WO2018025654A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2018025654A1
WO2018025654A1 PCT/JP2017/026386 JP2017026386W WO2018025654A1 WO 2018025654 A1 WO2018025654 A1 WO 2018025654A1 JP 2017026386 W JP2017026386 W JP 2017026386W WO 2018025654 A1 WO2018025654 A1 WO 2018025654A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oxide semiconductor
type oxide
electrode
secondary battery
Prior art date
Application number
PCT/JP2017/026386
Other languages
English (en)
French (fr)
Inventor
拓夫 工藤
晴匡 出羽
光 高野
友和 齋藤
孝司 殿川
Original Assignee
株式会社日本マイクロニクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本マイクロニクス filed Critical 株式会社日本マイクロニクス
Priority to EP17836760.3A priority Critical patent/EP3496169B1/en
Priority to US16/322,398 priority patent/US10991933B2/en
Priority to CA3032257A priority patent/CA3032257C/en
Priority to KR1020197004267A priority patent/KR102166157B1/ko
Priority to CN201780047913.0A priority patent/CN109564970B/zh
Publication of WO2018025654A1 publication Critical patent/WO2018025654A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for improving the performance of a secondary battery.
  • Patent Document 1 discloses a power storage element including a power storage layer including a mixture of an insulating material and n-type semiconductor particles between a first electrode and a second electrode.
  • a p-type semiconductor layer is disposed between the power storage layer and the second electrode.
  • a leak suppression layer is disposed between the p-type semiconductor layer and the electricity storage layer.
  • the leak suppression layer is composed of at least one selected from silicon dioxide, aluminum oxide, and magnesium oxide.
  • Patent Document 2 discloses a power storage element including a power storage layer including a mixture of an insulating material and n-type semiconductor particles between a first electrode and a second electrode.
  • a p-type semiconductor layer is disposed between the power storage layer and the second electrode.
  • a diffusion suppression layer having a resistivity of 1000 ⁇ ⁇ cm or less is disposed between the first electrode and the electricity storage layer.
  • the diffusion suppression layer is made of nitride, carbide, or boride.
  • Cited Document 1 if the thickness of the leak suppression layer is increased in order to obtain a sufficient leak suppression effect, there is a problem that the movement of electric charges is limited and the performance of the battery deteriorates.
  • silicon dioxide is used as the material of the leak-suppressing layer and the leak-suppressing layer is thin so that the movement of electric charges is not restricted, a heterogeneous layer is easily formed and local dielectric breakdown occurs, so that the desired battery There is a problem that it becomes difficult to obtain performance.
  • the diffusion suppressing layer of Patent Document 2 is for preventing the substrate disposed under the first electrode or the component of the first electrode from being suppressed from diffusing into the power storage layer. Not arranged to prevent surface oxidation. That is, in Patent Document 2, the oxidation of the surface of the first electrode cannot be prevented, and the electrical resistance between the first electrode and the power storage layer increases with this oxidation, so that desired battery performance can be obtained. There is a problem that it becomes difficult.
  • This invention is made
  • the secondary battery according to one embodiment of the present embodiment is disposed between the first electrode, the second electrode, the first electrode, and the second electrode, and includes an insulating material and a first n-type oxide semiconductor material.
  • a charging layer including a mixture of the following: an n-type oxide semiconductor layer disposed between the charging layer and the first electrode and including a second n-type oxide semiconductor material; a charging layer and a second electrode; A p-type oxide semiconductor layer including a p-type oxide semiconductor material, and a silicon oxide and a third n-type oxide disposed between the charge layer and the p-type oxide semiconductor layer.
  • a mixture layer including a mixture with a semiconductor material, and a conductive layer disposed between the first electrode and the n-type oxide semiconductor layer and including a metal material are provided.
  • the third n-type oxide semiconductor material may be tin oxide.
  • the conductive layer may contain the same metal element as the metal element contained in the second n-type oxide semiconductor material.
  • the conductive layer may contain a metal element having an electric conductivity higher than that of the metal element contained in the second n-type oxide semiconductor material.
  • the second n-type oxide semiconductor material may be titanium oxide.
  • the conductive layer may include a titanium film provided in contact with the n-type oxide semiconductor layer.
  • the conductive layer has a laminated structure of a tungsten film and a titanium film, and may be provided so that the tungsten film is in contact with the first electrode.
  • the conductive layer includes a first metal film in contact with the n-type oxide semiconductor layer and a second metal film in contact with the first electrode.
  • the first metal film includes a second n-type oxide semiconductor material. The same metal element as the contained metal element may be contained.
  • the second metal film may contain a metal element having an electric conductivity higher than that of the metal element contained in the second n-type oxide semiconductor material.
  • the thickness of the mixture layer may be 100 nm to 250 nm.
  • a technique for improving the performance of the secondary battery can be provided.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the secondary battery 10.
  • the first electrode 11, the conductive layer 12, the n-type oxide semiconductor layer 13, the charging layer 14, the mixture layer 15, the p-type oxide semiconductor layer 16, and the second electrode 17 are laminated in this order. It has a laminated structure.
  • the first electrode 11 is formed of a conductive sheet or a conductive substrate, and functions as a base material for providing a laminated structure.
  • a metal foil sheet or the like can be used as the first electrode 11.
  • a SUS (Steel Use Stainless) sheet is used as the first electrode 11.
  • a metal foil sheet such as copper or aluminum may be used as the first electrode 11.
  • the base material which consists of an insulating material can be prepared and the 1st electrode 11 can also be formed on a base material.
  • a metal material such as chromium (Cr) or titanium (Ti) can be used as the material of the first electrode 11.
  • Cr chromium
  • Ti titanium
  • an alloy film containing aluminum (Al), silver (Ag), or the like may be used.
  • the conductive layer 12 can be formed of a metal material.
  • the conductive layer 12 has a one-layer structure composed of the first metal film 12a or a two-layer structure composed of the first metal film 12a and the second metal film 12b.
  • FIG. 1 shows a case where the conductive layer 12 has a two-layer structure including a first metal film 12a and a second metal film 12b.
  • the second metal film 12 b is in contact with the first electrode 11
  • the first metal film 12 a is in contact with the n-type oxide semiconductor layer 13.
  • the first metal film 12 a is in contact with the n-type oxide semiconductor layer 13 and the first electrode 11.
  • the material of the first metal film 12 a preferably contains the same metal element as that of the n-type oxide semiconductor layer 13.
  • the first metal film 12a is preferably titanium (Ti).
  • the material of the first metal film 12 a preferably includes a metal element having an electric conductivity higher than that of the metal element included in the n-type oxide semiconductor layer 13.
  • the first metal film 12a is made of titanium (Ti), an alloy containing titanium (Ti), aluminum (Al), or aluminum (Al). It is preferable that it is an alloy containing, chromium (Cr), or Ni (nickel).
  • the second metal film 12b preferably contains, for example, a metal element having an electric conductivity higher than that of the metal element contained in the n-type oxide semiconductor layer 13.
  • the second metal film 12b is preferably aluminum (Al) or tungsten (W).
  • the conductive layer 12 has a one-layer structure in which the first metal film 12a is a titanium (Ti) film, or the first metal film 12a is a titanium (Ti) film and the second metal film 12b is a tungsten (W) film. It may have a two-layer structure.
  • the thickness of the conductive layer 12 is 15 nm to 300 nm.
  • the conductive layer 12 can be formed on the first electrode 11 by sputtering or vapor deposition.
  • the n-type oxide semiconductor layer 13 includes a second n-type oxide semiconductor material.
  • a material of the n-type oxide semiconductor layer 13 titanium dioxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), or the like can be used.
  • the thickness of the n-type oxide semiconductor layer 13 is preferably 30 nm to 120 nm.
  • titanium oxide having a thickness of 60 to 120 nm can be used.
  • the n-type oxide semiconductor layer 13 can be formed on the first electrode 11 by sputtering or vapor deposition.
  • the charging layer 14 is formed of a mixture of an insulating material and an n-type oxide semiconductor material.
  • a fine-particle n-type oxide semiconductor can be used as the n-type oxide semiconductor material (first n-type oxide semiconductor material) of the charging layer 14.
  • An n-type oxide semiconductor changes its photoexcitation structure by irradiation with ultraviolet rays, and becomes a layer having a charging function.
  • the n-type oxide semiconductor includes a mixture in which an n-type oxide semiconductor material and an insulating material are mixed.
  • a silicone resin can be used as the insulating material.
  • the insulating material it is preferable to use a silicon compound (silicone) having a main skeleton with a siloxane bond such as silicon oxide.
  • the charge layer 14 is formed of silicon oxide and titanium dioxide using the first n-type oxide semiconductor material as titanium dioxide.
  • the n-type oxide semiconductor material that can be used in the charge layer 14 tin oxide (SnO 2 ) or zinc oxide (ZnO) is suitable. It is also possible to use materials that combine two or all of titanium dioxide, tin oxide, and zinc oxide.
  • a coating liquid in which a solvent is mixed with a mixture of a precursor of titanium oxide, tin oxide, or zinc oxide and silicone oil is prepared.
  • a coating solution in which fatty acid titanium and silicone oil are mixed in a solvent is prepared.
  • the coating solution is applied onto the n-type oxide semiconductor layer 13 by a spin coating method, a slit coating method, or the like.
  • the charge layer 14 can be formed on the n-type oxide semiconductor layer 13 by drying and baking the coating film.
  • the precursor titanium stearate, which is a precursor of titanium oxide, can be used, for example. Titanium oxide, tin oxide, and zinc oxide are formed by decomposition from an aliphatic acid salt that is a precursor of a metal oxide.
  • the charging layer 14 after drying and firing may be UV-cured by irradiating with ultraviolet rays.
  • fine particles of an oxide semiconductor can be used without using a precursor.
  • a liquid mixture is produced by mixing nanoparticles of titanium oxide or zinc oxide with silicone oil.
  • a coating liquid is produced
  • a coating solution is applied onto the n-type oxide semiconductor layer 13 by a spin coating method, a slit coating method, or the like.
  • the charging layer 14 can be formed by performing drying, baking, and UV irradiation on the coating film.
  • the mixture layer 15 is formed of a mixture in which an insulating material and an n-type oxide semiconductor material are mixed. Silicon oxide can be used as the material for the insulating material. For example, when the insulating material is silicon oxide, the mixture layer 15 includes silicon dioxide (SiO 2 ). The insulating material of the mixture layer 15 may be the same material as the insulating material of the charging layer 14.
  • the material of the n-type oxide semiconductor material tin oxide (SnO) can be used.
  • the mixture layer 15 includes a mixture in which silicon oxide and tin oxide are mixed.
  • an n-type oxide semiconductor material is added to silicon oxide, silicon nitride, or silicone oil.
  • the n-type oxide semiconductor is dispersed in silicon dioxide which is an insulating material.
  • the first n-type oxide semiconductor material included in the charging layer 14 and the second n-type oxide semiconductor material included in the n-type oxide semiconductor layer 13 may be the same or different. Good.
  • the n-type oxide semiconductor material in the mixture layer 15 is tin oxide
  • the n-type oxide semiconductor material of the charge layer 14 may be tin oxide, or an n-type oxide semiconductor material other than tin oxide. It may be.
  • the thickness of the charging layer 14 is, for example, 200 nm to 1000 nm, and the thickness of the mixture layer 15 is 100 nm to 150 nm.
  • the mixture layer 15 can be formed with a thickness in the range of 50 nm to 250 nm. More desirably, the mixture layer 15 may be formed with a thickness in the range of 150 nm to 200 nm.
  • the mixture layer 15 can be formed by the same manufacturing process as the charge layer 14. First, a coating solution in which a solvent is mixed with a mixture of a tin oxide precursor and silicone oil is prepared. And a coating liquid is apply
  • the mixture layer 15 can be formed on the charge layer 14 by drying and baking the coating film. Tin oxide is formed by decomposition from an aliphatic acid salt that is a precursor of an oxide semiconductor. The mixture layer 15 after drying and baking may be UV-cured by irradiating with ultraviolet rays.
  • fine particles of an oxide semiconductor can be used without using a precursor.
  • Tin oxide nanoparticles are mixed with silicone oil to form a mixture.
  • a coating liquid is produced
  • the coating solution is applied onto the charging layer 14 by spin coating, slit coating, or the like.
  • the mixture layer 15 can be formed by performing drying, baking, and UV irradiation on the coating film.
  • the p-type oxide semiconductor layer 16 includes a p-type oxide semiconductor material.
  • a material of the p-type oxide semiconductor layer 16 nickel oxide (NiO), copper aluminum oxide (CuAlO 2 ), or the like can be used.
  • the p-type oxide semiconductor layer 16 is a nickel oxide film having a thickness of 400 nm.
  • the p-type oxide semiconductor layer 16 is formed on the mixture layer 15 by a film formation method such as vapor deposition or sputtering.
  • the second electrode 17 only needs to be formed of a conductive film.
  • metal materials such as chromium (Cr) or copper (Cu) can be used.
  • copper (Cu) As another metal material, there is a silver (Ag) alloy containing aluminum (Al).
  • the forming method include vapor phase film forming methods such as sputtering, ion plating, electron beam evaporation, vacuum evaporation, and chemical vapor deposition.
  • the metal electrode can be formed by an electrolytic plating method, an electroless plating method, or the like.
  • copper, copper alloy, nickel, aluminum, silver, gold, zinc, tin or the like can be used as a metal used for plating.
  • the second electrode 17 is an Al film having a thickness of 300 nm.
  • the mixture layer 15 is disposed between the charging layer 14 and the p-type oxide semiconductor layer 16.
  • the mixture layer 15 is composed of a mixture of silicon oxide and a third n-type oxide semiconductor material (conductive material).
  • the secondary battery according to the present embodiment can adjust the electrical conductivity of the layer with the conductive material, so that the mixture layer 15 is thickened.
  • the mixture layer 15 can have a desired thickness while ensuring a certain electric conductivity, the movement of electric charges is prevented as in the case where the layer is formed only of silicon oxide (insulating material). Therefore, it is not necessary to form a thin layer so that a non-homogeneous layer is formed. That is, the secondary battery according to the present embodiment can avoid problems such as local dielectric breakdown in a heterogeneous layer.
  • the conductive layer 12 is disposed between the first electrode 11 and the n-type oxide semiconductor layer 13.
  • the conductive layer 12 has a one-layer structure having a titanium (Ti) film as the first metal film 12a, or a titanium (Ti) film as the first metal film 12a and a tungsten (W) film as the second metal film 12b. It has a two-layer structure. ⁇ Single layer structure>
  • a metal material (a metal element contained in the n-type oxide semiconductor layer 13) is interposed between the first electrode 11 and the n-type oxide semiconductor layer 13.
  • a metal layer having a higher electrical conductivity than that of the metal element contained in the n-type oxide semiconductor layer 13 is preferably included.
  • the electrical conductivity between the first electrode 11 and the n-type oxide semiconductor layer 13 can be adjusted by disposing the conductive layer 12.
  • adhesion between the first electrode 11 and the n-type oxide semiconductor layer 13 can be improved.
  • the electrical conductivity between the first electrode 11 and the charge layer 14 is lowered.
  • the conductive layer 12 is disposed on the first electrode 11, a certain electric conductivity can be ensured while reducing the oxidation of the surface of the first electrode 11.
  • the conductive layer 12 (first metal film 12a) preferably includes a titanium film that is the same metal element as the n-type oxide semiconductor layer 13. This titanium film functions as an adhesion layer that ensures a certain electric conductivity and improves the adhesion between the first electrode 11 and the n-type oxide semiconductor layer 13. ⁇ 2 structure layers>
  • the first electrode 11 is suppressed from migrating to the n-type oxide semiconductor layer 13, and a layer disposed above the second metal film 12b and a layer disposed below the second metal film 12b It is also possible to improve the adhesion.
  • the second metal film 12b is tungsten and the second n-type oxide semiconductor material contained in the n-type oxide semiconductor layer 13 is titanium oxide (that is, the n-type oxide semiconductor layer 13 is A case where titanium is included as a metal element will be described as an example.
  • the electrical resistivity of tungsten (W) is 5.29 ⁇ 10 ⁇ 8 ⁇ m.
  • the electrical resistivity of titanium is 4.27 ⁇ 10 ⁇ 7 ⁇ m.
  • the electrical resistivity is the reciprocal of the electrical conductivity. That is, the metal element contained in the second metal film 12b has a higher electrical conductivity than the metal element contained in the second n-type oxide semiconductor material. That is, the electrical conductivity between the first electrode 11 and the n-type oxide semiconductor layer 13 can be ensured by disposing the second metal film 12b. For example, there is a possibility that the migration can be suppressed only by disposing a layer having a low electrical conductivity, but since the resistance is high, the electrical conductivity cannot be secured and the desired battery performance may not be obtained. is there. It is important to dispose a layer having a higher electrical conductivity than the metal element contained in the second n-type oxide semiconductor material, such as the second metal film according to this embodiment.
  • the conductive layer 12 is a 15 nm thick titanium film
  • the n-type oxide semiconductor layer 13 is a 60 nm thick TiO film
  • the charging layer 14 is 1000 nm thick
  • the mixture layer 15 is 150 nm thick
  • the p-type oxide semiconductor High performance can be obtained when the layer 16 is a 400 nm thick NiO film and the second electrode 17 is a 300 nm thick Al film.
  • FIG. 2 shows the measurement results of the energy density with and without the conductive layer 12.
  • the measurement result A shows the measurement result of the secondary battery in which the conductive layer 12 is a titanium single layer.
  • the measurement result B shows the measurement result of the secondary battery in which the conductive layer 12 is not provided and the first electrode 11 and the n-type oxide semiconductor layer 13 are in contact with each other.
  • the n-type oxide semiconductor material of the n-type oxide semiconductor layer 13 is titanium oxide.
  • FIG. 2 shows the measurement results when the thickness of the charging layer 14 is 200 nm and the thicknesses of the other layers are changed.
  • the measurement result A in FIG. 2 shows the measurement result of the secondary battery that satisfies the following conditions (condition 1) to (condition 4).
  • condition 1 The thickness of the n-type oxide semiconductor layer 13 is changed in the range of 65 to 120 nm.
  • the thickness of the mixture layer 15 is changed in the range of 100 to 250 nm.
  • Condition 3 A SUS foil is used as the first electrode 11, and the thickness is changed within a range of 5 to 10 ⁇ m.
  • the conductive layer 12 is provided in the secondary battery, and the thickness of the conductive layer 12 is changed in the range of 15 nm to 120 nm.
  • Measurement result B shows the measurement result of the secondary battery that satisfies the above conditions (condition 1) to (condition 3). That is, the measurement result B shows the measurement result of the secondary battery in which the conductive layer 12 is not provided in the secondary battery.
  • the measurement result B shows the measurement result of the secondary battery in which the conductive layer 12 is not provided in the secondary battery.
  • 12a is tungsten, and titanium is applied to 12b
  • the result almost the same as the measurement result in which the conductive layer 12 shown in the measurement result A is a single titanium layer is obtained. It was.
  • the measured values of the energy density in 15 samples are shown as box plots.
  • the top 25% and the bottom 25% of the 15 samples are shown as boxes.
  • the median value of 15 samples is indicated by a horizontal thick line.
  • the vertical axis represents the energy density (Wh / l). Comparing the measurement result A with the conductive layer 12 with the measurement result B without the conductive layer 12, it is shown that the measurement result A with the conductive layer 12 provides a higher energy density.
  • the second metal film 12b has an electric conductivity higher than that of the metal element contained in the n-type oxide semiconductor layer 13 and is made of the metal element contained in the n-type oxide semiconductor layer 13. It is good also as a structure containing the metal element which has a work function higher than electrical conductivity.
  • the n-type oxide semiconductor layer 13 is titanium oxide (TiO 2 )
  • the second metal film 12b is preferably tungsten (W). Note that the work function of tungsten (W) is 4.52 eV. The work function of titanium is 4.14 eV.
  • this invention includes the appropriate deformation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本発明にかかる二次電池は、第1電極(11)と、第2電極(17)と、第1電極(11)と第2電極(17)との間に配置され、絶縁材料と第1のn型酸化物半導体材料との混合物を含む充電層(14)と、充電層(14)と第1電極(11)との間に配置され、第2のn型酸化物半導体材料を含んでいるn型酸化物半導体層(13)と、充電層(14)と第2電極(17)との間に配置され、p型酸化物半導体材料を含んでいるp型酸化物半導体層(16)と、充電層(14)とp型酸化物半導体層(16)との間に配置され、酸化ケイ素と第3のn型酸化物半導体材料との混合物を含んでいる混合物層(15)と、第1電極(11)とn型酸化物半導体層(13)との間に配置され、金属材料を含んでいる導電層(12)と、を備えている。

Description

二次電池
 本発明は、二次電池の性能を向上するための技術に関する。
 特許文献1には、第1電極と第2電極との間に、絶縁材料とn型半導体粒子との混合物を含む蓄電層と備えた蓄電素子が開示されている。また、蓄電層と第2電極との間にp型半導体層が配置されている。更に、p型半導体層と蓄電層との間には、リーク抑制層が配置されている。リーク抑制層は、二酸化ケイ素、酸化アルミニウム、酸化マグネシウムより選ばれる少なくとも一つで構成されている。
 特許文献2には、第1電極と第2電極との間に、絶縁材料とn型半導体粒子との混合物を含む蓄電層と備えた蓄電素子が開示されている。また、蓄電層と第2電極との間にp型半導体層が配置されている。更に、第1電極と蓄電層との間には、抵抗率が1000μΩ・cm以下の拡散抑制層が配置されている。拡散抑制層は、窒化物、炭化物、硼化物により形成されている。
特開2016-82125号公報 特開2016-91931号公報
 二次電池においては、さらなる高性能化が望まれている。例えば、引用文献1において、リーク抑制効果を十分に得るためにリーク抑制層を厚くすると、電荷の移動が制限されてしまい、電池の性能が劣化するという問題がある。また、例えば、二酸化ケイ素をリーク抑性層の材料とし、電荷の移動が制限されないようにリーク抑制層を薄くすると、不均質な層ができやすくなり局所的な絶縁破壊が起こって、所望の電池性能を得ることが困難になってしまうという問題がある。
 特許文献2の拡散抑性層は、第1電極の下に配置される基板あるいは第1電極の成分が蓄電層に拡散するのを抑制されるのを防止するためのものであり、第1電極表面の酸化を防ぐ目的で配置されていない。すなわち、特許文献2では、第1電極表面の酸化を防ぐことができず、この酸化に伴って第1電極と蓄電層との間の電気抵抗が増加していまい所望の電池性能を得ることが困難になってしまうという問題がある。
 本発明は、上記の課題に鑑みてなされたものであり、二次電池の性能を向上するための技術を提供することを目的とする。
 本実施形態の一態様に係る二次電池は、第1電極と、第2電極と、第1電極と第2電極との間に配置され、絶縁材料と第1のn型酸化物半導体材料との混合物を含む充電層と、充電層と前記第1電極との間に配置され、第2のn型酸化物半導体材料を含んでいるn型酸化物半導体層と、充電層と第2電極との間に配置され、p型酸化物半導体材料を含んでいるp型酸化物半導体層と、充電層とp型酸化物半導体層との間に配置され、酸化ケイ素と第3のn型酸化物半導体材料との混合物を含んでいる混合物層と、第1電極とn型酸化物半導体層との間に配置され、金属材料を含んでいる導電層と、を備えている。
 第3のn型酸化物半導体材料は、酸化スズであってもよい。
 導電層には、第2のn型酸化物半導体材料に含まれる金属元素と同じ金属元素が含まれてもよい。
 導電層には、第2のn型酸化物半導体材料に含まれる金属元素の電気伝導率よりも高い電気伝導率を有する金属元素が含まれてもよい。
 第2のn型酸化物半導体材料は、酸化チタンであってもよい。
 導電層は、n型酸化物半導体層と接するように設けられたチタン膜を含んでもよい。
 導電層は、タングステン膜とチタン膜との積層構造を有しており、タングステン膜が第1電極と接するように設けられてもよい。
 導電層は、n型酸化物半導体層と接する第1金属膜と、第1電極と接する第2金属膜とを備えており、第1金属膜には、第2のn型酸化物半導体材料に含まれる金属元素と同じ金属元素が含まれてもよい。
 第2金属膜には、第2のn型酸化物半導体材料に含まれる金属元素の電気伝導率よりも高い電気伝導率を有する金属元素が含まれてもよい。
 混合物層の厚さが100nm~250nmであってもよい。
 本発明によれば、二次電池の性能を向上するための技術を提供することができる。
二次電池の積層構造を示す図である。 導電層の有無によるエネルギー密度の違いを示すグラフである。
 以下、本発明の実施形態にかかる二次電池の一例について図面を参照して説明する。以下の説明は、本発明の好適な実施形態を示すものであって、本発明の技術的範囲が以下の実施形態に限定されるものではない。
 図1を参照して、本実施の形態にかかる二次電池10の積層構造について説明する。図1は、二次電池10の構成を模式的に示す断面図である。二次電池10は、第1電極11、導電層12、n型酸化物半導体層13、充電層14、混合物層15、p型酸化物半導体層16、第2電極17がこの順で積層された積層構造を有している。
 第1電極11は、導電性シート、又は導電性基板で形成されており、積層構造を設けるための基材として機能する。例えば、第1電極11として、金属箔シート等を使用することが可能である。ここでは、第1電極11としてSUS(Steel Use Stainless)シートを用いている。あるいは、銅、アルミニウムなどの金属箔シートを第1電極11として用いてもよい。
 なお、絶縁材料からなる基材を用意して、基材上に第1電極11を形成することもできる。基材の上に、第1電極11を形成する場合、第1電極11の材料として、クロム(Cr)又はチタン(Ti)等の金属材料を用いることができる。第1電極11の材料として、アルミニウム(Al),銀(Ag)等を含む合金膜を用いてもよい。第1電極11を基材上に形成する場合、後述する第2電極17と同様に形成することができる。
 導電層12は、金属材料により形成することができる。導電層12は、第1金属膜12aから構成される1層構造、又は第1金属膜12a、及び第2金属膜12bから構成される2層構造を有している。図1は、導電層12が第1金属膜12a、及び第2金属膜12bから構成される2層構造である場合を示している。導電層12が2層構造の場合、第2金属膜12bが第1電極11と接し、第1金属膜12aがn型酸化物半導体層13と接している。導電層12が1層構造の場合、第1金属膜12aがn型酸化物半導体層13及び第1電極11と接する。
 第1金属膜12aの材料は、n型酸化物半導体層13と同じ金属元素を含むことが好ましい。例えば、n型酸化物半導体層13が酸化チタン(TiO)である場合、第1金属膜12aは、チタン(Ti)であることが好ましい。また、第1金属膜12aの材料は、n型酸化物半導体層13に含まれる金属元素の電気伝導率よりも高い電気伝導率を有する金属元素が含まれることが好ましい。例えば、n型酸化物半導体層13が酸化チタン(TiO)である場合、第1金属膜12aは、チタン(Ti)、チタン(Ti)を含む合金、アルミ(Al)、アルミ(Al)を含む合金、クロム(Cr)、或いはNi(ニッケル)であることが好ましい。
 第2金属膜12bには、例えば、n型酸化物半導体層13に含まれる金属元素の電気伝導率よりも高い電気伝導率を有する金属元素が含まれることが好ましい。例えば、n型酸化物半導体層13が酸化チタン(TiO)である場合、第2金属膜12bは、アルミ(Al)、或いはタングステン(W)が好ましい。
 導電層12は、例えば、第1金属膜12aをチタン(Ti)膜とする1層構造、又は、第1金属膜12aをチタン(Ti)膜、及び第2金属膜12bをタングステン(W)膜とする2層構造を有してもよい。導電層12の厚さは、15nm~300nmである。導電層12は、スパッタリング又は蒸着により、第1電極11上に成膜することができる。
 n型酸化物半導体層13は第2のn型酸化物半導体材料を含んで構成される。n型酸化物半導体層13の材料としては、二酸化チタン(TiO)、酸化スズ(SnO)又は酸化亜鉛(ZnO)等を使用することが可能である。n型酸化物半導体層13の厚さは、30nm~120nmとすることが好ましい。n型酸化物半導体層13として、例えば、厚さ60~120nmの酸化チタンを用いることができる。例えば、n型酸化物半導体層13は、スパッタリング又は蒸着により、第1電極11上に成膜することができる。
 充電層14は、絶縁材料とn型酸化物半導体材料とを混合した混合物により形成されている。例えば、充電層14のn型酸化物半導体材料(第1のn型酸化物半導体材料)として、微粒子のn型酸化物半導体を使用することが可能である。n型酸化物半導体は、紫外線照射により光励起構造変化して、充電機能を備えた層となる。n型酸化物半導体は、n型酸化物半導体材料と絶縁材料とを混合した混合物を含んでいる。絶縁材料としては、シリコーン樹脂を用いることができる。例えば、絶縁材料としては、シリコン酸化物などのシロキサン結合による主骨格を持つシリコン化合物(シリコーン)を使用することが好ましい。
 例えば、充電層14は、第1のn型酸化物半導体材料を二酸化チタンとして、酸化シリコンと二酸化チタンとによって形成される。この他に、充電層14で使用可能なn型酸化物半導体材料としては、酸化スズ(SnO)、又は酸化亜鉛(ZnO)が好適である。二酸化チタン、酸化スズ、及び酸化亜鉛の2つ又は全てを組み合わせた材料を使用することも可能である。
 充電層14の製造工程について説明する。まず、酸化チタン、酸化スズ、又は酸化亜鉛の前駆体と、シリコーンオイルとの混合物に溶媒を混合した塗布液を用意する。脂肪酸チタンとシリコーンオイルを溶媒に混合した塗布液を用意する。そして、スピン塗布法、スリットコート法などにより、塗布液がn型酸化物半導体層13上に塗布される。塗布膜に対して、乾燥、及び焼成を行うことで、n型酸化物半導体層13上に充電層14を形成することができる。なお、前駆体の一例として、例えば酸化チタンの前駆体であるチタニウムステアレートが使用できる。酸化チタン、酸化スズ、酸化亜鉛は、金属酸化物の前駆体である脂肪族酸塩から分解して形成される。乾燥、及び焼成した後の、充電層14に対して、紫外線照射を行いUV硬化させてもよい。
 なお、酸化チタン、酸化スズ、酸化亜鉛などについては、前駆体を用いずに、酸化物半導体の微細な粒子を用いることも可能である。酸化チタン、又は酸化亜鉛のナノ粒子をシリコーンオイルと混合することで、混合液が生成される。さらに、混合液に溶媒を混合することで、塗布液が生成される。スピン塗布法、スリットコート法などにより、塗布液がn型酸化物半導体層13上に塗布される。塗布膜に対して、乾燥、焼成、及びUV照射を行うことで、充電層14を形成することができる。
 混合物層15は、絶縁材料とn型酸化物半導体材料とを混合した混合物により形成されている。絶縁材料の材料としては、酸化ケイ素を使用することが可能である。例えば、絶縁材料を酸化ケイ素とした場合、混合物層15は、二酸化ケイ素(SiO)を含んでいる。混合物層15の絶縁材料は、充電層14の絶縁材料と同じ材料であってもよい。
 n型酸化物半導体材料の材料としては、酸化スズ(SnO)を使用することが可能である。この場合、混合物層15は、酸化ケイ素と酸化スズとを混合した混合物を含んでいる。混合物層15では、シリコン酸化物、シリコン窒化物又はシリコーンオイルに、n型酸化物半導体材料が添加されている。n型酸化物半導体は、絶縁材料である二酸化ケイ素中に分散される。
 充電層14に含まれる第1のn型酸化物半導体材料と、n型酸化物半導体層13に含まれる第2のn型酸化物半導体材料とは、同じであってもよく、異なっていてもよい。例えば、混合物層15中のn型酸化物半導体材料が酸化スズである場合、充電層14のn型酸化物半導体材料は酸化スズであってもよいし、酸化スズ以外のn型酸化物半導体材料であってもよい。
 充電層14の厚さは、例えば200nm~1000nmとなっており、混合物層15の厚さは、100nm~150nmとなっている。また、混合物層15は、50nm~250nmの範囲の厚さで形成することができる。より望ましくは、混合物層15は、150nm~200nmの範囲の厚さで形成されていてもよい。
 混合物層15は、充電層14と同様の製造工程により形成することができる。まず、酸化スズの前駆体と、シリコーンオイルとの混合物に溶媒を混合した塗布液を用意する。そして、塗布液が、スピン塗布法、スリットコート法などで充電層14上に塗布される。塗布膜に対して乾燥、及び焼成を行うことで、充電層14上に混合物層15を形成することができる。酸化スズは、酸化物半導体の前駆体である脂肪族酸塩から分解して形成される。乾燥、及び焼成した後の混合物層15に対して、紫外線照射を行いUV硬化させてもよい。
 なお、酸化物半導体材料については、前駆体を用いずに、酸化物半導体の微細な粒子を用いることも可能である。酸化スズのナノ粒子をシリコーンオイルと混合して混合液を生成する。さらに、混合液に溶媒を混合することで、塗布液が生成される。スピン塗布法、スリットコート法などにより、塗布液が充電層14上に塗布される。塗布膜に対して、乾燥、焼成、及びUV照射を行うことで、混合物層15を形成することができる。
 p型酸化物半導体層16は、p型酸化物半導体材料を含んで構成される。p型酸化物半導体層16の材料としては、酸化ニッケル(NiO)、及び銅アルミ酸化物(CuAlO)等を使用することが可能である。例えば、p型酸化物半導体層16は、厚さ400nmの酸化ニッケル膜となっている。p型酸化物半導体層16は、蒸着又はスパッタリング等の成膜方法によって、混合物層15の上に成膜されている。
 第2電極17は、導電膜によって形成されていればよい。また、第2電極17の材料としては、クロム(Cr)又は銅(Cu)等の金属材料を用いることができる。他の金属材料として、アルミニウム(Al)を含む銀(Ag)合金等がある。その形成方法としては、スパッタリング、イオンプレーティング、電子ビーム蒸着、真空蒸着、化学蒸着等の気相成膜法を挙げることができる。また、金属電極は電解メッキ法、無電解メッキ法等により形成することができる。メッキに使用される金属としては、一般に銅、銅合金、ニッケル、アルミ、銀、金、亜鉛又はスズ等を使用することが可能である。例えば、第2電極17は、厚さ300nmのAl膜となっている。
<発明の効果>
 本実施の形態にかかる二次電池10は、混合物層15が充電層14とp型酸化物半導体層16の間に配置されている。混合物層15は、酸化ケイ素と第3のn型酸化物半導体材料(導電材料)との混合物から構成されている。酸化ケイ素(絶縁材料)のみで層を構成する場合と比較すると、本実施の形態にかかる二次電池は、層の電気伝導率を導電材料で調整することができるため、混合物層15を厚くしても、或る一定以上の電気導電率を確保することできる。すなわち、本実施の形態にかかる二次電池は、混合物層15を所望の厚さにすることができる。これにより、二次電池10の性能を向上させることができる。
 また、混合物層15を、或る一定の導電率を確保しつつ所望の厚さにすることができるため、酸化ケイ素(絶縁材料)のみで層を形成する場合の様に、電荷の移動を妨げないように薄く層を形成する必要がないため、不均質な層が形成されるのを防止できる。つまり、本実施の形態にかかる二次電池は、不均質な層での局所的な絶縁破壊等の不具合を回避することができる。
 また、本実施の形態にかかる二次電池10は、第1電極11とn型酸化物半導体層13との間に導電層12が配置されている。導電層12は、第1金属膜12aとしてチタン(Ti)膜を有する1層構造、又は、第1金属膜12aとしてチタン(Ti)膜、及び第2金属膜12bとしてタングステン(W)膜を有する2層構造を有している。
<1層構造>
 導電層12が1層構造(第1金属膜12a)である場合、第1電極11とn型酸化物半導体層13との間に、金属材料(n型酸化物半導体層13に含まれる金属元素と同じ金属元素、または、n型酸化物半導体層13に含まれる金属元素よりの高い電気導電率を有する金属元素が含まれることが好ましい)を含む導電層12が配置される。このため、導電層12を配置させない場合と比較して、第1電極11からn型酸化物半導体層13へ電流が流れやすくなる。つまり、導電層12を配置することにより、第1電極11からn型酸化物半導体層13の間の電気伝導率を調整することができる。また、導電層12が配置されていると、第1電極11とn型酸化物半導体層13との密着性を向上させることができる。
 この導電層12が無い場合、第1電極11の表面が酸化すると、第1電極11と充電層14との間の電気伝導率が低下してしまう。第1電極11の上に導電層12を配置させると、第1電極11の表面の酸化を軽減させながら、一定の電気伝導率を確保することができる。
 n型酸化物半導体層13が酸化チタンである場合、導電層12(第1金属膜12a)は、n型酸化物半導体層13と同じ金属元素であるチタン膜を含むことが好ましい。このチタン膜が、一定の電気伝導率を確保すると共に、第1電極11とn型酸化物半導体層13との密着性を向上させる密着層として機能する。
<2構造層>
 導電層12が2層構造である場合(第1金属膜12a及び第2金属膜12b)、導電層12が1層構造である場合の効果(導電性、密着性)に加えて、第1電極11を構成する重金属が、n型酸化物半導体層13へマイグレートすることを抑制、及び、第2金属膜12bの上部に配置される層と第2金属膜12bの下部に配置される層との密着性を向上させることもできる。この詳細を、第2金属膜12bがタングステン、n型酸化物半導体層13に含まれている第2のn型酸化物半導体材料が酸化チタンである場合(つまり、n型酸化物半導体層13が金属元素としてチタンを含んでいる場合)を例に採り説明する。
 タングステン(W)の電気抵抗率は5.29×10-8Ωmである。また、チタンの電気抵抗率は4.27×10-7Ωmである。電気抵抗率は、電気伝導率の逆数となる。つまり、第2金属膜12bに含まれる金属元素の方が第2のn型酸化物半導体材料に含まれる金属元素よりも電気伝導率が高い。すなわち、第2金属膜12bを配置させることにより、第1電極11とn型酸化物半導体層13との間の電気伝導率を確保することができる。例えば、電気伝導率の低い層を配置するだけではマイグレートを抑制することができる可能性はあるが、抵抗が高いため電気伝導率を確保できず所望する電池性能を得ることができない可能性がある。本実施形態に係る第2金属膜のような、第2のn型酸化物半導体材料に含まれる金属元素よりも電気伝導率を有する層を配置することが重要である。
 導電層12は厚さ15nmのチタン膜、n型酸化物半導体層13は厚さ60nmのTiO膜、充電層14の厚さは1000nm、混合物層15の厚さは、150nm、p型酸化物半導体層16は厚さ400nmのNiO膜、第2電極17は、厚さ300nmのAl膜とすることで、高い性能を得ることができる。
 図2に導電層12の有無によるエネルギー密度の測定結果を示す。測定結果Aは、導電層12がチタン単層である二次電池の測定結果を示している。測定結果Bは、導電層12が設けられておらず、第1電極11とn型酸化物半導体層13とが接触している二次電池の測定結果を示している。ここで、n型酸化物半導体層13のn型酸化物半導体材料は、酸化チタンである。また、図2では、充電層14の厚さを200nmとし、その他の層の厚さを変えた場合の測定結果を示している。
 具体的に、図2の測定結果Aは、下記(条件1)~(条件4)の条件を満たす二次電池の測定結果を示している。
(条件1)n型酸化物半導体層13の厚さを65‐120nmの範囲で変化させる。
(条件2)混合物層15の厚さを100‐250nmの範囲で変化させる。
(条件3)第1電極11としてSUS箔を使用し、厚さを5-10umの範囲で変化させる。
(条件4)二次電池に導電層12を設け、この導電層12の厚みを15nm-120nmの範囲で変化させる。
 測定結果Bには、上記(条件1)~(条件3)の条件を満たす二次電池の測定結果が示されている。つまり、測定結果Bには、二次電池に導電層12が設けられていない二次電池の測定結果が示されている。また、導電層12を2層として12aをタングステン、12bにチタンを適用した二次電池においても、測定結果Aで示した導電層12をチタン単層とした測定結果とほぼ同等の結果が得られた。
 図2の測定結果A、Bでは、それぞれ15サンプルにおけるエネルギー密度の測定値がボックスプロットで示されている。ボックスプロットでは、15サンプルの上位25%、及び下位25%がボックスで示されている。また、15サンプルの中央値が横太線で示されている。縦軸は、エネルギー密度(Wh/l)を示している。導電層12を設けた測定結果Aと導電層12を設けない測定結果Bとを比較すると、導電層12を設けた測定結果Aの方が高いエネルギー密度を得ることが示されている。
 なお、第2金属膜12bを、n型酸化物半導体層13に含まれる金属元素の電気伝導率よりも高い電気伝導率を有し、且つ、n型酸化物半導体層13に含まれる金属元素の電気伝導率よりも高い仕事関数を有する金属元素を含む構成としてもよい。例えば、n型酸化物半導体層13が酸化チタン(TiO)である場合、第2金属膜12bは、タングステン(W)が好ましい。なお、タングステン(W)の仕事関数は4.52eVである。また、チタンの仕事関数は4.14eVである。
 以上、本発明の実施形態の一例を説明したが、本発明はその目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態による限定は受けない。
 この出願は、2016年8月1日に出願された日本出願特願2016-151073を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10 二次電池
 11 第1電極
 12 導電層
 12a 第1金属膜
 12b 第2金属膜
 13 n型酸化物半導体層
 14 充電層
 15 混合物層
 16 p型酸化物半導体層
 17 第2電極

Claims (10)

  1.  第1電極と、
     第2電極と、
     前記第1電極と前記第2電極との間に配置され、絶縁材料と第1のn型酸化物半導体材料との混合物を含む充電層と、
     前記充電層と前記第1電極との間に配置され、第2のn型酸化物半導体材料を含んでいるn型酸化物半導体層と、
     前記充電層と前記第2電極との間に配置され、p型酸化物半導体材料を含んでいるp型酸化物半導体層と、
     前記充電層と前記p型酸化物半導体層との間に配置され、酸化ケイ素と第3のn型酸化物半導体材料との混合物を含んでいる混合物層と、
     前記第1電極と前記n型酸化物半導体層との間に配置され、金属材料を含んでいる導電層と、
    を備えた二次電池。
  2.  前記第3のn型酸化物半導体材料は、酸化スズであることを特徴とする請求項1に記載の二次電池。
  3.  前記導電層には、前記第2のn型酸化物半導体材料に含まれる金属元素と同じ金属元素が含まれていることを特徴とする請求項1又は2に記載の二次電池。
  4.  前記導電層には、前記第2のn型酸化物半導体材料に含まれる金属元素の電気伝導率よりも高い電気伝導率を有する金属元素が含まれていることを特徴とする請求項1又は2に記載の二次電池。
  5.  前記第2のn型酸化物半導体材料は、酸化チタンであることを特徴とする請求項1又は2に記載の二次電池。
  6.  前記導電層は、前記n型酸化物半導体層と接するように設けられたチタン膜を含んでいることを特徴とする請求項5に記載の二次電池。
  7.  前記導電層は、タングステン膜と前記チタン膜との積層構造を有しており、
     前記タングステン膜が前記第1電極と接するように設けられていることを特徴とする請求項6に記載の二次電池。
  8.  前記導電層は、
     前記n型酸化物半導体層と接する第1金属膜と、
     前記第1電極と接する第2金属膜とを備えており、
     前記第1金属膜には、前記第2のn型酸化物半導体材料に含まれる金属元素と同じ金属元素が含まれていることを特徴とする請求項1に記載の二次電池。
  9.  前記第2金属膜には、前記第2のn型酸化物半導体材料に含まれる金属元素の電気伝導率よりも高い電気伝導率を有する金属元素が含まれていることを特徴とする請求項8に記載の二次電池。
  10.  前記混合物層の厚さが100nm~250nmであることを特徴とする請求項1~9のいずれか1項に記載の二次電池。
PCT/JP2017/026386 2016-08-01 2017-07-21 二次電池 WO2018025654A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17836760.3A EP3496169B1 (en) 2016-08-01 2017-07-21 Secondary battery
US16/322,398 US10991933B2 (en) 2016-08-01 2017-07-21 Secondary battery
CA3032257A CA3032257C (en) 2016-08-01 2017-07-21 Secondary battery
KR1020197004267A KR102166157B1 (ko) 2016-08-01 2017-07-21 2차 전지
CN201780047913.0A CN109564970B (zh) 2016-08-01 2017-07-21 二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016151073A JP6813982B2 (ja) 2016-08-01 2016-08-01 二次電池
JP2016-151073 2016-08-01

Publications (1)

Publication Number Publication Date
WO2018025654A1 true WO2018025654A1 (ja) 2018-02-08

Family

ID=61072690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026386 WO2018025654A1 (ja) 2016-08-01 2017-07-21 二次電池

Country Status (8)

Country Link
US (1) US10991933B2 (ja)
EP (1) EP3496169B1 (ja)
JP (1) JP6813982B2 (ja)
KR (1) KR102166157B1 (ja)
CN (1) CN109564970B (ja)
CA (1) CA3032257C (ja)
TW (1) TWI650890B (ja)
WO (1) WO2018025654A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080368A (ja) * 2018-11-13 2020-05-28 株式会社日本マイクロニクス 二次電池、及び製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075717B2 (ja) * 2017-03-15 2022-05-26 株式会社日本マイクロニクス 蓄電デバイス
JP7023049B2 (ja) * 2017-03-16 2022-02-21 株式会社日本マイクロニクス 二次電池
JP7122981B2 (ja) * 2019-01-31 2022-08-22 株式会社日本マイクロニクス 二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183132A1 (ja) * 2012-06-06 2013-12-12 株式会社日本マイクロニクス 固体型二次電池の電極構造
WO2015141107A1 (ja) * 2014-03-18 2015-09-24 株式会社日本マイクロニクス 電池
JP2016028408A (ja) * 2014-03-24 2016-02-25 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2016082125A (ja) 2014-10-20 2016-05-16 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2016091931A (ja) 2014-11-10 2016-05-23 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2016151073A (ja) 2015-02-18 2016-08-22 三菱重工業株式会社 黒液回収ボイラ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079775A (ja) 1983-10-06 1985-05-07 Nec Corp オ−ム性電極
CN1679123B (zh) * 2002-07-01 2010-04-28 罗尔夫·艾塞霖 超级电容器及其制造方法
JP4447358B2 (ja) 2004-03-31 2010-04-07 大日本印刷株式会社 有機半導体素子
KR100753824B1 (ko) * 2005-12-08 2007-08-31 한국전자통신연구원 전고체형 필름 일차전지 및 그 제조 방법
KR101308096B1 (ko) * 2006-06-20 2013-09-12 강원대학교산학협력단 리튬 이차 박막 전지용 음극, 이의 제조방법 및 이를포함하는 리튬 이차 박막 전지
KR100943173B1 (ko) 2007-11-19 2010-02-19 한국전자통신연구원 다공성 전도층을 사용하는 전극을 포함하는 염료감응태양전지
JP5544774B2 (ja) 2008-08-27 2014-07-09 三菱マテリアル株式会社 多接合型太陽電池
JP5326743B2 (ja) 2009-03-30 2013-10-30 大日本印刷株式会社 有機薄膜太陽電池及びその製造方法
CN103140933B (zh) * 2010-10-07 2016-09-21 刮拉技术有限公司 二次电池
US9164149B2 (en) 2011-10-30 2015-10-20 Kabushiki Kaisha Nihon Micronics Testing device and testing method for quantum battery using semiconductor probe
EP2787546B1 (en) * 2011-10-30 2018-05-02 Kabushiki Kaisha Nihon Micronics Repeatedly chargeable and dischargeable quantum battery
JP6032817B2 (ja) 2013-12-17 2016-11-30 信越化学工業株式会社 化粧料
JP6367575B2 (ja) * 2014-02-25 2018-08-01 株式会社日本マイクロニクス 二次電池搭載回路チップ及びその製造方法
JP6443798B2 (ja) * 2014-03-24 2018-12-26 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
CN106687616A (zh) 2014-09-18 2017-05-17 国立研究开发法人科学技术振兴机构 金属氧化物的薄膜、具备该薄膜的有机电致发光元件、太阳能电池及薄膜的制造方法
KR20160082125A (ko) 2014-12-31 2016-07-08 삼성전기주식회사 안테나 모듈 및 안테나 연결 방법
JP2016127166A (ja) * 2015-01-05 2016-07-11 パナソニックIpマネジメント株式会社 蓄電素子およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183132A1 (ja) * 2012-06-06 2013-12-12 株式会社日本マイクロニクス 固体型二次電池の電極構造
WO2015141107A1 (ja) * 2014-03-18 2015-09-24 株式会社日本マイクロニクス 電池
JP2016028408A (ja) * 2014-03-24 2016-02-25 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2016082125A (ja) 2014-10-20 2016-05-16 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2016091931A (ja) 2014-11-10 2016-05-23 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2016151073A (ja) 2015-02-18 2016-08-22 三菱重工業株式会社 黒液回収ボイラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3496169A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080368A (ja) * 2018-11-13 2020-05-28 株式会社日本マイクロニクス 二次電池、及び製造方法
JP7138020B2 (ja) 2018-11-13 2022-09-15 株式会社日本マイクロニクス 二次電池、及び製造方法

Also Published As

Publication number Publication date
CA3032257C (en) 2021-10-19
EP3496169A4 (en) 2020-03-25
CA3032257A1 (en) 2018-02-08
EP3496169B1 (en) 2022-04-13
TWI650890B (zh) 2019-02-11
KR102166157B1 (ko) 2020-10-15
US20200185701A1 (en) 2020-06-11
CN109564970B (zh) 2022-10-21
JP6813982B2 (ja) 2021-01-13
CN109564970A (zh) 2019-04-02
JP2018022719A (ja) 2018-02-08
EP3496169A1 (en) 2019-06-12
KR20190028509A (ko) 2019-03-18
TW201810786A (zh) 2018-03-16
US10991933B2 (en) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2018025654A1 (ja) 二次電池
JP5542801B2 (ja) 電極構造体、コンデンサ、電池および電極構造体の製造方法
JPWO2012036017A1 (ja) 誘電体薄膜素子、アンチヒューズ素子及び誘電体薄膜素子の製造方法
JP5374779B1 (ja) 太陽電池及び、この太陽電池における酸化物層の形成方法、積層酸化物層の形成方法
JP2012174865A (ja) 固体電解コンデンサ用電極箔
JP5634184B2 (ja) 導電層被覆アルミニウム材とその製造方法
JP6656848B2 (ja) 酸化物半導体二次電池の製造方法
JP4834193B2 (ja) 電極構造体の製造方法、電極構造体およびコンデンサ
JP5445464B2 (ja) コンデンサ用電極体およびコンデンサ
JP2019140053A (ja) 二次電池
KR102483904B1 (ko) 이차 전지 및 제조 방법
JP2019165109A (ja) 二次電池、及びその製造方法
WO2023171426A1 (ja) コンデンサ
TWI710157B (zh) 蓄電裝置
EP3920301A1 (en) Secondary battery
WO2024135234A1 (ja) コンデンサ
JP2013077676A (ja) 電極構造体の製造方法、電極構造体およびコンデンサ
JP2019207907A (ja) 二次電池、及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3032257

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197004267

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017836760

Country of ref document: EP

Effective date: 20190301