WO2018021513A1 - 蓄電デバイス用正極および蓄電デバイス - Google Patents

蓄電デバイス用正極および蓄電デバイス Download PDF

Info

Publication number
WO2018021513A1
WO2018021513A1 PCT/JP2017/027380 JP2017027380W WO2018021513A1 WO 2018021513 A1 WO2018021513 A1 WO 2018021513A1 JP 2017027380 W JP2017027380 W JP 2017027380W WO 2018021513 A1 WO2018021513 A1 WO 2018021513A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyaniline
positive electrode
storage device
weight
binder
Prior art date
Application number
PCT/JP2017/027380
Other languages
English (en)
French (fr)
Inventor
弘義 武
矢野 雅也
徹 杉谷
千里 後藤
永恵 清水
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017145822A external-priority patent/JP2018026341A/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US16/319,552 priority Critical patent/US20190267627A1/en
Priority to CN201780046569.3A priority patent/CN109496372A/zh
Priority to KR1020197002542A priority patent/KR20190032390A/ko
Priority to EP17834515.3A priority patent/EP3477746A4/en
Publication of WO2018021513A1 publication Critical patent/WO2018021513A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for an electricity storage device and an electricity storage device.
  • a storage battery suitable for this energy regeneration is an electric double layer capacitor or a lithium ion capacitor that can be rapidly charged.
  • a rapid charge / discharge storage device a further increase in capacity is desired.
  • Carbon materials for capacitors such as activated carbon are widely used as electrode materials for power storage devices that perform rapid charge and discharge.
  • Activated carbon or the like uses its very large specific surface area, and is charged and discharged by physically adsorbing and desorbing ions on the surface. Therefore, the reaction is very fast and rapid charge / discharge is possible.
  • the above carbon materials for capacitors such as activated carbon store electricity by a physical reaction on the particle surface, and have a drawback of low capacity density. If the specific surface area is increased in order to increase the capacity, the capacity density per weight can increase, but the capacity density per volume decreases, and as a result, a large increase in capacity density cannot be expected.
  • Patent Document 1 shows that polyaniline having an oxidation degree index of 0.7 or less functions as a capacitor material. However, when the oxidation index exceeds 0.7, the output ratio at room temperature decreases, which is not preferable.
  • the oxidation index is represented by a ratio A640 / A340 of the absorbance A640 at the absorption maximum near 640 nm and the absorbance A340 at the absorption maximum near 340 nm in the electronic spectrum of polyaniline.
  • the ratio of oxidized polyaniline in the polyaniline was about 40% by weight.
  • Patent Document 2 a method for producing an electric double layer capacitor using a polyaniline / carbon composite by making a composite with a carbon-based material by utilizing the rapid charge / discharge property of polyaniline or a derivative thereof is shown.
  • Patent Document 2 polyaniline is used only in an auxiliary role of the carbon material which is an active material, and the capacity per active material is insufficient.
  • the positive electrode for an electricity storage device having a relatively high polyaniline oxidant ratio in Patent Document 3 is preferable in terms of preservability of polyaniline, but the polyaniline itself is difficult to activate. In order to obtain, the activation process which repeats a charging / discharging cycle was required. This is considered to be industrially unfavorable because the capacity balance between the positive electrode and the negative electrode is disrupted in the case of an electricity storage device, which can be an adverse effect of designing the electricity storage device.
  • the present invention provides a positive electrode for an electricity storage device excellent in activation from the beginning of charge / discharge and an electricity storage device using the same.
  • the inventors of the present invention have made extensive studies in order to obtain an electricity storage device excellent in rapid charge / discharge performance using polyaniline or a derivative thereof as an active material.
  • Polyaniline or a derivative thereof having an oxidant ratio of 45% by weight or more is excellent in storage stability of polyaniline and suitable for industrial use.
  • the present inventors as a binder used when forming an electrode, even when the ratio of oxidized polyaniline is large, the sum of the polar term and the hydrogen bond term in the Hansen solubility parameter is 20 MPa 1/2 or less It was found that a large capacity can be stably obtained from the initial stage of the charge / discharge cycle, and can be suitably used as an active material of an electricity storage device by mixing with a conductive additive using the.
  • the present invention is a positive electrode for an electricity storage device containing an active material containing at least one of polyaniline and a derivative thereof, a conductive additive, and a binder, wherein the active material contains at least one of the polyaniline and a derivative thereof.
  • the positive electrode for an electricity storage device in which the ratio of the oxidized polyaniline is 45% by weight or more of the whole polyaniline active material and the sum of the polar term and the hydrogen bond term in the Hansen solubility parameter of the binder is 20 MPa 1/2 or less is the first.
  • the gist the ratio of the oxidized polyaniline is 45% by weight or more of the whole polyaniline active material is 0.75 or more in the oxidation index.
  • the present invention provides the positive electrode for an electricity storage device according to the first aspect, wherein the binder is at least one selected from the group consisting of a rubber binder, a polyacrylate binder, and an epoxy binder.
  • the binder is at least one selected from the group consisting of a rubber binder, a polyacrylate binder, and an epoxy binder.
  • the third aspect of the present invention is the positive electrode for an electricity storage device in which the binder is a rubber-based binder containing a styrene-butadiene copolymer in the first or second aspect.
  • this invention makes the 4th summary the positive electrode for electrical storage devices which contains a thickener further in the said 1st thru
  • the fifth aspect of the present invention is the positive electrode for an electricity storage device according to the fourth aspect, wherein the thickener is at least one of carboxymethylcellulose and derivatives or salts thereof.
  • the sixth aspect of the present invention is the positive electrode for an electric storage device further including a capacitor carbon material as an active material in the first to fifth aspects.
  • the present invention also provides an electricity storage device having an electrolyte layer, a positive electrode and a negative electrode provided therebetween, wherein the positive electrode is a positive electrode for an electricity storage device according to any one of the first to sixth aspects. Is the seventh gist.
  • the present invention provides a positive electrode for an electricity storage device, comprising an active material containing at least one of polyaniline and a derivative thereof, a conductive additive, and a binder, the active material containing at least one of the polyaniline and a derivative thereof. It is a positive electrode for a power storage device in which the ratio of oxidized polyaniline in the material is 45% by weight or more of the whole polyaniline active material, and the sum of the polar term and hydrogen bond term in the Hansen solubility parameter of the binder is 20 MPa 1/2 or less. .
  • the affinity between the active material containing at least one of polyaniline and its derivative and the binder is good, and since the conductive assistant is in proper contact with the active material, it is easy to ensure conductivity, and the activity from the beginning of charge / discharge It can be set as the positive electrode for electrical storage devices excellent in production.
  • the binder is at least one selected from the group consisting of a rubber-based binder, a polyacrylate ester-based binder, and an epoxy-based binder, the positive electrode for the electricity storage device is more excellent.
  • the binder is a rubber-based binder containing a styrene-butadiene copolymer, it becomes more excellent by activating the positive electrode for the electricity storage device.
  • the viscosity of the coating slurry can be adjusted so as to be suitable for coating, and the affinity between the active material and the binder is improved.
  • the electrode in which the conductive auxiliary agent and the active material are in proper contact with each other can be applied uniformly with a desired coating thickness.
  • the thickener is at least one of carboxymethylcellulose and its derivatives or salts thereof, the electrode coatability is further improved.
  • the active material when the active material further includes a carbon material for a capacitor, it can be a positive electrode for an electricity storage device having a reaction component even in a region where the potential with respect to a metal lithium (Li) reference electrode is 2.8 V or less.
  • the electricity storage device using the positive electrode for the electricity storage device can be an electricity storage device excellent in activation of capacity from the initial stage of charge / discharge.
  • FIG. 1 It is typical sectional drawing which shows an example of the electrical storage device of this invention.
  • the graph of the solid 13 C NMR spectrum of the oxidized and reduced polyaniline powders measured by the CP / MAS method is shown (the upper half of the figure is the oxidized form, and the lower half of the figure is the reduced form).
  • a graph of a solid 13 C NMR spectrum (thick line) and a curve fitting (thin line) of the data measured for each polyaniline powder in different oxidation states by the DD / MAS method is shown.
  • the graph of the discharge curve of Example 1, Example 7, and Comparative Example 6 is shown.
  • the electricity storage device of the present invention includes an electrolyte layer 3, and a positive electrode 2 and a negative electrode 4 that are provided to face each other with the electrolyte layer 3 interposed therebetween.
  • the positive electrode for an electricity storage device of the present invention (hereinafter sometimes simply referred to as “positive electrode”) is used as the positive electrode 2 of the above electricity storage device.
  • 1 is a positive electrode current collector
  • 5 is a negative electrode current collector.
  • the positive electrode of the present invention contains an active material containing at least one of polyaniline and its derivative, a conductive auxiliary agent, and a binder.
  • the active material of the present invention contains at least one of polyaniline and derivatives thereof.
  • the above polyaniline refers to a polymer obtained by electrolytic polymerization or chemical oxidative polymerization of aniline
  • the polyaniline derivative refers to, for example, a polymer obtained by electrolytic polymerization or chemical oxidative polymerization of a derivative of aniline.
  • the aniline derivative includes at least one substituent such as an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group, an alkylaryl group, an arylalkyl group, and an alkoxyalkyl group at a position other than the 4-position of the aniline. What it has can be illustrated.
  • Preferable specific examples include o-substituted anilines such as o-methylaniline, o-ethylaniline, o-phenylaniline, o-methoxyaniline, o-ethoxyaniline, m-methylaniline, m-ethylaniline, and m-substituted anilines such as m-methoxyaniline, m-ethoxyaniline, m-phenylaniline, and the like. These may be used alone or in combination of two or more.
  • aniline or a derivative thereof is simply referred to as “aniline”, and “at least one of polyaniline and polyaniline derivatives” is simply referred to as “polyaniline”. Therefore, even when the polymer constituting the conductive polymer is obtained from a polyaniline derivative, it may be referred to as “polyaniline”.
  • the particle diameter (median diameter) of the polyaniline active material is preferably 0.001 to 100 ⁇ m, particularly preferably 0.01 to 50 ⁇ m, and most preferably 0.1 to 30 ⁇ m.
  • the median diameter can be measured by a light scattering method using, for example, a dynamic light scattering particle size distribution measuring apparatus. It is also possible to directly measure from a captured image using a static automatic image analyzer or the like.
  • the polyaniline is preferably a main component of the active material used for the positive electrode from the viewpoint of increasing the capacity.
  • polyaniline since polyaniline has a large capacity compared to a carbon material for capacitors such as activated carbon, an effect of increasing the capacity can be obtained even with a small amount of polyaniline mixed with an active material mainly composed of a carbon material for capacitors.
  • the content of polyaniline is preferably 10% by weight or more of the active material, and more preferably 20% by weight or more.
  • the ratio of oxidized polyaniline in the active material is 45% by weight or more of the whole polyaniline active material (oxidation index is 0.75 or more). More preferably, the ratio of the oxidant is 50% by weight or more (0.8 or more in the degree of oxidation index).
  • the ratio of the oxidized polyaniline in the whole polyaniline active material is less than the above numerical value, the storage stability of the polyaniline is lowered.
  • the upper limit of the ratio of the polyaniline oxidant in the whole polyaniline active material is usually 100% by weight.
  • Adjustment of the ratio of the polyaniline oxidant in the whole polyaniline active material is performed by, for example, adding the reducing agent (for example, phenylhydrazine) to the polyaniline so that the ratio of the polyaniline oxidant is within a predetermined range (45% by weight or more). On the other hand, it can be performed by adjusting the stoichiometry.
  • a chemical reaction formula is shown below for a reduction reaction of polyaniline using phenylhydrazine which is an example of a reducing agent.
  • the ratio of the oxidized polyaniline in the polyaniline active material in the present invention can be determined from, for example, a solid 13 CNMR spectrum. Further, the ratio of oxidized polyaniline in the whole polyaniline active material is expressed as a ratio A640 / A340 between the absorbance A640 at the absorption maximum near 640 nm and the absorbance A340 at the absorption maximum near 340 nm in the electronic spectrum of the spectrophotometer. Alternatively, the oxidation index can be obtained.
  • solid state NMR solid state 13 CNMR
  • CP / MAS and DD / MAS methods for solid-state NMR measurement (CP: Cross Polarization, MAS: Magic Angle Sample Spinning, DD: Dipole Decoupling).
  • CP / MAS method has short measurement time and peak intensity. It is a measurement method that appears strongly but does not have quantitativeness (detection sensitivity differs for each peak).
  • the DD / MAS method is a measurement method with a weak peak intensity but a quantitative property.
  • FIG. 2 shows solid NMR spectra of the polyaniline powder in the oxidatively dedoped state and the polyaniline powder in the reduced dedope state measured by CP / MAS method.
  • a chemical formula obtained by extracting a part of the reduced and oxidized polyaniline structure is shown in the following general formula (i).
  • the oxidized form of polyaniline has a quinonediimine structure, and the reduced form of polyaniline does not have a quinonediimine structure.
  • a peak derived from the quinone diimine structure that is, a peak of 158 ppm exists in the upper diagram of FIG. 2, but disappears from the lower diagram of FIG. ing. From this, it can be confirmed that the upper figure of FIG. 2 where the quinonediimine structure exists is an oxidized form of polyaniline, and the lower figure of FIG. 2 where the quinonediimine structure has disappeared is a reduced form of polyaniline.
  • the ratio of the polyaniline oxidant is adjusted (for example, adjusted by the amount of the oxidant or the reducing agent added), so that the oxidation states are different (1).
  • Polyaniline powders (6) to (6) were prepared.
  • solid NMR spectra were measured for the polyaniline powders (1) to (5) by the DD / MAS method.
  • the solid NMR spectra of various polyanilines by DD / MAS method and the results of curve fitting of the data are shown in FIG. Curve fitting was performed by the least square method.
  • the polyaniline powder (6) is shown in the reduced form of FIG. 2, which is a measurement result of the CP / MAS method.
  • the ratio is shown in Table 1 below.
  • the peak area ratio is shown as 0 in Table 1 below.
  • the solid NMR spectrum measured by the CP / MAS method is not quantitative, but since the polyaniline powder of (6) does not have a peak of 158 ppm, the quantitative DD / DC shown in FIG. It can be seen that the peak area is zero, not by the MAS method.
  • the active material composed of the polyaniline has a capacitive component mainly in a region where the potential with respect to the metal lithium (Li) reference electrode exceeds 2.8V, and therefore it is desired to have a capacitive component in the region where the potential is 2.8V or less. It is preferable to mix a carbon material for capacitors as the second active material.
  • capacitor carbon material examples include activated carbon, graphene, ketjen black, and carbon nanotube.
  • activated carbon widely used in industry is preferable. These may be used alone or in combination of two or more.
  • examples of the activated carbon include alkali-activated activated carbon, steam-activated activated carbon, gas-activated activated carbon, and zinc chloride-activated activated carbon. These may be used alone or in combination of two or more.
  • a conductive polymer other than polyaniline may be used in combination as the third active material as long as the object of the present invention is not impaired.
  • the conductive polymer other than the polyaniline and the capacitor carbon material include polyacetylene, polypyrrole, polythiophene, polyfuran, polyselenophene, polyisothianaphthene, polyphenylene sulfide, polyphenylene oxide, polyazulene, poly (3,4- Ethylenedioxythiophene) and the like. These may be used alone or in combination of two or more.
  • the mixing ratio of the active material is preferably 50% by weight or more of the positive electrode material, more preferably 60% by weight or more, and particularly preferably 70% by weight or more.
  • the binder contained in the positive electrode of the present invention has a sum of polar terms and hydrogen bond terms in the Hansen solubility parameter of 20 MPa 1/2 or less.
  • the Hansen solubility parameter is a three-dimensional space in which the solubility parameter introduced by Hildebrand is divided into three components: a dispersion term ⁇ D, a polar term ⁇ P, and a hydrogen bond term ⁇ H.
  • the dispersion term ⁇ D indicates the effect due to the dispersion force
  • the polar term ⁇ P indicates the effect due to the force between the dipoles
  • the hydrogen bond term ⁇ H indicates the effect due to the hydrogen bond force.
  • the definition and calculation of the Hansen solubility parameter can be performed by the method described in Charles M.
  • Hansen Solubility Parameters in Practice can be used to calculate Hansen solubility parameters from the chemical structure.
  • Hansen solubility parameters are calculated using HSPiP version 4.0.05.
  • Hansen solubility parameter ( ⁇ P + ⁇ H) represents the Hansen solubility parameter of each component constituting the binder. Obtained and multiplied by the respective composition ratios to obtain the total.
  • Tables 3 and 4 below show the calculation results of Hansen solubility parameters of typical binder components.
  • Table 4 also shows the calculation results of the oxidized polyaniline in which the ratio of the oxidized polyaniline in the active material composed of polyaniline is 50% by weight of the total polyaniline active material and the reduced polyaniline in which 0% by weight.
  • Hansen solubility parameters of the binder in the present invention ( ⁇ P + ⁇ H) is at 20 MPa 1/2 or less, preferably 19 MPa 1/2 or less from the affinity viewpoint of the oxidation product polyaniline, still more preferably 12 MPa 1/2 or less, most Preferably, it is 8 MPa 1/2 or less.
  • the lower limit of the Hansen solubility parameter ( ⁇ P + ⁇ H) is usually 0 MPa 1/2 .
  • a binder suitably used in the present invention in addition to a styrene-butadiene copolymer, a rubber-based binder such as an acrylonitrile-butadiene copolymer, a methyl methacrylate-butadiene copolymer, a methyl methacrylate polymer, or a derivative thereof, Homopolymers or copolymers of acrylic ester monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate, or copolymers of monomers that are copolymerizable with these acrylate monomers
  • polyacrylic acid ester binder bisphenol A type epoxy resin, bisphenol F type epoxy resin, glycidyl ester type epoxy resin, biphenyl type epoxy resin, polyfunctional epoxy resin, polymer type epoxy resin, etc.
  • the binder is an acrylonitrile-butadiene copolymer
  • the amount of bound nitrile is preferably 50% or less. These may be used alone or in combination of two or more. Among these, a rubber-based binder containing a styrene-butadiene copolymer is preferable because of excellent binding properties.
  • the styrene-butadiene copolymer is preferably used as a main component of the binder.
  • the main component means a component that greatly affects the properties of the binder, and the content of the component is usually 50% by weight or more of the binder. In addition, this also includes the case where the whole consists of only the main component.
  • the blending ratio of the binder is preferably 1 to 30% by weight of the positive electrode material, more preferably 4 to 25% by weight, and particularly preferably 4 to 18% by weight.
  • the conductive auxiliary agent may be a conductive material whose properties do not change depending on the potential applied during charging / discharging of the electricity storage device, and examples thereof include a conductive carbon material and a metal material.
  • conductive carbon black such as acetylene black and ketjen black, and fibrous carbon materials such as carbon fiber and carbon nanotube are preferable, and conductive carbon black is particularly preferably used.
  • the blending ratio of the conductive aid is preferably 1 to 30% by weight of the positive electrode material, more preferably 4 to 25% by weight, and particularly preferably 4 to 19% by weight.
  • Thickener As a material constituting the positive electrode, an active material, a binder, and a conductive additive are essential, but in order to obtain an electrode by uniformly applying an electrode slurry, the viscosity is adjusted according to the coating process.
  • a thickener may be added as long as it is necessary and does not interfere with the object of the present invention.
  • thickener examples include methyl cellulose, hydroxyethyl cellulose, polyethylene oxide, carboxymethyl cellulose, derivatives thereof and salts thereof. Of these, carboxymethylcellulose and derivatives or salts thereof are preferably used. These may be used alone or in combination of two or more.
  • the blending ratio of the above thickener is preferably 1 to 20% by weight of the positive electrode material, more preferably 1 to 10% by weight, and particularly preferably 1 to 8% by weight.
  • the positive electrode of the present invention is formed as follows, for example. That is, an active material containing polyaniline in water, a binder such as a styrene-butadiene copolymer, and a conductive assistant such as conductive carbon black are added and dispersed sufficiently to prepare a paste, which is used as a current collector. After coating on top, the sheet electrode can be obtained as a composite having a layer of a uniform mixture of active materials on the current collector by evaporating water.
  • the positive electrode is preferably formed in a porous sheet, and its thickness is usually 1 to 500 ⁇ m, preferably 10 to 300 ⁇ m.
  • the thickness of the positive electrode can be calculated, for example, by measuring using a dial gauge (manufactured by Ozaki Mfg. Co., Ltd.), which is a flat plate with a tip shape of 5 mm in diameter, and calculating the average of 10 measurement values with respect to the electrode surface. .
  • a dial gauge manufactured by Ozaki Mfg. Co., Ltd.
  • the thickness of the composite is measured in the same manner as described above to obtain an average of measured values, and from this value, the current collector
  • the thickness of the positive electrode is determined by subtracting the thickness.
  • ⁇ Negative electrode> As the negative electrode 4 shown in FIG. 1 used in the electricity storage device of the present invention, one formed using a negative electrode active material capable of inserting / extracting metal or ions is preferable.
  • a negative electrode active material metallic lithium, a carbon material in which lithium ions can be inserted / extracted during oxidation / reduction, a transition metal oxide, silicon, tin and the like are preferably used. These may be used alone or in combination of two or more.
  • the carbon material capable of inserting / extracting lithium ions include activated carbon, coke, pitch, phenol resin, polyimide, sintered body such as cellulose, artificial graphite, natural graphite, hard carbon, and soft carbon. .
  • the carbon material capable of inserting / extracting lithium ions is preferably used as the main component of the negative electrode.
  • the main component means a component that greatly affects the characteristics of the negative electrode, and the content of the component is usually 50% by weight or more of the entire negative electrode. In addition, this also includes the case where the whole consists of only the main component.
  • a lithium pre-doped negative electrode in which lithium ions are doped in advance into a carbon material such as graphite, hard carbon, or soft carbon may be used.
  • the positive electrode current collector 1 and the negative electrode current collector 5 shown in FIG. 1 will be described.
  • the material for these current collectors include metal foils such as nickel, aluminum, stainless steel, and copper, and meshes. Note that the positive electrode current collector and the negative electrode current collector may be formed of the same material or different materials. A porous current collector may also be used.
  • the electrolyte layer 3 shown in FIG. 1 used in the electricity storage device of the present invention is composed of an electrolyte.
  • a sheet obtained by impregnating a separator with an electrolytic solution or a sheet made of a solid electrolyte is preferably used.
  • the sheet made of the solid electrolyte itself may also serve as a separator.
  • the electrolyte is composed of a solute and, if necessary, a solvent and various additives.
  • the solute include metal ions such as lithium ions and appropriate counter ions corresponding thereto, for example, sulfonate ions, perchlorate ions, tetrafluoroborate ions, hexafluorophosphate ions, hexafluoroarsenic ions, bis
  • a combination of (trifluoromethanesulfonyl) imide ion, bis (pentafluoroethanesulfonyl) imide ion, halogen ion and the like is preferably used.
  • electrolyte examples include LiCF 3 SO 3 , LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ), LiCl, and the like. it can.
  • the solvent for example, at least one non-aqueous solvent such as carbonates, nitriles, amides, ethers, that is, an organic solvent is used.
  • organic solvents include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, acetonitrile, propironitrile, N, N′-dimethylacetamide, N-methyl-2- Examples include pyrrolidone, dimethoxyethane, diethoxyethane, and ⁇ -butyrolactone. These may be used alone or in combination of two or more. In addition, what melt
  • the electrolyte may contain an additive as necessary.
  • the additive include vinylene carbonate and fluoroethylene carbonate.
  • the separator can be used in various modes.
  • As the separator an electrical short circuit between a positive electrode and a negative electrode arranged opposite to each other can be prevented, and further, electrochemically stable, high ion permeability, and a certain degree of machine Any insulating porous sheet having strength may be used. Therefore, as the material of the separator, for example, a porous film made of a resin such as paper, nonwoven fabric, polypropylene, polyethylene, or polyimide is preferably used. These may be used alone or in combination of two or more.
  • ⁇ Power storage device> As the electricity storage device of the present invention, for example, as shown in FIG. 1, there is a device having an electrolyte layer 3 and a positive electrode 2 and a negative electrode 4 that are sandwiched therebetween.
  • the power storage device can be manufactured using the above-described material, for example, as follows. That is, lamination is performed such that a separator is disposed between the positive electrode and the negative electrode, a laminate is produced, and the laminate is placed in a battery container such as an aluminum laminate package, and then vacuum dried. Next, an electrolytic solution is poured into a vacuum-dried battery container, and a package that is a battery container is sealed, whereby an electricity storage device can be manufactured.
  • the production of the battery such as the injection of the electrolyte into the package is preferably performed in an inert gas atmosphere such as an ultrahigh purity argon gas in a glove box. It can also be performed in a low humidity room.
  • the power storage device is formed into various shapes such as a film type, a sheet type, a square type, a cylindrical type, and a button type in addition to the aluminum laminate package.
  • Example 1 ⁇ Preparation of active material> (Preparation of conductive polyaniline powder with tetrafluoroboric acid as dopant)
  • Conductive polyaniline (conductive polymer) powder using tetrafluoroboric acid as a dopant was prepared as follows. That is, 84.0 g (0.402 mol) of a 42 wt% aqueous tetrafluoroboric acid solution (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent) was added to a 300 mL glass beaker containing 138 g of ion-exchanged water. While stirring with a stirrer, 10.0 g (0.107 mol) of aniline was added thereto.
  • a 42 wt% aqueous tetrafluoroboric acid solution manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent
  • aniline When aniline was added to the tetrafluoroboric acid aqueous solution, the aniline was dispersed as oily droplets in the tetrafluoroboric acid aqueous solution, but then dissolved in water within a few minutes, and the uniform and transparent aniline aqueous solution. Became.
  • the aniline aqueous solution thus obtained was cooled to ⁇ 4 ° C. or lower using a low temperature thermostat.
  • conductive polyaniline (hereinafter simply referred to as “conductive polyaniline”) having tetrafluoroboric acid as a dopant.
  • the conductive polyaniline was a bright green powder.
  • the oxidation index of the polyaniline powder was determined by the method described above, and the oxidation index was 0.86. Moreover, the ratio of the polyaniline oxidized form in the whole polyaniline calculated
  • ⁇ Preparation of positive electrode for electricity storage device> Using a desktop automatic coating apparatus (manufactured by Tester Sangyo Co., Ltd.), the slurry was adjusted to a coating thickness of 360 ⁇ m using a doctor blade type applicator with a micrometer, and an aluminum foil ( It was applied onto Hosen Co., Ltd., 30CB). Next, after leaving at room temperature (25 ° C.) for 45 minutes, it was dried on a hot plate having a temperature of 100 ° C. to produce a positive electrode. The thickness of the positive electrode layer excluding the current collector layer (aluminum foil) was 62 ⁇ m.
  • An electricity storage device was assembled as follows using the positive electrode and a non-woven fabric (manufactured by Nippon Kogyo Paper Industries Co., Ltd., TF40-50, thickness 50 ⁇ m, porosity 70%) as a separator.
  • the positive electrode and separator were vacuum-dried at 150 ° C. for 2 hours in a vacuum dryer before assembly into the cell.
  • metal lithium manufactured by Honjo Metal Co., Ltd., thickness 50 ⁇ m
  • the electrolyte solution was an ethylene carbonate / dimethyl carbonate solution of lithium hexafluorophosphate (LiPF 6 ) having a concentration of 2 mol / dm 3 (volume ratio 1). : 2) (Kishida Chemical Co., Ltd.) was used.
  • the lithium secondary battery was assembled in a glove box having a dew point of ⁇ 70 ° C. in an ultrahigh purity argon gas atmosphere.
  • Example 2 In the preparation of the slurry of Example 1, 3 g (79.3 parts by weight) of polyaniline powder (oxidized 55 wt%) in an oxidatively dedoped state and conductive carbon black (Denka, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent.
  • Example was carried out in exactly the same manner except that, using a rotating / revolving vacuum mixer (Shinky Co., Awatori Nertaro ARV-310), the mixture was stirred at 2000 rpm for 10 minutes and degassed for 3 minutes.
  • the electricity storage device was fabricated.
  • the thickness of the positive electrode layer excluding the current collector layer was 76 ⁇ m.
  • Example 3 In the preparation of the slurry of Example 1, 2.6 g (76.5 parts by weight) of polyaniline powder (oxidized 55% by weight) in an oxidatively dedoped state and conductive carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent.
  • Example 3 Denka Black 0.29 g (8.5 parts by weight) powder, 0.408 g (12 parts by weight) of polymethyl acrylate (manufactured by Toa Gosei Co., Ltd., AS2000), and sodium carboxymethyl cellulose diluted to 2% by weight 5.19 g (3 parts by weight) and 7.72 g of water are added so that the solid content concentration becomes 21% by weight, using a rotating / revolving vacuum mixer (manufactured by Shinky Corp., Awatori Nerita ARV-310) at 2000 rpm
  • the electricity storage device of Example 3 was produced in exactly the same manner except that the mixture was stirred for 10 minutes and degassed for 3 minutes.
  • the thickness of the positive electrode layer excluding the current collector layer was 50 ⁇ m.
  • Example 4 In the preparation of the slurry of Example 1, 3 g (79.3 parts by weight) of polyaniline powder (oxidized 55 wt%) in an oxidatively dedoped state and conductive carbon black (Denka, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent.
  • Example 4 Black) 0.213 g (5.6 parts by weight) of powder, 0.456 g (12.1 parts by weight) of polymethyl acrylate (manufactured by Toagosei Co., Ltd., AS2000) as a binder, sodium carboxymethylcellulose diluted to 2% by weight Add 5.67 g (3 parts by weight) and 8.66 g of water to a solid content concentration of 21% by weight and use a rotating / revolving vacuum mixer (Shinky Corp., Awatori Nertaro ARV-310) at 2000 rpm.
  • a power storage device of Example 4 was produced in exactly the same manner except that the mixture was stirred for 10 minutes and degassed for 3 minutes.
  • the thickness of the positive electrode layer excluding the current collector layer was 50 ⁇ m.
  • Example 5 In the preparation of the slurry of Example 1, 2.6 g (76.5 parts by weight) of polyaniline powder (oxidized 55% by weight) in an oxidatively dedoped state and conductive carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent.
  • Example 5 Denka Black powder 0.29 g (8.5 parts by weight), bisphenol A type epoxy resin (manufactured by Chukyo Yushi Co., Ltd., O444) 0.408 g (12 parts by weight), and carboxymethyl cellulose diluted to 2% by weight 5.19 g (3 parts by weight) of sodium and 7.72 g of water were added so that the solid content concentration was 21% by weight, and a rotating / revolving vacuum mixer (manufactured by Shinky Corp., Awatori Nerita ARV-310) was used.
  • An electricity storage device of Example 5 was produced in exactly the same manner except that stirring was performed at 2000 rpm for 10 minutes and defoaming operation was performed for 3 minutes.
  • the thickness of the positive electrode layer excluding the current collector layer was 65 ⁇ m.
  • Example 6 In the preparation of the slurry of Example 1, 3 g (79.3 parts by weight) of polyaniline powder (oxidized 55 wt%) in an oxidatively dedoped state and conductive carbon black (Denka, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent.
  • Example 6 Black) 0.213 g (5.6 parts by weight) of powder, 0.456 g (12.1 parts by weight) of bisphenol A type epoxy resin (manufactured by Chukyo Yushi Co., Ltd., O444) as a binder, and carboxymethylcellulose diluted to 2% by weight 5.67 g (3 parts by weight) of sodium and 8.66 g of water were added so that the solid content concentration was 21% by weight, and a rotating / revolving vacuum mixer (Shinky Corp., Awatori Nerita ARV-310) was used. An electricity storage device of Example 6 was produced in exactly the same manner except that the stirring was performed at 2000 rpm for 10 minutes and the defoaming operation was performed for 3 minutes. The thickness of the positive electrode layer excluding the current collector layer was 65 ⁇ m.
  • Example 1 In the preparation of the slurry of Example 1, 2.6 g (79.2 parts by weight) of polyaniline powder (oxidized 55% by weight) in an oxidatively dedoped state and conductive carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent.
  • Example 2 In the preparation of the slurry of Example 1, 3 g (82.2 parts by weight) of polyaniline powder (oxidized 55 wt%) in an oxidatively dedoped state and conductive carbon black (Denka made by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent.
  • Example 3 In the preparation of the slurry of Example 1, 2.6 g (79.2 parts by weight) of polyaniline powder (oxidized 55% by weight) in an oxidatively dedoped state and conductive carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent. , Denka Black) 0.29 g (8.8 parts by weight) of powder and polyacrylic acid having a molecular weight of 800,000, lithium hydroxide, and water were added as a binder to make the lithiation rate 100% and diluted to 12% by weight.
  • a power storage device of Comparative Example 3 was produced in exactly the same manner except that 3.28 g of lithium polyacrylate (solid content was 12 parts by weight) and 9.46 g of water were added so that the solid content concentration was 21% by weight. did.
  • the thickness of the positive electrode layer excluding the current collector layer was 94 ⁇ m.
  • Example 4 In the preparation of the slurry of Example 1, 2.6 g (76.5 parts by weight) of polyaniline powder (oxidized 55% by weight) in an oxidatively dedoped state and conductive carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent.
  • Example 5 In the preparation of the slurry of Example 1, 3 g (82.2 parts by weight) of polyaniline powder (oxidized 55 wt%) in an oxidatively dedoped state and conductive carbon black (Denka made by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent.
  • Each power storage device was subjected to weight capacity density measurement in a constant current-constant voltage charge / constant current discharge mode in a 25 ° C. environment using a battery charging / discharging device (TOSCAT, manufactured by Toyo System Co., Ltd.).
  • the current value is 120 mAh / g, which is the ideal weight capacity density of polyaniline in this charge / discharge range, and the total capacity (mAh) is calculated from the amount of polyaniline contained in the positive electrode of each power storage device. It was set to charge / discharge.
  • the upper limit of the charging voltage is 3.8 V.
  • the constant voltage charging of 3.8 V is set to 20% of the current value during constant current charging.
  • the charging was completed until the end of the charging, and the obtained capacity was defined as the charging capacity.
  • constant current discharge was performed up to a final discharge voltage of 2.2 V, and the obtained discharge capacity was defined as the weight discharge capacity density (mAh / g) of the first cycle.
  • This weight discharge capacity density shows the value converted per net weight of the polyaniline which is an active material.
  • the capacity expression rate represents the ratio of the weight capacity density of the discharge in the first cycle to 120 mAh / g.
  • the discharge capacity density (mAh / cm 3 ) per volume of the electrode positive electrode layer was determined from the obtained discharge capacity and the thickness and area of the positive electrode layer of each power storage device.
  • the electricity storage devices of Examples 1 to 6 all contain polyaniline as an active material, the ratio of oxidized polyaniline is 45% by weight or more of the whole polyaniline active material, and the Hansen solubility of the binder Since the parameter ( ⁇ P + ⁇ H) was 20 MPa 1/2 or less, the capacity inherent in polyaniline was expressed from the discharge in the first cycle. On the other hand, the capacity of the polyaniline of Comparative Examples 1 to 5 in which the Hansen solubility parameter ( ⁇ P + ⁇ H) of the binder exceeded 20 MPa 1/2 did not fully develop its capacity at the first cycle.
  • the electricity storage device has as little conductive auxiliary agent as possible and can develop capacity.
  • the capacity of the electricity storage device is determined by the volume, the smaller the additive such as a conductive additive, the higher the volume density of the active material. Since it becomes a capacity
  • the power storage device using the positive electrode for the power storage device of the present invention has the same conductivity as in Examples 1, 2, and 6, even when the amount of the conductive auxiliary agent is large in Examples 1, 3, and 5. Even when the amount of such a conductive aid was small, the capacity expression rate was high. On the other hand, the electricity storage devices of Comparative Examples 2 and 5 with a small amount of conductive assistant had a low capacity expression rate. The difference in the capacity expression rate is observed because the Hansen solubility parameter ( ⁇ P + ⁇ H) of the binder is 20 MPa 1/2 or less.
  • the Hansen solubility parameter ( ⁇ P + ⁇ H) of the reduced product and the oxidized polyaniline the Hansen solubility parameter ( ⁇ P + ⁇ H) is decreased in the oxidized polyaniline, and the Hansen solubility parameter ( ⁇ P + ⁇ H) is more increased.
  • the binder with a lower value has better affinity with the oxidized polyaniline and higher binding property between the conductive auxiliary agent and the polyaniline active material. it is conceivable that.
  • the positive electrodes of Examples 1 to 6 had a large discharge capacity density per volume, and had excellent performance as electrodes.
  • Example 7 In the preparation of the slurry of Example 1, 0.6 g (17 parts by weight) of polyaniline powder (oxidized 55% by weight) in an oxidatively dedoped state, 2.4 g (70 parts by weight) of steam-activated activated carbon, and a conductive assistant
  • the copolymerization ratio of 0.139 g (4 parts by weight) of a certain conductive carbon black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) and polystyrene: polybutadiene [1,4 body]: polybutadiene [1,2 body] as a binder is Add 0.207 g (6 parts by weight) of styrene-butadiene copolymer 61: 31: 8, 5.17 g (3 parts by weight) of sodium carboxymethylcellulose diluted to 2% by weight, and 1.33 g of water, An electricity storage device of Example 7 was produced in exactly the same manner except that the partial concentration was 35% by weight.
  • Example 7 For Example 7 and Comparative Example 6 thus obtained, each item was evaluated and measured according to the following criteria. The results are shown in Table 6 below.
  • Example 7 and Comparative Example 6 Each power storage device of Example 7 and Comparative Example 6 was weighed in a constant current-constant voltage charge / constant current discharge mode in a 25 ° C. environment using a battery charging / discharging device (TOSCAT, manufactured by Toyo System Co., Ltd.). Capacity density measurement was performed. The current value is set such that the capacity per active material is 60 mAh / g, the total capacity (mAh) is calculated from the amount of active material contained in the positive electrode of each power storage device, and the entire capacity is charged and discharged in 20 hours. Set. The upper limit of the charging voltage is 3.8 V.
  • the weight discharge capacity density is a value converted to the net weight of the alkali-activated activated carbon that is the active material in Comparative Example 6, and is based on the total weight of the steam-activated activated carbon and the oxidized polyaniline that are the active materials in Example 7. The converted value is shown.
  • the discharge capacity density (mAh / cm 3 ) per volume of the electrode positive electrode layer was determined from the obtained discharge capacity and the thickness and area of the positive electrode layer of each electricity storage device. The obtained values are shown in Table 6.
  • the discharge curves of Example 1, Example 7, and Comparative Example 6 are shown in FIG.
  • steam activated activated carbon has a lower capacity density per weight than alkali activated carbon.
  • Example 7 in which a polyaniline active material in which the ratio of the oxidized polyaniline is 45% by weight or more of the polyaniline active material is mixed per weight of the oxidized polyaniline active material. Therefore, the discharge capacity per weight of the entire active material was comparable to that of Comparative Example 6 using alkali activated carbon. Further, Example 7 had a large discharge capacity density per volume and had excellent performance as an electrode.
  • FIG. 4 shows that Example 1 using only the oxidized polyaniline as the active material has a small capacity in the region where the potential with respect to the metallic lithium (Li) reference electrode is 2.8 V or less, but the oxidized polyaniline as the active material.
  • Example 7 using activated carbon and carbon it has a capacity even in the region where the potential with respect to the metallic lithium (Li) reference electrode is 2.8 V or less, and can be suitably used according to the design of the electricity storage device.
  • the positive electrode for an electricity storage device of the present invention can be suitably used as a positive electrode for an electricity storage device such as a lithium ion capacitor or a lithium ion secondary battery.
  • the power storage device of the present invention can be used for the same applications as conventional power storage elements.
  • portable electronic devices such as portable PCs, mobile phones, and personal digital assistants (PDAs), hybrid electric vehicles, and electric vehicles It is widely used for power sources for driving fuel cell vehicles and batteries for measures against instantaneous power failure.

Abstract

充放電初期からの活性化に優れた蓄電デバイス用正極およびそれを用いた蓄電デバイスを目的とし、ポリアニリンおよびその誘導体の少なくとも一方を含む活物質と、導電助剤と、バインダーとを含有する蓄電デバイス用正極であって、上記ポリアニリンおよびその誘導体の少なくとも一方を含む活物質中のポリアニリン酸化体の割合がポリアニリン活物質全体の45重量%以上であり、上記バインダーのハンセン溶解度パラメータにおける極性項および水素結合項の合計が20MPa1/2以下であることを特徴とする蓄電デバイス用正極を提供する。

Description

蓄電デバイス用正極および蓄電デバイス
 本発明は、蓄電デバイス用正極および蓄電デバイスに関するものである。
 近年、省エネルギー、省資源および環境負荷の低減のため、次世代自動車の普及が見込まれているが、そのような移動体においては、制動時に熱として失われていたエネルギーを用いて発電し、これを蓄電して利用するエネルギー回生が行われている。このエネルギー回生に適している蓄電池は急速な充電が可能な電気二重層キャパシタやリチウムイオンキャパシタ等であるが、そのような急速充放電蓄電デバイスにおいては、更なる高容量化が望まれている。
 急速な充放電を行う蓄電デバイスの電極材料としては、活性炭等のキャパシタ用炭素材料が広く用いられている。活性炭等は、その非常に大きな比表面積を利用しており、表面にイオンを物理的に吸脱着させることで、充電および放電を行っている。そのため、反応が非常に早く、急速な充放電が可能となっている。
 しかし、上記活性炭等のキャパシタ用炭素材料は、粒子表面の物理反応で蓄電するというものであり、容量密度が低いという欠点がある。容量を増やそうとして比表面積を増やすと、重量当たりの容量密度は上昇しうるが、体積当たりの容量密度が低下し、結果として大きな容量密度増加は望めない。
 一方で、急速充放電が可能な電極材料としてポリアニリン等の導電性ポリマーが知られている。例えば特許文献1では、酸化度指数が0.7以下であるポリアニリンが、キャパシタ材料として機能することが示されている。しかし、酸化度指数が0.7を超える場合では、室温での出力比が低下し、好ましくないとされている。
 ここで、上記酸化度指数は、ポリアニリンの電子スペクトルにおいて、640nm付近の吸収極大の吸光度A640と、340nm付近の吸収極大の吸光度A340との比A640/A340で表される。本発明者らが、酸化度指数0.7のポリアニリンを分析した結果では、このポリアニリンにおけるポリアニリン酸化体の割合は約40重量%であった。
 また、ポリアニリンまたはその誘導体の急速充放電性を活かし、これを炭素系材料に複合化させてポリアニリン/炭素複合体を作製し、これを用いて電気二重層キャパシタを作製する方法が示されている(特許文献2参照)。しかしながら、上記特許文献2では、ポリアニリンは活物質である炭素材料の補助的な役割でしか用いられておらず、活物質あたりの容量は不充分である。
 一方、正極活物質としてポリアニリンを用い、かつポリアニリンの酸化体割合が30重量%以上と比較的高い、蓄電デバイス用正極が提案されている(特許文献3参照)。
特開2003-168436号公報 特開2008-160068号公報 特開2014-130706号公報
 上記特許文献3のポリアニリンの酸化体割合が比較的高い蓄電デバイス用正極は、ポリアニリンの保存性は好ましいものの、ポリアニリン自体が活性化しにくいため、充放電の初期においては容量が低く、本来の容量を得るためには充放電サイクルを繰り返す活性化工程が必要であった。これは、蓄電デバイスにする場合に、正極と負極の容量バランスが崩れ、蓄電デバイスを設計する弊害となりえるため、産業上好ましくないと考えられる。
 本発明は、充放電初期からの活性化に優れた蓄電デバイス用正極およびそれを用いた蓄電デバイスを提供する。
 本発明者らは、ポリアニリンまたはその誘導体を活物質として用い、急速充放電性に優れた蓄電デバイスを得るために鋭意検討を重ねた。酸化体の割合が45重量%以上のポリアニリンまたはその誘導体は、ポリアニリンの保存性に優れ、産業利用上適しているが、これまで、蓄電デバイス用正極の活物質として活性化しにくかった。しかしながら、本発明者らは、ポリアニリンの酸化体の割合が多い場合でも、電極を形成する際に用いるバインダーとして、ハンセン溶解度パラメータにおける極性項および水素結合項の合計が20MPa1/2以下であるものを用いて導電助剤と混合することによって、充放電サイクルの初期段階から安定して大きな容量が得られ、蓄電デバイスの活物質として好適に用いることができることを見いだした。
 すなわち、本発明は、ポリアニリンおよびその誘導体の少なくとも一方を含む活物質と、導電助剤と、バインダーとを含有する蓄電デバイス用正極であって、上記ポリアニリンおよびその誘導体の少なくとも一方を含む活物質中のポリアニリン酸化体の割合がポリアニリン活物質全体の45重量%以上であり、上記バインダーのハンセン溶解度パラメータにおける極性項および水素結合項の合計が20MPa1/2以下である蓄電デバイス用正極を第1の要旨とする。ここで、ポリアニリン酸化体の割合がポリアニリン活物質全体の45重量%以上とは、酸化度指数では0.75以上である。
 さらに、本発明は、上記第1の要旨において、バインダーがゴム系バインダー、ポリアクリル酸エステル系バインダーおよびエポキシ系バインダーからなる群から選ばれる少なくとも一種類以上である蓄電デバイス用正極を第2の要旨とする。
 また、本発明は、上記第1または2の要旨において、バインダーがスチレン-ブタジエン共重合体を含むゴム系バインダーである蓄電デバイス用正極を第3の要旨とする。
 そして、本発明は、上記第1ないし第3の要旨において、さらに増粘剤を含有する蓄電デバイス用正極を第4の要旨とする。
 さらに、本発明は、上記第4の要旨において、増粘剤がカルボキシルメチルセルロースおよびその誘導体もしくはその塩の少なくとも一種類以上である蓄電デバイス用正極を第5の要旨とする。
 そして、本発明は、上記第1ないし第5の要旨において、活物質としてキャパシタ用炭素材料をさらに含む蓄電デバイス用正極であることを第6の要旨とする。
 また、本発明は、電解質層と、これを挟んで設けられる正極と負極とを有する蓄電デバイスであって、上記正極が第1ないし第6の要旨のいずれかの蓄電デバイス用正極である蓄電デバイスを第7の要旨とする。
 このように、本発明は、ポリアニリンおよびその誘導体の少なくとも一方を含む活物質と、導電助剤と、バインダーとを含有する蓄電デバイス用正極であって、上記ポリアニリンおよびその誘導体の少なくとも一方を含む活物質中のポリアニリン酸化体の割合がポリアニリン活物質全体の45重量%以上であり、上記バインダーのハンセン溶解度パラメータにおける極性項および水素結合項の合計が20MPa1/2以下の蓄電用デバイス用正極である。このため、ポリアニリンおよびその誘導体の少なくとも一方を含む活物質とバインダーとの親和性が良く、また導電助剤が活物質と適切に接触するため、導電性を確保しやすく、充放電初期からの活性化に優れた蓄電デバイス用正極とすることができる。
 また、上記バインダーがゴム系バインダー、ポリアクリル酸エステル系バインダーおよびエポキシ系バインダーからなる群から選ばれる少なくとも一種類以上である場合には、蓄電デバイス用正極の活性化により優れるようになる。
 そして、上記バインダーがスチレン-ブタジエン共重合体を含むゴム系バインダーである場合には、蓄電デバイス用正極の活性化により一層優れるようになる。
 また、上記蓄電デバイス用正極が、増粘剤をさらに含有する場合には、塗工スラリーの粘度を塗工に適したように調整することが可能であり、活物質とバインダーとの親和性が良くなり、導電助剤と活物質とが適切に接触した電極を、狙い通りの塗工厚みで均一に塗工することができる。
 さらに、上記増粘剤がカルボキシルメチルセルロースおよびその誘導体もしくはその塩の少なくとも一種類以上である場合には、電極の塗工性が一層優れるようになる。
 また、上記活物質がキャパシタ用炭素材料をさらに含む場合には、金属リチウム(Li)基準電極に対する電位が2.8V以下の領域でも反応成分を持った蓄電デバイス用正極とすることができる。
 さらに、上記蓄電デバイス用正極を用いた蓄電デバイスは、充放電初期からの容量の活性化に優れた蓄電デバイスとすることができる。
本発明の蓄電デバイスの一例を示す模式的な断面図である。 酸化体および還元体のポリアニリン粉末を、CP/MAS法により測定した固体13CNMRスペクトルのグラフ図を示す(図の上半分は酸化体、図の下半分は還元体)。 酸化状態の異なる各ポリアニリン粉末を、DD/MAS法により測定した固体13CNMRスペクトル(太線)とそのデータのカーブフィッティング(細線)のグラフを示す。 実施例1、実施例7および比較例6の放電カーブのグラフを示す。
 以下、本発明の実施の形態について詳細に説明するが、以下に記載する説明は、本発明の実施態様の一例であり、本発明は、以下の内容に限定されない。
 本発明の蓄電デバイスは、例えば、図1に示すように、電解質層3と、これを挟んで対向して設けられた正極2と負極4とを有する。また、本発明の蓄電デバイス用正極(以下、単に「正極」と略す場合がある。)は、上記蓄電デバイスの正極2として用いられる。図1において、1は正極集電体、5は負極集電体を示す。
 以下、上記各構成について順に説明する。
<蓄電デバイス用正極>
 本発明の正極は、ポリアニリンおよびその誘導体の少なくとも一方を含む活物質と、導電助剤と、バインダーとを含有する。
〔ポリアニリン:活物質〕
 本発明の活物質は、ポリアニリンおよびその誘導体の少なくとも一方を含有する。上記ポリアニリンとは、アニリンを電解重合させ、または化学酸化重合させて得られるポリマーをいい、ポリアニリン誘導体とは、例えば、アニリンの誘導体を電解重合もしくは化学酸化重合させて得られるポリマーをいう。
 上記アニリンの誘導体としては、アニリンの4位以外の位置にアルキル基、アルケニル基、アルコキシ基、アリール基、アリールオキシ基、アルキルアリール基、アリールアルキル基、アルコキシアルキル基等の置換基を少なくとも1つ有するものを例示することができる。好ましい具体例としては、例えば、o-メチルアニリン、o-エチルアニリン、o-フェニルアニリン、o-メトキシアニリン、o-エトキシアニリン等のo-置換アニリンや、m-メチルアニリン、m-エチルアニリン、m-メトキシアニリン、m-エトキシアニリン、m-フェニルアニリン等のm-置換アニリンがあげられる。これらは単独でもしくは2種以上併せて用いられる。
 以下、本発明において、特に断らない限り「アニリンまたはその誘導体」を単に「アニリン」といい、また、「ポリアニリンおよびポリアニリン誘導体の少なくとも一方」を単に「ポリアニリン」という。したがって、導電性ポリマーを構成するポリマーがポリアニリン誘導体から得られる場合であっても、「ポリアニリン」ということがある。
 上記ポリアニリン活物質の粒子径(メディアン径)は、0.001~100μmが好ましく、特に好ましくは0.01~50μmであり、最も好ましくは0.1~30μmである。上記メディアン径は、例えば、動的光散乱式粒径分布測定装置等を用いて、光散乱法により測定することができる。また、静的自動画像分析装置等を用いて、撮影画像から直接測定することもできる。
 上記ポリアニリンは、容量増加の観点から、正極に用いる活物質の主成分とすることが好ましい。また、ポリアニリンは、活性炭等のキャパシタ用炭素材料と比較して大きな容量を有するため、キャパシタ用炭素材料を主とする活物質に対しては、少ないポリアニリンの混合量でも容量増加の効果が得られる。例えば、ポリアニリンの含有量は活物質の10重量%以上が好ましく、20重量%以上含有させることがより好ましい。さらには、活物質がポリアニリンのみからなる正極としてもよい。
 本発明においては、活物質中のポリアニリン酸化体の割合がポリアニリン活物質全体の45重量%以上(酸化度指数では0.75以上)である。また、より好ましくは酸化体の割合が50重量%以上(酸化度指数では0.8以上)である。ポリアニリン活物質全体におけるポリアニリン酸化体の割合が上記の数値未満であると、ポリアニリンの保存性が低下する。なお、ポリアニリン活物質全体におけるポリアニリン酸化体の割合の上限値は、通常100重量%である。
 上記ポリアニリン活物質全体におけるポリアニリン酸化体の割合の調整は、例えば、ポリアニリン酸化体の割合が所定の範囲(45重量%以上)になるよう、還元剤(例えば、フェニルヒドラジン)の添加量をポリアニリンに対して化学量論的に調整することにより行うことができる。ここで、還元剤の一例であるフェニルヒドラジンを用いたポリアニリンの還元反応につき下記に化学反応式を示す。
Figure JPOXMLDOC01-appb-C000001
 <ポリアニリン酸化体の割合の測定方法>
 本発明におけるポリアニリン活物質中のポリアニリン酸化体の割合は、例えば固体13CNMRスペクトルから求めることができる。また、上記ポリアニリン活物質全体におけるポリアニリン酸化体の割合は、分光光度計の電子スペクトルにおける640nm付近の吸収極大の吸光度A640と、340nm付近の吸収極大の吸光度A340との比A640/A340で表される酸化度指数を求めることでも代用できる。
 まず、固体13CNMR(以下、「固体NMR」と略す)スペクトルの測定条件等は、以下の通りである。
〔固体NMR測定〕
装置      :Bruker Biospin社製、AVANCE 300
観測核種    :13
観測周波数   :75.5MHz
測定方法    :CP/MAS、DD/MAS
測定温度    :室温(25℃)
化学シフト基準 :glycine(176ppm)
 固体NMRの測定方法にはCP/MAS法とDD/MAS法とがあり(CP: Cross Polarization、MAS: Magic Angle Sample Spinning、DD : Dipole Decoupling)、CP/MAS法は測定時間が短くピーク強度が強く出るが定量性が無い(ピーク毎に検出感度が異なる)測定方法である。一方、DD/MAS法は、ピーク強度は弱いが定量性がある測定方法である。
 CP/MAS法で測定した酸化脱ドープ状態のポリアニリン粉末と還元脱ドープ状態のポリアニリン粉末の固体NMRスペクトルを図2に示す。また、ポリアニリン構造の還元体と酸化体について一部分を抜き出した化学式を下記一般式(i)に示す。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(i)に示すように、ポリアニリンの酸化体はキノンジイミン構造を有し、ポリアニリンの還元体はキノンジイミン構造を有しないことが分かる。ここで、図2のCP/MAS法でポリアニリンを測定した固体NMRスペクトルより、キノンジイミン構造由来のピーク、すなわち158ppmのピークが図2の上図には存在するが、図2の下図からは消失している。このことから、キノンジイミン構造が存在する図2の上図はポリアニリンの酸化体であり、キノンジイミン構造が消失した図2の下図はポリアニリンの還元体であることが確認できる。
 次に、還元体と酸化体の割合を正確に見積もるため、前記のポリアニリン酸化体の割合を調整(例えば、酸化剤または還元剤の添加量により調整)することにより、酸化状態の異なる(1)~(6)のポリアニリン粉末を調製した。ここで(1)~(5)のポリアニリン粉末につき、DD/MAS法による固体NMRスペクトル測定を行った。各種ポリアニリンのDD/MAS法による固体NMRスペクトルとそのデータのカーブフィッティングの結果を図3に示す。なお、カーブフィッティングは最少二乗法にて行った。なお、(6)のポリアニリン粉末はCP/MAS法の測定結果である図2の還元体において示されている。
 そして、図3の酸化状態の異なる(1)~(5)のポリアニリン粉末のカーブフィッティングの結果から求めた全体に対する158ppmピークの面積の割合と、また、それから求めた酸化体/還元体の定量結果の割合を下記表1に示す。(6)のポリアニリン粉末においては、CP/MAS法で測定した固体NMRスペクトルより、158ppmのピークがないことから、ピーク面積割合を0として下記表1に併せて示す。なお、前述のようにCP/MAS法で測定した固体NMRスペクトルには定量性はないが、(6)のポリアニリン粉末に158ppmのピークがないことから、図3に示した定量性のあるDD/MAS法によるまでもなく、ピーク面積が0であることが分かる。
Figure JPOXMLDOC01-appb-T000003
 つぎに、上記固体NMRで測定した(1)~(6)のポリアニリン粉末約0.5mgをそれぞれN-メチル-2-ピロリドン(NMP)200mLに溶解させて、青色の溶液を得た。この溶液を光路長1cmの石英製セルに入れ、分光光度計にて紫外から可視領域にわたって電子スペクトルを測定した。得られた電子スペクトルは、340nmと640nmに2つの吸収極大を有した。640nm付近の吸収極大の吸光度A640と、340nm付近の吸収極大の吸光度A340との比A640/A340で酸化度指数を算出した。得られた結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000004
 上記表2より、酸化度指数が0.75以上であれば、ポリアニリン活物質に含まれるポリアニリン酸化体の割合は45重量%以上であることが分かる。同様に酸化度指数が0.86以上であれば、ポリアニリン酸化体の割合は55重量%以上である。
〔キャパシタ用炭素材料:活物質〕
 上記ポリアニリンからなる活物質は、主に金属リチウム(Li)基準電極に対する電位が2.8Vを超える領域で容量成分を有するため、上記電位が2.8V以下の領域で容量成分を持たせたい場合は、第二の活物質としてキャパシタ用炭素材料を混合することが好ましい。
 上記のキャパシタ用炭素材料としては、例えば、活性炭、グラフェン、ケッチェンブラック、カーボンナノチューブ等があげられる。なかでも、産業上広く利用されている活性炭が好ましい。これらは単独でもしくは2種類以上併せて用いてもよい。
 また、上記活性炭の種類としては、例えば、アルカリ賦活活性炭、水蒸気賦活活性炭、ガス賦活活性炭、塩化亜鉛賦活活性炭等があげられる。これらは単独でもしくは2種類以上併せて用いてもよい。
 本発明で用いる活物質には、本発明の目的を損なわない限り、第三の活物質としてポリアニリン以外の導電性ポリマーを併用しても差し支えない。
 上記ポリアニリンおよび上記キャパシタ用炭素材料以外の導電性ポリマーの具体例としては、ポリアセチレン、ポリピロール、ポリチオフェン、ポリフラン、ポリセレノフェン、ポリイソチアナフテン、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリアズレン、ポリ(3,4-エチレンジオキシチオフェン)等があげられる。これらは単独でもしくは2種以上併せて用いてもよい。
 上記活物質の配合割合は、正極材料の50重量%以上であることが好ましく、60重量%以上であることがさらに好ましく、70重量%以上であることが特に好ましい。
〔バインダー〕
 本発明の正極に含まれるバインダーはハンセン溶解度パラメータにおける極性項および水素結合項の合計が20MPa1/2以下である。
 上記のハンセン(Hansen)溶解度パラメータとは、ヒルデブランド(Hildebrand)によって導入された溶解度パラメータを、分散項δD、極性項δP、および水素結合項δHの3成分に分割し、3次元空間に表したものである。分散項δDは分散力による効果、極性項δPは双極子間力による効果、および、水素結合項δHは水素結合力による効果を示す。また、δTotは次式で求められる。
 δTot=(δD2+δP2+δH21/2
 このハンセン溶解度パラメータの定義と計算は、Charles M. Hansen著、Hansen Solubility Parameters:A Users Handbook (CRCプレス、2007年)に記載されている方法により行うことができる。
 また、コンピュータソフトウェア Hansen Solubility Parameters in Practice (HSPiP)を用いることにより、化学構造からハンセン溶解度パラメータを算出することができる。 本発明においては、HSPiPバージョン4.0.05を用いて、ハンセン溶解度パラメータを算出する。
 さらに、複合材料からなるバインダーのハンセン溶解度パラメータにおける極性項および水素結合項の合計(以下、「ハンセン溶解度パラメータ(δP+δH)」と称する。)は、バインダーを構成する各成分のそれぞれのハンセン溶解度パラメータを求め、それぞれの構成比をかけて、合計することにより得られる。
 下記表3、4に代表的なバインダー成分のハンセン溶解度パラメータの算出結果を示す。
 同時に表4にポリアニリンからなる活物質中のポリアニリン酸化体の割合がポリアニリン活物質全体の50重量%である酸化体ポリアニリンと、0重量%である還元体ポリアニリンの算出結果を併記する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記表3を用いて、例えばポリスチレン:ポリブタジエン[1,4体]:ポリブタジエン[1,2体]=61:31:8であるスチレン-ブタジエン共重合体バインダーのハンセン溶解度パラメータ(δP+δH)は次式で求められる。
 6×0.61+7.8×0.31+6.8×0.08=6.622(MPa1/2
 本発明においてはバインダーのハンセン溶解度パラメータ(δP+δH)は20MPa1/2以下であり、酸化体ポリアニリンとの親和性観点から19MPa1/2以下が好ましく、さらに好ましくは12MPa1/2以下であり、最も好ましくは8MPa1/2以下である。また、ハンセン溶解度パラメータ(δP+δH)の下限値は通常0MPa1/2である。
 本発明において好適に用いられるバインダーとして、スチレン-ブタジエン共重合体のほか、アクリロニトリル-ブタジエン共重合体、メタクリル酸メチル-ブタジエン共重合体、メタクリル酸メチル重合体やこれらの誘導体等のゴム系バインダー、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸-2-エチルヘキシル等のアクリル酸エステルモノマーの単独重合体または共重合体、もしくはこれらアクリル酸エステルモノマーと共重合可能なモノマーとの共重合体等のポリアクリル酸エステル系バインダー、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ビフェニル型エポキシ樹脂、多官能エポキシ樹脂、高分子型エポキシ樹脂等のエポキシ系バインダー等があげられる。
 また、バインダーがアクリロニトリル-ブタジエン共重合体である場合は、結合ニトリル量が50%以下であることが好ましい。これらは単独でもしくは2種類以上併せて用いられる。なかでも結着性に優れることから、スチレン-ブタジエン共重合体を含むゴム系バインダーが好ましい。
 上記スチレン-ブタジエン共重合体は、バインダーの主成分とするのが好ましい。ここで、主成分とは、バインダーの特性に大きな影響を与える成分の意味であり、その成分の含有量は、通常、バインダーの50重量%以上である。また、全体が主成分のみからなる場合も含む意味である。
 上記バインダーの配合割合は、正極材料の1~30重量%であることが好ましく、4~25重量%であることがさらに好ましく、4~18重量%であることが特に好ましい。
〔導電助剤〕
 上記導電助剤としては、蓄電デバイスの充放電時に印加する電位によって性状の変化しない導電材料であればよく、例えば、導電性炭素素材、金属素材等があげられる。なかでも、アセチレンブラック、ケッチェンブラック等の導電性カーボンブラックや、炭素繊維、カーボンナノチューブ等の繊維状炭素材料が好ましく、特に導電性カーボンブラックが好ましく用いられる。
 上記導電助剤の配合割合は、正極材料の1~30重量%であることが好ましく、4~25重量%であることがさらに好ましく、4~19重量%であることが特に好ましい。
〔増粘剤〕
 正極を構成する材料としては、活物質と、バインダーと、導電助剤が必須であるが、電極スラリーを均一に塗工して電極を得るためには、塗工プロセスに合わせた粘度に調整する必要があり、本発明の目的を妨げない範囲で増粘剤を加えても良い。
 上記増粘剤としては、例えば、メチルセルロース、ヒドロキシエチルセルロース、ポリエチレンオキサイド、カルボキシメチルセルロースやこれらの誘導体もしくはその塩等があげられる。なかでも、カルボキシルメチルセルロースおよびその誘導体もしくはその塩が好適に用いられる。これらは単独でもしくは2種類以上併せて用いられる。
 上記増粘剤の配合割合は、正極材料の1~20重量%であることが好ましく、1~10重量%であることがさらに好ましく、1~8重量%であることが特に好ましい。
〔蓄電デバイス用正極の形成〕
 本発明の正極は、例えばつぎのようにして形成される。すなわち、水にポリアニリンを含む活物質と、スチレン-ブタジエン共重合体等のバインダー、および導電性カーボンブラック等の導電助剤を加え、充分に分散させて、ペーストを調製し、これを集電体上に塗布した後、水を蒸発させることによって、集電体上に活物質の均一な混合物の層を有する複合体としてシート電極を得ることができる。
 上記正極は、好ましくは多孔質シートに形成され、その厚みは、通常、1~500μmであり、好ましくは10~300μmである。上記正極の厚みは、例えば、先端形状が直径5mmの平板であるダイヤルゲージ(尾崎製作所社製)を用いて測定し、電極の面に対して10点の測定値の平均を求めることにより算出できる。なお、集電体に正極(多孔質層)が設けられ複合化している場合には、その複合体の厚みを上記と同様に測定して測定値の平均を求め、この値から集電体の厚みを差し引いて計算することにより正極の厚みが求められる。
<負極>
 本発明の蓄電デバイスに用いられる、図1に示す負極4としては、金属またはイオンを挿入・脱離し得る負極活物質を用いて形成されたものが好ましい。上記負極活物質としては、金属リチウムや酸化・還元時にリチウムイオンが挿入・脱離し得る炭素材料や遷移金属酸化物、シリコン、スズ等が好ましく用いられる。これらは単独でもしくは2種類以上併せて用いられる。
 上記リチウムイオンを挿入・脱離しうる炭素材料として、具体的には、活性炭、コークス、ピッチ、フェノール樹脂、ポリイミド、セルロース等の焼成体、人造黒鉛、天然黒鉛、ハードカーボン、ソフトカーボン等があげられる。
 また、上記リチウムイオンを挿入・脱離しうる炭素材料は、負極の主成分として用いられることが好ましい。ここで、主成分とは、負極の特性に大きな影響を与える成分の意味であり、その成分の含有量は、通常、負極全体の50重量%以上である。また、全体が主成分のみからなる場合も含む意味である。
 また、本発明においては、黒鉛やハードカーボン、あるいはソフトカーボン等の炭素材料に、あらかじめリチウムイオンをドープしたリチウムプレドープ負極を用いてもよい。
<正極集電体、負極集電体>
 つぎに、図1に示す正極集電体1、負極集電体5について説明する。これら集電体の材料としては、例えば、ニッケル、アルミニウム、ステンレス、銅等の金属箔や、メッシュ等があげられる。なお、正極集電体と負極集電体とは、同じ材料で構成されていても、異なる材料で構成されていても差し支えない。また多孔性を有する集電体も用いて良い。
<電解質層>
 本発明の蓄電デバイスに用いられる、図1に示す電解質層3は、電解質により構成されるが、例えばセパレータに電解液を含浸させてなるシートや、固体電解質からなるシートが好ましく用いられる。固体電解質からなるシートは、それ自体がセパレータを兼ねていてもよい。
 上記電解質は、溶質と、必要に応じて溶媒と各種添加剤とを含むものから構成される。上記溶質としては、例えば、リチウムイオン等の金属イオンとこれに対する適宜のカウンターイオン、例えば、スルホン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ素イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ペンタフルオロエタンスルホニル)イミドイオン、ハロゲンイオン等を組み合わせてなるものが好ましく用いられる。上記電解質の具体例としては、LiCF3SO3、LiClO4、LiBF4、LiPF6、LiAsF6、LiN(SO2CF32、LiN(SO225)、LiCl等をあげることができる。
 上記溶媒としては、例えば、カーボネート類、ニトリル類、アミド類、エーテル類等の少なくとも1種の非水溶媒、すなわち有機溶媒が用いられる。このような有機溶媒の具体例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、アセトニトリル、プロピロニトリル、N,N'-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメトキシエタン、ジエトキシエタン、γ-ブチロラクトン等をあげることができる。これらは単独でもしくは2種以上併せて用いられる。なお、上記溶媒に溶質が溶解したものを「電解液」ということがある。
 また、電解液には、必要に応じて添加剤が含まれていてもよい。添加剤としては、例えばビニレンカーボネート、フルオロエチレンカーボネート等があげられる。
<セパレータ>
 本発明においては、セパレータを各種の態様で用いることができる。上記セパレータとしては、これを挟んで対向して配設される正極と負極の間の電気的な短絡を防ぐことができ、さらに電気化学的に安定であり、イオン透過性が大きく、ある程度の機械強度を有する絶縁性の多孔質シートであればよい。したがって、上記セパレータの材料としては、例えば、紙、不織布や、ポリプロピレン、ポリエチレン、ポリイミド等の樹脂からなる多孔性のフィルムが好ましく用いられる。また、これらは単独でもしくは2種以上併せて用いられる。
<蓄電デバイス>
 本発明の蓄電デバイスとしては、例えば、図1に示すように、電解質層3と、これを挟んで設けられる正極2と負極4とを有するものがあげられる。
 上記蓄電デバイスは、上記の材料を用いて、例えば、つぎのようにして作製することができる。すなわち、上記正極と負極との間にセパレータが配置されるように積層し、積層体を作製し、この積層体をアルミニウムラミネートパッケージ等の電池容器内に入れた後、真空乾燥する。つぎに、真空乾燥した電池容器内に電解液を注入し、電池容器であるパッケージを封口することにより、蓄電デバイスを作製することができる。パッケージへの電解液注入等の電池の作製は、グローブボックス中、超高純度アルゴンガス等の不活性ガス雰囲気下で行うことが好ましい。また、低湿度ルーム内で行うこともできる。
 上記蓄電デバイスは、上記アルミニウムラミネートパッケージ以外に、フィルム型、シート型、角型、円筒型、ボタン型等種々の形状に形成される。
 つぎに、実施例について説明する。ただし、本発明は、これらの実施例に限定されるものではない。
〔実施例1〕
<活物質の調製>
(テトラフルオロホウ酸をドーパントとする導電性ポリアニリン粉末の調製)
 テトラフルオロホウ酸をドーパントとする導電性ポリアニリン(導電性ポリマー)の粉末を、下記のように調製した。すなわち、イオン交換水138gを入れた300mL容量のガラス製ビーカーに、42重量%濃度のテトラフルオロホウ酸水溶液(和光純薬工業社製、試薬特級)84.0g(0.402mol)を加え、磁気スターラーにて撹拌しながら、これにアニリン10.0g(0.107mol)を加えた。テトラフルオロホウ酸水溶液にアニリンを加えた当初は、アニリンは、テトラフルオロホウ酸水溶液に油状の液滴として分散していたが、その後、数分以内に水に溶解し、均一で透明なアニリン水溶液になった。このようにして得られたアニリン水溶液を低温恒温槽を用いて-4℃以下に冷却した。
 つぎに、酸化剤として二酸化マンガン粉末(和光純薬工業社製、試薬1級)11.63g(0.134mol)を、上記アニリン水溶液中に少量ずつ加えて、ビーカー内の混合物の温度が-1℃を超えないようにした。このようにして、アニリン水溶液に酸化剤を加えることによって、アニリン水溶液は直ちに黒緑色に変化した。その後、しばらく撹拌を続けたとき、黒緑色の固体が生成し始めた。
 このようにして、80分間かけて酸化剤を加えた後、生成した反応生成物を含む反応混合物を冷却しながら、さらに100分間撹拌した。その後、ブフナー漏斗と吸引瓶を用いて、得られた固体をNo.2濾紙にて減圧濾過して、粉末を得た。この粉末を約2mol/Lのテトラフルオロホウ酸水溶液中にて磁気スターラーを用いて撹拌洗浄した。ついで、アセトンにて数回、撹拌洗浄し、これを減圧濾過した。得られた粉末を室温(25℃)で10時間真空乾燥することにより、テトラフルオロホウ酸をドーパントとする導電性ポリアニリン(以下、単に「導電性ポリアニリン」という)12.5gを得た。この導電性ポリアニリンは鮮やかな緑色粉末であった。
(酸化脱ドープ状態のポリアニリン粉末の調製)
 上記により得られたドープ状態である導電性ポリアニリン粉末を、2mol/L水酸化ナトリウム水溶液中に入れ、3Lセパラブルフラスコ中にて30分間撹拌し、中和反応によりドーパントのテトラフルオロホウ酸を脱ドープした。濾液が中性になるまで脱ドープしたポリアニリンを水洗した後、アセトン中で撹拌洗浄し、ブフナー漏斗と吸引瓶を用いて減圧濾過し、No.2濾紙上に、脱ドープしたポリアニリン粉末を得た。これを室温下、10時間真空乾燥して、茶色の酸化脱ドープ状態のポリアニリン粉末を得た。
 このポリアニリン粉末の酸化度指数を前述の方法でもとめたところ、酸化度指数は0.86であった。また、固体NMRスペクトルから求めたポリアニリン全体におけるポリアニリン酸化体の割合は55重量%であった。
<スラリーの調製>
 つぎに、上記で得た酸化脱ドープ状態のポリアニリン粉末(酸化体55重量%)2.6g(76.5重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.29g(8.5重量部)と、バインダーとしてスチレン:ブタジエン[1,4体]:ブタジエン[1,2体]の共重合比が61:31:8であるスチレン-ブタジエン共重合体0.408g(12重量部)と、2重量%に希釈したカルボキシメチルセルロースナトリウム5.19g(3重量部)と、水7.72gを加え、固形分濃度が21重量%となるようにし、自転公転真空ミキサー(シンキー社製、あわとり練太郎ARV-310)を用い、2000rpmで10分間撹拌を行い、3分間脱泡操作を行った。
<蓄電デバイス用正極の作製>
 上記スラリーを、卓上型自動塗工装置(テスター産業社製)を用いて、マイクロメーター付きドクターブレード式アプリケータによって、塗工厚みを360μmに調整し、塗布速度10mm/秒にて、アルミニウム箔(宝泉社製、30CB)上に塗布した。つぎに、室温(25℃)で45分間放置した後、温度100℃のホットプレート上で乾燥し、正極を作製した。集電体層(アルミニウム箔)を除いた正極層の厚みは62μmであった。
<蓄電デバイスの作製>
 上記正極を用い、セパレータとしては不織布(ニッポン高度紙工業社製、TF40-50、厚み50μm、空隙率70%)を用いて、蓄電デバイスを、以下のように組み立てた。上記正極とセパレータは、セルへの組立前に、真空乾燥機にて150℃で2時間、真空乾燥した。負極としては、金属リチウム(本城金属社製、厚み50μm)を用い、電解液には2mol/dm3濃度の六フッ化りん酸リチウム(LiPF6)のエチレンカーボネート/ジメチルカーボネート溶液(体積比1:2)(キシダ化学社製)を用いた。リチウム二次電池は、露点-70℃のグローブボックス中、超高純度アルゴンガス雰囲気下で組み立てた。
〔実施例2〕
 実施例1のスラリーの調製において、酸化脱ドープ状態のポリアニリン粉末(酸化体55重量%)3g(79.3重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.213g(5.6重量部)と、バインダーとしてスチレン:ブタジエン[1,4体]:ブタジエン[1,2体]の共重合比が61:31:8であるスチレン-ブタジエン共重合体0.456g(12.1重量部)と、2重量%に希釈したカルボキシメチルセルロースナトリウム5.67g(3重量部)と、水8.66gを加え、固形分濃度が21重量%となるようにし、自転公転真空ミキサー(シンキー社製、あわとり練太郎ARV-310)を用い、2000rpmで10分間撹拌を行い、3分間脱泡操作を行った以外は全く同様にして実施例2の蓄電デバイスを作製した。集電体層を除いた正極層の厚みは76μmであった。
〔実施例3〕
 実施例1のスラリーの調製において、酸化脱ドープ状態のポリアニリン粉末(酸化体55重量%)2.6g(76.5重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.29g(8.5重量部)と、バインダーとしてポリアクリル酸メチル(東亜合成社製、AS2000)0.408g(12重量部)と、2重量%に希釈したカルボキシメチルセルロースナトリウム5.19g(3重量部)と、水7.72gを加え、固形分濃度が21重量%となるようにし、自転公転真空ミキサー(シンキー社製、あわとり練太郎ARV-310)を用い、2000rpmで10分間撹拌を行い、3分間脱泡操作を行った以外は全く同様にして実施例3の蓄電デバイスを作製した。集電体層を除いた正極層の厚みは50μmであった。
〔実施例4〕
 実施例1のスラリーの調製において、酸化脱ドープ状態のポリアニリン粉末(酸化体55重量%)3g(79.3重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.213g(5.6重量部)と、バインダーとしてポリアクリル酸メチル(東亜合成社製、AS2000)0.456g(12.1重量部)と、2重量%に希釈したカルボキシメチルセルロースナトリウム5.67g(3重量部)と、水8.66gを加え、固形分濃度が21重量%となるようにし、自転公転真空ミキサー(シンキー社製、あわとり練太郎ARV-310)を用い、2000rpmで10分間撹拌を行い、3分間脱泡操作を行った以外は全く同様にして実施例4の蓄電デバイスを作製した。集電体層を除いた正極層の厚みは50μmであった。
〔実施例5〕
 実施例1のスラリーの調製において、酸化脱ドープ状態のポリアニリン粉末(酸化体55重量%)2.6g(76.5重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.29g(8.5重量部)と、バインダーとしてビスフェノールA型エポキシ樹脂(中京油脂社製、O444)0.408g(12重量部)と、2重量%に希釈したカルボキシメチルセルロースナトリウム5.19g(3重量部)と、水7.72gを加え、固形分濃度が21重量%となるようにし、自転公転真空ミキサー(シンキー社製、あわとり練太郎ARV-310)を用い、2000rpmで10分間撹拌を行い、3分間脱泡操作を行った以外は全く同様にして実施例5の蓄電デバイスを作製した。集電体層を除いた正極層の厚みは65μmであった。
〔実施例6〕
 実施例1のスラリーの調製において、酸化脱ドープ状態のポリアニリン粉末(酸化体55重量%)3g(79.3重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.213g(5.6重量部)と、バインダーとしてビスフェノールA型エポキシ樹脂(中京油脂社製、O444)0.456g(12.1重量部)と、2重量%に希釈したカルボキシメチルセルロースナトリウム5.67g(3重量部)と、水8.66gを加え、固形分濃度が21重量%となるようにし、自転公転真空ミキサー(シンキー社製、あわとり練太郎ARV-310)を用い、2000rpmで10分間撹拌を行い、3分間脱泡操作を行った以外は全く同様にして実施例6の蓄電デバイスを作製した。集電体層を除いた正極層の厚みは65μmであった。
〔比較例1〕
 実施例1のスラリーの調製において、酸化脱ドープ状態のポリアニリン粉末(酸化体55重量%)2.6g(79.2重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.29g(8.8重量部)と、バインダーとして分子量80万のポリアクリル酸に水を加え、7.5重量%に希釈したポリアクリル酸5.25g(固形分は12重量部)と、水7.49gを加え、固形分濃度が21重量%となるようにし、自転公転真空ミキサー(シンキー社製、あわとり練太郎ARV-310)を用い、2000rpmで10分間撹拌を行い、3分間脱泡操作を行った以外は全く同様にして比較例1の蓄電デバイスを作製した。集電体層を除いた正極層の厚みは100μmであった。
〔比較例2〕
 実施例1のスラリーの調製において、酸化脱ドープ状態のポリアニリン粉末(酸化体55重量%)3g(82.2重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.213g(5.8重量部)と、バインダーとして分子量80万のポリアクリル酸に水を加え、7.5重量%に希釈したポリアクリル酸5.84g(固形分は12重量部)と、水8.33gを加え、固形分濃度が21重量%となるようにし、自転公転真空ミキサー(シンキー社製、あわとり練太郎ARV-310)を用い、2000rpmで10分間撹拌を行い、3分間脱泡操作を行った以外は全く同様にして比較例2の蓄電デバイスを作製した。集電体層を除いた正極層の厚みは111μmであった。
〔比較例3〕
 実施例1のスラリーの調製において、酸化脱ドープ状態のポリアニリン粉末(酸化体55重量%)2.6g(79.2重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.29g(8.8重量部)と、バインダーとして、分子量80万のポリアクリル酸と水酸化リチウムと水を加え、リチウム化率を100%にし、12重量%に希釈したポリアクリル酸リチウム3.28g(固形分は12重量部)と、水9.46gを加え、固形分濃度が21重量%となるようにした以外は全く同様にして比較例3の蓄電デバイスを作製した。集電体層を除いた正極層の厚みは94μmであった。
〔比較例4〕
 実施例1のスラリーの調製において、酸化脱ドープ状態のポリアニリン粉末(酸化体55重量%)2.6g(76.5重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.29g(8.5重量部)と、バインダーとしてポリビニルアルコール(日本合成化学工業社製、PVA EG40)に水を加え、7.5重量%に希釈したポリビニルアルコール5.25g(固形分は12重量部)と、水7.49gを加え、固形分濃度が21重量%となるようにし、自転公転真空ミキサー(シンキー社製、あわとり練太郎ARV-310)を用い、2000rpmで10分間撹拌を行い、3分間脱泡操作を行った以外は全く同様にして比較例4の蓄電デバイスを作製した。集電体層を除いた正極層の厚みは50μmであった。
〔比較例5〕
 実施例1のスラリーの調製において、酸化脱ドープ状態のポリアニリン粉末(酸化体55重量%)3g(82.2重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.213g(5.8重量部)と、バインダーとしてポリビニルアルコール(日本合成化学工業社製、PVA EG40)に水を加え、7.5重量%に希釈したポリビニルアルコール5.84g(固形分は12重量部)と、水8.33gを加え、固形分濃度が21重量%となるようにし、自転公転真空ミキサー(シンキー社製、あわとり練太郎ARV-310)を用い、2000rpmで10分間撹拌を行い、3分間脱泡操作を行った以外は全く同様にして比較例5の蓄電デバイスを作製した。集電体層を除いた正極層の厚みは50μmであった。
 このようにして得られた実施例1~6および比較例1~5について、下記の基準に従い、各項目の評価および測定を行った。その結果を、後記の表5に示した。
≪重量容量密度、容量発現率および電極正極層の体積あたりの放電容量密度≫
 各蓄電デバイスを、電池充放電装置(東洋システム社製、TOSCAT)を用いて、25℃の環境下で、定電流―定電圧充電/定電流放電モードにて重量容量密度測定を行った。電流値は、本充放電範囲におけるポリアニリンの理想的な重量容量密度を120mAh/gとし、各蓄電デバイスの正極に含まれるポリアニリン量から全容量(mAh)を算出して、20時間で全容量を充放電するように設定した。充電電圧上限は3.8Vとし、定電流充電により電圧が3.8Vに到達した後は、3.8Vの定電圧充電を電流値が定電流充電時の電流値に対して20%の値になるまで行い充電を終了し、得られた容量を充電容量とした。その後、放電終止電圧2.2Vまで定電流放電を行い、得られた放電容量を1サイクル目の重量放電容量密度(mAh/g)とした。この重量放電容量密度は、活物質であるポリアニリンの正味重量当たりに換算した値を示す。容量発現率は120mAh/gに対する1サイクル目の放電の重量容量密度の比を表している。また、得られた放電容量および各蓄電デバイスの正極層の厚みと面積から、電極正極層の体積あたりの放電容量密度(mAh/cm3)を求めた。
Figure JPOXMLDOC01-appb-T000007
 上記表5の結果から、実施例1~6の蓄電デバイスは、いずれも活物質としてポリアニリンを含有し、ポリアニリン酸化体の割合がポリアニリン活物質全体の45重量%以上であり、さらにバインダーのハンセン溶解度パラメータ(δP+δH)が20MPa1/2以下であることから、1サイクル目の放電から、本来ポリアニリンがもつ容量が発現した。一方、バインダーのハンセン溶解度パラメータ(δP+δH)が20MPa1/2を超える比較例1~5のポリアニリンは、1サイクル目ではその容量が充分に発現しなかった。実施例2,4および6のポリアニリンは、ポリアニリンに対する導電助剤の量が11.2重量部から7.1重量部に低下したにもかかわらず、1サイクル目から充分な容量が発現されたが、比較例2および5のポリアニリンはポリアニリンに対する導電助剤の量が11.2重量部から7.1重量部に低下した場合において、ほとんど容量を発現することがなかった。
 一般的に、蓄電デバイスは、導電助剤量が出来るだけ少なく、かつ容量が発現できるものが好ましい。すなわち、蓄電デバイスの容量は、体積で決まるため、導電助剤等の添加剤を出来るだけ少なくするほど、活物質の体積密度が高くなり、添加剤が多い物と比較して、同じ体積で高容量となるため、蓄電デバイスとして優れる。
 上記の表5で示されるとおり、本発明の蓄電デバイス用正極を用いた蓄電デバイスは、実施例1、3、5のような導電助剤が多量の場合でも、実施例2、4、6のような導電助剤が少量の場合でも容量発現率が高かった。一方、導電助剤が少量である比較例2および5の蓄電デバイスは、容量発現率が低かった。このような容量発現率の違いが見られるのは、バインダーのハンセン溶解度パラメータ(δP+δH)が20MPa1/2以下であるためである。
 このようになる詳細は定かでないが、還元体と酸化体ポリアニリンのハンセン溶解度パラメータ(δP+δH)を比較すると、酸化体ポリアニリンではハンセン溶解度パラメータ(δP+δH)が低下しており、よりハンセン溶解度パラメータ(δP+δH)の値が低いバインダーの方が、酸化体ポリアニリンとの親和性が良く、導電助剤とポリアニリン活物質との結着性が高いため、1サイクル目から活性化しやすく、本来の容量が発現したものと考えられる。また、実施例1~6の正極は体積あたりの放電容量密度が大きく、電極として優れた性能を有していた。
[実施例7]
 実施例1のスラリーの調製において、酸化脱ドープ状態のポリアニリン粉末(酸化体55重量%)0.6g(17重量部)と、水蒸気賦活活性炭2.4g(70重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.139g(4重量部)と、バインダーとしてポリスチレン:ポリブタジエン[1,4体]:ポリブタジエン[1,2体]の共重合比が61:31:8であるスチレン-ブタジエン共重合体0.207g(6重量部)と、2重量%に希釈したカルボキシメチルセルロースナトリウム5.17g(3重量部)、と水1.33gを加え、固形分濃度が35重量%となるようにした以外は全く同様にして実施例7の蓄電デバイスを作製した。集電体層を除いた正極層の厚みは102μmであった。
[比較例6]
 実施例1のスラリーの調製において、アルカリ賦活活性炭5g(87重量部)と、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.232g(4重量部)と、バインダーとしてポリスチレン:ポリブタジエン[1,4体]:ポリブタジエン[1,2体]の共重合比が61:31:8であるスチレン-ブタジエン共重合体0.346g(6重量部)と、2重量%に希釈したカルボキシメチルセルロースナトリウム8.62g(3重量部)、と水3.76gを加え、固形分濃度が32重量%となるようにした以外は全く同様にして比較例6の蓄電デバイスを作製した。集電体層を除いた正極層の厚みは115μmであった。
 このようにして得られた実施例7および比較例6について、下記の基準に従い、各項目の評価および測定を行った。その結果を、後記の表6に示した。
≪重量容量密度および電極正極層の体積あたりの放電容量密度≫
 実施例7および比較例6の各蓄電デバイスを、電池充放電装置(東洋システム社製、TOSCAT)を用いて、25℃の環境下で、定電流―定電圧充電/定電流放電モードにて重量容量密度測定を行った。電流値は、活物質当りの容量の基準を60mAh/gとし、各蓄電デバイスの正極に含まれる活物質量から全容量(mAh)を算出して、20時間で全容量を充放電するように設定した。充電電圧上限は3.8Vとし、定電流充電により電圧が3.8Vに到達した後は、3.8Vの定電圧充電を電流値が定電流充電時の電流値に対して20%の値になるまで行い充電を終了し、得られた容量を充電容量とした。その後、放電終止電圧2.2Vまで定電流放電を行い、得られた放電容量を1サイクル目の重量放電容量密度(mAh/g)とした。この重量放電容量密度は、比較例6においては活物質であるアルカリ賦活活性炭の正味重量当たりに換算した値を、実施例7においては活物質である水蒸気賦活活性炭および酸化型ポリアニリンの合計重量当たりに換算した値を示している。また得られた放電容量および各蓄電デバイスの正極層の厚みと面積から、電極正極層の体積当たりの放電容量密度(mAh/cm3)を求めた。得られた値を表6に示した。また、実施例1、実施例7および比較例6の放電カーブを図4に示した。
Figure JPOXMLDOC01-appb-T000008
 一般的にアルカリ賦活活性炭に対して水蒸気賦活活性炭は重量当たりの容量密度が低い。そのような容量の低い水蒸気賦活活性炭を用いた場合でも、酸化体ポリアニリンの割合がポリアニリン活物質の45重量%以上であるポリアニリン活物質を混合した実施例7は、酸化体ポリアニリン活物質の重量当たりの放電容量が大きく優れるために、活物質全体の重量当たりの放電容量がアルカリ賦活活性炭を用いた比較例6に匹敵した。また、実施例7は、体積当たりの放電容量密度も大きく、電極として優れた性能を有していた。
 また、図4より、活物質として酸化体ポリアニリンのみを用いた実施例1は、金属リチウム(Li)基準電極に対する電位が2.8V以下の領域での容量が少ないが、活物質として酸化体ポリアニリンと活性炭を用いた実施例7では、金属リチウム(Li)基準電極に対する電位が2.8V以下の領域でも容量を有しており、蓄電デバイスの設計に応じて、好適に用いることが出来る。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明の蓄電デバイス用正極は、リチウムイオンキャパシタやリチウムイオン二次電池等の蓄電デバイスの正極として好適に使用できる。また、本発明の蓄電デバイスは、従来の蓄電素子と同様の用途に使用でき、例えば、携帯型PC、携帯電話、携帯情報端末(PDA)等の携帯用電子機器や、ハイブリッド電気自動車、電気自動車、燃料電池自動車等の駆動用電源、瞬停対策用バッテリーに広く用いられる。
1 正極集電体
2 正極
3 電解質層
4 負極
5 負極集電体

Claims (7)

  1.  ポリアニリンおよびその誘導体の少なくとも一方を含む活物質と、導電助剤と、バインダーとを含有する蓄電デバイス用正極であって、
     上記ポリアニリンおよびその誘導体の少なくとも一方を含む活物質中のポリアニリン酸化体の割合がポリアニリン活物質全体の45重量%以上であり、
     上記バインダーのハンセン溶解度パラメータにおける極性項および水素結合項の合計が20MPa1/2以下であることを特徴とする蓄電デバイス用正極。
  2.  上記バインダーがゴム系バインダー、ポリアクリル酸エステル系バインダーおよびエポキシ系バインダーからなる群から選ばれる少なくとも一種類以上であることを特徴とする請求項1記載の蓄電デバイス用正極。
  3.  上記バインダーがスチレン-ブタジエン共重合体を含むゴム系バインダーであることを特徴とする請求項1または2記載の蓄電デバイス用正極。
  4.  さらに増粘剤を含有することを特徴とする請求項1~3のいずれか一項に記載の蓄電デバイス用正極。
  5.  上記増粘剤がカルボキシルメチルセルロースおよびその誘導体もしくはその塩の少なくとも一種類以上であることを特徴とする請求項4記載の蓄電デバイス用正極。
  6.  上記活物質としてキャパシタ用炭素材料をさらに含むことを特徴とする請求項1~5のいずれか一項に記載の蓄電デバイス用正極。
  7.  電解質層と、これを挟んで設けられる正極と負極とを有する蓄電デバイスであって、上記正極が請求項1~6のいずれか一項に記載の蓄電デバイス用正極であることを特徴とする蓄電デバイス。
PCT/JP2017/027380 2016-07-29 2017-07-28 蓄電デバイス用正極および蓄電デバイス WO2018021513A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/319,552 US20190267627A1 (en) 2016-07-29 2017-07-28 Positive electrode for power storage device, and power storage device
CN201780046569.3A CN109496372A (zh) 2016-07-29 2017-07-28 蓄电装置用正极以及蓄电装置
KR1020197002542A KR20190032390A (ko) 2016-07-29 2017-07-28 축전 디바이스용 양극 및 축전 디바이스
EP17834515.3A EP3477746A4 (en) 2016-07-29 2017-07-28 POSITIVE ELECTRODE FOR AN ENERGY STORAGE DEVICE AND ENERGY STORAGE DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016149765 2016-07-29
JP2016-149765 2016-07-29
JP2017145822A JP2018026341A (ja) 2016-07-29 2017-07-27 蓄電デバイス用正極および蓄電デバイス
JP2017-145822 2017-07-27

Publications (1)

Publication Number Publication Date
WO2018021513A1 true WO2018021513A1 (ja) 2018-02-01

Family

ID=61016088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027380 WO2018021513A1 (ja) 2016-07-29 2017-07-28 蓄電デバイス用正極および蓄電デバイス

Country Status (1)

Country Link
WO (1) WO2018021513A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208733A1 (ja) * 2018-04-26 2019-10-31 日東電工株式会社 蓄電デバイス用正極及び蓄電デバイス
WO2019208735A1 (ja) * 2018-04-26 2019-10-31 日東電工株式会社 蓄電デバイス用正極及び蓄電デバイス
WO2019208734A1 (ja) * 2018-04-26 2019-10-31 日東電工株式会社 蓄電デバイス用正極及び蓄電デバイス
WO2020196747A1 (ja) * 2019-03-26 2020-10-01 日東電工株式会社 蓄電デバイス及び蓄電デバイスの製造方法
CN112020755A (zh) * 2018-04-26 2020-12-01 日东电工株式会社 蓄电装置用正极及蓄电装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264561A (ja) * 1986-05-12 1987-11-17 Showa Denko Kk 非水溶媒二次電池
JPS63250069A (ja) * 1987-04-03 1988-10-17 Showa Denko Kk 二次電池
JPH02295064A (ja) * 1989-05-09 1990-12-05 Ricoh Co Ltd 二次電池
JPH08115724A (ja) * 1994-10-17 1996-05-07 Matsushita Electric Ind Co Ltd ポリマー電極、その製造方法およびリチウム二次電池
JPH11126610A (ja) * 1997-10-24 1999-05-11 Nec Corp ポリマー電池
JP2003168436A (ja) 2001-11-29 2003-06-13 Denso Corp リチウム電池用正極およびリチウム電池
JP2008160068A (ja) 2006-11-28 2008-07-10 Yokohama Rubber Co Ltd:The ポリアニリン/炭素複合体及びそれを用いた電気二重層キャパシタ
WO2013002415A1 (ja) * 2011-06-29 2013-01-03 日東電工株式会社 非水電解液二次電池とそのための正極シート
JP2014130706A (ja) 2012-12-28 2014-07-10 Nitto Denko Corp 蓄電デバイス用正極および蓄電デバイス
JP2017173056A (ja) * 2016-03-22 2017-09-28 株式会社豊田中央研究所 ハンセン溶解度パラメータの計算システムおよび計算方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264561A (ja) * 1986-05-12 1987-11-17 Showa Denko Kk 非水溶媒二次電池
JPS63250069A (ja) * 1987-04-03 1988-10-17 Showa Denko Kk 二次電池
JPH02295064A (ja) * 1989-05-09 1990-12-05 Ricoh Co Ltd 二次電池
JPH08115724A (ja) * 1994-10-17 1996-05-07 Matsushita Electric Ind Co Ltd ポリマー電極、その製造方法およびリチウム二次電池
JPH11126610A (ja) * 1997-10-24 1999-05-11 Nec Corp ポリマー電池
JP2003168436A (ja) 2001-11-29 2003-06-13 Denso Corp リチウム電池用正極およびリチウム電池
JP2008160068A (ja) 2006-11-28 2008-07-10 Yokohama Rubber Co Ltd:The ポリアニリン/炭素複合体及びそれを用いた電気二重層キャパシタ
WO2013002415A1 (ja) * 2011-06-29 2013-01-03 日東電工株式会社 非水電解液二次電池とそのための正極シート
JP2014130706A (ja) 2012-12-28 2014-07-10 Nitto Denko Corp 蓄電デバイス用正極および蓄電デバイス
JP2017173056A (ja) * 2016-03-22 2017-09-28 株式会社豊田中央研究所 ハンセン溶解度パラメータの計算システムおよび計算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHARLES M. HANSEN: "Hansen Solubility Parameters: A Users Handbook", 2007, CRC PRESS
See also references of EP3477746A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208733A1 (ja) * 2018-04-26 2019-10-31 日東電工株式会社 蓄電デバイス用正極及び蓄電デバイス
WO2019208735A1 (ja) * 2018-04-26 2019-10-31 日東電工株式会社 蓄電デバイス用正極及び蓄電デバイス
WO2019208734A1 (ja) * 2018-04-26 2019-10-31 日東電工株式会社 蓄電デバイス用正極及び蓄電デバイス
CN112020755A (zh) * 2018-04-26 2020-12-01 日东电工株式会社 蓄电装置用正极及蓄电装置
CN112041955A (zh) * 2018-04-26 2020-12-04 日东电工株式会社 蓄电装置用正极及蓄电装置
CN112041956A (zh) * 2018-04-26 2020-12-04 日东电工株式会社 蓄电装置用正极及蓄电装置
WO2020196747A1 (ja) * 2019-03-26 2020-10-01 日東電工株式会社 蓄電デバイス及び蓄電デバイスの製造方法

Similar Documents

Publication Publication Date Title
JP7135054B2 (ja) 非水電解液二次電池とそのための正極シート
JP2018026341A (ja) 蓄電デバイス用正極および蓄電デバイス
WO2018021513A1 (ja) 蓄電デバイス用正極および蓄電デバイス
EP2913879B1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2014035836A (ja) 非水電解液二次電池およびその製造方法
KR102157913B1 (ko) 활물질 입자, 축전 디바이스용 정극, 축전 디바이스 및 활물질 입자의 제조 방법
KR20140086875A (ko) 축전 디바이스용 정극 및 축전 디바이스
EP2919305A1 (en) Electricity storage device, electrode used therein, and porous sheet
JP2014123449A (ja) 蓄電デバイス用電極およびその製造方法、並びに蓄電デバイス
WO2014024941A1 (ja) 蓄電デバイス用正極およびその製造方法、蓄電デバイス用正極活物質およびその製造方法、ならびに蓄電デバイス
WO2014006973A1 (ja) 蓄電デバイス用電極、それを用いた蓄電デバイスおよびその製法
EP2919306B1 (en) Nonaqueous electrolyte secondary battery and method for producing same
JP2015149190A (ja) 非水電解液二次電池
WO2014157059A1 (ja) 蓄電デバイス用電極およびそれを用いた蓄電デバイス
WO2014103780A1 (ja) 非水電解液二次電池、およびそれに用いる正極シート
JP2015011876A (ja) 電極の製法、それにより得られた電極およびそれを用いた蓄電デバイス
WO2014065198A1 (ja) カチオン移動型蓄電デバイス、それに用いる電極並びに多孔質シート、およびドープ率向上方法
JP2014123450A (ja) 蓄電デバイス用電極およびその製造方法、並びに蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002542

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834515

Country of ref document: EP

Effective date: 20190124