WO2018034217A1 - 変性共役ジエン系重合体、その製造方法、ゴム組成物、タイヤ - Google Patents

変性共役ジエン系重合体、その製造方法、ゴム組成物、タイヤ Download PDF

Info

Publication number
WO2018034217A1
WO2018034217A1 PCT/JP2017/029013 JP2017029013W WO2018034217A1 WO 2018034217 A1 WO2018034217 A1 WO 2018034217A1 JP 2017029013 W JP2017029013 W JP 2017029013W WO 2018034217 A1 WO2018034217 A1 WO 2018034217A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
group
carbon atoms
diene polymer
modified conjugated
Prior art date
Application number
PCT/JP2017/029013
Other languages
English (en)
French (fr)
Inventor
美紀 京
謙太 久村
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201780050029.2A priority Critical patent/CN109563180B/zh
Priority to KR1020197004086A priority patent/KR102143416B1/ko
Priority to JP2018534375A priority patent/JP6728360B2/ja
Priority to SG11201901330XA priority patent/SG11201901330XA/en
Priority to EP17841440.5A priority patent/EP3502144B1/en
Priority to BR112019002860-9A priority patent/BR112019002860B1/pt
Priority to US16/326,533 priority patent/US11091609B2/en
Publication of WO2018034217A1 publication Critical patent/WO2018034217A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/46Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
    • C08F4/48Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/006Rubber characterised by functional groups, e.g. telechelic diene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof

Definitions

  • the present invention relates to a modified conjugated diene polymer, a production method thereof, a rubber composition, and a tire.
  • Examples of the material that meets the above-described requirements include a material containing rubber and a reinforcing filler such as carbon black and silica.
  • a material containing silica when used, it is possible to improve the balance between low hysteresis loss and wet skid resistance.
  • a functional group having affinity or reactivity with silica into the molecular end of a rubber having high mobility, the dispersibility of silica in the material is improved, and further, Attempts have been made to reduce the hysteresis loss by reducing the mobility of the rubber molecule end by bonding.
  • Patent Document 1 proposes a modified diene rubber obtained by reacting a modifier having a glycidylamino group with a polymer active terminal.
  • Patent Documents 2 to 4 propose a modified diene rubber obtained by reacting an alkoxysilane containing an amino group with the active terminal of a polymer, and a composition of these with silica.
  • Patent Documents 5 and 6 propose polymers in which a cyclic azasilacycle compound is reacted with a polymer active terminal to functionalize the polymer.
  • Patent Document 7 proposes a diene rubber obtained by a coupling reaction between a polymer active terminal and a polyfunctional silane compound.
  • silica has a hydrophilic surface, it has a lower dispersibility compared to carbon black due to its lower affinity with conjugated diene rubber than carbon black with a hydrophobic surface. Has the disadvantage of being bad. Therefore, the material containing silica needs to contain a silane coupling agent or the like separately in order to impart a bond between silica and rubber and improve dispersibility. In addition, a material in which a functional group having high reactivity with silica is introduced at the molecular terminal of the rubber is kneaded because the reaction with the silica particles proceeds during the kneading process and the viscosity of the composition increases.
  • the present invention is extremely excellent in processability when used as a vulcanized product, has a good balance between low hysteresis loss and wet skid resistance when used as a vulcanized product, excellent in wear resistance, and good at 50 ° C. It is an object of the present invention to provide a modified conjugated diene polymer having strain dispersibility, excellent repeated strain strength, and practically sufficient fracture characteristics.
  • the inventors of the present invention are modified conjugated diene polymers having a weight average molecular weight in a predetermined range, and a nitrogen atom is a predetermined content or more,
  • the modified conjugated diene polymer having a shrinkage factor (g ′) less than a predetermined value is extremely excellent in processability when used as a vulcanized product, and has low hysteresis loss and wet skid resistance when used as a vulcanized product.
  • the present invention has been completed by finding that it has a good balance with the above, has high wear resistance and good strain dispersibility at 50 ° C., has excellent repeated strain strength, and has practically sufficient fracture characteristics. That is, the present invention is as follows.
  • the shrinkage factor (g ′) by GPC with a viscosity detector—light scattering measurement method is 0.59 or less,
  • the weight average molecular weight is 200,000 or more and 3,000,000 or less, Modified conjugated diene polymer.
  • [3] The modified conjugated diene polymer according to [1] or [2], wherein the modification rate is 75% by mass or more based on the total amount of the conjugated diene polymer.
  • [4] A plurality of conjugated diene polymer chains are bonded to the modifier, The modified conjugated diene polymer according to any one of [1] to [3], which has a nitrogen atom in at least one conjugated diene polymer chain and a silicon atom in the modifier residue.
  • [5] The modified conjugated diene polymer according to any one of [1] to [4], wherein the degree of branching is 8 or more.
  • [6] The modified conjugated diene polymer according to any one of [1] to [5], which is represented by the following general formula (I):
  • D 1 represents a conjugated diene polymer chain having a nitrogen atom
  • R 1 to R 3 each independently represents a single bond or an alkylene group having 1 to 20 carbon atoms
  • 4 and R 7 each independently represents an alkyl group having 1 to 20 carbon atoms
  • R 5 , R 8 and R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 6 and R 10 each independently represents an alkylene group having 1 to 20 carbon atoms
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • m and x are x ⁇ m.
  • A is An organic group having a hydrocarbon group having 1 to 20 carbon atoms or at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, and a phosphorus atom, and having no active hydrogen Group.
  • A is a modified conjugated diene polymer according to the above [6], which is represented by any one of the following general formulas (II) to (V).
  • B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. In the case where a plurality of B 1 exist, each B 1 independently represents Yes.
  • B 2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
  • B 3 represents an alkyl group having 1 to 20 carbon atoms
  • a represents an integer of 1 to 10.
  • B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. In the case where a plurality of B 4 exist, each B 4 independently represents Yes.
  • B 5 represents a single bond or a hydrocarbon group having a carbon number of 1 ⁇ 20
  • a is the B 5 in the case of.
  • a nitrogen-containing conjugated diene polymer in which at least a conjugated diene compound and a copolymerizable monomer having at least one nitrogen atom in the molecule are copolymerized in the presence of an organolithium compound A polymerization step to obtain A modification step of modifying the nitrogen-containing conjugated diene polymer with a modifier having at least three silicon atoms and at least one nitrogen atom in one molecule and having 8 or more reactive sites; Having A method for producing a modified conjugated diene polymer.
  • the method for producing a modified conjugated diene polymer according to [9] above, wherein the modifier in the reaction step is a compound represented by the following general formula (VI).
  • R 12 to R 14 each independently represents a single bond or an alkylene group having 1 to 20 carbon atoms, and R 15 to R 18 and R 20 each independently represents 1 carbon atom
  • R 19 and R 22 each independently represent an alkylene group having 1 to 20 carbon atoms
  • R 21 represents an alkyl group or trialkylsilyl group having 1 to 20 carbon atoms
  • m represents an integer of 1 to 3
  • p represents 1 or 2.
  • R 12 to R 22 , m, and p when there are a plurality of each are independent and may be the same or different I is an integer from 0 to 6, j is an integer from 0 to 6, k is an integer from 0 to 6, and (i + j + k) is an integer from 4 to 10.
  • A is a hydrocarbon group having 1 to 20 carbon atoms, or an oxygen atom, nitrogen atom, silicon atom, sulfur atom And at least one atom selected from the group consisting of a phosphorus atom, an organic group having no active hydrogen.
  • A is a method for producing a modified conjugated diene polymer according to the above [10], which is represented by any one of the following general formulas (II) to (V).
  • B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. In the case where a plurality of B 1 exist, each B 1 independently represents Yes.
  • B 2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
  • B 3 represents an alkyl group having 1 to 20 carbon atoms
  • a represents an integer of 1 to 10.
  • B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. In the case where a plurality of B 4 exist, each B 4 independently represents Yes.
  • B 5 represents a single bond or a hydrocarbon group having a carbon number of 1 ⁇ 20
  • a is the B 5 in the case of.
  • the organolithium compound having at least one nitrogen atom in the molecule includes an organolithium compound represented by any one of the following general formulas (1) to (5), A process for producing a modified conjugated diene polymer according to any one of the above.
  • R 10 and R 11 are each independently an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aralkyl group having 6 to 20 carbon atoms and a protective group, And at least one selected from the group consisting of R 10 and R 11 may be bonded to form a cyclic structure with an adjacent nitrogen atom, in which case R 10 and R 11 have 5 carbon atoms (The alkyl group of ⁇ 12 may have an unsaturated bond or a branched structure in a part thereof, and the protecting group is an alkyl-substituted silyl group.)
  • R 12 and R 13 are each independently an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aralkyl group having 6 to 20 carbon atoms, and a protecting group. And at least one selected from the group consisting of R 12 and R 13 may be bonded to form a cyclic structure with an adjacent nitrogen atom, in which case R 12 and R 13 have 5 carbon atoms Represents an alkyl group having ⁇ 12, which may have an unsaturated bond or a branched structure, a protective group is an alkyl-substituted silyl group, and R 14 is an aliphatic group having 1 to 30 carbon atoms. Or an alkylene group which may have an aromatic substituent, or a conjugated diene polymer having 1 to 20 carbon atoms.)
  • R 12 and R 13 are each independently an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aralkyl group having 6 to 20 carbon atoms, and a protecting group. And at least one selected from the group consisting of R 12 and R 13 may be bonded to form a cyclic structure with an adjacent nitrogen atom, in which case R 12 and R 13 have 5 carbon atoms Represents an alkyl group having ⁇ 12, which may have an unsaturated bond or a branched structure, a protective group is an alkyl-substituted silyl group, and R 19 is an aliphatic group having 1 to 30 carbon atoms. Or a hydrocarbon group which may have an aromatic substituent, R 20 represents a hydrocarbon group which may have a substituted amino group having 1 to 12 carbon atoms, and n represents an integer of 1 to 10).
  • R 15 and R 16 each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a protecting group. And at least one selected from the group consisting of R 15 and R 16 may be bonded to form a cyclic structure with an adjacent nitrogen atom, in which case R 15 and R 16 have 5 carbon atoms.
  • the alkyl group of ⁇ 12 may have a branched structure in a part thereof, and the protecting group is an alkyl-substituted silyl group.
  • R 17 represents a hydrocarbon group having 2 to 10 carbon atoms, and a part thereof may have an unsaturated bond or a branched structure.
  • R 18 has 1 to 12 carbon atoms.
  • An alkyl group and a protecting group, and a part thereof may have a branched structure, and the protecting group is an alkyl-substituted silyl group.
  • the rubber composition is a rubber composition containing 10% by mass or more of the modified conjugated diene polymer according to any one of [1] to [7] with respect to the total amount of the rubber component.
  • the present invention when it is made into a vulcanized product, it has an extremely excellent workability, and when it is made into a vulcanized product, it can achieve a particularly good balance between low hysteresis loss and wet skid resistance, and wear resistance.
  • a modified conjugated diene polymer is obtained which has excellent properties, good strain dispersibility at 50 ° C., excellent repeated strain strength, and practically sufficient fracture characteristics.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the modified conjugated diene polymer of this embodiment is A modified conjugated diene polymer having a nitrogen atom, The nitrogen atom content is 25 mass ppm or more based on the total amount of the modified conjugated diene polymer.
  • the shrinkage factor (g ′) by GPC with a viscosity detector—light scattering measurement method is 0.59 or less,
  • the weight average molecular weight is 200,000 or more and 3,000,000 or less, It is a modified conjugated diene polymer.
  • the modified conjugated diene polymer of the present embodiment is modified with respect to the total amount of the conjugated diene polymer from the viewpoint of workability, balance between low hysteresis loss and wet skid resistance, wear resistance, and fracture characteristics.
  • the rate is preferably 75% by mass or more.
  • the modification rate is a conjugated diene polymer having a nitrogen-containing functional group relative to the total amount of the conjugated diene polymer, for example, a conjugated diene polymer having a nitrogen-containing functional group at the polymerization initiation terminal or main chain and / or nitrogen-containing modification. It is the mass ratio of the conjugated diene polymer modified by reacting the agent with the terminal end.
  • the modification rate is more preferably 78% by mass or more, further preferably 80% by mass or more, still more preferably 85% by mass or more, still more preferably 88% by mass or more, and particularly preferably 90% by mass or more.
  • the modification rate can be measured by chromatography capable of separating a functional group-containing modified component and a non-modified component.
  • chromatography capable of separating a functional group-containing modified component and a non-modified component.
  • a column for gel permeation chromatography using a polar substance such as silica adsorbing a specific functional group as a packing material is used, and the internal standard of the non-adsorbing component is used for comparison.
  • a method is mentioned. More specifically, the denaturation rate is determined by the adsorption of the sample solution containing the sample and the low molecular weight internal standard polystyrene to the silica column from the difference between the chromatogram measured with the polystyrene gel column and the chromatogram measured with the silica column. It can be determined by measuring the amount. More specifically, the modification rate can be measured by the method described in Examples.
  • the modification rate can be controlled by adjusting the addition amount of the modifier and the reaction method, and thus can be controlled to 75% by mass or more.
  • a polymerization method using an organolithium compound having at least one nitrogen atom in the molecule described later as a polymerization initiator a method of copolymerizing a monomer having at least one nitrogen atom in the molecule, a structure described later
  • the above-mentioned modification rate can be achieved by appropriately carrying out a method using a modifier of the formula, or carrying out a combination thereof, and controlling the polymerization conditions so that the chain transfer reaction is not excessively promoted.
  • the modified conjugated diene polymer of the present embodiment has a nitrogen atom content of 25 mass ppm or more with respect to the total amount of the conjugated diene polymer.
  • the nitrogen atom content (hereinafter also referred to as “nitrogen content”) is the nitrogen-containing functional group of the modified conjugated diene polymer, for example, the nitrogen atom of the nitrogen-containing functional group at the start terminal, main chain, or terminal terminal. It is the total amount.
  • the nitrogen content of the modified conjugated diene polymer is based on the total amount of the modified conjugated diene polymer from the viewpoint of workability, balance between low hysteresis loss and wet skid resistance, wear resistance, and fracture characteristics.
  • it is 25 ppm by mass or more, preferably 40 ppm by mass or more, more preferably 50 ppm by mass or more, and further preferably 60 ppm by mass or more. Further, from the viewpoint of workability, it is preferably 500 ppm by mass or less, more preferably 400 ppm by mass or less, further preferably 300 ppm by mass or less, and even more preferably 250 ppm by mass or less. preferable.
  • the content of nitrogen atom can be measured by oxidation combustion-chemiluminescence method (JIS-2609: crude oil and crude product-nitrogen content test method). More specifically, the content of nitrogen atoms can be measured by the method described in Examples described later.
  • the nitrogen content tends to be controllable by adjusting the addition amount of the modifier and the reaction method, and can be 25 mass ppm or more by this method.
  • the polymerization initiator can be obtained by a method of polymerizing using an organolithium compound having at least one nitrogen atom in the molecule described later, and a method of copolymerizing a monomer having at least one nitrogen atom in the molecule. Examples thereof include a method in which a conjugated diene polymer having a nitrogen atom is reacted with a modifier having at least one nitrogen atom in the molecule. Examples of the method for obtaining a modified conjugated diene polymer having a nitrogen content of 500 mass ppm or less include a method of controlling the molecular weight of the conjugated diene polymer chain so that it is not too small.
  • the modified conjugated diene polymer of this embodiment is obtained by GPC-light scattering measurement with a viscosity detector from the viewpoint of workability, balance between low hysteresis loss and wet skid resistance, wear resistance, and fracture characteristics.
  • the required shrinkage factor (g ′) is 0.59 or less. That the contraction factor (g ′) is 0.59 or less means that the modified conjugated diene polymer of the present embodiment is substantially 8 branches or more. Generally, a polymer having a branch tends to have a smaller molecular size when compared with a linear polymer having the same absolute molecular weight.
  • the shrinkage factor (g ′) in the modified conjugated diene polymer of the present embodiment is an index of the ratio of the size of the molecule to the linear polymer having the same absolute molecular weight. That is, as the degree of branching of the polymer increases, the shrinkage factor (g ′) tends to decrease.
  • the shrinkage factor (g ′) at each absolute molecular weight of the modified conjugated diene polymer was calculated, and the average value of the shrinkage factor (g ′) when the absolute molecular weight was 100 ⁇ 10 4 to 200 ⁇ 10 4 was calculated as The shrinkage factor (g ′) of the modified conjugated diene polymer is used.
  • the “branch” is formed by bonding one polymer directly or indirectly with another polymer.
  • the “degree of branching” is the number of polymers that are directly or indirectly bonded to one branch. For example, when five conjugated diene polymer chains described later are bonded to each other indirectly via a modifier residue described later, the degree of branching is 5.
  • the contraction factor (g ′) is 0.59 or less, preferably 0.57 or less, more preferably 0.55 or less, and further preferably 0.53 or less.
  • the lower limit of the contraction factor (g ′) is not particularly limited, and may be the detection limit value or less, but is preferably 0.30 or more, more preferably 0.33 or more, and further preferably 0. .35 or more, and even more preferably 0.45 or more.
  • a modified conjugated diene polymer having a shrinkage factor (g ′) in this range tends to be excellent in processability when it is used as a vulcanized product.
  • the contraction factor (g ′) tends to depend on the degree of branching, for example, the contraction factor (g ′) can be controlled using the degree of branching as an index. Specifically, when a modified conjugated diene polymer having a branching degree of 8 is used, the shrinkage factor (g ′) tends to be 0.45 or more and 0.59 or less.
  • the contraction factor (g ′) can be measured by the method described in Examples described later.
  • the modified conjugated diene polymer of the present embodiment has a weight average molecular weight of 20 ⁇ 10 4 or more and 300 from the viewpoints of workability, balance between low hysteresis loss and wet skid resistance, wear resistance, and fracture characteristics. ⁇ 10 4 or less.
  • the weight average molecular weight is 20 ⁇ 10 4 or more, the balance between the low hysteresis loss property and the wet skid resistance and the wear resistance when the vulcanized product is obtained are excellent.
  • the weight average molecular weight is 300 ⁇ 10 4 or less, it is excellent in workability and dispersibility of the filler when used as a vulcanizate, and practically sufficient fracture characteristics can be obtained.
  • the weight average molecular weight of the modified conjugated diene polymer is preferably 50 ⁇ 10 4 or more, more preferably 64 ⁇ 10 4 or more, and further preferably 80 ⁇ 10 4 or more.
  • the weight average molecular weight is preferably 250 ⁇ 10 4 or less, more preferably 180 ⁇ 10 4 or less, and further preferably 150 ⁇ 10 4 or less.
  • the weight average molecular weight of the modified conjugated diene polymer of the present embodiment and the conjugated diene polymer described later is measured using a GPC measurement device, a chromatogram using an RI detector, and using standard polystyrene. Measurement can be performed based on the obtained calibration curve. Specifically, it can measure by the method as described in the Example mentioned later.
  • the weight average molecular weight of the modified conjugated diene polymer is adjusted by adjusting the molecular weight of the conjugated diene polymer chain controlled by the ratio of the amount of polymerization initiator used and the amount of monomer used, and the type and amount of modifier used. Can be controlled by.
  • the monomer constituting the polymer chain of the modified conjugated diene polymer of the present embodiment is composed of a conjugated diene compound or a conjugated diene compound and another copolymerizable monomer.
  • the conjugated diene compound is preferably a conjugated diene having 4 to 12 carbon atoms and is not limited to the following, but examples thereof include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, , 3-pentadiene, 3-methyl-1,3-pentadiene, 1,3-hexadiene, and 1,3-heptadiene.
  • 1,3-butadiene and isoprene are preferable from the viewpoint of industrial availability. These may be used alone or in combination of two or more.
  • a vinyl aromatic compound is preferable, and styrene is more preferable.
  • the modified conjugated diene polymer of the present embodiment preferably contains a silicon atom.
  • a method of measuring silicon atoms in the modified conjugated diene polymer a method of measuring using a UV-visible spectrophotometer in accordance with JIS K 0101 44.3.1 and quantifying by molybdenum blue absorptiometry. Is mentioned.
  • a filler for example, silica
  • the silicon atom content in the modified conjugated diene polymer of the present embodiment is preferably 10 ppm or more, more preferably 12 ppm or more, and further preferably 15 ppm or more.
  • the modified conjugated diene polymer of the present embodiment preferably has a Mooney relaxation rate measured at 110 ° C. (hereinafter also simply referred to as “Mooney relaxation rate” or “MSR”) of 0.45 or less. preferable.
  • Mooney relaxation rate is an index of molecular entanglement of the modified conjugated diene copolymer, and a lower value means more molecular entanglement, and an index of branched structure and molecular weight.
  • the Mooney relaxation rate at 110 ° C. of the modified conjugated diene polymer of the present embodiment is preferably 0.45 or less, more preferably 0.42 or less, and further preferably 0.40 or less. It is still more preferable that it is 0.38 or less, and it is still more preferable that it is 0.35 or less. Further, the lower limit of the Mooney relaxation rate is not particularly limited and may be a detection limit value or less, but is preferably 0.05 or more. When the Mooney relaxation rate is 0.45 or less, the modified conjugated diene polymer exhibits better processability.
  • the MSR of the modified conjugated diene polymer is an indicator of the molecular weight and the number of branches of the modified conjugated diene polymer. For example, as the MSR decreases, the molecular weight and the number of branches of the modified conjugated diene polymer (for example, the number of branches of a star polymer (also referred to as “number of arms of a star polymer”)) tend to increase. is there. When comparing modified conjugated diene polymers having the same Mooney viscosity, which will be described later, since the MSR decreases as the number of branches of the modified conjugated diene polymer increases, the MSR in this case may be used as an index of the degree of branching. it can.
  • MSR can be measured using a Mooney viscometer as follows.
  • the measurement temperature of the Mooney relaxation rate is 110 ° C.
  • the rotor is rotated at 2 rpm, the torque after 4 minutes is measured, and the measured value is taken as the Mooney viscosity (ML (1 + 4) ).
  • the rotation of the rotor is stopped immediately, the torque every 0.1 second from 1.6 seconds to 5 seconds is recorded in Mooney units, and the torque and time (seconds) are plotted on the logarithmic plot.
  • the slope is obtained and the absolute value is taken as the Mooney relaxation rate (MSR). More specifically, it can be measured by the method described in Examples described later.
  • the molecular structure is controlled so as to increase the weight average molecular weight, widen the molecular weight distribution to increase the high molecular weight component, and increase the degree of branching.
  • the Mooney relaxation rate tends to be 0.45 or less.
  • the degree of branching can be controlled by, for example, the number of functional groups of the modifier, the amount of modifier added, or the degree of metallation progression.
  • the modified conjugated diene polymer of this embodiment preferably has a structure in which a plurality of conjugated diene polymer chains are bonded to a modifier, and has at least one conjugated diene polymer chain having a nitrogen atom.
  • “a conjugated diene polymer chain is bonded to a modifier” means a compound formed by bonding a polymer chain to a so-called coupling agent (modifier) in the production process of the polymer.
  • the structure of the “modifier” in the polymer (also referred to as “modifier residue”) in the polymer is such that the leaving group disappears from the modifier before the reaction, and the polymer chain is bonded.
  • the structure of the initial modifier is different. That is, the modifier (residue) contained in the modified conjugated diene polymer is a structural unit of the modified conjugated diene polymer that is bonded to the conjugated diene polymer chain. It is a structural unit derived from a modifying agent, which is generated by reacting a coalescence with the modifying agent.
  • the modified conjugated diene polymer containing nitrogen atoms and silicon atoms in the modifier contains both nitrogen atoms and silicon atoms, and is added to the composition when compared to those containing only one of them. There is a tendency for interaction with agents such as silica to become stronger.
  • the conjugated diene polymer chain is a structural unit of a modified conjugated diene polymer, for example, a structural unit derived from a conjugated diene polymer produced by reacting a conjugated diene polymer and a modifying agent described later. It is.
  • the modified conjugated diene polymer of the present embodiment preferably has a star-shaped branched structure in which a plurality of conjugated diene polymer chains are bonded to one modifier described later.
  • the conjugated diene polymer chain preferably has a nitrogen atom in at least one conjugated diene polymer chain.
  • it is a conjugated diene polymer chain having a functional group containing a nitrogen atom at any position, and the position of the functional group may be at the end or in the middle of the main chain.
  • the conjugated diene polymer chain having a nitrogen atom is, for example, a method of polymerizing using an organolithium compound having at least one nitrogen atom in the molecule described later as a polymerization initiator, at least one nitrogen in the molecule. It is obtained by a method of copolymerizing monomers having atoms.
  • the modified conjugated diene polymer of the present embodiment preferably has a silicon atom in the modifier residue.
  • it is a modified conjugated diene polymer having a structural unit derived from a modifying agent by having a silicon atom in the modifying agent described later.
  • the modified conjugated diene polymer of this embodiment is preferably a modified conjugated diene polymer having a degree of branching of 8 or more.
  • the upper limit of the degree of branching is not particularly limited, but is preferably 18 or less.
  • a modified conjugated diene polymer having a branching degree of 8 or more is further excellent in processability when a vulcanized product is obtained.
  • the modified conjugated diene polymer has one or more modifier residues and a conjugated diene polymer chain bonded to the modifier residue. More preferably, it contains a branch having 8 or more conjugated diene polymer chains bonded to the agent residue.
  • the shrinkage factor (g ′) can be more reliably reduced to 0.59 or less.
  • “Branching degree is 8 or more” includes a state in which the side chain is attached to the main chain and the branching degree is 8 or more, and 8 or more conjugated diene polymer chains per one modifier residue. Are bound (star-shaped, in which the polymer chain is bound radially to the modifier residue).
  • the modified conjugated diene polymer of the present embodiment preferably has a silicon atom at any position.
  • the silicon atom is preferably bonded to the terminal of the conjugated diene polymer chain or in the middle of the main chain as a functional group containing a silicon atom, or contained in the modifier residue.
  • at least one silicon atom of the modified conjugated diene polymer constitutes an alkoxysilyl group or silanol group having 1 to 20 carbon atoms.
  • the modified conjugated diene polymer preferably does not contain halogen.
  • each of the 8 or more conjugated diene polymer chains is bonded to a silicon atom of the modifier residue.
  • the terminal of the some conjugated diene polymer chain may be bonded to one silicon atom.
  • the terminal of the conjugated diene polymer chain and the alkoxy group or hydroxyl group having 1 to 20 carbon atoms are bonded to one silicon atom, and as a result, the one silicon atom is alkoxysilyl having 1 to 20 carbon atoms.
  • Group or silanol group may be constituted. From the viewpoint that hydrogen halide can be generated by reacting with air or moisture, the modifier residue preferably has no halogen.
  • the modified conjugated diene polymer of the present embodiment or the conjugated diene polymer described later is one obtained by converting all or part of the double bonds to saturated hydrocarbons by further hydrogenation in an inert solvent. May be. In that case, heat resistance and weather resistance are improved, deterioration of the product when processed at high temperature can be prevented, and exercise performance as rubber tends to be improved. As a result, it exhibits even better performance in various applications such as automotive applications. More specifically, the hydrogenation rate of the unsaturated double bond based on the conjugated diene compound can be arbitrarily selected according to the purpose and is not particularly limited. When used as a vulcanizate, it is preferable that the double bond of the conjugated diene part partially remains.
  • the hydrogenation rate of the conjugated diene part in the conjugated diene polymer is preferably 3.0% or more and 70% or less, more preferably 5.0 or more and 65% or less, and more preferably 10% or more. More preferably, it is 60% or less.
  • heat resistance and exercise performance tend to be improved by selectively hydrogenating vinyl groups.
  • the hydrogenation rate can be determined by a nuclear magnetic resonance apparatus (NMR).
  • the modified conjugated diene copolymer of this embodiment can be an oil-extended modified conjugated diene polymer to which an extending oil is added.
  • the oil-extended modified conjugated diene polymer of the present embodiment preferably contains 1 to 60 parts by mass, more preferably 5 to 50 parts by mass of the extended oil with respect to 100 parts by mass of the above-described modified conjugated diene polymer. More preferably, it is 10 to 37.5 parts by mass.
  • the modified conjugated diene copolymer of the present embodiment is non-oil-extended, oil-extended, processability when used as a rubber vulcanizate, and wear resistance when used as a vulcanizate.
  • the Mooney viscosity measured at 100 ° C. is preferably 20 or more and 100 or less, and more preferably 30 or more and 90 or less.
  • the Mooney viscosity can be measured by the method described in Examples described later.
  • the modified conjugated diene polymer of the present embodiment has a molecular weight distribution (Mw / Mn) represented by a ratio of a weight average molecular weight (Mw) to a number average molecular weight (Mn) of 1.1 or more and 3.0 or less. It is preferable.
  • Mw / Mn molecular weight distribution
  • a modified conjugated diene polymer having a molecular weight distribution in this range tends to be more excellent in processability when it is made into a vulcanized product, and tends to be more excellent in wearability when made into a vulcanized product.
  • the molecular weight distribution (Mw / Mn) is more preferably 1.5 or more and 2.5 or less.
  • the number average molecular weight, weight average molecular weight, and molecular weight distribution of the modified conjugated diene polymer and the conjugated diene polymer described later can be measured by the method described in the examples described later.
  • the modified conjugated diene polymer of the present embodiment is preferably represented by the following general formula (I).
  • D 1 represents a conjugated diene polymer chain having a nitrogen atom
  • the weight average molecular weight of the diene polymer chain is preferably 10 ⁇ 10 4 to 100 ⁇ 10 4 .
  • R 1 to R 3 each independently represents a single bond or an alkylene group having 1 to 20 carbon atoms
  • R 4 and R 7 each independently represents an alkyl group having 1 to 20 carbon atoms
  • R 5 , R 8, and R 9 each independently represents a hydrogen atom or an alkyl group having a carbon number of 1 to 20
  • R 6 and R 10 each independently represents an alkylene group having 1 to 20 carbon atoms
  • R 11 Represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • m and x represent an integer of 1 to 3, x ⁇ m, p represents 1 or 2, y represents an integer of 1 to 3, y ⁇ (p + 1), z is 1 Or the integer of 2 is shown.
  • D 1 , R 1 to R 11 , m, p, x, y, and z when there are a plurality of each are independent and may be the same or different.
  • i represents an integer of 0 to 6
  • j represents an integer of 0 to 6
  • k represents an integer of 0 to 6
  • (i + j + k) represents an integer of 4 to 10
  • ((x ⁇ i) + (Y ⁇ j) + (z ⁇ k)) is an integer of 8 to 30.
  • A has a hydrocarbon group having 1 to 20 carbon atoms or at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, and a phosphorus atom, and an active hydrogen.
  • the organic group which does not have is shown.
  • the hydrocarbon group represented by A includes saturated, unsaturated, aliphatic, and aromatic hydrocarbon groups.
  • the organic group having no active hydrogen is an organic group that does not inactivate the active terminal of the conjugated diene polymer. Examples of organic groups having no active hydrogen include active hydrogen such as hydroxyl group (—OH), secondary amino group (> NH), primary amino group (—NH 2 ), sulfhydryl group (—SH), and the like.
  • the organic group having no active hydrogen includes those inactivated by replacing the functional group having active hydrogen with a protecting group.
  • the protecting group is preferably an alkyl-substituted silyl group.
  • the modified conjugated diene-based polymer represented by the formula (I) tends to be more excellent in processability when used as a vulcanized product, which is an effect of the present embodiment, and has low hysteresis loss when used as a vulcanized product. And wet skid resistance and wear resistance.
  • A is represented by any one of the following general formulas (II) to (V).
  • B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. When there are a plurality of B 1 s , they are independent of each other.
  • B 2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
  • B 3 represents an alkyl group having 1 to 20 carbon atoms
  • a represents an integer of 1 to 10 .
  • B 2 and B 3 when there are a plurality of each are independent of each other.
  • B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. When there are a plurality of B 4 s , they are independent of each other.
  • B 5 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10.
  • the B 5 when there are a plurality, are each independently.
  • A is represented by any one of the formulas (II) to (V)
  • the effect of this embodiment tends to be superior to the workability of the vulcanized product. It tends to be superior due to the balance between low hysteresis loss and wet skid resistance and wear resistance. Moreover, it tends to be easily available for practical use.
  • the method for producing the modified conjugated diene copolymer of the present embodiment is as follows: Polymerize at least a conjugated diene compound in the presence of an organolithium compound having at least one nitrogen atom in the molecule, or at least one nitrogen atom in the molecule with at least the conjugated diene compound in the presence of an organolithium compound A polymerization step of copolymerizing a copolymerizable monomer having a nitrogen-containing conjugated diene polymer, and at least three silicon atoms and at least three nitrogen-containing conjugated diene polymers in one molecule. And a denaturing step of denaturing with a denaturing agent having one nitrogen atom and eight or more reaction active sites.
  • the polymerization step in the method for producing the modified conjugated diene polymer of the present embodiment is performed by polymerizing at least a conjugated diene compound in the presence of an organolithium compound having at least one nitrogen atom in the molecule, or an organolithium compound.
  • the polymerization step is preferably polymerization by a growth reaction by living anion polymerization reaction, whereby a conjugated diene polymer having an active end can be obtained, and a modified diene polymer having a high modification rate tends to be obtained. is there.
  • the conjugated diene polymer produced in the polymerization step is obtained by polymerizing at least a conjugated diene compound as a monomer, and may be copolymerized with a conjugated diene compound and another copolymerizable monomer as necessary. can get.
  • the conjugated diene compound is not particularly limited as long as it is a polymerizable conjugated diene compound, but is preferably a conjugated diene compound containing 4 to 12 carbon atoms per molecule, more preferably a conjugated diene containing 4 to 8 carbon atoms. A compound.
  • conjugated diene compounds include, but are not limited to, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1 1,3-pentadiene, 1,3-hexadiene, and 1,3-heptadiene.
  • 1,3-butadiene and isoprene are preferable from the viewpoint of industrial availability. These may be used alone or in combination of two or more.
  • the other copolymerizable monomer is not particularly limited as long as it is a monomer copolymerizable with a conjugated diene compound, but a vinyl-substituted aromatic compound is preferable.
  • monovinyl aromatic compounds include, but are not limited to, styrene, p-methylstyrene, ⁇ -methylstyrene, vinylethylbenzene, vinylxylene, vinylnaphthalene, and diphenylethylene.
  • styrene is preferable from the viewpoint of industrial availability. These may be used alone or in combination of two or more.
  • the reaction in the polymerization reaction step described later may be hindered. Therefore, the total content concentration (mass) of these impurities is preferably 200 ppm or less, more preferably 100 ppm or less, and even more preferably 50 ppm or less.
  • allenes include propadiene and 1,2-butadiene.
  • acetylenes include ethyl acetylene and vinyl acetylene.
  • the conjugated diene polymer may be a random copolymer or a block copolymer.
  • the random copolymer is not limited to the following, but for example, a random copolymer composed of two or more conjugated diene compounds such as butadiene-isoprene random copolymer, butadiene-styrene random copolymer, isoprene-styrene.
  • Examples thereof include random copolymers composed of various conjugated dienes and vinyl-substituted aromatic compounds, such as random copolymers and butadiene-isoprene-styrene random copolymers.
  • the composition distribution of each monomer in the copolymer chain is not particularly limited.
  • a completely random copolymer close to a statistical random composition a taper (gradient) random in which the composition is distributed in a tapered shape.
  • a copolymer is mentioned.
  • the bonding mode of the conjugated diene that is, the composition of 1,4-bonds, 1,2-bonds, etc. may be uniform or distributed.
  • the block copolymer is not limited to the following, but for example, a 2 type block copolymer (diblock) consisting of 2 blocks, a 3 type block copolymer (triblock) consisting of 3 blocks, 4 4 type block copolymer (tetrablock) which consists of a piece is mentioned.
  • the polymer constituting one block may be a polymer composed of one type of monomer or a copolymer composed of two or more types of monomers.
  • a polymer block composed of 1,3-butadiene is represented by “B”
  • a copolymer of 1,3-butadiene and isoprene is represented by “B / I”
  • a copolymer of 1,3-butadiene and styrene is not limited to the following, but for example, a 2 type block copolymer (diblock) consisting of 2 blocks, a 3 type block copolymer (triblock) consisting of 3 blocks, 4 4 type block copolymer (
  • each block need not be clearly distinguished. Further, when one polymer block is a copolymer composed of two types of monomers A and B, A and B in the block may be distributed uniformly or in a tapered shape. Good.
  • a predetermined polymerization initiator is used.
  • the polymerization initiator include an organic lithium compound as described above.
  • an organic lithium compound having at least one nitrogen atom in the molecule is used.
  • the organic lithium compound include organic monolithium compounds, and other polymerization initiators may be used in combination.
  • organic monolithium compounds include, but are not limited to, low molecular compounds and solubilized oligomeric organic monolithium compounds.
  • the organic monolithium compound include a compound having a carbon-lithium bond, a compound having a nitrogen-lithium bond, and a compound having a tin-lithium bond in the bonding mode between the organic group and the lithium.
  • the amount of the organic monolithium compound used as a polymerization initiator is preferably determined by the molecular weight of the target conjugated diene polymer or modified conjugated diene polymer.
  • the amount of the monomer such as the conjugated diene compound used relative to the amount of the polymerization initiator is related to the degree of polymerization, that is, tends to be related to the number average molecular weight and / or the weight average molecular weight. Therefore, in order to increase the molecular weight, it is preferable to adjust in the direction of decreasing the polymerization initiator, and in order to decrease the molecular weight, it is preferable to adjust in the direction of increasing the amount of polymerization initiator.
  • the organic monolithium compound is preferably an alkyllithium compound having a substituted amino group or a substituted aminolithium compound from the viewpoint of being used in one method for introducing a nitrogen atom into a conjugated diene polymer.
  • a conjugated diene polymer having a nitrogen atom derived from an amino group at the polymerization initiation terminal is obtained.
  • the substituted amino group is an amino group having no active hydrogen or having a structure in which active hydrogen is protected.
  • the organolithium compound having at least one nitrogen atom in the molecule as the polymerization initiator includes an organolithium compound represented by any one of the following general formulas (1) to (5).
  • R 10 and R 11 are each independently an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aralkyl group having 6 to 20 carbon atoms, or a protecting group. And at least one selected from the group consisting of R 10 and R 11 may be bonded to form a cyclic structure with an adjacent nitrogen atom, in which case R 10 and R 11 have 5 carbon atoms (The alkyl group of ⁇ 12 may have an unsaturated bond or a branched structure in a part thereof, and the protecting group is an alkyl-substituted silyl group.)
  • R 12 and R 13 are each independently an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aralkyl group having 6 to 20 carbon atoms, or a protecting group. And at least one selected from the group consisting of R 12 and R 13 may be bonded to form a cyclic structure with an adjacent nitrogen atom, in which case R 12 and R 13 have 5 carbon atoms Represents an alkyl group having ⁇ 12, which may have an unsaturated bond or a branched structure, a protective group is an alkyl-substituted silyl group, and R 14 is an aliphatic group having 1 to 30 carbon atoms. Or an alkylene group which may have an aromatic substituent, or a conjugated diene polymer having 1 to 20 carbon atoms.)
  • R 12 and R 13 are each independently an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aralkyl group having 6 to 20 carbon atoms, and a protecting group. And at least one selected from the group consisting of R 12 and R 13 may be bonded to form a cyclic structure with an adjacent nitrogen atom, in which case R 12 and R 13 have 5 carbon atoms Represents an alkyl group having ⁇ 12, which may have an unsaturated bond or a branched structure, a protective group is an alkyl-substituted silyl group, and R 19 is an aliphatic group having 1 to 30 carbon atoms. Or a hydrocarbon group which may have an aromatic substituent, R 20 represents a hydrocarbon group which may have a substituted amino group having 1 to 12 carbon atoms, and n represents an integer of 1 to 10).
  • R 15 and R 16 each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a protecting group. And at least one selected from the group consisting of R 15 and R 16 may be bonded to form a cyclic structure with an adjacent nitrogen atom, in which case R 15 and R 16 have 5 carbon atoms.
  • the alkyl group of ⁇ 12 may have a branched structure in a part thereof, and the protecting group is an alkyl-substituted silyl group.
  • R 17 represents a hydrocarbon group having 2 to 10 carbon atoms, and a part thereof may have an unsaturated bond or a branched structure.
  • R 18 has 1 to 12 carbon atoms.
  • An alkyl group and a protecting group, and a part thereof may have a branched structure, and the protecting group is an alkyl-substituted silyl group.
  • R 10 and R 11 represent, for example, methyl group, ethyl group, propyl group, butyl group, octyl group, benzyl group, cyclopropyl group, cyclohexyl group, 3-phenyl-1 -Propyl group, isobutyl group, decyl group, heptyl group, and phenyl group.
  • R 10 and R 11 are not limited to these, and include analogs thereof as long as the above conditions are satisfied.
  • a butyl group and a hexyl group are preferable, and a butyl group is more preferable.
  • the organolithium compound having at least one nitrogen atom in the molecule represented by the formula (1) is not limited to the following, but examples thereof include ethylpropylaminolithium, ethylbutylaminolithium, ethylbenzylaminolithium, Examples include dibutylaminolithium and dihexylaminolithium. Among these, dibutylaminolithium and dihexylaminolithium are preferable, and dibutylaminolithium is more preferable.
  • the organolithium compound represented by the formula (1) is as follows: Examples include, but are not limited to, piperidinolithium, hexamethyleneiminolithium, lithium azacyclooctane, lithium-1,3,3-trimethyl-6-azabicyclo [3.2.1] octane, 1,2,3,6 -Tetrahydropyridinolithium and 3,5-dimethylpiperidinolithium.
  • the organolithium compound having at least one nitrogen atom in the molecule is not limited to these, and includes the similar compounds as long as the above-described conditions are satisfied.
  • piperidinolithium hexamethyleneiminolithium, lithium azacyclooctane, And lithium-1,3,3-trimethyl-6-azabicyclo [3.2.1] octane, more preferably piperidinolithium, hexamethyleneiminolithium, and 3,5-dimethylpiperidinolithium. More preferred is piperidinolithium.
  • R 14 represents an alkylene group which may have an aliphatic or aromatic substituent having 1 to 30 carbon atoms, or a conjugated diene polymer having 1 to 20 carbon atoms.
  • the conjugated diene polymer preferably represents a polymer having a conjugated diene compound having 4 to 12 carbon atoms as a repeating unit.
  • conjugated diene compounds include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene, 1,3-hexadiene, And 1,3-heptadiene.
  • 1,3-butadiene and isoprene are preferable from the viewpoint of industrial availability. These may be used alone or in combination of two or more.
  • R 14 represents an alkylene group having 1 to 30 carbon atoms, from the viewpoints of reactivity and interaction with inorganic fillers such as carbon and silica, R 14 represents 2 to 2 carbon atoms. It preferably represents an alkylene group having 20 carbon atoms, more preferably an alkylene group having 3 to 16 carbon atoms.
  • the organolithium compound represented by the formula (2) is not limited to the following, but for example, (3- (dimethylamino) -propyl ) Lithium, (3- (diethylamino) -propyl) lithium, (3- (dipropylamino) -propyl) lithium, (3- (dibutylamino) -propyl) lithium, (3- (dipentylamino) -propyl) lithium , (3- (dihexylamino) -propyl) lithium, (3- (dioctylamino) -propyl) lithium, (3- (ethylhexylamino) -propyl) lithium, (3- (didecylamino) -propyl) lithium, 3- (ethylpropylamino-propyl) lithium, (3- (ethylbutylamino-propyl) lithium,
  • the organolithium compound having at least one nitrogen atom in the molecule is not limited to these, and includes the similar compounds as long as the above-described conditions are satisfied. From the viewpoint of reactivity and interaction with inorganic fillers such as carbon and silica, (3- (dibutylamino) -propyl) lithium is more preferable.
  • the organolithium compound represented by the formula (2) is not limited to the following, but for example, (4- (dimethylamino) -2-butenyl) lithium, (4- (diethylamino) -2-butenyl) lithium, (4- (dibutylamino) -2-butenyl) lithium, (4- (dipropylamino) -2-butenyl) lithium, 4- (diheptylamino) -2-butenyl) lithium, (4- (dihexylamino) -2-butenyl) lithium, (4- (dioctylamino) -2-butenyl) lithium, (4- (di-2 -Ethylhexylamino) -2-butenyl) lithium, (4- (didecylamino) -2-butenyl) lithium, (4- (ethylpropylamino) -2-
  • the organolithium compound having at least one nitrogen atom in the molecule is not limited to these, and includes the similar compounds as long as the above-described conditions are satisfied. From the viewpoint of reactivity as an initiator and the viewpoint of chain transfer reaction control described later, 4- (dimethylamino) -2-butenyl) lithium, (4- (diethylamino) -2-butenyl) lithium, and (4- (Dibutylamino) -2-butenyl) lithium is preferred, and (4- (dibutylamino) -2-butenyl) lithium is more preferred.
  • the organolithium compound represented by the formula (2) when R 12 and R 13 are bonded to form a cyclic structure together with the adjacent nitrogen atom, the organolithium compound represented by the formula (2) includes (3- (piperidinyl) propyl ) Lithium, (3- (hexamethineiminyl) propyl) lithium, (3- (heptamethyleneiminyl) propyl) lithium, (3- (octamethyleneiminyl) propyl) lithium, (3- (1,3 , 3-Trimethyl-6-azabicyclo [3.2.1] octanyl) propyl) lithium, (3- (1,2,3,6-tetrahydropyridinyl) propyl) lithium, (2- (hexamethineylene) (Minyl) ethyl) lithium, (4- (hexamethineleniminyl) butyl) lithium, (5- (hexamethineleniminyl) pentyl) lithium, (6- ( ( (Xame
  • the organolithium compound having at least one nitrogen atom in the molecule is not limited to these, and includes the similar compounds as long as the above-described conditions are satisfied.
  • (3- (piperidinyl) propyl) lithium, (3- (hexamethineleniminyl) Propyl) lithium, (3- (1,2,3,6-tetrahydropyridinyl) propyl) lithium, (4- (piperidinyl) -2-butenyl) lithium, (4- (hexamethyleneimine) -Butenyl) lithium is preferred, more preferably (3- (hexamethineleniminyl) propyl) lithium, (4- (piperidinyl) -2-butenyl) lithium, and (4- (hexamethyleneleniminyl) -2 -Butenyl) lithium is preferred, more preferably (4- (piperidinyl)
  • R 12 and R 13 are the same as R 12 and R 13 in Formula (2).
  • the organic lithium compound having at least one nitrogen atom in the molecule represented by the formula (3) may be a reaction product of an organic monolithium compound and an organic unsaturated compound having a substituted amino group.
  • R 20 is an organic group derived from an organic monolithium compound
  • R 19 is an alkylene compound derived from an organic unsaturated compound having a substituted amino group.
  • R 20 is a hydrocarbon group having a substituted amino group.
  • organic unsaturated compound having a substituted amino group a known organic unsaturated compound having a substituted amino group that undergoes an addition reaction with a lithium initiator is used, and has a vinyl aromatic compound having a substituted amino group and a substituted amino group. Conjugated diene compounds are included.
  • the organolithium compound having at least one nitrogen atom in the molecule represented by the formula (3) is not limited to the following, for example, 1- (4-N, N-dimethylaminophenyl) hexyl lithium, 1- (4-N, N-dimethylaminophenyl) -1-phenylhexyllithium, 1- (4-N, N-dimethylaminomethylphenyl) hexyllithium, 1- (4-N, N-bistrimethylsilylaminophenyl) ) Hexyl lithium, 1- (4-N-trimethylsilyl-N-ethylaminophenyl) hexyl lithium, 1- (4-N, N-bistrimethylsilylaminophenyl) -1-phenylhexyl lithium, 1- (4-N, N-dimethylaminophenyl) -4-methylpentyllithium, 1 mol of butyllithium and 4-N, N-dimethyl Reaction product of 2 moles of
  • organolithium compound having at least one nitrogen atom in the molecule represented by the formula (4) examples include a reaction product of an N-substituted orthotoluidine compound and an alkyl lithium.
  • the organolithium compound having at least one nitrogen atom in the molecule represented by the formula (4) is not limited to the following, but examples thereof include N, N-dimethyl-o-toluidinolithium, N, N-dimethyl-m-toluidinolithium, N, N-dimethyl-p-toluidinolithium, N, N-diethyl-o-toluidinolithium, N, N-diethyl-m-toluidinolithium, N, N-diethyl-p-toluidinolithium, N, N-dipropyl-o-toluidinolithium, N, N-dipropyl-m-toluidinolithium, N, N-dipropyl-p-toluidino Lithium, N, N-d
  • the organolithium compound having at least one nitrogen atom in the molecule is not limited to these, and includes the similar compounds as long as the above-described conditions are satisfied. From the viewpoint of polymerization activity, N, N-dimethyl-o-toluidinolithium is more preferable.
  • the organolithium compound having at least one nitrogen atom in the molecule represented by the formula (4) is not limited to the following, but examples thereof include 2- (2-methylpiperidinyl) -1-ethyllithium (For example, trade name “AI-250” manufactured by FMC).
  • the organolithium compound is not limited to these, and includes the similar compounds as long as the above conditions are satisfied.
  • an organolithium compound having at least one nitrogen atom in the molecule or other organolithium compounds may be prepared in advance, and any known method can be applied.
  • the polymerization step described above when obtaining a nitrogen-containing conjugated diene polymer, in the presence of an organolithium compound, at least a conjugated diene compound and a copolymerizable monomer having at least one nitrogen atom in the molecule are used. You may implement the process to copolymerize.
  • the copolymerizable monomer having at least one nitrogen atom in the molecule an organic unsaturated compound having a known substituted amino group that is copolymerized with a conjugated diene compound by a lithium initiator is used.
  • a vinyl aromatic compound having a group and a conjugated diene compound having a substituted amino group are included.
  • the organic lithium compound is preferably an organic monolithium compound, and may or may not have a substituted amino group in the molecule.
  • an alkyl lithium compound is preferred.
  • a conjugated diene polymer having an alkyl group at the polymerization initiation terminal is obtained.
  • the alkyl lithium compound include, but are not limited to, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, n-hexyl lithium, benzyl lithium, phenyl lithium, and stilbene lithium.
  • n-butyllithium and sec-butyllithium are preferable from the viewpoints of industrial availability and ease of control of the polymerization reaction.
  • each hydrogen of the amino group is independently composed of an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aralkyl group having 6 to 20 carbon atoms, or a protecting group.
  • An amino group substituted with at least one selected from the group, and the substituent may be bonded to form a cyclic structure with an adjacent nitrogen atom, in which case the substituent has 5 to 12 carbon atoms
  • An alkyl group is shown, and a part thereof may have an unsaturated bond or a branched structure.
  • the protecting group is preferably an alkyl-substituted silyl group.
  • Examples of the vinyl aromatic compound having a substituted amino group that is a polymerization monomer include styrene having a substituted amino group, alkyl-substituted styrene, 1,1-diphenylethylene, and vinylnaphthalene.
  • vinyl aromatic compounds having a substituted amino group examples include 4-N, N-dimethylaminostyrene, 4-N, N-diethylaminostyrene, 4-N, N-bistrimethylsilylaminostyrene, 4-N, N— Dimethylaminomethylstyrene, 4- (2-N, N-diethylamino) ethylstyrene, 4-N, N-dimethylamino- ⁇ -methylstyrene, 1- (4-N, N-dimethylaminophenyl) -1-phenyl Examples thereof include ethylene and 1- (4-N, N-bistrimethylsilylaminophenyl) -1-phenylethylene.
  • the conjugated diene compound having a substituted amino group which is a polymerization monomer includes a conjugated diene compound having 4 to 12 carbon atoms having a substituted amino group.
  • a conjugated diene compound having a substituted amino group 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1, etc. having a substituted amino group 3-pentadiene, 1,3-hexadiene, and 1,3-heptadiene are included.
  • 1,3-butadiene having a substituted amino group and isoprene having a substituted amino group are preferable from the viewpoint of industrial availability.
  • conjugated diene compound having a substituted amino group examples include 2-dimethylamino-1,3-butadiene, 2-bistrimethylsilylamino-1,3-butadiene, 2-dimethylaminomethyl-1,3-butadiene, and 1-dimethylamino. Mention may be made of methyl-1,3-butadiene.
  • the reaction mode of the polymerization step is not limited to the following, but examples include a batch type (also referred to as “batch type”) and a continuous type polymerization reaction mode.
  • a batch type also referred to as “batch type”
  • a continuous type polymerization reaction mode In the continuous mode, one or two or more connected reactors can be used.
  • the continuous reactor for example, a tank type with a stirrer or a tube type is used.
  • the monomer, the inert solvent, and the polymerization initiator are continuously fed to the reactor, and a polymer solution containing the polymer is obtained in the reactor. The coalescence solution is drained.
  • a tank type equipped with a stirrer is used as the batch reactor.
  • the monomer, inert solvent, and polymerization initiator are fed and, if necessary, the monomer is added continuously or intermittently during the polymerization, and the polymer is added in the reactor.
  • a polymer solution is obtained, and after completion of the polymerization, the polymer solution is discharged.
  • a continuous system is preferred, in which the polymer can be continuously discharged and used for the next reaction in a short time.
  • the solvent include hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons.
  • hydrocarbon solvents include, but are not limited to, for example, aliphatic hydrocarbons such as butane, pentane, hexane, and heptane; alicyclics such as cyclopentane, cyclohexane, methylcyclopentane, and methylcyclohexane Hydrocarbons: Hydrocarbons composed of aromatic hydrocarbons such as benzene, toluene, xylene and mixtures thereof.
  • a conjugated diene polymer having a high concentration of active terminals tends to be obtained, and modification with a high modification rate
  • a conjugated diene polymer is preferred because it tends to be obtained.
  • the polymer solution may contain a polar compound.
  • An aromatic vinyl compound can be randomly copolymerized with a conjugated diene compound and tends to be used as a vinylating agent for controlling the microstructure of the conjugated diene portion. In addition, the polymerization reaction tends to be effective.
  • polar compounds include, but are not limited to, tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxybenzene, 2,2-bis (2-oxolanyl).
  • Ethers such as propane; Tertiary amine compounds such as tetramethylethylenediamine, dipiperidinoethane, trimethylamine, triethylamine, pyridine, quinuclidine; potassium-tert-amylate, potassium-tert-butyrate, sodium-tert-butyrate, Use alkali metal alkoxide compounds such as sodium amylate; phosphine compounds such as triphenylphosphine Rukoto can. These polar compounds may be used alone or in combination of two or more.
  • the amount of the polar compound used is not particularly limited and can be selected according to the purpose, but is preferably 0.01 mol or more and 100 mol or less with respect to 1 mol of the polymerization initiator.
  • An appropriate amount of such a polar compound (vinylating agent) can be used as a regulator of the microstructure of the polymer conjugated diene moiety depending on the desired vinyl bond amount.
  • Many polar compounds simultaneously have an effective randomizing effect in the copolymerization of conjugated diene compounds and aromatic vinyl compounds, and tend to be used to adjust the distribution of aromatic vinyl compounds and adjust the amount of styrene block It is in.
  • the total amount of styrene and a part of 1,3-butadiene may be used together.
  • a method in which a polymerization reaction is started and the remaining 1,3-butadiene is intermittently added during the copolymerization reaction may be used.
  • the polymerization temperature is preferably a temperature at which living anion polymerization proceeds, more preferably 0 ° C. or more, and further preferably 120 ° C. or less from the viewpoint of productivity.
  • a temperature at which living anion polymerization proceeds More preferably, it is 50 ° C. or more and 100 ° C. or less, and more preferably 60 ° C. or more and 80 ° C. or less.
  • the conjugated diene polymer before the reaction step obtained in the polymerization step preferably has a Mooney viscosity measured at 110 ° C. of 10 or more and 90 or less, more preferably 15 or more and 85 or less, and still more preferably 20 It is 60 or less. Within this range, the modified conjugated diene polymer of this embodiment tends to be excellent in workability and wear resistance.
  • the amount of bound conjugated diene in the conjugated diene polymer or modified conjugated diene polymer of the present embodiment is not particularly limited, but is preferably 40% by mass to 100% by mass, and more preferably 55% by mass to 80% by mass. The following is more preferable.
  • the amount of bonded aromatic vinyl in the conjugated diene polymer or modified conjugated diene polymer of the present embodiment is not particularly limited, but is preferably 0% by mass or more and 60% by mass or less, and more preferably 20% by mass or more. More preferably, it is 45 mass% or less.
  • the amount of bound conjugated diene and bound aromatic vinyl is in the above range, it is superior in balance between low hysteresis loss and wet skid resistance and abrasion resistance when used as a vulcanizate, and practically sufficient fracture characteristics It tends to be obtained.
  • the amount of bonded aromatic vinyl can be measured by ultraviolet absorption of a phenyl group, and the amount of bonded conjugated diene can also be obtained from this. Specifically, it measures according to the method as described in the Example mentioned later.
  • the vinyl bond amount in the conjugated diene bond unit is not particularly limited, but is preferably 10 mol% or more and 75 mol% or less, and 20 mol. % To 65 mol% is more preferable.
  • the vinyl bond amount is in the above range, there is a tendency to be more excellent in the balance of low hysteresis loss and wet skid resistance, wear resistance, and fracture strength when vulcanized.
  • the modified diene polymer is a copolymer of butadiene and styrene, it is determined by the method of Hampton (RR Hampton, Analytical Chemistry, 21, 923 (1949)) in the butadiene bond unit.
  • the vinyl bond amount (1,2-bond amount) can be determined. Specifically, it is measured by the method described in the examples described later.
  • the amount of each bond in the modified conjugated diene polymer is in the above range, and the glass transition temperature of the modified conjugated diene polymer is ⁇ 45 ° C. or more and ⁇ 15 ° C. It is preferable to be in the following range, whereby a vulcanizate having excellent resilience tends to be obtained.
  • the glass transition temperature according to ISO 22768: 2006, a DSC curve is recorded while raising the temperature in a predetermined temperature range, and the peak top (Inflection point) of the DSC differential curve is set as the glass transition temperature. Specifically, it is measured by the method described in the examples described later.
  • the number of blocks in which 30 or more aromatic vinyl units are linked may be small or not. preferable. More specifically, when the copolymer is a butadiene-styrene copolymer, the Kolthoff method (method described in IM KOLTHOFF, et al., J. Polym. Sci. 1, 429 (1946)). In the known method for analyzing the amount of polystyrene insoluble in methanol, the block in which 30 or more aromatic vinyl units are linked is preferably 5.0 relative to the total amount of the copolymer. It is not more than mass%, more preferably not more than 3.0 mass%.
  • the conjugated diene polymer of the present embodiment is a conjugated diene-aromatic vinyl copolymer
  • the ratio of aromatic vinyl units to be present alone is large.
  • the copolymer is a butadiene-styrene copolymer
  • the copolymer is decomposed by an ozonolysis method known as Tanaka et al. (Polymer, 22, 1721 (1981)).
  • Tanaka et al. Polymer, 22, 1721 (1981)
  • the isolated styrene amount is 40% by mass or more and the chain styrene structure having 8 or more styrene chains is 5.0% by mass or less based on the total amount of styrene bonded. It is desirable.
  • the obtained vulcanized rubber has excellent performance with particularly low hysteresis loss.
  • Modification process In the modification step, the active terminal of the nitrogen-containing conjugated diene polymer obtained in the polymerization step is reacted with an 8-functional or higher reactive compound (hereinafter also referred to as “modifier”) to form a modifier residue. And a modified conjugated diene polymer of this embodiment in which 8 or more molecules of the conjugated diene polymer are bonded.
  • modifier 8-functional or higher reactive compound
  • the modifier used in the modification step of this embodiment is preferably an 8-functional or more reactive compound having a nitrogen atom and a silicon atom, and has at least 3 silicon atoms and at least 1 nitrogen atom in one molecule. It is more preferable to react a reactive compound having 8 or more reactive sites. Further, a modifier having 4 or more alkoxy groups bonded to silicon atoms and a tertiary amino group and having 8 or more reaction active sites is more preferable. Thereby, there is a tendency that the interaction between the filler, for example, silica, and the polymer added when the vulcanized product is made becomes stronger.
  • a more preferred modifier is a modifier in which at least one silicon atom constitutes an alkoxysilyl group or silanol group having 1 to 20 carbon atoms, more preferably a compound represented by the following formula (VI) as the modifier. is there.
  • the compound represented by the following general formula (VI) is more preferable as the modifier in the modification step.
  • R 12 to R 14 each independently represents a single bond or an alkylene group having 1 to 20 carbon atoms, and R 15 to R 18 and R 20 each independently represents 1 carbon atom
  • R 19 and R 22 each independently represent an alkylene group having 1 to 20 carbon atoms
  • R 21 represents an alkyl group or trialkylsilyl group having 1 to 20 carbon atoms
  • m represents an integer of 1 to 3
  • p represents 1 or 2.
  • R 12 to R 22 , m, and p when there are a plurality of each are independent and may be the same or different I is an integer from 0 to 6, j is an integer from 0 to 6, k is an integer from 0 to 6, and (i + j + k) is an integer from 4 to 10.
  • A is a hydrocarbon group having 1 to 20 carbon atoms, or an oxygen atom, nitrogen atom, silicon atom, sulfur atom And at least one atom selected from the group consisting of a phosphorus atom, an organic group having no active hydrogen.
  • the hydrocarbon group represented by A includes saturated, unsaturated, aliphatic, and aromatic hydrocarbon groups.
  • the organic group having no active hydrogen is an organic group that does not inactivate the active terminal of the conjugated diene polymer. Examples of organic groups having no active hydrogen include active hydrogen such as hydroxyl group (—OH), secondary amino group (> NH), primary amino group (—NH 2 ), sulfhydryl group (—SH), and the like.
  • the organic group having no active hydrogen includes those inactivated by replacing the functional group having active hydrogen with a protecting group.
  • the protecting group is preferably an alkyl-substituted silyl group.
  • the alkoxysilyl group of the modifier reacts with, for example, the active terminal of the nitrogen-containing conjugated diene polymer to dissociate alkoxylithium, and the terminal of the nitrogen-containing conjugated diene polymer chain and the silicon of the modifier residue Tend to form bonds with.
  • a value obtained by subtracting the number of SiORs reduced by the reaction from the total number of SiORs in one molecule of the modifier is the number of alkoxysilyl groups in the modifier residue.
  • the azasilacycle group possessed by the modifier forms a bond between the> N—Li bond and the nitrogen-containing conjugated diene polymer terminal and the modifier residue silicon.
  • N—Li bonds tend to easily become> NH and LiOH due to water or the like at the time of finishing.
  • the unreacted remaining alkoxysilyl group tends to easily become silanol (Si—OH group) by water or the like during finishing.
  • the modification step when there are 3 alkoxy groups per silicon atom, that is, when the active terminal of 3 mol of nitrogen-containing conjugated diene polymer is reacted with 1 mol of trialkoxysilane group, up to 2 mol Reaction with the nitrogen-containing conjugated diene polymer occurs, but 1 mol of alkoxy group tends to remain unreacted. This is confirmed by the fact that 1 mol of nitrogen-containing conjugated diene polymer remains as an unreacted polymer without reacting. In addition, by making many alkoxy groups react, it exists in the tendency which can suppress that a polymer viscosity changes greatly by causing a condensation reaction at the time of finishing and storage.
  • 2 moles of conjugated diene copolymer reacted with 1 mole of trialkoxysilane group is 4 or more in the modified conjugated diene copolymer, that is, the degree of branching is 8 or more, and other reactions.
  • the condensation reaction tends to be suppressed.
  • the modifier is not limited to the following, but examples include tetrakis (3-trimethoxysilylpropyl) -1,3-bisaminomethylcyclohexane, tris (3-trimethoxysilylpropyl)-[3- (2, 2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-bisaminomethylcyclohexane, tetrakis (3-trimethoxysilylpropyl) -1,6-hexamethylenediamine, pentakis (3-trimethoxy Silylpropyl) -diethylenetriamine, tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] silane, bis (3-trimethoxysilylpropyl) -bis [3- (2,2- Dimethoxy-1-aza-2-silacyclopentane) propyl] silane, tris [
  • the reaction temperature in the modification step is preferably the same as the polymerization temperature of the conjugated diene polymer, more preferably 0 ° C. or more and 120 ° C. or less, and further preferably 50 ° C. or more and 100 ° C. or less.
  • the temperature change from the polymerization step to the addition of the modifier is preferably 10 ° C. or less, more preferably 5 ° C. or less.
  • the reaction time in the denaturation step is preferably 10 seconds or longer, more preferably 30 seconds or longer.
  • the time from the end of the polymerization step to the start of the modification step is preferably shorter, but more preferably within 5 minutes. By doing so, a high modification rate tends to be obtained.
  • Mixing in the denaturing step may be either mechanical stirring or stirring with a static mixer.
  • the modification step is also preferably continuous.
  • the reactor in the denaturation step for example, a tank type with a stirrer or a tube type is used.
  • the modifier may be continuously supplied to the reactor after being diluted with an inert solvent.
  • the modification process may be performed by transferring the modification agent to a polymerization reactor or by transferring it to another reactor.
  • A is preferably represented by any of the following general formulas (II) to (V).
  • B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. When there are a plurality of B 1 s , they are independent of each other.
  • B 2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
  • B 3 represents an alkyl group having 1 to 20 carbon atoms
  • a represents an integer of 1 to 10 .
  • B 2 and B 3 when there are a plurality of each are independent of each other.
  • B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. When there are a plurality of B 4 s , they are independent of each other.
  • B 5 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10.
  • the B 5 when there are a plurality, are each independently.
  • a in the formula (VI) is represented by any one of the formulas (II) to (V), a modified conjugated diene polymer having better performance of the present embodiment tends to be obtained. is there.
  • the modifier in the case where A is represented by the formula (II) in the formula (VI) is not limited to the following, but examples thereof include tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine, tris (3-Trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine, bis (3-trimethoxysilylpropyl) -bis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine, tris [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) ) Propyl]-(3-trimethoxysilylpropyl) -1,3-propanediamine, tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclope
  • the modifying agent in the case where A is represented by the formula (III) is not limited to the following.
  • N 1 , N 1 ′-(propane-1,3-diyl) bis (N 1 -methyl-N 3 , N 3 -bis (3- (trimethoxysilyl) propyl) -1,3-propanediamine), and N 1- (3- (bis (3- (trimethoxysilyl) propyl) ) amino) propyl) -N 1 - methyl -N 3 - (3- (methyl (3- (trimethoxysilyl) propyl) amino) propyl) -N 3 - (3- (trimethoxysilyl) propyl) -1, 3-Propanediamine is mentioned.
  • the modifying agent in the case where A is represented by the formula (IV) in the formula (VI) is not limited to the following, for example, tetrakis [3- (2,2-dimethoxy-1-aza-2-sila Cyclopentane) propyl] silane, tris [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl]-(3-trimethoxysilylpropyl) silane, bis (3-trimethoxysilylpropyl) -Bis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] silane and tris (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza -2-Silacyclopentane) propyl] silane.
  • the modifying agent is not limited to the following.
  • A is preferably represented by formula (II) or formula (III), and k represents 0.
  • Such a modifier tends to be easily available, and tends to be more excellent in wear resistance and low hysteresis loss performance when a modified conjugated diene polymer is used as a vulcanizate.
  • Such modifiers are not limited to the following, but include, for example, tris (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl].
  • 1,3-propanediamine 1,3-propanediamine, tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine, tetrakis (3-trimethoxysilylpropyl) -1 , 3-propanediamine, and tetrakis (3-trimethoxysilylpropyl) -1,3-bisaminomethylcyclohexane.
  • A is more preferably represented by formula (II) or formula (III), k represents 0, and in formula (II) or formula (III), a is 2 to 10 Indicates an integer. Thereby, it exists in the tendency for the abrasion resistance and low hysteresis loss performance when vulcanized to become more excellent.
  • Such modifiers are not limited to the following, but include, for example, tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine, tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine, tetrakis (3-trimethoxysilylpropyl) -1,3-bisaminomethylcyclohexane, and N 1- (3- (bis (3- (trimethoxy silyl) propyl) amino) propyl) -N 1 - methyl -N 3 - (3- (methyl (3- (trimethoxysilyl) propyl) amino) propyl) -N 3 - (3- (trimethoxysilyl) propyl) -1,3-propanediamine.
  • the amount of the compound represented by the formula (VI) as the modifier can be adjusted so that the number of moles of the conjugated diene polymer to the number of moles of the modifier is reacted in a desired stoichiometric ratio. This tends to achieve the desired degree of branching.
  • the number of moles of the specific polymerization initiator is preferably 7.0 times mole or more, more preferably 8.0 times mole or more with respect to the mole number of the modifier.
  • the number of functional groups ((m ⁇ 1) ⁇ i + p ⁇ j + k) of the modifier is preferably an integer of 8 to 16, and more preferably an integer of 8 to 14.
  • a method of adding the modifier after diluting is preferable.
  • the difference in addition amount is the same, the difference between the number of moles of the conjugated diene polymer and the number of moles of the modifier tends to be smaller when diluted.
  • the water content of the solvent to be diluted is preferably 100 ppm by mass or less, more preferably 50 ppm by mass or less, still more preferably 30 ppm by mass or less, and even more preferably 10 ppm by mass or less.
  • the modifier and water react with each other, and the number of moles of the conjugated diene polymer is reduced due to a decrease in functional groups in the modifier. There is a tendency that deviation from the number of moles of the modifier can be suppressed.
  • a condensation reaction step in which a condensation reaction is performed in the presence of a condensation accelerator may be provided after the modification step or before the modification step.
  • the conjugated diene portion of the modified conjugated diene polymer of this embodiment may be hydrogenated, and the method for hydrogenation is not particularly limited, and a known method can be used.
  • a suitable hydrogenation method a method of hydrogenation by blowing gaseous hydrogen into a polymer solution in the presence of a hydrogenation catalyst can be mentioned.
  • the catalyst for example, a heterogeneous catalyst such as a catalyst in which a noble metal is supported on a porous inorganic substance; a catalyst in which a salt such as nickel or cobalt is solubilized and reacted with organic aluminum or the like, or a metallocene such as titanocene is used. Examples thereof include homogeneous catalysts such as catalysts. Among these, titanocene catalysts are preferable from the viewpoint of selecting mild hydrogenation conditions.
  • the hydrogenation of the aromatic group can be performed by using a noble metal supported catalyst.
  • the hydrogenation catalyst are not limited to the following.
  • hydrogenation catalysts for example, JP-B-42-8704, JP-B-43-6636, JP-B-63-4841, JP-B-1-37970, JP-B-1-53851, Examples also include known hydrogenation catalysts described in Japanese Patent Publication No. 2-9041 and Japanese Patent Application Laid-Open No. 8-109219.
  • a preferable hydrogenation catalyst includes a reaction mixture of a titanocene compound and a reducing organometallic compound.
  • a deactivator, a neutralizing agent, and the like may be added to the copolymer solution after the modification step, if necessary.
  • the quenching agent include, but are not limited to, water; alcohols such as methanol, ethanol, and isopropanol.
  • the neutralizing agent include, but are not limited to, for example, carboxylic acids such as stearic acid, oleic acid, and versatic acid (a mixture of carboxylic acids having 9 to 11 carbon atoms, mainly 10 and having many branches). Acid; An aqueous solution of an inorganic acid, carbon dioxide gas.
  • a rubber stabilizer to the modified conjugated diene polymer.
  • the rubber stabilizer is not limited to the following, and known ones can be used.
  • BHT 2,6-di-tert-butyl-4-hydroxytoluene
  • n-octadecyl-3 Antioxidants such as — (4′-hydroxy-3 ′, 5′-di-tert-butylphenol) propinate and 2-methyl-4,6-bis [(octylthio) methyl] phenol are preferred.
  • an extending oil can be added to the modified conjugated diene copolymer as necessary.
  • the method of adding the extender oil to the modified conjugated diene polymer is not limited to the following, but the extender oil is added to the polymer solution and mixed to obtain an oil-extended copolymer solution.
  • the extending oil include aroma oil, naphthenic oil, paraffin oil, and the like.
  • an aromatic substitute oil having a polycyclic aromatic (PCA) component of 3% by mass or less by the IP346 method is preferable.
  • the aroma substitute oil examples include TDAE (Treated Distillate Aromatic Extracts) and MES (Mil Extraction Solvate) such as RDAE (Karateschuk Kunststoffe 52 (12) 799 (1999)), RA (e.
  • the addition amount of the extender oil is not particularly limited, but is preferably 1 part by mass or more and 60 parts by mass or less, more preferably 5 parts by mass or more and 50 parts by mass or less, with respect to 100 parts by mass of the modified conjugated diene polymer. More preferred is 37.5 parts by mass or less.
  • the modified conjugated diene polymer of the present embodiment from the polymer solution, a known method can be used.
  • the method for example, after separating the solvent by steam stripping or the like, the polymer is filtered and further dehydrated and dried to obtain the polymer, concentrated in a flushing tank, further vented extruder, etc. And a method of directly devolatilizing with a drum dryer or the like.
  • the modified conjugated diene polymer of the present embodiment is suitably used as a vulcanizate.
  • the vulcanizate include tires, hoses, shoe soles, vibration-insulating rubbers, automobile parts, and vibration-insulating rubbers, and also include resin-reinforced rubbers such as impact-resistant polystyrene and ABS resin.
  • the modified conjugated diene polymer is suitably used for a tread rubber composition for tires.
  • the vulcanized product may be, for example, a modified conjugated diene polymer of the present embodiment, if necessary, an inorganic filler such as a silica-based inorganic filler or carbon black, or a modified conjugated diene polymer of the present embodiment.
  • a modified conjugated diene polymer composition is kneaded with a rubber-like polymer, a silane coupling agent, a rubber softener, a vulcanizing agent, a vulcanization accelerator, a vulcanization aid, etc. It can be obtained by sulfuration.
  • the rubber composition of the present embodiment includes a rubber component and a filler of 5.0 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the rubber component contains 10% by mass or more of the modified conjugated diene polymer of the present embodiment described above with respect to the total amount (100% by mass) of the rubber component.
  • the said filler contains a silica type inorganic filler.
  • a rubber composition tends to be more excellent in processability when it is made into a vulcanized product by dispersing a silica-based inorganic filler.
  • a silica-based inorganic filler is included.
  • a rubbery polymer other than the modified conjugated diene polymer of the present embodiment (hereinafter simply referred to as “rubbery polymer”) is combined with the branched modified diene polymer of the present embodiment.
  • rubbery polymers include, but are not limited to, for example, conjugated diene polymers or hydrogenated products thereof, random copolymers of conjugated diene compounds and vinyl aromatic compounds, or hydrogenated products thereof. Products, block copolymers of conjugated diene compounds and vinyl aromatic compounds or hydrogenated products thereof, non-diene polymers, and natural rubber.
  • Specific rubbery polymers are not limited to the following, but include, for example, butadiene rubber or hydrogenated product thereof, isoprene rubber or hydrogenated product thereof, styrene-butadiene rubber or hydrogenated product thereof, and styrene-butadiene block.
  • examples thereof include styrene elastomers such as copolymers or hydrogenated products thereof, styrene-isoprene block copolymers or hydrogenated products thereof, acrylonitrile-butadiene rubbers or hydrogenated products thereof.
  • Non-diene polymers are not limited to the following, but include olefins such as ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, and ethylene-octene rubber.
  • olefins such as ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, and ethylene-octene rubber.
  • Elastomer butyl rubber, brominated butyl rubber, acrylic rubber, fluoro rubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, ⁇ , ⁇ -unsaturated nitrile-acrylate ester-conjugated diene copolymer rubber, urethane rubber, and polysulfide rubber Is mentioned.
  • Examples of natural rubber include, but are not limited to, the following: smoked sheet RSS 3-5, SMR, and epoxidized natural rubber.
  • the various rubber-like polymers described above may be modified rubbers to which functional groups having polarity such as hydroxyl groups and amino groups are added.
  • functional groups having polarity such as hydroxyl groups and amino groups are added.
  • butadiene rubber, isoprene rubber, styrene-butadiene rubber, natural rubber, and butyl rubber are preferably used.
  • the weight average molecular weight of the rubber-like polymer is preferably from 2,000 to 2,000,000, more preferably from 5,000 to 1,500,000 from the viewpoint of the balance between performance and processing characteristics.
  • a low molecular weight rubbery polymer so-called liquid rubber, can also be used.
  • These rubber-like polymers may be used individually by 1 type, and may use 2 or more types together.
  • the content ratio (mass ratio) of the modified conjugated diene polymer to the rubber-like polymer is (modified conjugated diene).
  • System polymer / rubbery polymer) is preferably 10/90 or more and 100/0 or less, more preferably 20/80 or more and 90/10 or less, and even more preferably 50/50 or more and 80/20 or less. Therefore, the rubber component preferably contains the modified conjugated diene polymer in an amount of 10 to 100 parts by weight, more preferably 20 to 90 parts by weight, based on the total amount (100 parts by weight) of the rubber component. Included, more preferably 50 parts by weight or more and 80 parts by weight or less.
  • the content ratio of (modified conjugated diene polymer / rubber-like polymer) is in the above range, the dispersibility of the filler, for example, silica when vulcanized, tends to be improved.
  • the filler is not limited to the following, and examples thereof include silica-based inorganic filler, carbon black, metal oxide, and metal hydroxide. Among these, a silica type inorganic filler is preferable. These may be used alone or in combination of two or more.
  • the content of the filler in the rubber composition is from 5.0 parts by weight to 150 parts by weight, and from 20 parts by weight to 100 parts by weight with respect to 100 parts by weight of the rubber component containing the modified conjugated diene polymer. Preferably there is.
  • the content of the filler is 5.0 parts by mass or more from the viewpoint of the effect of adding the filler, and the filler is sufficiently dispersed, so that the workability and mechanical strength of the composition are practically sufficient. From the viewpoint of, it is 150 parts by mass or less.
  • the silica-based inorganic filler is not particularly limited, but may be a known, solid particles preferably comprise SiO 2 or Si 3 Al as a constituent unit, the main structural units of SiO 2 or Si 3 Al Solid particles contained as a component are more preferable.
  • the main component refers to a component contained in the silica-based inorganic filler in an amount of 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more.
  • silica-based inorganic filler examples include, but are not limited to, inorganic fiber materials such as silica, clay, talc, mica, diatomaceous earth, wollastonite, montmorillonite, zeolite, and glass fiber.
  • silica type inorganic filler which hydrophobized the surface
  • silica type inorganic filler and inorganic fillers other than a silica type is also mentioned.
  • silica and glass fiber are preferable, and silica is more preferable from the viewpoints of strength and wear resistance.
  • silica include dry silica, wet silica, and synthetic silicate silica. Among these silicas, wet silica is preferable from the viewpoint of excellent balance between fracture property improvement effect and wet skid resistance.
  • the nitrogen adsorption specific surface area determined by the BET adsorption method of the silica-based inorganic filler is 100 m 2 / g or more and 300 m 2 / g or less. preferably, more preferably not more than 170m 2 / g or more 250m 2 / g. If necessary, a silica-based inorganic filler having a relatively small specific surface area (for example, a specific surface area of 200 m 2 / g or less) and a silica-based filler having a relatively large specific surface area (for example, 200 m 2 / g or more). Inorganic fillers) can be used in combination.
  • the modified conjugated diene-based polymer improves the dispersibility of silica, There is an effect in improving the wearability, and there is a tendency that good fracture characteristics and low hysteresis loss can be well balanced.
  • the content of the silica-based inorganic filler in the rubber composition is 5.0 parts by mass or more and 150 parts by mass, and 20 parts by mass or more and 100 parts by mass with respect to 100 parts by mass of the rubber component containing the modified conjugated diene polymer. Part or less.
  • the content of the silica-based inorganic filler is 5.0 parts by mass or more from the viewpoint of manifesting the effect of adding the inorganic filler, and the inorganic filler is sufficiently dispersed to make the processability and mechanical strength of the composition practical. From the viewpoint of making it sufficiently satisfactory, it is 150 parts by mass or less.
  • the carbon black is not limited to the following, and examples thereof include carbon blacks of each class such as SRF, FEF, HAF, ISAF, and SAF. Among these, carbon black having a nitrogen adsorption specific surface area of 50 m 2 / g or more and a dibutyl phthalate (DBP) oil absorption of 80 mL / 100 g or less is preferable.
  • the content of carbon black is preferably 0.5 parts by mass or more and 100 parts by mass or less, and more preferably 3.0 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the rubber component including the modified conjugated diene polymer. 5.0 parts by mass or more and 50 parts by mass or less are more preferable.
  • the content of carbon black is preferably 0.5 parts by mass or more from the viewpoint of expressing the performance required for applications such as dry grip performance and conductivity, and from the viewpoint of dispersibility, 100 parts by mass. The following is preferable.
  • the metal oxide refers to solid particles having the chemical formula MxOy (M represents a metal atom, and x and y each independently represents an integer of 1 to 6) as a main component of a structural unit.
  • MxOy M represents a metal atom, and x and y each independently represents an integer of 1 to 6
  • Examples of the metal oxide include, but are not limited to, alumina, titanium oxide, magnesium oxide, and zinc oxide.
  • the metal hydroxide include, but are not limited to, aluminum hydroxide, magnesium hydroxide, and zirconium hydroxide.
  • the rubber composition may contain a silane coupling agent.
  • the silane coupling agent has a function to close the interaction between the rubber component and the inorganic filler, and has an affinity or binding group for each of the rubber component and the silica-based inorganic filler.
  • a compound having a sulfur bond portion and an alkoxysilyl group or silanol group portion in one molecule is preferable. Examples of such compounds include bis- [3- (triethoxysilyl) -propyl] -tetrasulfide, bis- [3- (triethoxysilyl) -propyl] -disulfide, bis- [2- (triethoxy Silyl) -ethyl] -tetrasulfide.
  • the content of the silane coupling agent is preferably 0.1 parts by mass or more and 30 parts by mass or less, more preferably 0.5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the inorganic filler described above. 0 to 15 parts by mass is more preferable. When the content of the silane coupling agent is within the above range, the addition effect of the silane coupling agent tends to be more remarkable.
  • the rubber composition may contain a rubber softener from the viewpoint of improving processability.
  • a rubber softener mineral oil or a liquid or low molecular weight synthetic softener is suitable.
  • Mineral oil-based rubber softeners called process oils or extender oils that are used to soften, increase volume and improve processability of rubbers are mixtures of aromatic, naphthenic and paraffin chains.
  • a paraffin chain having 50% or more carbon atoms in the total carbon is called paraffinic, and a naphthenic ring having 30% or more and 45% or less carbon atoms in the total carbon is naphthenic or aromatic. What accounts for over 30% of carbon is called aromatic.
  • the rubber softener to be used is one having an appropriate aromatic content with the copolymer. This is preferable because it tends to be familiar.
  • the content of the rubber softening agent is preferably 0 parts by mass or more and 100 parts by mass or less, more preferably 10 parts by mass or more and 90 parts by mass or less, with respect to 100 parts by mass of the rubber component containing the modified conjugated diene polymer. 30 parts by mass or more and 90 parts by mass or less are more preferable.
  • the content of the rubber softening agent is 100 parts by mass or less with respect to 100 parts by mass of the rubber component, bleeding out tends to be suppressed and stickiness of the rubber composition surface tends to be suppressed.
  • silica inorganic fillers for the method of mixing the modified conjugated diene polymer and other rubbery polymers, silica inorganic fillers, carbon black and other fillers, silane coupling agents, rubber softeners, etc.
  • silica inorganic fillers for example, an open roll, a Banbury mixer, a kneader, a single screw extruder, a twin screw extruder, a melt kneading method using a general mixer such as a multi-screw extruder, A method of removing the solvent by heating after dissolution and mixing can be mentioned.
  • melt kneading method using a roll, a Banbury mixer, a kneader, or an extruder is preferred from the viewpoint of productivity and good kneading properties.
  • any of a method of kneading the rubber component and other fillers, silane coupling agents, and additives at a time, and a method of mixing in multiple times can be applied.
  • the rubber composition may be a vulcanized composition that has been vulcanized with a vulcanizing agent.
  • the vulcanizing agent include, but are not limited to, radical generators such as organic peroxides and azo compounds, oxime compounds, nitroso compounds, polyamine compounds, sulfur, and sulfur compounds.
  • Sulfur compounds include sulfur monochloride, sulfur dichloride, disulfide compounds, polymeric polysulfur compounds, and the like.
  • the content of the vulcanizing agent is preferably 0.01 parts by mass or more and 20 parts by mass or less, and more preferably 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the vulcanization method a conventionally known method can be applied, and the vulcanization temperature is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 140 ° C. or higher and 180 ° C. or lower.
  • a vulcanization accelerator may be used as necessary.
  • the vulcanization accelerator a conventionally known material can be used, and is not limited to the following materials. For example, sulfenamide, guanidine, thiuram, aldehyde-amine, aldehyde-ammonia, thiazole Thiourea and dithiocarbamate vulcanization accelerators.
  • cure adjuvant although not limited to the following, For example, zinc white and a stearic acid are mentioned.
  • the content of the vulcanization accelerator is preferably 0.01 parts by mass or more and 20 parts by mass or less, and more preferably 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • softening agents and fillers heat resistance stabilizers, antistatic agents, weather resistance stabilizers, antiaging agents, colorants, lubricants other than those described above may be used without departing from the object of the present embodiment.
  • Various additives such as these may be used.
  • known softeners can be used.
  • specific examples of other fillers include calcium carbonate, magnesium carbonate, aluminum sulfate, and barium sulfate.
  • Known materials can be used as the above heat stabilizer, antistatic agent, weathering stabilizer, anti-aging agent, colorant, and lubricant.
  • the tire of this embodiment contains the rubber composition of this embodiment.
  • the rubber composition of the present embodiment is not limited to the following.
  • various tires such as fuel-saving tires, all-season tires, high-performance tires, studless tires: tires such as treads, carcass, sidewalls, and bead portions It can be used for each part.
  • the rubber composition of the present embodiment is excellent in the balance between low hysteresis loss and wet skid resistance and wear resistance when used as a vulcanized product, it is suitable for fuel-saving tires and treads for high-performance tires. And more preferably used.
  • G ′ wear resistance and strain dispersibility
  • Example and a comparative example are given and this embodiment is described in detail, this embodiment is not limited at all by the following examples.
  • analysis of the polymer of an Example and a comparative example was performed by the method shown below.
  • Mw Average molecular weight
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • Mp 1 peak top molecular weight of modified conjugated diene polymer
  • Mp 2 peak top molecular weight of conjugated diene polymer
  • a 10 mg sample for measurement was dissolved in 10 mL of THF to prepare a measurement solution, and 10 ⁇ L of the measurement solution was injected into a GPC measurement device, and measurement was performed under conditions of an oven temperature of 40 ° C. and a THF flow rate of 0.35 mL / min.
  • a sample having a molecular weight distribution (Mw / Mn) value of less than 1.6 was measured again under the following measurement condition 2.
  • Measurement was performed under measurement condition 1 and the sample having a molecular weight distribution of 1.6 or more was measured under measurement condition 1.
  • ⁇ Measuring condition 2> Using a conjugated diene polymer or a modified conjugated diene polymer as a sample, a chromatogram was measured using a GPC measuring apparatus in which three columns using polystyrene gel as a filler were connected, Based on a calibration curve using standard polystyrene, the weight average molecular weight (Mw) and number average molecular weight (Mn), the peak top molecular weight (Mp 1 ) of the modified conjugated diene polymer, and the peak top molecular weight (Mp) of the conjugated diene polymer 2 ) and its ratio (Mp 1 / Mp 2 ).
  • the eluent used was THF containing 5 mmol / L triethylamine.
  • guard columns trade names “TSKguardcolumn SuperHH” manufactured by Tosoh Corporation
  • columns trade names “TSKgel SuperH5000”, “TSKgel SuperH6000”, “TSKgel SuperH7000” manufactured by Tosoh Corporation were used.
  • An RI detector (trade name “HLC8020” manufactured by Tosoh Corporation) was used under the conditions of an oven temperature of 40 ° C. and a THF flow rate of 0.6 mL / min.
  • M is an absolute molecular weight.
  • the eluent used was THF containing 5 mmol / L triethylamine.
  • Tosoh Corporation trade names “TSKgel G4000HXL”, “TSKgel G5000HXL”, and “TSKgel G6000HXL” were used.
  • a 20 mg sample for measurement was dissolved in 10 mL of THF to prepare a measurement solution, and 100 ⁇ L of the measurement solution was injected into a GPC measurement apparatus, and the measurement was performed at an oven temperature of 40 ° C. and a THF flow rate of 1 mL / min.
  • the rotor was rotated at 2 rpm, and the torque after 4 minutes was measured to obtain the Mooney viscosity (ML (1 + 4) ). Thereafter, when the modified conjugated diene polymer was used as a sample, the rotation of the rotor was immediately stopped, and the torque was recorded in Mooney units every 0.1 second for 1.6 to 5 seconds after the stop. The slope of the straight line when the time (seconds) was log-log plotted was determined, and the absolute value thereof was taken as the Mooney relaxation rate (MSR).
  • MSR Mooney relaxation rate
  • Glass transition temperature (Tg) Glass transition temperature (Tg) Using a modified conjugated diene-based polymer as a sample, in accordance with ISO 22768: 2006, a differential scanning calorimeter “DSC3200S” manufactured by Mac Science Co. was used. The DSC curve was recorded while the temperature was raised at, and the peak top of the DSC differential curve was taken as the glass transition temperature.
  • the modified conjugated diene polymer was used as a sample and measured by applying the property of adsorbing the modified basic polymer component to a GPC column using silica gel as a filler.
  • the amount of adsorption on the silica column is measured from the difference between the chromatogram measured with the polystyrene column and the chromatogram measured with the silica column of the sample solution containing the sample and the low molecular weight internal standard polystyrene. Asked. Specifically, it is as shown below.
  • sample solution 10 mg of a sample and 5 mg of standard polystyrene were dissolved in 20 mL of THF to prepare a sample solution.
  • GPC measurement conditions using a polystyrene column Using a trade name “HLC-8320GPC” manufactured by Tosoh Corporation, 5 mmol / L of triethylamine-containing THF was used as an eluent, and 10 ⁇ L of a sample solution was injected into the apparatus.
  • a chromatogram was obtained using an RI detector at a temperature of 40 ° C. and a THF flow rate of 0.35 mL / min.
  • As the column three Tosoh product names “TSKgel SuperMultiporeHZ-H” were connected, and the Tosoh product name “TSKguardcolumn SuperMP (HZ) -H” was connected as a guard column.
  • Example 1 Modified conjugated diene polymer (Sample 1)
  • the internal volume is 10 L
  • the ratio (L / D) of the internal height (L) to the diameter (D) is 4.0
  • the inlet is at the bottom
  • the outlet is at the top
  • a tank reactor with a stirrer Two tank pressure vessels having a stirrer and a temperature control jacket were connected to form a polymerization reactor. Moisture was removed in advance, and mixing was performed under the conditions of 1,3-butadiene 22.3 g / min, styrene 12.5 g / min, and n-hexane 214 g / min.
  • n-butyllithium for residual impurity deactivation treatment was added at 0.109 mmol / min, mixed, Continuously fed to the bottom of the eye reactive group.
  • piperidinolithium prepared in advance as a polymerization initiator with 2,2-bis (2-oxolanyl) propane as a polar substance at a rate of 0.0281 g / min (abbreviated as “LA-1” in the table).
  • the mixture solution obtained by the above step (2) is fed to the bottom of the first polymerization reactor which is vigorously mixed with a stirrer at a rate of 0.272 mmol (lithium molar ratio) / min, and the polymerization reaction is continuously continued. I let you.
  • the temperature was controlled so that the temperature of the polymerization solution at the top outlet of the first reactor was 65 ° C.
  • the polymer solution was continuously supplied from the top of the first reactor to the bottom of the second reactor.
  • the temperature was controlled so that the temperature of the polymer at the top outlet of the second reactor was 70 ° C.
  • BHT antioxidant
  • tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine diluted to 2.74 mmol / L as a modifier is added to the polymer solution flowing out from the outlet of the second reactor (in the table, “ A ”) is continuously added at a rate of 0.0359 mmol / min (a n-hexane solution containing 4.8 ppm of water), and the polymer solution to which the modifier is added is mixed by passing through a static mixer. Denatured. At this time, the time until the modifier is added to the polymerization solution flowing out from the outlet of the reactor is 4.7 minutes, the temperature is 65 ° C., the temperature in the polymerization step, and the temperature until the modifier is added.
  • Example 2 Modified conjugated diene polymer (Sample 2)
  • the polymerization initiator was changed from piperidinolithium to hexamethyleneiminolithium (abbreviated as “LA-2” in the table).
  • Other conditions were the same as in [Example 1] to obtain a modified conjugated diene polymer (Sample 2).
  • Example 3 Modified conjugated diene polymer (sample 3) The modifier was changed from tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine to tetrakis (3-triethoxysilylpropyl) -1,3-propanediamine (abbreviated as “B” in the table). Other conditions were the same as in [Example 1], to obtain a modified conjugated diene polymer (Sample 3).
  • Example 4 Modified conjugated diene polymer (sample 4)
  • the polymerization initiator is changed from piperidinolithium to hexanemethyleneiminolithium (abbreviated as “LA-2” in the table), and the modifier is changed from tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine to tetrakis ( Instead of 3-triethoxysilylpropyl) -1,3-propanediamine (abbreviated as “B” in the table).
  • Other conditions were the same as in [Example 1], to obtain a modified conjugated diene polymer (Sample 4).
  • Example 5 Modified conjugated diene polymer (Sample 5) The polymerization initiator addition amount is changed from 0.272 mmol / min to 0.219 mmol / min, the polar substance addition amount is changed from 0.0281 g / min to 0.0230 g / min, and the modifier addition amount is changed from 0.0359 mmol / min to 0.0275 mmol / min. Changed to / min. Other conditions were the same as in [Example 1], to obtain a modified conjugated diene polymer (Sample 5).
  • Example 6 Modified conjugated diene polymer (Sample 6) Polymerization initiator addition amount from 0.272 mmol / min to 0.399 mmol / min, polar substance addition amount from 0.0281 g / min to 0.0427 g / min, modifier addition amount from 0.0359 mmol / min to 0.0501 mmol Changed to / min. Other conditions were the same as in [Example 1], to obtain a modified conjugated diene polymer (Sample 6).
  • Example 7 Modified conjugated diene polymer (Sample 7) An autoclave having an internal volume of 5 L and equipped with a stirrer and a jacket and capable of temperature control was used as a reactor. The reactor was charged with 1670 g of normal hexane, 112 g of styrene, 207 g of 1,3-butadiene, and 0.265 g of 2,2-bis (2-oxolanyl) propane as a polar substance, from which impurities had been previously removed.
  • the modifier was added 2 minutes after the peak temperature was reached.
  • As a polymerization terminator 3.57 mmol of ethanol was added to stop the reaction, and a modified conjugated diene polymer-containing polymer solution was obtained.
  • Example 15 Modified Conjugated Diene Polymer (Sample 11)
  • the molar ratio of piperidinolithium to n-butyllithium was set to 0.35: 0.65 (abbreviated as “LA-4” in the table), and the addition amount of the modifier was 0.0247 mmol / min. Replaced.
  • Other conditions were the same as in [Example 5], to obtain a modified conjugated diene polymer (Sample 11).
  • Example 16 Modified Conjugated Diene Polymer (Sample 12)
  • the polymerization initiator was piperidinolithium 1.5 mmol and normal butyllithium 3.57 mmol (abbreviated as “LA-5” in the table), and the addition amount of the modifier was changed to 0.265 mmol.
  • Other conditions were the same as in [Example 7], to obtain a modified conjugated diene polymer (Sample 12).
  • the “degree of branching” shown in Table 1 is the number of branches estimated from the number of functional groups and the amount added of the modifier, and can also be confirmed from the value of the contraction factor.
  • the “number of SiOR residues” shown in Table 1 is a value obtained by subtracting the number of SiORs reduced by the reaction from the total number of SiORs that one molecule of the modifying agent has.
  • R represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • the above materials were kneaded by the following method to obtain a rubber composition.
  • a closed kneader (with an internal volume of 0.3 L) equipped with a temperature control device, as the first stage kneading, under the conditions of a filling rate of 65% and a rotor rotation speed of 30 to 50 rpm, the raw rubber (samples 1 to 13), A filler (silica, carbon black), a silane coupling agent, process oil, zinc white, and stearic acid were kneaded.
  • the temperature of the closed mixer was controlled, and each rubber composition (compound) was obtained at a discharge temperature of 155 to 160 ° C.
  • the blend obtained above was cooled to room temperature, an anti-aging agent was added, and kneaded again to improve silica dispersion. Also in this case, the discharge temperature of the blend was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
  • sulfur and vulcanization accelerators 1 and 2 were added and kneaded with an open roll set at 70 ° C. Then, it shape
  • the rubber composition before vulcanization and the rubber composition after vulcanization were evaluated. Specifically, the evaluation was performed by the following method. The evaluation results are shown in Table 2.
  • Viscoelastic Parameters and Strain Dispersibility Viscoelastic parameters were measured in a torsion mode using a viscoelastic tester “ARES” manufactured by Rheometrics Scientific. Each measured value was indexed with the result for the rubber composition of Comparative Example 5 as 100. Tan ⁇ measured at 0 ° C. with a frequency of 10 Hz and a strain of 1% was used as an index of wet grip properties. It shows that wet grip property is so favorable that an index
  • the modified conjugated diene copolymer compositions of Examples 8 to 14, 17, and 18 using Samples 1 to 7, 11, and 12 were the samples of Comparative Examples 4 to 6, and 8.
  • the processability when making a vulcanizate was extremely excellent.
  • it when it is used as a vulcanizate, it has an excellent balance between low hysteresis loss and wet skid resistance, good wear resistance, good strain dispersibility, and practically sufficient fracture characteristics. It was confirmed to have.
  • the modified conjugated diene polymer according to the present invention has industrial applicability in fields such as tire treads, automobile interior / exterior products, anti-vibration rubber, belts, footwear, foams, and various industrial products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Tires In General (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

窒素原子を有する変性共役ジエン系重合体であって、 前記窒素原子の含有量が、前記変性共役ジエン系重合体の総量に対して、25質量ppm以上であり、 粘度検出計付きGPC-光散乱測定法による収縮因子(g')が、0.59以下であり、 重量平均分子量が、200,000以上、3,000,000以下である、 変性共役ジエン系重合体。

Description

変性共役ジエン系重合体、その製造方法、ゴム組成物、タイヤ
 本発明は、変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤに関する。
 従来から、自動車に対する低燃費化要求が高まり、自動車用タイヤ、特に地面と接するタイヤトレッドに用いられる材料の改良が求められている。
 近年、転がり抵抗が小さい、すなわち低ヒステリシスロス性を有する材料の開発が求められてきている。
 また、タイヤを軽量化するため、タイヤのトレッド部の厚みを減らす必要があり、さらに耐摩耗性の高い材料も求められている。
 一方で、タイヤトレッド用に用いられる材料は、安全性の観点から、ウェットスキッド抵抗性に優れることと、実用上十分な破壊特性を有していることが要求される。
 上述したような要求に応える材料として、ゴムと、カーボンブラック、シリカ等の補強性充填剤とを含む材料が挙げられる。
 例えば、シリカを含む材料を用いると、低ヒステリシスロス性及びウェットスキッド抵抗性とのバランス向上を図ることができる。また、運動性の高いゴムの分子末端部に、シリカとの親和性又は反応性を有する官能基を導入することによって、材料中におけるシリカの分散性を改良して、さらには、シリカ粒子との結合でゴム分子末端部の運動性を低減して、ヒステリシスロスを低減化する試みがなされている。
 例えば、特許文献1には、グリシジルアミノ基を有する変性剤を重合体活性末端に反応させて得られる変性ジエン系ゴムが提案されている。
 また、特許文献2~4には、アミノ基を含有するアルコキシシラン類を重合体活性末端に反応させて得られる変性ジエン系ゴム、及びこれらとシリカとの組成物が提案されている。
 さらに、特許文献5及び6には、環式アザシラサイクル化合物を重合体活性末端と反応させて官能化したポリマーが提案されている。
 さらにまた、特許文献7には、重合体活性末端と多官能性シラン化合物をカップリング反応させて得られるジエン系ゴムが提案されている。
国際公開第01/23467号パンフレット 特開2005-290355号公報 特開平11-189616号公報 特開2003-171418号公報 特表2008-527150号公報 国際公開第11/129425号パンフレット 国際公開第07/114203号パンフレット
 しかしながら、シリカは、親水性の表面を有しているため、疎水性の表面を有するカーボンブラックよりも共役ジエン系ゴムとの親和性が低いことに起因して、カーボンブラックに比較し、分散性が悪いという欠点を有している。そのため、シリカを含む材料は、シリカとゴム間の結合を付与し、分散性を改良するために、別途シランカップリング剤等を含有させる必要がある。
 また、ゴムの分子末端にシリカとの反応性の高い官能基を導入した材料は、混練工程中にシリカ粒子との反応が進行して、組成物の粘度が上昇することに起因して、練り難くなったり、又は、混練り後にシートにする際に肌荒れが生じたり、シート切れが生じやすくなったりといった、加工性が悪化する傾向がみられるという問題を有している。加えて、このような材料を加硫物としたとき、特にシリカ等の無機充填剤を含む加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、及び耐摩耗性が十分ではない、という問題を有している。
 さらに、タイヤの用途においては、高速での連続走行時の操縦安定性が求められるため、高温環境下に曝される場合でも、優れた操縦安定性を示すことが重要であるが、従来公知の材料においては、未だ十分な破壊特性が得られていないという問題を有している。
 そこで、本発明は、加硫物とする際の加工性に極めて優れ、加硫物としたときにおける低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、耐摩耗性に優れ、50℃における良好なひずみ分散性を有し、繰り返しひずみ強度に優れ、実用上十分な破壊特性を有する、変性共役ジエン系重合体を提供することを目的とする。
 本発明者らは、上記従来技術の課題を解決するために鋭意研究検討した結果、重量平均分子量が所定範囲である変性共役ジエン系重合体であって、窒素原子を所定含有量以上であり、収縮因子(g’)が所定値未満である、変性共役ジエン系重合体が、加硫物とする際の加工性に極めて優れ、加硫物としたときにおける低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、高い耐摩耗性と50℃における良好なひずみ分散性を有し、繰返しひずみ強度に優れ、実用上十分な破壊特性を有することを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下の通りである。
〔1〕
 窒素原子を有する変性共役ジエン系重合体であって、
 前記窒素原子の含有量が、前記変性共役ジエン系重合体の総量に対して、25質量ppm以上であり、
 粘度検出計付きGPC-光散乱測定法による収縮因子(g’)が、0.59以下であり、
 重量平均分子量が、200,000以上、3,000,000以下である、
変性共役ジエン系重合体。
〔2〕
 110℃において測定されるムーニー緩和率が、0.45以下である、前記〔1〕に記載の変性共役ジエン系重合体。
〔3〕
 共役ジエン系重合体の総量に対して、変性率が75質量%以上である、前記〔1〕又は〔2〕に記載の変性共役ジエン系重合体。
〔4〕
 複数の共役ジエン系重合体鎖が変性剤に結合しており、
 少なくとも1つの共役ジエン系重合体鎖に窒素原子を有し、珪素原子を変性剤残基中に有する、前記〔1〕乃至〔3〕のいずれか一に記載の変性共役ジエン系重合体。
〔5〕
 分岐度が8以上である、前記〔1〕乃至〔4〕のいずれか一に記載の変性共役ジエン系重合体。
〔6〕
 下記一般式(I)で表される、前記〔1〕乃至〔5〕のいずれか一に記載の変性共役ジエン系重合体。
 
(式(I)中、Dは、窒素原子を有する共役ジエン系重合体鎖を示し、R~Rは、各々独立に、単結合又は炭素数1~20のアルキレン基を示し、R及びRは、各々独立に、炭素数1~20のアルキル基を示し、R、R、及びRは、各々独立に、水素原子又は炭素数1~20のアルキル基を示し、R及びR10は、各々独立に、炭素数1~20のアルキレン基を示し、R11は、水素原子又は炭素数1~20のアルキル基を示す。m及びxは、x≦mである限り各々独立に、1~3の整数を示し、pは、1又は2を示し、yは、1~3の整数を示し、y≦(p+1)であり、zは、1又は2の整数を示す。それぞれ複数存在する場合のD、R~R11、m、p、x、y、及びzは、x≦m及びy≦(p+1)を満たす限り各々独立しており、同じであっても異なっていてもよい。iは、0~6の整数を示し、jは、0~6の整数を示し、kは、0~6の整数を示し、(i+j+k)は、4~10の整数であり、((x×i)+(y×j)+(z×k))は、8~30の整数である。Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を示す。)
〔7〕
 前記式(I)において、Aは、下記一般式(II)~(V)のいずれかで表される、前記〔6〕に記載の変性共役ジエン系重合体。
Figure JPOXMLDOC01-appb-C000017
 
(式(II)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
Figure JPOXMLDOC01-appb-C000018
 
(式(III)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、Bは、炭素数1~20のアルキル基を示し、aは、1~10の整数を示す。それぞれ複数存在する場合のB及びBは、各々独立している。)
Figure JPOXMLDOC01-appb-C000019
 
(式(IV)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
Figure JPOXMLDOC01-appb-C000020
 
(式(V)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
〔8〕
 前記〔1〕乃至〔7〕のいずれか一に記載の変性共役ジエン系重合体の製造方法であって、分子内に少なくとも1個の窒素原子を有する有機リチウム化合物の存在下、少なくとも共役ジエン化合物を重合するか、又は、有機リチウム化合物の存在下、少なくとも共役ジエン化合物と分子中に少なくとも1個の窒素原子を有する共重合可能な単量体とを共重合する、窒素含有共役ジエン系重合体を得る重合工程と、
 前記窒素含有共役ジエン系重合体を、1分子中に少なくとも3個の珪素原子及び少なくとも1個の窒素原子を有し、反応活性点が8個以上ある変性剤により変性する変性工程と、
を、有する、
 変性共役ジエン系重合体の製造方法。
〔9〕
 前記変性剤が、珪素原子に結合したアルコキシ基を4個以上有し、3級アミノ基を有する変性剤である、前記〔8〕に記載の変性共役ジエン系重合体の製造方法。
〔10〕
 反応工程における変性剤が、下記一般式(VI)で表される化合物である、前記〔9〕に記載の変性共役ジエン系重合体の製造方法。
Figure JPOXMLDOC01-appb-C000021
 
(式(VI)中、R12~R14は、各々独立に、単結合又は炭素数1~20のアルキレン基を示し、R15~R18、及びR20は、各々独立に、炭素数1~20のアルキル基を示し、R19及びR22は、各々独立に、炭素数1~20のアルキレン基を示し、R21は、炭素数1~20のアルキル基又はトリアルキルシリル基を示し、mは、1~3の整数を示し、pは、1又は2を示す。それぞれ複数存在する場合のR12~R22、m、及びpは、各々独立しており、同じであっても異なっていてもよい。iは、0~6の整数を示し、jは、0~6の整数を示し、kは、0~6の整数を示し、(i+j+k)は、4~10の整数である。Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、活性水素を有しない有機基を表す。)
〔11〕
 前記式(VI)において、Aは、下記一般式(II)~(V)のいずれかで表される、前記〔10〕に記載の変性共役ジエン系重合体の製造方法。
Figure JPOXMLDOC01-appb-C000022
 
(式(II)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
Figure JPOXMLDOC01-appb-C000023
 
(式(III)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、Bは、炭素数1~20のアルキル基を示し、aは、1~10の整数を示す。それぞれ複数存在する場合のB及びBは、各々独立している。)
Figure JPOXMLDOC01-appb-C000024
 
(式(IV)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
Figure JPOXMLDOC01-appb-C000025
 
(式(V)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
〔12〕
 前記分子内に少なくとも1個の窒素原子を有する有機リチウム化合物は、下記一般式(1)~(5)のいずれかで表される有機リチウム化合物を含む、前記〔8〕乃至〔11〕のいずれか一に記載の変性共役ジエン系重合体の製造方法。
Figure JPOXMLDOC01-appb-C000026
 
(式(1)中、R10及びR11は、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、炭素数6~20のアラルキル基、及び保護基からなる群より選ばれる少なくとも1種を示し、R10及びR11は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合のR10及びR11は、炭素数5~12のアルキル基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。)
Figure JPOXMLDOC01-appb-C000027
 
(式(2)中、R12及びR13は、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、炭素数6~20のアラルキル基、及び保護基からなる群より選ばれる少なくとも1種を示し、R12及びR13は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合のR12及びR13は、炭素数5~12のアルキル基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。R14は、炭素数1~30の脂肪族または芳香族置換基を有してもよいアルキレン基、又は炭素数1~20の共役ジエン系重合体を示す。)
Figure JPOXMLDOC01-appb-C000028
 
(式(3)中、R12及びR13は、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、炭素数6~20のアラルキル基、及び保護基からなる群より選ばれる少なくとも1種を示し、R12及びR13は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合のR12及びR13は、炭素数5~12のアルキル基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。R19は、炭素数1~30の脂肪族または芳香族置換基を有してもよい炭化水素基を示す。R20は炭素数1~12の置換アミノ基を有してもよい炭化水素基、nは1~10の整数を示す。)
Figure JPOXMLDOC01-appb-C000029
 
(式(4)中、R15及びR16は、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、及び炭素数6~20のアリール基、保護基からなる群より選ばれる少なくとも1種を示し、R15及びR16は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合のR15及びR16は、炭素数5~12のアルキル基を示し、その一部分に分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。)
Figure JPOXMLDOC01-appb-C000030
 
(式(5)中、R17は、炭素数が2~10の炭化水素基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。R18は、炭素数1~12のアルキル基、保護基を示し、その一部分に分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。)
〔13〕
 前記〔1〕乃至〔7〕のいずれか一に記載の変性共役ジエン系重合体100質量部と、
 伸展油1~60質量部と、
を、含有する、油展変性共役ジエン系重合体。
〔14〕
 ゴム成分と、当該ゴム成分100質量部に対して5.0質量部以上150質量部の充填剤と、を含み、
 前記ゴム成分は、当該ゴム成分の総量に対して、前記〔1〕乃至〔7〕のいずれか一に記載の変性共役ジエン系重合体を、10質量%以上含む、ゴム組成物。
〔15〕
 前記〔14〕に記載のゴム組成物を含有する、タイヤ。
 本発明によれば、加硫物とする際、極めて優れた加工性を有し、加硫物としたときに特に優れた低ヒステリシスロス性とウェットスキッド抵抗性とのバランスを実現でき、耐摩耗性に優れ、50℃における良好なひずみ分散性を有し、繰返しひずみ強度に優れ、実用上十分な破壊特性を有する、変性共役ジエン系重合体が得られる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について、詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
〔変性共役ジエン系重合体〕
 本実施形態の変性共役ジエン系重合体は、
 窒素原子を有する変性共役ジエン系重合体であって、
 前記窒素原子の含有量が、前記変性共役ジエン系重合体の総量に対して、25質量ppm以上であり、
 粘度検出計付きGPC-光散乱測定法による収縮因子(g’)が、0.59以下であり、
 重量平均分子量が、200,000以上、3,000,000以下である、
変性共役ジエン系重合体である。
 本実施形態の変性共役ジエン系重合体は、加工性、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、耐摩耗性、及び破壊特性の観点から、共役ジエン系重合体の総量に対して変性率が75質量%以上であることが好ましい。
 変性率は、共役ジエン系重合体の総量に対する窒素含有官能基を有する共役ジエン系重合体、例えば、重合開始末端又は主鎖に窒素含有官能基を有する共役ジエン系重合体及び/又は窒素含有変性剤を終末端に反応し、変性されている共役ジエン系重合体の質量比率である。
 前記変性率はより好ましくは78質量%以上、さらに好ましくは80質量%以上、さらにより好ましくは85質量%以上、よりさらに好ましくは88質量%以上、特に好ましくは90質量%以上である。
 変性率は、官能基含有の変性成分と非変性成分を分離できるクロマトグラフィーによって測定することができる。
 このクロマトグラフィーを用いた方法としては、特定官能基を吸着するシリカ等の極性物質を充填剤としたゲル浸透クロマトグラフィー用のカラムを使用し、非吸着成分の内部標準を比較に用いて定量する方法が挙げられる。
 より具体的には、変性率は、試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系ゲルカラムで測定したクロマトグラムとシリカ系カラムで測定したクロマトグラムとの差分から、シリカカラムへの吸着量を測定することにより求めることができる。さらに具体的には、変性率は、実施例に記載の方法により測定することができる。
 本実施形態の変性共役ジエン系重合体において変性率は、変性剤の添加量及び反応方法を調整するによって制御することができ、これにより75質量%以上に制御することができる。例えば、重合開始剤に後述する分子内に少なくとも1つ窒素原子を有する有機リチウム化合物を用いて重合する方法、分子内に少なくとも1つ窒素原子を有する単量体を共重合する方法、後述する構造式の変性剤を用いる方法を適宜実施したり、あるいは組み合わせて実施したりし、連鎖移動反応が過剰に促進されないように重合条件を制御することによって、上記変性率とすることができる。
 本実施形態の変性共役ジエン系重合体は、共役ジエン系重合体の総量に対して、窒素原子の含有量が25質量ppm以上である。
 窒素原子の含有量(以下、「窒素含有量」ともいう。)は、変性共役ジエン系重合体の窒素含有官能基、例えば、開始末端、主鎖中、終末端における窒素含有官能基の窒素原子総量である。
 変性共役ジエン系重合体の窒素含有量は、加工性、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、耐摩耗性、及び破壊特性の観点から、当該変性共役ジエン系重合体の総量に対して、25質量ppm以上であるものとし、40質量ppm以上であることが好ましく、50質量ppm以上であることがより好ましく、60質量ppm以上であることがさらに好ましい。また、加工性の観点から、500質量ppm以下であることが好ましく、400質量ppm以下であることがより好ましく、300質量ppm以下であることがさらに好ましく、250質量ppm以下であることがさらにより好ましい。
 窒素原子の含有量は、酸化燃焼-化学発光法(JIS-2609:原油及び原油製品-窒素分試験方法)から測定することができる。
 窒素原子の含有量は、より具体的に、後述する実施例に記載の方法により測定することができる。
 前記窒素含有量は、変性剤の添加量及び反応方法を調整することによって制御することができる傾向にあり、この方法により、25質量ppm以上とすることができる。例えば、重合開始剤に後述する分子内に少なくとも1つ窒素原子を有する有機リチウム化合物を用いて重合する方法、分子内に少なくとも1つ窒素原子を有する単量体を共重合する方法により得られる、窒素原子を有する共役ジエン系重合体に、分子内に少なくとも1つ窒素原子を有する変性剤を反応させる方法が挙げられる。
 また、窒素含有量が500質量ppm以下である変性共役ジエン系重合体を得るための方法としては、例えば、共役ジエン系重合体鎖の分子量が小さすぎないように制御する方法が挙げられる。
 本実施形態の変性共役ジエン系重合体は、加工性、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、耐摩耗性、及び破壊特性の観点から、粘度検出器付きGPC-光散乱法測定により求められる収縮因子(g’)が、0.59以下である。当該収縮因子(g’)が0.59以下であることは、本実施形態の変性共役ジエン系重合体が、実質的に8分岐以上であることを意味する。
 一般的に、分岐を有する重合体は、同一の絶対分子量である直鎖状の重合体と比較した場合に、分子の大きさが小さくなる傾向にある。本実施形態の変性共役ジエン系重合体における収縮因子(g’)は、想定上同一の絶対分子量である直鎖状重合体に対する、分子の占める大きさの比率の指標である。すなわち、重合体の分岐度が大きくなれば、収縮因子(g’)は小さくなる傾向にある。
 本実施形態では、分子の大きさの指標として固有粘度を用い、直鎖状の重合体は、固有粘度[η]=-3.883M0.771の関係式に従うものとする(Mは絶対分子量である)。
 変性共役ジエン系重合体の各絶対分子量のときの収縮因子(g’)を算出し、絶対分子量が100×10~200×10のときの収縮因子(g’)の平均値を、その変性共役ジエン系重合体の収縮因子(g’)とする。ここで、「分岐」とは、1つの重合体に対して、他の重合体とが直接的又は間接的に結合することにより形成されるものである。また、「分岐度」は、1の分岐に対して、直接的又は間接的に互いに結合している重合体の数である。例えば、後述する変性剤残基を介して間接的に、後述の5つの共役ジエン系重合体鎖が互いに結合している場合には、分岐度は5である。
 収縮因子(g’)は、0.59以下であり、好ましくは0.57以下であり、より好ましくは0.55以下であり、さらに好ましくは0.53以下である。
 また、収縮因子(g’)の下限は特に限定されず、検出限界値以下であってもよいが、好ましくは0.30以上であり、より好ましくは0.33以上であり、さらに好ましくは0.35以上であり、さらにより好ましくは0.45以上である。
 収縮因子(g’)がこの範囲である変性共役ジエン系重合体は、加硫物とする際の加工性に優れる傾向にある。
 収縮因子(g’)は分岐度に依存する傾向にあるため、例えば、分岐度を指標として収縮因子(g’)を制御することができる。
 具体的には、分岐度が8である変性共役ジエン系重合体とした場合には、その収縮因子(g’)は0.45以上0.59以下となる傾向にある。
 収縮因子(g’)は、後述する実施例に記載の方法により測定することができる。
 本実施形態の変性共役ジエン系重合体は、加工性、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、耐摩耗性、及び破壊特性の観点から、重量平均分子量が、20×10以上300×10以下である。
 重量平均分子量が20×10以上であることで、加硫物としたときにおける低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性に優れたものとなる。
 また、重量平均分子量が300×10以下であることで、加硫物とする際の加工性及び充填剤の分散性に優れ、実用上十分な破壊特性が得られる。
 変性共役ジエン系重合体の重量平均分子量は、好ましくは50×10以上であり、より好ましくは64×10以上であり、さらに好ましくは80×10以上である。また、上記重量平均分子量は、好ましくは250×10以下であり、より好ましくは180×10以下であり、さらに好ましくは150×10以下である。
 本実施形態の変性共役ジエン系重合体及び後述する共役ジエン系重合体の重量平均分子量は、GPC測定装置を使用して、RI検出器を用いてクロマトグラムを測定し、標準ポリスチレンを使用して得られる検量線に基づいて測定することができる。具体的には、後述する実施例に記載の方法により測定することができる。
 変性共役ジエン系重合体の重量平均分子量は、重合開始剤使用量と単量体使用量の比率によって制御される共役ジエン系重合体鎖の分子量、及び変性剤の種類ならびに使用量を調整することによって制御することができる。
 本実施形態の変性共役ジエン系重合体の重合体鎖を構成する単量体は、共役ジエン化合物又は共役ジエン化合物及び共重合可能な他の単量体から構成される。
 共役ジエン化合物としては、炭素数4~12の共役ジエンが好ましく、以下に限定されるものではないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、及び1,3-ヘプタジエンが挙げられる。これらの中でも、工業的入手の容易さの観点から、1,3-ブタジエン、及びイソプレンが好ましい。
 これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 共重合可能な他の単量体としては、例えば、ビニル芳香族化合物が好ましく、スチレンがより好ましい。
 本実施形態の変性共役ジエン系重合体は、珪素原子を含有することが好ましい。
 変性共役ジエン系重合体中の珪素原子を測定する方法としては、JIS K 0101 44.3.1に準拠して、紫外可視分光光度計を用いて測定し、モリブデン青吸光光度法により定量する方法が挙げられる。
 珪素原子を含有することにより、組成物とする際に添加する充填剤、例えばシリカとの相互作用が強くなる傾向にある。本実施形態の変性共役ジエン系重合体における珪素原子含有量は10ppm以上が好ましく、12ppm以上がより好ましく、15ppm以上がさらに好ましい。
 本実施形態の変性共役ジエン系重合体は、好ましくは110℃において測定されるムーニー緩和率が(以下、単に「ムーニー緩和率」又は「MSR」ともいう。)、0.45以下であることが好ましい。
 ムーニー緩和率は、該変性共役ジエン系共重合体の分子の絡みあいの指標となり、低いほど分子の絡み合いが多いことを意味し、分岐構造及び分子量の指標となる。
 本実施形態の変性共役ジエン系重合体の110℃におけるムーニー緩和率は、0.45以下であることが好ましく、0.42以下であることがより好ましく、0.40以下であることがさらに好ましく、0.38以下であることがさらにより好ましく、0.35以下であることがよりさらに好ましい。また、ムーニー緩和率の下限は特に限定されず、検出限界値以下であってもよいが、0.05以上であることが好ましい。
 ムーニー緩和率が0.45以下であることにより、変性共役ジエン系重合体がより良好な加工性を示す。
 変性共役ジエン系重合体のMSRは、その変性共役ジエン系重合体の分子量及び分岐数の指標となる。
 例えば、上記MSRが減少するにつれて、変性共役ジエン系重合体の分子量及び分岐数(例えば、星形高分子の分岐数(「星形高分子の腕数」ともいう。))が増加する傾向にある。
 後述するムーニー粘度が等しい変性共役ジエン系重合体を比較する場合には、変性共役ジエン系重合体の分岐が多いほどMSRが小さくなるため、この場合のMSRは、分岐度の指標として用いることができる。
 MSRは、ムーニー粘度計を用いて、次のように測定することができる。
 ムーニー緩和率の測定温度は、110℃とする。まず、試料を1分間予熱した後、2rpmでローターを回転させ、その4分後のトルクを測定し、測定した値をムーニー粘度(ML(1+4))とする。
 その後、即座にローターの回転を停止させ、停止後1.6秒間~5秒間の0.1秒ごとのトルクをムーニー単位で記録し、トルクと時間(秒)を両対数プロットした際の直線の傾きを求め、その絶対値をムーニー緩和率(MSR)とする。
 より具体的には、後述する実施例に記載の方法により測定することができる。
 ムーニー緩和率を0.45以下とするためには、重量平均分子量を高く、高分子量成分を多くするため分子量分布を広げ、分岐度を高くするように分子構造を制御する。
 例えば、変性共役ジエン系重合体の重量平均分子量を10×10以上かつ分岐度を8以上にすれば、ムーニー緩和率が0.45以下となる傾向にある。また、ムーニー緩和率を0.40以下とするためには、例えば、変性共役ジエン系重合体の重量平均分子量を30×10以上かつ分岐度を8以上にすれば、0.40以下となる傾向にある。さらに、分岐度は、例えば、変性剤の官能基数、変性剤の添加量、又はメタレーションの進行度、によって制御することができる。
 本実施形態の変性共役ジエン系重合体は、好ましくは複数の共役ジエン系重合体鎖が変性剤に結合する構造を有しており、少なくとも1つの共役ジエン系重合体鎖に窒素原子を有し、珪素原子を変性剤残基中に有する変性共役ジエン系重合体である。
 なお、本明細書中、「共役ジエン系重合体鎖が変性剤に結合」とは、重合体の製造工程において、重合体鎖がいわゆるカップリング剤(変性剤)に結合してできた化合物の状態を示しているので、重合体中での“変性剤”(“変性剤残基”とも表記する)の構造は、反応前の変性剤から脱離基が無くなって、重合体鎖が結合しており、初期の変性剤の構造とは異なっている。すなわち、変性共役ジエン系重合体に含まれる変性剤(残基)は、共役ジエン系重合体鎖に結合される、変性共役ジエン系重合体の構成単位であり、例えば、後述する共役ジエン系重合体と変性剤とを反応させることによって生じる、変性剤由来の構造単位である。
 変性剤中に窒素原子及び珪素原子を含有する変性共役ジエン系重合体は窒素原子と珪素原子双方を含有することで、一方のみを含有するものと比較し、組成物にする際に添加する充填剤、例えばシリカとの相互作用が更に強くなる傾向がある。
<共役ジエン系重合体鎖と星型分岐構造>
 前記共役ジエン系重合体鎖は、変性共役ジエン系重合体の構成単位であり、例えば、後述する共役ジエン系重合体と変性剤とを反応させることによって生じる、共役ジエン系重合体由来の構造単位である。
 本実施形態の変性共役ジエン系重合体は、複数の共役ジエン系重合体鎖が後述する1の変性剤に結合している星型分岐構造を有していることが好ましい。
 複数の共役ジエン系重合体鎖が1の変性剤に結合した星型分岐構造を有することで、加硫物とする際の加工性に優れる傾向にある。
<窒素含有共役ジエン系重合体鎖>
 共役ジエン系重合体鎖は、少なくとも1つの共役ジエン系重合体鎖に窒素原子を有していることが好ましい。
 例えば、窒素原子を含む官能基をいずれかの位置に有する共役ジエン系重合体鎖であり、その官能基の位置としては、末端であっても、主鎖の途中であってもよい。窒素原子を有している共役ジエン系重合体鎖は、例えば、重合開始剤に後述する分子内に少なくとも1つ窒素原子を有する有機リチウム化合物を用いて重合する方法、分子内に少なくとも1つ窒素原子を有する単量体を共重合する方法により得られる。
<珪素原子を有する変性剤残基>
 本実施形態の変性共役ジエン系重合体は、変性剤残基中に、珪素原子を有していることが好ましい。
 例えば、後述する変性剤に、珪素原子を有していることによる、変性剤由来の構造単位を有する変性共役ジエン系重合体である。
 本実施形態の変性共役ジエン系重合体は、好ましくは分岐度が8以上の変性共役ジエン系重合体である。
 分岐度の上限は特に限定されないが、18以下であることが好ましい。分岐度が8以上である変性共役ジエン系重合体は、加硫物とする際の加工性に更に優れる。
 また、変性共役ジエン系重合体は、1以上の変性剤残基と、当該変性剤残基に対して結合する共役ジエン系重合体鎖とを有し、さらに、上記分岐が、1の当該変性剤残基に対して8以上の当該共役ジエン系重合体鎖が結合している分岐を含むことがより好ましい。分岐度が8以上になるように変性共役ジエン系重合体の構造を特定することにより、より確実に収縮因子(g’)を0.59以下にすることができる。
 なお、「分岐度が8以上」には、主鎖に側鎖が付いて分岐度が8以上になっている状態と、1の変性剤残基に対して8以上の共役ジエン系重合体鎖が結合している状態(星型、変性剤残基に放射状に重合体鎖が結合している状態)が含まれる。
 また、本実施形態の変性共役ジエン系重合体は、いずれかの位置に珪素原子を有することが好ましい。
 珪素原子は、珪素原子を含む官能基として共役ジエン系重合体鎖の末端もしくは主鎖の途中に結合しているか、又は変性剤残基に含むものが好ましい。この変性共役ジエン系重合体が有する少なくとも1の珪素原子が、炭素数1~20のアルコキシシリル基又はシラノール基を構成することがより好ましい。これにより、加硫物とする際に添加する充填剤、例えば、シリカとの相互作用が強くなる傾向にある。また、空気と反応してハロゲン化水素を発生し得るという観点から、変性共役ジエン系重合体は、ハロゲンを有していないことが好ましい。
 前記8以上の共役ジエン系重合体鎖は、少なくともその1つの末端が、それぞれ変性剤残基が有する珪素原子と結合していることが好ましい。これによって、本実施形態の効果がより顕著となる傾向にある。この場合、複数の共役ジエン系重合体鎖の末端が、1の珪素原子と結合していてもよい。また、共役ジエン系重合体鎖の末端と炭素数1~20のアルコキシ基又は水酸基とが、一つの珪素原子に結合し、その結果として、その1つの珪素原子が炭素数1~20のアルコキシシリル基又はシラノール基を構成していてもよい。空気又は湿気と反応してハロゲン化水素を発生し得るという観点から、変性剤残基は、ハロゲンを有していないことが好ましい。
 本実施形態の変性共役ジエン系重合体又は後述する共役ジエン系重合体は、不活性溶剤中でさらに水素化することによって、二重結合の全部又は一部を飽和炭化水素に変換したものであってもよい。その場合、耐熱性、耐候性が向上し、高温で加工する場合の製品の劣化を防止することができ、ゴムとしての運動性能が向上する傾向にある。その結果、自動車用途等種々の用途で一層優れた性能を発揮する。より具体的には、共役ジエン化合物に基づく不飽和二重結合の水素化率は、目的に応じて任意に選択でき、特に限定されない。加硫物として用いる場合には、共役ジエン部の二重結合が部分的に残存していることが好ましい。かかる観点から、共役ジエン系重合体中の共役ジエン部の水添率は3.0%以上70%以下であることが好ましく、5.0以上65%以下であることがより好ましく、10%以上60%以下であることがさらに好ましい。特に、ビニル基を選択的に水素化することで、耐熱性及び運動性能が向上する傾向にある。水素化率は、核磁気共鳴装置(NMR)により求めることができる。
 本実施形態の変性共役ジエン系共重合体は、伸展油を加えた油展変性共役ジエン系重合体とすることができる。
 本実施形態の油展変性共役ジエン系重合体は、上述した変性共役ジエン系重合体100質量部に対し、伸展油1~60質量部を含有することが好ましく、より好ましくは5~50質量部であり、さらに好ましくは10~37.5質量部である。
 上記含有量とすることにより、重合体溶液の粘度が下がり、系内の圧力の急激な上昇を防止することができる等、生産性改良の効果が得られる。
 本実施形態の変性共役ジエン系共重合体は、非油展であっても、油展であっても、ゴム加硫物とする際の加工性と加硫物としたときにおける耐摩耗性との観点から、100℃で測定されるムーニー粘度が、20以上100以下であることが好ましく、30以上90以下であることがより好ましい。
 ムーニー粘度は、後述する実施例に記載の方法により測定することができる。
 本実施形態の変性共役ジエン系重合体は、数平均分子量(Mn)に対する重量平均分子量(Mw)の比で表される分子量分布(Mw/Mn)が、1.1以上3.0以下であることが好ましい。この範囲の分子量分布である変性共役ジエン系重合体は、加硫物とする際の加工性により優れる傾向にあり、加硫物としたときにおける摩耗性により優れる傾向にある。分子量分布(Mw/Mn)は、より好ましくは1.5以上2.5以下である。
 変性共役ジエン系重合体及び後述する共役ジエン系重合体の数平均分子量、重量平均分子量、分子量分布は、後述する実施例に記載の方法により測定することができる。
 本実施形態の変性共役ジエン系重合体は、好ましくは、下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000031
 
 式(I)中、Dは、窒素原子を有する共役ジエン系重合体鎖を示し、該ジエン系重合体鎖の重量平均分子量は、10×10~100×10であることが好ましい。R~Rは、各々独立に、単結合又は炭素数1~20のアルキレン基を示し、R及びRは、各々独立に、炭素数1~20のアルキル基を示し、R、R、及びRは、各々独立に、水素原子又は炭素数1~20のアルキル基を示し、R及びR10は、各々独立に、炭素数1~20のアルキレン基を示し、R11は、水素原子又は炭素数1~20のアルキル基を示す。m及びxは、1~3の整数を示し、x≦mであり、pは、1又は2を示し、yは1~3の整数を示し、y≦(p+1)であり、zは、1又は2の整数を示す。それぞれ複数存在する場合のD、R~R11、m、p、x、y、及びzは、各々独立しており、同じであっても異なっていてもよい。iは、0~6の整数を示し、jは0~6の整数を示し、kは0~6の整数を示し、(i+j+k)は4~10の整数であり、((x×i)+(y×j)+(z×k))は、8~30の整数である。Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を示す。Aが示す炭化水素基とは、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を含む。上記活性水素を有しない有機基は、共役ジエン系重合体が有する活性末端を、不活性化させない有機基である。活性水素を有しない有機基としては、例えば、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH)、スルフヒドリル基(-SH)等の活性水素を有する官能基、を有しない有機基である。上記活性水素を有しない有機基は、当該活性水素を有する官能基を保護基で置換することにより不活性化したものを含む。なお、保護基としては好ましくはアルキル置換シリル基である。
 式(I)で表される変性共役ジエン系重合体は、本実施形態の効果である、加硫物とする際の加工性により優れる傾向にあり、加硫物としたときにおける低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性により特に優れる傾向にある。
 本実施形態の変性共役ジエン系重合体において、好ましくは、式(I)において、Aは、下記一般式(II)~(V)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000032
 
 式(II)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。
Figure JPOXMLDOC01-appb-C000033
 
 式(III)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、Bは、炭素数1~20のアルキル基を示し、aは、1~10の整数を示す。それぞれ複数存在する場合のB及びBは、各々独立している。
Figure JPOXMLDOC01-appb-C000034
 
 式(IV)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。
Figure JPOXMLDOC01-appb-C000035
 
 式(V)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。
 複数存在する場合のBは、各々独立している。Aが式(II)~(V)のいずれかで表されることにより、本実施形態の効果である、加硫物とする際の加工性により優れる傾向にあり、加硫物としたときにおける低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性により優れる傾向にある。また、実用上入手が容易となる傾向にある。
〔変性共役ジエン系重合体の製造方法〕
 本実施形態の変性共役ジエン系共重合体の製造方法は、
 分子内に少なくとも1個の窒素原子を有する有機リチウム化合物の存在下、少なくとも共役ジエン化合物を重合するか、又は、有機リチウム化合物の存在下、少なくとも共役ジエン化合物と分子中に少なくとも1個の窒素原子を有する共重合可能な単量体とを共重合する、窒素含有共役ジエン系重合体を得る重合工程と、前記窒素含有共役ジエン系重合体を、1分子中に少なくとも3個の珪素原子及び少なくとも1個の窒素原子を有し、反応活性点が8個以上ある変性剤により、変性する変性工程と、を有する。
(重合工程)
 本実施形態の変性共役ジエン系重合体の製造方法における重合工程は、分子内に少なくとも1個の窒素原子を有する有機リチウム化合物の存在下、少なくとも共役ジエン化合物を重合するか、又は、有機リチウム化合物の存在下、少なくとも共役ジエン化合物と分子中に少なくとも1個の窒素原子を有する共重合可能な単量体とを共重合する、窒素含有共役ジエン系重合体を得る重合工程である。
 重合工程は、リビングアニオン重合反応による成長反応による重合が好ましく、これにより、活性末端を有する共役ジエン系重合体を得ることができ、高変性率の変性ジエン系重合体を得ることができる傾向にある。
<共役ジエン系重合体>
 重合工程で製造する共役ジエン系重合体は、単量体として、少なくとも共役ジエン化合物を重合して得られ、必要に応じて共役ジエン化合物及び共重合可能な他の単量体を共重合して得られる。
 共役ジエン化合物としては、重合可能な共役ジエン化合物であれば特に限定されないが、1分子当り4~12の炭素原子を含む共役ジエン化合物が好ましく、より好ましくは4~8の炭素原子を含む共役ジエン化合物である。このような共役ジエン化合物としては、以下のものに限定されないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、及び1,3-ヘプタジエンが挙げられる。
 これらの中でも、工業的入手の容易さの観点から、1,3-ブタジエン、及びイソプレンが好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 共重合可能な他の単量体としては、共役ジエン化合物と共重合可能な単量体であれば特に限定されないが、ビニル置換芳香族化合物が好ましい。
 モノビニル芳香族化合物としては、以下のものに限定されないが、例えば、スチレン、p-メチルスチレン、α-メチルスチレン、ビニルエチルベンゼン、ビニルキシレン、ビニルナフタレン、及びジフェニルエチレンが挙げられる。これらの中でも、工業的入手の容易さの観点から、スチレンが好ましい。
 これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 共役ジエン化合物及び/又はビニル置換芳香族化合物中に、アレン類、アセチレン類等が不純物として含有されていると、後述する重合反応工程の反応を阻害するおそれがある。そのため、これらの不純物の含有量濃度(質量)の合計は、200ppm以下であることが好ましく、100ppm以下であることがより好ましく、50ppm以下であることがさらに好ましい。
 アレン類としては、例えば、プロパジエン、及び1,2-ブタジエンが挙げられる。アセチレン類としては、例えば、エチルアセチレン、及びビニルアセチレンが挙げられる。
 共役ジエン系重合体は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。共役ジエン系重合体をゴム状重合体とするためには、共役ジエン系重合体の単量体全体に対して、共役ジエン化合物を40質量%以上用いることが好ましく、55質量%以上用いることがより好ましい。
 ランダム共重合体としては、以下ものに限定されないが、例えば、ブタジエン-イソプレンランダム共重合体等の2種以上の共役ジエン化合物からなるランダム共重合体、ブタジエン-スチレンランダム共重合体、イソプレン-スチレンランダム共重合体、ブタジエン-イソプレン-スチレンランダム共重合体等の、各種共役ジエンとビニル置換芳香族化合物とからなるランダム共重合体が挙げられる。共重合体鎖中の各単量体の組成分布としては、特に限定されず、例えば、統計的ランダムな組成に近い完全ランダム共重合体、組成がテーパー状に分布しているテーパー(勾配)ランダム共重合体が挙げられる。共役ジエンの結合様式、すなわち1,4-結合や1,2-結合等の組成は、均一であってもよいし、分布があってもよい。
 ブロック共重合体としては、以下のものに限定されないが、例えば、ブロックが2個からなる2型ブロック共重合体(ジブロック)、3個からなる3型ブロック共重合体(トリブロック)、4個からなる4型ブロック共重合体(テトラブロック)が挙げられる。1つのブロックを構成する重合体としては、1つの種類の単量体からなる重合体であっても、2種以上の単量体からなる共重合体であってもよい。例えば、1,3-ブタジエンからなる重合体ブロックを「B」で表し、1,3-ブタジエンとイソプレンの共重合体を「B/I」で表し、1,3-ブタジエンとスチレンの共重合体を「B/S」で表し、スチレンからなる重合体ブロックを「S」で表すと、B-B/I2型ブロック共重合体、B-B/S2型ブロック共重合体、S-B2型ブロック共重合体、B-B/S-S3型ブロック共重合体、S-B-S3型ブロック共重合体、S-B-S-B4型ブロック共重合体等で表される。
 上記式において、各ブロックの境界は必ずしも明瞭に区別される必要はない。また、1つの重合体ブロックが2種類の単量体A及びBからなる共重合体である場合、ブロック中のA及びBは均一に分布していても、又はテーパー状に分布していてもよい。
<重合開始剤>
 重合工程においては、所定の重合開始剤を用いる。
 重合開始剤には、上記のように、有機リチウム化合物が挙げられ、好ましくは、分子内に少なくとも1個の窒素原子を有する有機リチウム化合物を用いる。
 有機リチウム化合物としては、有機モノリチウム化合物が挙げられ、他の重合開始剤を併用してもよい。
 有機モノリチウム化合物としては、以下のものに限定されないが、例えば、低分子化合物、可溶化したオリゴマーの有機モノリチウム化合物が挙げられる。また、有機モノリチウム化合物としては、その有機基とそのリチウムの結合様式において、例えば、炭素-リチウム結合を有する化合物、窒素-リチウム結合を有する化合物、及び錫-リチウム結合を有する化合物が挙げられる。
 有機モノリチウム化合物の重合開始剤としての使用量は、目標とする共役ジエン系重合体又は変性共役ジエン系重合体の分子量によって決めることが好ましい。
 重合開始剤の使用量に対する、共役ジエン化合物等の単量体の使用量が重合度に関係し、すなわち、数平均分子量及び/又は重量平均分子量に関係する傾向にある。したがって、分子量を増大させるためには、重合開始剤を減らす方向に調整するとよく、分子量を低下させるためには、重合開始剤量を増やす方向に調整するとよい。
 有機モノリチウム化合物は、共役ジエン系重合体へ窒素原子を導入する一つの手法で用いられるという観点から、好ましくは、置換アミノ基を有するアルキルリチウム化合物、又は置換アミノリチウム化合物である。この場合、重合開始末端にアミノ基に起因する窒素原子を有する共役ジエン系重合体が得られる。置換アミノ基とは、活性水素を有しない、又は、活性水素を保護した構造の、アミノ基である。
 上記重合開始剤としての前記分子内に少なくとも1個の窒素原子を有する有機リチウム化合物は、下記一般式(1)~(5)のいずれかで表される有機リチウム化合物を含む。
Figure JPOXMLDOC01-appb-C000036
 
(式(1)中、R10及びR11は、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、及び炭素数6~20のアラルキル基、保護基からなる群より選ばれる少なくとも1種を示し、R10及びR11は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合のR10及びR11は、炭素数5~12のアルキル基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。)
Figure JPOXMLDOC01-appb-C000037
 
(式(2)中、R12及びR13は、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、及び炭素数6~20のアラルキル基、保護基からなる群より選ばれる少なくとも1種を示し、R12及びR13は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合のR12及びR13は、炭素数5~12のアルキル基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。R14は、炭素数1~30の脂肪族または芳香族置換基を有してもよいアルキレン基、又は炭素数1~20の共役ジエン系重合体を示す。)
Figure JPOXMLDOC01-appb-C000038
 
(式(3)中、R12及びR13は、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、炭素数6~20のアラルキル基、及び保護基からなる群より選ばれる少なくとも1種を示し、R12及びR13は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合のR12及びR13は、炭素数5~12のアルキル基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。R19は、炭素数1~30の脂肪族または芳香族置換基を有してもよい炭化水素基を示す。R20は炭素数1~12の置換アミノ基を有してもよい炭化水素基、nは1~10の整数を示す。)
Figure JPOXMLDOC01-appb-C000039
 
(式(4)中、R15及びR16は、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、及び炭素数6~20のアリール基、保護基からなる群より選ばれる少なくとも1種を示し、R15及びR16は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合のR15及びR16は、炭素数5~12のアルキル基を示し、その一部分に分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。)
Figure JPOXMLDOC01-appb-C000040
 
(式(5)中、R17は、炭素数が2~10の炭化水素基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。R18は、炭素数1~12のアルキル基、保護基を示し、その一部分に分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。)
 前記式(1)において、R10及びR11が示すものとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、オクチル基、ベンジル基、シクロプロピル基、シクロヘキシル基、3-フェニル-1-プロピル基、イソブチル基、デシル基、ヘプチル基、及びフェニル基が挙げられる。
 R10及びR11は、これらに限定されるものではなく、上記条件を満たせば、これらの類似物を含む。
 溶媒への可溶性、後述する変性共役ジエン系重合体組成物のヒステリシスロス低減の観点、及び後述する連鎖移動反応制御の観点から、ブチル基、及びへキシル基が好ましく、より好ましくはブチル基である。
 式(1)で表される分子内に少なくとも1個の窒素原子を有する有機リチウム化合物としては、以下のものに限定されないが、例えば、エチルプロピルアミノリチウム、エチルブチルアミノリチウム、エチルベンジルアミノリチウム、ジブチルアミノリチウム、及びジヘキシルアミノリチウムが挙げられ、これらの中では、ジブチルアミノリチウム及びジヘキシルアミノリチウムが好ましく、ジブチルアミノリチウムがより好ましい。
 前記式(1)において、R10及びR11が結合して隣接した窒素原子とともに環状構造を形成している場合に、前記式(1)で表される有機リチウム化合物としては、以下のものに限定されないが、例えば、ピペリジノリチウム、ヘキサメチレンイミノリチウム、リチウムアザシクロオクタン、リチウム-1,3,3-トリメチル-6-アザビシクロ[3.2.1]オクタン、1,2,3,6-テトラヒドロピリジノリチウム、及び3,5-ジメチルピペリジノリチウムが挙げられる。
 分子内に少なくとも1個の窒素原子を有する有機リチウム化合物は、これらに限定されるものではなく、上記条件を満たせば、これらの類似物を含む。重合開始剤の溶媒への可溶性、後述する変性共役ジエン系重合体の不快臭の低減の観点、及び連鎖移動反応の抑制の観点から、ピペリジノリチウム、ヘキサメチレンイミノリチウム、リチウムアザシクロオクタン、及びリチウム-1,3,3-トリメチル-6-アザビシクロ[3.2.1]オクタンが好ましく、より好ましくはピペリジノリチウム、ヘキサメチレンイミノリチウム、及び3,5-ジメチルピペリジノリチウムであり、さらに好ましくはピペリジノリチウムである。
 前記式(2)において、R14は、炭素数1~30の脂肪族又は芳香族置換基を有してもよいアルキレン基、又は炭素数1~20の共役ジエン系重合体を示す。当該共役ジエン系重合体は、炭素数4~12の共役ジエン化合物を繰り返し単位とする重合体を表すことが好ましい。例えば、共役ジエン化合物としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、及び1,3-ヘプタジエンが挙げられる。これらの中でも、工業的入手の容易さの観点から、1,3-ブタジエン、及びイソプレンが好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 前記式(2)において、R14が炭素数1~30のアルキレン基を表す場合、カーボン、シリカ等の無機充填剤との反応性及び相互作用性の観点から、R14は、炭素数2~20のアルキレン基を表すことが好ましく、より好ましくは炭素数3~16のアルキレン基を表すことである。また、R14が炭素数1~30のアルキレン基を表す場合、式(2)で表される有機リチウム化合物としては、以下のものに限定されないが、例えば、(3-(ジメチルアミノ)-プロピル)リチウム、(3-(ジエチルアミノ)-プロピル)リチウム、(3-(ジプロピルアミノ)-プロピル)リチウム、(3-(ジブチルアミノ)-プロピル)リチウム、(3-(ジペンチルアミノ)-プロピル)リチウム、(3-(ジヘキシルアミノ)-プロピル)リチウム、(3-(ジオクチルアミノ)-プロピル)リチウム、(3-(エチルへキシルアミノ)-プロピル)リチウム、(3-(ジデシルアミノ)-プロピル)リチウム、(3-(エチルプロピルアミノ-プロピル)リチウム、(3-(エチルブチルアミノ-プロピル)リチウム、(3-(エチルベンジルアミノ)-プロピル)リチウム、(3-(メチルフェネチルアミノ)-プロピル)リチウム、(4-(ジブチルアミノ)-ブチル)リチウム、(5-(ジブチルアミノ)-ペンチル)リチウム、(6-(ジブチルアミノ)-ヘキシル)リチウム、(10-(ジブチルアミノ)-デシル)リチウム、(5-(ジブチルアミノ)-1-フェニルペンチル)リチウム、(5-(ジブチルアミノ)-1、1-ジフェニルペンチル)リチウム、3-N,N-ビストリメチルシリルアミノプロピルリチウム、4-N-トリメチルシリル-N-メチルアミノブチルリチウム、及び6-N-トリメチルシリル-N-ブチルアミノヘキシルリチウムが挙げられる。
 分子内に少なくとも1個の窒素原子を有する有機リチウム化合物は、これらに限定されるものではなく、上記条件を満たせば、これらの類似物を含む。カーボン、シリカ等の無機充填剤との反応性及び相互作用性の観点から、(3-(ジブチルアミノ)-プロピル)リチウムがより好ましい。
 前記式(2)において、R14が共役ジエン系重合体を示す場合、式(2)で表される有機リチウム化合物としては、以下のものに限定されないが、例えば、(4-(ジメチルアミノ)-2-ブテニル)リチウム、(4-(ジエチルアミノ)-2-ブテニル)リチウム、(4-(ジブチルアミノ)-2-ブテニル)リチウム、(4-(ジプロピルアミノ)-2-ブテニル)リチウム、(4-(ジへプチルアミノ)-2-ブテニル)リチウム、(4-(ジへキシルアミノ)-2-ブテニル)リチウム、(4-(ジオクチルアミノ)-2-ブテニル)リチウム、(4-(ジ-2-エチルへキシルアミノ)-2-ブテニル)リチウム、(4-(ジデシルアミノ)-2-ブテニル)リチウム、(4-(エチルプロピルアミノ)-2-ブテニル)リチウム、(4-(エチルブチルアミノ)-2-ブテニル)リチウム、(4-(エチルベンジルアミノ)-2-ブテニル)リチウム、(4-(メチルフェネチルアミノ)-2-ブテニル)リチウム、(4-(ジメチルアミノ)-2-メチル-2-ブテニル)リチウム、(4-(ジエチルアミノ)-2-メチル-2-ブテニル)リチウム、(4-(ジブチルアミノ)-2-メチル-2-ブテニル)リチウム、(4-(ジプロピルアミノ)-2-メチル-2-ブテニル)リチウム、(4-(ジへプチルアミノ)-2-メチル-2-ブテニル)リチウム、(4-(ジへキシルアミノ)-2-メチル-2-ブテニル)リチウム、(4-(ジメチルアミノ)-3-メチル-2-ブテニル)リチウム、(4-(ジエチルアミノ)-3-メチル-2-ブテニル)リチウム、(4-(ジブチルアミノ)-3-メチル-2-ブテニル)リチウム、(4-(ジプロピルアミノ)-3-メチル-2-ブテニル)リチウム、(4-(ジへプチルアミノ)-3-メチル-2-ブテニル)リチウム、及び(4-(ジへキシルアミノ)-3-メチル-2-ブテニル)リチウム、ピペリジノリチウム1モルと1,3-ブタジエン3モルの反応生成物、3-N,N-ビストリメチルシリルアミノプロピルリチウムと1,3-ブタジエン3モルの反応生成物が挙げられる。
 分子内に少なくとも1個の窒素原子を有する有機リチウム化合物は、これらに限定されるものではなく、上記条件を満たせば、これらの類似物を含む。開始剤としての反応性の観点、及び後述する連鎖移動反応制御の観点から、4-(ジメチルアミノ)-2-ブテニル)リチウム、(4-(ジエチルアミノ)-2-ブテニル)リチウム、及び(4-(ジブチルアミノ)-2-ブテニル)リチウムが好ましく、より好ましくは(4-(ジブチルアミノ)-2-ブテニル)リチウムである。
 式(2)において、R12及びR13が結合して隣接した窒素原子とともに環状構造を形成している場合、式(2)で表される有機リチウム化合物としては、(3-(ピペリジニル)プロピル)リチウム、(3-(ヘキサメチンレンイミニル)プロピル)リチウム、(3-(ヘプタメチレンイミニル)プロピル)リチウム、(3-(オクタメチレンイミニル)プロピル)リチウム、(3-(1,3,3-トリメチル-6-アザビシクロ[3.2.1]オクタニル)プロピル)リチウム、(3-(1,2,3,6-テトラヒドロピリジニル)プロピル)リチウム、(2-(ヘキサメチンレンイミニル)エチル)リチウム、(4-(ヘキサメチンレンイミニル)ブチル)リチウム、(5-(ヘキサメチンレンイミニル)ペンチル)リチウム、(6-(ヘキサメチンレンイミニル)ヘキシル)リチウム、(10-(ヘキサメチンレンイミニル)デシル)リチウム、(4-(ピペリジニル)-2-ブテニル)リチウム、(4-(ヘキサメチンレンイミニル)-2-ブテニル)リチウム、(4-(ヘプタメチレンイミニル)-2-ブテニル)リチウム、(4-(オクタメチレンイミニル)-2-ブテニル)リチウム、(4-(1,3,3-トリメチル-6-アザビシクロ[3.2.1]オクタニル)-2-ブテニル)リチウム、(4-(1,2,3,6-テトラヒドロピリジニル)-2-ブテニル)リチウム、(4-(ヘキサメチンレンイミニル)-2-メチル-2-ブテニル)リチウム、及び(4-(ヘキサメチンレンイミニル)-3-メチル-2-ブテニル)リチウムが挙げられる。
 分子内に少なくとも1個の窒素原子を有する有機リチウム化合物は、これらに限定されるものではなく、上記条件を満たせば、これらの類似物を含む。カーボン、シリカ等の無機充填剤との反応性及び相互作用性の観点、及び後述する連鎖移動反応制御の観点から、(3-(ピペリジニル)プロピル)リチウム、(3-(ヘキサメチンレンイミニル)プロピル)リチウム、(3-(1,2,3,6-テトラヒドロピリジニル)プロピル)リチウム、(4-(ピペリジニル)-2-ブテニル)リチウム、(4-(ヘキサメチンレンイミニル)-2-ブテニル)リチウムが好ましく、より好ましくは(3-(ヘキサメチンレンイミニル)プロピル)リチウム、(4-(ピペリジニル)-2-ブテニル)リチウム、及び(4-(ヘキサメチンレンイミニル)-2-ブテニル)リチウムが好ましく、より好ましくは(4-(ピペリジニル)-2-ブテニル)リチウムである。
 式(3)において、R12及びR13は、式(2)におけるR12及びR13と同様である。式(3)で表される分子内に少なくとも1個の窒素原子を有する有機リチウム化合物は、有機モノリチウム化合物と置換アミノ基を有する有機不飽和化合物との反応生成物であってもよい。
 その場合、R20は、有機モノリチウム化合物由来の有機基であり、R19は置換アミノ基を有する有機不飽和化合物由来のアルキレン化合物である。有機モノリチウム化合物が置換アミノ基を有する場合は、R20は置換アミノ基を有する炭化水素基である。置換アミノ基を有する有機不飽和化合物としては、リチウム系開始剤により付加反応する公知の置換アミノ基を有する有機不飽和化合物が用いられ、置換アミノ基を有するビニル芳香族化合物、置換アミノ基を有する共役ジエン化合物が含まれる。
 式(3)として表される分子内に少なくとも1個の窒素原子を有する有機リチウム化合物は、以下のものに限定されないが、例えば、1-(4-N,N-ジメチルアミノフェニル)ヘキシルリチウム、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルヘキシルリチウム、1-(4-N,N-ジメチルアミノメチルフェニル)ヘキシルリチウム、1-(4-N,N-ビストリメチルシリルアミノフェニル)ヘキシルリチウム、1-(4-N-トリメチルシリル-N-エチルアミノフェニル)ヘキシルリチウム、1-(4-N,N-ビストリメチルシリルアミノフェニル)-1-フェニルヘキシルリチウム、1-(4-N,N-ジメチルアミノフェニル)-4-メチルペンチルリチウム、ブチルリチウム1モルと4-N,N-ジメチルアミノスチレン2モルとの反応生成物、Sec-ブチルリチウム1モルと4-N,N-ビストリメチルシリルアミノスチレン4モルとの反応生成物、ブチルリチウム1モルと2-N,N-ジメチルアミノ-1,3-ブタジエン4モルとの反応生成物、ピペリジノリチウム1モルと4-N,N-ジメチルアミノスチレン2モルとの反応生成物、3-N,N-ビストリメチルシリルアミノプロピルリチウムと4-N,N-ジメチルアミノスチレン2モルとの反応生成物が挙げられる。
 前記式(4)で表される分子内に少なくとも1個の窒素原子を有する有機リチウム化合物としては、N-置換オルトトルイジン化合物とアルキルリチウムの反応生成物が挙げられる。
 式(4)で表される分子内に少なくとも1個の窒素原子を有する有機リチウム化合物としては、以下のものに限定されないが、例えば、N,N-ジメチル-o-トルイジノリチウム、N,N-ジメチル-m-トルイジノリチウム、N,N-ジメチル-p-トルイジノリチウム、N,N-ジエチル-o-トルイジノリチウム、N,N-ジエチル-m-トルイジノリチウム、N,N-ジエチル-p-トルイジノリチウム、N,N-ジプロピル-o-トルイジノリチウム、N,N-ジプロピル-m-トルイジノリチウム、N,N-ジプロピル-p-トルイジノリチウム、N,N-ジブチル-o-トルイジノリチウム、N,N-ジブチル-m-トルイジノリチウム、N,N-ジブチル-p-トルイジノリチウム、o-ピペリジノトルエノリチウム、p-ピペリジノトルエノリチウム、o-ピロリジノトルエノリチウム、p-ピロリジノトルエン、N,N,N′,N′-テトラメチルトルイレンジアミノリチウム、N,N,N′,N′-テトラエチルトルイレンジアミノリチウム、N,N,N′,N′-テトラプロピルトルイレンジアミノリチウム、N,N-ジメチルキシリジノリチウム、N,N-ジエチルキシリジノリチウム、N,N-ジプロピルキシリジノリチウム、N,N-ジメチルメシジノリチウム、N,N-ジエチルメシジノリチウム、(N,N-ジメチルアミノ)トルイルフェニルメチルアミノリチウム、1-(N,N-ジメチルアミノ)-2-メチルナフタレノリチウム、及び1-(N,N-ジメチルアミノ)-2-メチルアントラセノリチウムが挙げられる。
 分子内に少なくとも1個の窒素原子を有する有機リチウム化合物は、これらに限定されるものではなく、上記条件を満たせば、これらの類似物を含む。重合活性の観点から、N,N-ジメチル-o-トルイジノリチウムがより好ましい。
 式(4)で表される分子内に少なくとも1個の窒素原子を有する有機リチウム化合物としては、以下のものに限定されないが、例えば、2-(2-メチルピペリジニル)-1-エチルリチウム(例えば、FMC社製の商品名「AI-250」)が挙げられる。
 有機リチウム化合物は、これらに限定されるものではなく、上記条件を満たせば、これらの類似物を含む。
 重合工程前に、予め分子内に少なくとも1つ窒素原子を有する有機リチウム化合物や、その他の有機リチウム化合物を調製しておいてもよく、その方法は既知のあらゆる方法を適用できる。
 上述した重合工程において、窒素含有共役ジエン系重合体を得る際には、有機リチウム化合物の存在下、少なくとも共役ジエン化合物及び分子中に少なくとも1個の窒素原子を有する共重合可能な単量体を共重合する工程を実施してもよい。
 分子中に少なくとも1個の窒素原子を有する共重合可能な単量体としては、リチウム系開始剤により共役ジエン化合物と共重合する公知の置換アミノ基を有する有機不飽和化合物が用いられ、置換アミノ基を有するビニル芳香族化合物、置換アミノ基を有する共役ジエン化合物が含まれる。
 有機リチウム化合物は、有機モノリチウム化合物が好ましく、分子中に置換アミノ基を有していても有していなくてもよい。工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、好ましくは、アルキルリチウム化合物である。この場合、重合開始末端にアルキル基を有する、共役ジエン系重合体が得られる。
 アルキルリチウム化合物としては、以下のものに限定されないが、例えば、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、及びスチルベンリチウムが挙げられる。アルキルリチウム化合物としては、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、n-ブチルリチウム、及びsec-ブチルリチウムが好ましい。
 置換アミノ基としては、アミノ基の水素が、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、及び炭素数6~20のアラルキル基、保護基からなる群より選ばれる少なくとも1種で置換されたアミノ基であり、置換基は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合の置換基は炭素数5~12のアルキル基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基が好ましい。
 重合単量体である前記置換アミノ基を有するビニル芳香族化合物としては、置換アミノ基を有するスチレン、アルキル置換スチレン、1,1-ジフェニルエチレン、ビニルナフタレンが含まれる。置換アミノ基を有するビニル芳香族化合物としては、例えば、4-N,N-ジメチルアミノスチレン、4-N,N-ジエチルアミノスチレン、4-N,N-ビストリメチルシリルアミノスチレン、4-N,N-ジメチルアミノメチルスチレン、4-(2-N,N-ジエチルアミノ)エチルスチレン、4-N,N-ジメチルアミノ-α-メチルスチレン、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレン、1-(4-N,N-ビストリメチルシリルアミノフェニル)-1-フェニルエチレンが挙げられる。
 重合単量体である前記置換アミノ基を有する共役ジエン化合物としては、置換アミノ基を有する炭素数4~12の共役ジエン化合物が含まれる。
 例えば、置換アミノ基を有する共役ジエン化合物としては、置換アミノ基を有する1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、及び1,3-ヘプタジエンが含まれる。これらの中でも、工業的入手の容易さの観点から、置換アミノ基を有する1,3-ブタジエン及び置換アミノ基を有するイソプレンが好ましい。置換アミノ基を有する共役ジエン化合物としては、2-ジメチルアミノ-1,3-ブタジエン、2-ビストリメチルシリルアミノ-1,3-ブタジエン、2-ジメチルアミノメチル-1,3-ブタジエン、1-ジメチルアミノメチル-1,3-ブタジエンが挙げられる。
 重合工程の反応様式としては、以下のものに限定されないが、例えば、回分式(「バッチ式」ともいう。)、連続式の重合反応様式が挙げられる。
 連続式においては、1個又は2個以上の連結された反応器を用いることができる。連続式の反応器は、例えば、撹拌機付きの槽型、管型のものが用いられる。連続式においては、好ましくは、連続的に単量体、不活性溶媒、及び重合開始剤が反応器にフィードされ、該反応器内で重合体を含む重合体溶液が得られ、連続的に重合体溶液が排出される。回分式の反応器は、例えば、攪拌機付の槽型のものが用いられる。回分式においては、好ましくは、単量体、不活性溶媒、及び重合開始剤がフィードされ、必要により単量体が重合中に連続的又は断続的に追加され、該反応器内で重合体を含む重合体溶液が得られ、重合終了後に重合体溶液が排出される。本実施形態において、高い割合で活性末端を有する共役ジエン系重合体を得るには、重合体を連続的に排出し、短時間で次の反応に供することが可能な、連続式が好ましい。
 重合工程においては、不活性溶媒中でモノマーを重合することが好ましい。
 溶媒としては、例えば、飽和炭化水素、芳香族炭化水素等の炭化水素系溶媒が挙げられる。具体的な炭化水素系溶媒としては、以下のものに限定されないが、例えば、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素及びそれらの混合物からなる炭化水素が挙げられる。重合反応に供する前に、不純物であるアレン類、及びアセチレン類を有機金属化合物で処理することで、高濃度の活性末端を有する共役ジエン系重合体が得られる傾向にあり、高い変性率の変性共役ジエン系重合体が得られる傾向にあるため好ましい。
 重合体溶液は、極性化合物を含有してもよい。芳香族ビニル化合物を共役ジエン化合物とランダムに共重合させることができ、共役ジエン部のミクロ構造を制御するためのビニル化剤としても用いることができる傾向にある。また、重合反応の促進等にも効果がある傾向にある。
 極性化合物としては、以下のものに限定されないが、例えば、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジメトキシベンゼン、2,2-ビス(2-オキソラニル)プロパン等のエーテル類;テトラメチルエチレンジアミン、ジピペリジノエタン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジン等の第3級アミン化合物;カリウム-tert-アミラート、カリウム-tert-ブチラート、ナトリウム-tert-ブチラート、ナトリウムアミラート等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物等を用いることができる。これらの極性化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
 極性化合物の使用量は、特に限定されず、目的等に応じて選択することができるが、重合開始剤1モルに対して、0.01モル以上100モル以下であることが好ましい。このような極性化合物(ビニル化剤)は重合体共役ジエン部分のミクロ構造の調節剤として、所望のビニル結合量に応じて、適量用いることができる。多くの極性化合物は、同時に共役ジエン化合物と芳香族ビニル化合物との共重合において有効なランダム化効果を有し、芳香族ビニル化合物の分布の調整やスチレンブロック量の調整剤として用いることができる傾向にある。共役ジエン化合物と芳香族ビニル化合物とをランダム化する方法としては、例えば、特開昭59-140211号公報に記載されているような、スチレンの全量と1,3-ブタジエンの一部とで共重合反応を開始させ、共重合反応の途中に残りの1,3-ブタジエンを断続的に添加する方法を用いてもよい。
 重合工程において、重合温度は、リビングアニオン重合が進行する温度であることが好ましく、生産性の観点から、0℃以上であることがより好ましく、120℃以下であることがさらに好ましい。このような範囲にあることで、重合終了後の活性末端に対する変性剤の反応量を充分に確保することができる傾向にある。よりさらに好ましくは50℃以上100℃以下、さらに60℃以上80℃以下が好適である。
 重合工程において得られる、反応工程前の共役ジエン系重合体は、好ましくは110℃で測定されるムーニー粘度が10以上90以下であり、より好ましくは15以上85以下であり、よりさらに好ましくは20以上60以下である。この範囲であると、本実施形態の変性共役ジエン系重合体は加工性及び耐摩耗性に優れる傾向にある。
 本実施形態の共役ジエン系重合体又は変性共役ジエン系重合体中の結合共役ジエン量は、特に限定されないが、40質量%以上100質量%以下であることが好ましく、55質量%以上80質量%以下であることがより好ましい。
 また、本実施形態の共役ジエン系重合体又は変性共役ジエン系重合体中の結合芳香族ビニル量は、特に限定されないが、0質量%以上60質量%以下であることが好ましく、20質量%以上45質量%以下であることがより好ましい。
 結合共役ジエン量及び結合芳香族ビニル量が上記範囲であると、加硫物としたときにおける低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性とにより優れ、実用上十分な破壊特性と得られる傾向にある。ここで、結合芳香族ビニル量は、フェニル基の紫外吸光によって測定でき、ここから結合共役ジエン量も求めることができる。具体的には、後述する実施例に記載の方法に準じて測定する。
 本実施形態の共役ジエン系重合体又は変性共役ジエン系重合体において、共役ジエン結合単位中のビニル結合量は、特に限定されないが、10モル%以上75モル%以下であることが好ましく、20モル%以上65モル%以下であることがより好ましい。
 ビニル結合量が上記範囲であると、加硫物としたときにおける低ヒステリシスロス性とウェットスキッド抵抗性のバランス及び耐摩耗性と、破壊強度とにより優れる傾向にある。ここで、変性ジエン系重合体がブタジエンとスチレンとの共重合体である場合には、ハンプトンの方法(R.R.Hampton,Analytical Chemistry,21,923(1949))により、ブタジエン結合単位中のビニル結合量(1,2-結合量)を求めることができる。具体的には、後述する実施例に記載の方法により測定する。
 変性共役ジエン系重合体のミクロ構造については、上記変性共役ジエン系重合体中の各結合量が上記範囲にあり、さらに、変性共役ジエン系重合体のガラス転移温度が-45℃以上-15℃以下の範囲にあることが好ましく、これにより、反発弾性に優れた加硫物を得ることができる傾向にある。ガラス転移温度については、ISO 22768:2006に従い、所定の温度範囲で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とする。具体的には、後述する実施例に記載の方法により測定する。
 本実施形態の変性共役ジエン系重合体が、共役ジエン-芳香族ビニル共重合体である場合、芳香族ビニル単位が30以上連鎖しているブロックの数が、少ないか又はないものであることが好ましい。より具体的には、共重合体がブタジエン-スチレン共重合体の場合、Kolthoffの方法(I.M.KOLTHOFF,et al.,J.Polym.Sci.1,429(1946)に記載の方法)により共重合体を分解し、メタノールに不溶なポリスチレン量を分析する公知の方法において、芳香族ビニル単位が30以上連鎖しているブロックが、共重合体の総量に対して、好ましくは5.0質量%以下、より好ましくは3.0質量%以下である。
 本実施形態の共役ジエン系重合体が共役ジエン-芳香族ビニル共重合体である場合、芳香族ビニル単位が単独で存在する割合が多いことが好ましい。具体的には、共重合体がブタジエン-スチレン共重合体の場合、田中らの方法(Polymer,22,1721(1981))として知られているオゾン分解による方法で、前記共重合体を分解し、GPCによりスチレン連鎖分布を分析した場合、全結合スチレン量に対し、単離スチレン量が40質量%以上であり、スチレンの連鎖が8個以上の連鎖スチレン構造が5.0質量%以下であることが望ましい。この場合、得られる加硫ゴムが特に低いヒステリシスロスである優れた性能となる。
(変性工程)
 変性工程においては、重合工程で得た窒素含有共役ジエン系重合体の活性末端に対して、8官能以上の反応性化合物(以下、「変性剤」ともいう。)を反応させ、変性剤残基と8分子以上の共役ジエン系重合体とが結合した本実施形態の変性共役ジエン系重合体を得る。
<変性剤>
 本実施形態の変性工程で用いられる変性剤は、窒素原子と珪素原子とを有する8官能以上の反応性化合物が好ましく、1分子中に少なくとも3個の珪素原子及び少なくとも1個の窒素原子を有し、反応活性点が8個以上ある反応性化合物を反応させることがより好ましい。
 さらに珪素原子に結合したアルコキシ基を4個以上有し、3級アミノ基を有する、反応活性点が8個以上ある変性剤がより好ましい。
 これによって、加硫物にする際に添加する充填剤、例えばシリカと重合体との相互作用が強くなる傾向がある。
 さらに好ましい変性剤は、少なくとも1の珪素原子が、炭素数1~20のアルコキシシリル基又はシラノール基を構成する変性剤であり、より好ましくは変性剤として下記式(VI)で表される化合物である。
 変性工程における変性剤が、下記一般式(VI)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000041
 
(式(VI)中、R12~R14は、各々独立に、単結合又は炭素数1~20のアルキレン基を示し、R15~R18、及びR20は、各々独立に、炭素数1~20のアルキル基を示し、R19及びR22は、各々独立に、炭素数1~20のアルキレン基を示し、R21は、炭素数1~20のアルキル基又はトリアルキルシリル基を示し、mは、1~3の整数を示し、pは、1又は2を示す。それぞれ複数存在する場合のR12~R22、m、及びpは、各々独立しており、同じであっても異なっていてもよい。iは、0~6の整数を示し、jは、0~6の整数を示し、kは、0~6の整数を示し、(i+j+k)は、4~10の整数である。Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、活性水素を有しない有機基を表す。)
 Aが示す炭化水素基は、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を含む。活性水素を有しない有機基は、共役ジエン系重合体が有する活性末端を不活性化させない有機基である。活性水素を有しない有機基としては、例えば、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH)、スルフヒドリル基(-SH)等の活性水素を有する官能基、を有しない有機基である。上記活性水素を有しない有機基は、当該活性水素を有する官能基を保護基で置換することにより不活性化したものを含む。なお、保護基としては好ましくはアルキル置換シリル基である。
 変性剤が有するアルコキシシリル基は、例えば、窒素含有共役ジエン系重合体が有する活性末端と反応して、アルコキシリチウムが解離し、窒素含有共役ジエン系重合体鎖の末端と変性剤残基の珪素との結合を形成する傾向にある。変性剤1分子が有するSiORの総数から、反応により減じたSiOR数を差し引いた値が、変性剤残基が有するアルコキシシリル基の数となる。また、変性剤が有するアザシラサイクル基は、>N-Li結合及び窒素含有共役ジエン系重合体末端と変性剤残基の珪素との結合を形成する。なお、>N-Li結合は、仕上げ時の水等により容易に>NH及びLiOHとなる傾向にある。また、変性剤において、未反応で残存したアルコキシシリル基は仕上げ時の水等により容易にシラノール(Si-OH基)となり得る傾向にある。
 変性工程において、1個の珪素原子に対し3個のアルコキシ基を有する、すなわちトリアルコキシシラン基1モルに対し、3モルの窒素含有共役ジエン系重合体の活性末端を反応させる場合、2モルまでの窒素含有共役ジエン系重合体との反応は起こるが、1モルのアルコキシ基は未反応で残存する傾向にある。これは、1モルの窒素含有共役ジエン系重合体が、反応せずに未反応の重合体として残存することから確かめられる。なお、アルコキシ基は多く反応させることにより、仕上げ時、貯蔵時に、縮合反応を起こすことに起因して重合体粘度が大きく変わることを抑制できる傾向にある。特に、トリアルコキシシラン基1モルに対して、2モルの共役ジエン共重合体が反応したものが変性共役ジエン共重合体中に4以上、すなわち分岐度が8以上であり、かつ、その他に反応可能なアルコキシ基が変性共役ジエン共重合体中に存在しないとき、縮合反応を抑制できる傾向にある。
 変性剤としては、以下のものに限定されないが、例えば、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、テトラキス(3-トリメトキシシリルプロピル)-1,6-ヘキサメチレンジアミン、ペンタキス(3-トリメトキシシリルプロピル)-ジエチレントリアミン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シラン、ビス(3-トリメトキシシリルプロピル)-ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シラン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)シラン、1-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-3,4,5-トリス(3-トリメトキシシリルプロピル)-シクロヘキサン、3,4,5-トリス(3-トリメトキシシリルプロピル)-シクロヘキシル-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]エーテル、及び3,4,5-トリス(3-トリメトキシシリルプロピル)-シクロヘキシル-ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]ホスフェイトが挙げられる。
 変性工程の反応温度は、好ましくは共役ジエン系重合体の重合温度と同様の温度であり、より好ましくは0℃以上120℃以下であり、さらに好ましくは50℃以上100℃以下である。また、重合工程後から変性剤が添加されるまでの温度変化は、好ましくは10℃以下であり、より好ましくは5℃以下である。
 変性工程の反応時間は、好ましくは10秒以上であり、より好ましくは30秒以上である。重合工程の終了時から変性工程の開始時までの時間は、より短い方が好ましいが、より好ましくは5分以内である。そうすることにより、高い変性率が得られる傾向にある。
 変性工程における混合は、機械的な攪拌、スタティックミキサーによる攪拌等のいずれでもよい。重合工程が連続式である場合は、変性工程も連続式であることが好ましい。変性工程における反応器は、例えば、撹拌機付きの槽型、管型のものが用いられる。変性剤は、不活性溶媒により希釈して反応器に連続的に供給してもよい。重合工程が回分式の場合は、重合反応器に変性剤を投入する方法でも、別の反応器に移送して変性工程を行ってもよい。
 前記式(VI)において、Aは、好ましくは下記一般式(II)~(V)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000042
 
 式(II)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。
Figure JPOXMLDOC01-appb-C000043
 
 式(III)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、Bは、炭素数1~20のアルキル基を示し、aは、1~10の整数を示す。それぞれ複数存在する場合のB及びBは、各々独立している。
Figure JPOXMLDOC01-appb-C000044
 
 式(IV)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。
Figure JPOXMLDOC01-appb-C000045
 
 式(V)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。
 前記式(VI)中のAが式(II)~(V)のいずれかで表されることにより、本実施形態のより優れた性能を有する変性共役ジエン系重合体を得ることができる傾向にある。
 式(VI)においてAが式(II)で表される場合の変性剤としては、以下のものに限定されないが、例えば、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス(3-トリメトキシシリルプロピル)-ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、トリス(3-トリエトキシシリルプロピル)-[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス(3-トリエトキシシリルプロピル)-ビス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス(3-トリメトキシシリルプロピル)-ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、トリス(3-トリエトキシシリルプロピル)-[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス(3-トリエトキシシリルプロピル)-ビス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、トリス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,6-ヘキサメチレンジアミン、及びペンタキス(3-トリメトキシシリルプロピル)-ジエチレントリアミン、トリス(3-トリメトキシシリルプロピル)-ビス[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-ジエチレントリアミン及びテトラキス(3-トリメトキシシリルプロピル)-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-ジエチレントリアミンが挙げられる。
 式(VI)において、Aが式(III)で表される場合の変性剤としては、以下のものに限定されないが、例えば、N,N’-(プロパン-1,3-ジイル)ビス(N-メチル-N,N-ビス(3-(トリメトキシシリル)プロピル)-1,3-プロパンジアミン)、及びN-(3-(ビス(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N-メチル-N-(3-(メチル(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N-(3-(トリメトキシシリル)プロピル)-1,3-プロパンジアミンが挙げられる。
 式(VI)においてAが式(IV)で表される場合の変性剤としては、以下のものに限定されないが、例えば、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シラン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)シラン、ビス(3-トリメトキシシリルプロピル)-ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シラン、及びトリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シランが挙げられる。
 式(VI)においてAが式(V)で表される場合の変性剤としては、以下のものに限定されないが、例えば、3-トリス[2-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)エトキシ]シリル-1-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロパン、及び3-トリス[2-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)エトキシ]シリル-1-トリメトキシシリルプロパンが挙げられる。
 式(VI)において、Aは、好ましくは式(II)又は式(III)で表され、kは、0を示す。このような変性剤は、入手が容易である傾向にあり、また、変性共役ジエン系重合体を加硫物としたときにおける耐摩耗性及び低ヒステリシスロス性能がより優れるものとなる傾向にある。このような変性剤としては、以下のものに限定されないが、例えば、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、及びテトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサンが挙げられる。
 式(VI)において、Aが、より好ましくは式(II)又は式(III)で表され、kは、0を示し、式(II)又は式(III)において、aは、2~10の整数を示す。これにより、加硫したときにおける耐摩耗性及び低ヒステリシスロス性能がより優れるものとなる傾向にある。このような変性剤としては、以下のものに限定されないが、例えば、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、及びN-(3-(ビス(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N-メチル-N-(3-(メチル(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N-(3-(トリメトキシシリル)プロピル)-1,3-プロパンジアミンが挙げられる。
 変性剤としての式(VI)で表される化合物の添加量は、共役ジエン系重合体のモル数対変性剤のモル数が、所望の化学量論的比率で反応させるよう調整することができ、そのことにより所望の分岐度が達成される傾向にある。具体的な重合開始剤のモル数は、変性剤のモル数に対して、好ましくは7.0倍モル以上、より好ましくは8.0倍モル以上であることが好ましい。この場合、式(VI)において、変性剤の官能基数((m-1)×i+p×j+k)は、8~16の整数であることが好ましく、8~14の整数であることがより好ましい。
 式(VI)で表される化合物の官能基数が多ければ多いほど、反応工程で変性剤の添加量を所望範囲に制御できなかった場合において、得られる変性共役ジエン系重合体における分岐度が所望の値からずれやすくなる。よって、変性剤の添加量を適正に制御することが好ましい。変性剤の添加量を適正に制御するためには、例えば、変性剤を希釈してから添加する方法が好ましい。添加量のずれが同じである場合、希釈していた方が共役ジエン系重合体のモル数と変性剤のモル数とのずれが小さくなる傾向にある。さらに、希釈する溶媒の水分量は、好ましくは100質量ppm以下、より好ましくは50質量ppm以下、さらに好ましくは30質量ppm以下、よりさらに好ましくは10質量ppm以下である。希釈する溶媒の水分量が100質量ppm以下であることで、変性剤と水とが反応し、該変性剤中の官能基が減少することに起因して、共役ジエン系重合体のモル数と変性剤のモル数とのずれを抑制することができる傾向にある。
 本実施形態においては、変性工程後、又は変性工程前に、縮合促進剤の存在下で縮合反応させる縮合反応工程を設けることもできる。
 本実施形態の変性共役ジエン系重合体の共役ジエン部を水素化してもよく、水素化する方法は、特に限定されず、公知の方法が利用できる。好適な水素化の方法としては、水素化触媒の存在下、重合体溶液に気体状水素を吹き込む方法で水素化する方法が挙げられる。触媒としては、例えば、貴金属を多孔質無機物質に担持させた触媒等の不均一系触媒;ニッケル、コバルト等の塩を可溶化し有機アルミニウム等と反応させた触媒、チタノセン等のメタロセンを用いた触媒等の均一系触媒が挙げられる。これら中でも、マイルドな水素化条件を選択できる観点から、チタノセン触媒が好ましい。また、芳香族基の水素化は、貴金属の担持触媒を用いることによって行うことができる。
 水素化触媒の具体例としては、以下のものに限定されないが、例えば、(1)Ni,Pt,Pd,Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等に担持させた担持型不均一系水添触媒、(2)Ni,Co,Fe,Cr等の有機酸塩又はアセチルアセトン塩等の遷移金属塩と有機アルミニウム等の還元剤とを用いる、いわゆるチーグラー型水添触媒、(3)Ti,Ru,Rh,Zr等の有機金属化合物等のいわゆる有機金属錯体等が挙げられる。さらに、水素化触媒として、例えば、特公昭42-8704号公報、特公昭43-6636号公報、特公昭63-4841号公報、特公平1-37970号公報、特公平1-53851号公報、特公平2-9041号公報、特開平8-109219号公報に記載された公知の水素化触媒も挙げられる。好ましい水素化触媒としては、チタノセン化合物と還元性有機金属化合物との反応混合物が挙げられる。
 本実施形態の変性共役ジエン系重合体の製造方法においては、変性工程の後、共重合体溶液に、必要に応じて、失活剤、中和剤等を添加してもよい。失活剤としては、以下のものに限定されないが、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール等が挙げられる。中和剤としては、以下のものに限定されないが、例えば、ステアリン酸、オレイン酸、バーサチック酸(炭素数9~11個で、10個を中心とする、分岐の多いカルボン酸混合物)等のカルボン酸;無機酸の水溶液、炭酸ガスが挙げられる。
 重合後のゲル生成を防止する観点、及び加工時の安定性を向上させる観点から、変性共役ジエン系重合体にゴム用安定剤を添加することが好ましい。ゴム用安定剤としては、以下のものに限定されず、公知のものを用いることができるが、例えば、2,6-ジ-tert-ブチル-4-ヒドロキシトルエン(BHT)、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェノール)プロピネート、2-メチル-4,6-ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤が好ましい。
 本実施形態の変性共役ジエン系重合体の加工性をより改善するために、必要に応じて、伸展油を変性共役ジエン系共重合体に添加することができる。伸展油を変性共役ジエン系重合体に添加する方法としては、以下のものに限定されないが、伸展油を該重合体溶液に加え、混合して、油展共重合体溶液としたものを脱溶媒する方法が好ましい。伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。これらの中でも、環境安全上の観点、並びにオイルブリード防止及びウェットグリップ特性の観点から、IP346法による多環芳香族(PCA)成分が3質量%以下であるアロマ代替油が好ましい。アロマ代替油としては、Kautschuk Gummi Kunststoffe52(12)799(1999)に示されるTDAE(Treated Distillate Aromatic Extracts)、MES(Mild Extraction Solvate)等の他、RAE(Residual Aromatic Extracts)が挙げられる。
 伸展油の添加量は、特に限定されないが、変性共役ジエン系重合体100質量部に対し、1質量部以上60質量部以下が好ましく、5質量部以上50質量部以下がより好ましく、10質量部以上37.5質量部以下がさらに好ましい。
 本実施形態の変性共役ジエン系重合体を、重合体溶液から取得する方法としては、公知の方法を用いることができる。その方法として、例えば、スチームストリッピング等で溶媒を分離した後、重合体を濾別し、さらにそれを脱水及び乾燥して重合体を取得する方法、フラッシングタンクで濃縮し、さらにベント押出し機等で脱揮する方法、ドラムドライヤー等で直接脱揮する方法が挙げられる。
 本実施形態の変性共役ジエン系重合体は、加硫物として好適に用いられる。加硫物としては、例えば、タイヤ、ホース、靴底、防振ゴム、自動車部品、免振ゴムが挙げられ、また、耐衝撃性ポリスチレン、ABS樹脂等の樹脂強化用ゴムも挙げられる。特に、変性共役ジエン系重合体は、タイヤ用のトレッドゴムの組成物に好適に用いられる。加硫物は、例えば、本実施形態の変性共役ジエン系重合体を、必要に応じて、シリカ系無機充填剤、カーボンブラック等の無機充填剤、本実施形態の変性共役ジエン系重合体以外のゴム状重合体、シランカップリング剤、ゴム用軟化剤、加硫剤、加硫促進剤、加硫助剤等と混練して、変性共役ジエン系重合体組成物とした後、加熱して加硫することにより得ることができる。
〔ゴム組成物〕
 本実施形態のゴム組成物は、ゴム成分と、該ゴム成分100質量部に対して5.0質量部以上150質量部以下の充填剤とを含む。
 また、当該ゴム成分は、該ゴム成分の総量(100質量%)に対して、上述した本実施形態の変性共役ジエン系重合体を10質量%以上含む。
 また、当該充填剤は、シリカ系無機充填剤を含むことが好ましい。ゴム組成物は、シリカ系無機充填剤を分散させることで、加硫物とする際の加工性により優れる傾向にある。本実施形態のゴム組成物が、タイヤ、防振ゴム等の自動車部品、靴等の加硫ゴム用途に用いられる場合にも、シリカ系無機充填剤を含むことが好ましい。
 ゴム組成物においては、本実施形態の変性共役ジエン系重合体以外のゴム状重合体(以下、単に「ゴム状重合体」という。)を、本実施形態の分岐変性ジエン系重合体と組み合わせて使用できる。このようなゴム状重合体としては、以下のものに限定されないが、例えば、共役ジエン系重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのランダム共重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水素添加物、非ジエン系重合体、天然ゴムが挙げられる。具体的なゴム状重合体としては、以下のものに限定されないが、例えば、ブタジエンゴム又はその水素添加物、イソプレンゴム又はその水素添加物、スチレン-ブタジエンゴム又はその水素添加物、スチレン-ブタジエンブロック共重合体又はその水素添加物、スチレン-イソプレンブロック共重合体又はその水素添加物等のスチレン系エラストマー、アクリロニトリル-ブタジエンゴム又はその水素添加物が挙げられる。
 非ジエン系重合体としては、以下のものに限定されないが、例えば、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、エチレン-ブテン-ジエンゴム、エチレン-ブテンゴム、エチレン-ヘキセンゴム、エチレン-オクテンゴム等のオレフィン系エラストマー、ブチルゴム、臭素化ブチルゴム、アクリルゴム、フッ素ゴム、シリコーンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム、α、β-不飽和ニトリル-アクリル酸エステル-共役ジエン共重合ゴム、ウレタンゴム、及び多硫化ゴムが挙げられる。
 天然ゴムとしては、以下のものに限定されないが、例えば、スモークドシートであるRSS3~5号、SMR、エポキシ化天然ゴムが挙げられる。
 上述した各種ゴム状重合体は、水酸基、アミノ基等の極性を有する官能基を付与した変性ゴムであってもよい。タイヤ用に用いる場合、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエンゴム、天然ゴム、及びブチルゴムが好ましく用いられる。
 ゴム状重合体の重量平均分子量は、性能と加工特性のバランスの観点から、2000以上2000000以下であることが好ましく、5000以上1500000以下であることがより好ましい。また、低分子量のゴム状重合体、いわゆる液状ゴムを用いることもできる。これらのゴム状重合体は、1種単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態の変性共役ジエン系重合体とゴム状重合体とを含むゴム組成物とする場合において、ゴム状重合体に対する変性共役ジエン系重合体の含有比率(質量比)は、(変性共役ジエン系重合体/ゴム状重合体)として、10/90以上100/0以下が好ましく、20/80以上90/10以下がより好ましく、50/50以上80/20以下がさらに好ましい。したがって、ゴム成分は、該ゴム成分の総量(100質量部)に対して、変性共役ジエン系重合体を、好ましくは10質量部以上100質量部以下含み、より好ましくは20質量部以上90質量部以下含み、さらに好ましくは50質量部以上80質量部以下含む。(変性共役ジエン系重合体/ゴム状重合体)の含有比率が上記範囲であると、加硫物としたときにおける充填剤、例えばシリカの分散性が改善される傾向にある。
 充填剤としては、以下のものに限定されないが、例えば、シリカ系無機充填剤、カーボンブラック、金属酸化物、金属水酸化物が挙げられる。この中でも、シリカ系無機充填剤が好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 ゴム組成物中の充填剤の含有量は、変性共役ジエン系重合体を含むゴム成分100質量部に対して、5.0質量部以上150質量部であり、20質量部以上100質量部以下であることが好ましい。充填剤の含有量は、充填剤の添加効果が発現する観点から、5.0質量部以上であり、充填剤を十分に分散させ、組成物の加工性及び機械強度を実用的に十分なものとする観点から、150質量部以下である。
 シリカ系無機充填剤としては、特に限定されず、公知のものを用いることができるが、SiO又はSiAlを構成単位として含む固体粒子が好ましく、SiO又はSiAlを構成単位の主成分として含む固体粒子がより好ましい。ここで、主成分とは、シリカ系無機充填剤中に50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上含有される成分をいう。
 シリカ系無機充填剤としては、以下のものに限定されないが、例えば、シリカ、クレイ、タルク、マイカ、珪藻土、ウォラストナイト、モンモリロナイト、ゼオライト、ガラス繊維等の無機繊維状物質が挙げられる。また、表面を疎水化したシリカ系無機充填剤、シリカ系無機充填剤とシリカ系以外の無機充填剤との混合物も挙げられる。これらの中でも、強度及び耐摩耗性等の観点から、シリカ及びガラス繊維が好ましく、シリカがより好ましい。シリカとしては、例えば、乾式シリカ、湿式シリカ、合成ケイ酸塩シリカが挙げられる。これらのシリカの中でも、破壊特性の改良効果及びウェットスキッド抵抗性のバランスに優れる観点から、湿式シリカが好ましい。
 ゴム組成物の実用上良好な耐摩耗性及び破壊特性を得る観点から、シリカ系無機充填剤のBET吸着法で求められる窒素吸着比表面積は、100m/g以上300m/g以下であることが好ましく、170m/g以上250m/g以下であることがより好ましい。また必要に応じて、比較的比表面積が小さい(例えば、比表面積が200m/g以下の)シリカ系無機充填剤と、比較的比表面積の大きい(例えば、200m/g以上の)シリカ系無機充填剤)と、を組み合わせて用いることができる。本実施形態において、特に比較的比表面積の大きい(例えば、200m/g以上の)シリカ系無機充填剤を用いる場合に、変性共役ジエン系重合体は、シリカの分散性を改善し、特に耐摩耗性の向上に効果があり、良好な破壊特性と低ヒステリシスロス性とを高度にバランスさせることができる傾向にある。
 ゴム組成物中のシリカ系無機充填剤の含有量は、変性共役ジエン系重合体を含むゴム成分100質量部に対して、5.0質量部以上150質量部であり、20質量部以上100質量部以下であることが好ましい。シリカ系無機充填剤の含有量は、無機充填剤の添加効果が発現する観点から、5.0質量部以上であり、無機充填剤を十分に分散させ、組成物の加工性及び機械強度を実用的に十分なものとする観点から、150質量部以下である。
 カーボンブラックとしては、以下のものに限定されないが、例えば、SRF、FEF、HAF、ISAF、SAF等の各クラスのカーボンブラックが挙げられる。これらの中でも、窒素吸着比表面積が50m/g以上、かつ、ジブチルフタレート(DBP)吸油量が80mL/100g以下のカーボンブラックが好ましい。
 カーボンブラックの含有量は、変性共役ジエン系重合体を含むゴム成分100質量部に対して、0.5質量部以上100質量部以下が好ましく、3.0質量部以上100質量部以下がより好ましく、5.0質量部以上50質量部以下がさらに好ましい。カーボンブラックの含有量は、ドライグリップ性能、導電性等のタイヤ等の用途に求められる性能を発現する観点から、0.5質量部以上とすることが好ましく、分散性の観点から、100質量部以下とすることが好ましい。
 金属酸化物とは、化学式MxOy(Mは、金属原子を示し、x及びyは、各々独立して、1~6の整数を示す。)を構成単位の主成分とする固体粒子のことをいう。金属酸化物としては、以下のものに限定されないが、例えば、アルミナ、酸化チタン、酸化マグネシウム、及び酸化亜鉛が挙げられる。金属水酸化物としては、以下のものに限定されないが、例えば、水酸化アルミニウム、水酸化マグネシウム、及び水酸化ジルコニウムが挙げられる。
 ゴム組成物は、シランカップリング剤を含んでもよい。シランカップリング剤は、ゴム成分と無機充填剤との相互作用を緊密にする機能を有しており、ゴム成分及びシリカ系無機充填剤のそれぞれに対する親和性又は結合性の基を有しており、硫黄結合部分とアルコキシシリル基又はシラノール基部分とを一分子中に有する化合物が好ましい。このような化合物としては、例えば、ビス-[3-(トリエトキシシリル)-プロピル]-テトラスルフィド、ビス-[3-(トリエトキシシリル)-プロピル]-ジスルフィド、ビス-[2-(トリエトキシシリル)-エチル]-テトラスルフィドが挙げられる。
 シランカップリング剤の含有量は、上述した無機充填剤100質量部に対して、0.1質量部以上30質量部以下が好ましく、0.5質量部以上20質量部以下がより好ましく、1.0質量部以上15質量部以下がさらに好ましい。シランカップリング剤の含有量が上記範囲であると、シランカップリング剤による上記添加効果を一層顕著なものにできる傾向にある。
 ゴム組成物は、その加工性の改良を図る観点から、ゴム用軟化剤を含んでもよい。ゴム用軟化剤としては、鉱物油、又は、液状若しくは低分子量の合成軟化剤が好適である。
 ゴムの軟化、増容、及び加工性の向上を図るために使用されているプロセスオイル又はエクステンダーオイルと呼ばれる鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が全炭素中30%以上45%以下を占めるものがナフテン系、芳香族炭素数が全炭素中30%を超えて占めるものが芳香族系と呼ばれている。
 本実施形態の変性共役ジエン系重合体が共役ジエン化合物とビニル芳香族化合物との共重合体である場合、用いるゴム用軟化剤としては、適度な芳香族含量を有するものが共重合体との馴染みがよい傾向にあるため好ましい。
 ゴム用軟化剤の含有量は、変性共役ジエン系重合体を含有するゴム成分100質量部に対して、0質量部以上100質量部以下が好ましく、10質量部以上90質量部以下がより好ましく、30質量部以上90質量部以下がさらに好ましい。ゴム用軟化剤の含有量がゴム成分100質量部に対して100質量部以下であることで、ブリードアウトを抑制し、ゴム組成物表面のベタツキを抑制する傾向にある。
 変性共役ジエン系重合体とその他のゴム状重合体、シリカ系無機充填剤、カーボンブラックやその他の充填剤、シランカップリング剤、ゴム用軟化剤等の添加剤を混合する方法については、以下のものに限定されないが、例えば、オープンロール、バンバリーミキサー、ニーダー、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解混合後、溶剤を加熱除去する方法が挙げられる。これらのうち、ロール、バンバリーミキサー、ニーダー、押出機による溶融混練法が生産性、良混練性の観点から好ましい。また、ゴム成分とその他の充填剤、シランカップリング剤、及び添加剤とを一度に混練する方法、複数の回数に分けて混合する方法のいずれも適用可能である。
 ゴム組成物は、加硫剤により加硫処理を施した加硫組成物としてもよい。加硫剤としては、以下のものに限定されないが、例えば、有機過酸化物及びアゾ化合物等のラジカル発生剤、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物が挙げられる。硫黄化合物には、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が含まれる。加硫剤の含有量は、ゴム成分100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。加硫方法としては、従来公知の方法を適用でき、加硫温度は、120℃以上200℃以下が好ましく、より好ましくは140℃以上180℃以下である。
 加硫に際しては、必要に応じて加硫促進剤を用いてもよい。加硫促進剤としては、従来公知の材料を用いることができ、以下のものに限定されないが、例えば、スルフェンアミド系、グアニジン系、チウラム系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系の加硫促進剤が挙げられる。また、加硫助剤としては、以下のものに限定されないが、例えば、亜鉛華、ステアリン酸が挙げられる。加硫促進剤の含有量は、ゴム成分100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。
 ゴム組成物には、本実施形態の目的を損なわない範囲内で、上述した以外のその他の軟化剤及び充填剤、耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、滑剤等の各種添加剤を用いてもよい。その他の軟化剤としては、公知の軟化剤を用いることができる。その他の充填剤としては、具体的には、炭酸カルシウム、炭酸マグネシウム、硫酸アルミニウム、硫酸バリウムが挙げられる。上記の耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、潤滑剤としては、それぞれ公知の材料を用いることができる。
〔タイヤ〕
 本実施形態のタイヤは、本実施形態のゴム組成物を含有する。
 本実施形態のゴム組成物は、以下のものに限定されないが、例えば、省燃費タイヤ、オールシーズンタイヤ、高性能タイヤ、スタッドレスタイヤ等の各種タイヤ:トレッド、カーカス、サイドウォール、ビード部等のタイヤ各部位への利用が可能である。特に、本実施形態のゴム組成物は、加硫物としたときに低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性に優れているので、省燃費タイヤ、高性能タイヤのトレッド用として、より好適に用いられる。また、耐摩耗性と50℃におけるひずみ分散性(G’)のバランスが良好であり、繰返しひずみ強度に優れ、高速連続運転時の操縦安定性に優れることが期待できる。
 以下、具体的な実施例及び比較例を挙げ、本実施形態について詳細に説明するが、本実施形態は以下の実施例により何ら限定されるものではない。
 なお、実施例、並びに比較例の重合体の分析は以下に示す方法で行った。
(物性1)結合スチレン量
 変性共役ジエン系重合体を試料として、試料100mgを、クロロホルムで100mLにメスアップし、溶解して測定サンプルとした。
 スチレンのフェニル基による紫外線吸収波長(254nm付近)の吸収量により、試料である変性共役ジエン系重合体100質量%に対しての結合スチレン量(質量%)を測定した(島津製作所社製の分光光度計「UV-2450」)。
(物性2)ブタジエン部分のミクロ構造(1,2-ビニル結合量)
 変性共役ジエン系重合体を試料として、試料50mgを、10mLの二硫化炭素に溶解して測定サンプルとした。
 溶液セルを用いて、日本分光社製のフーリエ変換赤外分光光度計「FT-IR230」により、赤外線スペクトルを600~1000cm-1の範囲で測定して、所定の波数における吸光度によりハンプトンの方法(R.R.Hampton,Analytical Chemistry 21,923(1949)に記載の方法)の計算式に従い、ブタジエン部分のミクロ構造、すなわち、1,2-ビニル結合量(mol%)を求めた。
(物性3)分子量
<測定条件1>:共役ジエン系重合体又は変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(東ソー社製の商品名「HLC-8320GPC」)を使用して、RI検出器(東ソー社製の商品名「HLC8020」)を用いてクロマトグラムを測定し、標準ポリスチレンを使用して得られる検量線に基づいて、重量平均分子量(Mw)と数平均分子量(Mn)と分子量分布(Mw/Mn)と、変性共役ジエン系重合体のピークトップ分子量(Mp)と共役ジエン系重合体のピークトップ分子量(Mp)とその比率(Mp/Mp)を求めた。
 溶離液は5mmol/Lのトリエチルアミン入りTHF(テトラヒドロフラン)を使用した。
 カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ-H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)-H」を接続して使用した。
 測定用の試料10mgを10mLのTHFに溶解して測定溶液とし、測定溶液10μLをGPC測定装置に注入して、オーブン温度40℃、THF流量0.35mL/分の条件で測定した。
 上記の測定条件1で測定した各種試料の中で、分子量分布(Mw/Mn)の値が1.6未満であった試料は、改めて下記の測定条件2により測定した。測定条件1で測定し、その分子量分布の値が1.6以上であった試料に対しては、測定条件1で測定した。
<測定条件2>:共役ジエン系重合体又は変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置を使用して、クロマトグラムを測定し、標準ポリスチレンを使用した検量線に基づいて重量平均分子量(Mw)と数平均分子量(Mn)、変性共役ジエン系重合体のピークトップ分子量(Mp)と共役ジエン系重合体のピークトップ分子量(Mp)とその比率(Mp/Mp)と、を求めた。溶離液は5mmol/Lのトリエチルアミン入りTHFを使用した。カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn SuperH-H」、カラム:東ソー社製の商品名「TSKgel SuperH5000」、「TSKgel SuperH6000」、「TSKgel SuperH7000」を使用した。オーブン温度40℃、THF流量0.6mL/分の条件で、RI検出器(東ソー社製の商品名「HLC8020」)を用いた。測定用の試料10mgを20mLのTHFに溶解して測定溶液とし、測定溶液20μLをGPC測定装置に注入して測定した。測定条件1で測定し、その分子量分布の値が1.6未満であった試料に対しては、測定条件2で測定した。
 上記のピークトップ分子量(Mp及びMp)は、次のようにして求めた。
 測定して得られるGPC曲線において、最も高分子量の成分として検出されるピークを選択した。その選択したピークについて、そのピークの極大値に相当する分子量を算出し、ピークトップ分子量とした。
(物性4)収縮因子(g’)
 変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(Malvern社製の商品名「GPCmax VE-2001」)を使用して、光散乱検出器、RI検出器、粘度検出器(Malvern社製の商品名「TDA305」)の順番に接続されている3つの検出器を用いて測定し、標準ポリスチレンに基づいて、光散乱検出器とRI検出器結果から絶対分子量を求め、RI検出器と粘度検出器の結果から固有粘度を求めた。直鎖ポリマーは、固有粘度[η]=-3.883M0.771に従うものとし、各分子量に対応する固有粘度の比としての収縮因子(g’)を算出した。上記式中、Mは、絶対分子量である。
 溶離液は5mmol/Lのトリエチルアミン入りTHFを使用した。カラムは、東ソー社製の商品名「TSKgel G4000HXL」、「TSKgel G5000HXL」、及び「TSKgel G6000HXL」を接続して使用した。測定用の試料20mgを10mLのTHFに溶解して測定溶液とし、測定溶液100μLをGPC測定装置に注入して、オーブン温度40℃、THF流量1mL/分の条件で測定した。
(物性5)重合体ムーニー粘度
 共役ジエン系重合体又は変性共役ジエン系重合体を試料として、ムーニー粘度計(上島製作所社製の商品名「VR1132」)を用い、JIS K6300に準拠し、L形ローターを用いてムーニー粘度を測定した。
 測定温度は、共役ジエン系重合体を試料とする場合には110℃とし、変性共役ジエン系重合体を試料とする場合には100℃とした。
 まず、試料を1分間試験温度で予熱した後、ローターを2rpmで回転させ、4分後のトルクを測定してムーニー粘度(ML(1+4))とした。
 その後、変性共役ジエン系重合体を試料とした場合については、即座にローターの回転を停止させ、停止後1.6~5秒間の0.1秒ごとにトルクをムーニー単位で記録し、トルクと時間(秒)を両対数プロットした際の直線の傾きを求め、その絶対値をムーニー緩和率(MSR)とした。
(物性6)ガラス転移温度(Tg)
 変性共役ジエン系重合体を試料として、ISO 22768:2006に準拠して、マックサイエンス社製の示差走査熱量計「DSC3200S」を用い、ヘリウム50mL/分の流通下、-100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とした。
(物性7)変性率
 変性共役ジエン系重合体を試料として、シリカ系ゲルを充填剤としたGPCカラムに、変性した塩基性重合体成分が吸着する特性を応用することにより、測定した。
 試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系カラムで測定したクロマトグラムと、シリカ系カラムで測定したクロマトグラムと、の差分よりシリカ系カラムへの吸着量を測定し、変性率を求めた。
 具体的には、以下に示すとおりである。
・試料溶液の調製
 試料10mg及び標準ポリスチレン5mgを20mLのTHFに溶解させて、試料溶液とした。
・ポリスチレン系カラムを用いたGPC測定条件
 東ソー社製の商品名「HLC-8320GPC」を使用して、5mmol/Lのトリエチルアミン入りTHFを溶離液として用い、試料溶液10μLを装置に注入し、カラムオーブン温度40℃、THF流量0.35mL/分の条件で、RI検出器を用いてクロマトグラムを得た。カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ-H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)-H」を接続して使用した。
・シリカ系カラムを用いたGPC測定条件
 東ソー社製の商品名「HLC-8320GPC」を使用して、THFを溶離液として用い、試料溶液50μLを装置に注入し、カラムオーブン温度40℃、THF流量0.5mL/分の条件で、RI検出器を用いてクロマトグラムを得た。
 カラムは、商品名「Zorbax PSM-1000S」、「PSM-300S」、「PSM-60S」を接続して使用し、その前段にガードカラムとして商品名「DIOL 4.6×12.5mm 5micron」を接続して使用した。
・変性率の計算方法
 ポリスチレン系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP1、標準ポリスチレンのピーク面積をP2、シリカ系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP3、標準ポリスチレンのピーク面積をP4として、下記式より変性率(%)を求めた。
 変性率(%)=[1-(P2×P3)/(P1×P4)]×100
(ただし、P1+P2=P3+P4=100)
(物性8)窒素原子含有量(質量ppm)
 変性共役ジエン系重合体を試料として、JIS―2609:原油及び石油製品-窒素分試験方法、化学発光法に準拠して測定を行った。
 測定装置としては、微量全窒素分析装置(三菱化学アナリテック社製 「TN―2100H」)を用いた。
 測定方法としては、アルゴンガスの流通下、試料を熱分解した後に酸素ガスにより燃焼酸化して生成する一酸化窒素を脱水分条件下でオゾンガスと酸化反応させて検出される590~2500nmにおける発光強度を測定し、その発光強度の面積値から窒素含有量を求めた。
(物性9)珪素原子の有無
 変性共役ジエン系重合体0.5gを試料として、JIS K 0101 44.3.1に準拠して、紫外可視分光光度計(島津製作所社製の商品名「UV-1800」)を用いて測定し、モリブデン青吸光光度法により定量した。
 これにより、珪素原子が検出された場合(検出下限10質量ppm)、珪素原子を有していると判断した。
 これにより、実施例及び比較例の変性共役ジエン系重合体が珪素原子を有することを確認した。
〔実施例1〕変性共役ジエン系重合体(試料1)
 内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、攪拌機付槽型反応器である攪拌機及び温度制御用のジャケットを有する槽型圧力容器を2基連結し重合反応器とした。
 予め水分除去した、1,3-ブタジエンを22.3g/分、スチレンを12.5g/分、n-ヘキサンを214g/分の条件で混合した。この混合溶液を1基目反応基の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn-ブチルリチウムを0.109mmol/分で添加、混合した後、1基目反応基の底部に連続的に供給した。
 更に、極性物質として2,2-ビス(2-オキソラニル)プロパンを0.0281g/分の速度で、重合開始剤として予め調製したピペリジノリチウム(表中、「LA-1」と略す。)とn-ブチルリチウム(モル比ピペリジノリチウム:n-ブチルリチウム=0.72:0.28、ピペリジンとn-ブチルリチウムを、モル比ピペリジン:n-ブチルリチウム=0.72:1.00で調製することで得られる)の混合溶液を0.272mmol(リチウムモル比)/分の速度で、攪拌機で激しく混合する1基目重合反応器の底部へ供給し、連続的に重合反応を継続させた。
 1基目反応器頂部出口における重合溶液の温度が65℃となるように温度を制御した。1基目反応器頂部と2基目反応器の底部を連結させることより、1基目反応器頂部から2基目反応器底部へ重合体溶液を連続的に供給した。2基目反応器頂部出口における重合体の温度が70℃となるように温度を制御した。重合が十分に安定したところで、2基目反応器頂部出口より、変性剤添加前の重合体溶液を少量抜出し、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように添加した後に溶媒を除去し、共役ジエン系重合体の110℃のムーニー粘度及び各種の分子量を測定した。
 次に、2基目反応器の出口より流出した重合体溶液に、変性剤として2.74mmol/Lに希釈したテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(表中、「A」と略す。)を0.0359mmol/分(水分4.8ppm含有n-ヘキサン溶液)の速度で連続的に添加し、変性剤を添加された重合体溶液はスタティックミキサーを通ることで混合され変性した。
 このとき、反応器の出口より流出した重合溶液に変性剤が添加されるまでの時間は4.7分、温度は65℃であり、重合工程における温度と、変性剤を添加するまでの温度との差は5℃であった。
 変性した重合体溶液に、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように0.055g/分(n-ヘキサン溶液)で連続的に添加し、変性反応を終了した。
 酸化防止剤と同時に、重合体100gに対してオイル(JX日鉱日石エネルギー社製 JOMOプロセスNC140)が25.0gとなるように連続的に添加し、スタティックミキサーで混合した。
 スチームストリッピングにより溶媒を除去して、変性共役ジエン系重合体(試料1)を得た。
〔実施例2〕変性共役ジエン系重合体(試料2)
 重合開始剤をピペリジノリチウムからヘキサメチレンイミノリチウム(表中、「LA-2」と略す。)に替えた。その他の条件は、前記〔実施例1〕と同様にして、変性共役ジエン系重合体(試料2)を得た。
〔実施例3〕変性共役ジエン系重合体(試料3)
 変性剤をテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミンからテトラキス(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン(表中「B」と略す。)に替えた。その他の条件は、前記〔実施例1〕と同様にして、変性共役ジエン系重合体(試料3)を得た。
〔実施例4〕変性共役ジエン系重合体(試料4)
 重合開始剤をピペリジノリチウムからヘキサンメチレンイミノリチウム(表中、「LA-2」と略す。)に、変性剤をテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミンからテトラキス(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン(表中「B」と略す。)に替えた。その他の条件は、前記〔実施例1〕と同様にして、変性共役ジエン系重合体(試料4)を得た。
〔実施例5〕変性共役ジエン系重合体(試料5)
 重合開始剤添加量を0.272mmol/分から0.219mmol/分に、極性物質の添加量を0.0281g/分から0.0230g/分に、変性剤の添加量を0.0359mmol/分から0.0275mmol/分に替えた。その他の条件は、前記〔実施例1〕と同様にして、変性共役ジエン系重合体(試料5)を得た。
〔実施例6〕変性共役ジエン系重合体(試料6)
 重合開始剤添加量を0.272mmol/分から0.399mmol/分に、極性物質の添加量を0.0281g/分から0.0427g/分に、変性剤の添加量を0.0359mmol/分から0.0501mmol/分に替えた。その他の条件は、前記〔実施例1〕と同様にして、変性共役ジエン系重合体(試料6)を得た。
〔実施例7〕変性共役ジエン系重合体(試料7)
 内容積5Lで、攪拌機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用した。
 予め不純物を除去した、ノルマルヘキサン1670g、スチレン112g、1,3-ブタジエン207g、極性物質として2,2-ビス(2-オキソラニル)プロパン0.265gを反応器に入れた。
 反応器内が56℃のときに、重合開始剤としてピペリジノリチウム3.57mmolとn-ノルマルブチルリチウム3.57mmolを予め反応させたピペリジノリチウム(表中「LA-3」と略す。)添加し、重合を開始した。
 重合開始直後から、反応器内の温度は上昇していき、ピーク温度を迎え、その温度は78℃であった。
 温度の低下が確認されたところで、変性剤としてテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(表中、「A」と略す。)を0.378mmol添加し、さらに10分撹拌した。
 変性剤を添加したのは、ピーク温度に達した2分後であった。
 重合停止剤としてエタノールを3.57mmol加え、反応を停止させ、変性共役ジエン系重合体含有ポリマー溶液を得た。
 得られた変性共役ジエン系重合体含有ポリマー溶液に、酸化防止剤として2,6-ジ-tert-ブチル-4-ヒドロキシトルエンを0.64g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、変性共役ジエン系共重合体7を得た(試料7)。
〔実施例15〕変性共役ジエン系重合体(試料11)
 重合開始剤としてピペリジノリチウムとn-ブチルリチウムのモル比を、0.35:0.65とし(表中「LA-4」と略す。)、変性剤の添加量を0.0247mmol/分に替えた。その他の条件は、前記〔実施例5〕と同様にして、変性共役ジエン系重合体(試料11)を得た。
〔実施例16〕変性共役ジエン系重合体(試料12)
 重合開始剤としてピペリジノリチウム1.5mmolと、ノルマルブチルリチウム3.57mmolとし(表中「LA-5」と略す。)、変性剤の添加量を0.265mmolに替えた。その他の条件は、前記〔実施例7〕と同様にして、変性共役ジエン系重合体(試料12)を得た。
〔比較例1〕変性共役ジエン系重合体(試料8)
 重合開始剤添加量を0.272mmol/分から0.343mmol/分に、極性物質の添加量を0.0281g/分から0.0354g/分に、変性剤をテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミンからビス(3-トリメトキシシリルプロピル)-N-メチルアミン(表中、「C」と略す。)に、変性剤の添加量を0.0359mmol/分から0.0903mmol/分に替えた。その他の条件は、前記〔実施例1〕と同様にして、変性共役ジエン系重合体(試料8)を得た。
〔比較例2〕変性共役ジエン系重合体(試料9)
 重合開始剤添加量を0.272mmol/分から0.234mmol/分に、極性物質の添加量を0.0281g/分から0.0242g/分に、変性剤をテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミンからビス(3-トリメトキシシリルプロピル)-N-メチルアミン(表中、「C」と略す。)に、変性剤の添加量を0.0359mmol/分から0.0616mmol/分に替えた。その他の条件は、前記〔実施例1〕と同様にして、変性共役ジエン系重合体(試料9)を得た。
〔比較例3〕変性共役ジエン系重合体(試料10)
 重合開始剤をピペリジノリチウムからノルマルブチルリチウム(表中「NBL」と略す。)に、重合開始剤添加量を0.272mmol/分から0.288mmol/分に、極性物質の添加量を0.0281g/分から0.0298g/分に、変性剤の添加量を0.0359mmol/分から0.0378mmol/分に替えた。その他の条件は、前記〔実施例1〕と同様にして、変性共役ジエン系重合体(試料10)を得た。
〔比較例7〕変性共役ジエン系重合体(試料13)
 極性物質の添加量を0.0263g/分とし、重合開始剤の添加量を0.253mmol/分とし、変性剤として1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート(表中、「D」と略す。)を0.0422mmol/分で添加した。その他の条件は、前記〔実施例1〕と同様にして、変性共役ジエン系重合体(試料13)を得た。
Figure JPOXMLDOC01-appb-T000046
 
 表1中に示す「分岐度」とは、変性剤の官能基数と添加量から想定される分岐数であり、収縮因子の値からも確認できる。
 表1中に示す「SiOR残基数」とは、変性剤1分子が有するSiORの総数から反応により減じたSiOR数を引いた値である。ここでRは水素原子又は炭素数1~20のアルキル基を示す。
〔実施例8~14、17、18〕、〔比較例4~6、8〕
 表1に示す試料1~13を原料ゴムとして、以下に示す配合に従い、それぞれの原料ゴムを含有するゴム組成物を得た。
 変性共役ジエン系重合体(試料1~13):100質量部(オイル抜き)
 シリカ(エボニック デグサ社製の商品名「Ultrasil 7000GR」窒素吸着比表面積170m2/g) :75.0質量部
 カーボンブラック
(東海カーボン社製の商品名「シーストKH(N339)」):5.0質量部
 シランカップリング剤(エボニック デグサ社製の商品名「Si75」、ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
 S-RAEオイル
 (JX日鉱日石エネルギー社製の商品名「プロセスNC140」):37.5質量部
 亜鉛華:2.5質量部
 ステアリン酸:1.0質量部
 老化防止剤(N-(1,3-ジメチルブチル)-N‘-フェニル-p-フェニレンジアミン):2.0質量部
 硫黄:2.2質量部
 加硫促進剤1
 (N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
 加硫促進剤2(ジフェニルグアニジン):2.0質量部
合計:239.4質量部
 上記した材料を次の方法により混練してゴム組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム(試料1~13)、充填剤(シリカ、カーボンブラック)、シランカップリング剤、プロセスオイル、亜鉛華、ステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
 次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。
 冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤1、2を加えて混練した。
 その後、成型し、160℃で20分間、加硫プレスにて加硫した。
 加硫前のゴム組成物、及び加硫後のゴム組成物を評価した。
 具体的には、下記の方法により評価した。評価結果を表2に示す。
〔評価1〕配合物ムーニー粘度
 上記で得た第二段の混練後、かつ、第三段の混練前の配合物を試料として、ムーニー粘度計を使用し、JIS K6300-1に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。
 比較例5の結果を100として指数化した。
 指数が小さいほど加工性が良好であることを示す。
〔評価2〕粘弾性パラメータ、ひずみ分散性
 レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメータを測定した。
 各々の測定値は、比較例5のゴム組成物に対する結果を100として指数化した。
 0℃において周波数10Hz、ひずみ1%で測定したtanδをウェットグリップ性の指標とした。
 指数が大きいほどウェットグリップ性が良好であることを示す。
 また、50℃において周波数10Hz、ひずみ3%で測定したtanδを低ヒステリシスロス性の指標とした。
 指数が小さいほど低ヒステリシスロス性が良好であることを示す。
 また、50℃において周波数10Hz、ひずみ0.1%で測定したtanδとひずみ10%で測定したtanδとの差を、ひずみ分散性(G’)の指標とした。
 指数が小さいほどひずみ分散性が良好であることを示す。
〔評価3〕引張強度及び引張伸び
 JIS K6251の引張試験法に準拠し、引張強度及び引張伸びを測定し、比較例5の結果を100として指数化した。
 指数が大きいほど引張強度、引張伸びが良好であることを示す。
〔評価4〕耐摩耗性
 アクロン摩耗試験機(安田精機製作所社製)を使用し、JIS K6264-2に準拠して、荷重44.4N、1000回転の摩耗量を測定し、比較例5の結果を100として指数化した。
 指数が大きいほど耐摩耗性が良好であることを示す。 
〔評価5〕繰返しひずみ強度
 定伸長疲労試験機、(株)マイズ試験機製を使用し、JIS K6270に準拠して、ダンベル型試験片を用いて、一定速度、かつ一定ストロークで伸縮を繰返し、試験片が破断した時の伸縮回数を測定した。指数が大きいほど繰返しひずみ強度が良好であることを示す。
Figure JPOXMLDOC01-appb-T000047
 
 表2に示すように、実施例8~14、17、18の、試料1~7、11、12を使用した変性共役ジエン系共重合体組成物は、比較例4~6、8の、試料8~10、13を使用した変性共役ジエン系重合体組成物と比較すると、加硫物とする際の加工性に極めて優れることが確認された。また、加硫物としたときにおける特に低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、良好な耐摩耗性を有し、ひずみ分散性も良好であり、実用上十分な破壊特性をも有していることが確認された。
 本出願は、2016年8月19日に日本国特許庁に出願された日本特許出願(特願2016-161490)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明に係る変性共役ジエン系重合体は、タイヤトレッド、自動車の内装・外装品、防振ゴム、ベルト、履物、発砲体、各種工業用品用途等の分野において産業上の利用可能性がある。

Claims (15)

  1.  窒素原子を有する変性共役ジエン系重合体であって、
     前記窒素原子の含有量が、前記変性共役ジエン系重合体の総量に対して、25質量ppm以上であり、
     粘度検出計付きGPC-光散乱測定法による収縮因子(g’)が、0.59以下であり、
     重量平均分子量が、200,000以上、3,000,000以下である、
    変性共役ジエン系重合体。
  2.  110℃において測定されるムーニー緩和率が、0.45以下である、請求項1に記載の変性共役ジエン系重合体。
  3.  共役ジエン系重合体の総量に対して、変性率が75質量%以上である、請求項1又は2に記載の変性共役ジエン系重合体。
  4.  複数の共役ジエン系重合体鎖が変性剤に結合しており、
     少なくとも1つの共役ジエン系重合体鎖に窒素原子を有し、珪素原子を変性剤残基中に有する、請求項1乃至3のいずれか一項に記載の変性共役ジエン系重合体。
  5.  分岐度が8以上である、請求項1乃至4のいずれか一項に記載の変性共役ジエン系重合体。
  6.  下記一般式(I)で表される、請求項1乃至5のいずれか一項に記載の変性共役ジエン系重合体。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(I)中、Dは、窒素原子を有する共役ジエン系重合体鎖を示し、R~Rは、各々独立に、単結合又は炭素数1~20のアルキレン基を示し、R及びRは、各々独立に、炭素数1~20のアルキル基を示し、R、R、及びRは、各々独立に、水素原子又は炭素数1~20のアルキル基を示し、R及びR10は、各々独立に、炭素数1~20のアルキレン基を示し、R11は、水素原子又は炭素数1~20のアルキル基を示す。m及びxは、x≦mである限り各々独立に、1~3の整数を示し、pは、1又は2を示し、yは、1~3の整数を示し、y≦(p+1)であり、zは、1又は2の整数を示す。それぞれ複数存在する場合のD、R~R11、m、p、x、y、及びzは、x≦m及びy≦(p+1)を満たす限り各々独立しており、同じであっても異なっていてもよい。iは、0~6の整数を示し、jは、0~6の整数を示し、kは、0~6の整数を示し、(i+j+k)は、4~10の整数であり、((x×i)+(y×j)+(z×k))は、8~30の整数である。Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を示す。)
  7.  前記式(I)において、Aは、下記一般式(II)~(V)のいずれかで表される、請求項6に記載の変性共役ジエン系重合体。
    Figure JPOXMLDOC01-appb-C000002
     
    (式(II)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
    Figure JPOXMLDOC01-appb-C000003
     
    (式(III)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、Bは、炭素数1~20のアルキル基を示し、aは、1~10の整数を示す。それぞれ複数存在する場合のB及びBは、各々独立している。)
    Figure JPOXMLDOC01-appb-C000004
     
    (式(IV)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
    Figure JPOXMLDOC01-appb-C000005
     
    (式(V)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
  8.  請求項1乃至7のいずれか一項に記載の変性共役ジエン系重合体の製造方法であって、
     分子内に少なくとも1個の窒素原子を有する有機リチウム化合物の存在下、少なくとも共役ジエン化合物を重合するか、又は、有機リチウム化合物の存在下、少なくとも共役ジエン化合物と分子中に少なくとも1個の窒素原子を有する共重合可能な単量体とを共重合する、窒素含有共役ジエン系重合体を得る重合工程と、
     前記窒素含有共役ジエン系重合体を、1分子中に少なくとも3個の珪素原子及び少なくとも1個の窒素原子を有し、反応活性点が8個以上ある変性剤により変性する変性工程と、
    を、有する、
     変性共役ジエン系重合体の製造方法。
  9.  前記変性剤が、珪素原子に結合したアルコキシ基を4個以上有し、3級アミノ基を有する変性剤である、請求項8に記載の変性共役ジエン系重合体の製造方法。
  10.  反応工程における変性剤が、下記一般式(VI)で表される化合物である、請求項9に記載の変性共役ジエン系重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000006
     
    (式(VI)中、R12~R14は、各々独立に、単結合又は炭素数1~20のアルキレン基を示し、R15~R18、及びR20は、各々独立に、炭素数1~20のアルキル基を示し、R19及びR22は、各々独立に、炭素数1~20のアルキレン基を示し、R21は、炭素数1~20のアルキル基又はトリアルキルシリル基を示し、mは、1~3の整数を示し、pは、1又は2を示す。それぞれ複数存在する場合のR12~R22、m、及びpは、各々独立しており、同じであっても異なっていてもよい。iは、0~6の整数を示し、jは、0~6の整数を示し、kは、0~6の整数を示し、(i+j+k)は、4~10の整数である。Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、活性水素を有しない有機基を表す。)
  11.  前記式(VI)において、Aは、下記一般式(II)~(V)のいずれかで表される、
    請求項10に記載の変性共役ジエン系重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000007
     
    (式(II)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
    Figure JPOXMLDOC01-appb-C000008
     
    (式(III)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、Bは、炭素数1~20のアルキル基を示し、aは、1~10の整数を示す。それぞれ複数存在する場合のB及びBは、各々独立している。)
    Figure JPOXMLDOC01-appb-C000009
     
    (式(IV)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
    Figure JPOXMLDOC01-appb-C000010
     
    (式(V)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
  12.  前記分子内に少なくとも1個の窒素原子を有する有機リチウム化合物は、下記一般式(1)~(5)のいずれかで表される有機リチウム化合物を含む、請求項8乃至11のいずれか一項に記載の変性共役ジエン系重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000011
     
    (式(1)中、R10及びR11は、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、炭素数6~20のアラルキル基、及び保護基からなる群より選ばれる少なくとも1種を示し、R10及びR11は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合のR10及びR11は、炭素数5~12のアルキル基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。)
    Figure JPOXMLDOC01-appb-C000012
     
    (式(2)中、R12及びR13は、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、炭素数6~20のアラルキル基、及び保護基からなる群より選ばれる少なくとも1種を示し、R12及びR13は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合のR12及びR13は、炭素数5~12のアルキル基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。R14は、炭素数1~30の脂肪族または芳香族置換基を有してもよいアルキレン基、又は炭素数1~20の共役ジエン系重合体を示す。)
    Figure JPOXMLDOC01-appb-C000013
     
    (式(3)中、R12及びR13は、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、炭素数6~20のアラルキル基、及び保護基からなる群より選ばれる少なくとも1種を示し、R12及びR13は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合のR12及びR13は、炭素数5~12のアルキル基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。R19は、炭素数1~30の脂肪族または芳香族置換基を有してもよい炭化水素基を示す。R20は炭素数1~12の置換アミノ基を有してもよい炭化水素基、nは1~10の整数を示す。)
    Figure JPOXMLDOC01-appb-C000014
     
    (式(4)中、R15及びR16は、各々独立して、炭素数1~12のアルキル基、炭素数3~14のシクロアルキル基、及び炭素数6~20のアリール基、保護基からなる群より選ばれる少なくとも1種を示し、R15及びR16は、結合して隣接した窒素原子とともに環状構造を形成していてもよく、その場合のR15及びR16は、炭素数5~12のアルキル基を示し、その一部分に分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。)
    Figure JPOXMLDOC01-appb-C000015
     
    (式(5)中、R17は、炭素数が2~10の炭化水素基を示し、その一部分に不飽和結合又は分岐構造を有していてもよい。R18は、炭素数1~12のアルキル基、保護基を示し、その一部分に分岐構造を有していてもよい。なお、保護基としてはアルキル置換シリル基である。)
  13.  請求項1乃至7のいずれか一項に記載の変性共役ジエン系重合体100質量部と、
     伸展油1~60質量部と、
    を、含有する、油展変性共役ジエン系重合体。
  14.  ゴム成分と、当該ゴム成分100質量部に対して5.0質量部以上150質量部の充填剤と、を含み、
     前記ゴム成分は、当該ゴム成分の総量に対して、請求項1乃至7のいずれか一項に記載の変性共役ジエン系重合体を、10質量%以上含む、ゴム組成物。
  15.  請求項14に記載のゴム組成物を含有する、タイヤ。
PCT/JP2017/029013 2016-08-19 2017-08-09 変性共役ジエン系重合体、その製造方法、ゴム組成物、タイヤ WO2018034217A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201780050029.2A CN109563180B (zh) 2016-08-19 2017-08-09 改性共轭二烯系聚合物、其制造方法、橡胶组合物、轮胎
KR1020197004086A KR102143416B1 (ko) 2016-08-19 2017-08-09 변성 공액 디엔계 중합체, 그의 제조 방법, 고무 조성물, 타이어
JP2018534375A JP6728360B2 (ja) 2016-08-19 2017-08-09 変性共役ジエン系重合体、その製造方法、ゴム組成物、タイヤ
SG11201901330XA SG11201901330XA (en) 2016-08-19 2017-08-09 Modified conjugated diene-based polymer, production method thereof, rubber composition and tire
EP17841440.5A EP3502144B1 (en) 2016-08-19 2017-08-09 Modified conjugated diene-based polymer, production method thereof, rubber composition and tire
BR112019002860-9A BR112019002860B1 (pt) 2016-08-19 2017-08-09 Polímero de dieno conjugado modificado, método para produção do mesmo, composição de borracha, e pneu
US16/326,533 US11091609B2 (en) 2016-08-19 2017-08-09 Modified conjugated diene-based polymer, production method thereof, rubber composition and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-161490 2016-08-19
JP2016161490 2016-08-19

Publications (1)

Publication Number Publication Date
WO2018034217A1 true WO2018034217A1 (ja) 2018-02-22

Family

ID=61196796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029013 WO2018034217A1 (ja) 2016-08-19 2017-08-09 変性共役ジエン系重合体、その製造方法、ゴム組成物、タイヤ

Country Status (9)

Country Link
US (1) US11091609B2 (ja)
EP (1) EP3502144B1 (ja)
JP (1) JP6728360B2 (ja)
KR (1) KR102143416B1 (ja)
CN (1) CN109563180B (ja)
BR (1) BR112019002860B1 (ja)
SG (1) SG11201901330XA (ja)
TW (1) TWI655218B (ja)
WO (1) WO2018034217A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186367A1 (ja) * 2017-04-06 2018-10-11 株式会社ブリヂストン ゴム組成物及びタイヤ
WO2019244850A1 (ja) * 2018-06-18 2019-12-26 株式会社ブリヂストン ゴム組成物およびタイヤ
JP2020007532A (ja) * 2018-06-28 2020-01-16 旭化成株式会社 変性共役ジエン系重合体混合物の製造方法
JP2020015881A (ja) * 2018-07-27 2020-01-30 旭化成株式会社 変性共役ジエン系重合体、その製造方法、変性共役ジエン系組成物、及びタイヤ
JP2020037676A (ja) * 2018-08-30 2020-03-12 旭化成株式会社 変性共役ジエン系重合体組成物
JP2020041136A (ja) * 2018-09-05 2020-03-19 旭化成株式会社 ゴム組成物
WO2020071557A1 (ja) * 2018-10-04 2020-04-09 株式会社ブリヂストン ゴム組成物、トレッドゴムおよびタイヤ
KR20200128094A (ko) * 2018-10-03 2020-11-11 아사히 가세이 가부시키가이샤 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어
JP2022517679A (ja) * 2019-10-30 2022-03-09 エルジー・ケム・リミテッド 変性共役ジエン系重合体及びこれを含むゴム組成物
JP2022518540A (ja) * 2019-09-11 2022-03-15 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102035177B1 (ko) 2018-07-11 2019-11-08 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2021049913A1 (ko) * 2019-09-11 2021-03-18 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2021049909A1 (ko) * 2019-09-11 2021-03-18 주식회사 엘지화학 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
SG11202112398YA (en) * 2019-09-11 2021-12-30 Lg Chemical Ltd Modified conjugated diene-based polymer and rubber composition including the same
JP7356881B2 (ja) * 2019-11-26 2023-10-05 旭化成株式会社 共役ジエン系重合体組成物、及びタイヤ
JP7377344B2 (ja) * 2020-04-03 2023-11-09 旭化成株式会社 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物
JP2021165370A (ja) * 2020-04-03 2021-10-14 旭化成株式会社 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物
US20230138073A1 (en) * 2020-04-06 2023-05-04 Asahi Kasei Kabushiki Kaisha Hydrogenated Conjugated Diene-Based Polymer, Hydrogenated Conjugated Diene-Based Polymer Composition, Rubber Composition, and Method for Producing Hydrogenated Conjugated Diene-Based Polymer
JP2021167407A (ja) * 2020-04-08 2021-10-21 旭化成株式会社 共役ジエン系重合体及びその製造方法、並びにゴム組成物。

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131668A1 (ja) * 2009-05-13 2010-11-18 旭化成ケミカルズ株式会社 分岐状共役ジエン系重合体の製造方法
GB2503189A (en) * 2011-12-08 2013-12-25 Dow Corning Hydrolysable silanes and polymeric materials modified by silanes
JP2015528050A (ja) * 2013-08-01 2015-09-24 エルジー・ケム・リミテッド 変性共役ジエン系重合体及びその製造方法
WO2016133154A1 (ja) * 2015-02-19 2016-08-25 旭化成株式会社 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ
JP2017002189A (ja) * 2015-06-10 2017-01-05 旭化成株式会社 変性ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69822278T2 (de) 1997-12-16 2004-08-12 Jsr Corp. Kautschuk aus einem konjugierten Diolefin -Copolymer und dessen Zusammensetzungen
JP3895446B2 (ja) 1997-12-26 2007-03-22 株式会社ブリヂストン 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物
CN1249145C (zh) 1999-09-27 2006-04-05 旭化成株式会社 橡胶组合物
JP4129619B2 (ja) 2001-09-27 2008-08-06 Jsr株式会社 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ
JP2003189616A (ja) 2001-12-17 2003-07-04 Sony Corp スイッチング電源回路
JP2005290355A (ja) 2004-03-11 2005-10-20 Sumitomo Chemical Co Ltd 変性ジエン系重合体ゴム及びその製造方法
EP1836238B1 (en) 2005-01-14 2012-07-11 Bridgestone Corporation Functionalized polymers and improved tires therefrom
EP2003146B1 (en) 2006-03-31 2012-12-26 Zeon Corporation Use of a conjugated diene rubber for a tire
KR101432412B1 (ko) * 2010-04-16 2014-08-20 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체 및 변성 공액 디엔계 중합체 조성물
SG187314A1 (en) 2011-07-13 2013-02-28 Sumitomo Chemical Co Method for producing modified conjugated diene-based polymer, and method for producing vulcanized polymer
EP2749575B1 (en) * 2011-08-26 2015-05-13 Asahi Kasei Chemicals Corporation Method for producing modified conjugated diene polymer, modified conjugated diene polymer, modified conjugated diene polymer composition, rubber composition, and tire
JP5971912B2 (ja) 2011-10-06 2016-08-17 旭化成株式会社 変性共役ジエン系重合体組成物
US9428596B2 (en) 2011-12-28 2016-08-30 Zeon Corporation Method of production of modified conjugated diene-based rubber
HUE044416T2 (hu) * 2015-02-19 2019-10-28 Asahi Chemical Ind Módosított, konjugált dién-bázisú polimer, eljárás elõállítására és módosított konjugált dién-bázisú polimer kompozíció

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131668A1 (ja) * 2009-05-13 2010-11-18 旭化成ケミカルズ株式会社 分岐状共役ジエン系重合体の製造方法
GB2503189A (en) * 2011-12-08 2013-12-25 Dow Corning Hydrolysable silanes and polymeric materials modified by silanes
JP2015528050A (ja) * 2013-08-01 2015-09-24 エルジー・ケム・リミテッド 変性共役ジエン系重合体及びその製造方法
WO2016133154A1 (ja) * 2015-02-19 2016-08-25 旭化成株式会社 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ
JP2017002189A (ja) * 2015-06-10 2017-01-05 旭化成株式会社 変性ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3502144A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186367A1 (ja) * 2017-04-06 2018-10-11 株式会社ブリヂストン ゴム組成物及びタイヤ
JPWO2018186367A1 (ja) * 2017-04-06 2020-05-14 株式会社ブリヂストン ゴム組成物及びタイヤ
WO2019244850A1 (ja) * 2018-06-18 2019-12-26 株式会社ブリヂストン ゴム組成物およびタイヤ
JP2020007532A (ja) * 2018-06-28 2020-01-16 旭化成株式会社 変性共役ジエン系重合体混合物の製造方法
JP7280115B2 (ja) 2018-06-28 2023-05-23 旭化成株式会社 変性共役ジエン系重合体混合物の製造方法
JP2020015881A (ja) * 2018-07-27 2020-01-30 旭化成株式会社 変性共役ジエン系重合体、その製造方法、変性共役ジエン系組成物、及びタイヤ
JP7161883B2 (ja) 2018-07-27 2022-10-27 旭化成株式会社 変性共役ジエン系重合体、その製造方法、変性共役ジエン系組成物、及びタイヤ
JP2020037676A (ja) * 2018-08-30 2020-03-12 旭化成株式会社 変性共役ジエン系重合体組成物
JP7312638B2 (ja) 2018-08-30 2023-07-21 旭化成株式会社 変性共役ジエン系重合体組成物の製造方法
JP2020041136A (ja) * 2018-09-05 2020-03-19 旭化成株式会社 ゴム組成物
JP7315409B2 (ja) 2018-09-05 2023-07-26 旭化成株式会社 ゴム組成物
KR102356180B1 (ko) * 2018-10-03 2022-02-08 아사히 가세이 가부시키가이샤 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어
KR20200128094A (ko) * 2018-10-03 2020-11-11 아사히 가세이 가부시키가이샤 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어
KR20220003150A (ko) * 2018-10-03 2022-01-07 아사히 가세이 가부시키가이샤 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어
EP3862371A4 (en) * 2018-10-03 2021-12-22 Asahi Kasei Kabushiki Kaisha CONJUGATE DIENE POLYMER, BRANCHING AGENT, PRODUCTION PROCESS FOR CONJUGATED POLYMER OF DENES, EXTENDED CONJUGATE DENES POLYMER, RUBBER AND PNEUMATIC COMPOSITION
CN111936536A (zh) * 2018-10-03 2020-11-13 旭化成株式会社 共轭二烯系聚合物、支化剂、共轭二烯系聚合物的制造方法、充油共轭二烯系聚合物、橡胶组合物以及轮胎
CN111936536B (zh) * 2018-10-03 2023-04-07 旭化成株式会社 共轭二烯系聚合物、支化剂、共轭二烯系聚合物的制造方法、充油共轭二烯系聚合物、橡胶组合物以及轮胎
US11339240B2 (en) 2018-10-03 2022-05-24 Asahi Kasei Kabushiki Kaisha Conjugated diene-based polymer, branching agent, production method for conjugated diene-based polymer, extended conjugated diene-based polymer, rubber composition, and tire
KR102485758B1 (ko) 2018-10-03 2023-01-09 아사히 가세이 가부시키가이샤 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어
CN112839989A (zh) * 2018-10-04 2021-05-25 株式会社普利司通 橡胶组合物、胎面橡胶和轮胎
JPWO2020071557A1 (ja) * 2018-10-04 2021-09-09 株式会社ブリヂストン ゴム組成物、トレッドゴムおよびタイヤ
WO2020071557A1 (ja) * 2018-10-04 2020-04-09 株式会社ブリヂストン ゴム組成物、トレッドゴムおよびタイヤ
US11780994B2 (en) 2018-10-04 2023-10-10 Bridgestone Corporation Rubber composition, tread rubber, and tire
JP7422674B2 (ja) 2018-10-04 2024-01-26 株式会社ブリヂストン ゴム組成物、トレッドゴムおよびタイヤ
JP7225418B2 (ja) 2019-09-11 2023-02-20 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物
JP2022518540A (ja) * 2019-09-11 2022-03-15 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物
JP7139532B2 (ja) 2019-10-30 2022-09-20 エルジー・ケム・リミテッド 変性共役ジエン系重合体及びこれを含むゴム組成物
JP2022517679A (ja) * 2019-10-30 2022-03-09 エルジー・ケム・リミテッド 変性共役ジエン系重合体及びこれを含むゴム組成物

Also Published As

Publication number Publication date
BR112019002860B1 (pt) 2023-04-04
TWI655218B (zh) 2019-04-01
KR102143416B1 (ko) 2020-08-11
US11091609B2 (en) 2021-08-17
TW201815833A (zh) 2018-05-01
CN109563180A (zh) 2019-04-02
EP3502144A4 (en) 2019-08-14
JP6728360B2 (ja) 2020-07-22
KR20190030216A (ko) 2019-03-21
SG11201901330XA (en) 2019-03-28
BR112019002860A2 (pt) 2019-05-14
CN109563180B (zh) 2022-01-07
JPWO2018034217A1 (ja) 2019-06-13
EP3502144B1 (en) 2021-06-02
US20190203021A1 (en) 2019-07-04
EP3502144A1 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP6796903B2 (ja) 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ
JP6728360B2 (ja) 変性共役ジエン系重合体、その製造方法、ゴム組成物、タイヤ
US10434821B2 (en) Modified conjugated diene-based polymer and production method therefor, rubber composition and tire
JP6830103B2 (ja) 変性共役ジエン系重合体、ゴム組成物、及びタイヤ
JP6769780B2 (ja) 変性共役ジエン系重合体及びそのゴム組成物、並びにタイヤ
JP5705120B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP6836851B2 (ja) 変性共役ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ
JP6651021B2 (ja) 変性共役ジエン系重合体及びそのゴム組成物、並びにタイヤ
JP2018028018A (ja) 変性共役ジエン系重合体組成物、トレッド用ゴム組成物、及びタイヤ
JP7343589B2 (ja) 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、油展共役ジエン系重合体、ゴム組成物、及びタイヤ
JP7312638B2 (ja) 変性共役ジエン系重合体組成物の製造方法
JP2019131723A (ja) 変性共役ジエン系重合体組成物及び製造方法、並びにタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018534375

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197004086

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019002860

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017841440

Country of ref document: EP

Effective date: 20190319

ENP Entry into the national phase

Ref document number: 112019002860

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190212