WO2012138127A2 - 출력 향상을 위한 리튬이차전지용 양극재 및 이를 포함하는 리튬이차전지 - Google Patents

출력 향상을 위한 리튬이차전지용 양극재 및 이를 포함하는 리튬이차전지 Download PDF

Info

Publication number
WO2012138127A2
WO2012138127A2 PCT/KR2012/002537 KR2012002537W WO2012138127A2 WO 2012138127 A2 WO2012138127 A2 WO 2012138127A2 KR 2012002537 W KR2012002537 W KR 2012002537W WO 2012138127 A2 WO2012138127 A2 WO 2012138127A2
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
lithium
metal oxide
positive electrode
Prior art date
Application number
PCT/KR2012/002537
Other languages
English (en)
French (fr)
Other versions
WO2012138127A3 (ko
Inventor
오송택
장성균
박신영
황선정
임진형
정근창
김신규
최정석
안근완
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP12767790.4A priority Critical patent/EP2696402B1/en
Priority to CN201280003639.4A priority patent/CN103210526B/zh
Priority to JP2013556559A priority patent/JP6018588B2/ja
Priority to PL12767790T priority patent/PL2696402T3/pl
Priority to US13/566,360 priority patent/US9287564B2/en
Publication of WO2012138127A2 publication Critical patent/WO2012138127A2/ko
Publication of WO2012138127A3 publication Critical patent/WO2012138127A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/907Electricity storage, e.g. battery, capacitor

Definitions

  • the present invention relates to a cathode active material for lithium secondary battery and a lithium secondary battery including the same for improving the output.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate are commercially used.
  • electric vehicles and hybrid electric vehicles which can replace fossil fuel-based vehicles such as gasoline and diesel vehicles, which are one of the main causes of air pollution, are being conducted.
  • Recently, researches using lithium secondary batteries having high energy density and discharge voltage have been actively conducted as power sources of such electric vehicles and hybrid electric vehicles, and some commercialization stages are in progress.
  • LiCoO 2 a conventional cathode material
  • LiCoO 2 has reached the practical limit of increasing its energy density and output characteristics, and especially when used in high energy density applications, due to its structural instability, oxygen in the structure is changed along with structural modification at high temperature. Emissions cause exothermic reactions with the electrolyte in the battery, causing the battery to explode.
  • the use of lithium-containing manganese oxides such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure and lithium-containing nickel oxide (LiNiO 2 ) has been considered.
  • LiNiO 2 lithium-containing nickel oxide
  • Ni 1/3 Co 1/3 Mn 1/3 ] O 2 of the three-component layered oxide changes from Ni 2+ to Ni 3+ or Ni 4+ depending on the filling depth.
  • Ni 3+ or Ni 4+ loses lattice oxygen due to instability and is reduced to Ni 2+ , which reacts with the electrolyte to alter the surface properties of the electrode. Or increase the charge transfer impedance of the surface to reduce capacity or high rate characteristics.
  • the post LiFePO 4 positive electrode of a blank structure has received a lot of attention in the early as Fe use of the crystal structure of safety and low cost, mixtures of 4, and the three-component layered oxide LiFePO Using this nature is safety with Fe It is proposed as an improved cathode active material.
  • the positive electrode active material including a mixture of the LiFePO 4 of the olivine structure and the three-component layered oxide
  • OCV open circuit voltage
  • the present invention has been made to solve the problems and technical problems of the prior art as described above.
  • the inventors of the present application do not improve the conductivity even when an excessive amount of a conductive material is added to the mixed cathode active material of the olivine-based metal oxide and the layered three-component metal oxide.
  • the cause of the increase in the electrical resistance has been identified.
  • two or more conductive materials having different sizes and shapes as the conductive material are simultaneously coated, the conductivity of the mixed cathode material including the same is improved.
  • the electrical resistance is lowered, and as a result, it is confirmed that the provision of the cathode material for the lithium secondary battery, which improves the output characteristics, has come to complete the present invention.
  • the present invention is to solve the above problems
  • At least two conductive materials having different shapes and sizes of mixed cathode active materials and particles comprising a three-component lithium-containing metal oxide having a layered structure represented by the following [Formula 1] and an olivine-structured metal oxide represented by the following [Formula 2] It provides a lithium secondary battery cathode material characterized in that it comprises a ash.
  • the three-component lithium-containing metal oxide represented by the above [Formula 1] is characterized in that Li 1 + a Ni 1/3 Co 1/3 Mn 1/3 O 2 (0 ⁇ a ⁇ 0.2).
  • the metal oxide of the olivine structure represented by [Formula 2] is preferably LiMPO 4 (M is at least one selected from the group consisting of Fe, Co, Ni and Mn), more preferably LiFePO Can be four .
  • the metal oxide of the olivine structure represented by the [Formula 2] may be included in 5 to 50% by weight relative to the total weight of the mixed cathode active material with the three-component lithium-containing metal oxide represented by the [Formula 1].
  • the metal oxide of the olivine structure represented by the [Formula 2] may be contained in 10 to 40% by weight relative to the total weight of the mixed cathode active material and the three-component lithium-containing metal oxide represented by the [Formula 1].
  • the two or more conductive materials varying the shape and size of the particles may be made of graphite and conductive carbon.
  • the content of two or more conductive materials varying the shape and size of the particles is characterized in that 0.5 to 15% by weight relative to the total weight of the cathode material.
  • the conductive carbon is one selected from the group consisting of carbon black, carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black, or a material whose crystal structure includes graphene or graphite. Characterized in that the above is a mixed material,
  • the mixed cathode active material may further include at least one lithium-containing metal oxide selected from the group consisting of lithium manganese spinels and oxides substituted or doped with other element (s).
  • the ellipsoid is any one selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W and Bi or It is characterized by two or more elements.
  • the lithium-containing metal oxide may be included within 50% by weight relative to the total weight of the mixed cathode active material.
  • the present invention provides a secondary battery positive electrode including the lithium secondary battery positive electrode material.
  • the present invention provides a lithium secondary battery comprising the positive electrode for the secondary battery.
  • the lithium secondary battery may be used as a unit cell of a battery module that is a power source of a medium and large device, wherein the medium and large device is a power tool, an electric vehicle (EV), a hybrid electric vehicle (Hybrid). Electric vehicles including Electric Vehicles (HEV), and Plug-in Hybrid Electric Vehicles (PHEVs); Electric two-wheeled vehicles including E-bikes and E-scooters; Electric golf carts; Electric trucks; It may be an electric commercial vehicle or a system for power storage.
  • EV electric vehicle
  • Hybrid Hybrid
  • Electric vehicles including Electric Vehicles (HEV), and Plug-in Hybrid Electric Vehicles (PHEVs)
  • Electric two-wheeled vehicles including E-bikes and E-scooters
  • Electric golf carts Electric trucks; It may be an electric commercial vehicle or a system for power storage.
  • the cathode active material according to the present invention provides a mixed cathode material of a three-component layered oxide and an olivine-structured metal oxide simultaneously coated with two or more conductive materials having different particle sizes and shapes, so that particles in the mixed cathode material are evenly selected.
  • a cathode active material having a wide SOC area that can be used by lowering the electrical resistance of the mixed cathode material and having a high output characteristic, and a lithium secondary battery including the same.
  • the lithium secondary battery according to the present invention provides a medium-large lithium secondary battery that can satisfactorily satisfy the requirements for required output characteristics, capacity, and safety when used as a medium-large battery used as a power source for an electric vehicle.
  • FIG. 1 is a graph showing an output change according to SOC of a lithium secondary battery according to an embodiment and a comparative example of the present invention.
  • the present invention is a layered three-component lithium-containing metal oxide (hereinafter referred to as "three-component”) and the metal oxide of the olivine structure (hereinafter, "olivine"
  • olivine the metal oxide of the olivine structure
  • a mixed positive electrode material coated with graphite and conductive carbon at the same time as the conductive material to the mixed positive electrode material of the (), and provides a lithium secondary battery comprising such a mixed positive electrode material.
  • the three-component system included in the cathode active material of the present invention may be represented by the following [Formula 1].
  • the three-component lithium-containing metal oxide has a significant increase in resistance at the lower region of the three-component lithium operating voltage, so that the SOC section that can be used is drastically limited in the low SOC region. There is a limit to using bay alone as a cathode active material.
  • the present invention mixes structurally stable olivine with the three-component system to form a mixed cathode material.
  • the olivine for improving the instability of the three-component system may be represented by the following [Formula 2].
  • the olivine has a mean theoretical capacity of 170 mAh / g and a standard reduction potential of 3.4V, this level of voltage can be stably maintained energy density without being high enough to cause side reactions such as electrolyte decomposition.
  • the content of the olivine is preferably included 5 to 50% by weight, more preferably 10 to 40% by weight relative to the total weight of the mixed cathode material with the three-component system represented by [Formula 1].
  • the content of the olivine is 5% by weight or less, the content of the olivine is too small, it may be difficult to achieve the purpose of output assist and safety improvement in the low SOC section pursued by the present invention, if the content of more than 50% by weight Low energy densities can make it difficult to achieve high energy in the cell.
  • the mixed cathode material of the three-component system and the olivine generally includes a conductive material in order to improve the conductivity of the olivine having low conductivity as well as the conductivity of the entire mixed cathode material.
  • a conductive material is added to the mixed positive electrode material of olivine in a general manner, the conductive improvement effect of the mixed positive electrode material is insignificant, and further, the mixed positive electrode material of the three-component system and the olivine is the same as the positive electrode material composed of only the same three-component system. Even in the same state with OCV (Open Circuit Voltage), a problem was found with a voltage band where resistance was higher, even if the amount of conductive material added to the mixed cathode material was increased.
  • OCV Open Circuit Voltage
  • the inventors of the present application have a high electrical resistance and low conductivity between the three-component and olivine mixed cathode materials, and the reason for the low electrical conductivity is due to the large difference in particle size and surface area of the mixed three-component system and olivine. It turned out to be caused.
  • the coated conductive material is biased to either component having a large surface area, and thus higher resistance than that of the single component in the other component where the conductive material is distributed relatively less. This results in the resulting low conductivity. This phenomenon is the same even if the amount of the conductive material is continuously increased.
  • the particle size of the olivine is much smaller than that of the three-component system, and specifically, the three-component system has an average surface area of about 0.3-1 m 2 / g, Olivine has an average surface area of about 10-40 m 2 / g, resulting in a difference of about 20 to 50 times in the surface area of both components.
  • the size and shape of the particles as the conductive material are It is characterized by adding two or more other conductive materials.
  • the two or more conductive materials may be applied simultaneously with circular conductive carbon and plate-shaped graphite. That is, when simultaneously applying conductive materials having different particle sizes and shapes, such as circular conductive carbon and plate-shaped graphite, the phenomenon in which the conductive materials are biased to only one component of the mixed cathode material can be suppressed.
  • the conductive material can be evenly coated in the mixed cathode material, and the conductive materials are not only distributed on the surface of the three-component system and the olivine, but also the conductive materials are sufficiently distributed at the contact portions of the two materials. Allow enough to form.
  • Graphite and conductive carbon applied as a preferred embodiment of the present invention for the formation of the mixed cathode material is excellent in electrical conductivity and has conductivity without causing side reactions in the internal environment of the secondary battery or chemical change in the battery If so, it is not particularly limited.
  • the graphite does not limit natural graphite or artificial graphite
  • the conductive carbon is particularly preferably a carbon-based material having high conductivity, and specifically, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black Carbon black, such as summer black, or a crystal structure may include a material containing graphene or graphite, but is not limited thereto. In some cases, a conductive polymer having high conductivity is also possible.
  • the amount of the mixture of the graphite and the conductive carbon to be coated is too small, it is difficult to expect a desired effect, on the contrary, if the amount of the mixture is too large, the amount of the active material may be reduced so that the capacity may be reduced.
  • the content of the mixture is 0.5 wt% to 15 wt% with respect to the total weight of the three-component system represented by the above [Formula 1] and the mixed cathode material of the olivine represented by the above [Formula 2], graphite and conductive carbon
  • the weight of the conductive carbon will be 1% to 13% by weight, preferably 3% to 10% by weight.
  • the method of manufacturing the mixed cathode material is not particularly limited, and a known cathode material manufacturing method may be used, and specifically, the binder and the cathode active material, and the conductive material may be prepared by a method of preparing a slurry by dispersing the two or more conductive materials in a solvent. But it is not limited thereto.
  • the mixed positive electrode material according to the present invention in addition to containing a three-component system represented by the above [Formula 1] and olivine represented by the above [Formula 2], two or more conductive materials varying the shape and size of the particles Lithium manganese spinel and oxides substituted or doped with other element (s) may be further included, and the element (s) are Al, Mg, Mn, Ni, Co, Fe, Cr, V, Ti, Cu , B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W and Bi may be one or more selected from the group consisting of.
  • the lithium-containing metal oxide may be included within 50 parts by weight based on 100 parts by weight of the mixed cathode material.
  • the mixed cathode material may optionally further include a binder, a filler and the like.
  • the binder is a component that assists in the bonding between the three-component type and the olivine and the conductive material and the current collector, and is typically added in an amount of 1 to 50% by weight based on the total weight of the mixed cathode material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butyrene rubber, fluorine rubber, various copolymers, and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
  • the present invention also provides a cathode for a secondary battery in which the mixed cathode material is coated on a current collector.
  • the positive electrode for a secondary battery is manufactured by, for example, applying a slurry formed by mixing the mixed cathode material, the conductive material, the binder, and the filler in a solvent such as NMP on a cathode current collector, followed by drying and rolling. Can be.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver, or the like can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foaming agent, and a nonwoven fabric.
  • the present invention also provides a lithium secondary battery comprising the positive electrode, the negative electrode, the separator, and a lithium salt-containing nonaqueous electrolyte.
  • the negative electrode may be manufactured by applying and drying a negative electrode mixture including a negative electrode active material on a negative electrode current collector, and the negative electrode mixture may further include components as described above as necessary.
  • the negative electrode current collector is generally made of a thickness of 3 to 500 ⁇ m.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • carbon on the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel , Surface-treated with nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the separator is interposed between the cathode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m, and the thickness is generally from 5 to 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the said lithium salt containing non-aqueous electrolyte solution consists of a nonaqueous electrolyte solution and a lithium salt.
  • a nonaqueous electrolyte a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, and 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxolon derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl propionate Aprotic organic solvents, such as ethyl propionate,
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • the non-aqueous electrolyte solution includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexaphosphate triamide.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • Such a secondary battery according to the present invention can be used not only in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Preferred examples of the medium-to-large device include a power tool; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Electric two-wheeled vehicles including E-bikes and E-scooters; Electric golf carts; Electric trucks; Although an electric commercial vehicle or the system for electric power storage is mentioned, It is not limited only to these.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Electric two-wheeled vehicles including E-bikes and E-scooters; Electric golf carts; Electric trucks; Although an electric commercial vehicle or the system for electric power storage is mentioned, It is not limited only to these.
  • a lithium-based electrolyte was injected through a separator of porous polyethylene between graphite-based negative electrodes to prepare a polymer type lithium secondary battery.
  • a cathode active material comprising 90% by weight of a mixture consisting of 70% by weight of Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 and 30% by weight of LiFePO 4, 6% by weight of denca black, and 4% by weight of PVDF
  • a lithium secondary battery of the polymer type was produced in the same manner as in the above embodiment.
  • a cathode active material comprising 88% by weight of a mixture consisting of 70% by weight of Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 and 30% by weight of LiFePO 4, 8% by weight of denca black, and 4% by weight of PVDF
  • a lithium secondary battery of the polymer type was produced in the same manner as in the above embodiment.
  • the data shown in FIG. 1 is just one example, and detailed power values according to SOC will vary depending on the specification of the cell. Therefore, the trend of the graph is more important than the detailed values.
  • the output improvement effect of Comparative Example 2 is inferior.
  • the lithium secondary battery according to the present invention by applying a conductive material of various structures and sizes to the three-component system and the olivine mixed cathode material at the same time, to improve the problem of the low conductivity of the mixed cathode material and the resulting high resistance to all SOC It was confirmed that the output characteristics are greatly improved over the interval.

Abstract

본 발명은 출력 향상을 위한 양극활물질과 이를 포함하는 리튬이차전지에 대한 것으로, 보다 구체적으로는 하기 [화학식 1]로 표시되는 층상 구조의 3성분계 리튬함유 금속산화물과 올리빈 구조의 LiFePO4과의 혼합 양극재에 도전재로서 입자의 모양 및 크기가 다른, 흑연과 도전성 탄소를 동시에 코팅함으로써 하기 [화학식 1]의 3성분계 리튬함유 금속산화물과 LiFePO4 올리빈의 입자 크기 또는 표면적의 차이로 인한 3성분계 리튬 금속산화물의 높은 저항의 발현과 도전성 부족 현상을 개선함으로써, 상기 양 물질을 포함하는 양극활물질의 낮은 출력의 문제를 개선함과 동시에 넓은 가용 SOC 영역을 갖는 고용량의 양극활물질 및 이를 포함하는 리튬이차전지에 관한 것이다. [화학식 1] Li1+aNixCoyMn1-x-yO2 , 0≤a<0.5, 0<x<1, 0<y<0.5

Description

출력 향상을 위한 리튬이차전지용 양극재 및 이를 포함하는 리튬이차전지
본 출원은 2011년 4월 4일 한국특허청에 제출된 특허출원 제10-2011-0030665호의 우선권을 청구하며, 본 명세서에서 참조로서 통합된다.
본 발명은 출력 향상을 위한 리튬이차전지용 양극활물질과 이를 포함하는 리튬이차전지에 대한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 갖고 사이클 수명이 길며, 자기 방전율이 낮은 리튬이차전지가 상용화 되어 널리 사용되고 있다. 또한, 환경문제에 대한 관심이 커짐에 따라 대기 오염의 주요 원인 중 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기 자동차, 하이브리드 전기 자동차 등에 대한 연구가 많이 진행되고 있다. 최근에는 이러한 전기 자동차, 하이브리드 전기자동차 등의 동력원으로도 높은 에너지 밀도와 방전 전압을 갖는 리튬이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.
특히, 전기 자동차용 대용량 리튬이차전지의 양극소재 개발은 현재 사용되고 있는 LiCoO2를 대체하기 위해 여러 연구가 진행되고 있다.
기존 대표적 양극물질인 LiCoO2의 경우 에너지 밀도의 증가와 출력 특성의 실용 한계치에 도달하고 있고 특히, 고에너지 밀도 응용 분야에 사용될 경우 그 구조적 불안정성으로 인하여 고온 충전상태에서 구조 변성과 더불어 구조내의 산소를 방출하여 전지내의 전해질과 발열 반응을 일으켜 전지 폭발의 주원인이 된다. 이러한 LiCoO2의 불안전성을 개선하기 위하여 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬함유 망간 산화물과 리튬함유 니켈 산화물(LiNiO2)의 사용이 고려되어 왔으며, 최근에는 Ni, Mn, Co의 3성분계 층상 산화물을 사용하는 것에 대한 연구가 꾸준히 진행되어 왔다.
상기 3성분계 층상 산화물 중 가장 대표적인 Li[Ni1/3Co1/3Mn1/3]O2는 충전시 Ni2+에서 충전심도에 따라 Ni3+나 Ni4+로 변한다. 그러나 안정한 Ni2+와는 달리 Ni3+나 Ni4+ (특히, Ni4+)는 불안정성으로 인해 격자 산소를 잃어 Ni2+로 환원되고, 이 격자산소는 전해액과 반응하여 전극의 표면성질을 바꾸거나 표면의 전하이동(charge transfer) 임피던스를 증가시켜 용량감소나 고율특성 등을 저하시킨다.
이러한 3성분계 층상 산화물의 불안전성의 문제점을 개선하기 위하여 종래 올리빈 구조의 금속산화물을 상기 층상구조의3성분계 양극 활물질에 혼합하는 기술이 알려져 있다.
특히, Fe를 이용한 올리빈 구조의 LiFePO4 양극물질은 결정구조의 안전성과 저렴한 비용의 Fe의 사용으로 초기에 많은 주목을 받았으며, 이러한 성질을 이용한 LiFePO4와 상기 3성분계 층상 산화물의 혼합물은 안전성이 개선된 양극활물질로 제시되었다.
그러나 상기 올리빈 구조의 LiFePO4와 3성분계 층상 산화물의 혼합물을 포함하는 양극활물질의 경우, 동일한 3성분계 층상 산화물을 단독으로 적용하는 경우에 비해, 같은 OCV(Open Circuit Voltage)를 갖는 동일한 상태에서 조차 전기적 저항이 더 높게 측정되고 있으며, 이로 인하여 상기 양 물질을 혼합한 양극활물질은 저비용 및 고안전성의 장점에도 불구하고 낮은 전기 전도성으로 인해 출력 특성이 부족하여 요구출력에 만족하는 SOC 영역이 좁아지며 결과적으로 사용 가능한 SOC 영역에 한계가 있었다.
이러한 올리빈 구조의 금속산화물과 층상구조의 3성분계 금속산화물의 혼합 양극재의 문제점을 개선하기 위하여 도전재 등을 과량 첨가하여 상기 혼합 양극재의 도전성을 개선함으로써 전기적 저항을 낮추기 위한 시도가 있었다. 그러나 도전재 등을 과량 첨가할 경우 활물질 비율이 감소하여 에너지 밀도는 현저히 줄어들지만 상기 혼합 양극재의 저항은 여전히 높게 측정되었으며, 이로 인하여 출력 특성의 저하 및 한정된 가용 SOC영역의 문제는 여전한 실정이다.
이와 같은 낮은 출력 특성의 문제들은 특히, 리튬이차전지를 전기자동차 등의 전원인 중대형 이차전지로 사용하기 위해서는 반드시 해결해야 할 과제로서, 높은 출력을 유지하면서도 사용 가능한 SOC 영역이 넓은 이차전지에 대한 연구가 절실하다.
본 발명은 상기와 같은 종래 기술의 문제점과 기술적 과제를 해결하기 위하여 안출된 것이다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 상기 올리빈 구조의 금속산화물과 층상 구조의 3성분계 금속산화물의 혼합 양극활물질에 도전재를 과량 첨가하여도 도전성이 개선되지 아니하고 오히려 동일한 3성분계를 단독으로 사용할 경우보다 전기적 저항이 상승되는 원인을 규명하였으며, 도전재로서 입자의 크기와 형태를 달리하는 2 이상의 도전성 물질을 동시에 코팅할 경우, 이를 포함하는 혼합 양극재의 도전성이 개선되고 이로 인하여 전기적 저항이 낮아지며 그 결과 출력특성이 향상되는 리튬이차전지용 양극재의 제공이 가능함을 확인하고 본 발명을 완성하기에 이르렀다.
본 발명은 상기와 같은 과제를 해결하기 위한 것으로서,
하기 [화학식 1]로 표시되는 층상 구조의 3성분계 리튬함유 금속산화물과 하기 [화학식 2]로 표시되는 올리빈 구조의 금속산화물을 포함하는 혼합 양극활물질과 입자의 형상과 크기를 달리하는 2 이상의 도전재를 포함하는 것을 특징으로 하는 리튬이차전지 양극재를 제공한다.
[화학식 1] Li1+aNixCoyMn1-x-yO2, 0≤a<0.5, 0<x<1, 0<y<0.5
[화학식 2] AxMyM'zXO4
(A는 알칼리 금속에서 선택된 1종 이상, M, M'는 전이금속 원소 중 선택된 1종 이상, X는 P, Si, S, As, Sb 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나이며, x+y+z=2이다.)
상기 층상 구조의 3성분계 리튬함유 금속산화물의 [화학식 1]에서 0≤a<0.2, 0<x<0.8, 0<y<0.5인 것을 특징으로 한다.
또한, 상기 [화학식 1]로 표시되는 3성분계 리튬함유 금속산화물은 Li1+aNi1/3Co1/3Mn1/3O2(0≤a<0.2)인 것을 특징으로 한다.
한편, 상기 [화학식 2]로 표시되는 올리빈 구조의 금속산화물은 바람직하게는 LiMPO4(M은 Fe, Co, Ni 및 Mn으로 이루어진 군에서 선택된 1종 이상)일 수 있으며, 더욱 바람직하게는 LiFePO4일 수 있다.
한편, 상기 [화학식 2]로 표시되는 올리빈 구조의 금속산화물은 [화학식 1]로 표시되는 3성분계 리튬함유 금속산화물과의 혼합 양극활물질 총 중량 대비 5 내지 50 중량%로 포함될 수 있다.
또한, 상기 [화학식 2]로 표시되는 올리빈 구조의 금속산화물은 [화학식 1]로 표시되는 3성분계 리튬함유 금속산화물과의 혼합 양극활물질 총 중량 대비 10 내지 40 중량%로 포함되는 것일 수 있다.
한편, 상기 입자의 형상과 크기를 달리하는 2 이상의 도전재는 흑연 및 도전성 탄소로 이루어진 것일 수 있다.
상기 입자의 형상과 크기를 달리하는 2 이상의 도전재의 함량은, 상기 리튬이차전지 양극재 총 중량 대비 0.5 중량% 내지 15 중량%인 것을 특징으로 한다.
상기 도전성 탄소는 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙으로 이루어진 카본블랙 또는 결정구조가 그라펜이나 그라파이트를 포함하는 물질로 이루어진 군에서 선택되는 하나 또는 그 이상이 혼합된 물질인 것을 특징으로 하고,
상기 혼합 양극활물질은 리튬 망간 스피넬 및 이들에 타원소(들)가 치환 또는 도핑된 산화물로 이루어진 군에서 선택되는 1종 이상의 리튬함유 금속산화물이 더 포함된 것을 특징으로 한다.
상기 타원소는 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W 및 Bi로 이루어진 군에서 선택되는 어느 하나 또는 2 이상의 원소인 것을 특징으로 한다.
상기 리튬함유 금속산화물은 혼합 양극활물질 총 중량 대비 50 중량% 이내로 포함될 수 있다.
한편 본 발명은 상기 리튬이차전지 양극재를 포함하는 이차전지용 양극을 제공한다.
또한 본 발명은, 상기 이차전지용 양극을 포함하는 리튬이차전지를 제공한다. 상기 리튬이차전지는 중대형 디바이스의 전원인 전지 모듈의 단위전지로 사용되는 것일 수 있으며, 이 때, 상기 중대형 디바이스는 파워 툴(power tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; E-bike, E-scooter를 포함하는 전기 이륜차; 전기 골프 카트(Electric golf cart); 전기트럭; 전기 상용차 또는 전력 저장용 시스템인 것일 수 있다.
본 발명에 따른 양극활물질은 입자의 크기 및 형태를 달리하는 2 이상의 도전성 물질을 동시에 코팅한 3성분계 층상 산화물과 올리빈 구조의 금속산화물의 혼합 양극재를 제공하여, 상기 혼합 양극재 내의 입자들이 고른 전기전도성을 가질 수 있도록 함으로써 상기 혼합 양극재의 전기적 저항을 낮추고 높은 출력 특성을 갖게 하여 사용 가능한 SOC 영역이 넓은 양극활물질 및 이를 포함하는 리튬이차전지를 제공할 수 있다.
특히, 본 발명에 따른 리튬이차전지는 전기 자동차 등의 전원으로 사용되는 중대형의 전지로서 이용 시, 요구되는 출력특성 및 용량, 안전성 등의 조건을 충분히 만족할 수 있는 중대형 리튬이차전지를 제공한다.
도 1은 본 발명의 실시예 및 비교예에 따른 리튬이차전지의 SOC에 따른 출력 변화를 나타낸 그래프이다.
상기와 같은 종래 기술의 문제 및 기술적 과제를 해결하기 위하여, 본 발명은 층상 구조의 3성분계 리튬함유 금속산화물(이하, '3성분계'라 함)과 올리빈 구조의 금속산화물(이하, '올리빈'이라 함)의 혼합 양극재에 도전재로서 입자의 크기 및 형태가 다른 흑연과 도전성 탄소를 동시에 코팅한 혼합 양극재를 제공하고, 이러한 혼합 양극재를 포함하는 리튬이차전지를 제공한다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명의 양극 활물질에 포함되는 3성분계는 아래와 같이 [화학식 1]로 표시될 수 있다.
[화학식 1] Li1+aNixCoyMn1-x-yO2, 0≤a<0.5, 0<x<1, 0<y<0.5
상기 [화학식 1]의 3성분계 리튬함유 금속산화물 중 바람직하게는, Li1+aNixCoyMn1-x-yO2, 0≤a<0.2, 0<x<0.8, 0<y<0.5 일 수 있으며, x=y=1/3인 Li1+aNi1/3Co1/3Mn1/3O2 (0≤a<0.2)가 더욱 바람직하다.
이와 같은 3성분계 리튬함유 금속산화물은 상기한 바와 같이 3성분계 작동 전압의 하단 영역에서 저항이 크게 상승함에 따라 낮은 SOC 영역에서 출력이 급격히 저하되어 사용할 수 있는 SOC 구간이 크게 제한되는바, 상기 3성분계만을 단독으로 양극활물질로 이용하기에는 한계가 있다.
이러한 3성분계 리튬함유 금속산화물의 불안전성의 문제점을 개선하기 위하여 본 발명은 구조적으로 안정한 올리빈을 상기 3성분계와 혼합하여 혼합 양극재를 구성한다.
3성분계의 불안전성을 개선하기 위한 상기 올리빈은 하기 [화학식 2]로 표시될 수 있다.
[화학식 2] AxMyM'zXO4
(A는 알칼리 금속에서 선택된 1종 이상, M, M'는 전이금속 원소 중 선택된 1종 이상, X는 P, Si, S, As, Sb 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나이며, x+y+z=2이다.)
상기 올리빈은 바람직하게는 LiMPO4(M = Fe, Mn, Co 및 Ni로 이루어진 군에서 선택된 1종 이상)로 표시될 수 있으며, 더욱 바람직하게는 3V 영역 대에서의 방전 출력을 확보하기 위하여 비교적 충전 전위가 낮고, 안정한 결정구조를 지니며, 비용 또한 저렴한 LiFePO4일 수 있다.
상기 올리빈은 평균 이론 용량이 170 mAh/g이고 표준 환원 전위가 3.4V로서, 이 수준의 전압은 전해액 분해 등의 부반응을 유발할 정도로 높지 않으면서 에너지 밀도를 안정적으로 유지할 수 있다.
상기 올리빈의 함량은 [화학식 1]로 표시되는 3성분계와의 혼합 양극재 총 중량 대비 5 내지 50 중량%로 포함함이 바람직하며, 더욱 바람직하게는 10 내지 40 중량%를 포함하도록 한다.
올리빈의 함량이 5 중량% 이하일 경우는 올리빈의 함량이 너무 적어 본 발명이 추구하는 저SOC 구간에서의 출력 보조 및 안전성 향상이라는 목적 달성이 어려워질 수 있으며, 50 중량% 이상일 경우 올리빈의 낮은 에너지밀도로 인해 셀의 고에너지화가 어려울 수 있다.
이러한 3성분계와 올리빈의 혼합 양극재는 낮은 도전성을 갖는 올리빈의 도전성 개선은 물론 상기 혼합 양극재 전체의 도전성을 개선하기 위하여 도전재를 포함함이 일반적이나, 본 출원의 발명자들은 상기 3성분계와 올리빈의 혼합 양극재에 일반적인 방법으로 도전재를 첨가할 경우, 상기 혼합 양극재의 도전성 개선 효과가 미비함은 물론, 나아가 상기 3성분계와 올리빈의 혼합 양극재는 동일한 3성분계만으로 이루어진 양극재보다 같은 OCV(Open Circuit Voltage)를 갖는 동일한 상태에서 조차 오히려 저항이 더 높게 나타나는 전압대가 있는 문제를 확인하였으며, 이는 상기 혼합 양극재에 첨가되는 도전재의 양을 증가시키더라도 마찬가지였다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 상기 3성분계와 올리빈 혼합 양극재의 전기적 저항이 높고 도전성이 낮은 원인은 혼합된 3성분계와 올리빈의 입자 크기 내지 표면적의 큰 차이로부터 기인한다는 것을 밝혀내었다.
즉, 혼합되는 성분 간에 입자의 크기 또는 표면적의 차이가 클 경우, 코팅되는 도전재가 표면적이 큰 어느 한쪽 성분으로 편중되고 이로 인하여 도전재가 상대적으로 적게 분포되는 다른 성분에서는 단일 성분일 경우보다 오히려 높은 저항이 발현되어 도전성이 낮아지는 결과가 발생되는 것이다. 이와 같은 현상은 도전재의 양을 계속적으로 늘리더라도 마찬가지이다.
구체적으로 상기 3성분계와 상기 올리빈의 혼합 양극재의 경우, 3성분계에 비해 올리빈의 입자 크기는 훨씬 작으며, 구체적으로 3성분계는 평균 약 0.3-1m2/g 정도의 표면적을 갖는 것에 비해, 올리빈의 경우 평균 약 10-40 m2/g 정도의 표면적을 갖는바, 양 성분의 표면적에 있어서 약 20 내지 50배의 차이가 나게 된다
따라서 상기와 같이 표면적의 차이가 큰 성분들을 포함하는 혼합 양극재의 경우, 첨가된 도전재는 선택적으로 올리빈의 주위에만 존재하게 되므로 다량의 도전재를 계속적으로 첨가하더라도, 도전재가 코팅되지 않는 3성분계의 도전성은 더욱 약화되고 전체적으로 혼합 양극재의 도전성이 저하되어 저항이 크게 상승하게 되는 결과가 나타난다.
따라서 본 발명에서는 3성분계와 올리빈 혼합 양극재 내에서 도전재가 어느 한쪽으로 편중되지 않고 고르게 분포하여 도전성이 향상된 3성분계와 올리빈 혼합 양극재를 제공하기 위하여, 도전재로서 입자의 크기와 형상이 다른 도전성 물질을 2 이상 첨가하는 것을 특징으로 한다.
본 발명의 바람직한 일 실시예로서 상기 2 이상의 도전성 물질은 원형의 도전성 탄소와 판상형의 흑연을 동시에 적용하는 것일 수 있다. 즉, 원형의 도전성 탄소와 판상형의 흑연과 같이, 입자의 크기와 모양이 다른 도전재를 동시에 적용하는 경우, 도전재들이 혼합 양극재를 구성하는 어느 한쪽 성분으로만 편중되는 현상을 억제할 수 있고, 혼합 양극재 내에 고르게 코팅될 수 있게 되며, 또한 3성분계와 올리빈의 표면에만 도전재들이 분포하는 것이 아니라 상기 양 물질의 접촉 부분에도 도전재가 충분하게 분포되어, 3성분계와 올리빈 간에도 도전 path가 충분히 형성되도록 한다.
이에 따라 상기 혼합 양극재의 전기전도성을 높이고 저항을 낮춤으로써 출력이 향상되는 효과를 얻을 수 있게 된다.
상기 혼합 양극재의 형성을 위하여 본 발명의 바람직한 일 실시예로서 적용되는 흑연 및 도전성 탄소는 전기 전도도가 우수하고 이차전지의 내부 환경에서 부반응을 유발하거나 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 갖는 것이라면 특별히 제한되지 않는다.
구체적으로 상기 흑연은 천연 흑연이나 인조 흑연 등을 제한하지 아니하며, 도전성 탄소는 전도성이 높은 카본계 물질이 특히 바람직하며 구체적으로는 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙 또는 결정구조가 그라펜이나 그라파이트를 포함하는 물질을 들 수 있으나 이에 한정되는 것은 아니다. 경우에 따라서는, 전도성이 높은 전도성 고분자도 가능함은 물론이다.
이때, 코팅되는 상기 흑연과 도전성 탄소를 혼합한 혼합물의 양은 너무 적으면 소망하는 효과를 기대하기 어렵고, 반대로 너무 많으면 상대적으로 활물질의 양이 적어져서 용량이 감소할 수 있는바, 상기 흑연과 도전성 탄소를 혼합한 혼합물의 함량은 상기 [화학식 1]로 표시되는 3성분계 및 상기 [화학식 2]로 표시되는 올리빈과 흑연 및 도전성 탄소를 혼합한 혼합 양극재의 총 중량 대비 0.5 중량% 내지 15 중량%인 것이 바람직하며, 이 중 상기 도전성 탄소의 중량은 1 중량% 내지 13 중량%라 할 것이며, 바람직하게는 3 중량% 내지 10 중량%이다.
상기 혼합 양극재의 제조방법은 특별히 한정되지 아니하고 공지의 양극재 제조방법을 이용할 수 있으며, 구체적으로는 용매에 바인더 및 양극활물질, 상기 2이상의 도전재를 넣고 분산하여 슬러리를 제조하는 방법 등으로 제조될 수 있으나 이에 한정되지 않는다.
한편, 본 발명에 따른 혼합 양극재에는, 상기 [화학식 1]로 표시되는 3성분계와 상기 [화학식 2]로 표시되는 올리빈, 입자의 형태와 크기를 달리하는 2 이상의 도전재를 포함하는 것 이외에 리튬 망간 스피넬 및 이들에 타원소(들)가 치환 또는 도핑된 산화물 등이 더 포함될 수 있으며, 상기 타원소(들)는 Al, Mg, Mn, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W 및 Bi로 이루어진 군에서 선택되는 1종 이상인 것일 수 있다.
구체적으로 이러한 리튬함유 금속산화물은 상기 혼합 양극재 100 중량부에 대해 50 중량부 이내로 포함될 수 있다.
또한, 상기 혼합 양극재는 선택적으로 바인더, 충진제 등이 더 포함될 수 있다.
상기 바인더는 3성분계 및 올리빈과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 혼합 양극재 총 중량 대비 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스틸렌 부티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소 섬유 등의 섬유 상 물질이 사용된다.
본 발명은 또한 상기 혼합 양극재가 집전체 상에 도포되어 있는 이차전지용 양극을 제공한다.
이차전지용 양극은, 예를 들어, 양극 집전체 상에 상기 혼합 양극재 및 도전재, 바인더, 충진제 등을 NMP 등의 용매에 혼합하여 만들어진 슬러리를 음극 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포제, 부직포체 등 다양한 형태가 가능하다.
본 발명은 또한 상기 양극과, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성된 리튬이차전지를 제공한다.
상기 음극은, 예를 들어, 음극 집전체 상에 음극 활물질을 포함하고 있는 음극 합제를 도포, 건조하여 제작되며, 상기 음극 합제에는 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께로 만들어진다. 이러한 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 음극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 내지 10 ㎛이고, 두께는 일반적으로 5 내지 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해액은, 비수 전해액과 리튬염으로 이루어져 있다. 비수 전해액으로는 비수계 유기 용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수계 유기 용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
이와 같은 본 발명에 따른 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위 전지로도 바람직하게 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 파워 툴(power tool); 전기차(Electric Vehicle, EV), 하이브리드 전기차(Hybrid Electric Vehicle, HEV) 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; E-bike, E-scooter를 포함하는 전기 이륜차; 전기 골프 카트(Electric golf cart); 전기 트럭; 전기 상용차 또는 전력 저장용 시스템 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
이하에서는 실시예를 통해 본 발명의 내용을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
실시예
양극의 제조
Li[Ni1/3Co1/3Mn1/3]O2 70 중량%와 LiFePO4 30 중량%로 구성된 혼합물 90 중량%와 흑연 2 중량%, 뎅카블랙 4 중량% 및 PVDF 4 중량%와 함께 NMP에 첨가하여 슬러리를 만들었다. 이를 양극 집전체에 도포하고 압연 및 건조하여 이차전지용 양극을 제조하였다.
리튬이차전지의 제조
상기와 같이 제조된 양극을 포함하고, 흑연을 기반으로 한 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하고, 리튬 전해액을 주입하여, 폴리머타입 리튬이차전지를 제작하였다.
상기 폴리머 타입 리튬이차전지를 4.2V에서 포메이션 한 뒤, 4.2V와 2.5V 사이에서 충방전 하면서 SOC에 따라 출력을 측정하였다. (C-rate =1C).
비교예 1
Li[Ni1/3Co1/3Mn1/3]O2 70 중량%와 LiFePO4 30 중량%로 구성된 혼합물 90 중량%와 뎅카블랙 6 중량% 및 PVDF 4 중량%를 포함하는 양극 활물질을 제조하고 상기 실시예와 동일한 방법으로 폴리머 타입의 리튬이차전지를 제작하였다.
비교예 2
Li[Ni1/3Co1/3Mn1/3]O2 70 중량%와 LiFePO4 30 중량%로 구성된 혼합물 88 중량%와 뎅카블랙 8 중량% 및 PVDF 4 중량%를 포함하는 양극 활물질을 제조하고 상기 실시예와 동일한 방법으로 폴리머 타입의 리튬이차전지를 제작하였다.
상기 실시예 및 비교예에 의해 제작된 풀 셀(full cell) 리튬이차전지에 대해 4.2V-2.5V의 전압범위에서 SOC에 따른 출력 변화를 측정하여 도 1에 나타내었다.
도 1에 나타낸 데이터는 하나의 예시일 뿐, SOC에 따른 세부적인 Power 수치는 셀의 스펙에 따라 달라질 것인바, 세부적 수치보다는 그래프의 경향이 중요하다고 할 수 있으며, 이와 같은 관점에서 도 1을 참조하면, 본 발명의 일 실시예에 따른 리튬이차전지의 경우 비교예에 따른 리튬이차전지보다 전 SOC 구간에 걸쳐 훨씬 높은 수준의 출력이 나타나는 것을 확인할 수 있다. 또한 비교예 1에 비해 비교예 2의 출력 향상 효과가 미비한바, 이로서 어느 한 종류의 도전재만을 포함하는 경우에는 그 첨가량을 늘리더라도 전지의 출력 향상 효과는 미비함을 확인할 수 있다.
결국, 본 발명에 따른 리튬이차전지는 3성분계와 올리빈 혼합 양극재에 다양한 구조 및 크기의 도전재를 동시에 적용함으로써, 상기 혼합 양극재의 낮은 도전성 및 이로 인한 높은 저항의 발현 문제를 개선하여 전 SOC 구간에 걸쳐 출력 특성이 크게 향상됨을 확인하였다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것으로서, 본 발명의 보호범위는 아래의 특허청구범위에 의하여 해석되야 하며 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (17)

  1. 하기 [화학식 1]로 표시되는 층상 구조의 3성분계 리튬함유 금속산화물 및 하기 [화학식 2]로 표시되는 올리빈 구조의 금속산화물을 포함하는 혼합 양극활물질과 입자의 형상과 크기를 달리하는 2 이상의 도전재를 포함하는 것을 특징으로 하는 리튬이차전지 양극재.
    [화학식 1] Li1+aNixCoyMn1-x-yO2, 0≤a<0.5, 0<x<1, 0<y<0.5
    [화학식 2] AxMyM'zXO4
    (A는 알칼리 금속에서 선택된 1종 이상, M, M'는 전이금속 원소 중 선택된 1종 이상, X는 P, Si, S, As, Sb 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나이며, x+y+z=2이다.)
  2. 제1항에 있어서, 상기 층상 구조의 3성분계 리튬함유 금속산화물의 [화학식 1]에서 0≤a<0.2, 0<x<0.8, 0<y<0.5인 것을 특징으로 하는 리튬이차전지 양극재.
  3. 제1항에 있어서, 상기 [화학식 1]로 표시되는 3성분계 리튬함유 금속산화물은 Li1+aNi1/3Co1/3Mn1/3O2(0≤a<0.2)인 것을 특징으로 하는 리튬이차전지 양극재.
  4. 제1항에 있어서, 상기 [화학식 2]로 표시되는 올리빈 구조의 금속산화물은 LiMPO4(M은 Fe, Co, Ni 및 Mn으로 이루어진 군에서 선택된 1종 이상)인 것을 특징으로 하는 리튬이차전지 양극재.
  5. 제1항에 있어서, 상기 [화학식 2]로 표시되는 올리빈 구조의 금속산화물은 LiFePO4인 것을 특징으로 하는 리튬이차전지 양극재.
  6. 제1항에 있어서, 상기 [화학식 2]로 표시되는 올리빈 구조의 금속산화물은 [화학식 1]로 표시되는 3성분계 리튬함유 금속산화물과의 혼합 양극활물질 총 중량 대비 5 내지 50 중량%로 포함되는 것을 특징으로 하는 리튬이차전지 양극재.
  7. 제1항에 있어서, 상기 [화학식 2]로 표시되는 올리빈 구조의 금속산화물은 [화학식 1]로 표시되는 3성분계 리튬함유 금속산화물과의 혼합 양극활물질 총 중량 대비 10 내지 40 중량%로 포함되는 것을 특징으로 하는 리튬이차전지 양극재.
  8. 제1항에 있어서, 상기 입자의 형상과 크기를 달리하는 2 이상의 도전재는 흑연 및 도전성 탄소로 이루어진 것을 특징으로 하는 리튬이차전지 양극재.
  9. 제1항에 있어서, 상기 입자의 형상과 크기를 달리하는 2 이상의 도전재의 함량은, 상기 리튬이차전지 양극재 총 중량 대비 0.5 중량% 내지 15 중량%인 것을 특징으로 하는 리튬이차전지 양극재.
  10. 제8항에 있어서, 상기 도전성 탄소는 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙으로 이루어진 카본블랙 또는 결정구조가 그라펜이나 그라파이트를 포함하는 물질로 이루어진 군에서 선택되는 하나 또는 그 이상이 혼합된 물질인 것을 특징으로 하는 리튬이차전지 양극재.
  11. 제1항에 있어서, 상기 혼합 양극활물질은 리튬 망간 스피넬 및 이들에 타원소(들)가 치환 또는 도핑된 산화물로 이루어진 군에서 선택되는 1종 이상의 리튬함유 금속산화물이 더 포함된 것을 특징으로 하는 리튬이차전지 양극재.
  12. 제11항에 있어서, 상기 타원소는 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W 및 Bi로 이루어진 군에서 선택되는 어느 하나 또는 2 이상의 원소인 것을 특징으로 하는 리튬이차전지 양극재.
  13. 제11항에 있어서, 상기 리튬함유 금속산화물은 혼합 양극활물질 총 중량 대비 50 중량% 이내로 포함되는 것을 특징으로 하는 리튬이차전지 양극재.
  14. 제1항 내지 제13항 중 어느 한 항에 따른 리튬이차전지 양극재를 포함하는 이차전지용 양극.
  15. 제14항에 따른 이차전지용 양극을 포함하는 리튬이차전지.
  16. 제15항에 있어서, 상기 리튬이차전지는 중대형 디바이스의 전원인 전지 모듈의 단위전지로 사용되는 것을 특징으로 하는 리튬이차전지.
  17. 제16항에 있어서, 상기 중대형 디바이스는 파워 툴(power tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; E-bike, E-scooter를 포함하는 전기 이륜차; 전기 골프 카트(Electric golf cart); 전기트럭; 전기 상용차 또는 전력 저장용 시스템인 것을 특징으로 하는 리튬이차전지.
PCT/KR2012/002537 2011-04-04 2012-04-04 출력 향상을 위한 리튬이차전지용 양극재 및 이를 포함하는 리튬이차전지 WO2012138127A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12767790.4A EP2696402B1 (en) 2011-04-04 2012-04-04 Positive electrode material for a lithium secondary battery for improving output, and lithium secondary battery comprising same
CN201280003639.4A CN103210526B (zh) 2011-04-04 2012-04-04 用于改善输出的锂二次电池用正极材料和包含其的锂二次电池
JP2013556559A JP6018588B2 (ja) 2011-04-04 2012-04-04 出力向上のためのリチウム二次電池用正極材及びこれを含むリチウム二次電池
PL12767790T PL2696402T3 (pl) 2011-04-04 2012-04-04 Materiał elektrody dodatniej do litowej baterii akumulatorowej dla polepszenia wydajności, i litowa bateria akumulatorowa zawierająca ten materiał
US13/566,360 US9287564B2 (en) 2011-04-04 2012-08-03 Lithium secondary battery positive electrode material for improving output characteristics and lithium secondary battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0030665 2011-04-04
KR1020110030665A KR101288779B1 (ko) 2011-04-04 2011-04-04 출력 향상을 위한 리튬이차전지용 양극재 및 이를 포함하는 리튬이차전지

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/566,360 Continuation US9287564B2 (en) 2011-04-04 2012-08-03 Lithium secondary battery positive electrode material for improving output characteristics and lithium secondary battery including the same

Publications (2)

Publication Number Publication Date
WO2012138127A2 true WO2012138127A2 (ko) 2012-10-11
WO2012138127A3 WO2012138127A3 (ko) 2012-11-29

Family

ID=46969679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002537 WO2012138127A2 (ko) 2011-04-04 2012-04-04 출력 향상을 위한 리튬이차전지용 양극재 및 이를 포함하는 리튬이차전지

Country Status (7)

Country Link
US (1) US9287564B2 (ko)
EP (1) EP2696402B1 (ko)
JP (1) JP6018588B2 (ko)
KR (1) KR101288779B1 (ko)
CN (1) CN103210526B (ko)
PL (1) PL2696402T3 (ko)
WO (1) WO2012138127A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015084323A (ja) * 2013-09-18 2015-04-30 株式会社東芝 非水電解質電池
CN104969400A (zh) * 2013-06-05 2015-10-07 株式会社Lg化学 新型二次电池
JP2019003946A (ja) * 2013-09-18 2019-01-10 株式会社東芝 正極

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003947A1 (en) * 2013-07-08 2015-01-15 Basf Se Electrode materials for lithium ion batteries
JP6252858B2 (ja) * 2014-04-25 2017-12-27 株式会社豊田自動織機 リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP5971279B2 (ja) * 2014-05-30 2016-08-17 エス・イー・アイ株式会社 電極材料の製造方法
WO2016047326A1 (ja) * 2014-09-26 2016-03-31 株式会社村田製作所 リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池
WO2016080456A1 (ja) * 2014-11-19 2016-05-26 日立化成株式会社 リチウムイオン電池
US10243215B2 (en) 2015-03-27 2019-03-26 Tdk Corporation Positive electrode active material including lithium transition metal particles with graphene coating layer positive electrode and lithium ion secondary battery including the same
US10971717B2 (en) 2015-11-19 2021-04-06 Tdk Corporation Positive electrode active material, positive electrode, and lithium ion secondary battery
JP6674631B2 (ja) * 2016-06-23 2020-04-01 トヨタ自動車株式会社 リチウムイオン二次電池
KR20180060779A (ko) * 2016-11-29 2018-06-07 삼성에스디아이 주식회사 리튬 이차 전지
CN109755518B (zh) * 2018-12-29 2020-12-25 安徽南都华拓新能源科技有限公司 碳包覆磷酸铁锂材料的制备方法
CN111082017A (zh) * 2019-12-25 2020-04-28 溧阳中科海钠科技有限责任公司 钠离子二次电池复合正极材料及其制备方法和电池
CN114725326B (zh) * 2021-01-05 2023-11-17 广汽埃安新能源汽车有限公司 正极材料、正极片、锂离子电芯、锂离子电池包及其应用
CN114604900B (zh) * 2022-03-29 2023-06-06 东北石油大学 一种自组装KMn8O16@还原氧化石墨烯二维复合材料的制备方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988384B2 (ja) * 2000-12-26 2007-10-10 新神戸電機株式会社 非水電解液二次電池
US6706446B2 (en) 2000-12-26 2004-03-16 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolytic solution secondary battery
US7811707B2 (en) * 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
JP2007234565A (ja) 2005-03-18 2007-09-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2007207490A (ja) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd リチウム二次電池
JP5137312B2 (ja) * 2006-03-17 2013-02-06 三洋電機株式会社 非水電解質電池
JP2007317583A (ja) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd リチウム二次電池
KR100801637B1 (ko) * 2006-05-29 2008-02-11 주식회사 엘지화학 양극 활물질 및 그것을 포함하고 있는 리튬 이차전지
WO2008001791A1 (en) 2006-06-27 2008-01-03 Kao Corporation Composite positive electrode material for lithium ion battery and battery using the same
CN101110473A (zh) * 2006-07-18 2008-01-23 日产自动车株式会社 非水电解质二次电池的正极及其制备方法
JP2008047512A (ja) * 2006-07-18 2008-02-28 Nissan Motor Co Ltd 非水電解質二次電池用正極
KR100907621B1 (ko) 2006-08-28 2009-07-15 주식회사 엘지화학 두 성분의 도전재를 포함하는 양극 합제 및 그것으로구성된 리튬 이차전지
US20100112445A1 (en) * 2007-01-24 2010-05-06 Lg Chem, Ltd. Secondary battery with improved safety
JP2010528431A (ja) * 2007-05-22 2010-08-19 タイアックス エルエルシー 非水系電界液及びこれを含む電気化学装置
KR100889622B1 (ko) 2007-10-29 2009-03-20 대정이엠(주) 안전성이 우수한 리튬 이차전지용 양극 활물질 및 그제조방법과 이를 포함하는 리튬 이차전지
US8148015B2 (en) * 2008-03-21 2012-04-03 Byd Company Limited Cathode materials for lithium batteries
KR100954591B1 (ko) * 2008-05-16 2010-04-26 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 리튬 이차 전지
KR101056734B1 (ko) * 2008-06-20 2011-08-12 주식회사 아모그린텍 고밀도 슈퍼 커패시터의 전극 및 그의 제조방법
JP4774426B2 (ja) * 2008-06-27 2011-09-14 日立ビークルエナジー株式会社 リチウム二次電池
KR101013938B1 (ko) * 2008-07-31 2011-02-14 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를포함하는 리튬 이차 전지
US9099738B2 (en) * 2008-11-03 2015-08-04 Basvah Llc Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
CN101577324A (zh) * 2009-05-27 2009-11-11 温岭市恒泰电池有限公司 磷酸铁锂电池混合型正极浆料及使用该正极浆料的磷酸铁锂电池
JP5263683B2 (ja) * 2009-08-19 2013-08-14 株式会社Gsユアサ 非水電解質二次電池
JP5370102B2 (ja) * 2009-11-27 2013-12-18 株式会社Gsユアサ 非水電解質二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2696402A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969400A (zh) * 2013-06-05 2015-10-07 株式会社Lg化学 新型二次电池
EP3007261A4 (en) * 2013-06-05 2017-01-25 LG Chem, Ltd. Novel secondary battery
US10044029B2 (en) 2013-06-05 2018-08-07 Lg Chem, Ltd. Secondary battery
CN110010859A (zh) * 2013-06-05 2019-07-12 株式会社Lg化学 新型二次电池、电池模块、电池组和装置
CN110010859B (zh) * 2013-06-05 2022-05-24 株式会社Lg化学 二次电池、电池模块、电池组和装置
JP2015084323A (ja) * 2013-09-18 2015-04-30 株式会社東芝 非水電解質電池
JP2019003946A (ja) * 2013-09-18 2019-01-10 株式会社東芝 正極

Also Published As

Publication number Publication date
CN103210526A (zh) 2013-07-17
PL2696402T3 (pl) 2020-09-21
EP2696402B1 (en) 2020-02-19
JP6018588B2 (ja) 2016-11-02
KR101288779B1 (ko) 2013-07-22
WO2012138127A3 (ko) 2012-11-29
JP2014510997A (ja) 2014-05-01
US9287564B2 (en) 2016-03-15
EP2696402A4 (en) 2014-10-08
EP2696402A2 (en) 2014-02-12
US20130221283A1 (en) 2013-08-29
CN103210526B (zh) 2016-08-03
KR20120113007A (ko) 2012-10-12

Similar Documents

Publication Publication Date Title
WO2012138127A2 (ko) 출력 향상을 위한 리튬이차전지용 양극재 및 이를 포함하는 리튬이차전지
WO2011105833A9 (ko) 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2013162086A1 (ko) 출력 향상을 위한 리튬이차전지 복합 전극용 활물질 및 이를 포함하는 리튬이차전지
WO2012144785A2 (ko) 양극 활물질 및 그것을 포함한 리튬 이차전지
WO2013042956A1 (ko) 고용량 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2012161476A2 (ko) 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
WO2013009078A2 (ko) 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지
WO2012161479A2 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2012039563A2 (ko) 리튬 망간계 산화물을 포함하는 양극 활물질 및 비수 전해질 이차전지
WO2014073833A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2011084003A2 (ko) 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질
WO2014081252A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2012161480A2 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2012161474A2 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2011065651A2 (ko) 두 성분들의 조합에 따른 양극 및 이를 이용한 리튬 이차전지
WO2014010854A1 (ko) 고전압용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2012086939A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2012039564A9 (ko) 도전성이 개선된 고용량 양극 활물질 및 이를 포함하는 비수 전해질 이차전지
WO2014196816A1 (ko) 신규한 이차전지
WO2012161482A2 (ko) 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
WO2012077929A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2014081249A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015141997A1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지
WO2012111951A2 (ko) 이차전지용 양극 합제 및 이를 포함하는 이차전지
WO2014081254A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767790

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012767790

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013556559

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE