WO2018008417A1 - 磁性板の積層体及びその製造方法、その積層体を用いたモータ - Google Patents

磁性板の積層体及びその製造方法、その積層体を用いたモータ Download PDF

Info

Publication number
WO2018008417A1
WO2018008417A1 PCT/JP2017/023005 JP2017023005W WO2018008417A1 WO 2018008417 A1 WO2018008417 A1 WO 2018008417A1 JP 2017023005 W JP2017023005 W JP 2017023005W WO 2018008417 A1 WO2018008417 A1 WO 2018008417A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
stator
magnetic
laminated body
fastening member
Prior art date
Application number
PCT/JP2017/023005
Other languages
English (en)
French (fr)
Inventor
西川 幸男
満博 池田
野尻 尚紀
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2018526025A priority Critical patent/JP6880020B2/ja
Priority to EP17824024.8A priority patent/EP3484017A4/en
Priority to CN201780040568.8A priority patent/CN109417318A/zh
Publication of WO2018008417A1 publication Critical patent/WO2018008417A1/ja
Priority to US16/240,015 priority patent/US10797541B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/09Magnetic cores comprising laminations characterised by being fastened by caulking

Definitions

  • the present invention relates to a laminated body of magnetic plates in which soft magnetic ribbons are laminated and a motor using the laminated body as a stator.
  • Patent Document 1 As a magnetic plate of a conventional iron core (stator) for a motor, pure iron or an electromagnetic steel plate is used. In addition, some motors aimed at higher efficiency use a ribbon having amorphous or nanocrystal grains as an iron core (see, for example, Patent Document 1).
  • the stator core of Patent Document 1 is first formed into a predetermined shape by winding, cutting, punching, etching, or the like of an amorphous alloy ribbon manufactured by a liquid quenching method such as a single roll method or a twin roll method. It is formed by processing and then laminating.
  • FIG. 1 a perspective view of the amorphous laminated material 51 of Patent Document 2 is shown in FIG.
  • the laminated material 51 is manufactured by superimposing electromagnetic steel sheets 53 from above and below on a plurality of amorphous alloy ribbons 52 coated with an adhesive, and thermocompression bonding. This makes it easy to handle.
  • Patent Document 1 when a part such as an iron core is manufactured by laminating amorphous or crystallized soft magnetic ribbons, the ribbons are processed one by one, so that a predetermined lamination thickness is obtained. The number of processes in each process until reaching the number of times increased, and the productivity was low.
  • Patent Document 2 in FIG. 16 has a problem that the space factor is deteriorated and the motor efficiency is deteriorated because the adhesive enters between the layers of the amorphous ribbon.
  • An object of the present invention is to solve the above-mentioned conventional problems, and to provide a laminated body of magnetic plates having high productivity without impairing magnetic characteristics, and a motor using the laminated body.
  • a magnetic plate laminate comprising a laminate in which a plurality of ribbons are laminated and a metal fastening mechanism provided in an opening of the laminate is used.
  • a method of manufacturing a laminate of magnetic plates in which the laminate of the magnetic material, in which the ribbon is an amorphous ribbon, is heat-treated to give nanocrystal grains to the ribbon is used.
  • a motor including a stator in which a plurality of laminated magnetic plates are stacked, a stator plate for fixing the stator, and a rotor disposed in a central opening of the stator is used.
  • a plurality of positioned ribbons can be handled at the same time, so that not only the productivity is increased, but also a substance that lowers the ratio of the magnetic material in a unit volume such as an adhesive between layers Therefore, the space factor is increased, and the deterioration of magnetic properties can be prevented.
  • FIG. 1A is a side view of a fastening member that fastens a laminate according to Embodiment 1.
  • FIG. 1B is a broken cross-sectional view illustrating a manufacturing process of a laminated body of magnetic plates using the eyelet structure according to Embodiment 1.
  • FIG. 1A is a broken cross-sectional view showing a manufacturing process of a laminate of magnetic plates using the eyelet structure according to Embodiment 1;
  • FIG. 1A is a broken cross-sectional view showing a manufacturing process of a laminate of magnetic plates using the eyelet structure according to Embodiment 1;
  • 1A is a broken cross-sectional view showing a state in which a laminated body according to Embodiment 2 is fixed with eyelet material.
  • FIG. 3 is an external view of the eyelet material of the laminated body of magnetic plates according to the second embodiment.
  • FIG. 4A is a broken cross-sectional view illustrating a manufacturing process of a laminated body of magnetic plates according to Embodiment 3.
  • FIG. 4B is a broken cross-sectional view illustrating the manufacturing process of the magnetic plate laminate according to Embodiment 3.
  • FIG. 4C is a broken cross-sectional view illustrating the manufacturing process of the magnetic plate laminate according to Embodiment 3.
  • FIG. 5 is a broken cross-sectional view showing a state in which the laminated body according to the third embodiment is fixed with a caulking material.
  • FIG. 6A is a broken cross-sectional view illustrating a step of forming an eyelet structure of a laminated body of magnetic plates according to Embodiment 4.
  • FIG. 6B is a broken cross-sectional view showing a step of forming the eyelet structure of the laminated body of magnetic plates according to Embodiment 4.
  • FIG. 7A is a broken cross-sectional view illustrating a manufacturing process of a laminated body of magnetic plates using a caulking structure according to Embodiment 5.
  • FIG. 7B is a broken cross-sectional view illustrating a manufacturing process of a laminated body of magnetic plates using a caulking structure according to Embodiment 5.
  • FIG. 7C is a broken cross-sectional view illustrating a manufacturing process of a laminated body of magnetic plates using a caulking structure according to Embodiment 5.
  • FIG. 8 is an enlarged fragmentary sectional view of the vicinity of the caulking material of the magnetic plate laminate according to the sixth embodiment.
  • FIG. 9 is an enlarged fragmentary sectional view of the vicinity of the caulking material of the magnetic plate laminate according to the seventh embodiment.
  • FIG. 10A is a side view of a motor configured by a laminated body of magnetic plates according to Embodiment 8.
  • FIG. 10B is a top view of a motor configured by a laminated body of magnetic plates according to Embodiment 8.
  • FIG. 11A is a broken sectional view taken along the line A-A ′ in FIG.
  • FIG. 11B is a broken sectional view taken along the line A-A ′ in FIG. 10B according to the eighth embodiment.
  • FIG. 12 is an enlarged sectional view of the vicinity of the eyelet part of the laminated body of magnetic plates according to the ninth embodiment.
  • FIG. 13A is a side view of a motor configured by a laminate of magnetic plates according to Embodiment 10.
  • FIG. 13B is a top view of a motor configured by a laminated body of magnetic plates according to Embodiment 10.
  • FIG. 14 is a broken sectional view taken along the line B-B ′ of FIG. 13B according to the tenth embodiment.
  • FIG. 15 is a broken cross-sectional view taken along the line B-B ′ of FIG. 13B.
  • FIG. 16 is a perspective view showing a conventional laminated body of magnetic plates described in Patent Document 2. As shown in FIG.
  • FIG. 1A is a side view of a fastening member 100a for fastening a laminated body 1 of magnetic plates.
  • 1B to 1D are schematic views showing a manufacturing process of the magnetic plate laminate 1 according to Embodiment 1, and specifically show a structure using a grommet structure as a metal fastening mechanism.
  • the fastening member 100a has a plurality of flat surface portions 2a divided by cuts at both ends of the hollow cylinder 2.
  • the eyelet structure 3a is a structure in which the flat portions 2a are positioned at both ends of the hollow cylinder 2 in a direction perpendicular to the cylinder.
  • the eyelet structure 3a is fitted into the opening 4 provided in the laminated body 1 in which thin ribbons that are magnetic bodies are laminated.
  • the eyelet structure 3 a has flat portions 2 a at both ends of the hollow cylinder 2 so as not to easily come out of the opening 4.
  • the eyelet structure 3a is sometimes called a grommet or an eyelet.
  • the hollow cylinder 2 may be a columnar shape or a polygonal columnar shape.
  • a laminated body 1 there are a laminated body 1, a hollow cylinder 2, a flat portion 2a formed by a cut in the hollow cylinder 2, and an opening 4 formed in the laminated body 1.
  • the laminate 1 has an opening 4 that is a through-hole. The fastening member shown in FIG. 1A is inserted into the opening 4.
  • the laminated body 1 is fixed by the presser mechanism 5, and the plane part 2a is pushed open by attaching the eyelet fitting 6 from above and below from the arrow direction.
  • the plane portion 2a can be directed in the left-right direction to form the eyelet structure 3a.
  • the compression may be a height regulation that makes the height of the eyelet constant, or a pressure regulation that makes the eyelet strong.
  • FIG. 2 is a cross-sectional view showing a state in which the laminated body 1 is fixed with an eyelet structure 3a.
  • the laminate 1 is a laminate of thin ribbons.
  • the ribbon is an amorphous magnetic plate.
  • the thickness of the ribbon obtained in the amorphous state is often between 10 and 100 ⁇ m.
  • the ribbon may be one obtained by crystallizing an amorphous ribbon by heat treatment.
  • the material of the fastening member 100a is preferably non-magnetic so as not to be affected by the magnetic field from the viewpoint of not affecting the magnetic characteristics of the multilayer body 1.
  • the non-magnetic material austenitic stainless steel, copper-based alloys such as copper and brass, non-ferrous metals such as aluminum and alloys thereof, and alloys thereof can be used as long as they are iron-based.
  • Thirty amorphous ribbons can be fixed and handled as a single laminate 1 with the eyelet structure 3a of the brass fastening member 100a.
  • the thickness of the upper and lower plane portions 2a of the eyelet structure 3a is 60 ⁇ m in total.
  • the space factor occupied by the ribbon in the stacking thickness direction is about 94%. .
  • the space factor increases as the thickness and number of the ribbons increase, and as the flat portion 2a decreases.
  • the limit of the thickness of the thin ribbon is determined by the eyelet structure 3a, and the flat portion 2a and the eyelet structure 3a having a large thickness are required as the thickness of the stack increases.
  • the crystallized thin ribbon 1 may be provided with the eyelet structure 3a, or the amorphous thin ribbon 1 may be provided with the eyelet structure 3a, followed by heat treatment for crystallization.
  • the crystallization temperature varies depending on the composition of the ribbon, it is often performed between 350 ° C. and 500 ° C. and has a nanocrystal grain with a diameter of several tens of nm or less in the ribbon, so that it is softer than an amorphous material The characteristics are improved.
  • the amorphous ribbon group is heat-treated after forming the eyelet structure 3a, it is preferable to reduce the thermal gradient in the stacking direction and make the heat treatment temperature distribution in the stacking direction uniform. Furthermore, the amount of heat due to self-heating generated when the ribbon is crystallized from an amorphous state accumulates in the central portion of the stack, and an excessive temperature rise occurs. On the other hand, the self-heating amount of the ribbon has a correlation with the thickness. For this reason, in order to suppress an excessive temperature rise, it is preferable to set the thickness of the laminated body 1 to 2.5 mm or less. This proves that the desired magnetic properties can be obtained. In this case, several laminated bodies 1 can be laminated to form a thick laminated body 1.
  • the total thickness of the laminate 1 is 2.5 mm, it is necessary to laminate a maximum of 250 sheets when the thickness of one thin strip is a minimum of 10 ⁇ m. Moreover, in order to improve productivity, it manufactures by laminating
  • the eyelet structure 3a does not melt even if a ribbon crystallization heat treatment is performed.
  • This eyelet structure 3a facilitates heat transfer in the stacking direction of the stacked body 1 and contributes to reducing the temperature gradient in the stacking direction.
  • the oxide layer is insulative, it contributes to prevention of electrical short circuit between the laminated body 1 and the eyelet structure 3a, and reduces energy loss due to eddy current loss caused by short circuit in a magnetic device such as a motor. can do.
  • FIG. 3 is an external view of the fastening member 100b according to the second embodiment. 3 is different from the fastening member 100a of FIG. 1A in that the flat portion 2b is bent perpendicularly to the hollow cylinder 2 from the beginning on one side. On the other side, the flat portion 2 a is arranged in parallel with the hollow cylinder 2. Thereby, there exists an advantage that positioning of the laminated body 1 of a fastening member becomes easy in the thickness direction.
  • the formation process of the eyelet structure 3a and the appearance after the formation of the eyelet structure 3a conform to FIGS. 1D and 2 respectively. Matters not described are the same as those in the first embodiment.
  • FIG. 3 are schematic views showing the manufacturing steps of the magnetic plate laminate 1 according to the third embodiment. Specifically, a metal fastening mechanism using a fastening member 100c and a caulking structure 3b is shown.
  • the caulking structure 3b has no through-holes, and is a structure in which the flat portions 10a are located at both ends of the solid columnar body 10. One end spreads as the flat portion 10a, and the purpose is to fix the laminated ribbons together.
  • the plane portion 10a is not plural but one. However, it may be divided into several pieces. Matters not described are the same as those in the first embodiment.
  • FIGS. 1B to 1D are different from FIGS. 1B to 1D in that a fastening member 100c is used.
  • the fastening member 100c is inserted into the opening 4 of the laminated body 1 in the direction of the arrow.
  • the fastening member 100c is fixed by the presser mechanism 5, and the compression fitting 7 is attached from above and below from the arrow direction.
  • the columnar body 10 can be compressed in the direction of the arrow by the compression fitting 7 and the flat portion 10a can be formed vertically in the direction perpendicular to the columnar body 10 to form the crimped structure 3b.
  • FIG. 5 is a cross-sectional view showing a state in which the laminated body 1 is fixed with a caulking structure 3b.
  • the material of the fastening member 100c forming the caulking structure 3b is desirably non-magnetic without being affected by the magnetic field from the viewpoint of not affecting the magnetic properties of the multilayer body 1 as with the eyelet structure 3a. This is the same as in the first embodiment, and the material of the fastening member 100c forming the caulking structure 3b includes iron-based austenitic stainless steel, copper-based alloys such as copper and brass, aluminum, and alloys thereof. Non-ferrous metals and their alloys can be used.
  • FIG. 6A to 6B are schematic views showing a process of forming the eyelet structure 3c of the laminated body 1 of magnetic plates in the fourth embodiment.
  • an opening 55 is opened with a drill 12 at the center of one axis of two caulking structures 3b formed in the laminated body 1 laminated.
  • an eyelet structure 3c is formed by opening openings 55 at two locations.
  • cutting marks (unevenness 24) remain on the inner wall of the opening of the eyelet structure 3c.
  • the unevenness 24 is preferably 10 nm or more.
  • FIGS. 7A to 7C are schematic views showing a manufacturing process of the magnetic plate laminate 1 in Embodiment 5 and using a caulking structure 3d. 7A to 7C are different from FIGS. 4A to 4C in that a cylindrical fastening member 100d14 is used.
  • a fastening member 100d that is longer than the depth of the opening 4 and larger than the volume of the opening 4 is inserted into the opening 4 of the laminated body 1 in the direction of the arrow.
  • the laminated body 1 that has been laminated is fixed by the presser mechanism 5, and a caulking metal fitting 16 having a counterbore part 15 is attached from above and below from the arrow direction.
  • the fastening member 100d is compressed in the direction of the arrow by the caulking metal fitting 16, so that a part of the fastening member 100d is plastically flowed and filled in the counterbore part 15, and a flange is formed on the upper and lower sides to form the crimping structure 3d.
  • the shape of the fastening member 100d may be a prismatic shape or a spherical shape other than the cylindrical shape. Matters not described are the same as in the above embodiment.
  • FIG. 8 is an enlarged cross-sectional view of the vicinity of the caulking structure 3e of the magnetic plate laminate 1 according to the sixth embodiment.
  • the non-ferrous metal has a lower hardness than the iron-based material, so that it can be crimped with a small load.
  • the yield stress is small but the melting point is low.
  • the heat treatment temperature is 350 ° C. to 500 ° C.
  • the melting point of many solders is exceeded, so that a part of the caulking structure 3e flows into the gap 20 of the ribbon 19 and leaves the protruding protrusion 21. Since this protrusion 21 enters the interlayer of the ribbon 19, there is also an advantage that a slight gap in the stacking direction is eliminated and the fixed state is further strengthened. Matters not described are the same as in the above embodiment.
  • the protrusion 21 is located on the side surface of the columnar portion of the caulking structure 3e. There are preferably a plurality of protrusions 21.
  • FIG. 9 is an enlarged cross-sectional view of the vicinity of the fastening member 100d of the laminate of magnetic plates in the seventh embodiment.
  • the fastening member 100d in FIG. 9 is different from the caulking structure 3b in FIG. 5 in that an insulating layer 23 is provided on the outer peripheral portion of the fastening member 100d.
  • a deformable insulating layer 23 such as a resin is provided on the outer periphery of the caulking material 14, and this is caulked in the same process as in FIGS. 7B and 7C, whereby the structure in FIG. 9 is obtained.
  • the insulating layer 23 on the outer periphery of the fastening member 100d, it is possible to prevent the laminated body 1 and the fastening member 100d from being electrically short-circuited, and eddy currents caused by a short circuit in a magnetic device such as a motor. Energy loss due to loss can be reduced. Matters not described are the same as in the above embodiment.
  • the fastening members 100a to 100c are also preferably provided with an insulating layer 23 on the outer peripheral surface or the inner peripheral surface thereof.
  • FIG. 10A and FIG. 10B are external configuration diagrams of a motor configured by the magnetic plate laminate 1 according to the eighth exemplary embodiment.
  • FIG. 10A is a side view of the motor
  • FIG. 10B is a top view of the motor.
  • a stator 31 which is a laminate of thin ribbons is fixed to a fixed plate 32 by bolts 33, spring washers 34, washers 35 and nuts 36.
  • a winding 38 is applied to a portion of the stator 31 called a tooth (T-shaped convex portion).
  • a rotor 37 is installed on the inner diameter side (opening) of the stator 31.
  • FIG. 11A and 11B are cross-sectional views taken along the line A-A 'of FIG. 10B.
  • FIG. 11A shows a state where there are no fixing bolts 33
  • FIG. 11B shows a state where there are bolts 33.
  • the laminated body 41 of the eyelet structures 3a and 3c constituting the stator 31 is aligned so that the portions of the eyelet structures 3a and 3c are stacked on the fastening through holes 42 of the fixing plate 32. Stacked in steps.
  • Metal fastening mechanisms (openings 4, fastening members 100 a and 100 b) are arranged linearly in the thickness direction of the stator 31.
  • the laminated body 41 of the eyelet structures 3 a and 3 c is fixed to the fixing plate 32 by bolts 33, spring washers 34, washers 35 and nuts 36.
  • bolts 33 By passing the bolts 33 through the eyelet structures 3a and 3c of the openings 4 of the respective laminates 41, damage to the ribbon end face when the bolts 33 are inserted can be prevented.
  • eyelet structures 3a and 3c By stacking and laminating the eyelet structures 3a and 3c, it is possible to prevent the fastening pressure by the bolt 33 from being locally applied to the thin ribbon and preventing the magnetic properties of the laminated body 41 from being adversely affected.
  • the laminated body 41 is used for the stator 31, the laminated body 41 may be used for the rotor 37.
  • a motor in which a rotor 37 rotates around the stator 31 may be used.
  • FIG. 12 is an enlarged cross-sectional configuration diagram of the vicinity of the eyelet structure 3d of the stator 31 of the motor according to the ninth embodiment.
  • the laminated body 41 of the eyelet structure 3d provided with the fastening member 100e with the insulating layer 23 is laminated in three stages.
  • an adhesive 43 is applied to the inner wall of the opening 4 inside the fastening member 100e so as to connect the three-layered laminate 41.
  • FIG. 13A and FIG. 13B are external configuration diagrams of a motor configured by a laminated body of magnetic plates in Embodiment 10, FIG. 13A is a side view, and FIG. 13B is a top view.
  • the motors of FIGS. 13A and 13B are different from the motors of FIGS. 10A and 10B of the eighth embodiment. The difference is that (1) the stator 31 which is a laminate of ribbons is fixed to the fixing plate 32 at three locations by bolts 33, spring washers 34, washers 35 and nuts 36, and (2) the fastening member That is, there are three resin portions 44 filled in the opening 4. Similar to FIGS. 10A and 10B, the winding 38 is applied to a T-shaped portion called a tooth of the stator 31 and the rotor 37 is installed on the inner diameter side of the stator 31.
  • FIG. 14 is a cross-sectional view taken along the line BB ′ of FIG. 13B, and shows a state in which the laminated body 45 of the eyelet structures 100a, 100b, and 100e is laminated before the fixing bolts 33 and the resin portion 44 are inserted. It is.
  • the laminated structure 45 of the eyelet structure constituting the stator 31 is laminated in five stages so that the through holes 46 and the hollow portions 47 of the fastening members 100e are alternately stacked. That is, in the plan view of the stator 31, the upper and lower adjacent fastening members 100e are located at different positions. Alternatively, the upper and lower adjacent fastening members 100e are not combined.
  • the upper and lower gaps 48 of the stacked laminate 1 are more than in the case where the eyelet structures 3a and 3c in FIG. 11A of Embodiment 8 are stacked in five stages so as to be stacked. There is an effect that the space factor becomes narrower and the space factor becomes higher.
  • FIG. 15 is a cross-sectional view taken along the line BB ′ of FIG. 13B, and shows a state in which the laminated body 45 having a grommet structure is laminated and fixed after the fixing bolts 33 and the resin portion 44 are inserted.
  • the laminated body 45 having a grommet structure is fixed to the fixing plate 32 by a bolt 33, a spring washer 34, a washer 35 and a nut 36 through a through hole 46 and a hollow portion 47 of the fastening member 100e.
  • a resin portion 44 filled to maintain rigidity is formed on the side that does not pass the bolt 33.
  • the resin part 44 may remain hollow or may be filled with other materials. Matters not described are the same as in the eighth and ninth embodiments.
  • the embodiments can be combined.
  • the eyelet material and the caulking material may be a cylinder, a cylinder, a quadrangular column, an elliptical column, or the like.
  • the laminated body of magnetic plates according to the present invention it is possible to provide a laminated body of magnetic plates having high productivity without impairing magnetic properties. Therefore, the laminate of magnetic plates according to the present invention is useful as a stator for a motor. Furthermore, the laminated body of the magnetic plates according to the present invention can be applied to uses of magnetic parts such as transformers in addition to motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

複数の薄帯が積層された積層体と、上記積層体の開口に設けられた締結部材と、からなる磁性板の積層体を用いる。また、上記薄帯を非晶質薄帯とした上記磁性体の積層体を熱処理して上記薄帯にナノ結晶粒を有せしめた磁性板の積層体の製造方法を用いる。上記磁性板の積層体を複数積層した固定子と、上記固定子を固定する固定板と、上記固定子の中央の開口に配置された回転子と、を備えたモータを用いる。

Description

磁性板の積層体及びその製造方法、その積層体を用いたモータ
 本発明は、軟磁性薄帯を積層した磁性板の積層体及びその積層体を固定子として用いたモータに関する。
 従来のモータ用の鉄心(固定子)の磁性板としては、純鉄や電磁鋼板が用いられている。また、より効率化を目的としたモータでは、非晶質やナノ結晶粒を有する薄帯を鉄心に用いたものもある(例えば、特許文献1参照)。特許文献1の固定子鉄心は、まず、単ロール法、双ロール法等の液体急冷法により作製された非晶質合金薄帯を巻回、切断、打ち抜き、エッチング等の方法で所定の形状に加工し、次に積層等を行って形成されている。
 これに対して、特許文献2のアモルファスの積層材51の斜視図を図16に示す。積層材51は、接着剤が塗布された複数枚の非晶質合金薄帯52に、上下から電磁鋼板53を重ね合わせ、加熱圧着して製造している。これにより取り扱いが容易になるとしている。
特開平6-145917号公報 特開2007-311652号公報
 しかしながら、特許文献1の構成では、非晶質あるいは結晶化した軟磁性薄帯を積層して鉄心等の部品を製作する際には、薄帯を1枚ずつ処理するため、所定の積層厚さに達するまでの各工程の処理回数が何倍にもなり生産性が低かった。
 また、図16の特許文献2の構成では、非晶質薄帯の層間に接着剤が入るため占積率が悪くなり、モータ効率が悪くなるという課題を有している。
 本発明は、前記従来の課題を解決するもので、磁気特性を損なうことなく高い生産性を有する磁性板の積層体及びその積層体を用いたモータを提供することを目的とする。
 上記目的を達成するために、複数の薄帯が積層された積層体と、上記積層体の開口に設けられた金属締結機構と、からなる磁性板の積層体を用いる。また、上記薄帯を非晶質薄帯とした上記磁性体の積層体を熱処理して上記薄帯にナノ結晶粒を有せしめた磁性板の積層体の製造方法を用いる。上記磁性板の積層体を複数積層した固定子と、上記固定子を固定する固定板と、上記固定子の中央の開口に配置された回転子と、を備えたモータを用いる。
 本発明の磁性板の積層体では、位置決めした複数の薄帯を同時に取り扱うことが出来るので、生産性が高くなるだけでなく、層間に接着剤等の単位体積中の磁性材の比率を下げる物質が無いため占積率が高くなり磁気特性の低下を防ぐことができる。
 結果、本発明の磁性板の積層体によれば、磁気特性を損なうことなく高い生産性を有することができる。
図1Aは、実施の形態1に係る積層体を締結する締結部材の側面図である。 図1Bは、実施の形態1に係るハトメ構造を用いた磁性板の積層体の製造工程を示す破断面図である。 図1A実施の形態1に係るハトメ構造を用いた磁性板の積層体の製造工程を示す破断面図である。 図1A実施の形態1に係るハトメ構造を用いた磁性板の積層体の製造工程を示す破断面図である。 図1A実施の形態2に係る積層された積層体がハトメ材で固定された状態を示す破断面図である。 図3は、実施の形態2に係る磁性板の積層体のハトメ材の外観図である。 図4Aは、実施の形態3に係る磁性板の積層体の製造工程を示す破断面図である。 図4Bは、実施の形態3に係る磁性板の積層体の製造工程を示す破断面図である。 図4Cは、実施の形態3に係る磁性板の積層体の製造工程を示す破断面図である。 図5は、実施の形態3に係る積層された積層体がカシメ材で固定された状態を示す破断面図である。 図6Aは、実施の形態4に係る磁性板の積層体のハトメ構造を形成する工程を示す破断面図である。 図6Bは、実施の形態4に係る磁性板の積層体のハトメ構造を形成する工程を示す破断面図である。 図7Aは、実施の形態5に係るカシメ構造を用いた磁性板の積層体の製造工程を示す破断面図である。 図7Bは、実施の形態5に係るカシメ構造を用いた磁性板の積層体の製造工程を示す破断面図である。 図7Cは、実施の形態5に係るカシメ構造を用いた磁性板の積層体の製造工程を示す破断面図である。 図8は、実施の形態6に係る磁性板の積層体のカシメ材近傍の破断面拡大図である。 図9は、実施の形態7に係る磁性板の積層体のカシメ材近傍の破断面拡大図である。 図10Aは、実施の形態8に係る磁性板の積層体により構成されたモータの側面図である。 図10Bは、実施の形態8に係る磁性板の積層体により構成されたモータの上面図である。 図11Aは、実施の形態8に係る図10BにおけるA-A’間の破断面図である。 図11Bは、実施の形態8に係る図10BにおけるA-A’間の破断面図である。 図12は、実施の形態9に係る磁性板の積層体のハトメ部近傍の拡大破断面図である。 図13Aは、実施の形態10に係る磁性板の積層体により構成されたモータの側面図である。 図13Bは、実施の形態10に係る磁性板の積層体により構成されたモータの上面図である。 図14は、実施の形態10に係る図13BのB-B’間の破断面図である。 図15は、図13BのB-B’間の破断面図である。 図16は、特許文献2に記載された従来の磁性板の積層体を示す斜視図である。
 以下、実施の形態に係る磁性板の積層体及びモータについて、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。
 (実施の形態1)
 図1Aは、磁性板の積層体1を締結する締結部材100aの側面図である。図1B~図1Dは、実施の形態1における磁性板の積層体1の製造工程を示す概略図であって、具体的には金属締結機構としてハトメ構造を用いたものについて示している。
 <ハトメ構造3a>
 締結部材100aは、中空の筒2の両端に、切り目で分けられた複数の平面部2aを有する。ここで、ハトメ構造3aとは、中空の筒2の両端に、筒に垂直方向へ平面部2aが位置する構造である。ハトメ構造3aは、磁性体である薄帯を積層した積層体1に設けた開口4にはめ込まれる。ハトメ構造3aは、簡単に開口4から抜けないように平面部2aが中空の筒2の両端にある。その結果、ハトメ構造3aにより、複数の薄帯が積層された積層体1をまとめて固定できる。また、ハトメ構造3aは、グロメットやアイレットと呼ばれることもある。なお、中空の筒2は円柱型でも多角形の柱状でもよい。
 図1B~図1Dにおいて、積層体1、中空の筒2、中空の筒2に切れ目で形成された平面部2a、積層体1に形成された開口4がある。積層体1には貫通した穴である開口4がある。この開口4に図1Aの締結部材を挿入する。
 <プロセス>
 まず、図1Bにおいて、積層体1の開口4に中空の筒2と平面部2aを有する図1Bの締結部材を矢印方向に挿入する。
 次に、図1Cにおいて、積層された積層体1を押え機構5で固定し、ハトメ金具6を矢印方向から上下から付き合わせることで平面部2aを押し開く。
 更に図1Dにおいて、圧縮金具7で矢印方向(上下から)から圧縮することで左右方向へ平面部2aを向け、ハトメ構造3aとすることができる。圧縮は、ハトメ高さを一定に出来る高さ規制でも、ハトメを強固に出来る圧力規制でも良い。
 図2は、積層された積層体1をハトメ構造3aで固定された状態を示す断面図である。
 <積層体1>
 積層体1は、薄帯が積層されたものである。この場合、薄帯は、非晶質の磁性板である。非晶質状態で得られる薄帯の板厚は10から100μmの間が多い。また、薄帯は、非晶質薄帯を熱処理で結晶化したものであっても良い。
 <締結部材100aの材質>
 締結部材100aの材料は、積層体1の磁気特性に影響を与えないという観点から、磁界の影響を受けない非磁性であることが望ましい。この非磁性の材料として、鉄系であればオーステイナイト系のステンレス鋼や、銅、真鍮などの銅系合金、アルミニウムやその合金など非鉄金属及びその合金が使える。
 真鍮製の締結部材100aのハトメ構造3aで、30枚の非晶質薄帯(薄帯)を固定し、一つの積層体1として取り扱うことができる。ハトメ構造3aの上下の平面部2aの厚さは合計60μmであり、薄帯(薄帯)の厚さが30μmの場合に積層厚さ方向に薄帯が占める占積率は約94%になる。薄帯の板厚や枚数が大きいほど、平面部2aが薄いほど、占積率は大きくなる。薄帯の積層厚さ限界は、ハトメ構造3aにより左右され、積層厚さが大きくなるほど平面部2aや肉厚の大きなハトメ構造3aが必要となる。
 結晶化済みの薄帯の積層体1にハトメ構造3aをしてもよいし、非晶質の薄帯の積層体1にハトメ構造3aをした後に、これを熱処理して結晶化しても良い。
 結晶化温度は薄帯の組成により異なるが、350℃から500℃の間で行うものが多く、薄帯内に直径が数10nm以下のナノ結晶粒を有することで非晶質材よりも軟磁気特性が良くなる。
 なお、非晶質から結晶化すると薄帯は脆くなるので、結晶化後にハトメ構造3aをする場合には、破損しないように注意が必要である。
 一方、非晶質薄帯群をハトメ構造3aの形成後に熱処理する場合には、積層方向の熱勾配を小さくし、積層方向の熱処理温度分布を均一にするのがよい。さらに、薄帯が、非晶質から結晶化する際に発生する自己発熱による熱量が積層中央部に蓄積し、過剰な温度上昇が発生する。一方、薄帯の自己発熱量は厚さと相関がある。このことから、過剰な温度上昇を抑えるため、積層体1の厚さを2.5mm以下の厚さにすることが好ましい。このことで所望の磁気特性が得られることが分かった。この場合、この積層体1をいくつか積層し、厚みのある1つの積層体1とできる。
 積層体1の全体の厚さ2.5mmとすると、1枚の薄帯の板厚が最小の10μmの場合には、最大の250枚を積層することが必要である。また、生産性を高めるために、複数枚を積層して製造を行う。2枚の積層の場合全体の厚さは、板厚が10μmの薄帯なので、0.02mmとなる。
 締結部材100aの材料として、上記の材料を使用すれば、薄帯の結晶化熱処理をしても、ハトメ構造3aは溶融しない。
 このハトメ構造3aにより積層体1の積層方向の熱伝達が容易となり、積層方向の温度勾配を小さくすることに寄与する。
 また、ハトメ構造3aの表面に酸化物などの熱影響の痕跡を残すとよい。酸化物の層は絶縁性があるので、積層された積層体1とハトメ構造3aとの電気的な短絡防止に寄与し、モータ等の磁気デバイスなどで短絡により生じる渦電流損失によるエネルギー損失を低減することができる。
 (実施の形態2)
 図3は、実施の形態2における締結部材100bの外観図である。図3が図1Aの締結部材100aと異なる点は、片側に平面部2bが最初から中空の筒2に対して垂直に曲げられていることである。もう1方には、平面部2aが中空の筒2に平行配置されている。これにより締結部材の積層体1の厚み方向の位置決めが容易になるという利点がある。ハトメ構造3aの形成工程およびハトメ構造3a形成後の姿は、それぞれ図1Dと図2に準ずる。説明しない事項は実施の形態1と同様である。
 (実施の形態3)
 図4A~図4Cは、実施の形態3における磁性板の積層体1の製造工程を示す概略図である。具体的には金属締結機構に、締結部材100cを用い、カシメ構造3bを形成したものについて示している。
 ここで、カシメ構造3bはハトメ構造3aとは異なり貫通穴が開いていないもので、中実の柱状体10の両端に平面部10aが位置する構造である。片端が平面部10aとして広がっており、積層した薄帯をまとめて固定することを目的としている。平面部10aは、平面部2a、2bと異なり、複数でなく1つである。ただし、数個に分かれていてもよい。説明しない事項は実施の形態1と同様である。
 図4A~図4Cにおいて、図1B~図1Dと異なる点は、締結部材100cを用いたことである。図4Aにおいて、積層された積層体1の開口4に締結部材100cを矢印方向に挿入する。
 図4Bにおいて、締結部材100cを押え機構5で固定し、圧縮金具7を矢印方向から上下から付き合わせる。
 更に図4Cにおいて、圧縮金具7で柱状体10を矢印方向に圧縮し上下に平面部10aを柱状体10に対して垂直方向に形成してカシメ構造3bを形成することができる。
 図5は、積層された積層体1がカシメ構造3bで固定された状態を示す断面図である。カシメ構造3bを形成する締結部材100cの材料は、ハトメ構造3aと同様に積層体1の磁気特性に影響を与えないという観点から、磁界の影響を受けない非磁性であることが望ましい。このことは実施の形態1と同様で、カシメ構造3bを形成する締結部材100cの材料は、鉄系のオーステイナイト系のステンレス鋼や、銅、真鍮などの銅系合金、アルミニウムやその合金など非鉄金属及びその合金が使える。
 (実施の形態4)
 図6A~図6Bは、実施の形態4における磁性板の積層体1のハトメ構造3cを形成する工程を示す概略図である。図6Aにおいて、積層された積層体1に形成された2ヶ所のカシメ構造3bの一つの軸中心にドリル12で開口55を開ける。図6Bにおいて、2ヶ所に開口55をあけるとハトメ構造3cが形成される。この時、ハトメ構造3cの開口の内壁には切削痕(凹凸24)が残る。凹凸24は、10nm以上が好ましい。
 このように、同一の工程でカシメ構造3bからハトメ構造3cへ変更できる説明しない事項は、上記実施の形態と同様である。
 (実施の形態5)カシメの製法
 図7A~図7Cは、実施の形態5における磁性板の積層体1の製造工程を示す概略図であって、カシメ構造3dを用いたものについて示している。図7A~図7Cにおいて、図4A~図4Cと異なる点は、円柱状の締結部材100d14を用いたことである。
 図7Aにおいて、積層された積層体1の開口4に、開口4の深さより長く、開口4の体積より大きな締結部材100dを矢印方向に挿入する。
 図7Bにおいて、積層された積層体1を押え機構5で固定し、ザグリ部15を有するカシメ金具16を矢印方向から上下から付き合わせる。
 更に、図7Cにおいて、カシメ金具16で締結部材100dを矢印方向に圧縮することで、ザグリ部15に締結部材100dの一部が塑性流動して充填され、上下にツバを形成してカシメ構造3dにて積層された積層体1を固定することができる。また、締結部材100dの形状は、円柱状以外に角柱状や球状であっても良い。説明しない事項は、上記実施の形態と同様である。
 (実施の形態6)
 図8は、実施の形態6における磁性板の積層体1のカシメ構造3e近傍の断面拡大図である。カシメ構造3eの材料としては、非鉄金属の方が鉄系材料よりも硬度が低いので、小さな荷重でカシメることができる。
 特に、カシメ構造3dとして、ハンダなど低融点合金を用いると、降伏応力も小さいが融点も低い。熱処理温度の350℃から500℃では、多くのハンダの融点を超えるため、カシメ構造3eの一部が薄帯19の隙間20に流れ込み、突起状の突起部21を残す。この突起部21が薄帯19の層間に入り込むことで、積層方向のわずかな隙間も無くなり、固定状態が一層強固になるという利点もある。説明しない事項は、上記実施の形態と同様である。突起部21は、カシメ構造3eの柱状部分の側面に位置する。突起部21は、複数あるのが好ましい。
 ハトメ構造の場合も、この突起部21があればよい。
 (実施の形態7)
 図9は、実施の形態7における磁性板の積層体の締結部材100d近傍の断面拡大図である。図9の締結部材100dが、図5のカシメ構造3bと異なる点は、締結部材100dの外周部に絶縁層23を有していることである。図7Aにおいて、カシメ材14の外周部に樹脂等の変形可能な絶縁層23を設け、これを図7B、図7Cと同様の工程でカシメることで、図9の構造が得られる。締結部材100dの外周に絶縁層23を設けることで、積層された積層体1と締結部材100dが電気的に短絡するのを防ぐことが出来き、モータ等の磁気デバイスなどで短絡により生じる渦電流損失によるエネルギー損失を低減することができる。説明しない事項は、上記実施の形態と同様である。
 なお、上記締結部材100a~100cも、その外周面または内周面に絶縁層23があることが同様に好ましい。
 (実施の形態8)
 図10A、図10Bは、実施の形態8における磁性板の積層体1により構成されたモータの外観構成図である。図10Aは、モータの側面図、図10Bはモータの上面図である。
 図10Aにおいて、薄帯の積層物である固定子31は、固定板32にボルト33、バネワッシャ34、ワッシャ35とナット36により固定されている。図10Bにおいて、固定子31のティース(T字型の凸部)と呼ばれる部分に巻線38が施されている。固定子31の内径側(開口部)には回転子37が設置されている。
 図11A、図11Bは、図10BのA-A’間の断面構成図で、図11Aは固定用のボルト33類が無い状態、図11Bはボルト33類が有る状態である。
 図11Aにおいて、固定子31を構成するハトメ構造3a、3cの積層体41は、固定板32の締結用の貫通穴42の上にハトメ構造3a、3cの部分が積み重なるように位置合わせされ、3段で積層されている。金属締結機構(開口4、締結部材100a、100b)が、固定子31の厚さ方向で直線に配列されている。
 図11Bにおいて、ハトメ構造3a、3cの積層体41は、固定板32にボルト33、バネワッシャ34、ワッシャ35とナット36により固定されている。それぞれの積層体41の開口4のハトメ構造3a、3cにボルト33を通すことで、ボルト33挿入時の薄帯端面の損傷等を防ぐことが出来る。また、ハトメ構造3a、3cを積み重ねて積層することで、薄帯にボルト33による締結圧力が局部的にかかり、積層体41の磁気特性に悪影響がでることを防ぐことが出来る。
 固定子31に、積層体41を用いたが、回転子37に積層体41を用いてもよい。固定子31の周りを回転子37が回転するモータでもよい。
 (実施の形態9)
 図12は、実施の形態9におけるモータの固定子31のハトメ構造3d近傍の拡大断面構成図である。絶縁層23付きの締結部材100eを備えたハトメ構造3dの積層体41が3段積層されている。
 さらに、締結部材100eの内側の開口4の内壁に接着剤43が3段の積層体41を連結するように塗布されている。ハトメ構造3dの積層体41同士を接着することでボルト等による締結が無くても、固定子31単体の取扱いが出来るようになり、取扱いが一層容易になる。
 図12では連結を接着剤43で行ったが、締結部材100e同士を溶接したり、締結部材100e同士をカシしても良い。説明しない事項は実施の形態8と同様である。
 (実施の形態10)
 図13A、図13Bは、実施の形態10における磁性板の積層体により構成されたモータの外観構成図で、図13Aは側面図、図13Bは上面図である。図13A、図13Bのモータは、実施の形態8の図10A、図10Bのモータと異なる。異なる点は、(1)薄帯の積層物である固定子31を、固定板32にボルト33、バネワッシャ34、ワッシャ35とナット36により3箇所固定されていることと、(2)締結部材の開口4に充填された樹脂部44が3箇所存在することである。固定子31のティースと呼ばれるT字形状部分に巻線38が施され、固定子31の内径側には回転子37が設置されていることは、図10A、図10Bと同様である。
 図14は、前記図13BのB-B’間の断面構成図で、固定用のボルト33類と樹脂部44を挿入する前で、ハトメ構造100a、100b、100eの積層体45を積層した状態である。固定子31を構成するハトメ構造の積層体45は、貫通穴46と締結部材100eの中空部47が交互に積み重なるように5段で積層されている。つまり、固定子31の平面視で、上下の隣接する締結部材100eが異なる位置に位置する。または、上下の隣接する締結部材100eが、組み合わされない。
 このような構成にすることで、実施の形態8の図11Aにおける、ハトメ構造3a、3cが積み重なるように5段で積層されている場合よりも、積層された積層体1の上下の隙間48が狭くなり、占積率が高くなるという効果がある。
 図15は、前記図13BのB-B’間の断面構成図で、固定用のボルト33類と樹脂部44が挿入された後で、ハトメ構造の積層体45を積層し固定した状態である。ハトメ構造の積層体45は、貫通穴46と締結部材100eの中空部47を通して固定板32にボルト33、バネワッシャ34、ワッシャ35とナット36により固定されている。また、ボルト33を通さない方は、剛性を保つために充填された樹脂部44が形成されている。樹脂部44は中空のままであっても、他の材料を充填しても良い。説明しない事項は実施の形態8、9と同様である。
 (全体として)
 実施の形態は、組み合わせることができる。ハトメ材、カシメ材は、円柱、円筒、四角柱、楕円柱などでもよい。
 なお、本開示においては、前述した様々な実施の形態及び/又は実施例のうちの任意の実施の形態及び/又は実施例を適宜組み合わせることを含むものであり、それぞれの実施の形態及び/又は実施例が有する効果を奏することができる。
 本発明に係る磁性板の積層体によれば、磁気特性を損なうことなく高い生産性を有する磁性板の積層体を提供することが可能となる。そこで、本発明に係る磁性板の積層体は、モータの固定子として有用である。さらに、本発明に係る磁性板の積層体は、モータ以外にトランス等の磁気応用した電子部品の用途にも適用できる。
  1 積層体
  2 中空の筒
  2a,2b 平面部
  3a,3c ハトメ構造
  3b,3d,3e カシメ構造
  4 開口
  5 押え機構
  6 ハトメ金具
  7 圧縮金具
  10 柱状体
  10a 平面部
  12 ドリル
  15 ザグリ部
  16 カシメ金具
  19 薄帯
  20 隙間
  21 突起部
  23 絶縁層
  24 凹凸
  31 固定子
  32 固定板
  33 ボルト
  34 バネワッシャ
  35 ワッシャ
  36 ナット
  37 回転子
  38 巻線
  41 積層体
  42 貫通穴
  43 接着剤
  44 樹脂部
  45 積層体
  46 貫通穴
  47 中空部
  48 隙間
  51 積層材
  52 非晶質合金薄帯
  53 電磁鋼板
  55 開口
  100a,100b,100c,100d,100e 締結部材

Claims (17)

  1. 複数の薄帯が積層された積層体と、
    前記積層体の開口に設けられた締結部材と、からなる磁性板の積層体。
  2. 前記締結部材は、中空の筒と、前記筒の両端に位置する平面部と、を有する請求項1に記載の磁性板の積層体。
  3. 前記中空の筒の内壁に凹凸を有する請求項2に記載の磁性板の積層体。
  4. 前記中空の筒の内面又は外周面に絶縁層が形成された請求項2に記載の磁性板の積層体。
  5. 前記締結部材は中実の柱状体と前記柱状体の両端に位置する平面部とを有する請求項1に記載の磁性板の積層体。
  6. 前記中実の柱状体の外周面に突起部を有し、前記突起部は、前記複数の薄帯間に位置する請求項5に記載の磁性板の積層体。
  7. 前記中実の柱状体の外周面に絶縁層が形成された請求項6記載の磁性板の積層体。
  8. 前記締結部材の材料は非磁性である請求項1に記載の磁性板の積層体。
  9. 前記締結部材の材料はオーステナイト系鉄系合金である請求項1に記載の磁性板の積層体。
  10. 前記締結部材の材料は非鉄金属及びその合金である請求項1に記載の磁性板の積層体。
  11. 前記薄帯を非晶質薄帯とした請求項1に記載の前記磁性板の積層体を、熱処理して前記薄帯にナノ結晶粒を有せしめた磁性板の積層体の製造方法。
  12. 前記請求項1に記載の磁性板の積層体を複数積層した固定子と、
    前記固定子を固定する固定板と、
    前記固定子の中央の開口に配置された回転子と、
    を備えたモータ。
  13.  前記固定子は、前記複数の積層体のそれぞれの前記締結部材が、前記固定子の厚さ方向で直線に配列している請求項12に記載のモータ。
  14.  前記それぞれの締結部材は、前記厚さ方向で相互に接合あるいは結合され連結されている請求項13に記載のモータ。
  15.  前記固定子では、前記複数の積層体のそれぞれの前記締結部材が、前記固定子の平面方向で異なる位置に配列されている請求項12に記載のモータ。
  16.  前記固定子は、前記複数の積層体のそれぞれの前記締結部材が、中空の筒と前記筒の両端に位置する平面部とを有する構造であり、前記中空の筒の内側に固定用部材を通して前記固定子を構成した請求項12に記載のモータ。
  17. 前記固定子の周りを前記回転子が回転する請求項12に記載のモータ。
PCT/JP2017/023005 2016-07-06 2017-06-22 磁性板の積層体及びその製造方法、その積層体を用いたモータ WO2018008417A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018526025A JP6880020B2 (ja) 2016-07-06 2017-06-22 磁性板の積層体及びその積層体を用いたモータ
EP17824024.8A EP3484017A4 (en) 2016-07-06 2017-06-22 MAGNETIC PLATE LAMINATE, CORRESPONDING MANUFACTURING METHOD, AND MOTOR USING THE MAGNETIC PLATE LAMINATE
CN201780040568.8A CN109417318A (zh) 2016-07-06 2017-06-22 磁性板的层叠体及其制造方法、使用该层叠体的电机
US16/240,015 US10797541B2 (en) 2016-07-06 2019-01-04 Magnetic plate laminate, manufacturing method therefor, and motor using this laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-133842 2016-07-06
JP2016133842 2016-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/240,015 Continuation US10797541B2 (en) 2016-07-06 2019-01-04 Magnetic plate laminate, manufacturing method therefor, and motor using this laminate

Publications (1)

Publication Number Publication Date
WO2018008417A1 true WO2018008417A1 (ja) 2018-01-11

Family

ID=60912629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023005 WO2018008417A1 (ja) 2016-07-06 2017-06-22 磁性板の積層体及びその製造方法、その積層体を用いたモータ

Country Status (5)

Country Link
US (1) US10797541B2 (ja)
EP (1) EP3484017A4 (ja)
JP (2) JP6880020B2 (ja)
CN (1) CN109417318A (ja)
WO (1) WO2018008417A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044745A1 (ja) * 2018-08-28 2020-03-05 パナソニックIpマネジメント株式会社 固定子の製造方法、固定子、およびモータ
JP7392604B2 (ja) 2020-07-29 2023-12-06 トヨタ紡織株式会社 ステータコアおよびステータコアの製造方法およびステータコアの製造装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150807A1 (ja) * 2017-02-14 2018-08-23 パナソニック株式会社 薄帯部品とその製造方法、および、薄帯部品を用いたモータ
DE102018205806A1 (de) * 2018-04-17 2019-10-17 Siemens Aktiengesellschaft Stator, elektrische Maschine, Luftfahrzeug mit einer elektrischen Maschine und Verfahren zur Herstellung eines Stators
JP7095654B2 (ja) 2019-05-23 2022-07-05 トヨタ自動車株式会社 金属箔の製造方法
JP7347197B2 (ja) * 2019-12-19 2023-09-20 トヨタ自動車株式会社 回転電機コアの製造方法および製造装置
CN111064335B (zh) * 2020-01-02 2021-07-09 东南大学 一种非晶材料的e型双绕组定子轴向磁通电机
JP7318536B2 (ja) * 2020-01-08 2023-08-01 トヨタ自動車株式会社 金属箔の製造方法およびその製造装置
JP7485949B2 (ja) 2020-09-29 2024-05-17 ダイキン工業株式会社 モータ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985502A (ja) * 1972-12-23 1974-08-16
JPH06145917A (ja) 1992-11-09 1994-05-27 Hitachi Metals Ltd モータ
JP2000270505A (ja) * 1999-03-17 2000-09-29 Seiko Epson Corp 回転子およびステッピングモータ
JP2007311652A (ja) 2006-05-19 2007-11-29 Denso Corp アモルファス積層材及びアモルファス積層材の製造方法及び回転電機の鉄心の製造方法
US20120112601A1 (en) * 2009-04-24 2012-05-10 Alstom Hydro France Rotating electric machine
JP2012147616A (ja) * 2011-01-14 2012-08-02 Aisin Seiki Co Ltd 回転電機のロータ
CN103580323A (zh) * 2012-07-31 2014-02-12 成都联腾动力控制技术有限公司 宽调速永磁同步电机的转子改进结构
WO2016035191A1 (ja) * 2014-09-04 2016-03-10 株式会社安川電機 回転電機、回転子鉄心の製造方法
JP2016073109A (ja) * 2014-09-30 2016-05-09 株式会社三井ハイテック 積層鉄心及びその製造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1550471A (ja) * 1967-11-16 1968-12-20
JPS58182895A (ja) * 1982-04-20 1983-10-25 日置電機株式会社 プリント配線板のハンダ付け方法
JPS61123672U (ja) * 1985-01-18 1986-08-04
JPS61258655A (ja) * 1985-05-07 1986-11-17 Toshiba Corp 積層鉄心とシヤフトとの固着方法
JPS61205241U (ja) * 1985-06-14 1986-12-24
JP3291787B2 (ja) * 1992-09-30 2002-06-10 松下電工株式会社 電気集塵フイルター
US5929545A (en) * 1997-11-26 1999-07-27 Emerson Electric Co. End shield for an electric motor, electric motor construction, and method of assembling electric motor
JPH11266555A (ja) * 1998-03-16 1999-09-28 Toshiba Corp 回転電機の回転子
GB2344224A (en) * 1998-11-30 2000-05-31 Huang Shu Chen Two part laminated stator of motor
WO2003069764A1 (fr) * 2001-12-10 2003-08-21 Yi-Yu Kuo Moteur a courant continu a haut rendement
US6784588B2 (en) * 2003-02-03 2004-08-31 Metglas, Inc. Low core loss amorphous metal magnetic components for electric motors
CA2421606C (en) * 2003-03-06 2011-06-14 General Electric Canada Inc. Insulated core stud for rotor and stator laminations
US7235910B2 (en) * 2003-04-25 2007-06-26 Metglas, Inc. Selective etching process for cutting amorphous metal shapes and components made thereof
JP2005033897A (ja) * 2003-07-10 2005-02-03 Mitsubishi Electric Corp 回転駆動装置
JP5139500B2 (ja) * 2005-06-27 2013-02-06 東芝産業機器製造株式会社 固定子及び固定子の製造方法
JP2007159332A (ja) * 2005-12-08 2007-06-21 Toyota Motor Corp 回転電機
JP2008086187A (ja) * 2006-08-29 2008-04-10 Aisin Seiki Co Ltd モータのエンドプレート
JP2008178253A (ja) * 2007-01-19 2008-07-31 Fanuc Ltd 電動機ロータの製造方法及び電動機
JP4447619B2 (ja) * 2007-03-20 2010-04-07 株式会社日本自動車部品総合研究所 積層鉄心
JP5170878B2 (ja) * 2008-03-12 2013-03-27 アイチエレック株式会社 永久磁石回転機の回転子
JP2011078167A (ja) * 2009-09-29 2011-04-14 Toshiba Corp 回転電機および回転電機の積層鋼板の短絡測定方法
CN102332756A (zh) * 2011-09-13 2012-01-25 王子齐 永磁电机
CN102361374B (zh) * 2011-10-28 2013-09-18 安泰科技股份有限公司 电机用护盒式非晶、微晶或纳米晶合金定子铁芯及其制备方法
WO2014024988A1 (ja) * 2012-08-08 2014-02-13 株式会社デンソー ステータコアおよびそれを用いたアウターロータ型回転電機
CN102868241A (zh) * 2012-09-20 2013-01-09 安泰科技股份有限公司 定子铁心及其制造方法
JP5728038B2 (ja) * 2013-01-29 2015-06-03 株式会社豊田自動織機 回転電機の回転子およびその製造方法
JP6342758B2 (ja) * 2013-10-09 2018-06-13 株式会社三井ハイテック 積層鉄心及びその製造方法
CN206389257U (zh) * 2014-04-17 2017-08-08 松下知识产权经营株式会社 无刷电动机及搭载有该无刷电动机的洗衣机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985502A (ja) * 1972-12-23 1974-08-16
JPH06145917A (ja) 1992-11-09 1994-05-27 Hitachi Metals Ltd モータ
JP2000270505A (ja) * 1999-03-17 2000-09-29 Seiko Epson Corp 回転子およびステッピングモータ
JP2007311652A (ja) 2006-05-19 2007-11-29 Denso Corp アモルファス積層材及びアモルファス積層材の製造方法及び回転電機の鉄心の製造方法
US20120112601A1 (en) * 2009-04-24 2012-05-10 Alstom Hydro France Rotating electric machine
JP2012147616A (ja) * 2011-01-14 2012-08-02 Aisin Seiki Co Ltd 回転電機のロータ
CN103580323A (zh) * 2012-07-31 2014-02-12 成都联腾动力控制技术有限公司 宽调速永磁同步电机的转子改进结构
WO2016035191A1 (ja) * 2014-09-04 2016-03-10 株式会社安川電機 回転電機、回転子鉄心の製造方法
JP2016073109A (ja) * 2014-09-30 2016-05-09 株式会社三井ハイテック 積層鉄心及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3484017A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044745A1 (ja) * 2018-08-28 2020-03-05 パナソニックIpマネジメント株式会社 固定子の製造方法、固定子、およびモータ
JP7392604B2 (ja) 2020-07-29 2023-12-06 トヨタ紡織株式会社 ステータコアおよびステータコアの製造方法およびステータコアの製造装置

Also Published As

Publication number Publication date
CN109417318A (zh) 2019-03-01
EP3484017A1 (en) 2019-05-15
JP6880020B2 (ja) 2021-06-02
JP2020039249A (ja) 2020-03-12
US10797541B2 (en) 2020-10-06
JPWO2018008417A1 (ja) 2018-12-20
US20190157921A1 (en) 2019-05-23
EP3484017A4 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
WO2018008417A1 (ja) 磁性板の積層体及びその製造方法、その積層体を用いたモータ
CN108155730B (zh) 铁芯和电机
JP6438498B2 (ja) 磁性板の積層体及びモータ
JP5175844B2 (ja) インダクタンス素子とその製造方法、およびそれを用いたスイッチング電源
US10461589B2 (en) Magnetic-plate laminated body and motor
WO2014046013A1 (ja) 平面コイル、トランスおよび平面コイルの製造方法
JP6522252B2 (ja) 薄帯部品とその製造方法、および、薄帯部品を用いたモータ
JP2006288114A (ja) 積層鉄心、及び積層鉄心の製造方法
JP6462967B1 (ja) 積層部材とその製造方法と、積層体およびモータ
JP6655787B2 (ja) モータ
CN109792171B (zh) 铁芯和使用了该铁芯的马达
TWI435348B (zh) 磁性元件
JP5045508B2 (ja) インダクタとその製造方法とこれを用いた回路モジュール
JP2021175240A (ja) 鉄心の製造方法、鉄心、および固定子
TW201814743A (zh) 磁芯片及磁芯
JP5098409B2 (ja) 巻線型電子部品用コア、その製造方法及び巻線型電子部品
JP2017099158A (ja) 磁性板の積層体及びモータ
JP5869305B2 (ja) 溶接トランスおよびその製造方法
JP6668113B2 (ja) インダクタ
CN112585850A (zh) 定子的制造方法、定子以及电动机
JP2020178411A (ja) 固定子鉄心およびモータ
WO2020017257A1 (ja) 変圧器および積鉄心
KR102189800B1 (ko) 코일 부품
JP2021175239A (ja) 鉄心の製造方法、鉄心、および固定子
JP2006340548A (ja) リベット締着積層鉄芯とその製造方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018526025

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017824024

Country of ref document: EP

Effective date: 20190206