WO2018004250A1 - 도핑 원소를 가진 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법 - Google Patents

도핑 원소를 가진 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법 Download PDF

Info

Publication number
WO2018004250A1
WO2018004250A1 PCT/KR2017/006823 KR2017006823W WO2018004250A1 WO 2018004250 A1 WO2018004250 A1 WO 2018004250A1 KR 2017006823 W KR2017006823 W KR 2017006823W WO 2018004250 A1 WO2018004250 A1 WO 2018004250A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
cobalt oxide
lithium
Prior art date
Application number
PCT/KR2017/006823
Other languages
English (en)
French (fr)
Inventor
조치호
이보람
박성빈
허혁
박영욱
정왕모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170081193A external-priority patent/KR102095930B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/765,402 priority Critical patent/US10930931B2/en
Priority to EP17820526.6A priority patent/EP3340348B1/en
Priority to CN201780003576.5A priority patent/CN108140821B/zh
Priority to PL17820526T priority patent/PL3340348T3/pl
Publication of WO2018004250A1 publication Critical patent/WO2018004250A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery including a high voltage lithium cobalt oxide having a doping element and a method of manufacturing the same.
  • lithium secondary batteries have high energy density and operating potential, have long cycle life, and have low self discharge rate. Is commercially available and widely used.
  • LiCoO 2 LiCoO 2
  • Samsung SDI NMC / NCA
  • LiMnO 4 LiFePO 4
  • LiCoO 2 the price of cobalt is high and the capacity of the same voltage is lower than that of the Samsung division, and thus the usage of the Samsung division is gradually increasing to increase the capacity of the secondary battery.
  • LiCoO 2 is excellent in various physical properties such as high rolling density, and excellent in electrochemical properties such as high cycle characteristics.
  • LiCoO 2 has a low charge / discharge current of about 150 mAh / g, a problem of deterioration in life characteristics due to unstable crystal structure at voltages of 4.3 V and higher, and risk of ignition by reaction with electrolyte. have.
  • the energy capacity of the active material is greatly reduced to decrease battery performance, and further, the total content and doping amount of the metal elements included in the active material. And the properties vary depending on the amount of coating not only significantly affects the battery performance, but also has a problem that it is difficult to set the proper range because the high contact durability is greatly changed.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application have described the content of element A in the coating layer formed on the surface of a particle in a lithium cobalt oxide including a coating layer and a substitution element formed on the surface of a particle, as described later.
  • the content of element B in the dopant is relatively higher, it was confirmed that the desired effect can be achieved, and the present invention was completed.
  • the element A and the element B are each independently at least one or more selected from the group consisting of Al, Ti, Mg, Zr, Ba, Ca, Ta, Nb, and Mo,
  • the molar ratio of element A in the coating layer: element B in the dopant is greater than 1: 1 and 10: 1 or less.
  • step (b) mixing the lithium cobalt oxide of the step (a) with a compound including the element A, and then firing the material in a secondary manner, thereby providing a method of manufacturing a cathode active material for a secondary battery.
  • a positive electrode which is prepared by applying a slurry containing the positive electrode active material, a conductive material, and a binder for a secondary battery to a current collector, and
  • It provides a lithium secondary battery comprising the positive electrode, the negative electrode, and the electrolyte.
  • the positive electrode active material according to the present invention forms the coating layer containing the metal element A on the surface of the particles of lithium cobalt oxide, while doping the metal element B in the lithium cobalt oxide, the content of the element A in the coating layer of the element B in the dopant Specifically, the molar ratio of element A: element B is greater than 1: 1 to 10: 1 or less so that the amount of element A and element B contained in an appropriate ratio in the dopant and the coating layer is 4.4 V or more.
  • FIG. 1 is a graph showing the capacity retention rate of a battery according to a cycle of a lithium secondary battery including the cathode active materials prepared in Examples 1 to 3 and Comparative Examples 1 to 3.
  • the cathode active material particles for secondary batteries according to the present invention lithium cobalt oxide
  • a coating layer comprising element A formed on the surface of the particles of lithium cobalt oxide
  • the element A and the element B are each independently at least one or more selected from the group consisting of Al, Ti, Mg, Zr, Ba, Ca, Ta, Nb, and Mo,
  • the molar ratio of Element A in the coating layer: Element B in the dopant is greater than 1: 1 and 10: 1 or less.
  • lithium cobalt oxide when used at a high voltage as a cathode active material, a large amount of lithium ions are released from lithium cobalt oxide particles, resulting in a loss of crystal structure, and thus, an unstable crystal structure is collapsed and reversibility is lowered.
  • the lithium ions are Co 3 + or Co 4 + ions in the lithium cobalt oxide particle surface in the released state is to be reduced by the electrolyte, the oxygen is desorbed from the crystal structure of the above-described structure, the collapse is further promoted.
  • a coating layer containing a metal is formed on the particle surface of lithium cobalt oxide, and while the metal is doped in the lithium cobalt oxide, the content of element A in the coating layer is relatively higher than that of element B in the dopant.
  • the dopant may be preferentially oxidized over cobalt (Co) at a charge condition of 4.4 V or more to provide structural stability, and the coating layer may provide stability of particle surfaces of lithium cobalt oxide.
  • the lithium cobalt oxide may have a composition of the formula (1).
  • M and Me are at least one selected from the group consisting of Al, Ti, Mg, Zr, Ba, Ca, Ta, Nb, and Mo;
  • the lithium cobalt oxide may have a composition of Formula 2 including a thin film of lithium excess on the surface.
  • M and Me are each independently at least one selected from the group consisting of Al, Ti, Mg, Zr, Ba, Ca, Ta, Nb, and Mo;
  • M and Me are doping element B.
  • the element B may be at least one or more selected from the group consisting of Al, Mg, Zr and Ti, in detail may be at least one or more selected from the group consisting of Al, Mg and Ti, more specifically Mg And Ti.
  • the lithium cobalt-based oxide having the composition of Formula 1 in detail, LiCo 0 . 998 Mg 0 . 001 Ti 0 . 001 0 2 , LiCo 0 . 995 Mg 0. 002 Al 0 . 003 O 2, LiCo 0. 999 Mg 0 . 001 O 2 , LiCo 0.996 Mg 0.002 Ti 0.002 O 2 , LiCo 0 . 997 Mg 0 . 002 Al 0 . 001 O 2 , or LiCo 0 . 996 Mg 0 . 002 Ti 0 . 001 Al 0 .
  • the lithium cobalt oxide having a composition of the formula (II), particularly, Li 0.05 (LiCo 0.998 Mg 0.001 Ti 0.001 O 2), Li 0 .1 (LiCo 0. 995 Mg 0. 002 Al 0. 003 O 2), Li 0 .02 (LiCo 0. 999 Mg 0. 001 O 2), Li 0.06 (LiCo 0.996 Mg 0.002 Ti 0.002 O 2), Li 0 .08 (LiCo 0. 997 Mg 0. 002 Al 0. 001 may be a O 2), or Li 0.09 (LiCo 0.996 Mg 0.002 Ti 0.001 Al 0.001 O 2).
  • Li 0.05 LiCo 0.998 Mg 0.001 Ti 0.001 O 2
  • Li 0 .1 LiCo 0. 995 Mg 0. 002 Al 0. 003 O 2
  • Li 0 .02 LiCo 0. 999 Mg 0. 001 O 2
  • the coating element A may be at least one or more selected from the group consisting of Al, Mg, Zr, and Ti, and specifically Mg and Ti.
  • the coating layer including the element A may be formed by firing, and specifically, Al 3 O 4 , ZrO 2 , Al (OH), Mg (OH) 2 , Al 2 O 3 , MgO, ZrO, Li 2 It may include at least one selected from the group consisting of ZrO 3 and TiO 2 .
  • the elements A and B may be the same element.
  • the elements A and B are the same, excellent results can be obtained in terms of both the doping effect and the coating effect.
  • the contribution to the structural stability due to the element B in the dopant is large, it can be said that there is an excellent effect on the surface stability of the coating layer containing the same element A as the element B. Therefore, it is more preferable as compared with containing different elements.
  • the molar ratio of element A in the coating layer to element B in the dopant may be greater than 1: 1 and less than or equal to 10: 1, preferably 1.3: 1 to 5: 1, 1.3: 1 to 3.5: 1, 1.3: 1 to 3.2: 1, 1.3: 1 to 3: 1, more preferably 1.3: 1 to 2.5: 1.
  • the mobility of lithium ions may be reduced due to the excess metal included in the coating layer, resulting in a decrease in output characteristics. Relatively small amounts of lithium cobalt oxide in the same volume may lead to a decrease in capacity.
  • there are too few doping elements there exists a problem that there is little doping effect which raises the structural safety of an active material.
  • the molar ratio of element A in the coating layer to element B in the dopant is 1: 1 or less, the effect of coating cannot be sufficiently exhibited, or the ratio of metal B on the surface of the positive electrode active material particles is too high, so that the positive electrode active material is relatively high. There is a problem that the overall capacity of the can be reduced.
  • the molar ratio of the coating layer is small, as the coating area decreases, corrosion of the surface of the cathode active material is accelerated, resulting in inferior lifetime and storage characteristics.
  • the molar ratio of element A: element B in the dopant in the coating layer may include a sum of heterogeneous elements.
  • the content of the element A in the coating layer may be greater than 0 to 20,000 ppm based on the total weight of the positive electrode active material, in detail, may be 500 to 1,500 ppm, more specifically 700 to 1,000 ppm. .
  • the weight of the element B in the dopant may be greater than 0 to 20,000 ppm based on the total amount of the positive electrode active material, in detail, may be 500 to 1,500 ppm, more specifically may be 700 to 1,000 ppm.
  • the ppm content of the element A is, of course, higher than the ppm content of the element B.
  • the present invention provides a method for manufacturing the positive electrode active material for the secondary battery, the manufacturing method,
  • step (b) mixing the lithium cobalt oxide of step (a) with a compound containing element A and then performing secondary firing;
  • the doping precursor including the element B is mixed in a static amount, and first calcined to produce lithium cobalt oxide particles in which the element B is substituted, and an appropriate amount.
  • a compound including an element A may be coated on the surface of the lithium cobalt oxide particles, and the secondary active material may be prepared by forming a coating layer through a secondary firing process. At this time, the content of the element A in the coating layer is set to be greater than the content of the element B in the dopant.
  • the content of the element A in the coating layer formed on the particle surface of the lithium cobalt oxide is prepared to be relatively higher than the content of the element B in the dopant, and the elements A and B contained in the coating layers in an appropriate ratio are preferentially oxidized over cobalt (Co) under 4.4 V or more of charging conditions, thereby exhibiting the stability of the internal structure of the positive electrode active material particles and the surface structure change of the positive electrode active material.
  • the effect of suppressing the increase in surface safety can serve as an optimal range that can prevent degradation of cycle characteristics of the secondary battery at high voltage.
  • a doping precursor including a lithium precursor, cobalt oxide, and element B is mixed as in step (a).
  • the mixing molar ratio of the lithium precursor (Li), cobalt oxide (Co), and the doping precursor (element B) including the element B may be 0.95: 0.90: 0.001 to 1.10: 1.05: 0.05.
  • the cobalt oxide is not limited in kind, but preferably, at least one selected from the group consisting of Co 3 O 4 , CoCO 3 , Co (NO 3 ) 2 and Co (OH) 2 .
  • the group consisting of Co 3 O 4 , CoCO 3 , Co (NO 3 ) 2 and Co (OH) 2 can be.
  • the lithium precursor is not limited as long as it is a compound containing a lithium source, preferably, at least one selected from the group consisting of Li 2 CO 3 , LiOH, LiNO 3 , CH 3 COOLi and Li 2 (COO) 2 . have.
  • the doping precursor may be at least one selected from the group consisting of metals, metal oxides and metal salts.
  • the metal salt may include, for example, acetate, nitrate, sulfate, etc. of the metal element (B), but is not limited thereto.
  • a mixture of the lithium precursor, the cobalt oxide, and the doping precursor including the element B is first calcined to prepare a spherical lithium cobalt oxide.
  • the primary firing may be performed for 8 hours to 12 hours at 800 °C to 1200 °C.
  • the primary firing may be performed for 8 hours to 12 hours at 800 °C to 1200 °C.
  • doping may not be performed well and the internal structure of the positive electrode active material particles may not be stably formed.
  • the primary firing is performed at a temperature exceeding 1200 ° C., or performed for more than 12 hours, the physical and chemical properties of the lithium cobalt oxide may be changed, thereby causing performance degradation.
  • the compound containing element A forming the coating layer is preferably Al 3 O 4 , ZrO 2 , Al (OH), Mg (OH) 2 , Al 2 O 3 , MgO, ZrO, Li 2 ZrO 3 and TiO It may include at least one selected from the group consisting of 2 , but is not limited thereto.
  • the secondary firing may be performed for 3 hours to 8 hours at 400 °C to 800 °C.
  • the secondary firing when the secondary firing is performed at a temperature of less than 400 ° C., or less than 3 hours, the surface of the cathode active material particles may not be stably formed due to poor coating on the surface of the cathode active material. You may not be able to.
  • the secondary firing when the secondary firing is performed at a temperature exceeding 800 ° C. or more than 8 hours, the physical and chemical properties of the lithium cobalt oxide constituting the positive electrode active material particles are changed, thereby degrading performance. It is not preferable because it can cause.
  • the present invention also provides a cathode prepared by applying a slurry containing the cathode active material for a secondary battery, a conductive material, and a binder to a current collector.
  • the positive electrode may be manufactured by, for example, applying a positive electrode active material composed of the above-mentioned positive electrode active material particles to a positive electrode current collector, and a positive electrode mixture in which a conductive material and a binder are mixed. Further filler may be added to the mixture.
  • the positive electrode current collector is generally manufactured to a thickness of 3 ⁇ 300 ⁇ m, and is not particularly limited as long as it has a high conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium , And one selected from surface treated with carbon, nickel, titanium, or silver on the surface of aluminum or stainless steel may be used, and in detail, aluminum may be used.
  • the current collector may form fine irregularities on the surface to increase adhesion of the positive electrode active material, and may be in various forms such as a film, sheet, foil, net, porous body, foam, and nonwoven fabric.
  • the conductive material is typically added in an amount of 0.1 to 30% by weight based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 0.1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
  • the present invention also provides a secondary battery comprising the positive electrode, the negative electrode and the electrolyte.
  • the type of the secondary battery is not particularly limited, but as a specific example, the secondary battery may be a lithium secondary battery such as a lithium ion battery, a lithium ion polymer battery, or the like having advantages of high energy density, discharge voltage, output stability, and the like.
  • a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
  • the negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally, the components included in the positive electrode described above may be further included as necessary.
  • the negative electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel may be used.
  • Surface-treated with carbon, nickel, titanium, silver and the like, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • carbon such as hardly graphitized carbon and graphite type carbon
  • Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the said lithium salt containing non-aqueous electrolyte solution consists of a nonaqueous electrolyte solution and a lithium salt.
  • nonaqueous electrolyte nonaqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like are used, but not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxorone , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be used
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2, and the like can be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide
  • Nitrobenzene derivatives sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyr
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
  • the present invention also provides a battery pack including the secondary battery and a device including the battery pack. Since the battery pack and the device are known in the art, detailed descriptions thereof are omitted herein. do.
  • the device may be, for example, a laptop computer, a netbook, a tablet PC, a mobile phone, an MP3, a wearable electronic device, a power tool, an electric vehicle (EV), or a hybrid electric vehicle (HEV).
  • PHEVs Plug-in hybrid electric vehicles
  • E-bikes electric bikes
  • E-scooters electric golf carts
  • Dry mix of Co 3 O 4 , LiOH, TiO 2 and MgO so that Li: Co: Ti: Mg is 1.0: 0.998: 0.0007: 0.0008, and the content of TiO 2 and MgO is 1000 ppm based on the entire cathode active material after mixing so that, by the first calcined for 10 hours at 1,030 °C furnace to prepare a lithium cobalt oxide, and the prepared in order to form a coating layer in the manufactured lithium cobalt oxide lithium cobalt oxide, TiO 2 and MgO dry After mixing, coating TiO 2 and MgO by dry mixing (coating: doping molar ratio 1.3: 1) to 1300 ppm based on the whole of the positive electrode active material, and then firing it in a furnace for 2 hours at 530 ° C. for 6 hours. Synthesized.
  • the positive electrode active material: binder: conductive material was mixed well in NMP so that the weight ratio was 96: 2: 2, and then 20 ⁇ m. It was applied to a thick Al foil and dried at 130 ° C. to prepare a positive electrode.
  • Lithium cobalt oxide was prepared by adjusting the content of TiO 2 and MgO to 750 ppm based on the entire cathode active material, and the lithium cobalt oxide and TiO 2 and MgO prepared above were dried to 2400 ppm based on the entire cathode active material.
  • Lithium cobalt oxide was prepared by adjusting the content of TiO 2 and MgO to 1200 ppm based on the entire cathode active material, and dry mixing the lithium cobalt oxide prepared above and TiO 2 and MgO to 300 ppm based on the entire cathode active material.

Abstract

본 발명은 리튬 코발트 산화물; 상기 리튬 코발트 산화물의 입자 표면 상에 형성되고, 원소 A를 포함하는 코팅층; 및 상기 리튬 코발트 산화물에 치환되어 있는 원소 B를 함유한 도펀트;를 포함하고 있으며, 상기 원소 A 및 원소 B는 각각 독립적으로 Al, Ti, Mg, Zr, Ba, Ca, Ta, Nb, 및 Mo으로 이루어진 군에서 선택되는 적어도 하나 이상이고, 코팅층 중 원소 A : 도펀트 중 원소 B의 몰비는 1 : 1 초과 내지 10 : 1 이하인 것을 특징으로 하는 이차전지용 양극 활물질 입자를 제공한다.

Description

도핑 원소를 가진 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법
관련출원과의 상호인용
본 출원은 2016년 6월 28일자 한국특허출원 제2016-0080569호 및 2017년 6월 27일자 한국특허출원 제2017-0081193호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 도핑 원소를 가진 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 주로 니켈 수소금속 이차전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.
현재 리튬 이차전지의 양극재로는 LiCoO2, 삼성분계(NMC/NCA), LiMnO4, LiFePO4 등이 사용되고 있다. 이중에서 LiCoO2의 경우 코발트의 가격이 고가이고, 삼성분계에 비해 동일 전압에서 용량이 낮은 문제가 있어, 이차전지를 고용량화 하기 위해서 삼성분계 등의 사용량이 점차 늘어나고 있다.
다만, LiCoO2의 경우, 높은 압연밀도 등 제반 물성이 우수하고, 높은 사이클 특성 등 전기화학적 특성이 우수하여 현재까지도 다수 사용되고 있다. 그러나, LiCoO2는 충방전 전류량이 약 150 mAh/g 정도로 낮으며, 4.3V 이 상의 전압에서는 결정구조가 불안정하여 수명 특성이 급격히 저하되는 문제가 있고, 전해액과의 반응에 의한 발화의 위험성을 가지고 있다.
특히, 고용량 이차전지를 개발하기 위한 고전압 적용 시에는, LiCoO2의 Li 사용량이 늘어나게 되면서 표면 불안정 및 구조 불안정의 가능성이 상 승한다. 이를 해결하기 위해, 종래에는 LiCoO2의 표면에 Al, Ti, Mg, Zr과 같은 금속을 코팅 또는 도핑하는 기술이 제안되어 있다.
그러나, 고전압 안정성을 확보하기 위해 LiCoO2에 과도한 금속 코팅 또는 금속 도핑을 하는 경우, 활물질의 에너지 용량을 크게 감소시켜 전지 성능을 저하시키고, 또한, 활물질에 포함된 금속 원소의 전체 함량과, 도핑량 및 코팅량에 따라 그 성질이 달라져 전지 성능에 크게 영향을 끼칠 뿐 아니라 고접압 내구성이 크게 변화되어, 적정 범위의 설정하기가 어려운 문제가 있었다.
따라서, 고전압에서도 성능저하 없이 구조적 안정성을 확보할 수 있는 리튬 코발트 산화물 기반의 양극활물질 개발의 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 입자 표면 상에 형성된 코팅층과 치환 원소를 포함하는 리튬 코발트 산화물에서, 입자 표면 상에 형성된 코팅층 중의 원소 A의 함량이 도펀트 중의 원소 B 의 함량보다 상대적으로 많을 경우, 소망하는 효과를 발휘할 수 있음을 확인하고 본 발명을 완성하기에 이르렀다.
상기의 목적을 달성하기 위하여, 본 발명의 일 실시예에서는
리튬 코발트 산화물;
상기 리튬 코발트 산화물의 입자 표면 상에 형성되고, 원소 A를 포함하는 코팅층; 및
상기 리튬 코발트 산화물에 치환되어 있는 원소 B를 함유한 도펀트;를 포함하고 있으며,
상기 원소 A 및 원소 B는 각각 독립적으로 Al, Ti, Mg, Zr, Ba, Ca, Ta, Nb, 및 Mo으로 이루어진 군에서 선택되는 적어도 하나 이상이고,
코팅층 중 원소 A : 도펀트 중 원소 B의 몰비는 1 : 1 초과 내지 10 : 1 이하인 이차전지용 양극 활물질을 제공한다.
또한, 본 발명의 일 실시예에서는
상기 이차전지용 양극 활물질을 제조하는 방법으로서,
(a) 리튬 전구체, 코발트 산화물, 및 원소 B를 포함하는 도핑 전구체를 혼합한 후, 1차 소성하여 구형의 리튬 코발트 산화물을 제조하는 과정; 및
(b) 과정 (a)의 리튬 코발트 산화물과 원소 A를 포함하는 화합물을 혼합한 후, 2차 소성하는 과정;을 포함하는 것을 특징으로 하는 이차전지용 양극 활물질 제조 방법을 제공한다.
또한, 본 발명의 일 실시예에서는
상기 이차전지용 양극 활물질, 도전재, 및 바인더를 포함하는 슬러리를 집전체에 도포하여 제조되는 것을 특징으로 하는 양극, 및
상기 양극, 음극, 및 전해액을 포함하는 것을 특징으로 하는 리튬 이차전지를 제공한다.
본 발명에 따른 양극활물질은, 리튬 코발트 산화물의 입자 표면 상에 금속 원소 A를 포함하는 코팅층을 형성하고, 리튬 코발트 산화물 내에 금속 원소 B를 도핑하면서, 코팅층 중의 원소 A 의 함량을 도펀트 중의 원소 B 의 함량보다 상대적으로 많도록, 구체적으로 원소 A:원소 B의 몰비가 1:1 초과 내지 10:1 이하가 되도록 제조함으로써, 도펀트 및 코팅층에 적정 비율로 포함된 원소 A 및 원소 B 가 4.4V 이상의 충전 조건에서 코발트(Co)보다 우선적으로 산화되어 양극 활물질 입자의 내부 구조의 안정성을 유지하고, 양극 활물질의 표면 구조 변화를 억제하여 표면 안전성을 높여 고전압에서의 이차전지의 사이클 특성 저하를 방지할 수 있는 최적의 범위로 작용할 수 있는 효과가 있다.
도 1 은 실시예 1 내지 3 및 비교예 1 내지 3에서 제조된 양극 활물질을 포함하는 리튬 이차전지의 사이클에 따른 전지의 용량 유지율을 나타낸 그래프이다.
따라서, 본 발명에 따른 이차전지용 양극활물질 입자는, 리튬 코발트 산화물;
상기 리튬 코발트 산화물의 입자 표면 상에 형성된 원소 A를 포함하는 코팅층; 및
상기 리튬 코발트 산화물에 치환되어 있는 원소 B를 함유한 도펀트;
를 포함하고 있으며,
상기 원소 A 및 원소 B는 각각 독립적으로 Al, Ti, Mg, Zr, Ba, Ca, Ta, Nb, 및 Mo으로 이루어진 군에서 선택되는 적어도 하나 이상이고,
코팅층 중 원소 A : 도펀트 중 원소 B의 몰비는 1 : 1 초과 내지 10 : 1 이하인 이차전지용 양극 활물질을 특징으로 한다.
일반적으로 양극활물질로서 리튬 코발트 산화물을 고전압으로 사용하는 경우, 다량의 리튬 이온이 리튬 코발트 산화물 입자로부터 방출되면서 결정 구조가 결손되며, 이에 불안정해진 결정 구조가 붕괴되어 가역성이 저하되는 문제가 있다. 이와 더불어, 리튬 이온이 방출된 상태에서 리튬 코발트 산화물 입자 표면에 존재하는 Co3 + 또는 Co4 + 이온이 전해액에 의해 환원될 때, 결정 구조로부터 산소가 탈리되어 상기한 구조 붕괴는 더욱 촉진된다.
따라서, 고전압 하에 리튬 코발트 산화물을 안정적으로 사용하기 위해서는, 다량의 리튬 이온이 방출되더라도 그 결정 구조가 안정적으로 유지되면서도 Co 이온과 전해액의 부반응이 억제되어야 한다.
이에 본 발명에서는 리튬 코발트 산화물의 입자 표면 상에 금속이 포함된 코팅층을 형성하고, 금속을 리튬 코발트 산화물 내에 도핑하면서, 코팅층 중의 원소 A의 함량을 도펀트 중의 원소 B의 함량보다 상대적으로 많도록, 구체적으로 코팅층 중 원소 A : 도펀트 중 원소 B의 몰비가 1 : 1 초과 내지 10 : 1 이하가 되도록 양극 활물질을 제조함으로써, 도펀트 및 코팅층에 적정 비율로 포함된 원소 A 및 원소 B가 4.4V 이상의 충전 조건에서 코발트(Co)보다 우선적으로 산화되어 양극 활물질 입자의 내부 구조의 안정성을 효과적으로 유지하고 양극 활물질의 표면 구조 변화를 억제하여 표면 안전성 또한 높임으로써, 고전압에서의 이차전지의 사이클 특성 저하를 효과적으로 방지할 수 있다.
구체적으로, 상기 도펀트는 4.4V 이상의 충전 조건에서 코발트(Co)보다 우선적으로 산화되어 구조적 안정성을 제공할 수 있고, 상기 코팅층은 리튬 코발트 산화물의 입자 표면의 안정성을 제공할 수 있다.
한편, 하나의 구체적인 예에서, 상기 리튬 코발트 산화물은 하기 화학식 1 의 조성을 가질 수 있다.
[화학식 1]
LiaMbMecCo1 -(b+c)O2
상기 화학식 1에서, M 및 Me는 Al, Ti, Mg, Zr, Ba, Ca, Ta, Nb, 및 Mo로 이루어진 군에서 선택되는 적어도 하나 이상이고;
0.95≤a≤1.05;
0<b≤0.2;
0≤c≤0.2이다.
본 발명의 또 다른 하나의 구체적인 예에서, 상기 리튬 코발트 산화물은, 표면에 리튬 과잉(lithium excess)의 박막을 포함하는 하기 화학식 2 의 조성을 가질 수 있다.
[화학식 2]
Lix(LiMbMecCo1 -(b+c)O2)
상기 화학식 2에서, M 및 Me는 각각 독립적으로 Al, Ti, Mg, Zr, Ba, Ca, Ta, Nb, 및 Mo로 이루어진 군에서 선택되는 적어도 하나 이상이고;
0<x≤0.1;
0<b≤0.05;
0≤c≤0.05이다.
여기서, 상기 M 및 Me는 도핑 원소 B이다.
구체적으로, 상기 원소 B는 Al, Mg, Zr 및 Ti로 이루어진 군에서 선택 되는 적어도 하나 이상일 수 있고, 상세하게는 Al, Mg 및 Ti로 이루어진 군에서 선택된 적어도 하나 이상일 수 있고, 더욱 상세하게는 Mg 및 Ti일 수 있다.
하나의 구체적인 예에서, 상기 화학식 1의 조성을 가지는 리튬 코발트계 산화물은, 상세하게는, LiCo0 . 998Mg0 . 001Ti0 . 001O2, LiCo0 . 995Mg0 . 002Al0 . 003O2, LiCo0 . 999Mg0 . 001O2, LiCo0.996Mg0.002Ti0.002O2, LiCo0 . 997Mg0 . 002Al0 . 001O2, 또는 LiCo0 . 996Mg0 . 002Ti0 . 001Al0 . 001O2일 수 있고, 상기 화학식 2의 조성을 가지는 리튬 코발트계 산화물은, 상세하게는, Li0.05(LiCo0.998Mg0.001Ti0.001O2), Li0 .1(LiCo0 . 995Mg0 . 002Al0 . 003O2), Li0 .02(LiCo0 . 999Mg0 . 001O2), Li0.06(LiCo0.996Mg0.002Ti0.002O2), Li0 .08(LiCo0 . 997Mg0 . 002Al0 . 001O2), 또는 Li0.09(LiCo0.996Mg0.002Ti0.001Al0.001O2)일 수 있다.
이와 유사하게, 하나의 구체적인 예에서, 상기 코팅 원소 A는 Al, Mg, Zr 및 Ti로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있고, 상세하게는 Mg 및 Ti일 수 있다.
상기 원소 A를 포함하는 코팅층은, 소성에 의해 형성될 수 있으며, 구체적으로, Al3O4, ZrO2, Al(OH), Mg(OH)2, Al2O3, MgO, ZrO, Li2ZrO3 및 TiO2로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다.
더욱 상세하게는, 상기 원소 A 및 B는 서로 동일한 원소일 수 있다. 원소 A 및 원소 B가 동일한 경우, 도핑 효과와 코팅 효과 면에서 모두 우수한 결과를 나타낼 수 있다. 다시 말해, 도펀트 중의 원소 B로 인한 구조 안전성에 기여도가 클 경우, 상기 원소 B와 동일한 원소 A를 포함하는 코팅층의 표면 안정성에도 탁월한 효과가 있다고 할 수 있다. 따라서, 상이한 원소를 포함하는 것과 비교하여 더욱 바람직하다.
한편, 하나의 구체적인 예에서, 상기 코팅층 중 원소 A : 도펀트 중 원소 B의 몰비는 1 : 1 초과 내지 10 : 1 이하일 수 있고, 바람직하게는 1.3 : 1 내지 5 : 1, 1.3 : 1 내지 3.5 : 1, 1.3 : 1 내지 3.2 : 1, 1.3 : 1 내지 3 : 1, 보다 바람직하게는 1.3 : 1 내지 2.5 : 1일 수 있다.
상기 범위를 벗어나, 코팅층 중 원소 A : 도펀트 중 원소 B의 몰비가 10: 1을 초과할 경우에는, 코팅층에 포함되는 과량에 금속에 의해 리튬 이온의 이동성이 저하되어 출력특성이 저하될 수 있으며, 상대적으로 동일한 부피 내 리튬 코발트 산화물의 함량이 적어져 용량의 저하가 일어날 수 있다. 또한, 도핑 원소가 너무 적을 경우, 활물질의 구조 안전성을 높이는 도핑 효과가 거의 없는 문제가 있다.
반대로, 상기 코팅층 중 원소 A :도펀트 중 원소 B의 몰비가 1 : 1 이하일 경우에는, 코팅에 따른 효과를 충분히 발휘할 수 없거나, 상기 양극 활물질 입자 표면의 금속 B의 비율이 지나치게 높아져, 상대적으로 양극 활물질의 전체적인 용량이 감소할 수 있는 문제점이 있다. 또한, 코팅층의 몰비가 작아, 코팅 면적이 적어짐에 따라 양극활물질 표면 부식이 가속화되어 수명 및 저장 특성이 열위해지는 문제가 있다.
예를 들면, 상기 원소 A 또는 상기 원소 B가 각각 이종의 원소를 포함할 경우, 상기 코팅층 중 원소 A : 도펀트 중 원소 B의 몰비는 이종의 원소를 합한 값을 포함할 수 있다.
구체적으로, 상기 코팅층 중의 원소 A 의 함량은 양극 활물질의 전체 중량을 기준으로 0 초과 내지 20,000 ppm 일 수 있고, 상세하게는 500 내지 1,500 ppm 일 수 있으며, 더욱 상세하게는 700 내지 1,000 ppm 일 수 있다.
상기 원소 A 의 함량 범위를 벗어나 코팅될 경우에는, 활물질의 표면 안정성을 확보하는 효과를 충분히 발휘하지 못해 바람직하지 않다.
또한, 상기 도펀트 중의 원소 B 의 중량은 양극 활물질의 전체 양을 기준으로 0 초과 내지 20,000 ppm 일 수 있고, 상세하게는 500 내지 1,500 ppm 일 수 있으며, 더욱 상세하게는 700 내지 1,000 ppm 일 수 있다.
상기 원소 B의 함량 범위를 벗어나 도핑될 경우에는, 활물질 내부 구조적 안정성을 확보하고 효과를 충분히 발휘하지 못해 바람직하지 않다.
상기 원소 A와 B가 동일한 경우에는, 상기 원소 A의 ppm 함량이 원소 B의 ppm 함량보다 많음은 물론이다.
또한, 본 발명은 상기 이차전지용 양극 활물질을 제조하는 방법을 제공하고, 상기 제조방법은,
(a) 리튬 전구체, 코발트 산화물, 및 원소 B를 포함하는 도핑 전구체를 혼합한 후, 1차 소성하여 구형의 리튬 코발트 산화물을 제조하는 과정; 및
(b) 과정 (a)의 리튬 코발트 산화물과 원소 A를 포함하는 화합물을 혼합한 후, 2차 소성하는 과정;
을 포함하는 것을 특징으로 한다.
즉, 상기 양극 활물질을 제조하는 방법에서와 같이, 전구체 단계에서 원소 B를 포함하는 도핑 전구체를 정적량으로 혼합하고, 1차 소성함으로써, 원소 B가 치환된 리튬 코발트계 산화물 입자를 제조하고, 적정량의 원소 A를 포함하는 화합물을 상기 리튬 코발트계 산화물 입자 표면에 도포하고, 2차 소성하는 과정을 통해 코팅층이 형성된 이차전지용 양극 활물질을 제조할 수 있다. 이때, 코팅층 중의 원소 A의 함량은 도펀트 중의 원소 B의 함량보다 많도록 설정한다.
따라서, 상기 제조방법에 따라 본원발명의 이차전지용 양극 활물질을 제조할 경우, 리튬 코발트 산화물의 입자 표면 상에 형성된 코팅층 중의 원소 A의 함량이 도펀트 중의 원소 B의 함량보다 상대적으로 많도록 제조됨으로써, 도펀트 및 코팅층에 적정 비율로 포함된 원소 A 및 원소 B가 4.4V 이상의 충전 조건에서 코발트(Co)보다 우선적으로 산화되어 양극 활물질 입자의 내부 구조의 안정성을 발휘하는 효과와, 양극 활물질의 표면 구조 변화를 억제하여 표면 안전성을 높이는 효과를 고전압에서의 이차전지의 사이클 특성 저하를 방지할 수 있는 최적의 범위로 작용할 수 있다.
구체적으로, 먼저 상기 양극 활물질을 제조하기 위해서 과정(a)와 같이, 리튬 전구체, 코발트 산화물, 및 원소 B를 포함하는 도핑 전구체를 혼합한다. 상기 리튬 전구체(Li), 코발트 산화물(Co), 및 원소 B를 포함하는 도핑 전구체(원소 B)의 혼합 몰비는 0.95 : 0.90 : 0.001 내지 1.10 : 1.05 : 0.05일 수 있다.
예를 들면, 상기 코발트 산화물은, 그 종류가 한정되는 것은 아니지만, 바람직하게는, Co3O4, CoCO3, Co(NO3)2 및 Co(OH)2로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있다.
상기 리튬 전구체는 리튬 소스를 포함하는 화합물이라면 한정되지 아니하나, 바람직하게는, Li2CO3, LiOH, LiNO3, CH3COOLi 및 Li2(COO)2으로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있다.
또한, 상기 도핑 전구체는 금속, 금속 산화물 및 금속 염으로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있다. 상기 금속 염은 예를 들면, 상기 금속 원소 (B)의 아세트산염, 질산염, 황산염등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
이어서, 상기 리튬 전구체, 코발트 산화물, 및 원소 B를 포함하는 도핑 전구체의 혼합물을 1차 소성하여, 구형의 리튬 코발트 산화물을 제조한다.
상기 1차 소성은 800℃ 내지 1200℃에서 8 시간 내지 12 시간 동안 수행하는 것일 수 있다. 예를 들면, 상기 1차 소성이 800℃ 미만의 온도에서 수행되거나, 또는 8 시간 미만으로 수행될 경우, 도핑이 잘 이루어지지 않아 상기 양극 활물질 입자의 내부 구조가 안정적으로 형성되지 못할 수 있다. 반대로, 상기 1차 소성이 1200℃를 초과하는 온도에서 수행되거나, 또는 12 시간을 초과하여 수행될 경우 상기 리튬 코발트 산화물의 물리적, 화학적 특성을 변화시켜, 성능 저하를 유발할 수 있다.
다음으로, 과정 (a)의 리튬 코발트 산화물과 원소 A를 포함하는 화합물을 혼합한 후, 2차 소성을 수행한다.
상기 코팅층을 형성하는 원소 A를 포함하는 화합물은, 바람직하게는 Al3O4, ZrO2, Al(OH), Mg(OH)2, Al2O3, MgO, ZrO, Li2ZrO3 및 TiO2로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 2차 소성은 400℃ 내지 800℃에서 3 시간 내지 8시간 동안 수행하는 것일 수 있다.
예를 들면, 상기 2차 소성이 400℃ 미만의 온도에서 수행되거나, 또는 3 시간 미만으로 수행될 경우, 양극 활물질의 표면에 코팅이 잘 이루어지지 않아 상기 양극 활물질 입자의 표면 구조가 안정적으로 형성되지 못할 수 있다. 반대로, 상기 2차 소성이 800℃를 초과하는 온도에서 수행되거나, 또는 8 시간을 초과하여 수행될 경우, 상기 양극 활물질 입자를 구성하는 리튬 코발트계 산화물의 물리적, 화학적 특성을 변화시켜, 오히려 성능 저하를 유발할 수 있어 바람직하지 않다.
본 발명은 또한, 상기 이차전지용 양극 활물질, 도전재, 및 바인더를 포함하는 슬러리를 집전체에 도포하여 제조되는 양극을 제공한다.
구체적으로, 상기 양극은, 예를 들어, 양극 집전체에 상술한 양극활물질 입자들로 구성된 양극활물질과, 도전재 및 바인더가 혼합된 양극 합제를 도포하여 제조될 수 있고, 필요에 따라서는 상기 양극 합제에 충진제를 더 첨가할 수 있다.
상기 양극 집전체는 일반적으로 3 ~ 300 ㎛의 두께로 제조되며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티타늄, 및 알루미늄이나 스테인레스 스틸의 표면에 카본, 니켈, 티타늄 또는 은으로 표면처리 한 것 중에서 선택되는 하나를 사용할 수 있고, 상세하게는 알루미늄이 사용될 수 있다. 집전체는 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 0.1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 0.1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
본 발명은 또한, 상기 양극과 음극 및 전해액을 포함하는 것을 특징으로 하는 이차전지를 제공한다. 상기 이차전지는 그 종류가 특별히 한정되는 것은 아니지만, 구체적인 예로서, 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지일 수 있다.
일반적으로, 리튬 이차전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다.
이하에서는, 상기 리튬 이차전지의 기타 구성들에 대해 설명한다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 양극에 포함되는 성분들이 선택적으로 더 포함될 수도 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1 족, 2 족, 3 족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co- Ni 계 재료 등을 사용할 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해액은, 비수 전해액과 리튬염으로 이루어져 있다. 비수 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3- 디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li 의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
본 발명은 또한, 상기 이차전지를 포함하는 전지팩 및 상기 전지팩을 포함하는 디바이스를 제공하는 바, 상기와 같은 전지팩 및 디바이스는 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 구체적인 설명을 생략한다.
상기 디바이스는, 예를 들어, 노트북 컴퓨터, 넷북, 태블릿 PC, 휴대폰, MP3, 웨어러블 전자기기, 파워 툴(power tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV), 전기 자전거(E-bike), 전기 스쿠터(E-scooter), 전기 골프 카트(electric golf cart), 또는 전력저장용 시스템일 수 있지만, 이들만으로 한정되지 않음은 물론이다.
이하에서는, 본 발명에 따른 실시예를 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
Li : Co : Ti : Mg가 1.0 : 0.998 : 0.0007 : 0.0008의 몰비가 되도록 Co3O4, LiOH, TiO2 및 MgO를 건식 혼합하되, TiO2와 MgO의 함량이 양극 활물질 전체를 기준으로 1000 ppm이 되도록 혼합한 후, 1,030℃ 노에서 10시간 동안 1차 소성하여 리튬 코발트 산화물을 제조하고, 제조된 리튬 코발트 산화물에 코팅층을 형성하기 위해 상기에서 제조된 리튬 코발트 산화물과, TiO2 및 MgO를 건식 혼합하되, TiO2 및 MgO를 양극 활물질 전체를 기준으로 1300 ppm이 되도록 건식 혼합(코팅 : 도핑 몰비 = 1.3 : 1)하여 피복시킨 후, 노에서 530℃에서 6 시간 동안 2차 소성하여 양극 활물질을 합성하였다.
상기에서 제조된 양극활물질 입자를 사용하고, 바인더로서 PVdF 및 도전재로서 천연 흑연을 사용하여, 양극활물질: 바인더: 도전재를 중량비로 96: 2 : 2 가 되도록 NMP 에 잘 섞어 준 후, 20 ㎛ 두께의 Al 호일에 도포하고, 130℃에서 건조하여 양극을 제조하였다.
음극으로는 리튬 호일을 사용하고, EC : DMC : DEC = 1 : 2 : 1 인 용매에 1M 의 LiPF6가 들어있는 전해액을 사용하여 하프 코인셀을 제조하였다.
< 실시예 2>
양극 활물질 전체를 기준으로 TiO2와 MgO의 함량을 750 ppm이 되도록 하여 리튬 코발트 산화물을 제조하고, 상기에서 제조된 리튬 코발트 산화물과, TiO2 및 MgO를 양극 활물질 전체를 기준으로 2400 ppm이 되도록 건식 혼합(코팅: 도핑 몰비 = 3.2 : 1)한 것을 제외하고는 실시예 1과 동일하게 양극 활물질, 양극 및 이를 포함하는 하프 코인셀을 제조하였다.
< 실시예 3>
양극 활물질 전체를 기준으로 TiO2와 MgO의 함량을 500ppm이 되도록 하여 리튬 코발트 산화물을 제조하고, 상기에서 제조된 리튬 코발트 산화물과, TiO2 및 MgO를 양극 활물질 전체를 기준으로 2500ppm이 되도록 건식 혼합(코팅: 도핑 몰비 = 5 : 1)한 것을 제외하고는 실시예 1과 동일하게 양극 활물질, 양극 및 이를 포함하는 하프 코인셀을 제조하였다.
<비교예 1>
양극 활물질 전체를 기준으로 TiO2와 MgO의 함량을 1200ppm이 되도록 하여 리튬 코발트 산화물을 제조하고, 상기에서 제조된 리튬 코발트 산화물과, TiO2 및 MgO를 양극 활물질 전체를 기준으로 300 ppm이 되도록 건식 혼합(코팅 : 도핑 몰비 = 0.4 : 1)한 것을 제외하고는 실시예 1과 동일하게 양극 활물질, 양극 및 이를 포함하는 하프 코인셀을 제조하였다.
<비교예 2>
양극 활물질 전체를 기준으로 TiO2와 MgO의 함량을 900ppm이 되도록 하여 리튬 코발트 산화물을 제조하고, 상기에서 제조된 리튬 코발트 산화물과, TiO2 및 MgO를 양극 활물질 전체를 기준으로 900ppm이 되도록 건식 혼합(코팅 : 도핑 몰비 = 1 : 1)한 것을 제외하고는 실시예 1과 동일하게 양극 활물질, 양극 및 이를 포함하는 하프 코인셀을 제조하였다.
< 비교예 3>
양극 활물질 전체를 기준으로 TiO2와 MgO의 함량을 3300ppm이 되도록 하여 리튬 코발트 산화물을 제조하고, 상기에서 제조된 리튬 코발트 산화물과, TiO2 및 MgO를 양극 활물질 전체를 기준으로 300ppm이 되도록 건식 혼합(코팅 : 도핑 몰비 = 11 : 1)한 것을 제외하고는 실시예 1과 동일하게 양극 활물질, 양극 및 이를 포함하는 하프 코인셀을 제조하였다.
< 실험예 1>
실시예 1 내지 3 및 비교예 1 내지 3에서 제조된 하프 코인 셀을, 25℃에서 0.5 C 으로 상한 전압 4.5V 로 하여 충전하고 다시 1.0 C 으로 하한 전압 3 V까지 방전하는 것을 1 회 사이클로 하여, 50 회 사이클의 용량 유지율을 측정하였다. 그 결과를 하기 표 1 및 도 1 에 나타내었다.
50회 사이클의 용량 유지율(%)
실시예 1 97.7
실시예 2 96.6
실시예 3 93.1
비교예 1 82.9
비교예 2 85.7
비교예 3 74.1
상기 표 1을 참조하면, 본 발명에 따른 실시예 1 내지 3의 양극 활물질을 포함하는 하프 코인셀의 경우, 4.5V 의 고전압 조건임에도 불구하고 50 사이클 이후에도, 용량 유지율 93% 이상으로 고성능을 유지하는 것을 확인할 수 있다. 이는 리튬 코발트 산화물의 입자 표면 상에 형성된 코팅층 중의 금속 원소들과 도펀트 중의 금속 원소들의 함량비가 본 발명에 따른 범위를 만족하는 경우, 코팅층이 리튬 코발트 산화물 입자의 외측 표면으로부터의 결정 구조 붕괴를 억제하고, 도펀트 중의 금속 원소가 리튬 이온이 방출된 상태에서 코어 표면에 존재하는 Co4 + 이온과 전해액간의 부반응을 억제하여 사이클에 따른 용량 유지율의 저하를 방지하기 때문인 것으로 판단된다.
이에 비해, 코팅층 중의 금속 원소들과 도펀트 중의 금속 원소들의 함량비가 본 발명의 범위를 벗어나는 비교예 1 내지 3의 하프 코인셀들의 경우, 고전압 하에서의 용량 유지율이 실시예 1 내지 3에 비해 떨어짐을 확인할 수 있다. 이상 본 발명의 실시예를 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (20)

  1. 리튬 코발트 산화물;
    상기 리튬 코발트 산화물의 입자 표면 상에 형성되고, 원소 A를 포함하는 코팅층; 및
    상기 리튬 코발트 산화물에 치환되어 있는 원소 B를 함유한 도펀트;
    를 포함하고 있으며,
    상기 원소 A 및 원소 B는 각각 독립적으로 Al, Ti, Mg, Zr, Ba, Ca, Ta, Nb, 및 Mo으로 이루어진 군에서 선택되는 적어도 하나 이상이고,
    코팅층 중 원소 A : 도펀트 중 원소 B의 몰비는 1 : 1 초과 내지 10 : 1 이하인 이차전지용 양극 활물질.
  2. 제 1 항에 있어서,
    상기 도펀트는 4.4V 이상의 충전 조건에서 코발트(Co)보다 우선적으로 산화되어 구조적 안정성을 제공하고, 상기 코팅층은 리튬 코발트 산화물의 입자 표면의 안정성을 제공하는 것을 특징으로 하는 이차전지용 양극 활물질.
  3. 제 1 항에 있어서,
    상기 리튬 코발트 산화물은 하기 화학식 1의 조성을 가지는 것을 특징으로 하는 이차전지용 양극 활물질:
    [화학식 1]
    LiaMbMecCo1 -(b+c)O2
    상기 화학식 1에서,
    M 및 Me는 각각 독립적으로 Al, Ti, Mg, Zr, Ba, Ca, Ta, Nb, 및 Mo로 이루어진 군에서 선택되는 적어도 하나 이상이고;
    0.95≤a≤1.05;
    0<b≤0.2;
    0≤c≤0.2이다.
  4. 제 1 항에 있어서,
    상기 리튬 코발트 산화물은, 표면에 리튬 과잉(lithium excess)의 박막을 포함하여 하기 화학식 2의 조성을 가지는 것을 특징으로 하는 이차전지용 양극 활물질:
    [화학식 2]
    Lix(LiMbMecCo1-(b+c)O2)
    상기 화학식 2에서,
    M 및 Me는 각각 독립적으로 Al, Ti, Mg, Zr, Ba, Ca, Ta, Nb, 및 Mo로 이루어진 군에서 선택되는 적어도 하나 이상이고;
    0<x≤0.1;
    0<b≤0.05;
    0≤c≤0.05이다.
  5. 제 1 항에 있어서,
    상기 원소 A는 Al, Mg, Zr 및 Ti로 이루어진 군에서 선택되는 적어도 하나 이상인 것을 특징으로 하는 이차전지용 양극 활물질.
  6. 제 1 항에 있어서,
    상기 원소 B는 Al, Mg, Zr 및 Ti로 이루어진 군에서 선택되는 적어도 하나 이상인 것을 특징으로 하는 이차전지용 양극 활물질.
  7. 제 1 항에 있어서,
    상기 원소 A 및 B는 서로 동일한 원소인 것을 특징으로 하는 이차전지용 양극 활물질.
  8. 제 1 항에 있어서,
    상기 코팅층은 Al3O4, ZrO2, Al(OH), Mg(OH)2, Al2O3, MgO, ZrO, Li2ZrO3 및 TiO2로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 것을 특징으로 하는 이차전지용 양극 활물질.
  9. 제 1 항에 있어서,
    상기 원소 A : 원소 B의 몰비는 1.3 : 1 내지 2.5 : 1 인 것을 특징으로 하는 이차전지용 양극 활물질.
  10. 제 1 항에 있어서,
    상기 코팅층 중의 원소 A의 함량은 양극 활물질의 전체 양을 기준으로 0 초과 내지 20,000 ppm인 것을 특징으로 하는 이차전지용 양극 활물질.
  11. 제 1 항에 있어서,
    상기 도펀트 중의 원소 B의 함량은 양극 활물질의 전체 양을 기준으로 0 초과 내지 20,000 ppm인 것을 특징으로 하는 이차전지용 양극 활물질.
  12. 제 1 항 내지 제 11 항 중 어느 하나에 따른 이차전지용 양극 활물질을 제조하는 방법으로서,
    (a) 리튬 전구체, 코발트 산화물, 및 원소 B를 포함하는 도핑 전구체를 혼합한 후, 1차 소성하여 구형의 리튬 코발트 산화물을 제조하는 과정; 및
    (b) 과정 (a)의 리튬 코발트 산화물과 원소 A를 포함하는 화합물을 혼합한 후, 2차 소성하는 과정;
    을 포함하는 것을 특징으로 하는 이차전지용 양극 활물질 제조 방법.
  13. 제 12 항에 있어서,
    상기 리튬 전구체(Li), 코발트 산화물(Co), 및 원소 B를 포함하는 도핑 전구체의 혼합 몰비는 0.95 : 0.90 : 0.001 내지 1.10 : 1.05 : 0.05인 것을 특징으로 하는 이차전지용 양극 활물질 제조 방법.
  14. 제 12 항에 있어서,
    상기 코발트 산화물은 Co3O4, CoCO3, Co(NO3)2 및 Co(OH)2로 이루어진 군에서 선택되는 적어도 하나 이상인 것을 특징으로 하는 이차전지용 양극 활물질 제조 방법.
  15. 제 12 항에 있어서,
    상기 리튬 전구체는 Li2CO3, LiOH, LiNO3, CH3COOLi 및 Li2(COO)2으로 이루어진 군에서 선택되는 적어도 하나 이상인 것을 특징으로 하는 이차전지용 양극 활물질 제조 방법.
  16. 제 12 항에 있어서,
    상기 도핑 전구체는 금속, 금속 산화물 및 금속 염으로 이루어진 군에서 선택되는 적어도 하나 이상인 것을 특징으로 하는 이차전지용 양극 활물질 제조 방법.
  17. 제 12 항에 있어서,
    상기 과정(a)의 1차 소성의 온도는 800℃ 내지 1200℃이고, 상기 1차 소성의 시간은 8 시간 내지 12시간인 것을 특징으로 하는 이차전지용 양극 활물질 제조 방법.
  18. 제 12 항에 있어서,
    상기 과정(d)의 2차 소성 온도는 400℃ 내지 800℃이고, 상기 제 1 소성 시간은 3 시간 내지 8 시간인 것을 특징으로 하는 이차전지용 양극 활물질 제조 방법.
  19. 제 1 항에 따른 이차전지용 양극 활물질, 도전재, 및 바인더를 포함하는 슬러리를 집전체에 도포하여 제조되는 것을 특징으로 하는 양극.
  20. 제 19 항에 따른 양극, 음극, 및 전해액을 포함하는 것을 특징으로 하는 리튬 이차전지.
PCT/KR2017/006823 2016-06-28 2017-06-28 도핑 원소를 가진 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법 WO2018004250A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/765,402 US10930931B2 (en) 2016-06-28 2017-06-28 Positive electrode active material for lithium secondary battery including high-voltage lithium cobalt oxide with doping element and method of preparing the same
EP17820526.6A EP3340348B1 (en) 2016-06-28 2017-06-28 Positive electrode active material for lithium secondary battery, containing high-voltage lithium cobalt oxide having doping element, and method for preparing same
CN201780003576.5A CN108140821B (zh) 2016-06-28 2017-06-28 包含具有掺杂元素的高电压锂钴氧化物的锂二次电池用正极活性材料及其制造方法
PL17820526T PL3340348T3 (pl) 2016-06-28 2017-06-28 Materiał aktywny elektrody dodatniej do litowych baterii akumulatorowych, zawierający wysokonapięciowy tlenek litowo-kobaltowy z pierwiastkiem domieszkującym oraz sposób jego wytwarzania

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160080569 2016-06-28
KR10-2016-0080569 2016-06-28
KR10-2017-0081193 2017-06-27
KR1020170081193A KR102095930B1 (ko) 2016-06-28 2017-06-27 도핑 원소를 가진 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법

Publications (1)

Publication Number Publication Date
WO2018004250A1 true WO2018004250A1 (ko) 2018-01-04

Family

ID=60786094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006823 WO2018004250A1 (ko) 2016-06-28 2017-06-28 도핑 원소를 가진 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법

Country Status (1)

Country Link
WO (1) WO2018004250A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3686159A1 (en) * 2019-01-16 2020-07-29 Ningde Amperex Technology Limited Precursor of lithium cobalt oxide and preparation method thereof and composite of lithium cobalt oxide prepared from the precursor of lithium cobalt oxide
CN112645390A (zh) * 2020-12-22 2021-04-13 惠州亿纬锂能股份有限公司 一种具有包覆结构的钴酸锂前驱体、其制备方法及用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331845A (ja) * 2002-05-13 2003-11-21 Samsung Sdi Co Ltd リチウム二次電池用正極活物質の製造方法
KR20100056106A (ko) * 2008-11-19 2010-05-27 새한미디어주식회사 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함한 리튬 이차전지
KR20150026864A (ko) * 2013-08-29 2015-03-11 주식회사 엘지화학 리튬 전이금속 복합 입자, 이의 제조방법, 및 이를 포함하는 양극 활물질
WO2016053053A1 (ko) * 2014-10-02 2016-04-07 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20160045029A (ko) * 2014-10-15 2016-04-26 주식회사 포스코 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331845A (ja) * 2002-05-13 2003-11-21 Samsung Sdi Co Ltd リチウム二次電池用正極活物質の製造方法
KR20100056106A (ko) * 2008-11-19 2010-05-27 새한미디어주식회사 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함한 리튬 이차전지
KR20150026864A (ko) * 2013-08-29 2015-03-11 주식회사 엘지화학 리튬 전이금속 복합 입자, 이의 제조방법, 및 이를 포함하는 양극 활물질
WO2016053053A1 (ko) * 2014-10-02 2016-04-07 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20160045029A (ko) * 2014-10-15 2016-04-26 주식회사 포스코 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3686159A1 (en) * 2019-01-16 2020-07-29 Ningde Amperex Technology Limited Precursor of lithium cobalt oxide and preparation method thereof and composite of lithium cobalt oxide prepared from the precursor of lithium cobalt oxide
CN112645390A (zh) * 2020-12-22 2021-04-13 惠州亿纬锂能股份有限公司 一种具有包覆结构的钴酸锂前驱体、其制备方法及用途

Similar Documents

Publication Publication Date Title
KR102095930B1 (ko) 도핑 원소를 가진 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법
WO2011105833A9 (ko) 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2016148383A1 (ko) 다층 구조 전극 및 이를 포함하는 리튬 이차전지
WO2015016482A1 (ko) 음극 전극의 전리튬화 방법
WO2015016563A1 (ko) 전해액과 반응을 방지하기 위한 코팅층을 포함하는 전극
WO2013042956A1 (ko) 고용량 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2014021626A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2016089099A1 (ko) 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2012144785A2 (ko) 양극 활물질 및 그것을 포함한 리튬 이차전지
WO2018070703A1 (ko) 각 층의 바인더의 함량과 활물질 입경이 상이한 다층 음극 및 이를 포함하는 리튬 이차전지
WO2017171425A1 (ko) 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법
WO2015026080A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법
WO2014073833A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2012161476A2 (ko) 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
WO2012138127A2 (ko) 출력 향상을 위한 리튬이차전지용 양극재 및 이를 포함하는 리튬이차전지
WO2017069407A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2014196816A1 (ko) 신규한 이차전지
WO2013109038A1 (ko) 양극 활물질 및 이를 포함하고 불순물 혹은 스웰링 제어를 위한 리튬 이차전지와 생산성이 향상된 양극 활물질의 제조방법
WO2013157856A1 (ko) 다층구조 전극 및 그 제조방법
WO2014010854A1 (ko) 고전압용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2015012640A1 (ko) 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2015141997A1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2015016506A1 (ko) 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15765402

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE