DE102011076790B4 - Antriebssystem für ein Fahrzeug - Google Patents

Antriebssystem für ein Fahrzeug Download PDF

Info

Publication number
DE102011076790B4
DE102011076790B4 DE102011076790.8A DE102011076790A DE102011076790B4 DE 102011076790 B4 DE102011076790 B4 DE 102011076790B4 DE 102011076790 A DE102011076790 A DE 102011076790A DE 102011076790 B4 DE102011076790 B4 DE 102011076790B4
Authority
DE
Germany
Prior art keywords
arrangement
mass
deflection mass
deflection
centrifugal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102011076790.8A
Other languages
English (en)
Other versions
DE102011076790A1 (de
Inventor
Matthias Tögel
Mathias Kopp
Thomas Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Priority to DE102011076790.8A priority Critical patent/DE102011076790B4/de
Priority to JP2014513096A priority patent/JP5972970B2/ja
Priority to PCT/EP2012/058116 priority patent/WO2012163621A1/de
Priority to CN201280026351.9A priority patent/CN103582767B/zh
Priority to US14/119,778 priority patent/US20140090514A1/en
Publication of DE102011076790A1 publication Critical patent/DE102011076790A1/de
Application granted granted Critical
Publication of DE102011076790B4 publication Critical patent/DE102011076790B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/145Masses mounted with play with respect to driving means thus enabling free movement over a limited range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0263Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means the damper comprising a pendulum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2121Flywheel, motion smoothing-type
    • Y10T74/2128Damping using swinging masses, e.g., pendulum type, etc.

Abstract

Antriebssystem für ein Fahrzeug, umfassend ein Antriebsaggregat (32d) mit einem um eine Drehachse (A) drehbaren Antriebsorgan (32d) sowie wenigstens eine Fliehkraft-Masse-Pendeleinheit (10d) mit einem Auslenkungsmassenträger (12d) und einer durch eine Auslenkungsmassenkopplungsanordnung (18d) an dem Auslenkungsmassenträger (12d) bezüglich diesem aus einer Grund-Relativlage auslenkbar getragenen Auslenkungsmassenanordnung (14d), wobei bei Auslenkung der Auslenkungsmassenanordnung (14d) aus der Grund-Relativlage ein Radialabstand der Auslenkungsmassenanordnung (14d) bezüglich deren Drehachse (A) sich ändert, ferner umfassend eine Getriebeanordnung (34d) mit wenigstens einer durch das Antriebsorgan (32d) zur Drehung antreibbaren Eingangswelle (38d), wobei die Getriebeanordnung (34d) ein Automatikgetriebe ist, wobei die Fliehkraft-Masse-Pendeleinheit (10d) an eine im Drehmomentenfluss auf die wenigstens eine Eingangswelle (38d) folgende Getriebekomponente (86d) angekoppelt ist und auf eine Tilgungsordnung abgestimmt ist, die um eine vorbestimmte Abweichung über einer durch die Fliehkraft-Masse-Pendeleinheit (10d) zu bedämpfenden Anregungsordnung liegt.

Description

  • Die vorliegende Erfindung betrifft ein Antriebssystem für ein Fahrzeug, umfassend ein Antriebsaggregat mit einem um eine Drehachse drehbaren Antriebsorgan sowie wenigstens eine Fliehkraft-Masse-Pendeleinheit mit einem Auslenkungsmassenträger und einer durch eine Auslenkungsmassenkopplungsanordnung an dem Auslenkungsmassenträger bezüglich diesem aus einer Grund-Relativlage auslenkbar getragenen Auslenkungsmassenanordnung, wobei bei Auslenkung der Auslenkungsmassenanordnung aus der Grund-Relativlage ein Radialabstand der Auslenkungsmassenanordnung bezüglich deren Drehachse sich ändert.
  • Aus der WO 2011/141246 A1 ist ein Schwingungstilger in Form eines drehzahladaptiven Tilgers bekannt, der an einem Torsionsdämpfer vorgesehen ist. Dabei ist der drehzahladaptive Tilger an einem Ausgang, hier an einer Nabenscheibe, des Torsionsdämpfers angebracht.
  • Mit der DE 198 31 160 A1 wird ein drehzahladaptiver Schwingungstilger offenbart, der an einer rotierbaren Welle vorgesehen ist und wenigstens eine Trägheitsmasse vorsieht, wobei die wenigesten eine Trägheitsmasse ausgehnd von einer mittleren Position, relativ zu einem Nabenteil entlang einer Bewegungsbahn in Auslenkungsposition hin- und herbewegbar ist.
  • Die DE 10 2009 042 825 A1 betrifft eine Drehmomentübertragungseinrichtung im Antriebsstrang eines Kraftfahrzeuges mit einer Drehschwingungsdämpfungseinrichtung und einer Fliehkraftpendeleinrichtung.
  • Aus der DE 10 2010 014 674 A1 ist ein hydrodynamischer Drehmomentwandler bekannt, wobei zwischen einem Turbinenrad und einer Abtriebsseite des Drehmomentwandlers ein Turbinendämpfer wirksam angeordnet ist. Zur Verbesserung der Schwingungstilgung wird an einem Zwischenflansch des Turbinendämpfers ein drehzahladaptiver Schwingungstilger aufgenommen
  • Aus der DE 10 2008 057 647 A1 ist ein Antriebssystem mit einem als Brennkraftmaschine ausgebildeten Antriebsaggregat und einem Getriebe bekannt. Im Drehmomentenfluss zwischen der Brennkraftmaschine und dem Getriebe ist ein hydrodynamischer Drehmomentwandler angeordnet, dessen Gehäuse und damit Pumpenrad durch die Brennkraftmaschine zur Drehung antreibbar ist und dessen Turbinenrad mit einer als Abtriebsorgan wirksamen Abtriebsnabe gekoppelt ist. Diese Abtriebsnabe wiederum überdeckt das Drehmoment zu einer Getriebeeingangswelle.
  • Im Drehmomentenfluss zwischen einer Überbrückungskupplung des hydrodynamischen Drehmomentwandlers und der Abtriebsnabe liegt eine Torsionsschwingungsdämpferanordnung mit zwei seriell wirksamen Tosionsschwingungsdämpfern. Jeder dieser Torsionsschwingungsdämpfer umfasst eine Primärseite und eine gegen die Rückstellwirkung einer jeweiligen Dämpferelementenanordnung bezüglich der zugehörigen Primärseite auslenkbare Sekundärseite. Die Sekundärseite des im Drehmomentenfluss auf die Überbrückungskupplung folgenden ersten Torsionsschwingungsdämpfers und die Primärseite des mit seiner Sekundärseite das Drehmoment an die Abtriebsnabe weiter leitenden zweiten Torsionsschwingungsdämpfers bilden einen wesentlichen Teil einer Torsionsschwingungsdämpferanordnungszwischenmasse, an welche auch das Turbinenrad angebunden ist. Somit ist das Turbinenrad über den zweiten der beiden Torsionsschwingungsdämpfer an die Abtriebsnabe angekoppelt.
  • An die Torsionsschwingungsdämpferanordnungszwischenmasse ist weiterhin eine Fliehkraft-Masse-Pendelanordnung angekoppelt. Ein Auslenkungsmassenträger derselben ist integral ausgebildet mit bzw. bereitgestellt durch ein Deckscheibenelement der Primärseite des zweiten der Torsionsschwingungsdämpfer. Eine Auslenkungsmassenanordnung umfasst mehrere Masseteile, die über bolzen- bzw. walzenartig ausgestaltete Kopplungselemente einer Auslenkungsmassenkopplungsanordnung mit dem Auslenkungsmassenträger gekoppelt sind. Dabei sind die Kopplungselemente entlang der Führungsbahnen in den Auslenkungsmasseteilen oder/und dem Auslenkungsmassenträger bewegbar. Die Fürhungsbahnen in den Auslenkungsmasseteilen weisen radial innen liegende Scheitelbereiche auf, während die Führungsbahnen im Auslenkungsmassenträger radial außen liegende Scheitelbereiche aufweisen. Dies hat zur Folge, dass unter Fliehkrafteinwirkung die Auslenungsmassenteile sich in einer radial von der Drehachse des hydrodynamischen Drehmomentwandlers am weitesten entfernt liegenden Positionierung anordnen werden. Bei Aufreten von Drehbeschleunigungen, beispielsweise ausgelöst durch Drehungleichförmigkeiten bzw. Schwingungsanregungen, werden die Auslenkungsmasseteile aus dieser Grund-Relativlage bezüglich des Auslenkungsmassenträgers ausgelenkt, indem die Kopplungselemente sich ausgehend von den jeweiligen Scheitelbereichen entlang von Führungsbahnen bewegen. Dabei verlagern sich die Auslenkungsmassenteile bedingt durch die gekrümmte Ausgestaltung der Führungsbahnen nach radial innen und nehmen potentielle Energie auf.
  • Durch die Auswahl der Masse bzw. des Massenträgheitsmoments der Auslenkungsmasseteile einerseits und die Krümmung der Führungsbahnen andererseits wird es möglich, eine derartige Fliehkraft-Masse-Pendeleinheit auf eine bestimmte Anregungsordnung abzustimmen, welche so weit als möglich eliminiert, also getilgt werden soll. Da sich mit ändernder Drehzahl und damit auch ändernder Fliehkraft auch die Eigenschwingungsfrequenz einer derartigen Fliehkraft-Masse-Pendelanordnung verändert, bleibt die Abstimmung auf eine bestimmte Anregungsordnung im Wesentlichen erhalten, so dass diese über den gesamten Drehzahlbereich getilgt werden kann.
  • Es ist die Aufgabe der vorliegenden Erfindung ein Antriebssystem für ein Fahrzeug vorzusehen, bei welchem eine verbesserte Auslöschung der im Betriebszustand auftretenden Schwingungsanregungen erreicht werden kann.
  • Die eingangs genannte Aufgabe wird gelöst durch ein Antriebssystem für ein Fahrzeug, umfassend ein Antriebsaggregat mit einem um eine Drehachse drehbaren Antriebsorgan sowie wenigstens eine Fliehkraft-Masse-Pendeleinheit mit einem Auslenkungsmassenträger und einer durch eine Auslenkungsmassenkopplungsanordnung an dem Auslenkungsmassenträger bezüglich diesem aus einer Grund-Relativlage auslenkbar getragenen Auslenkungsmassenanordnung, wobei bei Auslenkung der Auslenkungsmassenanordnung aus der Grund-Relativlage ein Radialabstand der Auslenkungsmassenanordnung bezüglich deren Drehachse sich ändert, ferner umfassend eine Getriebeanordnung mit wenigstens einer durch das Antriebsorgan zur Drehung antreibbaren Eingangswelle, wobei die Fliehkraft-Masse-Pendeleinheit an eine im Drehmomentenfluss auf die wenigstens eine Eingangswelle folgende Getriebekomponente angekoppelt ist und auf eine Tilgungsordnung abgestimmt ist, die um eine vorbestimmte Abweichung über einer durch die Fliehkraft-Masse-Pendeleinheit zu bedämpfenden Anregungsordnung liegt.
  • Bei dieser erfindungsgemäßen Ausgestaltung wird die Kopplungsanordnung im Drehmomentenfluss also erst folgend auf die Eingangswelle einer Getriebeanordnung angekoppelt, so dass insbesondere bei Schwingungsanregung im Bereich des Antriebsaggregats die Steifigkeit, also Torsionssteifigkeit der Eingangswelle als weiteres Schwingungssystem mitbenutzt werden kann bzw. zu berücksichtigen ist und unter weitergehender Berücksichtigung der gezielt eingeführten Abweichung der Tilgungsordnung von der Anmeldungsordnung nach oben ein sehr vorteilhaftes Tilgungsverhalten erreicht werden kann.
  • Bei Einführen einer Abweichung der Tilgungsordnung bezüglich der Anregungsordnung nach oben ist es vorteilhaft, wenn die Abweichung im Bereich von 0,01 bis 0,2, vorzugsweise 0,02 bis 0,1, liegt.
  • Die erfindungsgemäß vorgesehene Ausgestaltung mit gezielt eingeführter Verstimmung eines Schwingungssystems ist besonders dann vorteilhaft anwendbar, wenn das Antriebsaggregat eine Brennkraftmaschine umfasst. In einer Brennkraftmaschine, insbesondere einer Reihen-Mehrzylindermaschine, wird durch die mit im Wesentlichen gleichmäßigem Winkelabstand - bezogen auf die Umdrehung der Kurbelwelle - eine Abfolge von schwingungsanregenden Ereignissen generiert, welche mit entsprechender Periodizität sich im folgenden Antriebsstrang ausbreitet und dann durch die erfindungsgemäß vorgesehene bzw. auch ausgelegte Fliehkraft-Masse-Pendeleinheit bedämpft werden können.
  • Dabei kann beispielsweise vorgesehen sein, dass die Anregungsordnung ermittelt wird gemäß: O = Az × 0,5,
    Figure DE102011076790B4_0001
    wobei gilt:
  • O
    Anregungsordnung,
    AZ
    Anzahl der Zylinder der Brennkraftmaschine.
  • Hierbei wird also berücksichtigt, dass insbesondere bei einer Viertakt-Brennkraftmaschine in jedem Zylinder eine Zündung, also ein schwingungsanregendes Ereignis, pro zwei Umdrehungen der Kurbelwelle vorliegt. Dies bedeutet, dass dann, wenn, wie dies üblich ist, die Anregungsfrequenz auf die Drehzahl der Brennkraftmaschine bezogen wird, die pro Umdrehung vorhandenen schwingungsanregenden Ereignisse in ihrer Anzahl der halben Anzahl der vorhandenen Zylinder entspricht. Dreht beispielsweise eine Vierzylinder-Viertakt-Reihenbrennkraftmaschine mit einer Drehzahl von 3.000 Umdrehungen pro Minute, entspricht dies einer Drehzahl von 50 Umdrehungen pro Sekunde. Da die Ordnungen allgemein bezogen sind auf die Drehzahl der Kurbelwelle, entspricht die erste Ordnung in diesem Zustand also einer Frequenz von 50/s. Da jedoch pro Umdrehung zwei schwingungsanregende Ereignisse, also zwei Zündungen erfolgen, wird sich im Antriebsstrang eine Anregungsfrequenz von 100/s ausbreiten, was somit - bezogen auf die Drehzahl der Brennkraftmaschine bzw. der Kurbelwelle derselben - der zweiten Ordnung entspricht. Entsprechend ist bei einer Sechszylinder-Viertakt-Reihenbrennkraftmaschine die dritte Ordnung kritisch - wieder bezogen auf die Drehzahl -, da pro Umdrehung drei der sechs Zylinder zünden und mithin pro Umdrehung drei schwingungsanregende Ereignisse vorliegen.
  • Die vorliegende Erfindung wird nachfolgend mit Bezug auf die beiliegenden Figuren detailliert beschrieben. Es zeigt:
    • 1 in Axialansicht eine Fliehkraft-Masse-Pendeleinheit;
    • 2 in prinzipartiger Darstellung ein Antriebssystem;
    • 3 in prinzipartiger Darstellung ein Antriebssystem;
    • 4 in prinzipartiger Darstellung ein Antriebssystem;
    • 5 in prinzipartiger Darstellung ein Antriebssystem;
    • 6 in prinzipartiger Darstellung ein erfindungsgemäßes Antriebssystem;
    • 7 eine Teildarstellung einer konstruktiven Ausführung des in 2 dargestellten Antriebssystems.
  • Die 1 zeigt in Axialansicht, also betrachtet in Richtung einer Drehachse A, eine allgemein als drehzahladaptiver Tilger zu bezeichnende Fliehkraft-Masse-Pendeleinheit 10. Diese umfasst einen beispielsweise ringscheibenartig ausgebildeten Auslenkungsmassenträger 12 und eine Auslenkungsmassenanordnung 14 mit einer Mehrzahl von in Umfangsrichtung um die Drehachse A aufeinander folgenden Auslenkungsmasseteilen 16. Diese wiederum können beispielsweise zweiteilig aufgebaut sein, wobei an beiden axialen Seiten des Auslenkungsmassenträgers 12 jeweils ein Teil eines jeweiligen Auslenkungsmasseteils 16 liegen kann.
  • Eine allgemein mit 18 bezeichnete Auslenkungsmassenkopplungsanordnung umfasst in Zuordnung zu jedem Auslenkungsmasseteil 16 beispielsweise zwei in Umfangsabstand zueinander angeordnete, walzenartig ausgebildete Kopplungselemente 20. In Zuordnung zu jedem dieser Kopplungselemente 20 ist in den Auslenkungsmasseteilen 16 eine Führungsbahn 22 mit radial innen liegendem Scheitelbereich 24 vorgesehen. Entsprechend ist im Auslenkungsmassenträger 12, wie beispielsweise in 1 rechts unten mit Strichlinie dargestellt, eine Führungsbahn 26 in Zuordnung zu jedem Kopplungselement 20 vorgesehen, wobei diese Führungsbahnen 26 einen radial außen liegenden Scheitelbereich 28 aufweisen. Die Kopplungselemente 20 können unter Durchführung einer Abrollbewegung oder/und einer Gleitbewegung sich entlang der Führungsbahnen 22, 26 bewegen. Bei Fliehkrafteinwirkung werden sich die Auslenkungsmasseteile 16 in der in 1 dargestellten Positionierung befinden, in welcher die Kopplungselemente in den beiden diesen jeweils zugeordneten Führungsbahnen 22, 26 im jeweiligen Scheitelbereich 24, 28 positioniert sind.
  • Bei Auftreten von Drehbeschleunigungen des Auslenkungsmassenträgers 12 werden die mit diesem nicht starr gekoppelten Auslenkungsmasseteile 16 der Auslenkungsmassenanordnung 14 in Umfangsrichtung beschleunigt. Dies führt dazu, dass die Kopplungselemente 20 sich entlang der zugehörigen Führungsbahnen 22, 26 bewegen und sich somit aus dem Scheitelbereich 24, 28 herausbewegen. In Folge davon verlagern sich die Auslenkungsmasseteile 16 nach radial innen in Richtung auf die Drehachse A zu. Sie nehmen dabei potentielle Energie auf, so dass sie unter der Fliehkrafteinwirkung selbst zur Schwingung angeregt werden.
  • Durch die Auswahl verschiedener Auslegungsparameter wird es möglich, das Schwingungsverhalten bzw. Eigenschwingungsverhalten der Fliehkraft-Masse-Pendeleinheit 10 auf eine anregende Schwingungsordnung abzustimmen. Hierzu können insbesondere die Massen der Auslenkungsmasseteile 16, deren Abstand zur Drehachse A, also deren Massenträgheitsmoment bei Drehbeschleunigung und auch die Krümmung der Führungsbahnen 22, 26 beeinflusst werden.
  • Es sei darauf hingewiesen, dass in 1 nur ein Beispiel einer derartigen Fliehkraft-Masse-Pendeleinheit 10 dargestellt ist. Diese könnte in verschiedensten Aspekten anders ausgebildet sein. Von Bedeutung ist, dass bei Auftreten von Drehbeschleunigungen die Auslenkungsmassenanordnung 14 bzw. deren Auslenkungsmasseteile 16 sich entgegen der Fliehkrafteinwirkung nach radial innen bewegen und somit zur Schwingung angeregt werden.
  • In 2 ist ein Antriebssystem beispielsweise für ein Kraftfahrzeug allgemein mit 30 bezeichnet. Das Antriebssystem 30 umfasst ein Antriebsaggregat 32, beispielsweise ausgebildet als oder umfassend eine Brennkraftmaschine. Ferner umfasst das Antriebssystem 30 eine Getriebeanordnung 34, beispielsweise ausgebildet als Automatikgetriebe. Im Drehmomentübertragungsweg zwischen einer als Antriebsorgan wirksamen Antriebswelle 36, also beispielsweise Kurbelwelle einer Brennkraftmaschine, und einer Getriebeeingangswelle 38 der Getriebeanordnung 34 liegt eine hier als hydrodynamischer Drehmomentwandler ausgebildete hydrodynamische Kopplungsanordnung 40. Diese umfasst eine prinzipartig dargestellte Gehäuseanordnung 42, welche an die Antriebswelle 36 zur gemeinsamen Drehung mit dieser um die Drehachse A angekoppelt ist. Mit der Gehäuseanordnung 42 um die Drehachse A drehbar ist ein Pumpenrad 44. Ferner sind in einem allgemein mit Fluid gefüllten oder füllbaren Innenraum 46 der Gehäuseanordnung 42 ein Turbinenrad 48 sowie ein Leitrad 50 vorgesehen. Im dargestellten Ausgestaltungsbeispiel ist das Turbinenrad 48 an eine als Abtriebsorgan wirksame Abtriebsnabe 52 angekoppelt, die beispielsweise durch Verzahnungseingriff mit der Getriebeeingangswelle 38 zur gemeinsamen Drehung verbunden ist.
  • Durch das Pumpenrad 44, das Turbinenrad 48 und das Leitrad 50 ist ein allgemein mit 54 bezeichneter hydrodynamischer Kreislauf bereitgestellt, welcher das von dem Antriebsaggregat 32 abgegebene Drehmoment verstärken und entsprechend verstärkt zur Getriebeeingangswelle 38 übertragen kann.
  • Die hydrodynamische Kopplungsanordnung 40 umfasst ferner eine als Überbrückungskupplung ausgebildete bzw. wirksame Kupplungsanordnung 56, die betriebszustandsabhängig eingerückt bzw. ausgerückt werden kann, um parallel zu dem hydrodynamischen Kreislauf 54 bzw. diesen überbrückend einen direkten Drehmomentübertragungsweg zwischen der Gehäuseanordnung 42 und der Abtriebsnabe 52 herstellen zu können. In diesem Drehmomentübertragungsweg liegt ferner eine allgemein mit 58 bezeichnete Torsionsschwingungsdämpferanordnung. Diese umfasst im dargestellten Beispiel zwei seriell wirksame Torsionsschwingungsdämpfer 60, 62. Eine Primärseite 64 des in Drehmomentenfluss zunächst auf die Überbrückungskupplung 56 folgenden Torsionsschwingungsdämpfers 60 ist an den Ausgangsbereich der Überbrückungskupplung 56 angekoppelt und ist über eine nicht dargestellte Dämpferelementenanordnung, beispielsweise umfassend eine Mehrzahl von Schraubendruckfedern oder dergleichen, zur Drehmomentübertragung mit einer Sekundärseite 66 des Torsionsschwingungsdämpfers 60 gekoppelt. Entgegen der Rückstellwirkung dieser Dämpferelementenanordnung können die Primärseite 64 und die Sekundärseite 66 sich bezüglich einander beispielsweise um die Drehache A verdrehen.
  • Die Sekundärseite 66 des ersten Torsionsschwingungsdämpfers ist mit einer Primärseite 68 des im Drehmomentenfluss dann folgenden zweiten Torsionsschwingungsdämpfers 62 gekoppelt oder/und ggf. damit auch integral ausgebildet und bildet mit dieser eine Torsionsschwingungsdämpferanordnungszwischenmasse 70. Eine Sekundärseite 72 des zweiten Torsionsschwingungsdämpfers 62 ist über eine nicht dargestellte Dämpferelementenanordnung, beispielsweise umfassend eine Mehrzahl von Schraubendruckfedern oder dergleichen, zur Drehmomentübertragung mit der Primärseite 68 gekoppelt und bezüglich dieser beispielsweise um die Drehachse A verdrehbar. Die Sekundärseite 72 ist, ebenso wie das Turbinenrad 48, mit der Abtriebsnabe 52 gekoppelt. Bei dieser Torsionsschwingungsdämpferanordnung 58 bildet also die Primärseite 64 des ersten Torsionsschwingungsdämpfers 60 den Eingangsbereich derselben, während die Sekundärseite 72 des zweiten Torsionsschwingungsdämpfers 62 den Ausgangsbereich desselben bereitstellt.
  • An die Torsionsschwingungsdämpferanordnungszwischenmasse 70 ist eine Fliehkraft-Masse-Pendeleinheit 10 angekoppelt, wie sie beispielsweise vorangehend mit Bezug auf die 1 erläutert wurde. Dabei kann der Auslenkungsmassenträger 12 derselben einen integralen Bestandteil der Torsionsschwingungsdämpferanordnungszwischenmasse 70 bereitstellen oder mit einem Bauteil derselben verbunden sein.
  • Durch die Ankopplung der Fliehkraft-Masse-Pendeleinheit 10 an die Torsionsschwingungsdämpferanordnungszwischenmasse 70 wird erreicht, dass die Fliehkraft-Masse-Pendeleinheit 10 mit derjenigen Frequenz, mit welcher die Torsionsschwingungsdämpferanordnungszwischenmasse 70 bei Schwingungsanregung, beispielsweise erzeugt in dem Antriebsaggregat 32, schwingt, zur Schwingung angeregt wird. Erfindungsgemäß ist dabei die Auslegung der Tilgungsordnung der Fliehkraft-Masse-Pendeleinheit 10 derart gewählt, dass sie geringfügig unter der an sich zu bedämpfenden Anregungsordnung, also beispielsweise der zweiten Ordnung - bezogen auf die Drehzahl der Antriebswelle 36, bei einer Vierzylinder-Viertakt-Brennkraftmaschine. Diese Abweichung zwischen der Tilgungsordnung, auf welche die Fliehkraft-Masse-Pendeleinheit 10 abgestimmt ist, und der an sich zu bedämpfenden Anregungsordnung kann im Bereich von 0,001 bis 0,1, vorzugsweise 0,01 bis 0,05, liegen, so dass beispielsweise die Tilgungsordnung, auf welche die Fliehkraft-Masse-Pendeleinheit abgestimmt ist, zwischen 1,95 und 1,99 liegen kann.
  • Es hat sich gezeigt, dass bei Anbindung der Fliehkraft-Masse-Pendeleinheit 10 an die Torsionsschwingungsdämpferanordnungszwischenmasse 70, insbesondere in einer hydrodynamischen Kopplungsanordnung 30, durch geringfügige Verstimmung der Tilgungsordnung bezüglich der an sich zu bedämpfenden Anregungsordnung nach unten bei gleichwohl ausreichender Schwingungsanregung der Auslenkungsmassenanordnung 14 das Entstehen von Schwingungsüberhöhungen, welche die anregenden Schwingungen noch verstärken können, vermieden wird und somit über den gesamten Drehzahlbereich zuverlässig eine ausreichende Tilgungsfunktionalität bereitgestellt werden kann.
  • Die 7 zeigt in teilweiser Darstellung ein in Form eines hydrodynamischen Drehmomentwandlers ausgeführtes Antriebssystem 30, wie es mit Bezug auf die 2 in prinzipieller Weise beschrieben wurde. Man erkennt die Kupplungsanordnung bzw. Überbrückungskupplung 56 mit mehreren mit dem mit der Gehäuseanordnung 42 zur gemeinsamen Drehung um die Drehachse A gekoppelten lamellenartigen Reibelementen und einer Mehrzahl von mit einem Reibelemententräger 100 zur Drehung gekoppelten Reibelementen. Ein nur teilweise dargestellter Kupplungskolben 102 kann diese Reibelemente zur Herstellung des Einrückzustands gegeneinander pressen.
  • Der Reibelemententräger 100 ist mit der als Zentralscheibenelement ausgeführten Primärseite 64 des radial äußeren, ersten Torsionsschwingungsdämpfers 60 durch Vernietung oder dergleichen fest verbunden. Zwei in axialem Abstand zueinander liegende Deckscheibenelemente 104, 106 bilden in ihrem äußeren Bereich die Sekundärseite 66. Dazwischen wirkt eine Dämpferelementenanordnung 108, beispielsweise mit mehreren Schraubendruckfedern oder dergleichen.
  • In ihrem radial inneren Bereich bilden die Deckscheibenelemente 104, 106 die Primärseite 68 des radial inneren, zweiten Torsionsschwingungsdämpfers 62. Die Sekundärseite 72 ist mit einem Zentralscheibenelement ausgebildet, das mit der Abtriebsnabe 52 beispielsweise durch Vernietung fest verbunden ist. Zwischen den Deckscheibenelementen 104, 106 und dem die Sekundärseite 72 bereitstellenden Zentralscheibenelement wirkt eine Dämpferelementenanordnung 110 beispielsweise wieder mit mehreren Schraubendruckfedern.
  • An die im Wesentlichen die Deckscheibenelemente 104, 106 umfassende Torsionsschwingungsdämpferanordnungszwischenmasse 70 ist der Auslenkungsmassenträger 12 beispielsweise durch Vernietung angebunden. Dieser ist in seinem radial äu-ßeren Bereich gehäuseartig aufgebaut, umfasst also die Auslenkungsmasseteile 16 radial außen, an beiden axialen Seiten und radial innen teilweise. Die walzenartig ausgebildeten Kopplungselemente 20 sind entlang jeweiliger Führungsbahnen 22 in den Auslenkungsmasseteilen 16 einerseits und Führungsbahnen 26 im Auslenkungsmassenträger 12 andererseits bewegbar.
  • Das Turbinenrad 48 ist mit einer Turbinenradschale 112 desselben radial innen durch Vernietung beispielsweise zusammen mit dem die Sekundärseite 72 bereitstellenden Zentralscheibenelement an der Abtriebsnabe 52 festgelegt.
  • Die 3 zeigt ein alternativ ausgebildetes Antriebssystem, bei welchem Komponenten, welche vorangehend bereits beschriebenen Komponenten hinsichtlich Aufbau bzw. Funktionalität entsprechen, mit dem gleichen Bezugszeichen unter Hinzufügung eines Anhangs „a“ bezeichnet sind.
  • Bei der in 3 dargestellten Ausgestaltungsform ist die hydrodynamische Kopplungsanordnung 40a mit einer Torsionsschwingungsdämpferanordnung 58a aufgebaut, die im Wesentlichen nur einen Torsionsschwingungsdämpfer mit einer den Eingangsbereich derselben bereitstellenden Primärseite 64a und einer den Ausgangsbereich derselben bereitstellenden Sekundärseite 72a sowie einer dazwischen wirkenden Dämpferelementenanordnung aufgebaut. Die Fliehkraft-Masse-Pendeleinheit 10a ist mit ihrem Auslenkungsmassenträger 12a an die Sekundärseite 72a, also den Ausgangsbereich der Torsionsschwingungsdämpferanordnung 58a angekoppelt und ist somit im Wesentlichen auch direkt an die Abtriebsnabe 52a angebunden.
  • Bei derartiger Ausgestaltung ist erfindungsgemäß vorgesehen, dass die Tilgungsordnung, auf welche die Fliehkraft-Masse-Pendeleinheit 10a ausgelegt ist, bezüglich der an sich zu bedämpfenden Anregungsordnung nach oben hin verschoben ist, so dass beispielsweise eine Abweichung im Bereich von 0,01 bis 0,2, vorzugsweise 0,02 bis 0,1, bezüglich der an sich zu bedämpfenden Anregungsordnung erreicht ist. Es hat sich gezeigt, dass damit eine Verschiebung zu einer unkritischen und eine schwingungsverstärkende Wirkung vermeidenden Richtung eingeführt ist.
  • Ein weiteres Ausgestaltungsbeispiel eines Antriebssystems ist in 4 gezeigt. Hier sind Komponenten, die vorangehend beschriebenen Komponenten hinsichtlich Aufbau bzw. Funktionalität entsprechen, mit dem gleichen Bezugszeichen unter Hinzufügung eines Anhangs „b“ bezeichnet. Dieses Antriebssystem 30b umfasst zur Drehmomentübertragung zwischen dem Antriebsaggregat 32b und der Getriebeanordnung 34b eine Kupplungsanordnung 74b, die beispielsweise als Trockenreibungskupplung, ggf. auch als Doppelkupplung oder Mehrscheibenkupplung, ausgebildet sein kann. Ein Eingangsbereich dieser Kupplungsanordnung 74b kann ein Schwungrad 76b umfassen, welches mit der Antriebswelle 36b zur gemeinsamen Drehung, beispielsweise durch Verschraubung, verbunden werden kann. Zusammen mit dem Schwungrad 76b ist auch der Auslenkungsmassenträger 12d der Fliehkraft-Masse-Pendeleinheit 10b an die Antriebswelle 36b angekoppelt und somit mit dieser gemeinsamen Drehung verbunden.
  • Bei derartiger Ausgestaltung des Antriebssystems 30b ist die Tilgungsordnung, auf welche die Fliehkraft-Masse-Pendeleinheit 10b abgestellt ist, bezüglich der an sich zu bedämpfenden Anregungsordnung wieder nach oben hin verschoben, beispielsweise in dem vorangehend angegebenen Abweichungsbereich.
  • Ein weiteres Antriebssystem mit alternativem Aufbau ist in 5 gezeigt. Hier sind Komponenten, welche vorangehend beschriebenen Komponenten hinsichtlich Aufbau bzw. Funktionalität ähneln, mit dem gleichen Bezugszeichen durch Hinzufügung eines Anhangs „c“ bezeichnet.
  • Im Drehmomentübertragungsweg zwischen der Antriebswelle 36c und der Kupplungsanordnung 74c ist bei diesem Aufbau eine Torsionsschwingungsdämpferanordnung in Form eines Zweimassenschwungrads 78c vorgesehen. Eine den Eingangsbereich desselben bereitstellende Primärseite 80c ist an die Antriebswelle 36c angebunden, während eine den Ausgangsbereich derselben bereitstellende Sekundärseite 82c an die Kupplungsanordnung 74c bzw. ein den Eingangsbereich derselben bereitstellendes Schwungrad 76c angekoppelt ist.
  • Die Fliehkraft-Masse-Pendeleinheit 10c ist mit ihrem Auslenkungsmassenträger 12c an die Sekundärseite 82c bzw. im Eingangsbereich der Kupplungsanordnung 74c angebunden, liegt also bezüglich des Zweimassenschwungrads 78c sekundärseitig.
  • Auch bei dieser Ausgestaltung bzw. Eingliederung der Fliehkraft-Masse-Pendeleinheit 10c in ein Antriebssystem 30c ist eine Verschiebung der Tilgungsordnung, auf welche die Fliehkraft-Masse-Pendeleinheit 10 abgestimmt ist, bezüglich der zu bedämpfenden Anregungsordnung nach oben, beispielsweise wieder in den Bereich von 0,01 bis 0,2, vorzugsweise 0,02 bis 0,1, zum Vermeiden von Schwingungsverstärkungseffekten nach oben hin verschoben.
  • Ein weiteres alternativ ausgebildetes Antriebssystem ist in 6 dargestellt. Hier sind Komponenten, welche vorangehend beschriebenen Komponenten hinsichtlich Aufbau bzw. Funktion entsprechen, mit dem gleichen Bezugszeichen unter Hinzufügung des Anhangs „d“ bezeichnet.
  • Das Antriebssystem 30d umfasst das Antriebsaggregat 32d und eine als Automatikgetriebe ausgebildete Getriebeanordnung 34d. Beispielhaft dargestellt ist in 6 eine auf die Getriebeeingangswelle 38d folgende erste Planetengetriebestufe 84d mit einem beispielsweise durch Verzahnungseingriff oder in sonstiger Weise mit der Getriebeeingangswelle 38d drehfesten Planetenradträger 86d mit einer Mehrzahl von daran drehbar getragenen Planetenrädern 88d, einem mit den Planetenrädern radial au-ßen in Kämmeingriff stehenden Hohlrad 90d und einem mit den Planetenrädern radial innen in Kämmeingriff stehenden Sonnenrad 92d. Im Drehmomentübertragungsweg zwischen der Antriebswelle 36d und der Getriebeeingangswelle 38d kann beispielsweise eine als hydrodynamischer Drehmomentwandler ausgebildete hydrodynamische Kopplungsanordnung 40d liegen.
  • Die Fliehkraft-Masse-Pendeleinheit 10d ist mit ihrem Auslenkungsmassenträger 12d im dargestellten Beispiel an den Planetenradträger 86d angekoppelt, also eine Komponente bzw. Baugruppe der Getriebeanordnung 34d, welche im Drehmomentenfluss auf die Getriebeeingangswelle 38d folgt. Dies bedeutet, dass bei Drehmomentübertragung zwischen der Antriebswelle 36d und der Getriebeanordnung 34d die Torsionssteifigkeit der Getriebeeingangswelle 38d als weiteres Schwingungssystem betrachtet bzw. genutzt werden kann und die Fliehkraft-Masse-Pendeleinheit 1 Od erst im Drehmomentenfluss nach dieser Steifigkeit wirksam wird.
  • Auch bei dieser Auslegung bzw. Integration der Fliehkraft-Masse-Pendeleinheit 10d ist erfindungsgemäß die Tilgungsordnung bezüglich der an sich zu bedämpfenden Anregungsordnung nach oben verschoben, beispielsweise wieder im Bereich von 0,01 bis 0,2, vorzugsweise 0,02 bis 0,1. Dabei könnte selbstverständlich, je nach Gestaltung des internen Aufbaus der Getriebeanordnung 34d die Fliehkraft-Masse-Pendeleinheit 10d auch an andere Baugruppen, beispielsweise den Hohlraum 90d, oder Komponenten einer weiteren folgenden Planetengetriebestufe angekoppelt sein.
  • Es ist selbstverständlich, dass die vorangehend beschriebenen Ausgestaltungsformen der vorliegenden Erfindung in verschiedensten Aspekten insbesondere auch in konstruktiven Aspekten beim Aufbau der verschiedenen Systembestandteile variiert werden können. Auch ist es selbstverständlich, dass im Umfang der vorliegenden Erfindung ein Antriebssystem auch mehr als eine Fliehkraft-Masse-Pendeleinheit aufweisen kann. So könnte beispielsweise bei dem in 6 dargestellten Ausgestaltungsbeispiel die hydrodynamische Kopplungsanordnung 40d so aufgebaut sein, wie in den 2 bzw. 3 dargestellt. Sind mehrere Fliehkraft-Masse-Pendelanordnungen vorgesehen, so können diese alle im vorangehend erläuterten Sinne mit einer vorbestimmten Abweichung bezüglich der an sich zu bedämpfenden Anregungsordnung nach oben bzw. nach unten abgestimmt sein. Grundsätzlich könnten aber auch nur einzelne oder eine einzige von mehreren Fliehkraft-Masse-Pendeleinheiten mit der erfindungsgemäß vorzusehenden Verschiebung ausgebildet sein.

Claims (4)

  1. Antriebssystem für ein Fahrzeug, umfassend ein Antriebsaggregat (32d) mit einem um eine Drehachse (A) drehbaren Antriebsorgan (32d) sowie wenigstens eine Fliehkraft-Masse-Pendeleinheit (10d) mit einem Auslenkungsmassenträger (12d) und einer durch eine Auslenkungsmassenkopplungsanordnung (18d) an dem Auslenkungsmassenträger (12d) bezüglich diesem aus einer Grund-Relativlage auslenkbar getragenen Auslenkungsmassenanordnung (14d), wobei bei Auslenkung der Auslenkungsmassenanordnung (14d) aus der Grund-Relativlage ein Radialabstand der Auslenkungsmassenanordnung (14d) bezüglich deren Drehachse (A) sich ändert, ferner umfassend eine Getriebeanordnung (34d) mit wenigstens einer durch das Antriebsorgan (32d) zur Drehung antreibbaren Eingangswelle (38d), wobei die Getriebeanordnung (34d) ein Automatikgetriebe ist, wobei die Fliehkraft-Masse-Pendeleinheit (10d) an eine im Drehmomentenfluss auf die wenigstens eine Eingangswelle (38d) folgende Getriebekomponente (86d) angekoppelt ist und auf eine Tilgungsordnung abgestimmt ist, die um eine vorbestimmte Abweichung über einer durch die Fliehkraft-Masse-Pendeleinheit (10d) zu bedämpfenden Anregungsordnung liegt.
  2. Antriebssystem nach Anspruch 1, dadurch gekennzeichnet, dass die Abweichung im Bereich von 0,01 bis 0,2, vorzugsweise 0,02 bis 0,1, liegt.
  3. Antriebssystem nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Antriebsaggregat (32; 32a; 32b; 32c; 32d) eine Brennkraftmaschine umfasst.
  4. Antriebssystem nach Anspruch 3, dadurch gekennzeichnet, dass die Anregungsordnung ermittelt wird gemäß: O = Az × 0,5,
    Figure DE102011076790B4_0002
    wobei gilt: O=Anregungsordnung, AZ=Anzahl der Zylinder der Brennkraftmaschine.
DE102011076790.8A 2011-05-31 2011-05-31 Antriebssystem für ein Fahrzeug Active DE102011076790B4 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102011076790.8A DE102011076790B4 (de) 2011-05-31 2011-05-31 Antriebssystem für ein Fahrzeug
JP2014513096A JP5972970B2 (ja) 2011-05-31 2012-05-03 車両用の駆動システム
PCT/EP2012/058116 WO2012163621A1 (de) 2011-05-31 2012-05-03 Antriebssystem für ein fahrzeug
CN201280026351.9A CN103582767B (zh) 2011-05-31 2012-05-03 用于车辆的驱动系统
US14/119,778 US20140090514A1 (en) 2011-05-31 2012-05-03 Drive system for a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011076790.8A DE102011076790B4 (de) 2011-05-31 2011-05-31 Antriebssystem für ein Fahrzeug

Publications (2)

Publication Number Publication Date
DE102011076790A1 DE102011076790A1 (de) 2012-12-06
DE102011076790B4 true DE102011076790B4 (de) 2023-07-13

Family

ID=46026816

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011076790.8A Active DE102011076790B4 (de) 2011-05-31 2011-05-31 Antriebssystem für ein Fahrzeug

Country Status (5)

Country Link
US (1) US20140090514A1 (de)
JP (1) JP5972970B2 (de)
CN (1) CN103582767B (de)
DE (1) DE102011076790B4 (de)
WO (1) WO2012163621A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012213015A1 (de) 2012-07-25 2014-02-13 Zf Friedrichshafen Ag Anfahrelement mit Torsionsschwingungsdämpfer und Schwingungstilger
JP2014206244A (ja) * 2013-04-15 2014-10-30 株式会社エクセディ トルクコンバータのロックアップ装置
DE102013219504A1 (de) 2013-09-27 2015-04-16 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer
DE102013219505A1 (de) 2013-09-27 2015-04-16 Zf Friedrichshafen Ag Tilgersystem
DE102013219503A1 (de) 2013-09-27 2015-04-23 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer
DE102013219500A1 (de) 2013-09-27 2015-04-02 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer
WO2015058766A1 (de) 2013-10-24 2015-04-30 Schaeffler Technologies AG & Co. KG Drehschwingungsdämpfer
DE102013222640A1 (de) 2013-11-07 2015-05-07 Zf Friedrichshafen Ag Tilgersystem
FR3014519B1 (fr) * 2013-12-09 2016-10-07 Valeo Embrayages Dispositif d'amortissement de torsion a pendule d'efficacite de filtration amelioree
FR3019872B1 (fr) * 2014-04-15 2016-04-15 Valeo Embrayages Dispositif d'amortissement d'oscillations de torsion
DE102014207260A1 (de) 2014-04-15 2015-10-15 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer mit einer Dämpfungseinrichtung, einem Tilgersystem und einer Masseeinrichtung
DE102014207258A1 (de) 2014-04-15 2015-10-29 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer mit einer Dämpfungseinrichtung, einem Tilgersystem und einer Masseeinrichtung
DE102014207257A1 (de) 2014-04-15 2015-10-15 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer mit einer Dämpfungseinrichtung, einem Tilgersystem und einer Masseeinrichtung
CN106471278B (zh) * 2014-06-20 2019-07-05 舍弗勒技术股份两合公司 离心力摆
DE102014215582A1 (de) * 2014-08-06 2016-02-11 Schaeffler Technologies AG & Co. KG Antriebsstrang
DE102014220897A1 (de) 2014-10-15 2016-04-21 Zf Friedrichshafen Ag Kopplungsanordnung mit einer Schwingungsreduzierungseinrichtung und mit einer Kupplungseinrichtung
DE102014220899A1 (de) 2014-10-15 2016-04-21 Zf Friedrichshafen Ag Schwingungsreduzierungseinrichtung
DE102014220901A1 (de) 2014-10-15 2016-04-21 Zf Friedrichshafen Ag Baueinheit einer Kopplungsanordnung mit einer Schwingungsreduzierungseinrichtung und mit einer Kupplungseinrichtung
KR101673741B1 (ko) 2015-01-30 2016-11-07 현대자동차주식회사 알터네이터 풀리 진동 저감 장치
FR3033859B1 (fr) * 2015-03-16 2017-10-20 Valeo Embrayages Dispositif d'amortissement d'oscillations de torsion pour systeme de transmission de vehicule
FR3038682B1 (fr) 2015-07-06 2017-07-28 Valeo Embrayages Dispositif d'amortissement d'oscillations de torsion
GB201515802D0 (en) * 2015-09-07 2015-10-21 Jaguar Land Rover Ltd Torque transfer apparatus
JP6534589B2 (ja) 2015-09-11 2019-06-26 株式会社エクセディ トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
EP3385568A4 (de) * 2016-03-16 2018-12-19 Aisin Aw Co., Ltd. Schwingungsdämpfungsvorrichtung und entwurfsverfahren dafür
FR3054014B1 (fr) * 2016-07-13 2020-05-08 Valeo Embrayages Dispositif de transmission de couple avec dispositif d'amortissement pendulaire
JP2018013153A (ja) * 2016-07-20 2018-01-25 株式会社エクセディ トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
JP6657041B2 (ja) 2016-07-20 2020-03-04 株式会社エクセディ トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
DE102016222468A1 (de) * 2016-11-16 2018-05-17 Schaeffler Technologies AG & Co. KG Fliehkraftpendel und Antriebssystem
DE102018201199A1 (de) * 2018-01-26 2019-08-01 Zf Friedrichshafen Ag Tilgersystem

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831160A1 (de) 1998-07-11 2000-01-13 Freudenberg Carl Fa Drehzahladaptiver Schwingungstilger
DE10238194A1 (de) 2002-08-21 2004-03-04 Carl Freudenberg Kg Drehzahladaptiver Schwingungstilger
WO2009067987A1 (de) 2007-11-29 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung, insbesondere zur leistungsübertragung zwischen einer antriebsmaschine und einem abtrieb
DE102008057647A1 (de) 2007-11-29 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung mit einem drehzahladaptiven Tilger und Verfahren zur Verbesserung des Dämpfungsverhaltens
DE102009042825A1 (de) 2008-10-30 2010-05-12 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehmomentübertragungseinrichtung
DE102010014674A1 (de) 2009-04-27 2010-11-18 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydrodynamischer Drehmomentwandler
WO2011141246A1 (de) 2010-05-11 2011-11-17 Zf Friedrichshafen Ag Schwingungstilger

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2408772A1 (fr) * 1977-11-17 1979-06-08 Wallace Murray Corp Amortisseur de vibrations notamment pour vilebrequin de moteurs a combustion interne
US5495924A (en) * 1994-07-13 1996-03-05 Quiescence Engineering Corp. Half-order centrifugal pendulum vibration absorber system
DE69621677T2 (de) * 1995-03-17 2003-01-02 Toyota Motor Co Ltd Hydrodynamischer Drehmomentwandler mit Ueberbrückungskupplung und eingebautem Schwingungsdämpfer
DE19804227B4 (de) * 1998-02-04 2006-03-09 Zf Sachs Ag Überbrückungskupplung mit einer Ausgleichsschwungmasse am Torsionsschwingungsdämpfer
JP2000018329A (ja) * 1998-06-30 2000-01-18 Unisia Jecs Corp フライホイール
DE19911560A1 (de) * 1999-03-16 2000-09-21 Mannesmann Sachs Ag Schwingungsdämpfungsvorrichtung
JP2002147566A (ja) * 2000-11-13 2002-05-22 Fuji Heavy Ind Ltd トルクコンバータ付き動力伝達装置
DE10059101B4 (de) * 2000-11-28 2012-12-20 Zf Friedrichshafen Ag Antriebssystem
JP4254466B2 (ja) * 2003-10-07 2009-04-15 日産自動車株式会社 内燃機関の振動低減装置
FR2869069B1 (fr) * 2004-04-20 2008-11-21 Snecma Moteurs Sa Procede pour introduire un desaccordage volontaire sur une roue aubagee de turbomachine roue aubagee presentant un desaccordage volontaire
JP5271112B2 (ja) * 2009-02-26 2013-08-21 アイシン・エィ・ダブリュ工業株式会社 振動減衰機能を備えた発進装置
US9032837B2 (en) * 2009-08-05 2015-05-19 Chrysler Group Llc Pendulum absorber system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831160A1 (de) 1998-07-11 2000-01-13 Freudenberg Carl Fa Drehzahladaptiver Schwingungstilger
DE10238194A1 (de) 2002-08-21 2004-03-04 Carl Freudenberg Kg Drehzahladaptiver Schwingungstilger
WO2009067987A1 (de) 2007-11-29 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung, insbesondere zur leistungsübertragung zwischen einer antriebsmaschine und einem abtrieb
DE102008057647A1 (de) 2007-11-29 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung mit einem drehzahladaptiven Tilger und Verfahren zur Verbesserung des Dämpfungsverhaltens
DE102009042825A1 (de) 2008-10-30 2010-05-12 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehmomentübertragungseinrichtung
DE102010014674A1 (de) 2009-04-27 2010-11-18 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydrodynamischer Drehmomentwandler
WO2011141246A1 (de) 2010-05-11 2011-11-17 Zf Friedrichshafen Ag Schwingungstilger

Also Published As

Publication number Publication date
JP2014516142A (ja) 2014-07-07
CN103582767B (zh) 2016-11-09
WO2012163621A1 (de) 2012-12-06
JP5972970B2 (ja) 2016-08-17
US20140090514A1 (en) 2014-04-03
CN103582767A (zh) 2014-02-12
DE102011076790A1 (de) 2012-12-06

Similar Documents

Publication Publication Date Title
DE102011076790B4 (de) Antriebssystem für ein Fahrzeug
EP2577106B1 (de) Hydrodynamische kopplungseinrichtung
EP2702296B1 (de) Drehmomentübertragungsanordnung
EP2406521B1 (de) Antriebsstrang für hybridantriebe mit torsionsdämpfer und fliehkraftpendel
DE112016002912T5 (de) Dämpfervorrichtung
DE112012005955B4 (de) Antriebsvorrichtung für ein Hybridfahrzeug
EP2912336B1 (de) Torsionsschwingungsdämpfungsanordnung mit leistungsverzweigung
DE102012112283B4 (de) Vorrichtung zum Dämpfen eines Schwungrads
WO2015058757A1 (de) Drehschwingungsisolationseinrichtung
DE102012111323B4 (de) Schwungrad eines Verbrennungsmotors
DE102013200408A1 (de) Nasse Reibkupplung mit integriertem Dämpfersystem
DE10338673B4 (de) Kupplungsvorrichtung
DE102009049879B4 (de) Schwingungstilger zur Dämpfung von Drehschwingungen im Antriebsstrang eines Kraftfahrzeugs
WO2017158131A2 (de) Kurbelwellenanordnung mit drehschwingungsdämpfer
WO2017101925A1 (de) Fliehkraftpendel mit tellerfederdichtmembran und verfahren zum auswuchten solches fliehkraftpendels
DE102016201099A1 (de) Fliehkraftpendel
DE102015210013A1 (de) Einmassenschwungrad
DE10018955A1 (de) Schwingungsdämpfersystem
DE102012223950A1 (de) Übertragungseinheit mit integriertem Dämpfersystem
DE102016211094A1 (de) Einmassenschwungrad mit Drehschwingungsdämpfer und Fliehkraftpendel
EP0789161B1 (de) Schwungmassenvorrichtung mit einer Entkopplungsvorrichtung
DE102017129511A1 (de) Fliehkraftpendel und Antriebsanordnung für ein Kraftfahrzeug
DE102017111238A1 (de) Zweimassenschwungrad
DE102014217488B4 (de) Drehschwingungsdämpfer
DE102017211260B4 (de) Schwungstartkupplungsanordnung, Torsionsdämpferanordnung sowie Kraftfahrzeug

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division