WO2018016229A1 - トルク変動抑制装置、トルクコンバータ、及び動力伝達装置 - Google Patents

トルク変動抑制装置、トルクコンバータ、及び動力伝達装置 Download PDF

Info

Publication number
WO2018016229A1
WO2018016229A1 PCT/JP2017/021622 JP2017021622W WO2018016229A1 WO 2018016229 A1 WO2018016229 A1 WO 2018016229A1 JP 2017021622 W JP2017021622 W JP 2017021622W WO 2018016229 A1 WO2018016229 A1 WO 2018016229A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
centrifuge
cam
torque fluctuation
torque
Prior art date
Application number
PCT/JP2017/021622
Other languages
English (en)
French (fr)
Inventor
富山 直樹
Original Assignee
株式会社エクセディ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクセディ filed Critical 株式会社エクセディ
Priority to CN201780030978.4A priority Critical patent/CN109154375A/zh
Priority to US16/084,656 priority patent/US10648533B2/en
Publication of WO2018016229A1 publication Critical patent/WO2018016229A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/145Masses mounted with play with respect to driving means thus enabling free movement over a limited range
    • F16F15/1457Systems with a single mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/1464Masses connected to driveline by a kinematic mechanism or gear system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/31Flywheels characterised by means for varying the moment of inertia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/08Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion
    • F16H25/12Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion with reciprocation along the axis of rotation, e.g. gearings with helical grooves and automatic reversal or cams
    • F16H25/125Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion with reciprocation along the axis of rotation, e.g. gearings with helical grooves and automatic reversal or cams having the cam on an end surface of the rotating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0052Physically guiding or influencing
    • F16F2230/0064Physically guiding or influencing using a cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0263Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means the damper comprising a pendulum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0294Single disk type lock-up clutch, i.e. using a single disc engaged between friction members

Definitions

  • the present invention relates to a torque fluctuation suppressing device, and more particularly to a torque fluctuation suppressing device for suppressing torque fluctuation of a rotating body to which torque is input.
  • the present invention also relates to a torque converter and a power transmission device including a torque fluctuation suppressing device.
  • a clutch device including a damper device and a torque converter are provided between an automobile engine and a transmission. Further, the torque converter is provided with a lockup device for mechanically transmitting torque at a predetermined rotational speed or more in order to reduce fuel consumption.
  • the lockup device generally has a clutch part and a damper having a plurality of torsion springs.
  • the clutch portion has a piston with a friction member that is pressed against the front cover by the action of hydraulic pressure. In the lock-up-on state, torque is transmitted from the front cover to the piston via the friction member, and further transmitted to the output side member via the plurality of torsion springs.
  • torque fluctuations can be suppressed by a damper having a plurality of torsion springs.
  • a dynamic damper device including an inertia member.
  • the dynamic damper device of Patent Document 1 is mounted on a plate that supports a torsion spring, a pair of inertia rings that are rotatable relative to the plate, and a plurality of coil springs provided between the plate and the inertia ring. And have.
  • An object of the present invention is to be able to suppress a peak of torque fluctuation in a relatively wide rotational speed range in an apparatus for suppressing torque fluctuation of a rotating member.
  • a torque fluctuation suppressing device is a device for suppressing torque fluctuation of a rotating body to which torque is input, and includes a mass body, a centrifuge, and a cam mechanism.
  • the mass body is arranged side by side with the rotating body in the axial direction, is rotatable with the rotating body, and is disposed so as to be relatively rotatable with respect to the rotating body.
  • the centrifuge is arranged to receive a centrifugal force generated by the rotation of the rotating body and the mass body.
  • the cam mechanism has a cam and a cam follower that moves along the cam. When the cam mechanism receives a centrifugal force acting on the centrifuge, a relative displacement in the rotation direction occurs between the rotating body and the mass body. The centrifugal force is converted into a circumferential force in a direction in which the relative displacement is reduced.
  • the cam is provided on the centrifuge.
  • the cam follower is provided on either the rotating body or the mass body.
  • the centrifuge is formed to extend in the rotation direction, and has a guide portion that abuts against members adjacent to both ends in the rotation direction to guide the movement of the centrifuge.
  • the guide portion of the centrifuge is a member that is adjacent to the cam and the cam follower at a position opposite to the contact point between the center of gravity of the centrifuge. Abut.
  • the centrifuge when the rotating body and the mass body rotate, the centrifuge receives a centrifugal force.
  • the cam mechanism converts the centrifugal force acting on the centrifuge into a circumferential force, and this circumferential force causes the rotation between the rotating body and the mass body. It operates to reduce the relative displacement of. Torque fluctuation is suppressed by the operation of the cam mechanism.
  • the centrifugal force acting on the centrifuge is used as a force for suppressing the torque fluctuation
  • the characteristic for suppressing the torque fluctuation changes according to the rotational speed of the rotating body. Further, for example, the characteristics for suppressing torque fluctuation can be appropriately set depending on the shape of the cam and the like, and the peak of torque fluctuation in a wider rotational speed range can be suppressed.
  • the guide portion of the centrifuge is a contact point between the cam and the cam follower with the center of gravity of the centrifuge interposed therebetween. And at least a position opposite to the adjacent member. For this reason, in a centrifuge, it can suppress that the rotational moment which made the end of the rotation direction a fulcrum arises. Therefore, the centrifuge moves smoothly, and the configuration of the guide portion can be simplified.
  • the mass body has a first inertia ring and a second inertia ring arranged to face each other with the rotating body interposed therebetween.
  • inertia rings are arranged on both sides in the axial direction of the rotating body, the radial dimension of the device can be suppressed, the amount of inertia can be increased, and this is effective in suppressing torque fluctuations.
  • the mass body further includes a pin that passes through the rotating body in the axial direction and connects the first inertia ring and the second inertia ring so as not to be relatively rotatable.
  • the centrifuge is arranged between the first inertia ring and the second inertia ring in the axial direction on the outer peripheral portion of the rotating body and on the inner peripheral side of the pin.
  • the cam follower is a cylindrical roller having a hole through which a pin penetrates in the axial direction.
  • the cam is formed in the centrifuge and contacts the cam follower, and has a shape such that the circumferential force changes according to the relative displacement amount in the rotational direction between the rotating body and the mass body.
  • the cam follower is mounted using a pin that connects the first inertia ring and the second inertia ring. This simplifies the configuration of the cam mechanism.
  • the rotating body has a protrusion on the outer peripheral surface
  • the centrifuge has a first member and a second member arranged so as to sandwich the protrusion in the axial direction.
  • the guide part of a centrifuge connects the 1st member and the 2nd member, and contact
  • the guide portion is a pair of rollers that are rotatably supported at both ends in the rotation direction of the centrifuge and roll on both side surfaces of the protrusion of the rotating body.
  • a pair of guide portions are provided, for example, on the inner peripheral side and the outer peripheral side. (2 pairs of rollers in total) must be provided.
  • the centrifuge since the rotational moment with one end in the rotational direction as a fulcrum is suppressed, even if the guide portion is configured by only a pair of rollers, The centrifuge can be moved smoothly.
  • the mass body further includes a pin that passes through the rotating body in the axial direction and connects the first inertia ring and the second inertia ring so as not to be relatively rotatable.
  • the centrifuge is arranged between the first inertia ring and the second inertia ring in the axial direction on the inner peripheral side of the pin.
  • the cam follower is a cylindrical roller having a hole through which a pin penetrates in the axial direction.
  • the cam is formed in the centrifuge and contacts the cam follower, and has a shape such that the circumferential force changes according to the relative displacement amount in the rotational direction between the rotating body and the mass body.
  • the rotating body has a protruding portion that protrudes toward the inner peripheral side
  • the centrifuge has a first member and a second member that are arranged so as to sandwich the protruding portion in the axial direction.
  • the guide part of a centrifuge connects the 1st member and the 2nd member, and contact
  • the mass body is formed in a continuous annular shape.
  • the torque converter according to the present invention is disposed between the engine and the transmission.
  • the torque converter includes an input-side rotating body that receives torque from the engine, an output-side rotating body that outputs torque to the transmission, and a damper that is disposed between the input-side rotating body and the turbine. Any of the torque fluctuation suppression devices.
  • a power transmission device includes a flywheel, a clutch device, and any of the torque fluctuation suppression devices described above.
  • the flywheel includes a first inertial body that rotates about a rotation axis, a second inertial body that rotates about the rotation axis and is rotatable relative to the first inertial body, and a first inertial body and a second inertial body. And a damper disposed therebetween.
  • the clutch device is provided on the second inertial body of the flywheel.
  • the peak of torque fluctuation can be suppressed in a relatively wide rotational speed range in the apparatus for suppressing torque fluctuation of the rotating member. Moreover, in this invention, a centrifuge can be moved smoothly with the structure of a simple guide part.
  • FIG. 2 is a partial front view of the output side rotating body and the torque fluctuation suppressing device of FIG. 1.
  • FIG. 3 is an arrow A view of FIG. 2.
  • operation of a cam mechanism The figure for demonstrating the action
  • FIG. 1 is a schematic diagram when the torque fluctuation suppressing device according to the first embodiment of the present invention is mounted on a lock-up device of a torque converter.
  • OO is the rotational axis of the torque converter.
  • the torque converter 1 includes a front cover 2, a torque converter main body 3, a lockup device 4, and an output hub 5. Torque is input to the front cover 2 from the engine.
  • the torque converter main body 3 includes an impeller 7 connected to the front cover 2, a turbine 8, and a stator (not shown).
  • the turbine 8 is connected to the output hub 5, and an input shaft (not shown) of the transmission can be engaged with the inner peripheral portion of the output hub 5 by a spline.
  • the lock-up device 4 has a clutch part, a piston that is operated by hydraulic pressure, and the like, and can take a lock-up on state and a lock-up off state.
  • the lock-up on state the torque input to the front cover 2 is transmitted to the output hub 5 via the lock-up device 4 without passing through the torque converter body 3.
  • the lock-up off state torque input to the front cover 2 is transmitted to the output hub 5 via the torque converter body 3.
  • the lockup device 4 includes an input side rotating body 11, an output side rotating body 12, a damper 13, and a torque fluctuation suppressing device 14.
  • the input side rotating body 11 includes a piston that is movable in the axial direction, and has a friction member 16 on the side surface on the front cover 2 side. When the friction member 16 is pressed against the front cover 2, torque is transmitted from the front cover 2 to the input side rotating body 11.
  • the output side rotator 12 is disposed so as to face the input side rotator 11 in the axial direction, and is rotatable relative to the input side rotator 11.
  • the output side rotating body 12 is connected to the output hub 5.
  • the damper 13 is disposed between the input side rotating body 11 and the output side rotating body 12.
  • the damper 13 has a plurality of torsion springs, and elastically connects the input side rotating body 11 and the output side rotating body 12 in the rotation direction.
  • the damper 13 transmits torque from the input-side rotator 11 to the output-side rotator 12, and absorbs and attenuates torque fluctuations.
  • FIG. 2 is a front view of the output side rotating body 12 and the torque fluctuation suppressing device 14. 2 shows a part of the output-side rotator 12 and the torque fluctuation suppressing device 14, but as a whole, the portions shown in FIG. 2 are provided at equiangular intervals at four locations in the circumferential direction. ing.
  • FIG. 3 is a view seen from the direction A in FIG.
  • the torque fluctuation suppressing device 14 includes a first inertia ring 201 and a second inertia ring 202 that constitute the mass body 20, four centrifuges 21, and four cam mechanisms 22.
  • the first and second inertia rings 201 and 202 are plates each having a predetermined thickness formed in a continuous annular shape. As shown in FIG. 3, the output-side rotator 12 sandwiches the output-side rotator 12. Are arranged with a predetermined gap on both sides in the axial direction. That is, the output-side rotating body 12 and the first and second inertia rings 201 and 202 are arranged side by side in the axial direction.
  • the first and second inertia rings 201 and 202 have the same rotation axis as that of the output-side rotator 12, can rotate together with the output-side rotator 12, and can rotate relative to the output-side rotator 12. It is.
  • first and second inertia rings 201, 202 holes 201a, 202a penetrating in the axial direction are formed. And the 1st inertia ring 201 and the 2nd inertia ring 202 are being fixed by the rivet 24 which penetrates those holes 201a and 202a. Therefore, the first inertia ring 201 cannot move in the axial direction, the radial direction, and the rotation direction with respect to the second inertia ring 202.
  • the output-side rotating body 12 is formed in a disk shape, and the inner peripheral portion is connected to the output hub 5 as described above.
  • Four protrusions 121 having a predetermined width are formed in the circumferential direction on the outer peripheral portion of the output-side rotator 12.
  • the protrusion 121 is inserted between the first inertia ring 201 and the second inertia ring 202 in the axial direction.
  • the outer peripheral end of the protruding portion 121 is formed so as to be positioned at a substantially middle portion between the inner diameter and the outer diameter of the first and second inertia rings 201 and 202. More specifically, as will be described later, the roller 30 constituting the cam mechanism 22 moves along the cam 31, but the roller 30 does not hit the outer peripheral end surface of the protrusion 121 during the movement of the roller 30.
  • the outer diameter of the protrusion 121 is set.
  • the centrifuge 21 has a first member 211 and a second member 212 extending in the rotation direction.
  • the first and second members 211 and 212 have the same shape, and are arranged in the axial direction via a predetermined gap.
  • the first and second members 211 and 212 sandwich the protrusion 121 of the output-side rotator 12 on the inner peripheral side of the rivet 24 between the axial directions of the first inertia ring 201 and the second inertia ring 202. Is arranged.
  • the centrifuge 21 rotates with the output-side rotator 12 and is movable in the radial direction by the centrifugal force generated by the rotation of the output-side rotator 12.
  • first guide roller 26a and one second guide roller 26b are disposed at both ends in the longitudinal direction (rotation direction) of the first and second members 211 and 212, respectively.
  • the first and second guide rollers 26a and 26b are rotatably mounted via bushes 28 around pins 27 supported at both ends of the first and second members 211 and 212.
  • the outer peripheral surface of the first roller 26a can be brought into contact with one side surface 121a of the protrusion 121 and can be rolled, and the outer peripheral surface of the second roller 26b can be brought into contact with the other side surface 121b of the protrusion 121 and rolled. Is possible.
  • the first and second members 211 and 212 of the centrifuge 21 are formed in an arc shape in which the outer peripheral surfaces 211a and 212a are recessed toward the inner peripheral side, and as will be described later, these outer peripheral surfaces 211a and 212a, 212 a functions as the cam 31.
  • the cam mechanism 22 includes a cylindrical roller 30 as a cam follower and cams 31 which are outer peripheral surfaces 211a and 212a of the first and second members 211 and 212.
  • the roller 30 is fitted on the outer periphery of the trunk portion of the rivet 24. That is, the roller 30 is supported by the rivet 24.
  • the roller 30 is preferably mounted so as to be rotatable with respect to the rivet 24, but may not be rotatable.
  • the cam 31 is an arcuate surface with which the roller 30 abuts.
  • the relative displacement amount in the rotational direction between the output-side rotator 12 and the inertia ring 20 is referred to as a “rotational phase difference”.
  • FIG. 2 and FIG. The deviation between the center position of the centrifuge 21 and the cam 31 in the circumferential direction and the center position of the roller 30 is shown.
  • FIG. 4 shows a case where a rotational phase difference + ⁇ occurs on the + R side
  • FIG. 5 shows a case where a rotational phase difference ⁇ occurs on the ⁇ R side.
  • the first component force P1 is a force that moves the output side rotating body 12 to the left in FIG. 4 via the cam mechanism 22 and the centrifuge 21. That is, a force in the direction of reducing the rotational phase difference between the output side rotating body 12 and the inertia ring 20 acts on the output side rotating body 12. Moreover, the centrifuge 21 is moved to the inner peripheral side against the centrifugal force by the second component force P2.
  • FIG. 5 shows a case where a rotational phase difference ⁇ is generated between the output-side rotator 12 and the inertia ring 20, and the moving direction of the roller 30 of the cam mechanism 22, the reaction force P0, and the first component force P1.
  • the cam mechanism 22 operates in the same manner except that the direction of the second component force P2 is different from that in FIG.
  • the force that suppresses the above torque fluctuations changes depending on the centrifugal force, that is, the rotational speed of the output side rotating body 12, and also changes depending on the rotational phase difference and the shape of the cam 31. Therefore, by setting the shape of the cam 31 as appropriate, the characteristics of the torque fluctuation suppressing device 14 can be optimized according to engine specifications and the like.
  • the shape of the cam 31 can be made such that the first component force P1 changes linearly according to the rotational phase difference in the state where the same centrifugal force is acting.
  • the shape of the cam 31 can be a shape in which the first component force P1 changes nonlinearly according to the rotational phase difference.
  • FIG. 6 is a diagram illustrating an example of torque fluctuation suppression characteristics.
  • the horizontal axis represents the rotational speed, and the vertical axis represents the torque fluctuation (rotational speed fluctuation).
  • the characteristic Q1 is a case where a device for suppressing torque fluctuation is not provided
  • the characteristic Q2 is a case where a conventional dynamic damper device is provided
  • the characteristic Q3 is a case where the torque fluctuation suppressing device 14 of the present embodiment is provided. Show.
  • centrifuge 21 For example, as shown in FIG. 4, when a rotational phase difference is generated between the output side rotating body 12 and the inertia ring 20, the centrifuge 21 has a force P 0 from the inertia ring 20 at the contact C 1 with the roller 30. Works. With this force P0, the first guide roller 26a attached to the centrifuge 21 and one side surface 121a of the projection 121 come into contact with each other at the contact C2, and the second guide roller 26b and the other side surface 121b of the projection 121 are in contact with each other. Abuts at the contact C3. That is, as shown in FIG.
  • FIG. 7 shows a second embodiment of the present invention.
  • FIG. 7 is a view corresponding to FIG. 2 of the first embodiment, and in the second embodiment as well, the configuration shown in FIG. 7 is provided at four equiangular intervals in the circumferential direction as described above. ing.
  • FIG. 8 is a view seen from the direction B of FIG.
  • the torque fluctuation suppression device 14 ′ of the second embodiment includes a first inertia ring 201 ′ and a second inertia ring 202 ′ that constitute the mass body 20 ′, four centrifuges 21 ′, and four cam mechanisms 22. 'And have.
  • the first and second inertia rings 201 ′ and 202 ′ are plates each having a predetermined thickness formed in a continuous annular shape. As shown in FIG. 8, the output side rotating body 12 ′ is sandwiched between the output side and the output side. The rotating body 12 ′ is disposed with a predetermined gap on both sides in the axial direction. The first and second inertia rings 201 ′ and 202 ′ have the same rotation axis as that of the output side rotating body 12 ′, can rotate together with the output side rotating body 12 ′, and are connected to the output side rotating body 12 ′. Relative rotation is possible.
  • the first and second inertia rings 201 'and 202' are fixed by a rivet 24 'and cannot move in the axial direction, the radial direction, and the rotational direction.
  • the output side rotating body 12 ′ is formed in a disc shape and connected to the output hub 5.
  • Four openings 120 ′ are formed on the outer peripheral portion of the output-side rotator 12 ′, and a protrusion 121 ′ protruding to the inner peripheral side is formed in the opening 120 ′.
  • the output-side rotator 12 ' is formed with an arc groove 122' extending in the circumferential direction.
  • a rivet 24 ' passes through the arc groove 122'. Therefore, the first and second inertia rings 201 ′ and 202 ′ can be rotated relative to the output-side rotating body 12 ′ by an angle that allows the body of the rivet 24 ′ to move within the arc groove 122 ′.
  • a stopper mechanism that restricts relative rotation between the first and second inertia rings 201 ′ and 202 ′ and the output side rotating body 12 ′ is configured by the body portion of the rivet 24 ′ and the circular groove 122 ′.
  • the centrifuge 21 ' has a first member 211' and a second member 212 'extending in the rotation direction.
  • the first and second members 211 ′ and 212 ′ have the same shape and are arranged in the axial direction with a predetermined gap.
  • the first and second members 211 ′ and 212 ′ are arranged between the first inertia ring 201 ′ and the second inertia ring 202 ′ on the inner peripheral side of the rivet 24 ′ and the output side rotating body 12 ′. It arrange
  • the centrifuge 21 ' rotates together with the output-side rotator 12' and is movable in the radial direction by the centrifugal force generated by the rotation of the output-side rotator 12 '.
  • a first guide roller 26a ′ and a second guide roller 26b ′ are provided at both ends in the longitudinal direction (rotation direction) of the first and second members 211 ′ and 212 ′, respectively.
  • the first and second guide rollers 26a 'and 26b' are rotatably mounted around the pins 27 'supported at both ends of the first and second members 211' and 212 '.
  • the outer peripheral surface of the first roller 26a ' can abut on one side surface 121a' of the protrusion 121 'and roll, and the outer peripheral surface of the second roller 26b' can be the other side surface 121b 'of the protrusion 121'. It is possible to roll in contact with.
  • details of the configuration for supporting the centrifuge 21 ′ are omitted, for example, it is conceivable to contact the outer periphery (not shown) of the opening 120 ′.
  • the outer peripheral surfaces 211a 'and 212a' of the centrifuge 21 ' are formed in a circular arc shape recessed toward the inner peripheral side and function as the cam 31'.
  • the configuration of the cam mechanism 22 ' is basically the same as that of the first embodiment. That is, it is composed of a cylindrical roller 30 ′ as a cam follower and a cam 31 ′ that is the outer peripheral surfaces 211 a ′ and 212 a ′ of the centrifuge 21 ′.
  • the roller 30 ′ includes a first roller 311 ′ and a second roller 312 ′.
  • the first roller 311 ' is disposed between the first inertia ring 201' and the output side rotating body 12 'in the axial direction, and rolls on the outer peripheral surface 211a' of the first member 211 '.
  • the second roller 312 ' is disposed between the second inertia ring 202' and the output-side rotating body 12 'in the axial direction, and rolls on the outer peripheral surface 212a' of the second member 212 '.
  • the inertia ring is constituted by a continuous annular member, but a plurality of divided inertia bodies may be arranged in the circumferential direction.
  • a holding member such as an annular holding ring on the outer peripheral side of the inertia body.
  • the centrifuge is arranged on the output side rotator and the cam follower is provided on the inertia ring.
  • the centrifuge may be arranged on the inertia ring and the cam follower is provided on the output side rotator. Good.
  • the guide roller is disposed as the guide portion, but another member that reduces friction such as a resin race or a sheet may be disposed.
  • FIG. 9 is a diagram schematically showing a torque converter, which includes an input-side rotating body 41, an output-side rotating body 42, and a damper provided between both rotating bodies 41, 42. 43.
  • the input side rotating body 41 includes members such as a front cover, a drive plate, and a piston.
  • the output side rotating body 42 includes a driven plate and a turbine hub.
  • the damper 43 includes a plurality of torsion springs.
  • a centrifuge is provided in any of the rotating members that constitute the input-side rotator 41, and a cam mechanism 44 that operates using the centrifugal force acting on the centrifuge is provided. It has been. About the cam mechanism 44, the structure similar to the structure shown by the said each embodiment is applicable.
  • the torque converter shown in FIG. 10 is provided with a centrifuge in any one of the rotating members constituting the output-side rotator 42, and is a cam mechanism that operates using centrifugal force acting on the centrifuge. 44 is provided. About the cam mechanism 44, the structure similar to the structure shown by the said each embodiment is applicable.
  • the torque converter shown in FIG. 11 has another damper 45 and an intermediate member 46 provided between the two dampers 43, 45 in addition to the configurations shown in FIGS. is doing.
  • the intermediate member 46 is relatively rotatable with the input side rotating body 41 and the output side rotating body 42, and causes the two dampers 43 and 45 to act in series.
  • the intermediate member 46 is provided with a centrifuge, and a cam mechanism 44 that operates using a centrifugal force acting on the centrifuge is provided.
  • a cam mechanism 44 that operates using a centrifugal force acting on the centrifuge is provided.
  • the structure similar to the structure shown by the said each embodiment is applicable.
  • the torque converter shown in FIG. 12 has a float member 47.
  • the float member 47 is a member for supporting the torsion spring constituting the damper 43, and is formed, for example, in an annular shape so as to cover the outer periphery and at least one side surface of the torsion spring.
  • the float member 47 is relatively rotatable with the input-side rotator 41 and the output-side rotator 42, and rotates around the damper 43 by friction with the torsion spring of the damper 43. That is, the float member 47 also rotates.
  • the float member 47 is provided with a centrifuge 48, and a cam mechanism 44 that operates by utilizing a centrifugal force acting on the centrifuge 48 is provided.
  • a cam mechanism 44 that operates by utilizing a centrifugal force acting on the centrifuge 48 is provided.
  • the cam mechanism 44 the structure similar to the structure shown by the said each embodiment is applicable.
  • FIG. 13 is a schematic diagram of a power transmission device having a flywheel 50 having two inertia bodies 51 and 52 and a clutch device 54. That is, the flywheel 50 disposed between the engine and the clutch device 54 includes a first inertial body 51, a second inertial body 52 disposed so as to be rotatable relative to the first inertial body 51, and two inertial bodies. And a damper 53 disposed between 51 and 52. The second inertia body 52 also includes a clutch cover that constitutes the clutch device 54.
  • a centrifuge is provided in one of the rotating members that constitute the second inertial body 52, and a cam mechanism 55 that operates using a centrifugal force acting on the centrifuge is provided. ing.
  • the cam mechanism 55 the same configuration as that shown in each of the above embodiments can be applied.
  • FIG. 14 is an example in which a centrifuge is provided in the first inertial body 51 in the same power transmission device as that in FIG.
  • a cam mechanism 55 that operates using centrifugal force acting on the centrifuge is provided.
  • the cam mechanism 55 the same configuration as that shown in each of the above embodiments can be applied.
  • the power transmission device shown in FIG. 15 includes another damper 56 and an intermediate member 57 provided between the two dampers 53, 56. Have.
  • the intermediate member 57 is rotatable relative to the first inertial body 51 and the second inertial body 52.
  • a centrifuge 58 is provided on the intermediate member 57, and a cam mechanism 55 that operates using a centrifugal force acting on the centrifuge 58 is provided.
  • the cam mechanism 55 the same configuration as that shown in each of the above embodiments can be applied.
  • FIG. 16 is a schematic diagram of a power transmission device in which a clutch device is provided on one flywheel.
  • the first inertia body 61 in FIG. 16 includes one flywheel and a clutch cover of the clutch device 62.
  • a centrifuge is provided in any of the rotating members constituting the first inertial body 61, and a cam mechanism 64 that operates by utilizing a centrifugal force acting on the centrifuge is provided.
  • the cam mechanism 64 the structure similar to the structure shown by the said each embodiment is applicable.
  • FIG. 17 is an example in which a centrifuge 65 is provided on the output side of the clutch device 62 in the same power transmission device as FIG.
  • a cam mechanism 64 that operates by utilizing the centrifugal force acting on the centrifuge 65 is provided.
  • the structure similar to the structure shown by the said each embodiment is applicable.
  • the torque fluctuation suppressing device of the present invention may be arranged on any of the rotating members constituting the transmission, and further, the shaft (propeller shaft or drive) on the output side of the transmission (Shaft).
  • the torque fluctuation suppressing device of the present invention may be further applied to a conventionally known dynamic damper device or a power transmission device provided with a pendulum type damper device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
  • Transmission Devices (AREA)

Abstract

回転部材のトルク変動を抑えるための装置において、広い回転数域においてトルク変動のピークを抑える。この装置は、イナーシャリング(20)と、遠心子(21)と、カム機構(22)と、を備えている。イナーシャリング(20)は出力側回転体(12)と軸方向に並べて配置され、出力側回転体(12)に対して回転自在である。カム機構(22)は、カム(31)とコロ(30)とを有し、遠心子(21)に作用する遠心力を受けて、出力側回転体(12)とイナーシャリング(20)との間に回転位相差が生じたときには、遠心力を、回転位相差が小さくなる方向の円周方向力に変換する。遠心子(21)の両端部にはガイドローラ(26a,26b)が設けられている。ガイドローラ(26a,26b)は、遠心子(21)の重心を挟んでカム(31)とコロ(30)の接点と逆側の位置で出力側回転体(12)の突起部(121)と当接する。

Description

トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
 本発明は、トルク変動抑制装置、特に、トルクが入力される回転体のトルク変動を抑制するためのトルク変動抑制装置に関する。また、本発明は、トルク変動抑制装置を備えたトルクコンバータ及び動力伝達装置に関する。
 例えば、自動車のエンジンとトランスミッションとの間には、ダンパ装置を含むクラッチ装置やトルクコンバータが設けられている。また、トルクコンバータには、燃費低減のために、所定の回転数以上で機械的にトルクを伝達するためのロックアップ装置が設けられている。
 ロックアップ装置は、一般に、クラッチ部と、複数のトーションスプリングを有するダンパと、を有している。また、クラッチ部は、油圧の作用によってフロントカバーに押し付けられる摩擦部材付きのピストンを有している。そして、ロックアップオンの状態では、トルクは、フロントカバーから摩擦部材を介してピストンに伝達され、さらに複数のトーションスプリングを介して出力側の部材に伝達される。
 このようなロックアップ装置では、複数のトーションスプリングを有するダンパによって、トルク変動(回転速度変動)が抑えられる。
 また、特許文献1のロックアップ装置では、イナーシャ部材を含むダイナミックダンパ装置を設けることによって、トルク変動を抑えるようにしている。特許文献1のダイナミックダンパ装置は、トーションスプリングを支持するプレートに装着されており、このプレートと相対回転自在な1対のイナーシャリングと、プレートとイナーシャリングとの間に設けられた複数のコイルスプリングと、を有している。
特開2015-094424号公報
 特許文献1を含む従来のダイナミックダンパ装置では、所定の回転数域のトルク変動のピークを抑えることができる。しかし、エンジンの仕様等が変わると、それに応じてトルク変動のピークが現れる回転数域が変わる。このため、エンジンの仕様等の変更に伴ってイナーシャリングの慣性量及びコイルスプリングのばね定数を変更する必要があり、対応が困難な場合がある。
 本発明の課題は、回転部材のトルク変動を抑えるための装置において、比較的広い回転数域においてトルク変動のピークを抑えることができるようにすることにある。
 (1)本発明に係るトルク変動抑制装置は、トルクが入力される回転体のトルク変動を抑制するための装置であって、質量体と、遠心子と、カム機構と、を備えている。質量体は、回転体と軸方向に並べて配置され、回転体とともに回転可能であり、かつ回転体に対して相対回転自在に配置されている。遠心子は回転体及び質量体の回転による遠心力を受けるように配置されている。カム機構は、カムと、カムに沿って移動するカムフォロアと、を有し、遠心子に作用する遠心力を受けて、回転体と質量体との間に回転方向における相対変位が生じたときには、遠心力を、相対変位が小さくなる方向の円周方向力に変換する。
 カムは遠心子に設けられている。カムフォロアは回転体及び質量体のいずれかに設けられている。また、遠心子は、回転方向に延びて形成されるとともに、回転方向の両端部に隣接する部材と当接して遠心子の移動をガイドするガイド部を有している。そして、回転体と質量体との間に回転方向における相対変位が生じたときに、遠心子のガイド部は、遠心子の重心を挟んでカムとカムフォロアの接点と逆側の位置で隣接する部材と当接する。
 この装置では、回転体にトルクが入力されると、回転体及び質量体が回転する。回転体に入力されるトルクに変動がない場合は、回転体と質量体との間の回転方向における相対変位はなく、同期して回転する。一方、入力されるトルクに変動がある場合は、質量体は回転体に対して相対回転自在に配置されているために、トルク変動の程度によっては、両者の間に回転方向における相対変位(以下、この変位を「回転位相差」と表現する場合がある)が生じる。
 ここで、回転体及び質量体が回転すると、遠心子は遠心力を受ける。そして、回転体と質量体との間に相対変位が生じたときには、カム機構は遠心子に作用する遠心力を円周方向力に変換し、この円周方向力によって回転体と質量体の間の相対変位を小さくするように作動する。このようなカム機構の作動によって、トルク変動が抑えられる。
 ここでは、遠心子に作用する遠心力を、トルク変動を抑えるための力として利用しているので、回転体の回転数に応じてトルク変動を抑制する特性が変わることになる。また、例えばカムの形状等によって、トルク変動を抑制する特性を適切に設定することができ、より広い回転数域におけるトルク変動のピークを抑えることができる。
 また、ここでは、回転体と質量体との間に回転方向の相対変位が生じてカム機構が作動した場合に、遠心子のガイド部は、遠心子の重心を挟んで、カムとカムフォロアの接点と少なくとも逆側の位置で隣接する部材と当接する。このため、遠心子において、回転方向の一端を支点とした回転モーメントが生じるのを抑えることができる。したがって、遠心子がスムーズに移動することになり、ガイド部の構成を簡単にすることができる。
 (2)好ましくは、質量体は、回転体を挟んで対向して配置された第1イナーシャリング及び第2イナーシャリングを有している。
 ここでは、回転体の軸方向両側にイナーシャリングが配置されているので、装置の径方向寸法を抑えて、慣性量を大きくすることができ、トルク変動の抑制に有効である。
 (3)好ましくは、質量体は、回転体を軸方向に貫通して第1イナーシャリングと第2イナーシャリングとを相対回転不能に連結するピンをさらに有している。また、好ましくは、遠心子は、回転体の外周部でかつピンの内周側において第1イナーシャリングと第2イナーシャリングとの軸方向間に配置されている。そして、カムフォロアは、内部にピンが軸方向に貫通する孔を有する円筒状のコロである。また、カムは、遠心子に形成されてカムフォロアに当接し、回転体と質量体との間の回転方向における相対変位量に応じて円周方向力が変化するような形状を有する。
 ここでは、第1イナーシャリングと第2イナーシャリングとを連結するピンを利用して、カムフォロアを装着している。このため、カム機構の構成が簡単になる。
 (4)好ましくは、回転体は外周面に突起部を有し、遠心子は、突起部を軸方向において挟むように配置された第1部材及び第2部材を有している。そして、遠心子のガイド部は、第1部材及び第2部材を連結するとともに、回転体の突起部の両側面に当接する。
 (5)好ましくは、ガイド部は、遠心子の回転方向の両端部に回転自在に支持され、回転体の突起部の両側面を転動する1対のローラである。
 仮に、遠心子において、回転方向の一端を支点とした回転モーメントが生じるように構成した場合、遠心子をスムーズに移動させるためには、ガイド部を、たとえば内周側及び外周側にそれぞれ1対のローラ(合計2対のローラ)を設ける必要がある。
 しかし、本発明では、前述のように、遠心子において、回転方向の一端を支点とした回転モーメントが抑えられるように構成しているので、1対のローラのみによってガイド部を構成しても、遠心子をスムーズに移動させることができる。
 (6)好ましくは、質量体は、回転体を軸方向に貫通して前記第1イナーシャリングと第2イナーシャリングとを相対回転不能に連結するピンをさらに有している。また好ましくは、遠心子は、ピンの内周側において第1イナーシャリングと第2イナーシャリングとの軸方向間に配置されている。そして、カムフォロアは、内部にピンが軸方向に貫通する孔を有する円筒状のコロである。また、カムは、遠心子に形成されてカムフォロアに当接し、回転体と質量体との間の回転方向における相対変位量に応じて円周方向力が変化するような形状を有する。
 (7)好ましくは、回転体は内周側に突出する突起部を有し、遠心子は、突起部を軸方向において挟むように配置された第1部材及び第2部材を有している。そして、遠心子のガイド部は、第1部材及び第2部材を連結するとともに、回転体の突起部の両側面に当接する。
 (8)好ましくは、質量体は連続した円環状に形成されている。
 (9)本発明に係るトルクコンバータは、エンジンとトランスミッションとの間に配置される。このトルクコンバータは、エンジンからのトルクが入力される入力側回転体と、トランスミッションにトルクを出力する出力側回転体と、入力側回転体とタービンとの間に配置されたダンパと、以上に記載のいずれかのトルク変動抑制装置と、を備えている。
 (10)本発明に係る動力伝達装置は、フライホイールと、クラッチ装置と、以上に記載のいずれかのトルク変動抑制装置と、を備えている。フライホイールは、回転軸を中心に回転する第1慣性体と、回転軸を中心に回転し第1慣性体と相対回転自在な第2慣性体と、第1慣性体と第2慣性体との間に配置されたダンパと、を有する。クラッチ装置は、フライホイールの第2慣性体に設けられている。
 以上のような本発明では、回転部材のトルク変動を抑えるための装置において、比較的広い回転数域においてトルク変動のピークを抑えることができる。また、本発明では、簡単なガイド部の構成で、遠心子をスムーズに移動させることができる。
本発明の第1実施形態によるトルクコンバータの模式図。 図1の出力側回転体及びトルク変動抑制装置の正面部分図。 図2の矢視A図。 カム機構の作動を説明するための図。 カム機構の作動を説明するための図。 回転数とトルク変動の関係を示す特性図。 本発明の第2実施形態の図2に相当する図。 図7の矢視B図。 本発明の適用例1を示す模式図。 本発明の適用例2を示す模式図。 本発明の適用例3を示す模式図。 本発明の適用例4を示す模式図。 本発明の適用例5を示す模式図。 本発明の適用例6を示す模式図。 本発明の適用例7を示す模式図。 本発明の適用例8を示す模式図。 本発明の適用例9を示す模式図。
 -第1実施形態-
 図1は、本発明の第1実施形態によるトルク変動抑制装置をトルクコンバータのロックアップ装置に装着した場合の模式図である。図1において、O-Oがトルクコンバータの回転軸線である。
 [全体構成]
 トルクコンバータ1は、フロントカバー2と、トルクコンバータ本体3と、ロックアップ装置4と、出力ハブ5と、を有している。フロントカバー2にはエンジンからトルクが入力される。トルクコンバータ本体3は、フロントカバー2に連結されたインペラ7と、タービン8と、ステータ(図示せず)と、を有している。タービン8は出力ハブ5に連結されており、出力ハブ5の内周部には、トランスミッションの入力軸(図示せず)がスプラインによって係合可能である。
 [ロックアップ装置4]
 ロックアップ装置4は、クラッチ部や、油圧によって作動するピストン等を有し、ロックアップオン状態と、ロックアップオフ状態と、を取り得る。ロックアップオン状態では、フロントカバー2に入力されたトルクは、トルクコンバータ本体3を介さずに、ロックアップ装置4を介して出力ハブ5に伝達される。一方、ロックアップオフ状態では、フロントカバー2に入力されたトルクは、トルクコンバータ本体3を介して出力ハブ5に伝達される。
 ロックアップ装置4は、入力側回転体11と、出力側回転体12と、ダンパ13と、トルク変動抑制装置14と、を有している。
 入力側回転体11は、軸方向に移動自在なピストンを含み、フロントカバー2側の側面に摩擦部材16を有している。この摩擦部材16がフロントカバー2に押し付けられることによって、フロントカバー2から入力側回転体11にトルクが伝達される。
 出力側回転体12は、入力側回転体11と軸方向に対向して配置され、入力側回転体11と相対回転自在である。出力側回転体12は出力ハブ5に連結されている。
 ダンパ13は、入力側回転体11と出力側回転体12との間に配置されている。ダンパ13は、複数のトーションスプリングを有しており、入力側回転体11と出力側回転体12とを回転方向に弾性的に連結している。このダンパ13によって、入力側回転体11から出力側回転体12にトルクが伝達されるとともに、トルク変動が吸収、減衰される。
 [トルク変動抑制装置14]
 図2は、出力側回転体12及びトルク変動抑制装置14の正面図である。なお、図2では出力側回転体12及びトルク変動抑制装置14の一部を示しているが、全体としては、円周方向の4ヶ所に、図2に示した部分が等角度間隔で設けられている。また、図3は図2のA方向から見た図である。
 トルク変動抑制装置14は、質量体20を構成する第1イナーシャリング201及び第2イナーシャリング202と、4個の遠心子21と、4個のカム機構22と、を有している。
 第1及び第2イナーシャリング201,202は、それぞれ連続した円環状に形成された所定の厚みを有するプレートであり、図3に示すように、出力側回転体12を挟んで出力側回転体12の軸方向両側に所定の隙間をあけて配置されている。すなわち、出力側回転体12と第1及び第2イナーシャリング201,202とは、軸方向に並べて配置されている。第1及び第2イナーシャリング201,202は、出力側回転体12の回転軸と同じ回転軸を有し、出力側回転体12とともに回転可能で、かつ出力側回転体12に対して相対回転自在である。
 第1及び第2イナーシャリング201,202には軸方向に貫通する孔201a,202aが形成されている。そして、第1イナーシャリング201と第2イナーシャリング202とは、それらの孔201a,202aを貫通するリベット24によって固定されている。したがって、第1イナーシャリング201は、第2イナーシャリング202に対して、軸方向、径方向、及び回転方向に移動不能である。
 出力側回転体12は、円板状に形成され、内周部が前述のように出力ハブ5に連結されている。出力側回転体12の外周部には、円周方向に所定の幅の4つの突起部121が形成されている。突起部121は、第1イナーシャリング201と第2イナーシャリング202との軸方向間に差し込まれている。突起部121の外周端は、第1及び第2イナーシャリング201,202の内径と外径のほぼ中間部に位置するように形成されている。より詳細には、後述するように、カム機構22を構成するコロ30はカム31に沿って移動するが、コロ30の移動中に、コロ30が突起部121の外周端面に当たらないように、突起部121の外径が設定されている。
 遠心子21は、回転方向に延びる第1部材211及び第2部材212を有している。第1及び第2部材211,212は、同じ形状であり、軸方向に所定の隙間を介して配置されている。第1及び第2部材211,212は、第1イナーシャリング201と第2イナーシャリング202との軸方向間において、リベット24の内周側で、かつ出力側回転体12の突起部121を挟むように配置されている。遠心子21は、出力側回転体12とともに回転し、出力側回転体12の回転による遠心力によって径方向に移動可能である。
 より詳細には、第1及び第2部材211,212の長手方向(回転方向)の両端には、それぞれ1個の第1ガイドローラ26a及び第2ガイドローラ26b(ガイド部)が配置されている。第1及び第2ガイドローラ26a,26bは、第1及び第2部材211,212の両端部に支持されたピン27の回りにブッシュ28を介して回転自在に装着されている。そして、第1ローラ26aの外周面は突起部121の一方の側面121aに当接して転動可能であり、第2ローラ26bの外周面は突起部121の他方の側面121bに当接して転動可能である。
 なお、遠心子21の第1及び第2部材211,212は、それぞれの外周面211a,212aが内周側に窪む円弧状に形成されており、後述するように、これらの外周面211a,212aがカム31として機能する。
 カム機構22は、カムフォロアとしての円筒状のコロ30と、第1及び第2部材211,212の外周面211a,212aであるカム31と、から構成されている。コロ30は、リベット24の胴部の外周に嵌めこまれている。すなわち、コロ30はリベット24に支持されている。なお、コロ30は、リベット24に対して回転自在に装着されているのが好ましいが、回転不能であってもよい。カム31は、コロ30が当接する円弧状の面であり、出力側回転体12と第1及び第2イナーシャリング201,202とが所定の角度範囲で相対回転した際には、コロ30はこのカム31に沿って移動する。
 詳細は後述するが、コロ30とカム31との接触によって、出力側回転体12と第1及び第2イナーシャリング201,202との間に回転位相差が生じたときに、遠心子21に生じた遠心力は、回転位相差が小さくなるような円周方向の力に変換される。
 [カム機構22の作動]
 図2、図4及び図5を用いて、カム機構22の作動(トルク変動の抑制)について説明する。なお、以下の説明では、第1及び第2イナーシャリング201,202を、単に「イナーシャリング20」と記す場合もある。
 ロックアップオン時には、フロントカバー2に伝達されたトルクは、入力側回転体11及びダンパ13を介して出力側回転体12に伝達される。
 トルク伝達時にトルク変動がない場合は、図2に示すような状態で、出力側回転体12及びイナーシャリング20は回転する。この状態では、カム機構22のコロ30はカム31のもっとも内周側の位置(円周方向の中央位置)に当接し、出力側回転体12とイナーシャリング20との回転位相差は「0」である。
 前述のように、出力側回転体12とイナーシャリング20との間の回転方向の相対変位量を、「回転位相差」と称しているが、これらは、図2、図4及び図5では、遠心子21及びカム31の円周方向の中央位置と、コロ30の中心位置と、のずれを示すものである。
 ここで、トルクの伝達時にトルク変動が存在すると、図4及び図5に示すように、出力側回転体12とイナーシャリング20との間には、回転位相差±θが生じる。図4は+R側に回転位相差+θが生じた場合を示し、図5は-R側に回転位相差-θが生じた場合を示している。
 図4に示すように、出力側回転体12とイナーシャリング20との間に回転位相差+θが生じた場合は、カム機構22のコロ30は、カム31に沿って相対的に図4における左側に移動する。このとき、遠心子21には遠心力が作用しているので、遠心子21に形成されたカム31がコロ30から受ける反力は、図4のP0の方向及び大きさとなる。この反力P0によって、円周方向の第1分力P1と、遠心子21を内周側に向かって移動させる方向の第2分力P2と、が発生する。
 そして、第1分力P1は、カム機構22及び遠心子21を介して出力側回転体12を図4における左方向に移動させる力となる。すなわち、出力側回転体12とイナーシャリング20との回転位相差を小さくする方向の力が、出力側回転体12に作用することになる。また、第2分力P2によって、遠心子21は、遠心力に抗して内周側に移動させられる。
 図5は、出力側回転体12とイナーシャリング20との間に回転位相差-θが生じた場合を示しており、カム機構22のコロ30の移動方向、反力P0、第1分力P1、及び第2分力P2の方向が図4と異なるだけで、カム機構22の作動は同様である。
 以上のように、トルク変動によって出力側回転体12とイナーシャリング20との間に回転位相差が生じると、遠心子21に作用する遠心力及びカム機構22の作用によって、出力側回転体12は、両者の回転位相差を小さくする方向の力(第1分力P1)を受ける。この力によって、トルク変動が抑制される。
 以上のトルク変動を抑制する力は、遠心力、すなわち出力側回転体12の回転数によって変化するし、回転位相差及びカム31の形状によっても変化する。したがって、カム31の形状を適宜設定することによって、トルク変動抑制装置14の特性を、エンジン仕様等に応じた最適な特性にすることができる。
 例えば、カム31の形状は、同じ遠心力が作用している状態で、回転位相差に応じて第1分力P1が線形に変化するような形状にすることができる。また、カム31の形状は、回転位相差に応じて第1分力P1が非線形に変化する形状にすることができる。
 [特性の例]
 図6は、トルク変動抑制特性の一例を示す図である。横軸は回転数、縦軸はトルク変動(回転速度変動)である。特性Q1はトルク変動を抑制するための装置が設けられていない場合、特性Q2は従来のダイナミックダンパ装置が設けられた場合、特性Q3は本実施形態のトルク変動抑制装置14が設けられた場合を示している。
 この図6から明らかなように、従来のダイナミックダンパ装置が設けられた装置(特性Q2)では、特定の回転数域のみについてトルク変動を抑制することができる。一方、本実施形態(特性Q3)では、すべての回転数域においてトルク変動を抑制することができる。
 [遠心子21の作動]
 たとえば、図4に示すように、出力側回転体12とイナーシャリング20との間に回転位相差が生じた場合、遠心子21には、コロ30との接点C1にイナーシャリング20からの力P0が作用する。この力P0によって、遠心子21に装着された第1ガイドローラ26aと突起部121の一方の側面121aとが接点C2において当接するとともに、第2ガイドローラ26bと突起部121の他方の側面121bとが接点C3において当接する。すなわち、図4に示すように、出力側回転体12とイナーシャリング20との間に+θの回転位相差が生じると、遠心子21の重心Gを挟んで、(接点C3にも力が作用するが)少なくともその両側の接点C1,C2に力が作用する。この場合、接点C2を支点として、遠心子21には、重心Gに作用する遠心力Wによる時計回りにモーメントが作用するとともに、接点C1には力P0による反時計回りのモーメントが作用する。このため、遠心子21に対して、一方側にのみ大きな回転モーメントが作用することはない。したがって、遠心子21が傾くのを抑えることができ、遠心子21を、2つのガイドローラ26a,26bのみで径方向にスムーズに移動させることができる。
 -第2実施形態-
 図7に本発明の第2実施形態を示す。図7は、第1実施形態の図2に相当する図であり、第2実施形態においても、前記同様に、図7に示した構成が、円周方向の4ヶ所に等角度間隔で設けられている。また、図8は図7のB方向から見た図である。
 第2実施形態のトルク変動抑制装置14’は、質量体20’を構成する第1イナーシャリング201’及び第2イナーシャリング202’と、4個の遠心子21’と、4個のカム機構22’と、を有している。
 第1及び第2イナーシャリング201’,202’は、それぞれ連続した円環状に形成された所定の厚みを有するプレートであり、図8に示すように、出力側回転体12’を挟んで出力側回転体12’の軸方向両側に所定の隙間をあけて配置されている。第1及び第2イナーシャリング201’,202’は、出力側回転体12’の回転軸と同じ回転軸を有し、出力側回転体12’とともに回転可能で、かつ出力側回転体12’に対して相対回転自在である。
 第1及び第2イナーシャリング201’,202’は、第1実施形態と同様に、リベット24’によって固定されており、互いに軸方向、径方向、及び回転方向に移動不能である。
 出力側回転体12’は、円板状に形成されて出力ハブ5に連結されている。出力側回転体12’の外周部には、4つの開口部120’が形成されており、この開口部120’には、内周側に突出する突起部121’が形成されている。また、出力側回転体12’には、円周方向に延びる円弧溝122’が形成されている。この円弧溝122’にリベット24’が貫通している。したがって、第1及び第2イナーシャリング201’,202’は、リベット24’の胴部が円弧溝122’内で移動可能な角度分だけ出力側回転体12’に対して相対回転可能である。言い換えれば、リベット24’の胴部と円弧溝122’とによって、第1及び第2イナーシャリング201’,202’と出力側回転体12’との相対回転を規制するストッパ機構が構成されている。
 遠心子21’は、回転方向に延びる第1部材211’及び第2部材212’を有している。第1及び第2部材211’,212’は、同じ形状であり、軸方向に所定の隙間を介して配置されている。第1及び第2部材211’,212’は、第1イナーシャリング201’と第2イナーシャリング202’との軸方向間において、リベット24’の内周側で、かつ出力側回転体12’の突起部121’を挟むように配置されている。遠心子21’は、出力側回転体12’とともに回転し、出力側回転体12’の回転による遠心力によって径方向に移動可能である。
 より詳細には、第1及び第2部材211’,212’の長手方向(回転方向)の両端には、それぞれ1個の第1ガイドローラ26a’及び第2ガイドローラ26b’(ガイド部)が配置されている。第1及び第2ガイドローラ26a’,26b’は、第1及び第2部材211’,212’の両端部に支持されたピン27’の回りに回転自在に装着されている。そして、第1ローラ26a’の外周面は突起部121’の一方の側面121a’に当接して転動可能であり、第2ローラ26b’の外周面は突起部121’の他方の側面121b’に当接して転動可能である。なお、遠心子21’を支持するための構成についての詳細は省略するが、例えば、開口部120’の外周面(図示せず)に当接させるようにすることが考えられる。
 なお、前記同様に、遠心子21’の外周面211a’,212a’が内周側に窪む円弧状に形成されてカム31’として機能する。
 カム機構22’の構成は、基本的に第1実施形態と同様である。すなわち、カムフォロアとしての円筒状のコロ30’と、遠心子21’の外周面211a’,212a’であるカム31’と、から構成されている。なお、第2実施形態では、コロ30’は、第1コロ311’と第2コロ312’とから構成されている。第1コロ311’は、第1イナーシャリング201’と出力側回転体12’との軸方向間に配置され、第1部材211’の外周面211a’を転動する。また、第2コロ312’は、第2イナーシャリング202’と出力側回転体12’との軸方向間に配置され、第2部材212’の外周面212a’を転動する。
 カム機構22’の動作については、第1実施形態と同様であるので、ここでは省略する。
 [他の実施形態]
 本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。
 (a)前記実施形態では、イナーシャリングを連続した円環状の部材で構成したが、分割された複数のイナーシャ体を円周方向に並べて配置してもよい。この場合は、複数のイナーシャ体を保持するために、イナーシャ体の外周側に、円環状の保持リング等の保持部材を設ける必要がある。
 (b)前記実施形態では、遠心子を出力側回転体に配置し、カムフォロアをイナーシャリングに設けたが、逆に、遠心子をイナーシャリングに配置し、カムフォロアを出力側回転体に設けてもよい。
 (c)前記実施形態では、ガイド部としてガイドローラを配置したが、樹脂レースやシート等の摩擦を低減する他の部材を配置してもよい。
 [適用例]
 以上のようなトルク変動抑制装置を、トルクコンバータや他の動力伝達装置に適用する場合、種々の配置が可能である。以下に、トルクコンバータや他の動力伝達装置の模式図を利用して、具体的な適用例について説明する。
 (1)図9は、トルクコンバータを模式的に示した図であり、トルクコンバータは、入力側回転体41と、出力側回転体42と、両回転体41,42の間に設けられたダンパ43と、を有している。入力側回転体41は、フロントカバー、ドライブプレート、ピストン等の部材を含む。出力側回転体42は、ドリブンプレート、タービンハブを含む。ダンパ43は複数のトーションスプリングを含む。
 この図9に示した例では、入力側回転体41を構成する回転部材のいずれかに遠心子が設けられており、この遠心子に作用する遠心力を利用して作動するカム機構44が設けられている。カム機構44については、前記各実施形態に示された構成と同様の構成を適用できる。
 (2)図10に示したトルクコンバータは、出力側回転体42を構成する回転部材のいずれかに遠心子が設けられており、この遠心子に作用する遠心力を利用して作動するカム機構44が設けられている。カム機構44については、前記各実施形態に示された構成と同様の構成を適用できる。
 (3)図11に示したトルクコンバータは、図9及び図10に示した構成に加えて、別のダンパ45と、2つのダンパ43,45の間に設けられた中間部材46と、を有している。中間部材46は、入力側回転体41及び出力側回転体42と相対回転自在であり、2つのダンパ43,45を直列的に作用させる。
 図11に示した例では、中間部材46に遠心子が設けられており、この遠心子に作用する遠心力を利用して作動するカム機構44が設けられている。カム機構44については、前記各実施形態に示された構成と同様の構成を適用できる。
 (4)図12に示したトルクコンバータは、フロート部材47を有している。フロート部材47は、ダンパ43を構成するトーションスプリングを支持するために部材であり、例えば、環状に形成されて、トーションスプリングの外周及び少なくとも一方の側面を覆うように配置されている。また、フロート部材47は、入力側回転体41及び出力側回転体42と相対回転自在であり、かつダンパ43のトーションスプリングとの摩擦によってダンパ43に連れ回る。すなわち、フロート部材47も回転する。
 この図12に示した例では、フロート部材47に遠心子48が設けられており、この遠心子48に作用する遠心力を利用して作動するカム機構44が設けられている。カム機構44については、前記各実施形態に示された構成と同様の構成を適用できる。
 (5)図13は、2つの慣性体51,52を有するフライホイール50と、クラッチ装置54と、を有する動力伝達装置の模式図である。すなわち、エンジンとクラッチ装置54との間に配置されたフライホイール50は、第1慣性体51と、第1慣性体51と相対回転自在に配置された第2慣性体52と、2つの慣性体51,52の間に配置されたダンパ53と、を有している。なお、第2慣性体52は、クラッチ装置54を構成するクラッチカバーも含む。
 図13に示した例では、第2慣性体52を構成する回転部材のいずれかに遠心子が設けられており、この遠心子に作用する遠心力を利用して作動するカム機構55が設けられている。カム機構55については、前記各実施形態に示された構成と同様の構成を適用できる。
 (6)図14は、図13と同様の動力伝達装置において、第1慣性体51に遠心子が設けられた例である。そして、この遠心子に作用する遠心力を利用して作動するカム機構55が設けられている。カム機構55については、前記各実施形態に示された構成と同様の構成を適用できる。
 (7)図15に示した動力伝達装置は、図13及び図14に示した構成に加えて、別のダンパ56と、2つのダンパ53,56の間に設けられた中間部材57と、を有している。中間部材57は、第1慣性体51及び第2慣性体52と相対回転自在である。
 図15に示した例では、中間部材57に遠心子58が設けられており、この遠心子58に作用する遠心力を利用して作動するカム機構55が設けられている。カム機構55については、前記各実施形態に示された構成と同様の構成を適用できる。
 (8)図16は、1つのフライホイールにクラッチ装置が設けられた動力伝達装置の模式図である。図16の第1慣性体61は、1つのフライホイールと、クラッチ装置62のクラッチカバーと、を含む。この例では、第1慣性体61を構成する回転部材のいずれかに遠心子が設けられており、この遠心子に作用する遠心力を利用して作動するカム機構64が設けられている。カム機構64については、前記各実施形態に示された構成と同様の構成を適用できる。
 (9)図17は、図16と同様の動力伝達装置において、クラッチ装置62の出力側に遠心子65が設けられた例である。そして、この遠心子65に作用する遠心力を利用して作動するカム機構64が設けられている。カム機構64については、前記各実施形態に示された構成と同様の構成を適用できる。
 (10)図面には示していないが、本発明のトルク変動抑制装置を、トランスミッションを構成する回転部材のいずれかに配置してもよいし、さらにはトランスミッションの出力側のシャフト(プロペラシャフト又はドライブシャフト)に配置してもよい。
 (11)他の適用例として、従来から周知のダイナミックダンパ装置や、振り子式ダンパ装置が設けられた動力伝達装置に、本発明のトルク変動抑制装置をさらに適用してもよい。
1 トルクコンバータ
11 入力側回転体
12 出力側回転体
121 突起部
14 トルク変動抑制装置
20,201,202 イナーシャリング(質量体)
21 遠心子
211 第1部材
212 第2部材
22 カム機構
26a,26b ガイドローラ
30 コロ(カムフォロア)
31 カム

Claims (10)

  1.  トルクが入力される回転体のトルク変動を抑制するためのトルク変動抑制装置であって、
     前記回転体と軸方向に並べて配置され、前記回転体とともに回転可能であり、かつ前記回転体に対して相対回転自在に配置された質量体と、
     前記回転体及び前記質量体の回転による遠心力を受けるように配置された遠心子と、
     カムと、前記カムに沿って移動するカムフォロアと、を有し、前記遠心子に作用する遠心力を受けて、前記回転体と前記質量体との間に回転方向における相対変位が生じたときには、前記遠心力を、前記相対変位が小さくなる方向の円周方向力に変換するカム機構と、
    を備え、
     前記カムは前記遠心子に設けられ、
     前記カムフォロアは前記回転体及び前記質量体のいずれかに設けられ、
     前記遠心子は、回転方向に延びて形成されるとともに、回転方向の両端部に隣接する部材と当接して前記遠心子の移動をガイドするガイド部を有しており、
     前記回転体と前記質量体との間に回転方向における相対変位が生じたときに、前記遠心子のガイド部は、前記遠心子の重心を挟んで前記カムと前記カムフォロアの接点と逆側の位置で前記隣接する部材と当接する、
    トルク変動抑制装置。
  2.  前記質量体は、前記回転体を挟んで対向して配置された第1イナーシャリング及び第2イナーシャリングを有している、請求項1に記載のトルク変動抑制装置。
  3.  前記質量体は、前記回転体を軸方向に貫通して前記第1イナーシャリングと前記第2イナーシャリングとを相対回転不能に連結するピンをさらに有し、
     前記遠心子は、前記回転体の外周部でかつ前記ピンの内周側において前記第1イナーシャリングと前記第2イナーシャリングとの軸方向間に配置されており、
     前記カムフォロアは、内部に前記ピンが軸方向に貫通する孔を有する円筒状のコロであり、
     前記カムは、前記遠心子に形成されて前記カムフォロアに当接し、前記回転体と前記質量体との間の回転方向における相対変位量に応じて前記円周方向力が変化するような形状を有する、
    請求項2に記載のトルク変動抑制装置。
  4.  前記回転体は外周面に突起部を有し、
     前記遠心子は、前記突起部を軸方向において挟むように配置された第1部材及び第2部材を有し、
     前記遠心子のガイド部は、前記第1部材及び前記第2部材を連結するとともに、前記回転体の突起部の両側面に当接する、
    請求項1から3のいずれかに記載のトルク変動抑制装置。
  5.  前記ガイド部は、前記遠心子の回転方向の両端部に回転自在に支持され、前記回転体の突起部の両側面を転動する1対のローラである、請求項4に記載のトルク変動抑制装置。
  6.  前記質量体は、前記回転体を軸方向に貫通して前記第1イナーシャリングと前記第2イナーシャリングとを相対回転不能に連結するピンをさらに有し、
     前記遠心子は、前記ピンの内周側において前記第1イナーシャリングと前記第2イナーシャリングとの軸方向間に配置されており、
     前記カムフォロアは、内部に前記ピンが軸方向に貫通する孔を有する円筒状のコロであり、
     前記カムは、前記遠心子に形成されて前記カムフォロアに当接し、前記回転体と前記質量体との間の回転方向における相対変位量に応じて前記円周方向力が変化するような形状を有する、
    請求項2に記載のトルク変動抑制装置。
  7.  前記回転体は内周側に突出する突起部を有し、
     前記遠心子は、前記突起部を軸方向において挟むように配置された第1部材及び第2部材を有し、
     前記遠心子のガイド部は、前記第1部材及び前記第2部材を連結するとともに、前記回転体の突起部の両側面に当接する、
    請求項6に記載のトルク変動抑制装置。
  8.  前記質量体は連続した円環状に形成されている、請求項1から7のいずれかに記載のトルク変動抑制装置。
  9.  エンジンとトランスミッションとの間に配置され、前記トランスミッションに連結されるタービンを有するトルクコンバータであって、
     前記エンジンからのトルクが入力される入力側回転体と、
     前記トランスミッションにトルクを出力する出力側回転体と、
     前記入力側回転体と前記タービンとの間に配置されたダンパと、
     請求項1から8のいずれかに記載のトルク変動抑制装置と、
    を備えたトルクコンバータ。
  10.  回転軸を中心に回転する第1慣性体と、前記回転軸を中心に回転し前記第1慣性体と相対回転自在な第2慣性体と、前記第1慣性体と前記第2慣性体との間に配置されたダンパと、を有するフライホイールと、
     前記フライホイールの前記第2慣性体に設けられたクラッチ装置と、
     請求項1から8のいずれかに記載のトルク変動抑制装置と、
    を備えた動力伝達装置。
PCT/JP2017/021622 2016-07-20 2017-06-12 トルク変動抑制装置、トルクコンバータ、及び動力伝達装置 WO2018016229A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780030978.4A CN109154375A (zh) 2016-07-20 2017-06-12 转矩变动抑制装置、液力变矩器以及动力传递装置
US16/084,656 US10648533B2 (en) 2016-07-20 2017-06-12 Torque fluctuation inhibiting device, torque converter and power transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016142112A JP6657041B2 (ja) 2016-07-20 2016-07-20 トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP2016-142112 2016-07-20

Publications (1)

Publication Number Publication Date
WO2018016229A1 true WO2018016229A1 (ja) 2018-01-25

Family

ID=60992134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021622 WO2018016229A1 (ja) 2016-07-20 2017-06-12 トルク変動抑制装置、トルクコンバータ、及び動力伝達装置

Country Status (4)

Country Link
US (1) US10648533B2 (ja)
JP (1) JP6657041B2 (ja)
CN (1) CN109154375A (ja)
WO (1) WO2018016229A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733506B2 (ja) * 2016-11-07 2020-08-05 トヨタ自動車株式会社 捩り振動低減装置
JP2019138421A (ja) * 2018-02-14 2019-08-22 株式会社エクセディ トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP6764430B2 (ja) * 2018-02-21 2020-09-30 株式会社エクセディ トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP7208826B2 (ja) * 2019-02-25 2023-01-19 株式会社エクセディ 回転装置
JP7218221B2 (ja) * 2019-03-13 2023-02-06 株式会社エクセディ トルク変動抑制装置、及びトルクコンバータ
JP7263066B2 (ja) * 2019-03-13 2023-04-24 株式会社エクセディ トルク変動抑制装置、及びトルクコンバータ
DE102019207826A1 (de) * 2019-05-28 2020-12-03 Zf Friedrichshafen Ag Segmentierter Schwingungstilger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246150U (ja) * 1988-09-24 1990-03-29
JP2016502053A (ja) * 2012-12-21 2016-01-21 ヴァレオ アンブラヤージュ 車両のトルク伝達デバイス用の振動ダンパー

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331369A (en) * 1980-05-22 1982-05-25 Scientific Micro Systems, Inc. Chassis integrated slide
DE4339421B4 (de) * 1992-12-10 2008-02-28 Zf Sachs Ag Zwei-Massen-Schwungrad
DE10026663A1 (de) * 2000-05-29 2001-12-06 Alfred Evert Schwungsystem
US7335107B2 (en) * 2004-08-27 2008-02-26 Caterpillar Inc. Torsional coupling
DE102009010126A1 (de) * 2008-03-03 2009-09-10 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehschwingungsdämpfer
DE102011076790B4 (de) 2011-05-31 2023-07-13 Zf Friedrichshafen Ag Antriebssystem für ein Fahrzeug
DE102012221393A1 (de) * 2011-12-16 2013-06-20 Schaeffler Technologies AG & Co. KG Torsionsdämpfer
JP5326008B2 (ja) 2012-02-07 2013-10-30 株式会社エクセディ ダイナミックダンパ装置及び流体式動力伝達装置のロックアップ装置
JP2013185598A (ja) * 2012-03-05 2013-09-19 Toyota Motor Corp 捩り振動減衰装置
CN104471279B (zh) * 2012-08-27 2016-11-16 宝马股份公司 离心力摆
JP6182434B2 (ja) 2013-11-12 2017-08-16 株式会社エクセディ トルクコンバータのロックアップ装置
JP6264998B2 (ja) * 2014-03-27 2018-01-24 アイシン精機株式会社 ダンパ
JP6361287B2 (ja) * 2014-05-29 2018-07-25 アイシン・エィ・ダブリュ株式会社 遠心振子式吸振装置
JP6541969B2 (ja) * 2014-12-26 2019-07-10 株式会社エクセディ 動力伝達装置及びトルクコンバータのロックアップ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246150U (ja) * 1988-09-24 1990-03-29
JP2016502053A (ja) * 2012-12-21 2016-01-21 ヴァレオ アンブラヤージュ 車両のトルク伝達デバイス用の振動ダンパー

Also Published As

Publication number Publication date
US10648533B2 (en) 2020-05-12
JP6657041B2 (ja) 2020-03-04
CN109154375A (zh) 2019-01-04
US20190078644A1 (en) 2019-03-14
JP2018013152A (ja) 2018-01-25

Similar Documents

Publication Publication Date Title
WO2017043316A1 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
WO2018016229A1 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
WO2017029932A1 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
WO2018150777A1 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP6757680B2 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
WO2018016212A1 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP6709765B2 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP6653538B2 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
WO2018150660A1 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP2019039456A (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP2019039456A5 (ja)
JP6577823B2 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP2019108950A (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP6656868B2 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP6539180B2 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP2019052714A (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP6709767B2 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP2021042840A (ja) トルク変動抑制装置、及び動力伝達装置
WO2018142890A1 (ja) 動力伝達装置
JP6682572B2 (ja) トルク変動抑制装置
JP2020076505A (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP2019138421A (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP2022112223A (ja) 回転装置、及び動力伝達装置
JP2018123944A (ja) 動力伝達装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830749

Country of ref document: EP

Kind code of ref document: A1