
 ステップS80の判別において、spd<spd_thrであると判別された場合には(ステップS80;Yes)、鉄道車両11は停止状態であるので、鉄道車両11が停止している旨及び3人工衛星からの受信データに対応する鉄道車両11の速度情報を出力して処理を終了する(ステップS81)。
 ステップS80の判別において、spd≧spd-thrであると判別された場合には(ステップS40;No)、鉄道車両11は走行状態であるので、鉄道車両11が走行している旨及び人工衛星からの受信データに対応する鉄道車両11の速度情報を出力して処理を終了する(ステップS82)。
 図21は、車両位置補正部25の処理フローチャートである。
 車両位置補正部25は、衛星受信制御部22において演算した推定位置誤差(EHPE及びPDOP)posを取得する(ステップS91)。
 続いて車両位置補正部25は、記憶装置27に記憶していた所定の位置誤差許容値pos-thrを取得し、取得した推定位置誤差posと位置誤差許容値pos_thrとを比較し、推定位置誤差pos<位置誤差許容値pos_thrであるか否か、すなわち、位置検知精度が比較的良いか否かを判別する(ステップS92)。
 ステップS92の判別において、推定位置誤差pos<位置誤差許容値pos_thrである場合には(ステップS92;Yes)、位置検知精度が比較的良いとされるので、走行状態判別処理部24から鉄道車両11の停止情報あるいは走行情報を取得する(ステップS93)。
 つぎに車両位置補正部25は、鉄道車両11が停止状態あるいは走行状態のいずれにあるかを判別する(ステップS94)。
 ステップS94の判別において、推定位置誤差pos<位置誤差許容値pos_thrであり、鉄道車両11が停止状態にある場合には(ステップS94;Yes)、3軸センサ部CSUにおいて3軸センサ値の初期化を行い(ステップS95)、車両位置補正部25は、処理を再びステップS91に移行する。
 一方、ステップS94の判別において、推定位置誤差pos≧位置誤差許容値pos_thrである場合には(ステップS94;No)、位置検知精度が比較的悪いとされるので、走行状態判別処理部24が出力した速度情報を取得する(ステップS96)。
 自立計測演算処理部23は、得られた補正3軸センサ値から鉄道車両11の速度を演算する(ステップS75)。ここで、鉄道車両11の速度演算は、3軸センサ部CSUが出力した3軸加速度センサの出力である加速度の値を取得した時刻間隔において積分処理することで鉄道車両11の速度情報として演算し、各情報を自立測位データDSとして時系列に出力する。
 続いて、車両位置補正部25は、自立計測演算処理部23は方位角演算を行い(ステップS97)車両位置補正部25はその値を取得する。続いて、自立計測演算処理部23は、3軸方向の走行ベクトルの演算を行い(ステップS98)車両位置補正部25はその値を取得する。
 次に車両位置補正部25は、測位信号演算処理部21から状態がStat1である場合の緯度情報及び経度情報を含む位置情報(位置座標)を取得して、鉄道車両11の現在位置を特定する(ステップS99)。なお、車両位置補正部25は、状態がStat2であれば、状態がStat1に変わるまで、現在位置を特定する処理を待機する。
 そして車両位置補正部25は、人工衛星からの受信電波による測位時刻間隔に応じて、方位角方向に走行ベクトルの大きさを速度情報から求め、累積演算することにより、鉄道車両11の現在位置の補正演算を行う(ステップS100)。
 以上の説明のように、本第1実施形態によれば、鉄道車両11の走行位置を確実に取得でき、トンネル等の衛星情報が得られない状況下においても遅延の少ない自立測位への切替えが行え、より正確な走行位置データを提供することが可能になる。また、鉄道車両11の走行位置を確実に取得でき、トンネル等の衛星情報が得られない状況下の鉄道車両11の速度計測おいても遅延の少ない自立測位での速度計測への切替えが行え、より正確な速度データを提供することが可能になる。
(第2実施形態)
 第2実施形態は、鉄道車両11の進路予測を行い、鉄道車両11が直線区間あるいは曲線区間のいずれを走行しているかを判別し、さらに予め記憶している鉄道車両11の走行区間情報と対比することにより、鉄道車両11の実際の走行状態が実際の走行区間に適したものとなっているか否かに基づいて適切な走行を行わせるための情報を提供する点で第1実施形態と相違する。以下では、第1実施形態と相違する点を説明する。
 図22は、第2実施形態の受信演算処理装置の機能構成ブロック図である。図22に示すように、図2に示した第1実施形態の構成に加えて、鉄道車両11の実際の進路(所定の走行区間中の走行位置)を予測する車両進路予測演算部30を備えている点が、第1実施形態と異なっている。
 ここで、車両進路予測演算部30の動作を説明する。
 図23は、車両進路予測演算部の処理フローチャート(その1)である。
 車両進路予測演算部30は、測位信号演算処理部21が出力した緯度情報及び経度情報を含む位置情報(位置座標)を取得し、記憶する(ステップS101)。
 続いて車両進路予測演算部30は、予め記憶装置27に記憶された平均化対象時間に基づいて、位置情報の平均化演算を行い、平均化対象時間毎の鉄道車両11の平均的な位置を演算する(ステップS102)。そして、車両進路予測演算部30は、得られた平均化された位置情報に基づいて、鉄道車両11の進行方向角(鉄道車両11の進行方向の方位)を取得する(ステップS103)。さらに、車両進路予測演算部30は、3軸センサ部CSUが出力した加速度情報、ジャイロ情報及び地磁気情報に基づいて鉄道車両11の姿勢角(例えば、カント)を演算する(ステップS104)。
 次に、車両進路予測演算部30は、走行状態判別処理部24が出力した鉄道車両11の停止/走行状態及び速度情報を取得する(ステップS105)。続いて車両進路予測演算部30は、鉄道車両11の進行方向ベクトルを演算し、記憶する(ステップS106)。
 さらに、車両進路予測演算部30は、記憶した鉄道車両11の進行方向ベクトルを記憶装置27に予め記憶していた所定のベクトル演算対象時間毎に進行方向ベクトルの平均値であるベクトル方位角shpを求める進行方向ベクトル平均化演算を行う(ステップS107)。
 図24は、車両進路予測演算部の処理フローチャート(その2)である。
 続いて車両進路予測演算部30は、ベクトル方位角shpを演算する(ステップS111)。
 次に車両進路予測演算部30は、鉄道車両11の速度情報並びに記憶装置27に予め記憶した直線区間あるいは曲線区間を判別するための線形判定値shp_thrに基づいて鉄道車両11の現在の走行区間が直線区間あるいは曲線区間のいずれであるかを判別する(ステップS112)。
 すなわち、ベクトル方位角shpが線形判定値shp_thr未満であるか否かを判別する。テップS112の判別において、shp<shp_thrである場合には(ステップS112;Yes)、現在の列車走行区間は、直線区間であるので、車両進路予測演算部30は、直線区間判定出力を行う(ステップS113)。
 続いて、車両進路予測演算部30は、走行状態判別処理部24が出力した現在の鉄道車両11の停止/走行状態及び速度情報を取得する(ステップS114)。
 さらに、車両進路予測演算部30は、当該時点までの走行履歴及び記憶装置27に予め記憶した走行区間を特定するための走行経路の形状及び距離情報を格納した走行区間データベースに基づいて、現在の鉄道車両11の走行位置及び走行区間を特定し取得する(ステップS115)。
 次に、特定した鉄道車両11の走行位置及び走行区間における制限速度データxspd_thr1を記憶装置27から読み出して、当該鉄道車両11の速度spdと比較し、鉄道車両11が速度超過しているか否かを判別する(ステップS116)。
 ステップS116の判別において、pd<xspd_thr1である場合には(ステップS116;No)、鉄道車両11は制限速度範囲内で走行していると判別されるので、制限速度以内の判定出力を行って処理を終了する(ステップS117)。
 ステップS116の判別において、spd≧xspd_thr1である場合には(ステップS116;Yes)、鉄道車両11は制限速度超過で走行していると判別されるので、制限速度超過の判定出力及び現在速度を出力して処理を終了する(ステップS118)。
 図25は、車両進路予測演算部の処理フローチャート(その3)である。
 ステップS112の判別において、shp≧shp-thrである場合には(ステップS112;No)、現在の列車走行区間は、曲線区間であるので、図25に示すように、車両進路予測演算部30は、曲線区間判定出力を行う(ステップS121)。
 続いて、車両進路予測演算部30は、曲線半径(曲率半径)を演算し(ステップS122)、記憶装置27に予め記憶した設計基準に準じた曲率半径とカント量との対応関係を表すデータベースから演算した曲線半径に対応するカント量を取得する(ステップS123)。
 さらに車両進路予測演算部30は、当該時点までの走行履歴及び記憶装置27に予め記憶した走行区間を特定するための走行経路の形状及び距離情報を格納した走行区間データベースに基づいて、現在の鉄道車両11の走行位置及び走行区間を特定し取得する(ステップS124)。
 続いて、車両進路予測演算部30は、走行状態判別処理部24が出力した現在の鉄道車両11の停止/走行状態及び速度情報を取得する(ステップS125)。
 次に特定した鉄道車両11の走行位置及び曲線区間である走行区間における設計基準に準じた曲率半径とカント量における制限速度データxspd-thr2を記憶装置27から読み出して、当該鉄道車両11の速度spdと比較し、鉄道車両11が速度超過しているか否かを判別する(ステップS126)。
 ステップS126の判別において、pd<xspd_thr2である場合には(ステップS126;No)、鉄道車両11は制限速度範囲内で走行していると判別されるので、制限速度以内の判定出力を行って処理を終了する(ステップS127)。
 ステップS126の判別において、pd≧xspd-thr2である場合には(ステップS126;Yes)、鉄道車両11は制限速度超過で走行していると判別されるので、制限速度超過の判定出力及び現在速度を出力して処理を終了する(ステップS128)。
 以上の説明のように、本第2実施形態によれば、鉄道車両11の走行位置を取得し、取得したデータから鉄道車両11の進路予測することで、前方検知範囲の設定、進路予測、走行位置の検知、速度超過検知等に用いることが可能なデータを提供することができる。また、走行路線地図作成を可能とし、走行支援や鉄道設備情報作成支援に展開可能となる。
(第2実施形態の変形例)
 第2実施形態においては、速度超過情報を出力する場合のものであったが、前方の障害物をカメラ等により検知する場合の検知エリアの範囲設定にも用いることが可能である。
 すなわち、カメラ等の検知エリアは通常、鉄道の場合、線路上の建築限界や鉄道車両11限界のエリアとなっているが、改築や一時的な工事等により、駅や踏切等の検知エリアを恒久的あるいは一時的に拡張したい場合等に、鉄道車両11が現在走行している線区の位置を測位可能であるので、走行区間のデータベースに駅や踏切等の検知対象位置を記録しておけば、手前のある一定距離から検知エリアを拡張することができる。
 以上の説明においては、3軸センサ部CSUにおいて、3軸加速度センサ、3軸ジャイロセンサ及び3軸地磁気センサを備える構成について説明したが、3軸地磁気センサは必須の構成ではないため少なくとも3軸加速度センサあるいは3軸ジャイロセンサの少なくとも一方を備えるように構成しても良い。
 以上の説明のように、各実施形態の装置及び方法によれば、人口衛星等からの測位信号の状況により、受信仰角と受信強度、衛星選択を制御し、また自立計測処理の切り替え判別を行うことにより、受信環境の悪い状況下においても鉄道車両11の位置検知を可能とできる。
 この結果、従来の鉄道沿線環境ではマルチパス等の問題から計測精度が最大±10mとなっていたのを、より高精度(例えば、±1m)として必要とされる精度を達成することができる。
 また、トンネル、橋上駅舎等の高架下や地下区間等の衛星受信不可領域においても走行位置を容易に把握できる。
 さらに鉄道車両11の走行位置を取得し、取得したデータから鉄道車両11進路予測することで、前方検知範囲の設定、進路予測、走行位置の検知、速度超過検知等に用いることが可能となる。
 さらには、走行路線地図作成を可能とし、走行支援や鉄道設備情報作成支援に展開可能となる。
 本実施形態の鉄道用走行位置検知装置は、MPUなどの制御装置と、ROMやRAMなどの記憶装置と、HDD、CDドライブ装置などの外部記憶装置と、各種情報を表示する表示装置と、各種情報を入力するための入力装置を備えた通常のコンピュータを利用したハードウェア構成となっている。
 本実施形態の鉄道用走行位置検知装置で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、USBメモリ装置等の半導体記憶装置、DVD(Digital  Versatile  Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
 また、本実施形態の鉄道用走行位置検知装置で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の鉄道用走行位置検知装置で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
 また、本実施形態の鉄道用走行位置検知装置のプログラムを、ROM等に予め組み込んで提供するように構成してもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (14)

  1.  車両の位置を測位する位置測位装置であって、
     人工衛星からの測位用信号を受信し、前記車両の第1位置を測位する第1測位部と、
     自立測位用センサの出力に基づいて、前記車両の第2位置を測位する第2測位部と、
     前記第1位置が予め定められた位置に基づく範囲である場合、及び前記車両の進行方向の変化が所定量である場合の少なくとも一方である場合に、前記第2位置を前記車両の位置とする判別部と、
     を備えた位置測位装置。
  2.  前記判別部は、前記第2位置が所定の位置に基づく範囲である場合に、前記第1位置を前記車両の位置とする、請求項1に記載の位置測位装置。
  3.  前記判別部は、前記測位用信号の受信状態に応じて、前記第1位置及び前記第2位置のうちの一方を前記車両の位置とする、請求項1又は2に記載の位置測位装置。
  4.  前記受信状態として、推定水平測位精度、位置精度低下率、及び受信強度の時間変化を示す統計量の少なくともいずれかを用いる、請求項3に記載の位置測位装置。
  5.  前記車両の進行方向及び人工衛星からの測位用信号の受信状態に基づいて受信方位角を設定する受信方位角設定部と、
     設定された前記受信方位角の範囲内で測位対象の前記人工衛星を選択する衛星選択部と、
     を更に備え、
     前記第1測位部は、前記選択した前記人工衛星からの測位用信号を受信する、請求項1乃至4のいずれか一項に記載の位置測位装置。
  6.  前記受信方位角の範囲内に位置する前記人工衛星のうち、前記測位用信号の時間遅延あるいは受信信号強度に基づいて、測位対象の前記人工衛星を制限するための仰角範囲を設定する仰角設定部を備える、
     請求項5に記載の位置測位装置。
  7.  前記自立測位用センサは、3軸加速度センサ、3軸ジャイロセンサ及び3軸地磁気センサのうち、3軸加速度センサあるいは3軸ジャイロセンサの少なくとも一方を備える、請求項1乃至請求項6のいずれか一項記載の位置測位装置。
  8.  前記車両は鉄道車両であり、
     前記判別部は、前記車両が走行する線路上の位置がトンネル、駅舎、車庫内、地下区間のいずれかに基づき定められた位置である場合に、前記第2位置を前記車両の位置とする、請求項1記載の位置測位装置。
  9.  前記車両は鉄道車両であり、前記判別部は、所定時間内における進行方向の変化量が所定量であるか否かを判別する、請求項1に記載の位置測位装置。
  10.  前記車両は鉄道車両であり、
     前記自立測位用センサは、3軸ジャイロセンサを備え、
     前記受信した測位信号と前記3軸ジャイロセンサの出力に基づいて、前記鉄道車両の進行方向角、前記鉄道車両の姿勢角を演算し、設定した時間内の前記鉄道車両の進行方向ベクトルを演算して、前記鉄道車両が直線区間を走行中であるか、曲線区間を走行中であるかを判別する車両進路予測部と、
     前記鉄道車両が曲線区間を走行中であると判別された場合に、当該曲線区間の曲率半径を演算する曲率半径演算部と、
     予め設計基準に準じた曲率半径とカント量とを記憶する記憶装置と、
     前記姿勢角、前記進行方向ベクトル及び前記記憶装置から読み出した当該鉄道車両の走行位置に対応する前記設計基準に準じた曲率半径とカント量とに基づいて前記鉄道車両の進路を予測する予測部と、
     を更に備える、請求項1に記載の位置測位装置。
  11.  自立測位用センサの出力に基づいて、前記車両の第1速度を計測する第1計測部を更に備え、
     前記判別部は、第1測位部の前記測位に基づき、前記車両の位置が所定の位置に基づく範囲である場合、及び所定距離内における進行方向の変化量が所定量である場合の少なくとも一方である場合に、前記第1計測部が計測した前記速度を前記車両の速度とする、請求項1記載の位置測位装置。
  12.  人工衛星からの信号を受信し、前記車両の第2速度を計測する第2計測部を更に備え、
     前記判別部は、前記第2測位部による前記車両の位置が所定の位置に基づく範囲である場合に、前記第2測位部が計測した前記速度を前記車両の速度とする、請求項11に記載の位置測位装置。
  13.  自立測位用センサの出力に基づいて、前記車両の第1速度を計測する第1計測部と、
     人工衛星からの信号を受信し、前記車両の第2速度を計測する第2計測部と、
     前記人工衛星からの電波状態、及び前記車両の位置の少なくともいずれかに応じて、前記第1速度及び前記第2速度のうちの一方を前記車両の速度とする判別部と、
     を備えた速度計測装置。
  14.  車両の位置を測位する位置測位方法であって、
     衛星からの測位用信号を受信し、前記車両の位置を測位する第1測位工程と、
     自立測位用センサの出力に基づいて、前記車両の位置を測位する第2測位工程と、
     前記第1測位工程の前記測位に基づき、前記車両の位置が所定の位置に基く範囲、又は所定距離内における進行方向の変化量が所定量である場合に、前記第2測位工程で測位した前記位置を前記車両の位置とする判別工程と、
     を備えた位置測位方法。
PCT/JP2021/016574 2020-05-22 2021-04-26 位置測位装置、速度計測装置、及び位置測位方法 WO2021235178A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21807624.8A EP4155780A1 (en) 2020-05-22 2021-04-26 Position measurement device, speed measurement device, and position measurement method
CN202180037131.5A CN115667998A (zh) 2020-05-22 2021-04-26 位置定位装置、速度测量装置及位置定位方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020089886A JP2021183955A (ja) 2020-05-22 2020-05-22 位置測位装置、速度計測装置、及び位置測位方法
JP2020-089886 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021235178A1 true WO2021235178A1 (ja) 2021-11-25

Family

ID=78708332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016574 WO2021235178A1 (ja) 2020-05-22 2021-04-26 位置測位装置、速度計測装置、及び位置測位方法

Country Status (4)

Country Link
EP (1) EP4155780A1 (ja)
JP (1) JP2021183955A (ja)
CN (1) CN115667998A (ja)
WO (1) WO2021235178A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6952250B2 (ja) * 2018-06-15 2021-10-20 パナソニックIpマネジメント株式会社 測位方法および測位端末

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4121897B2 (ja) 2003-05-19 2008-07-23 東海旅客鉄道株式会社 軌道上移動体制御装置および進出方向検出装置
JP2010100239A (ja) 2008-10-27 2010-05-06 Sumitomo Metal Logistics Service Co Ltd 貨物ターミナル駅等の構内における軌道車両動静管理システム
JP5185575B2 (ja) 2007-08-10 2013-04-17 川崎重工業株式会社 列車の自車位置検出装置、車体傾斜制御システム、操舵システム、アクティブ制振システム及びセミアクティブ制振システム
JP2013099234A (ja) * 2011-11-07 2013-05-20 Mitsubishi Electric Corp 車上装置および列車位置計算方法
JP5973024B1 (ja) 2015-04-02 2016-08-17 株式会社京三製作所 位置検出装置
WO2018021225A1 (ja) * 2016-07-25 2018-02-01 株式会社エイクラ通信 鉄道車両位置測定システム
WO2018034341A1 (ja) * 2016-08-19 2018-02-22 株式会社東芝 列車位置検出装置及び方法
JP2019008646A (ja) * 2017-06-27 2019-01-17 株式会社クボタ 作業車
JP2019189157A (ja) * 2018-04-27 2019-10-31 株式会社東芝 鉄道用走行位置検知装置及び方法
WO2019244683A1 (ja) * 2018-06-21 2019-12-26 株式会社東芝 計測装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4121897B2 (ja) 2003-05-19 2008-07-23 東海旅客鉄道株式会社 軌道上移動体制御装置および進出方向検出装置
JP5185575B2 (ja) 2007-08-10 2013-04-17 川崎重工業株式会社 列車の自車位置検出装置、車体傾斜制御システム、操舵システム、アクティブ制振システム及びセミアクティブ制振システム
JP2010100239A (ja) 2008-10-27 2010-05-06 Sumitomo Metal Logistics Service Co Ltd 貨物ターミナル駅等の構内における軌道車両動静管理システム
JP2013099234A (ja) * 2011-11-07 2013-05-20 Mitsubishi Electric Corp 車上装置および列車位置計算方法
JP5973024B1 (ja) 2015-04-02 2016-08-17 株式会社京三製作所 位置検出装置
WO2018021225A1 (ja) * 2016-07-25 2018-02-01 株式会社エイクラ通信 鉄道車両位置測定システム
WO2018034341A1 (ja) * 2016-08-19 2018-02-22 株式会社東芝 列車位置検出装置及び方法
JP2019008646A (ja) * 2017-06-27 2019-01-17 株式会社クボタ 作業車
JP2019189157A (ja) * 2018-04-27 2019-10-31 株式会社東芝 鉄道用走行位置検知装置及び方法
WO2019244683A1 (ja) * 2018-06-21 2019-12-26 株式会社東芝 計測装置

Also Published As

Publication number Publication date
JP2021183955A (ja) 2021-12-02
EP4155780A1 (en) 2023-03-29
CN115667998A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
JP2019189157A (ja) 鉄道用走行位置検知装置及び方法
US8185308B2 (en) Angular velocity correcting device, angular velocity correcting method, and navigation device
US10319222B2 (en) Traffic condition monitoring system, method, and storage medium
EP2541196B1 (en) Navigation device and method with function of estimating position within tunnel
US6574557B2 (en) Positioning error range setting apparatus, method, and navigation apparatus
US10094671B2 (en) Position measurement method, own position measurement device, and on-board unit
US6574550B2 (en) Navigation apparatus
US7142155B2 (en) GPS receiver
US7136015B2 (en) Method and apparatus for satellite positioning
JP5232994B2 (ja) Gps受信装置およびgps測位補正方法
AU2006201543B2 (en) System and method for establishing the instantaneous speed of an object
US20090063051A1 (en) Method And Apparatus Of Updating Vehicle Position And Orientation
JP2010538243A (ja) 圧力センサを用いたgnssポジショニング
CN109642955B (zh) 列车位置检测装置以及方法
JP6802555B2 (ja) 鉄道車両位置測定システム
WO2021235178A1 (ja) 位置測位装置、速度計測装置、及び位置測位方法
JP4906591B2 (ja) 位置検知装置
WO2021220416A1 (ja) 位置計測装置、位置計測方法、及びプログラム
JP2000180191A (ja) ナビゲーション装置
EP4060364A1 (en) Positioning device and positioning method
JP2015190871A (ja) ナビゲーション装置、及びフリー状態判定方法
CN117169922A (zh) 位置信息探测装置
KR20180102365A (ko) 비콘 신호를 이용한 위치 정보 보정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021807624

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE