WO2018021508A1 - ピラゾール-アミド化合物の製造方法 - Google Patents

ピラゾール-アミド化合物の製造方法 Download PDF

Info

Publication number
WO2018021508A1
WO2018021508A1 PCT/JP2017/027358 JP2017027358W WO2018021508A1 WO 2018021508 A1 WO2018021508 A1 WO 2018021508A1 JP 2017027358 W JP2017027358 W JP 2017027358W WO 2018021508 A1 WO2018021508 A1 WO 2018021508A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
compound represented
acid
reaction
Prior art date
Application number
PCT/JP2017/027358
Other languages
English (en)
French (fr)
Inventor
隆尚 本村
昌文 井上
洋継 井藤
拓哉 松尾
孝一 須澤
山本 浩史
翼 竹市
康之 梶本
隆之 稲葉
伊藤 隆夫
隆博 山▲崎▼
幸成 池本
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2019001228A priority Critical patent/MX2019001228A/es
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to BR112019001447-0A priority patent/BR112019001447A2/pt
Priority to US16/319,938 priority patent/US10981877B2/en
Priority to CA3031621A priority patent/CA3031621A1/en
Priority to EP17834510.4A priority patent/EP3492452B1/en
Priority to AU2017303898A priority patent/AU2017303898B2/en
Priority to KR1020197005948A priority patent/KR20190036549A/ko
Priority to RU2019105577A priority patent/RU2736722C2/ru
Priority to JP2018530408A priority patent/JP7036724B2/ja
Priority to CN202210561913.5A priority patent/CN114716377A/zh
Priority to CN201780046848.XA priority patent/CN109476609B/zh
Publication of WO2018021508A1 publication Critical patent/WO2018021508A1/ja
Priority to IL264307A priority patent/IL264307B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0231Halogen-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/64Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of functional groups containing oxygen only in singly bound form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Definitions

  • the present invention relates to a novel method for producing a pyrazole-amide compound or a salt thereof, or a hydrate thereof useful as an inhibitor of pyruvate dehydrogenase kinase (hereinafter abbreviated as PDHK), and an intermediate thereof.
  • PDHK pyruvate dehydrogenase kinase
  • the present invention relates to diseases associated with impaired glucose utilization (e.g., diabetes (type 1 diabetes, type 2 diabetes, etc.), insulin resistance syndrome, metabolic syndrome, hyperglycemia, hyperlactic acidemia, diabetic complications (diabetic neuron) Disorders, diabetic retinopathy, diabetic nephropathy, cataracts, etc.), diseases in which energy substrate supply to tissues is restricted (eg, heart failure (acute heart failure, chronic heart failure), cardiomyopathy, myocardial ischemia, myocardial infarction Angina, dyslipidemia, atherosclerosis, peripheral arterial disease, intermittent claudication, chronic obstructive pulmonary disease, cerebral ischemia, stroke), mitochondrial disease, mitochondrial encephalomyopathy, cancer, pulmonary hypertension etc.
  • diseases associated with impaired glucose utilization e.g., diabetes (type 1 diabetes, type 2 diabetes, etc.), insulin resistance syndrome, metabolic syndrome, hyperglycemia, hyperlactic acidemia, diabetic complications (diabetic neuron) Disorders, diabetic reti
  • the manufacturing method including the process converted into the compound represented by these.
  • the metal catalyst is a palladium catalyst.
  • the base is an alkali metal carbonate or an alkali metal acetate.
  • the carboxylic acid is pivalic acid, isobutyric acid, propionic acid or benzoic acid.
  • the reaction temperature of the coupling reaction is 80 to 150 ° C.
  • the compound of the formula [VIII] is reacted with (trifluoromethyl) trimethylsilane in the presence of an asymmetric organic catalyst, and then acid-treated to give a compound of the formula [II]:
  • PDHK inhibitory action diseases related to glucose utilization disorders, diseases in which energy substrate supply to tissues is restricted, mitochondrial diseases, mitochondrial encephalomyopathy, cancer, pulmonary hypertension, etc.
  • a pyrazole-amide compound useful for the treatment or prevention of can be produced in a high yield by a simple operation through a compound that is easy to handle.
  • this method can provide a novel intermediate for synthesizing the pyrazole-amide compound.
  • the “metal catalyst” used in the coupling reaction may be a transition metal catalyst that can be used in the coupling reaction (cross-coupling reaction), and examples thereof include a palladium catalyst.
  • a transition metal catalyst that can be used in the coupling reaction (cross-coupling reaction)
  • examples thereof include a palladium catalyst.
  • the “base” used in the coupling reaction may be any base as long as it does not interfere with the progress of the coupling reaction, and examples thereof include alkali metal carbonates and alkali metal acetates. Of these, potassium carbonate is preferred.
  • the “carboxylic acid” used in the coupling reaction may be any carboxylic acid that does not hinder the progress of the coupling reaction, and examples thereof include pivalic acid, isobutyric acid, propionic acid, benzoic acid and the like. Among these, pivalic acid or isobutyric acid is preferable, and pivalic acid is more preferable.
  • the “condensation agent” used in the reaction of the compound of the formula [V] or a salt thereof and ammonia may be any condensing agent generally used in amidation reaction of carboxylic acid and amine.
  • any condensing agent generally used in amidation reaction of carboxylic acid and amine for example, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, dicyclohexylcarbodiimide (DCC), O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluro Ni tetrafluoroborate salt (TBTU), 2- (1H-7-azabenzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate salt (HATU), 1,1 Among them, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, which is a water-
  • the condensing agent includes 1-hydroxybenzotriazole (HOBt) monohydrate, N-hydroxysuccinimide (HOSu), 6-chloro-1-hydroxybenzotriazole (Cl-HOBt), 1-hydroxy-7- Conventional additives such as azabenzotriazole (HOAt) or 3-hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazine (preferably 1-hydroxybenzotriazole monohydrate) More preferably it is used together.
  • HOAt 1-hydroxybenzotriazole
  • HASu N-hydroxysuccinimide
  • Cl-HOBt 6-chloro-1-hydroxybenzotriazole
  • 1-hydroxy-7- Conventional additives such as azabenzotriazole (HOAt) or 3-hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazine (preferably 1-hydroxybenzotriazole monohydrate) More preferably it is used together.
  • Ammonia can be (1) aqueous ammonia or (2) ammonia generated from ammonium chloride and trialkylamine (eg, triethylamine, diisopropylethylamine, etc.).
  • Asymmetric organic catalyst means an organic compound that serves as a catalyst for an asymmetric reaction.
  • Examples of the asymmetric organic catalyst that can be used for the conversion reaction of the compound of formula [VIII] to the compound of formula [II] include cinchonidinium salts and the like, and preferably N- (4-tert-butyl -3-methoxybenzyl) cinchonidium bromide.
  • the “pharmaceutically acceptable salt” of the compound may be any salt as long as it forms a salt of the formula [I] with no excessive toxicity known in the art.
  • a salt with an inorganic acid, a salt with an organic acid, a salt with an amino acid, and the like can be mentioned.
  • Each of them can be obtained by reacting a compound of formula [I] with an inorganic acid, an organic acid, or an amino acid according to a method known per se.
  • salts with inorganic acids include salts with hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, hydrobromic acid and the like.
  • organic acids oxalic acid, maleic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid, trifluoroacetic acid, gluconic acid, ascorbic acid, methanesulfonic acid, benzenesulfonic acid, p -Salts with toluenesulfonic acid etc.
  • salts with amino acids include salts with aspartic acid, glutamic acid and the like.
  • the pharmaceutically acceptable salt of the compound of the present invention is preferably a salt with an inorganic acid.
  • the “salt” of the compound may be any salt formed with the compound according to the present invention, such as a salt with an inorganic acid, a salt with an organic acid, a salt with an inorganic base, a salt with an organic base, Examples include salts with amino acids.
  • a salt with an inorganic acid such as a salt with an organic acid, a salt with an inorganic base, a salt with an organic base, Examples include salts with amino acids.
  • the above-mentioned “pharmaceutically acceptable salt” can be mentioned.
  • salts with inorganic bases include salts with ammonium, aluminum, barium, bismuth, calcium, lithium, magnesium, potassium, sodium, zinc, and the like.
  • salts with organic base examples include salts with arecoline, clemizole, ethylenediamine, N-methylglucamine, N-benzylphenethylamine, tris (hydroxymethyl) methylamine and the like.
  • salts with amino acids examples include salts with arginine, lysine and the like.
  • Each can be obtained by reacting the compound according to the present invention with an inorganic base, organic base, inorganic acid, organic acid or amino acid according to a method known per se.
  • solvate is a compound in which a molecule of a solvent is coordinated to a compound according to the present invention, a salt thereof, or a pharmaceutically acceptable salt thereof, and includes a hydrate.
  • the solvate is preferably a pharmaceutically acceptable solvate.
  • the compound according to the present invention, a salt thereof or a hydrate of a pharmaceutically acceptable salt thereof, a methanol solvate, an ethanol solvate, a dimethyl sulfoxide solvate and the like can be mentioned.
  • Methanol solvate is a compound in which methanol molecules are coordinated to the compound of the present invention. Examples include 0.5 methanol solvate.
  • the compound of the formula [I] or a pharmaceutically acceptable salt thereof or a hydrate thereof is preferably a substantially purified compound of the formula [I] or a hydrate thereof.
  • it is a compound of the formula [I] or a hydrate thereof purified to a purity of 80% or more. More preferably, it is a compound of the formula [I] or a hydrate thereof purified to a purity of 90% or more.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof, or a hydrate thereof may be crystalline, amorphous (amorphous), or a mixture thereof.
  • the pharmaceutical composition of the present invention comprises at least one pharmaceutically acceptable compound of the formula [I] or a pharmaceutically acceptable salt thereof, or a hydrate salt thereof according to a method known in the technical field of pharmaceutical preparations. It may be produced by mixing an appropriate amount with a carrier to be used.
  • the content of the compound of formula [I] or a pharmaceutically acceptable salt thereof or a hydrate salt thereof in the pharmaceutical composition of the present invention varies depending on the dosage form, dosage, etc. 0.1 to 100% by weight.
  • the compound of the formula [I] or a pharmaceutically acceptable salt thereof or a hydrate form thereof is an oral preparation such as a tablet, capsule, granule, powder, troche, syrup, emulsion, suspension, etc.
  • parenteral agents such as external preparations, suppositories, injections, eye drops, nasal agents, and pulmonary agents can be mentioned.
  • reaction temperature means the temperature in the reaction solution
  • internal temperature means the temperature of the reaction solution, suspension, etc.
  • exitternal temperature means the temperature in the oil bath, water bath, and dryer.
  • “About” is defined as ⁇ 5 ° C for temperature, ⁇ 10 minutes for time, and ⁇ 10% for weight and volume.
  • post-reaction treatment may be performed by a commonly performed method
  • purification of the product may be performed by a conventional method such as distillation, crystallization, recrystallization, column chromatography, preparative HPLC, slurry washing, etc. It can be done by selecting or combining. Further, it is possible to proceed to the next step without isolation / purification.
  • a compound of formula [VIII] is obtained by reacting a compound of formula [VI] with a compound of formula [VII]. This reaction is carried out in the presence of a base in a solvent that does not adversely influence the reaction.
  • Solvents include hydrocarbons such as hexane and toluene, ethers such as 1,4-dioxane, tetrahydrofuran and 1,2-dimethoxyethane, sulfoxides such as dimethyl sulfoxide, N, N-dimethylacetamide, N-methyl- Examples include amides such as 2-pyrrolidone, water, or a mixture thereof. Of these, toluene / water / tetrahydrofuran is preferable.
  • Examples of the base include tripotassium phosphate, cesium carbonate, potassium tert-butoxide, sodium hydroxide and the like, and sodium hydroxide is preferable.
  • the amount of the base to be used is 2 to 20 mol, preferably 10 to 20 mol, more preferably 19 to 20 mol, per 1 mol of the compound of the formula [VI].
  • This reaction is preferably performed in the presence of a phase transfer catalyst.
  • the phase transfer catalyst include tetra n-butylammonium hydroxide, tetra n-butylammonium hydrogen sulfate, and tetra n-butylammonium fluoride, among which tetra n-butylammonium hydroxide is preferable.
  • the amount of the phase transfer catalyst to be used is 0.1 to 1.5 mol, preferably 0.4 to 0.8 mol, more preferably 0.6 to 0.8 mol, per 1 mol of the compound of the formula [VI].
  • the amount of the compound of the formula [VII] used is 1 to 4 mol, preferably 2 to 3 mol, per 1 mol of the compound of the formula [VI].
  • the reaction temperature and reaction time are about 15 ° C. to about 50 ° C. and about 1 hour to about 24 hours, respectively.
  • the preferred reaction temperature is room temperature and the preferred reaction time is from about 4 hours to about 10 hours.
  • step 1 in the presence of an asymmetric organic catalyst, the compound of formula [VIII] is reacted with (trifluoromethyl) trimethylsilane in step 1, and the trimethylsilyl form of the compound represented by formula [II] obtained in step 1 is obtained.
  • Operation 2 for removing the trimethylsilyl group by acid treatment, and operation 3 for obtaining a solvate crystal of the compound of the formula [II] by crystallization of the compound obtained in operation 2 are included. Details of operations 1 to 3 will be described below.
  • Operation 1 is performed in the presence of an asymmetric organic catalyst in a solvent that does not adversely influence the reaction.
  • an asymmetric organic catalyst for example, a cinchonidium salt is mentioned.
  • the cinchonidium salt include N- (4-tert-butyl-3-methoxybenzyl) cinchonidium fluoride, N- (4-tert-butyl-3-methoxybenzyl) cinchonidium bromide, N- (4 -tert-butyl-3-methoxybenzyl) cinchonidium p-methoxyphenoxide and the like.
  • N- (4-tert-butyl-3-methoxybenzyl) cinchonidium bromide is preferred as the cinchonidium salt.
  • the amount of the asymmetric organic catalyst to be used is 0.005 to 0.3 mol, preferably 0.01 to 0.1 mol, particularly preferably 0.05 mol, per 1 mol of the compound of the formula [VIII].
  • an asymmetric organic catalyst is used with an additive as needed. Examples of the additive include sodium phenolate and sodium tert-butyl alcoholate. Of these, an equimolar amount of sodium phenolate is preferred as an additive.
  • the solvent examples include aromatic hydrocarbons such as toluene and xylene, ethers such as tetrahydrofuran, diethyl ether, 1,4-dioxane and 1,2-dimethoxyethane. Among these, a mixed solvent of toluene and tetrahydrofuran is preferable.
  • the reaction temperature is about -78 ° C to about 0 ° C, preferably about -55 ° C to about -45 ° C.
  • the reaction time is about 2 hours to about 8 hours, preferably about 5 hours.
  • Operation 2 is performed in the presence of an acid in a solvent that does not adversely influence the reaction, and a solution containing the compound of the formula [II] is obtained.
  • the solvent include alcohols such as methanol, ethanol and 2-propanol. Of these, methanol is preferable.
  • an acid For example, trifluoroacetic acid, hydrochloric acid, etc. are mentioned, Preferably it is hydrochloric acid.
  • the amount of the acid to be used is 0.2 to 5.0 mol, preferably 0.3 to 2.0 mol, per 1 mol of the compound of the formula [VIII].
  • the reaction temperature is preferably room temperature.
  • the reaction time is about 1 hour to about 6 hours, preferably about 3 hours.
  • the crystallization in operation 3 is carried out in a water-containing solvent, and the compound of the formula [II] is obtained as a solvate (alcohol solvate (preferably methanol solvate)).
  • the solvent include alcohols such as methanol, ethanol and 2-propanol. Methanol is preferred.
  • the “methanol solvate of the compound of the formula [II]” may be a mixture of the compound of the formula [II] and the methanol solvate of the compound of the formula [II] depending on drying conditions and the like.
  • step 6 a solvent is added to the solvate of the compound of formula [II] obtained in step 5, and the suspension is stirred while warming. Then, the solvent is distilled off under reduced pressure, and the suspension is resuspended in the solvent. After stirring, filtering, washing, and drying, crystals of the compound of the formula [II] are obtained.
  • the solvent used for preparing the suspension of the solvate of the compound of the formula [II] include aliphatic hydrocarbons such as hexane, heptane and octane, and / or benzene, toluene and xylene. Aromatic hydrocarbons can be mentioned, and among them, heptane is preferable.
  • the stirring temperature is about 60 ° C. from the internal temperature to the boiling point of the solvent, preferably 85 ° C. or higher.
  • the stirring time is about 1 hour to about 6 hours, preferably about 3 hours to about 5 hours.
  • a compound of the formula [IV] is obtained by a coupling reaction of the compound of the formula [II] or its methanol solvate with the compound of the formula [III] in the presence of a metal catalyst.
  • the compound of the formula [II] is preferred to the methanol solvate of the compound of the formula [II]. This reaction is carried out in the presence of a carboxylic acid and a base in a solvent that does not adversely influence the reaction.
  • the solvent examples include ethers such as tetrahydrofuran and 1,4-dioxane, nitriles such as acetonitrile, amides such as N, N-dimethylformamide, N-methylpyrrolidone and N, N-dimethylacetamide, or benzene, Examples thereof include hydrocarbons such as toluene. Among them, N, N-dimethylacetamide is preferable.
  • the metal catalyst examples include a palladium catalyst, among which bis (triphenylphosphine) palladium (II) dichloride, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride, dichloromethane adduct. Palladium acetate and di (1-adamantyl) -n-butylphosphine, palladium acetate and dicyclohexyl (2,2-diphenyl-1-methylcyclopropyl) phosphine, and the like are preferable. Of these, bis (triphenylphosphine) palladium (II) dichloride is more preferred as the metal catalyst.
  • a palladium catalyst among which bis (triphenylphosphine) palladium (II) dichloride, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride, dichloromethane a
  • Examples of the carboxylic acid include pivalic acid, isobutyric acid, propionic acid, benzoic acid, and the like, and preferably pivalic acid or isobutyric acid, and more preferably pivalic acid.
  • Examples of the base include alkali metal carbonates and alkali metal acetates, and potassium carbonate is preferable.
  • the amount of the compound of the formula [III] to be used is 1.0 to 5.0 mol, preferably 1.6 to 2.0 mol, per 1 mol of the compound of the formula [II].
  • the amount of the metal catalyst to be used is 0.005 to 0.2 mol, preferably 0.01 to 0.025 mol, per 1 mol of the compound of the formula [II].
  • the amount of carboxylic acid to be used is 0.1 to 1.0 mol, preferably 0.2 to 0.5 mol, per 1 mol of the compound of the formula [II].
  • the amount of the base used is 0.4 to 4.0 mol, preferably 0.6 to 1.8 mol, relative to 1 mol of the compound of the formula [II].
  • the reaction temperature is about 80 ° C. to about 150 ° C., preferably about 90 ° C. to about 140 ° C., more preferably about 100 ° C. to about 110 ° C.
  • the reaction time is about 1 hour to about 6 hours, preferably about 3 hours.
  • Hydrolysis of the compound of formula [IV] yields a compound of formula [V].
  • This reaction is carried out in the presence of a base in a solvent that does not adversely influence the reaction.
  • the solvent include alcohols such as methanol, ethanol and 2-propanol, water and the like, and mixtures thereof, among which a mixed solvent of ethanol and water is preferable.
  • the base include inorganic bases such as sodium hydroxide and potassium hydroxide, among which sodium hydroxide is preferable.
  • the amount of the base to be used is 7 to 16 mol, preferably 10 to 13 mol, per 1 mol of the compound of the formula [IV].
  • the reaction temperature is about 25 ° C. from the internal temperature to the boiling point of the solvent, preferably about 70 ° C.
  • the reaction time is about 1 hour to about 8 hours, preferably about 1.5 hours.
  • a compound of the formula [Ih] is obtained by performing an operation 1 in which the compound of the formula [V] is reacted with ammonia in the presence of a condensing agent, followed by an operation 2 of crystallization with a hydrous solvent.
  • the reaction of operation 1 is performed in the presence of a condensing agent in a solvent that does not adversely influence the reaction.
  • a condensing agent examples include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, dicyclohexylcarbodiimide (DCC), O- (benzotriazol-1-yl) -N, N, N ′, N ′.
  • TBTU -Tetramethyluronium tetrafluoroborate
  • HATU 2- (1H-7-azabenzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate
  • 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride is preferable.
  • 1-hydroxybenzotriazole (HOBt) monohydrate N-hydroxysuccinimide (HOSu), 6-chloro-1-hydroxybenzotriazole (Cl-HOBt), 1- Hydroxy-7-azabenzotriazole (HOAt) or 3-hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazine, and the like are preferable, but preferably 1-hydroxybenzotriazole / 1 water It can also be used in combination with Among these, a combination of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and 1-hydroxybenzotriazole monohydrate is particularly preferably used.
  • the amount of the condensing agent to be used is 1 to 10 mol, preferably 1 to 2 mol, per 1 mol of the compound of the formula [V].
  • the amount of the additive to be used is 1 to 10 mol, preferably 1 to 2 mol, relative to 1 mol of the compound of the formula [V].
  • the amount of ammonia used is 1 to 3 mol, preferably 1 to 2 mol in terms of the amount of ammonia with respect to 1 mol of the compound of the formula [V].
  • ammonium chloride and a base for example, trialkylamine, specifically, triethylamine, diisopropylethylamine, etc.
  • a base for example, trialkylamine, specifically, triethylamine, diisopropylethylamine, etc.
  • the solvent examples include ethers such as diethyl ether, 1,4-dioxane and tetrahydrofuran, esters such as ethyl acetate, halogenated hydrocarbons such as chloroform and dichloromethane, amides such as N, N-dimethylformamide, Or a mixture thereof can be exemplified, and may be appropriately mixed. Of these, N, N-dimethylformamide is preferred. While the reaction temperature varies depending on the type of solvent, it is about 0 ° C. to about 40 ° C., preferably about 15 ° C. to about 30 ° C., and the reaction time is about 0.5 hour to about 24 hours, preferably about 1.5 hours to about 8 hours. It's time.
  • ethers such as diethyl ether, 1,4-dioxane and tetrahydrofuran
  • esters such as ethyl acetate
  • halogenated hydrocarbons such as chloroform and dichlor
  • an azeotropic operation in which an alcohol (eg, ethanol) is added as a solvent to the solution of the compound of the formula [I] obtained in Operation 1 and a part of the solvent is distilled off under reduced pressure is repeated. Further, after adding alcohols to make a solution, the temperature was raised from about 40 ° C. to about 50 ° C., water was added dropwise at the same temperature, and after stirring, the suspension was heated from about 55 ° C. to about 65 ° C. The temperature is raised, and after stirring, the temperature is slowly returned to room temperature, and the resulting mixture is further stirred to precipitate the compound of the formula [Ih] as crystals.
  • an alcohol eg, ethanol
  • the stirring time is about 1 hour to about 7 hours, preferably about 2 hours at an internal temperature of about 40 ° C. to about 50 ° C., and about 1 hour to about 4 at an internal temperature of about 55 ° C. to about 65 ° C.
  • the time is preferably from about 1 hour to about 2 hours and at room temperature from about 8 hours to 24 hours, preferably about 12 hours.
  • the crystallization operation may be carried out by adding seed crystals of the compound of the formula [Ih] after dropping of water.
  • a compound of formula [III] is obtained by reacting a compound of formula [IX] with a compound of formula [X]. This reaction is carried out in the presence of a base in a solvent that does not adversely influence the reaction.
  • a solvent such as tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, hydrocarbons such as hexane and toluene, amides such as N, N-dimethylformamide, N, N-dimethylacetamide, Or a mixture thereof is exemplified. Of these, tetrahydrofuran is preferred.
  • Examples of the base include sodium hydride, potassium tert-butoxide, sodium methoxide, sodium bis (trimethylsilyl) amide, cesium carbonate and the like, preferably sodium hydride.
  • the amount of the base to be used is 1 to 2 mol, preferably 1 to 1.5 mol, per 1 mol of the compound of the formula [IX].
  • the amount of the compound of the formula [X] to be used is 1 to 1.5 mol, preferably 1 to 1.2 mol, per 1 mol of the compound of the formula [IX].
  • the reaction temperature is from room temperature to the boiling point of the solvent, preferably from about 50 ° C to about 65 ° C.
  • the reaction time is about 1 hour to about 24 hours.
  • the characteristics of this production method include the following. 1. About compound (2) or compound (2m)
  • Compound (2) can be converted into a methanol solvate (compound (2m)) with good crystallinity, which can be converted to a good chemical purity and good optical purity (for example, 95% ee or more) by a single operation. ).
  • Compound (3) could be purified to a purity of 90% or more (99% or more depending on the distillation conditions) by distillation.
  • a protective group is introduced into a functional group as necessary, and deprotection is performed in a post-process; the functional group is treated as a precursor in each step, and a desired step is performed at an appropriate stage. Conversion to a functional group; efficient production may be carried out by changing the order of each production method and process.
  • post-reaction treatment may be performed by a commonly performed method, and isolation and purification may be performed as necessary by crystallization, recrystallization, distillation, liquid separation, silica gel chromatography, preparative HPLC, etc. These conventional methods may be appropriately selected and combined. All reagents and solvents were of commercial quality and were used without purification.
  • % Indicates mol / mol% for the yield and indicates% by weight unless otherwise specified.
  • the room temperature means a temperature of 15 to 30 ° C. unless otherwise specified.
  • Other abbreviations used in the text have the following meanings. s: singlet d: doublet t: triplet q: quartet m: multiplet br: broad dd: double doublet ddd: double double doublet dddd: double double doublet J: coupling constant MeOH: methanol DMSO-D 6 : heavy dimethyl sulfoxide 1 H-NMR: proton nuclear magnetic resonance HPLC: high-performance liquid chromatography The 1 H-NMR spectrum was measured in DMSO-D 6 using tetramethylsilane as an internal standard, and all ⁇ values were expressed in ppm.
  • HPLC analysis conditions In the following analysis conditions, “%” indicates volume%. Further, the gradient linearly changes the mixing ratio of the liquid A and the liquid B.
  • Analysis condition 1 Measuring instrument: HPLC system Waters Alliance Column: Waters SunFire C18 3.5 ⁇ m 4.6mm ⁇ ⁇ 150mm Column temperature: 40 ° C Mobile phase: (A solution) Phosphate buffer (pH 2.0), (B solution) Acetonitrile gradient profile: Time (min) 0 30 35 40 45 (Stop) A (%) 70 25 25 70 70 B (%) 30 75 75 30 30 30 Analysis time: 45 minutes Flow rate: 1.0 mL / min Detection: UV (220 nm)
  • the resulting suspension was heated to an internal temperature of 41 ° C., and the remaining amount (about 35%) of a bromine (40.8 g) / acetic acid (90 mL) solution was added dropwise at an internal temperature of 41 to 45 ° C. After washing with (10 mL), the mixture was stirred at an internal temperature of 45 to 46 ° C. for 17 minutes.
  • a sodium sulfite (4.39 g) / water (45 mL) solution was added dropwise at an internal temperature of 41 to 45 ° C., and the dropping funnel was washed with water (5 mL), and then at an internal temperature of 41 to 46 ° C., 30 Stir for minutes.
  • reaction mixture was cooled to room temperature, a sodium sulfite (8.57 g) / water (62.5 mL) solution was added dropwise at an internal temperature of 23 to 24 ° C., and the dropping funnel was washed with water (13 mL). Stir for 30 minutes. Toluene (375 mL) was added to the obtained mixture, and the mixture was stirred for 30 minutes. The insoluble material was filtered through Celite, and the filtrate was washed with toluene (75 mL).
  • the obtained filtrate was separated, the aqueous layer was removed, and the organic layer was washed successively with water (125 mL ⁇ 2 times), 5% aqueous sodium hydrogen carbonate solution (125 mL), and 1% brine (125 mL).
  • the obtained organic layer was concentrated under reduced pressure, and toluene (about 375 mL) was distilled off. To the residue was added 2-propanol (250 mL) and concentrated under reduced pressure until the weight was about 90 g. The same operation was further performed twice, and then 2-propanol (150 mL) was added to adjust the weight to 207 g.
  • the obtained suspension was heated to reflux for 30 minutes and then stirred at an external temperature of 75 ° C.
  • the resulting mixture was stirred at an internal temperature of ⁇ 52 to ⁇ 48 ° C. for 30 minutes, heated to about 0 ° C. over 1 hour, and then cooled again to an internal temperature of ⁇ 53 ° C.
  • (trifluoromethyl) trimethylsilane (19.2 g) was added dropwise over 2 hours at an internal temperature of ⁇ 53 to ⁇ 47 ° C., followed by stirring at an internal temperature of about ⁇ 50 ° C. for 10 minutes.
  • the resulting reaction mixture was warmed to room temperature, concentrated under reduced pressure until the weight was 81.5 g or less, and methanol (130 mL) was added.
  • the obtained suspension was stirred at an internal temperature of about 45 ° C. for 2 hours, cooled to room temperature, and stirred overnight.
  • the precipitated solid was collected by filtration, and the filtrate was washed with a methanol / water (1.3 v / 0.7 v) mixed solution (65 mL) cooled to 10 ° C. or lower.
  • the obtained solid was dried under reduced pressure to obtain the title compound (23.9 g).
  • thermogravimetric analysis The weight loss by thermogravimetric analysis agreed well with the theoretical value of compound (2m) (0.5 methanol solvate of compound (2)). Theoretical value: 3.58% (calculated value as 0.5 methanol solvate) Actual value: 3.56%
  • N-Heptane (25 mL) was added to the resulting suspension at an internal temperature of about 70 ° C., and about 25 mL of solvent was distilled off again under reduced pressure while maintaining the internal temperature at about 70 ° C.
  • 25 mL of n-heptane was added at an internal temperature of about 70 ° C., and the mixture was cooled to room temperature and stirred for about 2 hours.
  • the solid was filtered and the filtrate was washed with n-heptane.
  • the obtained solid was dried under reduced pressure at an external temperature of 60 ° C. to obtain the title compound (22.2 g, optical purity 99.1% ee).
  • the optical purity was determined under HPLC analysis condition 3.
  • N, N-dimethylacetamide (420 mL), pivalic acid (3.55 g) and potassium carbonate (15.4 g) were added to bis (triphenylphosphine) palladium (II) dichloride (2.44 g).
  • (9R) -4-bromo-2- (3-hydroxy-3-methylbutyloxy) -9- (trifluoromethyl) -9H-fluoren-9-ol (compound (2)) (60.0 g), tert-butyl 2-methyl-2- (1H-pyrazol-1-yl) propanoate (compound (3)) (46.8 g) and N, N-dimethylacetamide (60 mL) were added.
  • the resulting mixture was stirred at 104 to 107 ° C. for 3 hours, and then the reaction mixture was concentrated under reduced pressure to distill off about 440 mL of N, N-dimethylacetamide.
  • the obtained concentrate containing the title compound was used in the next step with a yield of 100%.
  • the aqueous layer obtained by the previous liquid separation was added dropwise to the obtained mixture at an internal temperature of -7 to 14 ° C., followed by liquid separation to remove the aqueous layer.
  • the obtained organic layer was washed four times with water (300 mL), concentrated under reduced pressure until the weight became 135 g, then ethyl acetate (300 mL) was added, and the mixture was concentrated again under reduced pressure until the liquid volume became 138 g. Ethyl acetate (420 mL) and activated carbon (3.00 g) were added to the resulting concentrated solution. The resulting mixture was stirred at an internal temperature of 23 to 26 ° C.
  • Step 9 2- ⁇ 4-[(9R) -9-hydroxy-2- (3-hydroxy-3-methylbutyloxy) -9- (trifluoromethyl) -9H-fluoren-4-yl] -1H-pyrazole-1 -Il ⁇ -2-methylpropanamide monohydrate (compound (1h))
  • the obtained organic layer was washed by adding ethyl acetate (116 mL) and 5% aqueous sodium hydrogen carbonate solution (290 mL). Subsequently, this organic layer was washed successively with water (116 mL), 1M hydrochloric acid (290 mL), 5% brine (290 mL) and water (290 mL), and the obtained organic layer was concentrated under reduced pressure until the weight reached 121 g. . Ethanol (174 mL) was added to the obtained concentrate, and the mixture was concentrated under reduced pressure until the weight became 109 g. Ethanol (174 mL) was added, and the mixture was concentrated again under reduced pressure until the weight became 112 g.
  • Ethanol (93 mL) was added to the obtained concentrated liquid to adjust the liquid volume to 200 mL.
  • the resulting solution was subjected to dust removal filtration, and the filtrate was washed with ethanol (116 mL).
  • the obtained filtrate was heated, water (348 mL) was added dropwise at an internal temperature of 46 to 50 ° C., seed crystals (12 mg) were added, and the mixture was stirred at an internal temperature of 46 to 51 ° C. for 2 hours.
  • the resulting suspension was further stirred for 1 hour and 10 minutes at an internal temperature of 55 to 62 ° C., then cooled to 30 ° C. over about 4 hours, and stirred overnight at room temperature.
  • step 9 Using the method according to the present step 9, even when no seed crystal was added during crystallization, crystals of the target compound (1h) were obtained.
  • tetrahydrofuran (1250 mL) and 60% sodium hydride (58.5 g) were added, and the internal temperature was cooled to -9 ° C.
  • a pyrazole (compound (9)) (100 g) / tetrahydrofuran (250 mL) solution was added dropwise at an internal temperature of ⁇ 9 to 5 ° C., followed by stirring at ⁇ 5 to 0 ° C. for 30 minutes.
  • the present invention can provide a method for producing a compound of formula [I] or a pharmaceutically acceptable salt thereof, or a hydrate thereof in good yield.
  • the compounds of the formula [II], the formula [IIm], the formula [III] and the formula [IV] according to the present invention are represented by the compound of the formula [I] or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  • the production method of the present invention is useful as an industrial mass synthesis method because it can be carried out by a simple operation via a compound that is easy to handle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Materials Engineering (AREA)
  • Endocrinology (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

式 [ I ] : で表される化合物又はその製薬上許容される塩、或いはその水和物の製造方法。

Description

ピラゾール-アミド化合物の製造方法
 本発明は、ピルビン酸デヒドロゲナーゼキナーゼ(以下、PDHKと略記する。)の阻害剤として有用なピラゾール-アミド化合物又はその塩、或いはその水和物の新規製造方法、ならびにその中間体に関する。
 本発明は、グルコース利用障害に関連した疾患(例、糖尿病(1型糖尿病、2型糖尿病等)、インスリン抵抗性症候群、メタボリックシンドローム、高血糖症、高乳酸血症、糖尿病合併症(糖尿病性神経障害、糖尿病性網膜症、糖尿病性腎症、白内障等))、組織へのエネルギー基質供給が制限される疾患(例、心不全(急性心不全、慢性心不全)、心筋症、心筋虚血症、心筋梗塞、狭心症、脂質異常症、アテローム性硬化症、末梢動脈疾患、間欠性跛行、慢性閉塞性肺疾患、脳虚血症、脳卒中)、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症等の治療または予防に有用なピラゾール-アミド化合物又はその塩、或いはその水和物の新規な製造方法等を提供することを目的とする。
 本発明の一態様は、下記[1]から[18a]に示す通りである。
 [1] 式 [ I ] :
Figure JPOXMLDOC01-appb-C000029
で表される化合物又はその製薬上許容される塩、或いはその水和物の製造方法であって、
式 [ II ] :
Figure JPOXMLDOC01-appb-C000030
で表される化合物又はそのメタノール和物を、金属触媒、塩基およびカルボン酸存在下、
式 [ III ] :
Figure JPOXMLDOC01-appb-C000031
で表される化合物とのカップリング反応により、式 [ IV ] :
Figure JPOXMLDOC01-appb-C000032
で表される化合物に変換する工程を含む、製造方法。
[2] 金属触媒が、パラジウム触媒である、上記[1]に記載の方法。
[3] 塩基が、アルカリ金属炭酸塩又はアルカリ金属酢酸塩である、上記[1]又は[2]に記載の方法。
[4] カルボン酸が、ピバル酸、イソ酪酸、プロピオン酸又は安息香酸である、上記[1]から[3]のいずれかに記載の方法。
[5] カップリング反応の反応温度が、80から150℃である、上記[1]から[4]のいずれかに記載の方法。
[6] 前記式 [ IV ] の化合物を加水分解することにより、式 [ V ] :
Figure JPOXMLDOC01-appb-C000033
で表される化合物又はその塩に変換する工程を更に含む、上記[1]から[5]のいずれかに記載の方法。
[7] 前記式 [ V ] の化合物又はその塩を、縮合剤存在下、アンモニアと反応させることにより、前記式 [ I ] で表される化合物又はその製薬上許容される塩、或いはその水和物に変換する工程を更に含む、上記[6]に記載の方法。
[8] 前記式 [ II ]の化合物が、式 [ VI ] :
Figure JPOXMLDOC01-appb-C000034
で表される化合物を、塩基存在下、式 [ VII ]:
Figure JPOXMLDOC01-appb-C000035
で表される化合物と反応させることにより、式 [ VIII ]:
Figure JPOXMLDOC01-appb-C000036
で表される化合物に変換する工程、および
式 [ VIII ] の化合物を、不斉有機触媒の存在下、(トリフルオロメチル)トリメチルシランと反応後、酸処理する工程
を含む方法により製造されることを特徴とする、上記[1]から[7]のいずれか記載の方法。
[9] 不斉有機触媒がシンコニジニウム塩である、上記[8]に記載の方法。
[10] シンコニジニウム塩がN-(4-tert-ブチル-3-メトキシベンジル)シンコニジウムブロミドである、上記[9]に記載の方法。
[10a] シンコニジニウム塩とともに添加剤を使用する、上記[9]に記載の方法。
[10b] 添加剤がナトリウムフェノラート、または、ナトリウムtert-ブチルアルコラートである、上記[10a]に記載の方法。
[11] 前記式[ III ]の化合物が、式 [ IX ] :
Figure JPOXMLDOC01-appb-C000037
で表される化合物又はその塩を、塩基存在下、式 [ X ] :
Figure JPOXMLDOC01-appb-C000038
で表される化合物との反応により製造されることを特徴とする、上記[1]から[10]のいずれかに記載の方法。 
[12] 式 [ I ] :
Figure JPOXMLDOC01-appb-C000039
で表される化合物又はその製薬上許容される塩、或いはその水和物の製造方法であって、
式 [ VI ] : 
Figure JPOXMLDOC01-appb-C000040
で表される化合物を、塩基存在下、式 [ VII ] :
Figure JPOXMLDOC01-appb-C000041
で表される化合物と反応させることにより、式 [ VIII ] :
Figure JPOXMLDOC01-appb-C000042
で表される化合物に変換する工程、
式 [ VIII ] の化合物を、不斉有機触媒の存在下、(トリフルオロメチル)トリメチルシランと反応後、酸処理し、式 [ II ] :
Figure JPOXMLDOC01-appb-C000043
で表される化合物又はそのメタノール和物を得る工程、
式 [ IX ] :
Figure JPOXMLDOC01-appb-C000044
で表される化合物又はその塩を、塩基存在下、式 [ X ] :
Figure JPOXMLDOC01-appb-C000045
で表される化合物との反応により、式 [ III ] :
Figure JPOXMLDOC01-appb-C000046
で表される化合物を得る工程、
前記式 [ III ] の化合物を、金属触媒、塩基およびカルボン酸存在下、前記式 [ II ] の化合物又はそのメタノール和物とのカップリング反応により、式 [ IV ] :
Figure JPOXMLDOC01-appb-C000047
で表される化合物に変換する工程、
前記式 [ IV ] の化合物を加水分解することにより、式 [ V ] :
Figure JPOXMLDOC01-appb-C000048
で表される化合物又はその塩に変換する工程、ならびに
前記式 [ V ] の化合物又はその塩を、縮合剤存在下、アンモニアと反応させることによりアミド化する工程を含む、製造方法。
[13] 式 [ II ] :
Figure JPOXMLDOC01-appb-C000049
で表される化合物又はそのメタノール和物を、金属触媒、塩基およびカルボン酸存在下、式 [ III ] :
Figure JPOXMLDOC01-appb-C000050
で表される化合物とカップリング反応することによる、式 [ IV ]:
Figure JPOXMLDOC01-appb-C000051
で表される化合物の製造方法。
[14] 上記[1]から[12]のいずれかに記載の方法で製造された化合物またはその製薬上許容される塩。
[14a] 上記[1]に記載の方法で製造された化合物またはその製薬上許容される塩、および製薬上許容される担体を含む、医薬組成物。
[15] 式 [ IV ] :
Figure JPOXMLDOC01-appb-C000052
で表される化合物。
[16] 式 [ II ] :
Figure JPOXMLDOC01-appb-C000053
で表される化合物又はそのメタノール和物。
[17] 式 [ II ] :
Figure JPOXMLDOC01-appb-C000054
または、
式 [ IIm ] :
Figure JPOXMLDOC01-appb-C000055
で表される化合物。
[18] 式 [ III ] :
Figure JPOXMLDOC01-appb-C000056
で表される化合物。
[18a] 式 [ XV ] :
Figure JPOXMLDOC01-appb-C000057
で表される化合物。
 本発明の製造方法によれば、PDHK阻害作用を有し、グルコース利用障害に関連した疾患、組織へのエネルギー基質供給が制限される疾患、ミトコンドリア病、ミトコンドリア脳筋症、癌、肺高血圧症等の治療または予防に有用なピラゾール-アミド化合物を、取り扱いの容易な化合物を経由し、簡便な操作にて収率よく製造することができる。また、本方法により、該ピラゾール-アミド化合物を合成するための新規中間体を提供することができる。
 本明細書における用語の定義は下記の通りである。
 カップリング反応に使用される「金属触媒」とは、カップリング反応(クロスカップリング反応)に使用し得る遷移金属触媒であればよく、例えば、パラジウム触媒等が挙げられる。中でも、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物、酢酸パラジウムとジ(1-アダマンチル)-n-ブチルホスフィン、酢酸パラジウムとジシクロヘキシル(2,2-ジフェニル-1-メチルシクロプロピル)ホスフィン等が好ましい。
 カップリング反応に使用される「塩基」は、カップリング反応の進行を妨げないものであればいかなる塩基でもよく、例えば、アルカリ金属炭酸塩、アルカリ金属酢酸塩等が挙げられる。中でも、炭酸カリウムが好ましい。
 カップリング反応に使用される「カルボン酸」は、カップリング反応の進行を妨げないものであればいかなるカルボン酸でもよく、例えば、ピバル酸、イソ酪酸、プロピオン酸、安息香酸等が挙げられる。中でも、ピバル酸又はイソ酪酸が好ましく、ピバル酸がより好ましい。
 式 [ V ] の化合物又はその塩とアンモニアとの反応に使用される「縮合剤」とは、カルボン酸とアミンとのアミド化反応において一般的に使用される縮合剤であればいかなるものでもよく、例えば、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、ジシクロヘキシルカルボジイミド (DCC)、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロホウ酸塩 (TBTU)、2-(1H-7-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロリン酸塩 (HATU)、1,1’-カルボニルジイミダゾールなどが挙げられるが、中でも、水溶性縮合剤 (WSC)である1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩が好ましい。また、当該縮合剤は、1-ヒドロキシベンゾトリアゾール (HOBt)・1水和物、N-ヒドロキシスクシンイミド (HOSu)、6-クロロ-1-ヒドロキシベンゾトリアゾール (Cl-HOBt)、1-ヒドロキシ-7-アザベンゾトリアゾール (HOAt)あるいは3-ヒドロキシ-4-オキソ-3,4-ジヒドロ-1,2,3-ベンゾトリアジン等(好ましくは、1-ヒドロキシベンゾトリアゾール・1水和物)の慣用の添加剤と共に使用することがより好ましい。
 「アンモニア」は、(1) アンモニア水、または(2) 塩化アンモニウムとトリアルキルアミン(例、トリエチルアミンやジイソプロピルエチルアミン等)により発生したアンモニアを用いることができる。
 「不斉有機触媒」とは、不斉反応の触媒となる有機化合物を意味する。式 [ VIII ] の化合物から式 [ II ] の化合物への変換反応に使用し得る不斉有機触媒としては、例えば、シンコニジニウム塩等が挙げられ、好ましくは、N-(4-tert-ブチル-3-メトキシベンジル)シンコニジウムブロミドである。
 化合物の「製薬上許容される塩」とは、式 [ I ] の化合物と当技術分野で知られている過度の毒性を伴わない塩を形成するものであればいかなる塩でもよい。例えば、無機酸との塩、有機酸との塩、アミノ酸との塩等が挙げられる。
 様々な形態の製薬上許容される塩が当技術分野において周知であり、例えば、以下の参考文献に記載されている。
(a) Bergeら、J.Pharm.Sci., 66,p. 1-19(1977)
(b) Stahlら、”Handbook of Pharmaceutical Salt: Properties,Selection,and Use”(Wiley-VCH, Weinheim, Germany, 2002)
(c) Paulekuhnら、J. Med. Chem., 50, p. 6665-6672 (2007)
 自体公知の方法に従って、式 [ I ] の化合物と、無機酸、有機酸、または、アミノ酸とを反応させることにより、各々得ることができる。
 無機酸との塩として、塩酸、硝酸、硫酸、リン酸、臭化水素酸等との塩が例示される。
 有機酸との塩として、シュウ酸、マレイン酸、クエン酸、フマル酸、乳酸、リンゴ酸、コハク酸、酒石酸、酢酸、トリフルオロ酢酸、グルコン酸、アスコルビン酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等との塩が例示される。
 アミノ酸との塩として、アスパラギン酸、グルタミン酸等との塩が例示される。
 本発明化合物の製薬上許容される塩として、好ましくは、無機酸との塩である。
 化合物の「塩」とは、本発明に係る化合物と形成する塩であればいかなる塩でもよく、例えば無機酸との塩、有機酸との塩、無機塩基との塩、有機塩基との塩、アミノ酸との塩等が含まれる。例えば、前記「製薬上許容される塩」が挙げられる。
 無機塩基との塩として、アンモニウム、アルミニウム、バリウム、ビスマス、カルシウム、リチウム、マグネシウム、カリウム、ナトリウム、亜鉛等との塩が例示される。
 有機塩基との塩として、アレコリン、クレミゾール、エチレンジアミン、N-メチルグルカミン、N-ベンジルフェネチルアミン、トリス(ヒドロキシメチル)メチルアミン等との塩が例示される。
 アミノ酸との塩として、アルギニン、リジン等との塩が例示される。
 自体公知の方法に従って、本発明に係る化合物と、無機塩基、有機塩基、無機酸、有機酸または、アミノ酸とを反応させることにより、各々得ることができる。
 本発明に係る化合物、その塩又はその製薬上許容される塩は、溶媒和物として存在することもある。「溶媒和物」とは、本発明に係る化合物、その塩又はその製薬上許容される塩に、溶媒の分子が配位したものであり、水和物も包含される。溶媒和物は、製薬上許容される溶媒和物が好ましい。例えば、本発明に係る化合物、その塩又はその製薬上許容される塩の水和物、メタノール和物、エタノール和物、ジメチルスルホキシド和物等が挙げられる。「メタノール和物」とは、本発明に係る化合物に、メタノールの分子が配位したものである。例えば0.5メタノール和物などが挙げられる。
 「式 [ I ] :
Figure JPOXMLDOC01-appb-C000058
で表される化合物又はその製薬上許容される塩、或いはその水和物」
としては、例えば、下記化合物
Figure JPOXMLDOC01-appb-C000059
が挙げられる。
 また、「式 [ II ] :
Figure JPOXMLDOC01-appb-C000060
で表される化合物又はそのメタノール和物」としては、例えば、下記化合物
Figure JPOXMLDOC01-appb-C000061
が挙げられる。
 式 [ I ] の化合物又はその製薬上許容される塩、或いはその水和物は、同位体元素(2H、3H、14C、13C、35S等)で標識されていてもよい。
 式 [ I ] の化合物又はその製薬上許容される塩、或いはその水和物は、実質的に精製された、式 [ I ] の化合物又はその水和物が好ましい。好ましくは、80%以上の純度に精製された、式 [ I ] の化合物又はその水和物である。
 より好ましくは、90%以上の純度に精製された、式 [ I ] の化合物又はその水和物である。
 本発明の化合物又はその製薬上許容される塩、或いはその水和物は、結晶、非結晶(アモルファス)、またはそれらの混合物であってもよい。
 本発明の医薬組成物は、医薬製剤の技術分野において公知の方法に従って、式 [ I ] の化合物又はその製薬上許容される塩、或いはその水和物塩を、少なくとも1種以上の製薬上許容される担体等と、適宜、適量混合等することによって製造してもよい。
 本発明の医薬組成物中の式 [ I ] の化合物又はその製薬上許容される塩、或いはその水和物の塩の含量は、剤形、投与量等により異なるが、例えば、組成物全体の0.1から100重量%である。
 式 [ I ] の化合物又はその製薬上許容される塩、或いはその水和物の剤形は、錠剤、カプセル剤、顆粒剤、散剤、トローチ剤、シロップ剤、乳剤、懸濁剤等の経口剤、或いは外用剤、坐剤、注射剤、点眼剤、経鼻剤、経肺剤等の非経口剤が挙げられる。
 「反応温度」とは、反応溶液内の温度、「内温」とは、反応液や懸濁液等の温度、「外温」とは、油浴、水浴及び乾燥機内の温度を意味する。
 「約」は、温度の場合±5℃、時間の場合±10分、重量及び容量の場合には±10%と定義する。
 本発明の製造方法の主要な工程について、以下に具体的に説明する。
 各工程において、反応後の処理は通常行われる方法で行えばよく、生成物の精製は蒸留、結晶化、再結晶化、カラムクロマトグラフィー、分取HPLC、スラリー洗浄等の慣用される方法を適宜選択して行うか、組み合わせて行えばよい。また、単離・精製せず次の工程に進むこともできる。
工程4
Figure JPOXMLDOC01-appb-C000062
 式 [ VI ] の化合物を、式 [ VII ] の化合物と反応させることにより、式 [ VIII ] の化合物が得られる。
 本反応は、反応に悪影響を及ぼさない溶媒中で、塩基の存在下で行われる。
 溶媒としては、ヘキサン、トルエン等の炭化水素類、1,4-ジオキサン、テトラヒドロフラン、1,2-ジメトキシエタン等のエーテル類、ジメチルスルホキシド等のスルホキシド類、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類、水、又はそれらの混合物が例示される。中でも、トルエン/水/テトラヒドロフランが好ましい。
 塩基としては、例えば、リン酸三カリウム、炭酸セシウム、カリウムtert-ブトキシド、水酸化ナトリウム等が挙げられるが、好ましくは、水酸化ナトリウムである。
 塩基の使用量は、式 [ VI ] の化合物1モルに対して、2から20モル、好ましくは10から20モルであり、より好ましくは19から20モルである。
 本反応は、相間移動触媒の存在下で行うのが好ましい。
 相間移動触媒としては、例えば、水酸化テトラn-ブチルアンモニウム、硫酸水素テトラn-ブチルアンモニウム、フッ化テトラn-ブチルアンモニウム等が挙げられるが、中でも、水酸化テトラn-ブチルアンモニウムが好ましい。相間移動触媒の使用量は、式 [ VI ]の化合物1モルに対して、0.1から1.5モル、好ましくは0.4から0.8モルであり、より好ましくは0.6から0.8モルである。
 式 [ VII ] の化合物の使用量は、式 [ VI ] の化合物1モルに対して、1から4モル、好ましくは2から3モルである。
 反応温度及び反応時間はそれぞれ、約15℃から約50℃、及び約1時間から約24時間である。好ましい反応温度は室温であり、好ましい反応時間は約4時間から約10時間である。
工程5
Figure JPOXMLDOC01-appb-C000063
 本工程は、不斉有機触媒存在下、式 [ VIII ] の化合物を(トリフルオロメチル)トリメチルシランと反応させる操作1、操作1で得られた式 [ II ] で表される化合物のトリメチルシリル体を酸処理して、トリメチルシリル基を除去する操作2、操作2で得られた化合物の結晶化により、式 [ II ] の化合物の溶媒和物の結晶を得る操作3を含む。
 操作1から3の詳細を以下に説明する。
操作1
 操作1は、反応に悪影響を及ぼさない溶媒中で、不斉有機触媒の存在下で行われる。不斉有機触媒としては、特に限定されないが、例えば、シンコニジウム塩が挙げられる。シンコニジウム塩としては、例えば、N-(4-tert-ブチル-3-メトキシベンジル)シンコニジウムフロリド、N-(4-tert-ブチル-3-メトキシベンジル)シンコニジウムブロミド、N-(4-tert-ブチル-3-メトキシベンジル)シンコニジウム p-メトキシフェノキシド等が挙げられる。中でも、N-(4-tert-ブチル-3-メトキシベンジル)シンコニジウムブロミドがシンコニジウム塩として好ましい。
 不斉有機触媒の使用量は、式 [ VIII ] の化合物1モルに対して、0.005から0.3モル、好ましくは0.01から0.1モル、特に好ましくは0.05モルである。
 また、不斉有機触媒は、必要に応じて添加剤とともに用いる。該添加剤としては、例えばナトリウムフェノラート、ナトリウムtert-ブチルアルコラート等が挙げられる。中でも、等モル量のナトリウムフェノラートが、添加剤として好ましい。
 溶媒としては、トルエン、キシレン等の芳香族炭化水素類、テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、1,2-ジメトキシエタン等のエーテル類等が例示される。中でも、トルエンとテトラヒドロフランの混合溶媒が好ましい。
 反応温度は、約-78℃から約0℃、好ましくは約-55℃から約-45℃である。
 反応時間は、約2時間から約8時間、好ましくは約5時間である。
操作2
 操作2は、反応に悪影響を及ぼさない溶媒中で、酸の存在下で行われ、式 [ II ] の化合物を含む溶液が得られる。
 溶媒としては、メタノール、エタノール、2-プロパノール等のアルコール類が例示される。中でも、メタノールが好ましい。
 酸としては、特に限定されないが、例えば、トリフルオロ酢酸、塩酸等が挙げられ、好ましくは、塩酸である。
 酸の使用量は、式 [ VIII ] の化合物1モルに対して、0.2から5.0モル、好ましくは0.3から2.0モルである。
 反応温度は、好ましくは室温である。
 反応時間は、約1時間から約6時間、好ましくは約3時間である。
操作3
 操作3の結晶化は、含水溶媒中で行われ、式 [ II ] の化合物が溶媒和物(アルコール和物(好ましくは、メタノール和物))として得られる。
 溶媒としては、メタノール、エタノール、2-プロパノール等のアルコール類が例示される。好ましくはメタノールである。
 「式 [ II ] の化合物のメタノール和物」は、乾燥条件等により、式 [ II ] の化合物と式 [ II ] の化合物のメタノール和物の混合物の場合がある。
工程6
Figure JPOXMLDOC01-appb-I000064
 工程6では、前記工程5で得られる式 [ II ] の化合物の溶媒和物に溶媒を加え、加温しながら懸濁液を撹拌後、溶媒を減圧留去し、該溶媒で再懸濁させ撹拌後、濾過、洗浄後、乾燥させることにより、式 [ II ] の化合物の結晶が得られる。
 式 [ II ] の化合物の溶媒和物の懸濁液を調製するために使用する溶媒としては、例えば、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類、及び/又はベンゼン、トルエン、キシレン等の芳香族炭化水素類が挙げられ、中でも、ヘプタンが好ましい。
 攪拌温度は、内温約60℃から溶媒の沸点、好ましくは内温85℃以上である。
 攪拌時間は、約1時間から約6時間、好ましくは約3時間から約5時間である。
工程7
Figure JPOXMLDOC01-appb-C000065
 式 [ II ] の化合物又はそのメタノール和物を、式 [ III ] の化合物と金属触媒存在下でカップリング反応させることにより、式 [ IV ] の化合物が得られる。当該カップリング反応には、式 [ II ] の化合物のメタノール和物よりも式 [ II ] の化合物が好ましい。
 本反応は、反応に悪影響を及ぼさない溶媒中で、カルボン酸及び塩基の存在下で行われる。
 溶媒としては、例えば、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、アセトニトリル等のニトリル類、N,N-ジメチルホルムアミド、N-メチルピロリドン、N,N-ジメチルアセトアミド等のアミド類、又はベンゼン、トルエン等の炭化水素類が挙げられ、中でも、N,N-ジメチルアセトアミドが好ましい。
 金属触媒としては、例えば、パラジウム触媒等が挙げられ、中でも、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物、酢酸パラジウムとジ(1-アダマンチル)-n-ブチルホスフィン、酢酸パラジウムとジシクロヘキシル(2,2-ジフェニル-1-メチルシクロプロピル)ホスフィン等が好ましい。中でも、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリドが金属触媒としてより好ましい。
 カルボン酸としては、例えば、ピバル酸、イソ酪酸、プロピオン酸、安息香酸等が挙げられるが、好ましくは、ピバル酸又はイソ酪酸であり、より好ましくは、ピバル酸である。
 塩基としては、例えば、アルカリ金属炭酸塩、アルカリ金属酢酸塩等が挙げられるが、好ましくは、炭酸カリウムである。
 式 [ III ] の化合物の使用量は、式 [ II ] の化合物1モルに対して、1.0から5.0モル、好ましくは1.6から2.0モルである。
 金属触媒の使用量は、式 [ II ] の化合物1モルに対して、0.005から0.2モル、好ましくは0.01から0.025モルである。
 カルボン酸の使用量は、式 [ II ] の化合物1モルに対して、0.1から1.0モル、好ましくは0.2から0.5モルである。
 塩基の使用量は、式 [ II ] の化合物1モルに対して、0.4から4.0モル、好ましくは0.6から1.8モルである。
 反応温度は、約80℃から約150℃、好ましくは約90℃から約140℃、より好ましくは約100℃から約110℃である。
 反応時間は、約1時間から約6時間、好ましくは約3時間である。
工程8
Figure JPOXMLDOC01-appb-C000066
 式 [ IV ] の化合物を、加水分解することにより、式 [ V ] の化合物が得られる。
 本反応は、反応に悪影響を及ぼさない溶媒中で、塩基の存在下で行われる。
 溶媒としては、例えば、メタノール、エタノール、2-プロパノール等のアルコール類、水等、又はそれらの混合物が例示されるが、中でも、エタノールと水の混合溶媒が好ましい。
 塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等の無機塩基が挙げられ、中でも、水酸化ナトリウムが好ましい。
 塩基の使用量は、式 [ IV ] の化合物1モルに対して、7から16モル、好ましくは10から13モルである。
 反応温度は、内温約25℃から溶媒の沸点、好ましくは約70℃である。
 反応時間は、約1時間から約8時間、好ましくは約1.5時間である。
工程9
Figure JPOXMLDOC01-appb-C000067
 式 [ V ]の化合物を、縮合剤存在下、アンモニアと反応させる操作1の後、含水溶媒で結晶化する操作2を行うことにより、式 [ Ih ]の化合物が得られる。
操作1
 操作1の反応は、反応に悪影響を及ぼさない溶媒中で、縮合剤の存在下で行われる。
 縮合剤としては、例えば、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、ジシクロヘキシルカルボジイミド (DCC)、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロホウ酸塩 (TBTU)、2-(1H-7-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロリン酸塩 (HATU)、1,1’-カルボニルジイミダゾール等が挙げられるが、中でも、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩が好ましい。これらは単独で、もしくは添加剤(例えば、1-ヒドロキシベンゾトリアゾール (HOBt)・1水和物、N-ヒドロキシスクシンイミド (HOSu)、6-クロロ-1-ヒドロキシベンゾトリアゾール (Cl-HOBt)、1-ヒドロキシ-7-アザベンゾトリアゾール (HOAt)あるいは3-ヒドロキシ-4-オキソ-3,4-ジヒドロ-1,2,3-ベンゾトリアジン等が挙げられるが、好ましくは、1-ヒドロキシベンゾトリアゾール・1水和物である。)と組み合わせて用いることもできる。中でも、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩と1-ヒドロキシベンゾトリアゾール・1水和物の組み合わせが特に好適に用いられる。
 縮合剤の使用量は、式 [ V ] の化合物1モルに対して、1から10モルであり、好ましくは1から2モルである。
 添加剤の使用量は、式 [ V ] の化合物1モルに対して、1から10モルであり、好ましくは1から2モルである。
 アンモニアの使用量は、例えばアンモニア水を用いる場合は、式 [ V ] の化合物1モルに対して、アンモニアの量に換算して1から3モルであり、好ましくは1から2モルである。
 また、アンモニアとして塩化アンモニウムと塩基(例えば、トリアルキルアミン、具体的には、トリエチルアミンやジイソプロピルエチルアミン等)とを用いることができる。
 溶媒としては、例えば、ジエチルエーテル、1,4-ジオキサン、テトラヒドロフラン等のエーテル類、酢酸エチル等のエステル類、クロロホルム、ジクロロメタン等のハロゲン化炭化水素類、N,N-ジメチルホルムアミド等のアミド類、又はそれらの混合物等が例示でき、適宜混合しても良い。中でも、N,N-ジメチルホルムアミドが好ましい。
 反応温度は溶媒の種類によって異なるが、約0℃から約40℃、好ましくは約15℃から約30℃であり、反応時間は、約0.5時間から約24時間、好ましくは約1.5時間から約8時間である。
操作2
 操作2は、前記操作1で得られた式 [ I ] の化合物の溶液に、溶媒としてアルコール類(例、エタノール)を加え、該溶媒の一部を減圧留去する共沸操作を繰り返す。更にアルコール類を加えて溶液とした後、内温約40℃から約50℃まで昇温後、同温で水を滴下し、撹拌後、懸濁液を内温約55℃から約65℃まで昇温し、撹拌後、ゆっくりと室温に戻し、得られた混合液を更に撹拌することにより、式 [ Ih ] の化合物を結晶として析出させることができる。
 攪拌時間は、内温約40℃から約50℃下で、約1時間から約7時間、好ましくは約2時間であり、内温約55℃から約65℃下で、約1時間から約4時間、好ましくは約1時間から約2時間であり、室温で約8時間から24時間、好ましくは約12時間である。
 本操作2では、水の滴下後に式[ Ih ] の化合物の種晶を添加して晶析操作を行ってもよい。
工程10
Figure JPOXMLDOC01-appb-C000068
 式 [ IX ] の化合物を、式 [ X ] の化合物と反応させることにより、式 [ III ] の化合物が得られる。
 本反応は、反応に悪影響を及ぼさない溶媒中で、塩基の存在下で行われる。
 溶媒としては、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン等のエーテル類、ヘキサン、トルエン等の炭化水素類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、又はそれらの混合物が例示される。中でも、テトラヒドロフランが好ましい。
 塩基としては、例えば、水素化ナトリウム、カリウム tert-ブトキシド、ナトリウムメトキシド、ナトリウムビス(トリメチルシリル)アミド、炭酸セシウム等が挙げられるが、好ましくは、水素化ナトリウムである。
 塩基の使用量は、式 [ IX ] の化合物1モルに対して、1から2モル、好ましくは1から1.5モルである。
 式 [ X ] の化合物の使用量は、式 [ IX ] の化合物1モルに対して、1から1.5モル、好ましくは1から1.2モルである。
 反応温度は、室温から溶媒の沸点、好ましくは約50℃から約65℃である。
 反応時間は、約1時間から約24時間である。
 本製法の特徴として、以下が挙げられる。
1. 化合物 (2) または化合物 (2m) について
1-1.
 化合物 (2) は、良好な結晶性を有するメタノール和物 (化合物 (2m))に変換することにより、一回の操作により、良好な化学純度と、良好な光学純度(例えば、95%e.e.以上)を有する化合物へと精製することができた。
2. 化合物 (3) について
2-1.
 化合物 (3) は、蒸留により90%以上(蒸留条件により99%以上)の純度に精製することができた。
Figure JPOXMLDOC01-appb-C000069
3. カップリング反応について
3-1.
 特定のカップリング反応条件下、化合物 (2) と化合物 (3) を用いた場合、化合物 (2) と下記化合物 (101) を使用した場合よりも、カップリング反応の副反応を抑制することができた。
Figure JPOXMLDOC01-appb-C000070
3-2. 
 特定のカップリング反応条件下、化合物 (3) と化合物 (2) を用いた場合、化合物 (3) と化合物 (102) (下記クロロ化合物(ラセミ体))を用いた場合よりも高い収率で目的のカップリング体を得ることができた。
Figure JPOXMLDOC01-appb-C000071
 以下に実施例を挙げて、本発明を詳しく説明するが、本発明はこれらに限定されるものではない。
 以下の実施例の製法に記載はなくとも、必要に応じて官能基に保護基を導入し、後工程で脱保護を行う;官能基を前駆体として各工程に処し、しかるべき段階で所望の官能基に変換する;各製法および工程の順序を入れ替える等の工夫により効率のよい製造を実施してもよい。
 また、各工程において、反応後の処理は、通常行われる方法で行えばよく、単離精製は、必要に応じて、結晶化、再結晶、蒸留、分液、シリカゲルクロマトグラフィー、分取HPLC等の慣用の方法を適宜選択し、また組み合わせて行えばよい。全ての試薬および溶媒は、市販用の品質を備えており、精製することなく使用した。
 %は、収率についてはmol/mol%を示し、その他については特記しない限り、重量%を示す。また、室温とは、特記しない限り、15から30℃の温度を示す。その他の本文中で用いられている略号は下記の意味を示す。
  s:シングレット
  d:ダブレット
  t:トリプレット
  q:カルテット
  m:マルチプレット
  br:ブロード
  dd:ダブルダブレット
  ddd:ダブルダブルダブレット
  dddd:ダブルダブルダブルダブレット
  J:カップリング定数
  MeOH:メタノール
  DMSO-D6:重ジメチルスルホキシド
  1H-NMR:プロトン核磁気共鳴
  HPLC:高速液体クロマトグラフィー
  1H-NMRスペクトルはDMSO-D6中、テトラメチルシランを内部標準として測定し、全δ値をppmで示した。
(リン酸塩緩衝液(pH2.0))
 リン酸二水素ナトウム・2水和物(4.68g)を水(3000mL)に溶解し、リン酸(5mL)を加えて標題緩衝液を得た。
HPLC分析条件
 下記分析条件中、「%」とは体積%を示す。また、グラジエントはA液及びB液の混合比を直線的に変化させる。
分析条件1
測定機器:HPLCシステム Waters Alliance
カラム:Waters SunFire C18 3.5μm 4.6mmφ×150mm
カラム温度:40℃
移動相:(A液)リン酸塩緩衝液(pH2.0)、(B液)アセトニトリル
グラジエントプロファイル:時間(分) 0  30  35  40  45 (停止)
              A(%) 70  25  25  70  70
              B(%) 30  75  75  30  30
分析時間:45分
流速:1.0mL/分
検出:UV(220nm)
分析条件2
測定機器:HPLCシステム Waters Alliance
カラム:Waters SunFire C8 3.5μm 4.6mmφ×150mm
カラム温度:40℃
移動相 :(A液)蒸留水、(B液)アセトニトリル
グラジエントプロファイル:時間(分) 0  20  35  36  40 (停止)
              A(%) 60  10  10  60  60
              B(%) 40  90  90  40  40
分析時間:40分
流速:1.0mL/分
検出:UV(220nm)
分析条件3
測定機器:HPLCシステム Waters Alliance
カラム:ダイセル CHIRALCEL OD-3R 3μm  4.6mmφ×150mm
カラム温度:40℃
移動相:(A液)リン酸塩緩衝液(pH2.0)、(B液)アセトニトリル
グラジエントプロファイル:時間(分) 0  20  30  40  45 (停止)
              A(%) 70  40  40  70  70
              B(%) 30  60  60  30  30
分析時間:45分
流速:0.5mL/分
検出:UV(254nm)
分析条件4
測定機器:HPLCシステム Waters Alliance
カラム:ダイセル CHIRALCEL OJ-3R 3μm  4.6mmφ×150mm
カラム温度:40℃
移動相:(A液)リン酸塩緩衝液(pH2.0)、(B液)アセトニトリル
移動相の組成 :A液:B液=70:30
分析時間:15分
流速:1.0mL/分
検出:UV(220nm)
実施例1
2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド・1水和物(化合物(1h))の合成
工程1
(2-アミノ-3-ブロモ-5-フルオロフェニル)(フェニル)メタノン(化合物 (12) )
Figure JPOXMLDOC01-appb-C000072
 (2-アミノ-5-フルオロフェニル)(フェニル)メタノン (化合物(11)) (50.0g)の酢酸(400mL)懸濁液に、内温21から30℃で臭素(40.8g)/酢酸(90mL)溶液を全重量の約65%滴下した。滴下終了後に(2-アミノ-3-ブロモ-5-フルオロフェニル)(フェニル)メタノン (化合物(12)) 臭化水素酸塩の種晶(5mg)を添加して目視にて結晶の析出を確認した。得られた懸濁液を内温41℃に加温し、内温41から45℃で臭素(40.8g)/酢酸(90mL)溶液の残り全量(約35%)を滴下し、滴下漏斗を酢酸(10mL)で洗浄後、内温45から46℃で17分間撹拌した。得られた懸濁液に、内温41から45℃で亜硫酸ナトリウム(4.39g)/水(45mL)溶液を滴下し、滴下漏斗を水(5mL)で洗浄後、内温41から46℃で30分間撹拌した。得られた懸濁液に内温43から46℃で水(50mL)を滴下した後、(2-アミノ-3-ブロモ-5-フルオロフェニル)(フェニル)メタノン (化合物(12)) の種晶(5mg)を添加し5分間撹拌した。目視にて結晶の析出を確認した後、内温47から51℃で水(350mL)を滴下し、内温50から55℃で1時間撹拌した。得られた懸濁液を室温まで冷却して終夜撹拌し、析出した固体をろ取し、ろ過物を水(100mL)で洗浄後、減圧乾燥して、標題化合物(65.2g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 7.78 (dd, 1H, J = 7.8, 3.0 Hz), 7.67-7.61 (m, 3H), 7.58-7.51 (m, 2H), 7.11 (dd, 1H, J = 9.3, 3.0 Hz), 6.73 (brs, 2H).
 工程1で使用した(2-アミノ-3-ブロモ-5-フルオロフェニル)(フェニル)メタノン (化合物 (12)) 臭化水素酸塩の種晶の合成:
 (2-アミノ-3-ブロモ-5-フルオロフェニル)(フェニル)メタノン (化合物 (12)) (1.00g)のトルエン(25mL)溶液に、室温で25%臭化水素酸の酢酸溶液(0.87mL)を添加した。析出した固体をろ取し、ろ過物をトルエンで洗浄し、得られた固体を減圧乾燥して、(2-アミノ-3-ブロモ-5-フルオロフェニル)(フェニル)メタノン (化合物 (12)) 臭化水素酸塩の種晶(1.21g)を得た。
 工程1で使用した(2-アミノ-3-ブロモ-5-フルオロフェニル)(フェニル)メタノン (化合物 (12))の種晶の合成:
 標題化合物である(2-アミノ-3-ブロモ-5-フルオロフェニル)(フェニル)メタノン (化合物 (12)) の種晶は、前記工程1において、種晶を添加しない同様の方法で得た。
工程2
4-ブロモ-2-フルオロ-9H-フルオレン-9-オン(化合物(6))
Figure JPOXMLDOC01-appb-C000073
 窒素雰囲気下、(2-アミノ-3-ブロモ-5-フルオロフェニル)(フェニル)メタノン (化合物(12)) (25.0g)、酸化第一銅(7.30g)及び酢酸(150mL)を加え、室温で撹拌しながら64%硫酸(150mL)を添加した。得られた懸濁液を内温65℃に加温し、亜硝酸ナトリウム(8.80g)/水(87.5mL)溶液を内温66から68℃で滴下し、滴下漏斗を水(13mL)で洗い込んだ後、内温65から70℃で30分間撹拌した。得られた反応混合物を室温まで冷却し、亜硫酸ナトリウム(8.57g)/水(62.5mL)溶液を内温23から24℃で滴下し、滴下漏斗を水(13mL)で洗い込んだ後、室温で30分間撹拌した。得られた混合物にトルエン(375mL)を加えて30分間撹拌した後、不溶物をセライトろ過し、ろ過物をトルエン(75mL)で洗浄した。得られたろ洗液を分液して水層を除去し、有機層を、水(125mL×2回)、5%炭酸水素ナトリウム水溶液(125mL)及び1%食塩水(125mL)で順次洗浄した。得られた有機層を減圧濃縮し、トルエン(約375mL)を留去した。残渣に2-プロパノール(250mL)を添加して、重量が約90gになるまで減圧濃縮した。同様の操作を更に2回実施した後、2-プロパノール(150mL)を添加して、重量を207gに調整した。得られた懸濁液を30分間加熱還流し、引き続き外温75℃で1時間及び外温60℃で1時間撹拌した後、室温まで冷却して撹拌を停止した。室温で終夜静置後、析出した固体をろ過し、2-プロパノール(50mL)で洗浄した。得られた固体を減圧乾燥し、標題化合物(15.6g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 8.27 (dd, 1H, J = 8.2, 0.9 Hz), 7.79 (dd, 1H, J = 8.8, 2.3 Hz), 7.72-7.67 (m, 2H), 7.51 (dd, 1H, J = 6.8, 2.3 Hz), 7.46 (ddd, 1H, J = 7.6, 7.6, 0.9 Hz).
工程3
N-(4-tert-ブチル-3-メトキシベンジル)シンコニジウムブロミド (化合物(15))の合成
Figure JPOXMLDOC01-appb-C000074
 窒素雰囲気下、シンコニジン (化合物(13)) (2.50g)、テトラヒドロフラン(43mL)及び4-tert-ブチル-3-メトキシベンジルブロミド (化合物(14)) (2.29g)を加え、得られた混合物を61から62℃で7時間撹拌した。反応混合物を室温まで冷却した後、固体をろ取し、テトラヒドロフラン(10mL)で洗浄した。得られた固体を減圧乾燥して、標題化合物(4.41g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 8.99 (d, 1H, J = 4.4 Hz), 8.29 (d, 1H, J = 8.3 Hz), 8.11 (dd, 1H, J = 8.6, 1.4 Hz), 7.88-7.82 (m, 1H), 7.81 (d, 1H, J = 4.4 Hz), 7.78-7.72 (m, 1H), 7.39 (d, 1H, J = 8.1 Hz), 7.34 (d, 1H, J = 1.8 Hz), 7.22 (dd, 1H, J = 8.1, 1.8 Hz), 6.72 (d, 1H, J = 4.6 Hz), 6.55 (d, 1H, J = 4.6 Hz), 5.69 (ddd, 1H, J = 17.4, 10.6, 6.5 Hz), 5.16 (dd, 1H, J = 17.4, 1.4 Hz), 5.10 (d, 1H, J = 12.2 Hz), 4.97 (d, 1H, J = 12.2 Hz), 4.96 (dd, 1H, J = 10.6, 1.4 Hz), 4.36-4.23 (m, 1H), 3.96-3.84 (m, 1H), 3.89 (s, 3H), 3.80-3.69 (m, 1H), 3.40-3.25 (m, 2H), 2.77-2.65 (m, 1H), 2.20-1.96 (m, 3H), 1.91-1.79 (m, 1H), 1.38 (s, 9H), 1.38-1.26 (m, 1H).
工程4
4-ブロモ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9H-フルオレン-9-オン (化合物(8))
Figure JPOXMLDOC01-appb-C000075
 窒素雰囲気下、4-ブロモ-2-フルオロ-9H-フルオレン-9-オン (化合物(6)) (25.0g)に、3-メチル-1,3-ブタンジオール(18.8g) (化合物(7))、トルエン(188mL)及びテトラヒドロフラン(25mL)を加え、氷浴で冷却した。得られた混合物に、内温3.6から7.9℃で55%水酸化テトラn-ブチルアンモニウム水溶液(27.5mL)、40%水酸化ナトリウム水溶液(100mL)及び水(10mL)を滴下し、室温で9時間30分間撹拌した。得られた反応混合物に、内温18から24℃で水(125mL)を滴下し、トルエン(188mL)で抽出して水層を除去した。有機層を、水(125mL)、5%食塩水(125mL×3回)、1M塩酸(125mL)及び水(125mL)で順次洗浄した後、重量が75g以下になるまで減圧濃縮した。残渣にトルエン(188mL)を添加して再度減圧濃縮し、トルエン(約500mL)を添加して標題化合物のトルエン溶液(481g)を得た。得られたトルエン溶液は収率100%として全量を以下の工程5で使用した。
1H-NMR (400MHz, DMSO-D6) δ: 8.17 (dd, 1H, J = 8.32, 0.92 Hz), 7.66-7.60 (m, 2H), 7.40-7.34 (m, 1H), 7.29 (d, 1H, J = 2.3 Hz), 7.16 (d, 1H, J = 2.3 Hz), 4.12 (s, 1H), 4.18 (t, 2H, J = 7.2 Hz), 1.85 (t, 2H, J = 7.2 Hz), 1.18 (s, 6H). 
工程5
(9R)-4-ブロモ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-9-オール・0.5メタノール和物 (化合物(2m))
Figure JPOXMLDOC01-appb-C000076
 窒素雰囲気下、前工程で得られた4-ブロモ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9H-フルオレン-9-オン (化合物(8))のトルエン溶液(481g)に、N-(4-tert-ブチル-3-メトキシベンジル)シンコニジウムブロミド (化合物(15)) (2.49g)、ナトリウムフェノラート(524mg)及びテトラヒドロフラン(130mL)を加えて冷却し、内温-52から-51℃で(トリフルオロメチル)トリメチルシラン(11.4g)を3分間かけて滴下した。得られた混合物を内温-52から-48℃で30分間撹拌した後、約0℃まで1時間かけて昇温し、内温-53℃まで再度冷却した。反応混合物に、内温-53から-47℃で(トリフルオロメチル)トリメチルシラン(19.2g)を2時間かけて滴下し、内温約-50℃で10分間撹拌した。得られた反応混合物を室温に昇温して、重量が81.5g以下になるまで減圧濃縮し、メタノール(130mL)を添加した。得られたメタノール溶液に、1M塩酸(32.6mL)を室温で滴下し3時間撹拌した。得られた反応混合物を、重量が97.8g以下になるまで減圧濃縮し、トルエン(293mL)及び10%食塩水(163mL)を添加して分液し、水層を除去した。得られた有機層を水(163mL)で洗浄し、重量が97.8g以下になるまで減圧濃縮した。得られた濃縮物にメタノール(163mL)を添加して、重量が97.8g以下になるまで再度減圧濃縮し、メタノール(163mL)および活性炭(4.89g)を添加した。得られた混合物を室温で3時間撹拌した後にろ過し、ろ過物をメタノール(98mL)で洗浄した。得られたろ洗液を、重量が97.8g以下になるまで減圧濃縮し、メタノールを添加して130gのメタノール溶液とした。得られたメタノール溶液に、内温約50℃で水(57mL)を添加した後、内温45℃で(9R)-4-ブロモ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-9-オール・0.5メタノール和物 (化合物(2m))の種晶(33mg)を添加した。得られた懸濁液を内温約45℃で2時間撹拌し、室温まで冷却後終夜撹拌した。析出した固体をろ取し、ろ過物を10℃以下に冷却したメタノール/水(1.3v/0.7v)混合溶液(65mL)で洗浄した。得られた固体を減圧乾燥して、標題化合物(23.9g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 8.31 (ddd, 1H, J = 7.8, 1.2, 0.7 Hz), 7.65 (dddd, 1H, J = 7.8, 1.4, 0.9, 0.7 Hz), 7.54 (ddd, 1H, J = 7.6, 7.6, 1.4 Hz), 7.40 (ddd, 1H, J = 7.6, 7.6, 1.2 Hz), 7.40 (s, 1H), 7.29 (d, 1H, J = 2.3 Hz), 7.19 (dd, 1H, J = 2.3, 0.9 Hz), 4.42 (s, 1H), 4.18 (t, 2H, J = 7.2 Hz), 4.08(q, 0.49H, J = 5.4 Hz), 3.17 (d, 1.42H, J = 5.4 Hz), 1.86 (t, 2H, J = 7.2 Hz), 1.18 (s, 6H).
(熱重量分析)
 熱重量分析による重量減少は、化合物(2m)(化合物(2)の0.5メタノール和物)の理論値と良く一致した。
理論値:3.58%(0.5メタノール和物としての計算値)
実測値:3.56%
 化合物 (2m) の種晶の合成:
 工程5の1M塩酸処理後、減圧濃縮、トルエン-10%食塩水分液及び水洗浄を経て得られたトルエン溶液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル(3v/2v)から(5v/4v))で化合物 (2) を単離した(光学純度 70.5%e.e.)。単離した化合物 (2)を、MeOH/水(3v/1.7v) 混合溶液より結晶化して化合物(2m)の種晶を得ることができる(光学純度 98.9%e.e.)。光学純度はHPLC分析条件3にて決定した。(R)体の保持時間24.5分、(S)体の保持時間23.2分。
工程6
(9R)-4-ブロモ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-9-オール (化合物 (2) )
Figure JPOXMLDOC01-appb-C000077
 窒素雰囲気下、前工程で得られた(9R)-4-ブロモ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-9-オール・0.5メタノール和物 (化合物(2m)) (23.9g)にn-ヘプタン(120mL)を加え、得られた懸濁液を内温85℃以上に保ち1時間撹拌した後、内温を約70℃に保ちつつ約25mLの溶媒を減圧溜去した。得られた懸濁液に内温約70℃でn-ヘプタン(25mL)を添加し、内温を約70℃に保ちつつ約25mLの溶媒を再度減圧溜去した。得られた懸濁液に内温約70℃でn-ヘプタン25mLを添加し、室温まで冷却後、約2時間撹拌した。固体をろ過し、ろ過物をn-ヘプタンで洗浄した。得られた固体を外温60℃で減圧乾燥して標題化合物(22.2g, 光学純度 99.1%e.e.)を得た。光学純度はHPLC分析条件3にて決定した。(R)体の保持時間24.5分、(S)体の保持時間23.2分。
比旋光度[α]D +11.4°(c=1.00 MeOH 25℃).
1H-NMR (DMSO-D6) δ: 8.30 (ddd, 1H, J = 7.8, 1.2, 0.7 Hz), 7.64 (dddd, 1H, J = 7.8, 1.4, 0.9, 0.7 Hz), 7.53 (ddd, 1H, J = 7.6, 7.6, 1.4 Hz), 7.39 (ddd, 1H, J = 7.6, 7.6, 1.2 Hz), 7.39 (s, 1H), 7.28 (d, 1H, J = 2.3 Hz), 7.18 (dd, 1H, J = 2.3, 0.9 Hz), 4.41 (s, 1H), 4.16 (t, 2H, J = 7.2 Hz), 1.85 (t, 2H, J = 7.2 Hz), 1.17 (s, 6H).
 また、ヘプタンを用いた再結晶により得られた化合物 (2) の単結晶について、単結晶X線結晶解析により絶対配置を決定した。
 さらに、化合物 (2) を用いて、後述する化合物 (1h) まで誘導し、その比旋光度を測定した。その結果、国際公開第2014/142290号に記載される化合物 (2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド・1水和物 (国際公開第2014/142290号記載の化合物 (2h))) と同等の比旋光度を示した。
工程7
2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロピオン酸tert-ブチル(化合物 (4))
Figure JPOXMLDOC01-appb-C000078
 窒素雰囲気下、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(2.44g)にN,N-ジメチルアセトアミド(420mL)、ピバル酸(3.55g)及び炭酸カリウム(15.4g)を添加した。得られた混合物に(9R)-4-ブロモ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-9-オール (化合物 (2) ) (60.0g)、2-メチル-2-(1H-ピラゾール-1-イル)プロパン酸 tert-ブチル (化合物 (3) ) (46.8g)及びN,N-ジメチルアセトアミド(60mL)を加えた。得られた混合物を104から107℃で3時間撹拌した後、反応混合物を減圧濃縮してN,N-ジメチルアセトアミドを約440mL留去した。得られた標題化合物を含む濃縮物は、収率100%として次工程に用いた。
1H-NMR (400MHz, DMSO-D6) δ: 8.16 (d, 1H, J = 0.7 Hz), 7.68 (d, 1H, J = 0.7 Hz),7.62-7.57 (m, 1H), 7.32-7.18 (m, 3H), 7.23 (s, 1H), 7.15 (d, 1H, J = 2.4 Hz), 6.84 (d, 1H, J = 2.4 Hz), 4.41 (s, 1H), 4.16 (t, 2H, J = 7.2 Hz), 1.87 (t, 2H, J = 7.2 Hz), 1.81 (s, 6H), 1.38 (s, 9H), 1.18 (s, 6H).
工程8
2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロピオン酸 (化合物 (5))
Figure JPOXMLDOC01-appb-C000079
 窒素雰囲気下、工程7で得られた2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロピオン酸tert-ブチル(化合物 (4))の濃縮物に、活性炭(6.00g)、40%水酸化ナトリウム水溶液(120mL)及びエタノール(180mL)を加え、内温70から73℃で1時間30分間撹拌した。室温に冷却後、水(120mL)加え、得られた混合物をセライトろ過し、ろ過物をエタノール/水(1v/1v)混合溶液(180mL)で洗浄した。得られたろ液を、重量が428gになるまで減圧濃縮し、トルエン(480mL)及び水(180mL)を加え、内温40から50℃で分液した。別容器に85%リン酸(228g)と水(180mL)を加え、得られたリン酸水溶液を冷却し、内温約0℃で酢酸エチル(360mL)を加えた。得られた混合物に、先の分液で得られた水層を内温-7から14℃で滴下後、分液し水層を除去した。得られた有機層を水(300mL)で4回洗浄し、重量が135gになるまで減圧濃縮した後、酢酸エチル(300mL)を加え、液量が138gになるまで再度減圧濃縮した。得られた濃縮液に、酢酸エチル(420mL)と活性炭(3.00g)を加えた。得られた混合物を内温23から26℃で2時間20分間撹拌した後にろ過し、ろ過物を酢酸エチル(120mL)で洗浄した。得られたろ洗液を外温50℃で、重量が150gになるまで減圧濃縮した後、酢酸エチル(300mL)を加え、外温50℃で液量が150gになるまで再度減圧濃縮した。得られた溶液を内温45から50℃で1時間30分間撹拌して結晶の析出を確認した。得られた懸濁液に内温46から49℃でトルエン(390mL)を滴下し、内温47から52℃で1時間10分間撹拌後、室温まで冷却して終夜撹拌した。析出した固体をろ取し、ろ過物をトルエン/酢酸エチル(7v/1v)混合溶液(120mL)で洗浄した。得られた固体を減圧乾燥して、標題化合物(58.9g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 13.09 (brs, 1H), 8.17 (d, 1H, J = 0.6 Hz), 7.64 (d, 1H, J = 0.6 Hz), 7.61-7.56 (m, 1H), 7.29-7.18 (m, 4H), 7.15 (d, 1H, J = 2.4 Hz), 6.86 (d, 1H, J = 2.4 Hz), 4.40 (s, 1H), 4.16 (t, 2H, J = 7.2 Hz), 1.87 (t, 2H, J = 7.2 Hz), 1.84 (s, 3H), 1.83 (s, 3H), 1.18 (s, 6H).
工程9
2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド・1水和物 (化合物 (1h))
Figure JPOXMLDOC01-appb-C000080
 窒素雰囲気下、2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロピオン酸 (化合物(5) ) (58.0g)および1-ヒドロキシベンゾトリアゾール・1水和物(17.6g)をN,N-ジメチルホルムアミド(174mL)に溶解した。得られた溶液を4℃に冷却し、内温を15℃未満に保ちながら28%アンモニア水溶液(11.6mL)滴下した。得られた溶液に室温下、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(6.60g)を加え、室温で1時間40分間撹拌した。引き続き室温下、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(6.60g)を加えて室温で約1時間30分間撹拌する操作を3回繰り返した。得られた反応混合物に酢酸エチル(580mL)、20%食塩水(232mL)及び水(58mL)を添加し、分液して水層を除去した。得られた有機層に酢酸エチル(116mL)と5%炭酸水素ナトリウム水溶液(290mL)を加えて洗浄した。引き続き、この有機層を水(116mL)、1M塩酸(290mL)、5%食塩水(290mL)及び水(290mL)で順次洗浄し、得られた有機層を、重量が121gになるまで減圧濃縮した。得られた濃縮物にエタノール(174mL)を加えて、重量が109gになるまで減圧濃縮した後、エタノール(174mL)を加え、重量が112gになるまで再度減圧濃縮した。得られた濃縮液にエタノール(93mL)を加えて液量が200mLになるように調整した。得られた溶液を除塵ろ過し、ろ過物をエタノール(116mL)で洗浄した。得られたろ洗液を加熱し、内温46から50℃で水(348mL)を滴下し、種晶(12mg)を添加した後、内温46から51℃で2時間撹拌した。得られた懸濁液を内温55から62℃で更に1時間10分間撹拌した後、約4時間かけて30℃まで冷却し、室温で終夜撹拌した。析出した固体をろ取し、エタノール/水(5v/7v)混合溶液(116mL)、水(116mL)の順で洗浄した。得られた固体を外温30℃、1.3kPaで減圧乾燥して、標題化合物(54.6g、光学純度>99.9%e.e.)を得た。光学純度はHPLC分析条件4にて決定した。(R)体の保持時間6.4分、(S)体の保持時間9.2分。
比旋光度[α]D +39.1°(c=1.00 MeOH 25℃).
1H-NMR (400MHz, DMSO-D6) δ: 8.09 (d, 1H, J = 0.9 Hz), 7.68 (d, 1H, J = 0.9 Hz), 7.62-7.56 (m, 1H), 7.36-7.30 (m, 1H), 7.30-7.22 (m, 3H), 7.21 (s, 1H), 7.14 (d, 1H, J = 2.5 Hz), 6.97 (brs, 1H), 6.88 (d, 1H, J = 2.5 Hz), 4.40 (s, 1H), 4.16 (t, 2H, J = 7.2 Hz), 1.87 (t, 2H, J = 7.2 Hz), 1.80 (s, 3H), 1.80 (s, 3H), 1.18 (s, 6H).
(水分定量)
 Karl Fischer滴定法(電量滴定)による水分定量値は、化合物(1h)(化合物(1)の1水和物)の理論値と良く一致した。
理論値:3.45%(1水和物としての計算値)
実測値:3.48%
 化合物 (1h) の種晶の合成:
 工程9で使用した種晶は、国際公開第2014/142290号記載の実施例(2-{4-[(9R)-9-ヒドロキシ-2-(3-ヒドロキシ-3-メチルブチルオキシ)-9-(トリフルオロメチル)-9H-フルオレン-4-イル]-1H-ピラゾール-1-イル}-2-メチルプロパンアミド・1水和物 / 化合物 (2h))に準じて得られた固体を用いて、エタノールと水の混合溶媒より製造した。
 工程9の別法:
 本工程9に準じた方法を用いて、晶析の際に種晶を添加しない場合でも、目的とする化合物 (1h) の結晶が得られた。
工程10
2-メチル-2-(1H-ピラゾール-1-イル)プロパン酸 tert-ブチル (化合物 (3))の合成
Figure JPOXMLDOC01-appb-C000081
 窒素雰囲気下、テトラヒドロフラン(1250mL)と60%水素化ナトリウム(58.5g)を加え、内温-9℃に冷却した。得られた懸濁液に、内温-9から5℃でピラゾール (化合物(9)) (100g)/テトラヒドロフラン(250mL)溶液を滴下した後、-5から0℃で30分間撹拌した。得られた混合物を内温14℃に昇温し、内温14から16℃で2-ブロモ-2-メチルプロピオン酸 tert-ブチル (化合物(10)) (377g)を添加し、内温18℃で15分間撹拌した後、内温47から51℃で11時間撹拌した。得られた反応混合物を内温1℃に冷却し、内温1から7℃でカリウム tert-ブトキシド(82.3g)/テトラヒドロフラン(300mL)溶液を滴下し、10から12℃で5時間撹拌した。得られた反応混合物に室温で、トルエン(800mL)及び水(800mL)を添加して分液し、水層を除去した。得られた有機層を、1M塩酸(800mL)、水(400mL×2回)で洗浄した後、減圧濃縮した。得られた濃縮液を、外温約110℃、減圧度約0.6kPaで減圧蒸留し、標題化合物(229g)を得た。
1H-NMR (400MHz, DMSO-D6) δ: 7.83 (dd, 1H, J = 2.4, 0.7 Hz), 7.46 (dd, 1H, J = 1.8, 0.7 Hz), 6.26 (dd, 1H, J = 2.4, 1.8 Hz), 1.71 (s, 6H), 1.32 (s, 9H).
 本発明は、式 [ I ] の化合物又はその製薬上許容される塩、或いはその水和物を、良好な収率で製造する方法を提供することができる。
 また、本発明に係る式 [ II ]、式 [ IIm ]、式 [ III ] 及び式 [ IV ] の化合物は、式 [ I ] の化合物又はその製薬上許容される塩、或いはその水和物を製造するための合成中間体として有用である。
 さらに、本発明の製造方法は、取り扱いの容易な化合物を経由し、簡便な操作にて行うことができることから、工業的な大量合成法として有用である。
 
 

Claims (18)

  1.  式 [ I ] :
    Figure JPOXMLDOC01-appb-C000001
    で表される化合物又はその製薬上許容される塩、或いはその水和物の製造方法であって、
    式 [ II ] :
    Figure JPOXMLDOC01-appb-C000002
    で表される化合物又はそのメタノール和物を、金属触媒、塩基およびカルボン酸存在下、
    式 [ III ] :
    Figure JPOXMLDOC01-appb-C000003
    で表される化合物とのカップリング反応により、式 [ IV ] :
    Figure JPOXMLDOC01-appb-C000004
    で表される化合物に変換する工程を含む、製造方法。
  2.  金属触媒が、パラジウム触媒である、請求項1に記載の方法。
  3.  塩基が、アルカリ金属炭酸塩又はアルカリ金属酢酸塩である、請求項1又は2に記載の方法。
  4.  カルボン酸が、ピバル酸、イソ酪酸、プロピオン酸又は安息香酸である、請求項1から3のいずれか一項に記載の方法。
  5.  カップリング反応の反応温度が、80から150℃である、請求項1から4のいずれか一項に記載の方法。
  6.  前記式 [ IV ] の化合物を加水分解することにより、式 [ V ] :
    Figure JPOXMLDOC01-appb-C000005
    で表される化合物又はその塩に変換する工程を更に含む、請求項1から5のいずれか一項に記載の方法。
  7.  前記式 [ V ] の化合物又はその塩を、縮合剤存在下、アンモニアと反応させることにより、前記式 [ I ] で表される化合物又はその製薬上許容される塩、或いはその水和物に変換する工程を更に含む、請求項6に記載の方法。
  8.  前記式 [ II ]の化合物が、式 [ VI ] :
    Figure JPOXMLDOC01-appb-C000006
    で表される化合物を、塩基存在下、式 [ VII ]:
    Figure JPOXMLDOC01-appb-C000007
    で表される化合物と反応させることにより、式 [ VIII ]:
    Figure JPOXMLDOC01-appb-C000008
    で表される化合物に変換する工程、および
    式 [ VIII ] の化合物を、不斉有機触媒の存在下、(トリフルオロメチル)トリメチルシランと反応後、酸処理する工程
    を含む方法により製造されることを特徴とする、請求項1から7のいずれか一項に記載の方法。
  9.  不斉有機触媒がシンコニジニウム塩である、請求項8に記載の方法。
  10.  シンコニジニウム塩がN-(4-tert-ブチル-3-メトキシベンジル)シンコニジウムブロミドである、請求項9に記載の方法。
  11.  前記式 [ III ]の化合物が、式 [ IX ] :
    Figure JPOXMLDOC01-appb-C000009
    で表される化合物又はその塩を、塩基存在下、式 [ X ] :
    Figure JPOXMLDOC01-appb-C000010
    で表される化合物との反応により製造されることを特徴とする、請求項1から10のいずれか一項に記載の方法。 
  12.  式 [ I ] :
    Figure JPOXMLDOC01-appb-C000011
    で表される化合物又はその製薬上許容される塩、或いはその水和物の製造方法であって、
    式 [ VI ] : 
    Figure JPOXMLDOC01-appb-C000012
    で表される化合物を、塩基存在下、式 [ VII ] :
    Figure JPOXMLDOC01-appb-C000013
    で表される化合物と反応させることにより、式 [ VIII ] :
    Figure JPOXMLDOC01-appb-C000014
    で表される化合物に変換する工程、
    式 [ VIII ] の化合物を、不斉有機触媒の存在下、(トリフルオロメチル)トリメチルシランと反応後、酸処理し、式 [ II ] :
    Figure JPOXMLDOC01-appb-C000015
    で表される化合物又はそのメタノール和物を得る工程、
    式 [IX ] :
    Figure JPOXMLDOC01-appb-C000016
    で表される化合物又はその塩を、塩基存在下、式 [ X ] :
    Figure JPOXMLDOC01-appb-C000017
    で表される化合物との反応により、式 [ III ] :
    Figure JPOXMLDOC01-appb-C000018
    で表される化合物を得る工程、
    前記式 [ III ] の化合物を、金属触媒、塩基およびカルボン酸存在下、前記式 [ II ] の化合物又はそのメタノール和物とのカップリング反応により、式[ IV ] :
    Figure JPOXMLDOC01-appb-C000019
    で表される化合物に変換する工程、
    前記式 [ IV ] の化合物を加水分解することにより、式 [ V ] :
    Figure JPOXMLDOC01-appb-C000020
    で表される化合物又はその塩に変換する工程、ならびに
    前記式 [ V ] の化合物又はその塩を、縮合剤存在下、アンモニアと反応させることによりアミド化する工程を含む、製造方法。
  13.  式 [ II ] :
    Figure JPOXMLDOC01-appb-C000021
    で表される化合物又はそのメタノール和物を、金属触媒、塩基およびカルボン酸存在下、
    式 [ III ] :
    Figure JPOXMLDOC01-appb-C000022
    で表される化合物とカップリング反応することによる、式 [ IV ]:
    Figure JPOXMLDOC01-appb-C000023
    で表される化合物の製造方法。
  14.  請求項1から12のいずれか一項に記載の方法で製造された化合物またはその製薬上許容される塩。
  15.  式 [ IV ] :
    Figure JPOXMLDOC01-appb-C000024
    で表される化合物。
  16.  式 [ II ] :
    Figure JPOXMLDOC01-appb-C000025
    で表される化合物又はそのメタノール和物。
  17.  式 [ II ] :
    Figure JPOXMLDOC01-appb-C000026
    または、
    式 [ IIm ] :
    Figure JPOXMLDOC01-appb-C000027
    で表される化合物。
  18.  式 [ III ] :
    Figure JPOXMLDOC01-appb-C000028
    で表される化合物。
PCT/JP2017/027358 2016-07-29 2017-07-28 ピラゾール-アミド化合物の製造方法 WO2018021508A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2017303898A AU2017303898B2 (en) 2016-07-29 2017-07-28 Production method for pyrazole-amide compound
BR112019001447-0A BR112019001447A2 (pt) 2016-07-29 2017-07-28 método de produção para composto pirazol-amida
US16/319,938 US10981877B2 (en) 2016-07-29 2017-07-28 Production method for pyrazole-amide compound
CA3031621A CA3031621A1 (en) 2016-07-29 2017-07-28 Production method for pyrazole-amide compound
EP17834510.4A EP3492452B1 (en) 2016-07-29 2017-07-28 Production method for pyrazole-amide compound
MX2019001228A MX2019001228A (es) 2016-07-29 2017-07-28 Metodo de produccion del compuesto de pirazol-amida.
KR1020197005948A KR20190036549A (ko) 2016-07-29 2017-07-28 피라졸-아미드 화합물의 제조 방법
CN202210561913.5A CN114716377A (zh) 2016-07-29 2017-07-28 吡唑-酰胺化合物的制造方法
JP2018530408A JP7036724B2 (ja) 2016-07-29 2017-07-28 ピラゾール-アミド化合物の製造方法
RU2019105577A RU2736722C2 (ru) 2016-07-29 2017-07-28 Способ получения соединения пиразоламида
CN201780046848.XA CN109476609B (zh) 2016-07-29 2017-07-28 吡唑-酰胺化合物的制造方法
IL264307A IL264307B (en) 2016-07-29 2019-01-17 Production method for a pyrazole-amide compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-150657 2016-07-29
JP2016150657 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021508A1 true WO2018021508A1 (ja) 2018-02-01

Family

ID=61017374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027358 WO2018021508A1 (ja) 2016-07-29 2017-07-28 ピラゾール-アミド化合物の製造方法

Country Status (12)

Country Link
US (1) US10981877B2 (ja)
EP (1) EP3492452B1 (ja)
JP (1) JP7036724B2 (ja)
KR (1) KR20190036549A (ja)
CN (2) CN114716377A (ja)
AU (1) AU2017303898B2 (ja)
BR (1) BR112019001447A2 (ja)
CA (1) CA3031621A1 (ja)
IL (1) IL264307B (ja)
MX (1) MX2019001228A (ja)
RU (1) RU2736722C2 (ja)
WO (1) WO2018021508A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200017505A1 (en) * 2018-02-01 2020-01-16 Japan Tobacco Inc. Nitrogen-containing heterocyclic amide compound and pharmaceutical use thereof
WO2020054734A1 (ja) 2018-09-11 2020-03-19 日本たばこ産業株式会社 ピラゾール-アミド化合物を含有する慢性腎臓病の治療又は予防剤
WO2020179770A1 (ja) 2019-03-04 2020-09-10 日本たばこ産業株式会社 ピラゾール-アミド化合物の非晶質固体分散体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716377A (zh) * 2016-07-29 2022-07-08 日本烟草产业株式会社 吡唑-酰胺化合物的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041748A1 (ja) * 2008-10-10 2010-04-15 日本たばこ産業株式会社 フルオレン化合物及びその医薬用途
WO2014142290A1 (ja) * 2013-03-15 2014-09-18 日本たばこ産業株式会社 ピラゾール-アミド化合物およびその医薬用途
WO2014142291A1 (ja) * 2013-03-15 2014-09-18 日本たばこ産業株式会社 フルオレン化合物の水和物、およびその結晶
WO2015002119A1 (ja) * 2013-07-01 2015-01-08 日本たばこ産業株式会社 ピラゾール-アルコール化合物およびその医薬用途
WO2015002118A1 (ja) * 2013-07-01 2015-01-08 日本たばこ産業株式会社 フルオレン-アミド化合物およびその医薬用途

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827285B1 (fr) 2001-07-10 2003-12-05 Rhodia Chimie Sa Reactif et procede pour la perfluoroalcoylation
TWI329111B (en) 2002-05-24 2010-08-21 X Ceptor Therapeutics Inc Azepinoindole and pyridoindole derivatives as pharmaceutical agents
TW200418825A (en) 2002-12-16 2004-10-01 Hoffmann La Roche Novel (R)-and (S) enantiomers of thiophene hydroxamic acid derivatives
CA2521784C (en) 2003-04-08 2012-03-27 Yeda Research And Development Co. Ltd. Reversible pegylated drugs
RU2006107371A (ru) 2004-02-20 2006-09-10 Астеллас Фарма Инк. (Jp) Флуореновые производные
FR2885904B1 (fr) 2005-05-19 2007-07-06 Aventis Pharma Sa Nouveaux derives du fluorene, compositions les contenant et utilisation
CN102421739A (zh) 2009-04-22 2012-04-18 安斯泰来制药株式会社 羧酸化合物
CN102822148B (zh) 2010-03-31 2015-03-11 东丽株式会社 纤维肌痛综合征的治疗剂或预防剂
AU2014230812B2 (en) * 2013-03-13 2016-04-07 F. Hoffmann-La Roche Ag Process for making benzoxazepin compounds
CN114716377A (zh) * 2016-07-29 2022-07-08 日本烟草产业株式会社 吡唑-酰胺化合物的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041748A1 (ja) * 2008-10-10 2010-04-15 日本たばこ産業株式会社 フルオレン化合物及びその医薬用途
WO2014142290A1 (ja) * 2013-03-15 2014-09-18 日本たばこ産業株式会社 ピラゾール-アミド化合物およびその医薬用途
WO2014142291A1 (ja) * 2013-03-15 2014-09-18 日本たばこ産業株式会社 フルオレン化合物の水和物、およびその結晶
WO2015002119A1 (ja) * 2013-07-01 2015-01-08 日本たばこ産業株式会社 ピラゾール-アルコール化合物およびその医薬用途
WO2015002118A1 (ja) * 2013-07-01 2015-01-08 日本たばこ産業株式会社 フルオレン-アミド化合物およびその医薬用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3492452A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200017505A1 (en) * 2018-02-01 2020-01-16 Japan Tobacco Inc. Nitrogen-containing heterocyclic amide compound and pharmaceutical use thereof
US10800784B2 (en) * 2018-02-01 2020-10-13 Japan Tobacco Inc. Nitrogen-containing heterocyclic amide compound and pharmaceutical use thereof
WO2020054734A1 (ja) 2018-09-11 2020-03-19 日本たばこ産業株式会社 ピラゾール-アミド化合物を含有する慢性腎臓病の治療又は予防剤
WO2020179770A1 (ja) 2019-03-04 2020-09-10 日本たばこ産業株式会社 ピラゾール-アミド化合物の非晶質固体分散体
CN113490492A (zh) * 2019-03-04 2021-10-08 日本烟草产业株式会社 吡唑酰胺化合物的非晶质固体分散体
KR20210135266A (ko) 2019-03-04 2021-11-12 니뽄 다바코 산교 가부시키가이샤 피라졸-아미드 화합물의 비정질 고체 분산체
JP7489370B2 (ja) 2019-03-04 2024-05-23 日本たばこ産業株式会社 ピラゾール-アミド化合物の非晶質固体分散体
CN113490492B (zh) * 2019-03-04 2024-09-27 日本烟草产业株式会社 吡唑酰胺化合物的非晶质固体分散体

Also Published As

Publication number Publication date
EP3492452B1 (en) 2022-08-31
EP3492452A4 (en) 2019-12-25
CN114716377A (zh) 2022-07-08
JPWO2018021508A1 (ja) 2019-05-23
MX2019001228A (es) 2019-06-03
US20190375717A1 (en) 2019-12-12
IL264307B (en) 2021-04-29
CA3031621A1 (en) 2018-02-01
US10981877B2 (en) 2021-04-20
EP3492452A1 (en) 2019-06-05
RU2019105577A3 (ja) 2020-08-31
AU2017303898B2 (en) 2021-01-21
RU2736722C2 (ru) 2020-11-19
KR20190036549A (ko) 2019-04-04
JP7036724B2 (ja) 2022-03-15
CN109476609B (zh) 2022-06-14
AU2017303898A1 (en) 2019-01-31
BR112019001447A2 (pt) 2019-05-07
RU2019105577A (ru) 2020-08-31
CN109476609A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
JP7036724B2 (ja) ピラゾール-アミド化合物の製造方法
US8501814B2 (en) Selective androgen receptor modulators
JP6832946B2 (ja) キナーゼ阻害剤およびその中間体の調製方法
CN1129941A (zh) 取代的氮杂二氢亚吲哚基化合物及其制备方法
KR102266680B1 (ko) 벨리노스테트의 다형태 및 이의 제조 방법
JP2018518489A (ja) アプレミラスト及びその中間体の調製方法
JP6632127B2 (ja) トロンボポエチン受容体アゴニスト作用を有する光学活性な化合物およびその中間体の製造方法
JP2015522037A (ja) ベムラフェニブコリン塩の固体形態
WO2016017711A1 (ja) ピラゾール誘導体の製造方法
JP6884857B2 (ja) フェニルアラニン類化合物の製造方法
JP2007513863A (ja) 新規化合物
JP2009518380A (ja) 2−クロロエトキシ−酢酸−n,n−ジメチルアミドの製法
JP2006500409A (ja) No供与ジクロフェナクのようなno供与化合物の製造方法
TW201031402A (en) New retinoid derivatives endowed with cytotoxic and/or antiangiogenic properties
US10189804B2 (en) Method for producing dicarboxylic acid compound
JP2007023029A (ja) 医薬組成物
JP7519376B2 (ja) ロスバスタチンカルシウム塩の製造方法
KR101163864B1 (ko) 발사르탄의 제조방법 및 이에 사용되는 신규 중간체
WO2024048615A1 (ja) キノキサリン誘導体の製造方法
JP6797839B2 (ja) テリフルノミドの新規製造方法
US20110060145A1 (en) Process for production of compound having antagonistic activity on npyy5 receptor, and useful crystal
JP2013221025A (ja) ビフェニルアセトアミド誘導体の製造方法及びその中間体
JP2008513371A (ja) 8−ハロ−1,7−ナフタピリジン誘導体と有機ボロン酸誘導体の反応による6,8−置換−1,7−ナフタピリジン誘導体の製造方法および該方法の中間体
JPH10130204A (ja) 4−ハロゲノ−3−トリフルオロメチルフェノキシブタン酸エステル類の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018530408

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3031621

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017303898

Country of ref document: AU

Date of ref document: 20170728

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019001447

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197005948

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017834510

Country of ref document: EP

Effective date: 20190228

ENP Entry into the national phase

Ref document number: 112019001447

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190124