WO2018025654A1 - 二次電池 - Google Patents
二次電池 Download PDFInfo
- Publication number
- WO2018025654A1 WO2018025654A1 PCT/JP2017/026386 JP2017026386W WO2018025654A1 WO 2018025654 A1 WO2018025654 A1 WO 2018025654A1 JP 2017026386 W JP2017026386 W JP 2017026386W WO 2018025654 A1 WO2018025654 A1 WO 2018025654A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- oxide semiconductor
- type oxide
- electrode
- secondary battery
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 122
- 239000000463 material Substances 0.000 claims abstract description 63
- 239000000203 mixture Substances 0.000 claims abstract description 47
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000011810 insulating material Substances 0.000 claims abstract description 18
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 12
- 239000007769 metal material Substances 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims description 78
- 239000002184 metal Substances 0.000 claims description 78
- 239000010936 titanium Substances 0.000 claims description 30
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 22
- 229910052719 titanium Inorganic materials 0.000 claims description 22
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 21
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 16
- 229910001887 tin oxide Inorganic materials 0.000 claims description 16
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 239000010937 tungsten Substances 0.000 claims description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 10
- 150000003657 tungsten Chemical class 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 192
- 238000005259 measurement Methods 0.000 description 18
- 238000000576 coating method Methods 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 14
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 238000003860 storage Methods 0.000 description 10
- 239000002243 precursor Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000011651 chromium Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 229920002545 silicone oil Polymers 0.000 description 6
- 230000001629 suppression Effects 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910000480 nickel oxide Inorganic materials 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- UNRNJMFGIMDYKL-UHFFFAOYSA-N aluminum copper oxygen(2-) Chemical compound [O-2].[Al+3].[Cu+2] UNRNJMFGIMDYKL-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- MCCIMQKMMBVWHO-UHFFFAOYSA-N octadecanoic acid;titanium Chemical compound [Ti].CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O MCCIMQKMMBVWHO-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/008—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/33—Thin- or thick-film capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
- H01L28/75—Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a technique for improving the performance of a secondary battery.
- Patent Document 1 discloses a power storage element including a power storage layer including a mixture of an insulating material and n-type semiconductor particles between a first electrode and a second electrode.
- a p-type semiconductor layer is disposed between the power storage layer and the second electrode.
- a leak suppression layer is disposed between the p-type semiconductor layer and the electricity storage layer.
- the leak suppression layer is composed of at least one selected from silicon dioxide, aluminum oxide, and magnesium oxide.
- Patent Document 2 discloses a power storage element including a power storage layer including a mixture of an insulating material and n-type semiconductor particles between a first electrode and a second electrode.
- a p-type semiconductor layer is disposed between the power storage layer and the second electrode.
- a diffusion suppression layer having a resistivity of 1000 ⁇ ⁇ cm or less is disposed between the first electrode and the electricity storage layer.
- the diffusion suppression layer is made of nitride, carbide, or boride.
- Cited Document 1 if the thickness of the leak suppression layer is increased in order to obtain a sufficient leak suppression effect, there is a problem that the movement of electric charges is limited and the performance of the battery deteriorates.
- silicon dioxide is used as the material of the leak-suppressing layer and the leak-suppressing layer is thin so that the movement of electric charges is not restricted, a heterogeneous layer is easily formed and local dielectric breakdown occurs, so that the desired battery There is a problem that it becomes difficult to obtain performance.
- the diffusion suppressing layer of Patent Document 2 is for preventing the substrate disposed under the first electrode or the component of the first electrode from being suppressed from diffusing into the power storage layer. Not arranged to prevent surface oxidation. That is, in Patent Document 2, the oxidation of the surface of the first electrode cannot be prevented, and the electrical resistance between the first electrode and the power storage layer increases with this oxidation, so that desired battery performance can be obtained. There is a problem that it becomes difficult.
- This invention is made
- the secondary battery according to one embodiment of the present embodiment is disposed between the first electrode, the second electrode, the first electrode, and the second electrode, and includes an insulating material and a first n-type oxide semiconductor material.
- a charging layer including a mixture of the following: an n-type oxide semiconductor layer disposed between the charging layer and the first electrode and including a second n-type oxide semiconductor material; a charging layer and a second electrode; A p-type oxide semiconductor layer including a p-type oxide semiconductor material, and a silicon oxide and a third n-type oxide disposed between the charge layer and the p-type oxide semiconductor layer.
- a mixture layer including a mixture with a semiconductor material, and a conductive layer disposed between the first electrode and the n-type oxide semiconductor layer and including a metal material are provided.
- the third n-type oxide semiconductor material may be tin oxide.
- the conductive layer may contain the same metal element as the metal element contained in the second n-type oxide semiconductor material.
- the conductive layer may contain a metal element having an electric conductivity higher than that of the metal element contained in the second n-type oxide semiconductor material.
- the second n-type oxide semiconductor material may be titanium oxide.
- the conductive layer may include a titanium film provided in contact with the n-type oxide semiconductor layer.
- the conductive layer has a laminated structure of a tungsten film and a titanium film, and may be provided so that the tungsten film is in contact with the first electrode.
- the conductive layer includes a first metal film in contact with the n-type oxide semiconductor layer and a second metal film in contact with the first electrode.
- the first metal film includes a second n-type oxide semiconductor material. The same metal element as the contained metal element may be contained.
- the second metal film may contain a metal element having an electric conductivity higher than that of the metal element contained in the second n-type oxide semiconductor material.
- the thickness of the mixture layer may be 100 nm to 250 nm.
- a technique for improving the performance of the secondary battery can be provided.
- FIG. 1 is a cross-sectional view schematically showing the configuration of the secondary battery 10.
- the first electrode 11, the conductive layer 12, the n-type oxide semiconductor layer 13, the charging layer 14, the mixture layer 15, the p-type oxide semiconductor layer 16, and the second electrode 17 are laminated in this order. It has a laminated structure.
- the first electrode 11 is formed of a conductive sheet or a conductive substrate, and functions as a base material for providing a laminated structure.
- a metal foil sheet or the like can be used as the first electrode 11.
- a SUS (Steel Use Stainless) sheet is used as the first electrode 11.
- a metal foil sheet such as copper or aluminum may be used as the first electrode 11.
- the base material which consists of an insulating material can be prepared and the 1st electrode 11 can also be formed on a base material.
- a metal material such as chromium (Cr) or titanium (Ti) can be used as the material of the first electrode 11.
- Cr chromium
- Ti titanium
- an alloy film containing aluminum (Al), silver (Ag), or the like may be used.
- the conductive layer 12 can be formed of a metal material.
- the conductive layer 12 has a one-layer structure composed of the first metal film 12a or a two-layer structure composed of the first metal film 12a and the second metal film 12b.
- FIG. 1 shows a case where the conductive layer 12 has a two-layer structure including a first metal film 12a and a second metal film 12b.
- the second metal film 12 b is in contact with the first electrode 11
- the first metal film 12 a is in contact with the n-type oxide semiconductor layer 13.
- the first metal film 12 a is in contact with the n-type oxide semiconductor layer 13 and the first electrode 11.
- the material of the first metal film 12 a preferably contains the same metal element as that of the n-type oxide semiconductor layer 13.
- the first metal film 12a is preferably titanium (Ti).
- the material of the first metal film 12 a preferably includes a metal element having an electric conductivity higher than that of the metal element included in the n-type oxide semiconductor layer 13.
- the first metal film 12a is made of titanium (Ti), an alloy containing titanium (Ti), aluminum (Al), or aluminum (Al). It is preferable that it is an alloy containing, chromium (Cr), or Ni (nickel).
- the second metal film 12b preferably contains, for example, a metal element having an electric conductivity higher than that of the metal element contained in the n-type oxide semiconductor layer 13.
- the second metal film 12b is preferably aluminum (Al) or tungsten (W).
- the conductive layer 12 has a one-layer structure in which the first metal film 12a is a titanium (Ti) film, or the first metal film 12a is a titanium (Ti) film and the second metal film 12b is a tungsten (W) film. It may have a two-layer structure.
- the thickness of the conductive layer 12 is 15 nm to 300 nm.
- the conductive layer 12 can be formed on the first electrode 11 by sputtering or vapor deposition.
- the n-type oxide semiconductor layer 13 includes a second n-type oxide semiconductor material.
- a material of the n-type oxide semiconductor layer 13 titanium dioxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), or the like can be used.
- the thickness of the n-type oxide semiconductor layer 13 is preferably 30 nm to 120 nm.
- titanium oxide having a thickness of 60 to 120 nm can be used.
- the n-type oxide semiconductor layer 13 can be formed on the first electrode 11 by sputtering or vapor deposition.
- the charging layer 14 is formed of a mixture of an insulating material and an n-type oxide semiconductor material.
- a fine-particle n-type oxide semiconductor can be used as the n-type oxide semiconductor material (first n-type oxide semiconductor material) of the charging layer 14.
- An n-type oxide semiconductor changes its photoexcitation structure by irradiation with ultraviolet rays, and becomes a layer having a charging function.
- the n-type oxide semiconductor includes a mixture in which an n-type oxide semiconductor material and an insulating material are mixed.
- a silicone resin can be used as the insulating material.
- the insulating material it is preferable to use a silicon compound (silicone) having a main skeleton with a siloxane bond such as silicon oxide.
- the charge layer 14 is formed of silicon oxide and titanium dioxide using the first n-type oxide semiconductor material as titanium dioxide.
- the n-type oxide semiconductor material that can be used in the charge layer 14 tin oxide (SnO 2 ) or zinc oxide (ZnO) is suitable. It is also possible to use materials that combine two or all of titanium dioxide, tin oxide, and zinc oxide.
- a coating liquid in which a solvent is mixed with a mixture of a precursor of titanium oxide, tin oxide, or zinc oxide and silicone oil is prepared.
- a coating solution in which fatty acid titanium and silicone oil are mixed in a solvent is prepared.
- the coating solution is applied onto the n-type oxide semiconductor layer 13 by a spin coating method, a slit coating method, or the like.
- the charge layer 14 can be formed on the n-type oxide semiconductor layer 13 by drying and baking the coating film.
- the precursor titanium stearate, which is a precursor of titanium oxide, can be used, for example. Titanium oxide, tin oxide, and zinc oxide are formed by decomposition from an aliphatic acid salt that is a precursor of a metal oxide.
- the charging layer 14 after drying and firing may be UV-cured by irradiating with ultraviolet rays.
- fine particles of an oxide semiconductor can be used without using a precursor.
- a liquid mixture is produced by mixing nanoparticles of titanium oxide or zinc oxide with silicone oil.
- a coating liquid is produced
- a coating solution is applied onto the n-type oxide semiconductor layer 13 by a spin coating method, a slit coating method, or the like.
- the charging layer 14 can be formed by performing drying, baking, and UV irradiation on the coating film.
- the mixture layer 15 is formed of a mixture in which an insulating material and an n-type oxide semiconductor material are mixed. Silicon oxide can be used as the material for the insulating material. For example, when the insulating material is silicon oxide, the mixture layer 15 includes silicon dioxide (SiO 2 ). The insulating material of the mixture layer 15 may be the same material as the insulating material of the charging layer 14.
- the material of the n-type oxide semiconductor material tin oxide (SnO) can be used.
- the mixture layer 15 includes a mixture in which silicon oxide and tin oxide are mixed.
- an n-type oxide semiconductor material is added to silicon oxide, silicon nitride, or silicone oil.
- the n-type oxide semiconductor is dispersed in silicon dioxide which is an insulating material.
- the first n-type oxide semiconductor material included in the charging layer 14 and the second n-type oxide semiconductor material included in the n-type oxide semiconductor layer 13 may be the same or different. Good.
- the n-type oxide semiconductor material in the mixture layer 15 is tin oxide
- the n-type oxide semiconductor material of the charge layer 14 may be tin oxide, or an n-type oxide semiconductor material other than tin oxide. It may be.
- the thickness of the charging layer 14 is, for example, 200 nm to 1000 nm, and the thickness of the mixture layer 15 is 100 nm to 150 nm.
- the mixture layer 15 can be formed with a thickness in the range of 50 nm to 250 nm. More desirably, the mixture layer 15 may be formed with a thickness in the range of 150 nm to 200 nm.
- the mixture layer 15 can be formed by the same manufacturing process as the charge layer 14. First, a coating solution in which a solvent is mixed with a mixture of a tin oxide precursor and silicone oil is prepared. And a coating liquid is apply
- the mixture layer 15 can be formed on the charge layer 14 by drying and baking the coating film. Tin oxide is formed by decomposition from an aliphatic acid salt that is a precursor of an oxide semiconductor. The mixture layer 15 after drying and baking may be UV-cured by irradiating with ultraviolet rays.
- fine particles of an oxide semiconductor can be used without using a precursor.
- Tin oxide nanoparticles are mixed with silicone oil to form a mixture.
- a coating liquid is produced
- the coating solution is applied onto the charging layer 14 by spin coating, slit coating, or the like.
- the mixture layer 15 can be formed by performing drying, baking, and UV irradiation on the coating film.
- the p-type oxide semiconductor layer 16 includes a p-type oxide semiconductor material.
- a material of the p-type oxide semiconductor layer 16 nickel oxide (NiO), copper aluminum oxide (CuAlO 2 ), or the like can be used.
- the p-type oxide semiconductor layer 16 is a nickel oxide film having a thickness of 400 nm.
- the p-type oxide semiconductor layer 16 is formed on the mixture layer 15 by a film formation method such as vapor deposition or sputtering.
- the second electrode 17 only needs to be formed of a conductive film.
- metal materials such as chromium (Cr) or copper (Cu) can be used.
- copper (Cu) As another metal material, there is a silver (Ag) alloy containing aluminum (Al).
- the forming method include vapor phase film forming methods such as sputtering, ion plating, electron beam evaporation, vacuum evaporation, and chemical vapor deposition.
- the metal electrode can be formed by an electrolytic plating method, an electroless plating method, or the like.
- copper, copper alloy, nickel, aluminum, silver, gold, zinc, tin or the like can be used as a metal used for plating.
- the second electrode 17 is an Al film having a thickness of 300 nm.
- the mixture layer 15 is disposed between the charging layer 14 and the p-type oxide semiconductor layer 16.
- the mixture layer 15 is composed of a mixture of silicon oxide and a third n-type oxide semiconductor material (conductive material).
- the secondary battery according to the present embodiment can adjust the electrical conductivity of the layer with the conductive material, so that the mixture layer 15 is thickened.
- the mixture layer 15 can have a desired thickness while ensuring a certain electric conductivity, the movement of electric charges is prevented as in the case where the layer is formed only of silicon oxide (insulating material). Therefore, it is not necessary to form a thin layer so that a non-homogeneous layer is formed. That is, the secondary battery according to the present embodiment can avoid problems such as local dielectric breakdown in a heterogeneous layer.
- the conductive layer 12 is disposed between the first electrode 11 and the n-type oxide semiconductor layer 13.
- the conductive layer 12 has a one-layer structure having a titanium (Ti) film as the first metal film 12a, or a titanium (Ti) film as the first metal film 12a and a tungsten (W) film as the second metal film 12b. It has a two-layer structure. ⁇ Single layer structure>
- a metal material (a metal element contained in the n-type oxide semiconductor layer 13) is interposed between the first electrode 11 and the n-type oxide semiconductor layer 13.
- a metal layer having a higher electrical conductivity than that of the metal element contained in the n-type oxide semiconductor layer 13 is preferably included.
- the electrical conductivity between the first electrode 11 and the n-type oxide semiconductor layer 13 can be adjusted by disposing the conductive layer 12.
- adhesion between the first electrode 11 and the n-type oxide semiconductor layer 13 can be improved.
- the electrical conductivity between the first electrode 11 and the charge layer 14 is lowered.
- the conductive layer 12 is disposed on the first electrode 11, a certain electric conductivity can be ensured while reducing the oxidation of the surface of the first electrode 11.
- the conductive layer 12 (first metal film 12a) preferably includes a titanium film that is the same metal element as the n-type oxide semiconductor layer 13. This titanium film functions as an adhesion layer that ensures a certain electric conductivity and improves the adhesion between the first electrode 11 and the n-type oxide semiconductor layer 13. ⁇ 2 structure layers>
- the first electrode 11 is suppressed from migrating to the n-type oxide semiconductor layer 13, and a layer disposed above the second metal film 12b and a layer disposed below the second metal film 12b It is also possible to improve the adhesion.
- the second metal film 12b is tungsten and the second n-type oxide semiconductor material contained in the n-type oxide semiconductor layer 13 is titanium oxide (that is, the n-type oxide semiconductor layer 13 is A case where titanium is included as a metal element will be described as an example.
- the electrical resistivity of tungsten (W) is 5.29 ⁇ 10 ⁇ 8 ⁇ m.
- the electrical resistivity of titanium is 4.27 ⁇ 10 ⁇ 7 ⁇ m.
- the electrical resistivity is the reciprocal of the electrical conductivity. That is, the metal element contained in the second metal film 12b has a higher electrical conductivity than the metal element contained in the second n-type oxide semiconductor material. That is, the electrical conductivity between the first electrode 11 and the n-type oxide semiconductor layer 13 can be ensured by disposing the second metal film 12b. For example, there is a possibility that the migration can be suppressed only by disposing a layer having a low electrical conductivity, but since the resistance is high, the electrical conductivity cannot be secured and the desired battery performance may not be obtained. is there. It is important to dispose a layer having a higher electrical conductivity than the metal element contained in the second n-type oxide semiconductor material, such as the second metal film according to this embodiment.
- the conductive layer 12 is a 15 nm thick titanium film
- the n-type oxide semiconductor layer 13 is a 60 nm thick TiO film
- the charging layer 14 is 1000 nm thick
- the mixture layer 15 is 150 nm thick
- the p-type oxide semiconductor High performance can be obtained when the layer 16 is a 400 nm thick NiO film and the second electrode 17 is a 300 nm thick Al film.
- FIG. 2 shows the measurement results of the energy density with and without the conductive layer 12.
- the measurement result A shows the measurement result of the secondary battery in which the conductive layer 12 is a titanium single layer.
- the measurement result B shows the measurement result of the secondary battery in which the conductive layer 12 is not provided and the first electrode 11 and the n-type oxide semiconductor layer 13 are in contact with each other.
- the n-type oxide semiconductor material of the n-type oxide semiconductor layer 13 is titanium oxide.
- FIG. 2 shows the measurement results when the thickness of the charging layer 14 is 200 nm and the thicknesses of the other layers are changed.
- the measurement result A in FIG. 2 shows the measurement result of the secondary battery that satisfies the following conditions (condition 1) to (condition 4).
- condition 1 The thickness of the n-type oxide semiconductor layer 13 is changed in the range of 65 to 120 nm.
- the thickness of the mixture layer 15 is changed in the range of 100 to 250 nm.
- Condition 3 A SUS foil is used as the first electrode 11, and the thickness is changed within a range of 5 to 10 ⁇ m.
- the conductive layer 12 is provided in the secondary battery, and the thickness of the conductive layer 12 is changed in the range of 15 nm to 120 nm.
- Measurement result B shows the measurement result of the secondary battery that satisfies the above conditions (condition 1) to (condition 3). That is, the measurement result B shows the measurement result of the secondary battery in which the conductive layer 12 is not provided in the secondary battery.
- the measurement result B shows the measurement result of the secondary battery in which the conductive layer 12 is not provided in the secondary battery.
- 12a is tungsten, and titanium is applied to 12b
- the result almost the same as the measurement result in which the conductive layer 12 shown in the measurement result A is a single titanium layer is obtained. It was.
- the measured values of the energy density in 15 samples are shown as box plots.
- the top 25% and the bottom 25% of the 15 samples are shown as boxes.
- the median value of 15 samples is indicated by a horizontal thick line.
- the vertical axis represents the energy density (Wh / l). Comparing the measurement result A with the conductive layer 12 with the measurement result B without the conductive layer 12, it is shown that the measurement result A with the conductive layer 12 provides a higher energy density.
- the second metal film 12b has an electric conductivity higher than that of the metal element contained in the n-type oxide semiconductor layer 13 and is made of the metal element contained in the n-type oxide semiconductor layer 13. It is good also as a structure containing the metal element which has a work function higher than electrical conductivity.
- the n-type oxide semiconductor layer 13 is titanium oxide (TiO 2 )
- the second metal film 12b is preferably tungsten (W). Note that the work function of tungsten (W) is 4.52 eV. The work function of titanium is 4.14 eV.
- this invention includes the appropriate deformation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Hybrid Cells (AREA)
- Secondary Cells (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
本実施の形態にかかる二次電池10は、混合物層15が充電層14とp型酸化物半導体層16の間に配置されている。混合物層15は、酸化ケイ素と第3のn型酸化物半導体材料(導電材料)との混合物から構成されている。酸化ケイ素(絶縁材料)のみで層を構成する場合と比較すると、本実施の形態にかかる二次電池は、層の電気伝導率を導電材料で調整することができるため、混合物層15を厚くしても、或る一定以上の電気導電率を確保することできる。すなわち、本実施の形態にかかる二次電池は、混合物層15を所望の厚さにすることができる。これにより、二次電池10の性能を向上させることができる。
<1層構造>
<2構造層>
(条件1)n型酸化物半導体層13の厚さを65‐120nmの範囲で変化させる。
(条件2)混合物層15の厚さを100‐250nmの範囲で変化させる。
(条件3)第1電極11としてSUS箔を使用し、厚さを5-10umの範囲で変化させる。
(条件4)二次電池に導電層12を設け、この導電層12の厚みを15nm-120nmの範囲で変化させる。
11 第1電極
12 導電層
12a 第1金属膜
12b 第2金属膜
13 n型酸化物半導体層
14 充電層
15 混合物層
16 p型酸化物半導体層
17 第2電極
Claims (10)
- 第1電極と、
第2電極と、
前記第1電極と前記第2電極との間に配置され、絶縁材料と第1のn型酸化物半導体材料との混合物を含む充電層と、
前記充電層と前記第1電極との間に配置され、第2のn型酸化物半導体材料を含んでいるn型酸化物半導体層と、
前記充電層と前記第2電極との間に配置され、p型酸化物半導体材料を含んでいるp型酸化物半導体層と、
前記充電層と前記p型酸化物半導体層との間に配置され、酸化ケイ素と第3のn型酸化物半導体材料との混合物を含んでいる混合物層と、
前記第1電極と前記n型酸化物半導体層との間に配置され、金属材料を含んでいる導電層と、
を備えた二次電池。 - 前記第3のn型酸化物半導体材料は、酸化スズであることを特徴とする請求項1に記載の二次電池。
- 前記導電層には、前記第2のn型酸化物半導体材料に含まれる金属元素と同じ金属元素が含まれていることを特徴とする請求項1又は2に記載の二次電池。
- 前記導電層には、前記第2のn型酸化物半導体材料に含まれる金属元素の電気伝導率よりも高い電気伝導率を有する金属元素が含まれていることを特徴とする請求項1又は2に記載の二次電池。
- 前記第2のn型酸化物半導体材料は、酸化チタンであることを特徴とする請求項1又は2に記載の二次電池。
- 前記導電層は、前記n型酸化物半導体層と接するように設けられたチタン膜を含んでいることを特徴とする請求項5に記載の二次電池。
- 前記導電層は、タングステン膜と前記チタン膜との積層構造を有しており、
前記タングステン膜が前記第1電極と接するように設けられていることを特徴とする請求項6に記載の二次電池。 - 前記導電層は、
前記n型酸化物半導体層と接する第1金属膜と、
前記第1電極と接する第2金属膜とを備えており、
前記第1金属膜には、前記第2のn型酸化物半導体材料に含まれる金属元素と同じ金属元素が含まれていることを特徴とする請求項1に記載の二次電池。 - 前記第2金属膜には、前記第2のn型酸化物半導体材料に含まれる金属元素の電気伝導率よりも高い電気伝導率を有する金属元素が含まれていることを特徴とする請求項8に記載の二次電池。
- 前記混合物層の厚さが100nm~250nmであることを特徴とする請求項1~9のいずれか1項に記載の二次電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17836760.3A EP3496169B1 (en) | 2016-08-01 | 2017-07-21 | Secondary battery |
US16/322,398 US10991933B2 (en) | 2016-08-01 | 2017-07-21 | Secondary battery |
CA3032257A CA3032257C (en) | 2016-08-01 | 2017-07-21 | Secondary battery |
KR1020197004267A KR102166157B1 (ko) | 2016-08-01 | 2017-07-21 | 2차 전지 |
CN201780047913.0A CN109564970B (zh) | 2016-08-01 | 2017-07-21 | 二次电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016151073A JP6813982B2 (ja) | 2016-08-01 | 2016-08-01 | 二次電池 |
JP2016-151073 | 2016-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018025654A1 true WO2018025654A1 (ja) | 2018-02-08 |
Family
ID=61072690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/026386 WO2018025654A1 (ja) | 2016-08-01 | 2017-07-21 | 二次電池 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10991933B2 (ja) |
EP (1) | EP3496169B1 (ja) |
JP (1) | JP6813982B2 (ja) |
KR (1) | KR102166157B1 (ja) |
CN (1) | CN109564970B (ja) |
CA (1) | CA3032257C (ja) |
TW (1) | TWI650890B (ja) |
WO (1) | WO2018025654A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020080368A (ja) * | 2018-11-13 | 2020-05-28 | 株式会社日本マイクロニクス | 二次電池、及び製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7075717B2 (ja) * | 2017-03-15 | 2022-05-26 | 株式会社日本マイクロニクス | 蓄電デバイス |
JP7023049B2 (ja) * | 2017-03-16 | 2022-02-21 | 株式会社日本マイクロニクス | 二次電池 |
JP7122981B2 (ja) * | 2019-01-31 | 2022-08-22 | 株式会社日本マイクロニクス | 二次電池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013183132A1 (ja) * | 2012-06-06 | 2013-12-12 | 株式会社日本マイクロニクス | 固体型二次電池の電極構造 |
WO2015141107A1 (ja) * | 2014-03-18 | 2015-09-24 | 株式会社日本マイクロニクス | 電池 |
JP2016028408A (ja) * | 2014-03-24 | 2016-02-25 | パナソニックIpマネジメント株式会社 | 蓄電素子及び蓄電素子の製造方法 |
JP2016082125A (ja) | 2014-10-20 | 2016-05-16 | パナソニックIpマネジメント株式会社 | 蓄電素子及び蓄電素子の製造方法 |
JP2016091931A (ja) | 2014-11-10 | 2016-05-23 | パナソニックIpマネジメント株式会社 | 蓄電素子及び蓄電素子の製造方法 |
JP2016151073A (ja) | 2015-02-18 | 2016-08-22 | 三菱重工業株式会社 | 黒液回収ボイラ |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6079775A (ja) | 1983-10-06 | 1985-05-07 | Nec Corp | オ−ム性電極 |
CN1679123B (zh) * | 2002-07-01 | 2010-04-28 | 罗尔夫·艾塞霖 | 超级电容器及其制造方法 |
JP4447358B2 (ja) | 2004-03-31 | 2010-04-07 | 大日本印刷株式会社 | 有機半導体素子 |
KR100753824B1 (ko) * | 2005-12-08 | 2007-08-31 | 한국전자통신연구원 | 전고체형 필름 일차전지 및 그 제조 방법 |
KR101308096B1 (ko) * | 2006-06-20 | 2013-09-12 | 강원대학교산학협력단 | 리튬 이차 박막 전지용 음극, 이의 제조방법 및 이를포함하는 리튬 이차 박막 전지 |
KR100943173B1 (ko) | 2007-11-19 | 2010-02-19 | 한국전자통신연구원 | 다공성 전도층을 사용하는 전극을 포함하는 염료감응태양전지 |
JP5544774B2 (ja) | 2008-08-27 | 2014-07-09 | 三菱マテリアル株式会社 | 多接合型太陽電池 |
JP5326743B2 (ja) | 2009-03-30 | 2013-10-30 | 大日本印刷株式会社 | 有機薄膜太陽電池及びその製造方法 |
CN103140933B (zh) * | 2010-10-07 | 2016-09-21 | 刮拉技术有限公司 | 二次电池 |
US9164149B2 (en) | 2011-10-30 | 2015-10-20 | Kabushiki Kaisha Nihon Micronics | Testing device and testing method for quantum battery using semiconductor probe |
EP2787546B1 (en) * | 2011-10-30 | 2018-05-02 | Kabushiki Kaisha Nihon Micronics | Repeatedly chargeable and dischargeable quantum battery |
JP6032817B2 (ja) | 2013-12-17 | 2016-11-30 | 信越化学工業株式会社 | 化粧料 |
JP6367575B2 (ja) * | 2014-02-25 | 2018-08-01 | 株式会社日本マイクロニクス | 二次電池搭載回路チップ及びその製造方法 |
JP6443798B2 (ja) * | 2014-03-24 | 2018-12-26 | パナソニックIpマネジメント株式会社 | 蓄電素子及び蓄電素子の製造方法 |
CN106687616A (zh) | 2014-09-18 | 2017-05-17 | 国立研究开发法人科学技术振兴机构 | 金属氧化物的薄膜、具备该薄膜的有机电致发光元件、太阳能电池及薄膜的制造方法 |
KR20160082125A (ko) | 2014-12-31 | 2016-07-08 | 삼성전기주식회사 | 안테나 모듈 및 안테나 연결 방법 |
JP2016127166A (ja) * | 2015-01-05 | 2016-07-11 | パナソニックIpマネジメント株式会社 | 蓄電素子およびその製造方法 |
-
2016
- 2016-08-01 JP JP2016151073A patent/JP6813982B2/ja active Active
-
2017
- 2017-07-21 WO PCT/JP2017/026386 patent/WO2018025654A1/ja unknown
- 2017-07-21 CN CN201780047913.0A patent/CN109564970B/zh active Active
- 2017-07-21 EP EP17836760.3A patent/EP3496169B1/en active Active
- 2017-07-21 US US16/322,398 patent/US10991933B2/en active Active
- 2017-07-21 CA CA3032257A patent/CA3032257C/en active Active
- 2017-07-21 KR KR1020197004267A patent/KR102166157B1/ko active IP Right Grant
- 2017-07-31 TW TW106125722A patent/TWI650890B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013183132A1 (ja) * | 2012-06-06 | 2013-12-12 | 株式会社日本マイクロニクス | 固体型二次電池の電極構造 |
WO2015141107A1 (ja) * | 2014-03-18 | 2015-09-24 | 株式会社日本マイクロニクス | 電池 |
JP2016028408A (ja) * | 2014-03-24 | 2016-02-25 | パナソニックIpマネジメント株式会社 | 蓄電素子及び蓄電素子の製造方法 |
JP2016082125A (ja) | 2014-10-20 | 2016-05-16 | パナソニックIpマネジメント株式会社 | 蓄電素子及び蓄電素子の製造方法 |
JP2016091931A (ja) | 2014-11-10 | 2016-05-23 | パナソニックIpマネジメント株式会社 | 蓄電素子及び蓄電素子の製造方法 |
JP2016151073A (ja) | 2015-02-18 | 2016-08-22 | 三菱重工業株式会社 | 黒液回収ボイラ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3496169A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020080368A (ja) * | 2018-11-13 | 2020-05-28 | 株式会社日本マイクロニクス | 二次電池、及び製造方法 |
JP7138020B2 (ja) | 2018-11-13 | 2022-09-15 | 株式会社日本マイクロニクス | 二次電池、及び製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CA3032257C (en) | 2021-10-19 |
EP3496169A4 (en) | 2020-03-25 |
CA3032257A1 (en) | 2018-02-08 |
EP3496169B1 (en) | 2022-04-13 |
TWI650890B (zh) | 2019-02-11 |
KR102166157B1 (ko) | 2020-10-15 |
US20200185701A1 (en) | 2020-06-11 |
CN109564970B (zh) | 2022-10-21 |
JP6813982B2 (ja) | 2021-01-13 |
CN109564970A (zh) | 2019-04-02 |
JP2018022719A (ja) | 2018-02-08 |
EP3496169A1 (en) | 2019-06-12 |
KR20190028509A (ko) | 2019-03-18 |
TW201810786A (zh) | 2018-03-16 |
US10991933B2 (en) | 2021-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018025654A1 (ja) | 二次電池 | |
JP5542801B2 (ja) | 電極構造体、コンデンサ、電池および電極構造体の製造方法 | |
JPWO2012036017A1 (ja) | 誘電体薄膜素子、アンチヒューズ素子及び誘電体薄膜素子の製造方法 | |
JP5374779B1 (ja) | 太陽電池及び、この太陽電池における酸化物層の形成方法、積層酸化物層の形成方法 | |
JP2012174865A (ja) | 固体電解コンデンサ用電極箔 | |
JP5634184B2 (ja) | 導電層被覆アルミニウム材とその製造方法 | |
JP6656848B2 (ja) | 酸化物半導体二次電池の製造方法 | |
JP4834193B2 (ja) | 電極構造体の製造方法、電極構造体およびコンデンサ | |
JP5445464B2 (ja) | コンデンサ用電極体およびコンデンサ | |
JP2019140053A (ja) | 二次電池 | |
KR102483904B1 (ko) | 이차 전지 및 제조 방법 | |
JP2019165109A (ja) | 二次電池、及びその製造方法 | |
WO2023171426A1 (ja) | コンデンサ | |
TWI710157B (zh) | 蓄電裝置 | |
EP3920301A1 (en) | Secondary battery | |
WO2024135234A1 (ja) | コンデンサ | |
JP2013077676A (ja) | 電極構造体の製造方法、電極構造体およびコンデンサ | |
JP2019207907A (ja) | 二次電池、及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17836760 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3032257 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197004267 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017836760 Country of ref document: EP Effective date: 20190301 |