WO2018003202A1 - 溶接監視システム - Google Patents

溶接監視システム Download PDF

Info

Publication number
WO2018003202A1
WO2018003202A1 PCT/JP2017/010495 JP2017010495W WO2018003202A1 WO 2018003202 A1 WO2018003202 A1 WO 2018003202A1 JP 2017010495 W JP2017010495 W JP 2017010495W WO 2018003202 A1 WO2018003202 A1 WO 2018003202A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
current
magnetic field
welded
acquired
Prior art date
Application number
PCT/JP2017/010495
Other languages
English (en)
French (fr)
Inventor
遠藤 久
裕 吉川
敏広 山田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US16/311,710 priority Critical patent/US11325209B2/en
Priority to CN201780039982.7A priority patent/CN109414779B/zh
Priority to PL17819571.5T priority patent/PL3459672T3/pl
Priority to EP17819571.5A priority patent/EP3459672B1/en
Priority to KR1020187036344A priority patent/KR102133763B1/ko
Publication of WO2018003202A1 publication Critical patent/WO2018003202A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/257Monitoring devices using digital means the measured parameter being an electrical current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • B23K11/0026Welding of thin articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/253Monitoring devices using digital means the measured parameter being a displacement or a position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a technique of a welding monitoring system for performing quality control in welding.
  • Welding is an indispensable technique for joining multiple members that make up metal products. Welding provides a certain strength while increasing the degree of freedom of the product shape. For this reason, welding is often used for joining joints of structures and pressure vessels with high stress loads.
  • ⁇ ⁇ Welding is performed by applying heat to a desired joint and melting a metal member (hereinafter referred to as a member).
  • a metal member hereinafter referred to as a member.
  • welding using electric resistance is called spot welding or resistance welding (hereinafter referred to as resistance welding), and is often used for joining automobiles or thin metal plates.
  • resistance welding The principle of resistance welding is to apply a current to the member and heat the weld using Joule heat generated by the electric resistance of the metal.
  • the feature of resistance welding is that it is suitable for automatic welding because it does not require an additional member to make up between the members to be welded, and it can complete welding in a short time by applying a large current. There is something you can do. Therefore, resistance welding is often used in mass production lines for metal products.
  • welding conditions are various such as surface conditions of members, pre-welding treatment conditions such as a method for closely contacting members, applied treatment conditions such as applied voltage, current, and pressing pressure between members, post-weld treatment conditions such as cooling. .
  • Patent Document 1 states that “a determination is made as to whether an appropriate welding material 25 is used for the joint 10 in which the joint information 11 is written, and the joint 30 is obtained from the camera 30 and the image of the joint 10 photographed by the camera 30.
  • An image processing program 51 that identifies the information 11 and identifies the joint 10 from the identified joint information 11, a database 52 that identifies the welding material 25 in association with the joint 10, and an appropriate welding material 25 for the joint 10 are used.
  • the first determination program 55 compares the joint 10 specified by the image processing program 51 with the joint 10 associated with the welding material 25 specified by the database 52, and On the other hand, a welding monitoring system 1 "for determining whether an appropriate welding material 25 is used is disclosed (see summary).
  • the present invention has been made in view of such a background, and an object of the present invention is to improve the quality control of welding.
  • the present invention provides a current measuring unit that measures a local current in a welded part, a temperature measuring unit that measures a local temperature in the welded part, and the current measurement in resistance welding.
  • Current information acquired from the current measurement unit and the current information acquired from the current measurement unit by comparing the temperature information acquired from the temperature measurement unit and the past temperature information.
  • a determination unit that determines whether at least one of the temperature information acquired from the temperature measurement unit is abnormal.
  • the quality control of welding can be improved.
  • FIG. 1 It is a functional block diagram of the welding monitoring system concerning this embodiment. It is a functional block diagram of the manufacturing system Z cooperated with MES (Manufacturing
  • FIG. 3 is a diagram (part 1) illustrating an example of an image acquired by a high-speed camera. It is FIG. (2) which shows the example of the image
  • FIG. 2 shows the example of the spectroscopic data and one-dimensional spectrum data which are acquired with a spectroscopic camera
  • (a) is a figure which shows the example of spectroscopic data
  • (b) is an example of one-dimensional spectrum data
  • FIG. It is a figure (the 3) which shows the example of the spectroscopic data and one-dimensional spectrum data acquired with a spectroscopic camera
  • (a) is a figure showing the example of spectroscopic data
  • (b) is the example of one-dimensional spectrum data.
  • FIG. It is a figure (the 1) which shows an example of the current waveform and voltage waveform which are energized at the time of welding.
  • FIG. 5B is a diagram viewed from the BB direction. It is a figure explaining the relationship between the output of a magnetic sensor, and a current path. It is the figure which showed typically the magnetic field produced
  • FIG. 6 is a diagram (part 4) illustrating an example of a magnetic field waveform; It is a figure which shows the example of a coil output waveform. It is the figure explaining the installation example of a displacement meter, and an output result, (a) is a figure which shows the installation example of a displacement meter, (b) is a figure which shows the measurement result by a displacement meter. It is a flowchart which shows the process sequence in the server which concerns on this embodiment.
  • FIG. 1 is a functional block diagram of a welding monitoring system Z1 according to the present embodiment.
  • the welding monitoring system Z1 includes a server 1, an information acquisition device 2, and an individual identification device 3.
  • the welding system Z2 includes a welding monitoring system Z1, a welding machine 4, an inspection device 6, a PLC 7, and an inspection information input device 8.
  • the information acquisition device 2 is installed in the welding machine 4 and includes various measuring instruments and various sensors.
  • the information acquisition device 2 includes a trigger acquisition device 201, a high-speed camera (temperature measurement unit) 202, an ammeter 203, a spectroscopic camera 204, a magnetic field measurement device (current measurement unit, magnetic field measurement unit) 205, a displacement meter ( A displacement measuring unit) 206, a voltmeter 207, a temperature / hygrometer 208, and the like.
  • the trigger acquisition device 201 acquires a trigger signal when a current is passed through the workpiece 5 in the welding machine 4.
  • the high-speed camera 202 captures the light emission state of the welded portion when current flows through the welded portion in resistance welding.
  • the ammeter 203 measures the current flowing through the workpiece 5.
  • the ammeter 203 will be described later.
  • the spectroscopic camera 204 is a camera for performing spectrum analysis of light emission of the welded portion when current flows through the welded portion in resistance welding, and a streak camera or the like is used. Details of the spectroscopic camera 204 will be described later.
  • the magnetic field measuring device 205 is installed around the welded part and measures the magnetic field from the welded part. The magnetic field measuring device 205 will be described later.
  • the displacement meter 206 measures the length of the welding member. The displacement meter 206 will be described later.
  • the voltmeter 207 measures the voltage between the electrodes when a current is passed through the workpiece 5.
  • the voltmeter 207 will be described later.
  • the temperature / hygrometer 208 measures the temperature and humidity of the inspection environment, and the thermometer and the hygrometer may be separated.
  • a pressure gauge or the like for measuring the pressure applied to the welded portion may be provided.
  • the individual identification device 3 reads information on an ID for identifying an individual of welding (welding individual) from a marker and identifies the welding individual.
  • the marker is a barcode affixed to the part to be welded 5, a stamp on the part to be welded 5, an RFID (Radiofrequency Identification) tag, or the like. If the marker is a barcode, the individual identification device 3 is a barcode reader. If the marker is a stamp, the individual identification device 3 includes a camera that captures the stamp, a stamp recognition device that extracts a stamp from the captured image, and performs character recognition and the like. If the marker is an RFID tag, the individual identification device 3 is an RFID tag reader.
  • the high-speed camera 202 of the information acquisition device 2 may be used as a camera that captures the marker.
  • description here is abbreviate
  • a welded individual is a distinction between individual welds. For example, in the case where two welds are performed in one welded part 5, each weld is a welded individual. In addition, when multiple times welding is performed in the same welding location, each welding is good also as a welding individual
  • the server 1 includes a data acquisition processing unit 101, a welding data storage unit 102, an analysis unit 103, a data classification unit 104, a data classification storage unit 105, and a comparison determination unit (determination unit) 106. .
  • the data acquisition processing unit 101 acquires welding data from each device in the information acquisition device 2 and acquires individual identification data from the individual identification device 3.
  • the data acquisition processing unit 101 stores the acquired welding data and individual identification data in the welding data storage unit 102.
  • the welding data storage unit 102 In the welding data storage unit 102, data sent from each device in the information acquisition device 2 and the individual identification device 3 are stored in association with each other. That is, the welding data storage unit 102 stores the identification information of the welding individual specified by the individual identification device 3 and the information (time series information) acquired from each device of the information acquisition device 2 in association with each other. ing.
  • the data stored in the welding data storage unit 102 has the same time axis for the waveform data of each measuring instrument and each sensor, the video data of the camera, etc., by synchronizing the trigger signal acquired by the trigger acquisition device 201 ( (Synchronized) data.
  • the analysis unit 103 converts the characteristics of the welding conditions into data from information acquired from each device of the information acquisition device 2. The processing of the analysis unit 103 will be described later.
  • the data classification unit 104 classifies the welding data by machine learning (pattern recognition) or the like. For machine learning, a clustering method, a k-means method, or the like is used.
  • the data classification unit 104 stores the machine learning result in the data classification storage unit 105.
  • the data classification unit 104 classifies each analysis result calculated by the analysis unit 103 using machine learning.
  • the present invention is not limited to this.
  • Each analysis result calculated by the analysis unit 103 may be classified by a method other than machine learning. The processing of the data classification unit 104 will be described later.
  • the data classification storage unit 105 stores a result of machine learning or the like in the data classification unit 104. That is, the data classification storage unit 105 stores past data that has been machine-learned.
  • the comparison determination unit 106 compares the result of machine learning or the like stored in the data classification storage unit 105 with the calculation result in the analysis unit 103 to determine whether the welding condition is normal or abnormal. When determining that the welding condition is abnormal, the comparison determination unit 106 causes a PLC (Programmable Logic Controller) 7 to output a detailed investigation instruction.
  • PLC Programmable Logic Controller
  • the inspection device 6 When the PLC 7 outputs a detailed investigation instruction to the inspection device 6, the inspection device 6 is informed about the part to be welded 5 in which an abnormality (possibly defective welding) is detected in the server 1 on a display device (not shown). Is displayed. The inspector performs a detailed inspection of the workpiece 5 based on the displayed information. The result of the investigation analysis is sent to the data classification unit 104 via the inspection information input device 8 and becomes machine learning data.
  • FIG. 2 is a functional block diagram of the manufacturing system Z linked with the manufacturing execution system (MES11).
  • the MES 11 is linked to each process of the production line, plays a role of managing the operation of the manufacturing equipment of the factory and the work of the worker, and has management information on plans, current conditions, and results.
  • Each manufacturing facility such as the processing machine 13, the welding machine 4, and the inspection apparatus 6 operates by transmitting and receiving commands according to the management information stored in the MES 11 via the PLCs 7 and 21 to 22 as sequencers.
  • the processing machine 13 processes the workpiece 5 to be supplied to the welding machine 4.
  • the trend server 12 acquires information regarding the state of the processing machine 13 from the processing machine 13 via the information acquisition device 31. Similarly, the trend server 12 acquires information related to the state of the welding machine 4 from the welding machine 4 via the information acquisition device 32.
  • the information acquisition devices 31 and 32 are various sensors and the like.
  • the trend server 12 stores information regarding the acquired state of the welding machine 4 and the processing machine 13.
  • the MES 11 transmits the information regarding the state of the welding machine 4 and the processing machine 13 acquired by the trend server 12 and the welded part detailed investigation instruction output from the server 1 to the information notification terminal 41 owned by the supervisor.
  • the information notification terminal 41 is a wearable device information terminal such as a smartphone, a tablet, or an HMD (Head Mount Display).
  • the manufacturing system Z which concerns on this embodiment makes the trend server 12 which has the information regarding the state of the processing machine 13, the welding machine 4, and MES11 cooperate.
  • the server 1 detects a welding abnormality
  • inspection instructions are output in the order of server 1 ⁇ PLC 7 ⁇ inspection apparatus 6, but inspection instructions are in order of server 1 ⁇ MES 11 ⁇ PLC 7 ⁇ inspection apparatus 6. It may be output.
  • the manufacturing system Z transmits inspection instructions and inspection items for the welded component 5 determined to be abnormal by the server 1 to the inspection device 6 via the PLC 7, and performs nondestructive inspection by the inspection device 6. be able to.
  • the manufacturing system Z communicates the information of the welder 4 in which an abnormality has occurred and the welded part 5 to the supervisor by linking the MES 11, the trend server 12, and the server 1 of the welding monitoring system Z1 (details will be described later). ).
  • the manufacturing system Z can implement maintenance of the welding machine 4 etc. rapidly, and can reduce the fall of productivity.
  • a wearable device information terminal such as a smartphone, a tablet, or an HMD (Head Mount Display) can be used as the information notification terminal 41.
  • the AR Augmented Reality
  • FIG. 3 is a flowchart showing a manufacturing process procedure in the manufacturing system Z of FIG. Reference is made to FIG. 2 as appropriate.
  • the process proceeds in the order of abnormality detection (S1) ⁇ cause analysis (S2) ⁇ measure planning (S3) ⁇ execution (S4).
  • S1 abnormality detection
  • S2 cause analysis
  • S3 measure planning
  • S4 execution
  • the inspection procedure 1 and the inspection procedure 2 are shown.
  • the inspection procedure 2 is performed using the welding monitoring system Z1 according to the present embodiment.
  • ⁇ Inspection procedure 1> Abnormality detection; S1
  • the MES 11 acquires part or all of the information acquired from the information acquisition apparatuses 31 and 32 from the trend server 12. And MES11 memorize
  • FIG. (Cause analysis; S2)
  • the inspector takes into account the welding condition actual value stored in the MES 11 and the actual condition value of the processing condition before welding and the image (analysis result) before welding, thereby causing a welding abnormality. Perform cause analysis.
  • step S3 In the step of planning measures in step S3, the inspector statistically analyzes the relationship between the actual values of the welding conditions, the processing parameters of the welding machine 4 and the welding results, calculates the processing parameters of the welding machine 4, and Update settings.
  • Example; S4 In the execution step of step S4, welding is performed with the processing parameters set in the countermeasure planning step.
  • ⁇ Inspection procedure 2> The inspection procedure 2 is performed based on the inspection procedure 1 described above. As described above, the welding monitoring system Z1 in the present embodiment is used in this “inspection procedure 2”. (Abnormality detection; S1) In the step of detecting an abnormality in step S1, if the server 1 determines that the welding is abnormal, the information notification terminal 41 owned by the supervisor or a patrol lamp (not shown) is notified. In addition, the server 1 that has detected the welding abnormality outputs an inspection instruction to the inspection device 6. In the present embodiment, the server 1 instructs the inspection apparatus 6 via the PLC 7, but as described above, the inspection may be instructed from the MES 11 to the inspection apparatus 6.
  • step S2 the inspector analyzes the cause of the welding abnormality in accordance with the supervisor's instruction or the patrol notification. That is, the supervisor instructs the inspector to perform an inspection based on the information displayed on the information notification terminal 41 owned by the supervisor. Alternatively, when the inspector confirms the blinking of the patrol lamp, the inspector stops the line and performs a detailed inspection of the welded part 5 currently being inspected. At this time, the inspector performs analysis using the knowledge obtained as a result of the cause analysis of the inspection procedure 1.
  • Countermeasure planning In the countermeasure planning step of step S3, the inspector determines the necessity of line stop / maintenance based on the frequency of occurrence of abnormality. The inspector calculates the expected line stop time based on the cause analysis result, and when it is determined that an abnormal stop is necessary for a certain period, issues an alternative production instruction to another line. Further, the inspector calculates new processing parameters with reference to the processing parameters calculated in the planning of measures in the inspection procedure 1, and updates the setting of the manufacturing system Z.
  • step S4 In the execution step of step S4, the manufacturing system Z is executed based on the alternative production instruction and the new processing parameter.
  • FIG. 4 is a hardware configuration diagram of the server 1 according to the present embodiment.
  • the server 1 includes a storage device 130 such as a memory 110, a CPU (Central Processing Unit) 120, and an HD (Hard Disk). Further, the server 1 includes an input device 140 such as a keyboard and a mouse, an output device 150 such as a display, each device in the information acquisition device 2 in FIG. 1, the individual identification device 3, and a communication device 160 that communicates with the PLC 7.
  • a storage device 130 such as a memory 110
  • a CPU Central Processing Unit
  • HD Hard Disk
  • the server 1 includes an input device 140 such as a keyboard and a mouse, an output device 150 such as a display, each device in the information acquisition device 2 in FIG. 1, the individual identification device 3, and a communication device 160 that communicates with the PLC 7.
  • a program stored in the storage device 130 is expanded, and this program is executed by the CPU 120, whereby the processing unit 111, the data acquisition processing unit 101, the analysis unit 103, the data classification unit 104, and the comparison determination Part 106 is embodied.
  • the data acquisition processing unit 101, the analysis unit 103, the data classification unit 104, and the comparison determination unit 106 have already been described with reference to FIG.
  • the storage device 130 corresponds to the welding data storage unit 102 and the data classification storage unit 105 in FIG.
  • (About resistance welding) 5 to 8 are diagrams showing a resistance welding process.
  • the member to be welded 301 and the member to be welded 302 that constitute the part to be welded 5 (see FIG. 1) shown in FIG. 5 are made of metal.
  • the lower end surface of the member to be welded 301 and the upper end surface of the member to be welded 302 are abutted.
  • the to-be-welded member 301 and the to-be-welded member 302 are welded by performing welding (butt welding) on the attached surface.
  • the electrode 303 and the electrode 304 shown in FIG. 5 are electrodes for supplying a current to the members to be welded 301 and 302.
  • the to-be-welded members 301 and 302 superimposed on the electrodes 303 and 304 are installed. Subsequently, the members to be welded 301 and 302 are combined, and pressure is applied in the direction of the arrow in FIG. Thereafter, as shown in FIG. 7, the current source 311, the switch 312, the ammeter 203, and the voltmeter 207 are connected to the electrodes 303 and 304 with the welded members 301 and 302 being set on the electrodes 303 and 304.
  • the ammeter 203 is the ammeter 203 in the information acquisition device 2 (see FIG. 1).
  • the ammeter 203 As the ammeter 203, a sensor using a shunt resistor, a clamp type sensor, a Rogowski coil, an optical current transformer sensor, or the like can be used. In general, the ammeter 203 is installed in series with the electrodes 303 and 304. However, when measuring a large current, the ammeter 203 may be installed so as to measure each circuit in which the current path is divided.
  • the voltmeter 207 in FIG. 7 is the voltmeter 207 in the information acquisition device 2 (see FIG. 1).
  • the voltmeter 207 can use a voltage probe or the like.
  • the voltmeter 207 is installed in parallel with the welding electrode.
  • the voltmeter 207 is installed so as to measure with a circuit in which the voltage is divided by a plurality of electric circuit elements (such as resistors and capacitors). Also good. That is, the voltage may be measured for each electric circuit element, and the sum of the voltages may be used as the voltage between the electrode 303 and the electrode 304.
  • FIG. 8 shows a member to be welded 331 (welded component 5) generated by such resistance welding.
  • the contact surface between the member to be welded 301 and the member to be welded 302 is often wide.
  • the welded portion 321 is not uniformly joined unless current flows through the welded members 301 and 302 with the contact surface being uniform. Therefore, groove processing or the like may be performed on the welded members 301 and 302.
  • the electrodes 303 and 304 and the members to be welded 301 and 302 are fixed by a holding jig (not shown) so that the positional relationship between the members to be welded 301 and 302 and the electrodes 303 and 304 is constant.
  • the members to be welded 301 and 302 and the state of the groove processing may be different one by one.
  • the electrodes 303 and 304 are consumed depending on the use state of the welding machine 4 (see FIG. 1), the welding conditions change.
  • the welding machine 4 shown in FIG. 1 is composed of various devices, there are many factors that cause changes in welding conditions. Therefore, the purpose of this embodiment is to stabilize and improve quality by grasping and managing the welding conditions for each welding.
  • FIG. 9 is a diagram illustrating how the high-speed camera 202 and the spectral camera 204 are installed.
  • members to be welded 301 and 302, electrodes 303 and 304, a current source 311, a switch 312, an ammeter 203 and a voltmeter 207 are the same as those in FIG.
  • the high-speed camera 202 is installed in the welding machine 4 (see FIG. 1).
  • the high-speed camera 202 monitors the welded members 301 and 302 (monitors the welded portion 321 (see FIG. 8)) and monitors the light emission state of welding.
  • the spectroscopic camera 204 is also installed in the welding machine 4 (see FIG. 1).
  • the spectroscopic camera 204 is for performing spectrum analysis of light emitted from the welded portion 321 (see FIG. 8).
  • one high-speed camera 202 and one spectroscopic camera 204 are installed, but another high-speed camera 202 and spectroscopic camera 204 are provided on the opposite side across the welded members 301 and 302. May be installed so that the entire circumference of the welded portion 321 can be photographed.
  • the spectroscopic camera 204 only needs to receive the light component emitted from the welded portion 321. Therefore, a mirror (not shown) may be installed in the circumferential direction of the members to be welded 301 and 302, and the light collected by the mirror may be photographed.
  • the high-speed camera 202 can image the entire circumference of the welded portion 321 with a single high-speed camera 202 by installing a mirror (not shown) in the circumferential direction of the welded members 301 and 302.
  • FIG. 10 is a diagram illustrating an image obtained by photographing the welding workpiece 341.
  • the welding work 341 is obtained by setting electrodes 303 and 304 on the members to be welded 301 and 302 overlapped in FIG.
  • the high-speed camera 202 When the high-speed camera 202 is used, the brightness is lowered and the image is darkened.
  • a current is applied, as shown in FIG. 11, light emission associated with metal dissolution can be observed at the welded portion 321 (see FIG. 8) (see FIG. 11). The white part of FIG. 11).
  • the current is uniformly applied in the welded portion 321, the light emission distribution is also uniform, but the current does not flow uniformly when foreign matter is present in the welded portion 321 or the contact property is poor.
  • FIG.12 and FIG.13 is an example of an image when it is thought that the electric current is not flowing uniformly in the welding part 321 (refer FIG. 8).
  • the image shown in FIG. 12 there are dot portions and portions where white portions emit light.
  • the white part has shown that the light emission brightness is higher than another light emission part (dot part). That is, the white portion has a higher temperature than the other light emitting portions (dot portions). This occurs because the contact surfaces are not uniform in the members to be welded 301 and 302 (see FIG. 5), and the current is biased. When such welding is performed, the quality of the welding deteriorates.
  • the white fan-shaped part has shown that the spark has come out.
  • the white portion indicates that the emission luminance is higher (temperature is higher) than the other emission portions (dot portions). That is, a spark is photographed in the image shown in FIG. It is considered that this is because a foreign matter is mixed in the contact surfaces of the members to be welded 301 and 302 (see FIG. 5), and a spark is generated by a sudden voltage rise when a current is applied. In this case, it is considered that the quality of welding is deteriorated because the thermal energy that should be consumed on the welding surface is lost by the spark.
  • the brightness unevenness shown in FIG. 12 and the spark as shown in FIG. 13 indicate the temperature difference in the welded part 321 (see FIG. 8).
  • the white portions in FIG. 12 and FIG. 13 have a higher temperature than the portions indicated by other dots. That is, the high-speed camera 202 measures the local temperature at the welded part 321. As described above, it is possible to determine whether or not foreign matter is present in the welded portion 321 and whether or not the welding is performed uniformly based on the image obtained by the high-speed camera 202.
  • FIG. 14 to 16 are diagrams showing examples of spectral data (frequency distribution) and one-dimensional spectral data (frequency distribution) acquired by the spectroscopic camera 204.
  • FIG. 14 As the spectroscopic camera 204, a streak camera equipped with a spectroscopic function, a high-speed camera equipped with the spectroscopic function, a hyperspectral camera, or the like can be used.
  • FIG. 14 is an explanatory diagram of spectral data obtained by a streak camera equipped with a spectral function as the spectral camera 204.
  • a streak camera is an apparatus that records light decomposed into wavelength components via a spectroscopic function such as a spectroscope for a certain period of time.
  • FIG. 14A shows spectral data B240 of the streak camera, where the horizontal axis indicates the wavelength (nm) and the vertical axis indicates time ( ⁇ s).
  • black indicates a low value (zero)
  • white indicates a high value.
  • the dot indicates an intermediate value between the black portion and the white portion, and the lower the dot interval, the lower the value.
  • laser light has a substantially single wavelength. From FIG. 14A, assuming that the wavelength of this laser light is ⁇ 1 (nm), the highest value (white color) exists at all wavelengths for the wavelength ⁇ 1 in FIG.
  • FIG. 14B shows one-dimensional spectrum data B244 obtained by extracting only data at a certain time t1 from the spectral data B240 shown in FIG. That is, FIG. 14B shows the distribution of wavelength characteristics at time t1 in FIG. 14A, where the horizontal axis indicates the wavelength and the vertical axis indicates the signal intensity.
  • the signal has a peak value E1 at a wavelength ⁇ 1 (nm).
  • FIG. 15 is a diagram illustrating an example of a signal image acquired using a streak camera as the spectroscopic camera 204 in a normal welding process.
  • FIG. 15A shows spectral data B246 obtained from a streak camera, where the horizontal axis indicates the wavelength (nm) and the vertical axis indicates time ( ⁇ s).
  • black is a low value (zero)
  • white is a high value
  • dots are intermediate values. This intermediate value indicates a lower value as the dot interval is smaller.
  • FIG. 15B is one-dimensional spectrum data B248 obtained by extracting data at a certain time t2 from the spectral data B246. As described with reference to FIG. 11, in normal welding, the welded portion 231 (see FIG.
  • FIG. 15A shows that light is emitted around time t2.
  • FIG. 15B shows a plurality of emission wavelengths at time t2.
  • the pattern of the spectral data B246 shown in FIG. 15A or the one-dimensional spectrum data B248 shown in FIG. 15B can be used as a light emission characteristic pattern in normal welding.
  • FIG. 16 shows a signal from a streak camera serving as a spectroscopic camera 204 regarding a welding process (see FIG. 13) in which sparks scattered in the distribution of light emission luminance are scattered as a case where no current flows uniformly in the welded part 321 (see FIG. 8).
  • FIG. 16A shows spectral data B251 acquired by a streak camera, where the vertical axis indicates time ( ⁇ s) and the horizontal axis indicates wavelength (nm).
  • black has a low value (zero)
  • white has a high value
  • dots have intermediate values. The narrower the dot interval, the lower the value.
  • FIG. 16B shows one-dimensional spectrum data B253 obtained by extracting only data at a certain time t3 from the spectral data B251 in FIG.
  • the welding process in which sparks are scattered is longer than the normal welding process shown in FIG. 15, as shown in FIG. 16 (a) and FIG. 16 (b), and Overall, a high signal intensity is observed at a wide wavelength.
  • the time from when the spark is generated to when it is extinguished varies, and ranges from shorter to longer than the light emission time of the weld 321.
  • the spark longer than the light emission time of the welding part 321 raises the signal intensity in FIG.16 (b).
  • the emission wavelength includes various components with respect to sparks at various temperatures, responses at a wide wavelength can be observed.
  • the light emission characteristics vary depending on the type of the foreign object. For example, a change in characteristics due to a flame reaction of a metallic foreign object.
  • sodium can be identified at a wavelength of around 589 nm (yellow).
  • the foreign matter is specified by whether or not the peak of the signal intensity is a wavelength due to a flame reaction.
  • the wavelength ⁇ 2 at the peak of the signal intensity in FIG. 16B is 589 nm, it is estimated that a foreign substance derived from sodium is mixed.
  • the spectral data from the spectroscopic camera 204 can be used to determine the temperature of the light emitting unit, whether or not foreign matter is mixed, and the type of foreign matter. Also, temperature information can be obtained from spectral data obtained by the spectral camera 204.
  • FIG. 17 is a diagram illustrating an example of a voltage waveform B270 energized during welding and a current waveform B271. That is, the waveform shown in FIG. 17 shows temporal changes in current and voltage measured by the ammeter 203 and the voltmeter 207 (see FIG. 7).
  • the horizontal axis indicates time (s), and the vertical axis indicates the current value and the voltage value.
  • Joule heat is generated in the members to be welded 301 and 302 by applying a rapid current to the members to be welded 301 and 302 (see FIG. 5). Due to this Joule heat, the welded portions 321 (see FIG.
  • the waveform shown in FIG. 17 shows an example of the voltage waveform B 270 and the current waveform B 271 when a capacitor resistance welding machine is used as the welding machine 4.
  • the capacitor type resistance welding machine uses electrical energy charged in a capacitor (not shown) as a current source 311 (see FIG. 7).
  • the switch 312 see FIG. 7 is turned on, the voltage suddenly rises as shown by the voltage waveform B270 (broken line).
  • the current waveform B271 solid line
  • a preset current source 311 that is, a capacitor type resistance welding machine
  • a current corresponding to the charging voltage in the capacitor is supplied to the members to be welded 301 and 302, and welding is performed.
  • the energization is performed by energizing the current once, that is, the method in which the current peak is performed once, and the energization of current is performed two or more times, that is, the current peak is plural. There is a method.
  • FIG. 18 is a diagram illustrating output waveforms of the ammeter 203 and the voltmeter 207 (see FIG. 7) in the case of normal welding.
  • FIG. 18A shows a voltage waveform B270 (broken line) and a current waveform B271 (solid line) from application of current to attenuation.
  • FIG. 18B is an enlarged view of the region B272 near the peak value in FIG.
  • FIG. 19 is a diagram showing output waveforms of the ammeter 203 and the voltmeter 207 (see FIG. 7) when sparks are scattered during the welding process.
  • FIG. 19A shows a voltage waveform B270a (broken line) and a current waveform B271a (solid line).
  • FIG. 19B is an enlarged view of the region B275 near the peak value in FIG.
  • FIG. 20A is a diagram illustrating an installation example of the magnetic sensor C101 according to the present embodiment
  • FIG. 20B is a diagram illustrating an output waveform of the magnetic sensor C101
  • FIG. 21 is a diagram showing details of the arrangement of the magnetic sensor C101.
  • FIG. 21A is a perspective arrangement view showing the arrangement of the magnetic sensor C101
  • FIG. 21B is a cross-sectional view taken along the line AA in FIG. 21A
  • FIG. It is the figure seen from the BB direction of (b).
  • the magnetic sensor C101 is disposed around the welded portion 321. It should be noted that the magnetic sensor C101 may be installed in a state shifted up and down from the welded portion 321 so as not to interfere with the imaging of the high-speed camera 202 and the spectral camera 204.
  • the magnetic sensor C101 can measure a local magnetic field in the welded part 321 even if it is shifted up and down from the welded part 321.
  • a coil, a hall sensor, a magnetoresistive element, a magneto-optical sensor, or the like can be used.
  • the magnetic sensors C101a to C101c in FIG. 21C will be described later.
  • FIG. 20B shows examples of output waveforms of the ammeter 203, the voltmeter 207, and the magnetic sensor C101.
  • the horizontal axis indicates time (s)
  • the vertical axis on the left side of the drawing indicates current values and voltage values
  • the vertical axis on the right side of the drawing indicates magnetic flux density (G).
  • Reference sign B 270 indicates a voltage waveform measured by the voltmeter 207
  • reference sign B 271 indicates a current waveform measured by the ammeter 203.
  • Reference B281 is a coil output waveform (magnetic flux density waveform) acquired from the magnetic sensor C101 when the magnetic sensor C101 is a Hall sensor, a magnetoresistive element, or a magneto-optical sensor.
  • symbol B280 is a magnetic field waveform (magnetic flux density waveform) when the magnetic sensor C101 is a coil sensor.
  • the coil output waveform B280 measures a time-differentiated waveform with respect to the magnetic field waveform B281 (Faraday's law of electromagnetic induction).
  • the magnetic sensor C101 other than the coil sensor for example, a hall sensor, a magnetoresistive element, or a magneto-optical sensor
  • the magnetic field waveform B281 can be acquired by time integration of the obtained coil output waveform.
  • the coil output waveform B280 can be obtained by differentiating the obtained magnetic field waveform B281 with respect to time.
  • FIG. 22 is a diagram illustrating the relationship between the output of the magnetic sensor C101 and the current path C111.
  • Current measurement by the magnetic sensor C101 measures the magnetic field generated by the current. Where a current exists, a magnetic field C112 is generated in a direction orthogonal to the current path C111 according to the right-handed screw law.
  • a magnetic sensor C101 is installed for the magnetic field C112, and the current is indirectly measured.
  • FIG. 23 is a diagram schematically showing a magnetic field generated around the welding workpiece 341 during welding.
  • FIG. 23A is a diagram for explaining a current and a magnetic field flowing through the entire work of the welder
  • FIG. 23B is a diagram showing a local current direction and a magnetic field direction.
  • members to be welded 301 and 302, electrodes 303 and 304, a welded portion 321, a current source 311, a switch 312, an ammeter 203, and a voltmeter 207 are the same as those in FIG. .
  • the current C121 flowing through the welding workpiece 341 mainly flows between the electrodes 303 and 304, the magnetic field C122 is generated around the welding workpiece 341.
  • the welded part 321 is.
  • the magnitude and direction of the magnetic field in the vicinity also vary.
  • a local current change in the welded portion 321 is measured by arranging a magnetic sensor C101 around the welded portion 321.
  • FIG. 23B the direction of the local current in the weld 321 is represented by a solid arrow C131, the direction of the magnetic field is represented by a broken arrow C132, and the magnitudes (current amount and magnetic field strength) of these are indicated by the thick arrows.
  • FIG. 23 (b) the magnetic field strength also increases / decreases in accordance with the increase / decrease of the current amount, and the direction of the magnetic field also changes if the direction of the current changes locally. Such a phenomenon is difficult to observe with a current flowing through the entire welded members 301 and 302 like the ammeter 203.
  • a plurality of magnetic sensors C101 are arranged around the welded portion 321 and a local current as shown in FIG. 23B is to be evaluated.
  • FIGS. 24 to 28 are diagrams showing an example of current evaluation using the magnetic field measuring apparatus 205 shown in FIGS. 20 (a) and 21.
  • FIG. Here, in any of FIGS. 24 to 28, the horizontal axis indicates time (s).
  • FIG. 24 shows a magnetic field waveform in a normal state, that is, when a current flows uniformly in the welded portion 321 (see FIG. 8). 24 shows the waveforms of the ammeter 203 and the voltmeter 207 (voltage waveform B270 (broken line), current waveform B271 (solid line). The lower three stages of FIG.
  • Magnetic field waveforms B282a to B282c measured by the magnetic sensor C101 are shown, where the magnetic field waveforms B282a to B282c correspond to those acquired from the magnetic sensors C101a to C101c in FIG. Further, the shape of the voltage waveform B270 and the current waveform B271 is the sum of the magnetic field waveforms B282a to B282c.
  • the magnetic sensor C101 uses a coil, but the magnetic field waveforms B282a to B282c use an integrated output waveform from the coil.
  • a broken line B2 indicates the rise time of each waveform when welding is normal. That is, the broken line B2 indicates the time when the current starts to flow from the current source 311 (see FIG. 9).
  • a broken line B3 indicates the peak time of each waveform when welding is normal.
  • the peak value B1 is a value common to FIG.
  • the rising time B2 and the peak time B3 are the same values as those in FIG.
  • FIG. 25 and 26 show magnetic field waveforms B283a to B283c and B284a to B284c in the case where the current does not flow uniformly in the welded portion 321.
  • FIG. 25 shows waveforms of the ammeter 203 and the voltmeter 207 (voltage waveform B270 (broken line), current waveform B271 (solid line)).
  • 25 shows magnetic field waveforms B283a to B283c measured by the three magnetic sensors C101.
  • the magnetic field waveforms B283a to B283c correspond to those obtained from the magnetic sensors C101a to C101c in FIG.
  • the shape of the voltage waveform B270 and the current waveform B271 is the sum of the magnetic field waveforms B283a to B283c.
  • the magnetic sensor C101 uses a coil
  • the magnetic field waveforms B283a to B283c are obtained by integrating coil output waveforms.
  • the amplitude (magnetic flux density peak value) of the magnetic field waveforms B283a to B283c is different from the peak value B1 in which the current shown in FIG. 24 is uniform.
  • the amplitude of the magnetic field waveforms B283a to B283c is proportional to the amount of current, as shown in FIG.
  • the increase or decrease of the current in the vicinity of the magnetic sensor C101 is evaluated by the change in the amplitude of the magnetic field waveforms B283a to B283c. can do. That is, it can be seen that the magnetic field waveforms B283a to B283c as shown in FIG. 25 are uneven in the local current flowing through the welded portion 231. When the amount of current is small (when the amplitude of the magnetic field waveform is small), there is a possibility that the heat energy necessary for welding is insufficient, resulting in poor welding.
  • 26 shows waveforms of the ammeter 203 and the voltmeter 207 (voltage waveform B270 (broken line), current waveform B271 (solid line)). 26 shows magnetic field waveforms B284a to B284c measured by the three magnetic sensors C101.
  • the magnetic field waveforms B284a to B284c correspond to those obtained from the magnetic sensors C101a to C101c in FIG.
  • the shape of the voltage waveform B270 and the current waveform B271 is the sum of the magnetic field waveforms B284a to B284c.
  • the magnetic sensor C101 uses a coil, but the magnetic field waveforms B284a to B284c are obtained by integrating the output waveforms of the coils.
  • the peak times and peak values of the magnetic field waveforms B284a to B284c are different from the peak time B3 and peak value B1 when the current shown in FIG. 24 is uniform. Focusing particularly on the peak time, the peak time B11 is later than the peak time B3 in the magnetic field waveform B284a. In the magnetic field waveform B284b, the peak time is the same as the peak time B3. In the magnetic field waveform B284c, the peak time B12 is earlier than the peak time B3. From this, it can be seen that the peak time is in the order of magnetic field waveform B284c ⁇ magnetic field waveform B284b ⁇ magnetic field waveform B284a.
  • the magnetic field waveform B284c reaches the peak first, and it is considered that welding is started from the vicinity of the magnetic sensor C101 that acquires the magnetic field waveform B284c.
  • the peak of the magnetic field waveform changes from magnetic field waveform B284c to magnetic field waveform B284b to magnetic field waveform B284a.
  • the peak of the magnetic field waveforms B284a to B284c is the time for the current to reach the weld, it is possible to evaluate in what time process the weld 321 has melted. That is, it can be seen from the example shown in FIG. 26 that there is a difference in welding start time at each location of the welded portion 321 due to unevenness in the welding amount or the like.
  • FIG. 27 shows magnetic field waveforms B285a to B285c when a spark is generated.
  • 27 shows waveforms of the ammeter 203 and the voltmeter 207 (voltage waveform B270a (broken line), current waveform B271a (solid line)).
  • 27 shows magnetic field waveforms B285a to B285c measured by the three magnetic sensors C101.
  • the magnetic field waveforms B285a to B285c correspond to those obtained from the magnetic sensors C101a to C101c in FIG.
  • the shape of the voltage waveform B270a and the current waveform B271a is the sum of the magnetic field waveforms B285a to B285c.
  • the magnetic sensor C101 uses a coil
  • the magnetic field waveforms B285a to B285c are obtained by integrating the output waveforms of the coils.
  • coil output waveforms B286a to B286c shown in FIG. 28 indicate coil output waveforms B286a to B286c when a spark is generated, that is, time differential values of the magnetic field waveform.
  • 28 shows waveforms of the ammeter 203 and the voltmeter 207 (voltage waveform B270a (broken line), current waveform B271a (solid line)).
  • 28 shows coil output waveforms B286a to B286c measured by the three magnetic sensors C101.
  • the coil output waveforms B286a to B286c correspond to those obtained from the magnetic sensors C101a to C101c in FIG.
  • a high-frequency component derived from a spark is superimposed on the voltage waveform B270 and the current waveform B271.
  • the coil output waveforms B286a to B286c in FIG. 28 correspond to the time differentiation of the magnetic field waveforms B285a to B285c in FIG. 27, and emphasize the high frequency components in the magnetic field waveforms B285a to B285c in FIG. To D114).
  • the peak values of the coil output waveforms B286a to B286c are all V1.
  • the coil output waveforms B286a to B286c are capable of obtaining high-frequency components with a large amplitude at the time when the spark is generated, compared to the voltage waveform B270a, the current waveform B271a, and the coil output waveforms B286a to B286c shown in FIG. . In this way, it is possible to evaluate the spark generation position by comparing the generation of the spark and the magnitude of the amplitude between the magnetic sensors C101.
  • the voltage waveforms B270 and B270a and the current waveforms B271 and B271a in FIGS. 26 to 28 actually have slight differences, but they are not at a level that can be recognized by the human eye. It is said.
  • an abnormality that cannot be detected by the ammeter 203 or the voltmeter 207 can be detected.
  • FIG. 29 is a diagram for explaining an installation example of the displacement meter 206 and an output result.
  • FIG. 29A shows an installation example of the displacement meter 206
  • FIG. 29B is a diagram showing a measurement result by the displacement meter 206.
  • a laser displacement meter or a strain gauge can be used as the displacement meter 206.
  • the displacement meter 206 is provided with a laser transmitting device E101 and a laser receiving device E102 on electrodes 303 and 304, respectively. That is, the distance between the electrode 303 and the electrode 304, that is, the length of the members to be welded 301 and 302 (the parts to be welded 5 (see FIG. 1)) is measured by the laser transmitter E101 and the laser receiver E102.
  • the degree of shrinkage is measured by the laser transmitter E101 and the laser receiver E102 which are the displacement meters 206. By doing in this way, the displacement amount of the to-be-welded members 301 and 302 when performing welding can be monitored.
  • FIG. 29B is a diagram showing a waveform of the displacement amount.
  • the horizontal axis indicates time (s)
  • the vertical axis shown on the left side of the paper shows the current value and the voltage value
  • the vertical axis shown on the right side of the paper shows the displacement by the displacement meter 206.
  • Reference sign B270 indicates a voltage waveform
  • reference sign B271 indicates a current waveform.
  • a symbol E111 (dashed line) indicates a change in displacement over time (displacement waveform).
  • a displacement waveform E111 occurs when the voltage waveform B270 and the current waveform B271 reach peak values.
  • the positive (+) direction with respect to the amount of displacement is the direction in which the member shrinks.
  • resistance welding is performed by melting the members to be welded 301 and 302 by Joule heat generated by energization of the members to be welded 301 and 302 and pressing them with the electrodes 303 and 304. Therefore, as the current is applied and the welded portion 321 starts to melt, the displacement amount changes. At this time, if the amount of displacement is small, the molten metal may not be fused, resulting in poor welding. Moreover, when the amount of displacement is excessive, the melted metal is pushed out by the pressing force, which may result in poor welding. Therefore, as shown in FIG.
  • a preset threshold value M1 is set, and if the displacement amount is equal to or greater than the threshold value M1, it is determined that the solution is sufficiently dissolved, and the displacement amount is less than the threshold value M1. Therefore, it can be determined that the melting is insufficient and there is a possibility of poor welding.
  • the inspector sets processing parameters so as to increase the voltage by the welding machine 4 in the execution of FIG. 3 (step S4).
  • the threshold value M1 as the lower limit value of the displacement amount is set to detect the lack of dissolution, but the threshold value as the upper limit value of the displacement amount may be set to detect excessive dissolution. .
  • the inspector sets processing parameters so as to decrease the voltage by the welding machine 4 in the execution of FIG. 3 (step S4).
  • FIG. 30 is a flowchart showing a processing procedure in the server 1 according to the present embodiment.
  • the data acquisition processing unit 101 acquires welding data from each device of the information acquisition device 2 and the individual identification device 3 (S101).
  • the data acquisition processing unit 101 also acquires individual identification information from the individual identification device 3 together with the welding data.
  • the welding data includes current value data obtained from the ammeter 203, image data obtained from the high-speed camera 202 and the spectroscopic camera 204, spectroscopic data, magnetic field data obtained from the magnetic field measuring device 205, and displacement data obtained from the displacement meter 206. , Voltage value data obtained from the voltmeter 207, and the like.
  • the data acquisition processing unit 101 associates the acquired welding data with the individual identification information acquired from the individual identification device 3, and stores it in the welding data storage unit 102 in time series (S102).
  • step S102 in order to evaluate the relationship between the data constituting the welding data, the data acquisition processing unit 101 extracts the timing of the waveform change point by waveform differentiation with the time axis in common, and the change point is extracted.
  • the stored time may be stored as the event time.
  • the event time may be a trigger acquired by the trigger acquisition device 201.
  • information from the temperature / humidity meter 208 may also be stored in the welding data storage unit 102.
  • the analysis part 103 analyzes the acquired welding data as needed (S103).
  • the analysis performed by the analysis unit 103 is as follows, for example.
  • the time transition of displacement of the workpiece 5 measured by the displacement meter 206 or the displacement speed (change in length).
  • the signal is analyzed by calculating the frequency component of the signal waveform by Fourier transform (spectrum analysis) or calculating the difference from the normal waveform as a reference.
  • Image data from the high-speed camera 202 is analyzed after the shape of the position of the part to be welded is recognized and evaluated by image distance measurement or the like.
  • the data classification unit 104 performs machine learning processing (pattern recognition processing) using the analysis result of each welding data and the result (that is, past data) stored in the data classification storage unit 105 ( S104).
  • machine learning for example, the following (1) to (5) can be considered.
  • the data classification unit 104 recognizes the pattern of the luminance distribution at the time when the highest luminance exists in the high-speed camera 204. For example, a group is created with the luminance distribution pattern shown in FIG. 11, the luminance distribution pattern shown in FIG. 12, and the luminance distribution pattern shown in FIG.
  • the data classification unit 104 determines which group the acquired image belongs to. The group is not limited to the example described above. As a result, as described with reference to FIGS. 11 to 13, it can be determined whether the welding is performed uniformly or foreign matter is not mixed.
  • the data classification unit 104 recognizes patterns of spectral data acquired from the spectral camera 204 or one-dimensional spectral data at a specific time. For example, a group is created with the spectral data pattern shown in FIG. 14, the spectral data pattern shown in FIG. 15, and the spectral data pattern shown in FIG. 16, and the data classification unit 104 determines which group the acquired spectral data belongs to. Determine. The data classification unit 104 does the same for the one-dimensional spectrum data. The group is not limited to the example described above.
  • the data classification unit 104 recognizes the pattern of the magnetic field signal measured by the magnetic field measurement device 205. For example, for the magnetic field waveform acquired from each magnetic sensor C101, the data classification unit 104 uses the pattern shown in FIG. 24, the pattern shown in FIG. 25, the pattern shown in FIG. 26, the pattern shown in FIG. Create a group. Then, the data classification unit 104 determines to which group the acquired magnetic field signal (magnetic field waveform, coil output waveform) belongs.
  • the pattern of the magnetic field waveform and the coil output waveform is a combination of magnetic field waveforms acquired from each magnetic sensor C101. For example, when three magnetic sensors C101 are provided, a combination of three magnetic field waveforms in each of FIGS. 24 to 28 becomes a pattern.
  • the grouping may be performed on both the time change waveform as shown in FIGS. 24 to 28 and the result of the spectrum analysis performed in the analysis processing in step S103. This is because using the result of spectrum analysis facilitates patterning of magnetic field signals (magnetic field waveform, coil output waveform) including high frequency components as shown in FIG. 27 and FIG.
  • the group is not limited to the example described above.
  • the data classification unit 104 recognizes a pattern of the current signal and / or voltage signal measured by the ammeter 203 and the voltmeter 207. For example, for the current waveform acquired from the ammeter 203 and the voltage waveform acquired from the voltmeter 207, the data classification unit 104 creates groups in the pattern shown in FIG. 18 and the pattern shown in FIG. Then, the data classification unit 104 determines to which group the acquired current signal (current waveform) and voltage signal (voltage waveform) belong. The grouping may be performed on both the time change waveform as shown in FIGS. 18 and 19 and the result of the spectrum analysis performed in the analysis processing in step S103.
  • the data classification unit 104 performs machine learning on the displacement speed. Thereby, since the normality / abnormality of the penetration amount of the member to be welded is known, it can be determined whether or not the welding is normally performed.
  • the data classification unit 104 stores the result of machine learning in the data classification storage unit 105 (S105).
  • the comparison / determination unit 106 determines whether or not the welding data to be inspected is abnormal based on the result of the machine learning process (pattern recognition process) (S106). Whether or not the welding condition is abnormal is determined by determining whether or not at least one of the data constituting the welding data is abnormal. That is, as a result of the machine learning process in step S104, the comparison / determination unit 106 determines whether or not each piece of data constituting the acquired welding data belongs to a group different from the “welding is normal” group. . When belonging to a group different from the “welding is normal” group, the comparison determination unit 106 determines “abnormal”.
  • the comparison determination unit 106 determines “normal”. When the acquired image is classified into a group (abnormal group) other than the pattern group in FIG. 11, the comparison determination unit 106 determines “abnormal”. In the case of (2), if the acquired spectral data is classified into the pattern group (normal group) in FIG. 14, the comparison determination unit 106 determines “normal”. When the acquired spectral data is classified into a group (abnormal group) other than the pattern group in FIG. 14, the comparison determination unit 106 determines “abnormal”.
  • the comparison / determination unit 106 determines “normal”.
  • the comparison determination unit 106 determines “abnormal”.
  • the comparison determination unit 106 determines “normal”. if the acquired current signal and / or voltage signal is classified into the group (normal group) of the pattern shown in FIG. 18, the comparison determination unit 106 determines “normal”. if the acquired current signal and / or voltage signal is classified into a group (abnormal group) other than the group of patterns shown in FIG. 18, the comparison determination unit 106 sets “abnormal”. In the case of (5), if the displacement speed is classified into a normal welding group, the comparison determination unit 106 determines “normal”. In other cases, the comparison determination unit 106 determines “abnormal”.
  • step S106 it is determined whether the displacement waveform (displacement amount at a predetermined time) E111 is less than (or more than) a threshold value.
  • the comparison determination unit 106 determines “abnormal”. In addition, it may be determined that there is an abnormality in step S106 if a predetermined number of conditions are abnormal, not whether or not at least one is abnormal.
  • the comparison determination unit 106 determines the type of abnormality depending on which group the acquired data belongs to.
  • the group in FIG. 24 is normal
  • the group in FIG. 25 is uneven in the amount of current (unevenness in welding)
  • the group in FIG. 26 is uneven in the time during which the current flows (unevenness in welding).
  • the group in FIG. 27 includes a spark (foreign matter is present in the welded portion 321), and the like.
  • the current waveform acquired from the ammeter 203, the voltage waveform acquired from the voltmeter 207, the image of the high-speed camera 202, the spectral data of the spectral camera 204, and the type of abnormality in the displacement meter 29 are as described in the respective drawings. is there.
  • the association between the group and the information regarding the type of abnormality is performed in advance by manual input.
  • the comparison / determination unit 106 outputs only an output indicating that it is abnormal. Do.
  • step S106 If the result of step S106 is normal (S106 ⁇ No), the processing unit 111 (see FIG. 4) returns the process to step S101, and processes the next inspection target.
  • step S106 determines whether there is a possibility of abnormality (welding machine abnormality) in the welding machine 4 (S107). Whether or not there is a possibility of abnormality in the welding machine 4 is determined by whether or not the same condition (analysis result) is determined to be abnormal for a predetermined number of times. For example, the luminance distribution in the image obtained from the high-speed camera 202 continuously indicates abnormality. As a result of step S107, when there is a possibility of abnormality in the welding machine 4 (S107 ⁇ Yes), the PLC 7 instructs the investigation of the welding machine 4 (welding machine investigation) (S108).
  • step S108 preferably includes information on the type of abnormality. By doing in this way, it becomes easy to identify the cause of the abnormality.
  • step S107 when there is no possibility of abnormality in the welding machine 4 (S107 ⁇ No), the PLC 7 instructs the inspection device 6 to conduct a detailed investigation of the relevant welded part 5 (detailed investigation of the welded part).
  • step S109 When the type of abnormality is known in the determination process in step S106, information on the type of abnormality is included in the instruction in step S109. When the type of abnormality is not known in the determination process in step S106, information indicating that the type of abnormality estimated in the instruction in step S109 is unknown may be included.
  • the instruction in step S109 preferably includes information regarding the condition indicating the abnormality. By doing in this way, it becomes easy to identify the cause of the abnormality.
  • the inspection device 6 instructed to perform the inspection performs a detailed inspection of the corresponding welded part 5.
  • the result of the detailed inspection is fed back to the data classification unit 104 via the inspection information input device 8. That is, information regarding the type of abnormality (cause if possible) is linked to a group in the data classification storage unit 105 by manual input. By doing so, since the accuracy of machine learning can be improved, the accuracy of abnormality determination in step S106 can be improved.
  • the processing unit 111 returns the process to step S101, and processes the next inspection target.
  • the manufacturing system Z acquires the acquired information and the past information (data classification storage unit 105) while acquiring the local information in the welded part 321 of the welded part 5 for each welding. Data). Furthermore, the manufacturing system Z provides a manufacturing system Z for manufacturing while judging whether or not the abnormal value is normal as an index (group), while maintaining the productivity improvement of the factory line having the welding process, The quality of welding can be improved.
  • local temperature information of the welded portion 321 can be obtained from the luminance distribution in the high-speed camera 202.
  • local current information in the welded part 321 can be obtained from the magnetic field signal measured by the magnetic field measuring device 205. And in this embodiment, it is determined using these local temperature information and electric current information whether the local welding conditions are abnormal. Thereby, in this embodiment, even if overall welding conditions, such as to-be-welded members 301 and 302 and the electric current which flows into to-be-welded members 301 and 302, are apparently appropriate, the contact property of the welding part 321 is sufficient. It is possible to detect an abnormality in welding due to badness or foreign matter mixed into the welded portion 321.
  • the light emission pattern in the captured image, the time transition of the local current based on the magnetic field signal measured by the magnetic field measuring device 205, the frequency of the local current, and the like are evaluated.
  • local welding conditions are calculated.
  • the calculated local welding conditions are recorded and managed for each welded object, and fed back to the inspection process and welding conditions.
  • quality control can be improved. In other words, quality control can be improved by applying what is not properly welded to a detailed inspection and reflecting the inspection result in the manufacturing system Z or the welding monitoring system Z1.
  • manufacture of the welded part 5 and inspection can be performed in parallel.
  • the inspection time is often much longer than the manufacturing time.
  • the manufacturing of the welded part 5 and the inspection can be performed in parallel. Manufacturing time can be shortened.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to having all the configurations described.
  • the comparison / determination unit 106 may include, as a list, information on a welded object in the same group as the welded object determined to be abnormal, for example, in the welded part detailed investigation instruction.
  • the group is a group divided by the above-described machine learning.
  • the information regarding a welding individual is the information etc. which identify a welding individual.
  • Information on the welded object may include a photograph of the welded object, welding conditions at the time of welding of the welded object, a result of detailed investigation, and the like.
  • the present embodiment assumes the analysis at the time when the luminance is highest, but is not limited thereto.
  • the data classification unit 104 may perform grouping based on the luminance distribution after a predetermined time from energization.
  • the comparison / determination unit 106 may determine the presence / absence of an abnormality depending on whether or not there is a portion whose luminance is a predetermined value or more after a predetermined time from energization. By doing in this way, the precision of welding determination can be improved.
  • the comparison / determination unit 106 may determine whether the energization current is excessive or insufficient based on whether the average value of the luminance is equal to or less than a predetermined value based on the image analysis of the high-speed camera 202.
  • the comparison determination unit 106 may determine whether the energized current value or the voltage value is excessive or insufficient from the current waveform or the peak value of the voltage waveform. In such a case, information on excess and deficiency of the energized current value and voltage value is sent to the MES 11.
  • MES11 controls the electric current value and voltage value which the welding machine 4 energizes with the information regarding the excess and deficiency of the sent electric current value and voltage value. By doing so, it is possible to improve the yield and shorten the adjustment time of the current value and voltage value to be supplied to the welded part 5.
  • each configuration, function, each unit 101, 103, 104, 106, welding data storage unit 102, data classification storage unit 105, and the like are hardened by designing a part or all of them with, for example, an integrated circuit. It may be realized by wear. Further, as shown in FIG. 4, each of the above-described configurations, functions, and the like may be realized by software by a processor such as the CPU 120 interpreting and executing a program that realizes each function.
  • control lines and information lines are those that are considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In practice, it can be considered that almost all configurations are connected to each other.

Abstract

溶接の品質管理を向上させるため、抵抗溶接において、溶接部の周囲に設けられ、溶接部における局所的な電流を計測する磁場計測装置(205)と、溶接部における発光状態を撮影し、発光の輝度のムラから、溶接部における局所的な温度を計測するための画像を撮影する高速カメラ(202)と、磁場計測装置(205)から取得する磁場情報を基に算出される電流情報と、過去の電流情報とを比較するとともに、高速カメラ(202)の画像から計測される温度情報と、過去の温度情報とを比較することで、電流情報及び温度情報の少なくとも一方が異常値であるか否かを判定する比較判定部(106)と、を有することを特徴とする。

Description

溶接監視システム
 本発明は、溶接における品質管理を行うための溶接監視システムの技術に関する。
 金属製品を構成する複数の部材を接合するために、溶接は必要不可欠な技術である。溶接は製品形状の自由度を高めつつ、一定の強度が得られる。このことから、構造物の継手や、応力負荷の高い圧力容器に関わる接合に溶接がしばしば用いられる。
 溶接は、所望の接合箇所に熱を加えて、金属部材(以下、部材と称する)を溶解させることによって行われる。溶接には、加熱方法で分類するとさまざまな方法がある。中でも電気抵抗を用いた溶接は、スポット溶接、抵抗溶接(以下、抵抗溶接と称する)と呼ばれ、自動車や薄板金属の接合でよく採用されている。抵抗溶接の原理は、部材に電流を印加し、金属の電気抵抗で発生するジュール熱を利用して溶接部を加熱するものである。抵抗溶接の特徴は、溶接をする部材と部材との間を補填する追加の部材を必要しないため、自動溶接に適しているとともに、大電流を印加することで溶接を短時間に完了することができることにある。そのため、抵抗溶接は金属製品の量産ラインで、よく利用される。
 抵抗溶接を量産ラインへ適用するためには、実際の部材を用いた試行試験が行われ、溶接対象に適した条件(溶接条件)が見出される。溶接条件は、部材の表面状態、部材の同士の密着方法等の溶接前処理条件、印加電圧、電流、部材間の押し付け圧力等の溶接中処理条件、冷却等の溶接後処理条件等さまざまである。
 このような溶接条件の決定後、量産に移ると、試行試験で模擬しきれない事象が生じ、溶接条件を変化させる必要が生じることがある。量産に移った後で、このような製造条件を変化させることは一般的に対応困難である。
 これに対して、量産で製造された部品の抜き取り検査等で、品質を確認することが一般的に行われている。すなわち、このような抜き取り検査において、マーカ(継手情報)等を溶接材料に施し、溶接部の画像を取得して管理する技術が開示されている。
 例えば、特許文献1には、「継手情報11が記入された継手10に対し適切な溶接材料25が使われているかを判断し、カメラ30と、カメラ30により撮影された継手10の画像から継手情報11を識別し、識別した継手情報11から継手10を特定する画像処理プログラム51と、継手10と関連付けて溶接材料25を特定するデータベース52と、継手10に対し適切な溶接材料25が使われているかを判断する第1判断プログラム55を備え、第1判断プログラム55は画像処理プログラム51が特定した継手10と、データベース52が特定した溶接材料25と関連付けた継手10を比較し、継手10に対し適切な溶接材料25が使われているかを判断する溶接モニタリングシステム1」が開示されている(要約参照)。
特開2014-182530号公報
 特許文献1に記載の技術では、適切な溶接部材が使用されているか、各溶接条件(溶接電流、溶接温度、予熱温度、溶接時間)が所定の溶接条件の範囲内で行われているかを判定している。
 しかしながら、適切な溶接部材が使用され、適切な溶接条件で溶接が行われても、溶接部が均一になっていなかったり、溶接部において異物等が混入したりすること等が原因で適切な溶接が行われない場合がある。特許文献1に記載の技術では、このような事象が生じた際、適切な対処を行うことができない。
 このような背景に鑑みて本発明がなされたのであり、本発明は、溶接の品質管理を向上させることを課題とする。
 前記した課題を解決するため、本発明は、抵抗溶接において、溶接部における局所的な電流を計測する電流計測部と、前記溶接部における局所的な温度を計測する温度計測部と、前記電流計測部から取得する電流情報と、過去の電流情報とを比較するとともに、前記温度計測部から取得する温度情報と、過去の温度情報とを比較することで、前記電流計測部から取得される電流情報及び前記温度計測部から取得される温度情報の少なくとも一方が異常であるか否かを判定する判定部と、を有することを特徴とする。
 その他の解決手段については実施形態中で説明する。
 本発明によれば、溶接の品質管理を向上させることができる。
本実施形態に係る溶接監視システムの機能ブロック図である。 MES(Manufacturing Execution System)と連携した製造システムZの機能ブロック図である。 図2の製造システムにおける製造プロセスの手順を示す流れ図である。 本実施形態に係るサーバのハードウェア構成図である。 抵抗溶接の工程を示す図(その1)である。 抵抗溶接の工程を示す図(その2)である。 抵抗溶接の工程を示す図(その3)である。 抵抗溶接の工程を示す図(その4)である。 高速カメラ及び分光カメラの設置の様子を示す図である。 高速カメラで取得される映像の例を示す図(その1)である。 高速カメラで取得される映像の例を示す図(その2)である。 高速カメラで取得される映像の例を示す図(その3)である。 高速カメラで取得される映像の例を示す図(その4)である。 分光カメラで取得される分光データ及び一次元スペクトルデータの例を示す図(その1)であり、(a)は分光データの例を示す図であり、(b)は一次元スペクトルデータの例を示す図である。 分光カメラで取得される分光データ及び一次元スペクトルデータの例を示す図(その2)であり、(a)は分光データの例を示す図であり、(b)は一次元スペクトルデータの例を示す図である。 分光カメラで取得される分光データ及び一次元スペクトルデータの例を示す図(その3)であり、(a)は分光データの例を示す図であり、(b)は一次元スペクトルデータの例を示す図である。 溶接時に通電される電流波形及び電圧波形の一例を示す図(その1)である。 溶接時に通電される電流波形及び電圧波形の一例を示す図(その2)であり、(a)は電流波形及び電圧波形の全体図を示し、(b)はピーク値付近の拡大図である。 溶接時に通電される電流波形及び電圧波形の一例を示す図(その3)であり、(a)は電流波形及び電圧波形の全体図を示し、(b)は、ピーク値付近の拡大図である。 磁気センサに関する説明図であり、(a)は、本実施形態に係る磁気センサの設置例を示す図であり、(b)は、磁気センサの出力波形を示す図である。 磁気センサの配置の詳細を示す図であり、(a)は、磁気センサの配置を示す斜視配置図であり、(b)は、(a)のA-A断面図であり、(c)は、(b)のB-B方向からみた図である。 磁気センサの出力と、電流経路の関係を説明する図である。 溶接ワーク周辺に生成される磁場を模式的に示した図であり、(a)は溶接機ワーク全体に流れる電流と、磁場を説明する図であり、(b)は、局所的な電流の方向と、磁場の方向を示す図である。 磁場波形の例を示す図(その1)である。 磁場波形の例を示す図(その2)である。 磁場波形の例を示す図(その3)である。 磁場波形の例を示す図(その4)である。 コイル出力波形の例を示す図である。 変位計の設置例と、出力結果を説明した図であり、(a)は、変位計の設置例を示す図であり、(b)は変位計による測定結果を示す図である。 本実施形態に係るサーバにおける処理手順を示すフローチャートである。
 次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。
[溶接監視システムZ1]
 図1は、本実施形態に係る溶接監視システムZ1の機能ブロック図である。
 溶接監視システムZ1は、サーバ1、情報取得装置2及び個体識別装置3を有している。
 さらに、溶接システムZ2は、溶接監視システムZ1、溶接機4、検査装置6、PLC7、検査情報入力装置8を有している。
 情報取得装置2は、溶接機4に設置されているものであり、各種計測器及び各種センサで構成されるものである。
 具体的には、情報取得装置2は、トリガ取得装置201、高速カメラ(温度計測部)202、電流計203、分光カメラ204、磁場計測装置(電流計測部、磁場計測部)205、変位計(変位計測部)206、電圧計207、温度・湿度計208等を有している。
 トリガ取得装置201は、溶接機4において被溶接部品5に電流を流す際のトリガ信号を取得する。
 高速カメラ202は、抵抗溶接において溶接部に電流が流れる際における溶接部の発光状態を撮影する。高速カメラ202の詳細については後記する。
 電流計203は、被溶接部品5に流れる電流を計測する。電流計203については後記する。
 分光カメラ204は、抵抗溶接において溶接部に電流が流れる際における溶接部の発光のスペクトル分析を行うためのカメラであり、ストリークカメラ等が用いられる。分光カメラ204の詳細については後記する。
 磁場計測装置205は、溶接部の周囲に設置され、溶接部からの磁場を計測するものである。磁場計測装置205については後記する。
 変位計206は、溶接部材の長さを計測するものである。変位計206については後記する。
 電圧計207は、被溶接部品5に電流を流す際における電極間の電圧を計測する。電圧計207については後記する。
 温度・湿度計208は検査環境の温度と湿度とを計測するものであり、温度計と、湿度計とが分離されているものでも構わない。
 その他、図示しない溶接部に加えられる圧力を測定する圧力計等が備わっていてもよい。
(個体識別装置3)
 個体識別装置3は、溶接の個体(溶接個体)を識別するIDに関する情報をマーカから読み取り、溶接個体を識別するものである。マーカは、被溶接部品5に貼付されたバーコードや、被溶接部品5上の刻印や、RFID(Radiofrequency Identification)タグ等である。マーカがバーコードであれば、個体識別装置3はバーコード読取装置となる。マーカが刻印であれば、個体識別装置3には、刻印を撮影するカメラ、撮影された画像から刻印を抽出し、文字認識等を行う刻印認識装置等が含まれる。マーカがRFIDタグであれば、個体識別装置3はRFIDタグリーダとなる。
 なお、マーカが刻印である場合、マーカを撮影するカメラとして、情報取得装置2の高速カメラ202が用いられてもよい。なお、マーカが刻印である場合における溶接個体の識別方法は、特許文献1に記載の手法を用いればよいので、ここでの説明を省略する。
 ここで、溶接個体とは、溶接1つ1つを区別するものである。例えば、1つの被溶接部品5において、溶接が2箇所行われている場合、それぞれの溶接を溶接個体とする。なお、同一の溶接個所において、複数回の溶接が行われている場合、それぞれの溶接を溶接個体としてもよいし、複数回の溶接をまとめて溶接個体としてもよい。
(サーバ1)
 サーバ1は、データ取得処理部101と、溶接データ記憶部102と、解析部103と、データ分類部104と、データ分類記憶部105と、比較判定部(判定部)106とを有している。
 データ取得処理部101は、情報取得装置2における各装置から溶接データを取得し、個体識別装置3から個体識別用データを取得する。そして、データ取得処理部101は、取得した溶接データ及び個体識別用データを溶接データ記憶部102に格納する。
 溶接データ記憶部102には、情報取得装置2における各装置及び個体識別装置3から送られたデータが各々対応付けられて格納されている。すなわち、溶接データ記憶部102には、個体識別装置3で特定された溶接個体の識別情報と、情報取得装置2の各装置から取得された情報(時系列情報)とが対応付けられて格納されている。溶接データ記憶部102に格納されるデータは、各計測器及び各センサの波形データ、カメラの映像データ等が、トリガ取得装置201で取得されたトリガ信号の同期により、時間軸を共通化した(同期した)データで記憶されている。
 解析部103は、情報取得装置2の各装置から取得された情報から溶接条件の特性をデータ化する。解析部103の処理については後記する。
 データ分類部104は、溶接データを機械学習(パターン認識)等によって分類する。機械学習は、クラスタリング法、k-means法等が用いられる。データ分類部104は、機械学習の結果を、データ分類記憶部105に格納する。なお、ここでは、データ分類部104が、機械学習を用いて解析部103で算出された各解析結果を分類するとしているが、これに限らない。機械学習以外の手法で、解析部103で算出された各解析結果を分類してもよい。データ分類部104の処理は後記する。
 データ分類記憶部105は、データ分類部104における機械学習等の結果を格納する。つまり、データ分類記憶部105には、機械学習された過去のデータが格納されている。
 比較判定部106は、データ分類記憶部105に格納されている機械学習等の結果と、解析部103における演算結果とを比較し、溶接条件の正常・異常を判別する。比較判定部106は、溶接条件が異常であると判別すると、PLC(Programmable Logic Controller)7に詳細調査指示を出力させる。
 PLC7が、検査装置6に対して詳細調査指示を出力すると、検査装置6は図示しない表示装置にサーバ1において異常(溶接に不備がある可能性がある)を検知された被溶接部品5に関する情報が表示される。検査員は、表示された情報を基に、被溶接部品5の詳細な検査を行う。調査解析の結果は、検査情報入力装置8を介して、データ分類部104に送られ、機械学習のデータとなる。
[製造システムZ]
 まず、本実施形態の利用シーンを図2~図3で説明する。なお、溶接システムZ2については、図1において説明済みであるので、ここでの説明を省略する。
 図2は、製造実行システム(MES11)と連携した製造システムZの機能ブロック図である。MES11は、溶接工程を有する工場において、製造ラインの各工程とリンクして、工場の製造設備の動作や作業員の作業の管理をする役割を果たし、計画、現状、実績の管理情報を有する。
 加工機13、溶接機4、検査装置6といった各製造設備は、シーケンサであるPLC7,21~22を介して、MES11に格納されている管理情報に応じた指令をMES11から送受信し、動作する。
 加工機13は、溶接機4に供給する被溶接部品5を加工するものである。
 トレンドサーバ12は、情報取得装置31を介して加工機13から加工機13の状態に関する情報を取得する。同様に、トレンドサーバ12は、情報取得装置32を介して溶接機4から溶接機4の状態に関する情報を取得する。ここで、情報取得装置31,32は、各種センサ等である。
 トレンドサーバ12は、取得した溶接機4や、加工機13の状態に関する情報を格納する。
 MES11は、トレンドサーバ12が取得した溶接機4や、加工機13の状態に関する情報や、サーバ1から出力される被溶接部品詳細調査指示等を、監督者が所有する情報通知端末41へ送信する。情報通知端末41は、スマートフォン、タブレットや、HMD(Head Mount Display)等のウェアラブルデバイス情報端末である。
 このように、本実施形態に係る製造システムZは、加工機13や、溶接機4の状態に関する情報を有しているトレンドサーバ12と、MES11とを連携させる。なお、本実施形態では、サーバ1が溶接異常を検知した場合、サーバ1→PLC7→検査装置6の順に検査指示が出力されるが、サーバ1→MES11→PLC7→検査装置6の順に検査指示が出力されてもよい。
 また、製造システムZは、サーバ1で異常と判定された被溶接部品5に対する検査指示や、検査項目を、PLC7を介して検査装置6に送信し、検査装置6による非破壊検査等を実施することができる。
 このような製造システムZにより、製造のタクトタイムより検査時間が長い場合、検査装置6に対して予め検査すべき被溶接部品5(図1参照)、もしくは、その検査箇所を検査員が知ることができる。これにより、生産性を低下させずに製造ラインを運用でき、全数検査を短時間で実現できる。
 また、製造システムZはMES11、トレンドサーバ12、溶接監視システムZ1のサーバ1を連携させることで、異常が起こった溶接機4や、被溶接部品5の情報を監督者へ伝達する(詳細は後記)。これにより、製造システムZは、迅速に溶接機4等の保守を実施でき、生産性の低下を軽減することができる。
 また、前記したように、情報通知端末41として、スマートフォン、タブレットや、HMD(Head Mount Display)等のウェアラブルデバイス情報端末を使用することができる。さらに、情報通知端末41に、工場内の映像と異常を示す機器や部品の箇所を重ね合わせて表示させるAR(Augmented Reality)技術を用いると監督者によるさらなる迅速な対応が可能となる。
 図3は、図2の製造システムZにおける製造プロセスの手順を示す流れ図である。適宜、図2を参照する。
 図3に示すように、本実施形態における製造プロセスでは、異常検知(S1)→原因分析(S2)→対策立案(S3)→実行(S4)の順に処理が進められる。以下、検査手順1、検査手順2の2つを示す。これらの検査手順のうち、検査手順2が本実施形態に係る溶接監視システムZ1を使用して行われるものである。
<検査手順1>
(異常検知;S1)
 ステップS1の異常検知のステップでは、情報取得装置31,32から取得される情報のうち、MES11が一部又は全部の情報をトレンドサーバ12から取得する。そして、MES11は、情報取得装置32から取得した溶接条件の実績値を記憶する。
(原因分析;S2)
 ステップS2の原因分析のステップでは、検査員が、MES11に記憶されている溶接条件の実績値に、溶接前の加工条件の実績値、溶接前の画像(解析結果)を加味して、溶接異常の原因分析を行う。
(対策立案;S3)
 ステップS3の対策立案のステップでは、検査員が溶接条件の実績値、溶接機4の加工パラメータと、溶接結果の関係を統計解析して、溶接機4の加工パラメータを算出し、製造システムZの設定を更新する。
(実行;S4)
 ステップS4の実行のステップでは、対策立案のステップで設定された加工パラメータで溶接が行われる。
<検査手順2>
 検査手順2では、前記した検査手順1を踏まえて行われるものである。前記したように、本実施形態における溶接監視システムZ1は、この「検査手順2」において使用されるものである。
(異常検知;S1)
 ステップS1の異常検知のステップにおいて、サーバ1で溶接異常と判定されると、監督者が所有する情報通知端末41や、図示しないパトランプに通知する。
 また、溶接異常を検知したサーバ1が検査装置6に検査指示を出力する。なお、本実施形態では、サーバ1がPLC7を介して検査装置6に検査を指示しているが、前記したように、MES11から検査装置6に検査が指示されてもよい。
(原因分析;S2)
 ステップS2の原因分析のステップにおいて、検査員は監督者の指示や、パトランプの通知に従って溶接異常の原因を分析する。つまり、監督者は、所有している情報通知端末41に表示されている情報に基づいた検査を検査員に指示する。あるいは、検査員は、パトランプの点滅を確認すると、ラインを停止し、現在、検査対象となっている被溶接部品5の詳細な検査を行う。このとき、検査員は、検査手順1の原因分析の結果で得られた知見を利用して分析を行う。
(対策立案;S3)
 ステップS3の対策立案のステップでは、検査員が異常発生頻度に基づき、ラインの停止・保守の必要性を判定する。検査員は、原因分析結果に基づき、ライン停止予測時間を算出し、一定期間異常停止が必要と判断した場合、他のラインへ代替生産指示を出す。また、検査員は、検査手順1の対策立案で算出された加工パラメータを参考に、新たな加工パラメータを算出し、製造システムZの設定を更新する。
(実行;S4)
 ステップS4の実行のステップでは、代替生産指示や、新たな加工パラメータに基づいて、製造システムZを実行する。
[ハードウェア構成図]
 図4は、本実施形態に係るサーバ1のハードウェア構成図である。
 サーバ1は、メモリ110、CPU(Central Processing Unit)120、HD(Hard Disk)等の記憶装置130を有する。さらに、サーバ1は、キーボードや、マウス等の入力装置140、ディスプレイ等の出力装置150、図1の情報取得装置2における各装置や、個体識別装置3や、PLC7との通信を行う通信装置160を有する。
 メモリ110には、記憶装置130に格納されているプログラムが展開され、このプログラムがCPU120によって実行されることにより、処理部111、データ取得処理部101、解析部103、データ分類部104及び比較判定部106が具現化している。データ取得処理部101、解析部103、データ分類部104及び比較判定部106については、図1で説明済みであるため、ここでの説明を省略する。
 なお、記憶装置130は、図1の溶接データ記憶部102及びデータ分類記憶部105に相当する。
(抵抗溶接について)
 図5~図8は、抵抗溶接の工程を示す図である。
 図5に示す被溶接部品5(図1参照)を構成する被溶接部材301と被溶接部材302は金属でできている。また、図8に示すように、被溶接部材301の下端面と、被溶接部材302の上端面とが突き合わせられる。そして、付き合わさった面に溶接(突き合わせ溶接)を施すことで、被溶接部材301と、被溶接部材302とが溶接される。ここで、図5に示す電極303と電極304とは、被溶接部材301,302に電流を供給する電極である。
 そして、図6に示すように、電極303,304に重ね合わされた被溶接部材301,302が設置される。続いて、被溶接部材301,302を合わせ、図6における矢印方向に圧力を加える。その後、図7に示すように、被溶接部材301,302を電極303,304にセットした状態で、電極303,304に電流源311、スイッチ312、電流計203及び電圧計207が接続される。この電流計203は、情報取得装置2(図1参照)における電流計203である。電流計203は、シャント抵抗を利用したセンサ、クランプ型センサ、ロゴスキーコイル、光変流器センサ等を利用することができる。一般的に、電流計203は電極303,304に対して直列に設置されるが、大電流を計測する場合、電流経路を分割した回路毎に測定するように設置されてもよい。
 また同様に、図7の電圧計207は、情報取得装置2(図1参照)における電圧計207である。電圧計207は、電圧プローブ等を利用することができる。一般的に、電圧計207は溶接電極に対して並列に設置するが、高電圧の場合、複数の電気回路素子(抵抗や、コンデンサ等)で電圧を分割した回路で測定するように設置されてもよい。すなわち、電気回路素子毎に電圧を測定し、その電圧の総和を電極303、電極304間の電圧としてもよい。
 その後、ユーザがスイッチ312を接続することで、電極303から、被溶接部材301,302を介して、電極304へ電流が流れる。これにより、被溶接部材301,302の接続部がジュール熱を有し、被溶接部材301,302における溶接部321(図8参照)が溶接される。図8に、このような抵抗溶接によって生成された被溶接部材331(被溶接部品5)を示す。
 ここで、これまでの溶接評価方法の課題を説明する。
 このような抵抗溶接では、被溶接部材301と被溶接部材302との接触面が広くなることが多い。このように抵抗溶接がなされる接触面が広い場合、接触面が均一な状態で被溶接部材301,302に電流が流れないと、溶接部321が均一に接合されない。そのため、被溶接部材301,302には、開先加工等が行われる場合がある。
 また、電極303,304(図7参照)と被溶接部材301,302との接触状態によっても接触抵抗の差異が生じるため、通電される電流は溶接毎に同一とはならない。そのため、被溶接部材301,302や電極303,304の位置関係等が一定になるように、保持冶具(不図示)による電極303,304や、被溶接部材301,302の固定がなされる。
 しかしながら、被溶接部材301,302や、その開先加工の状態は1つ1つ異なる可能性がある。また、溶接機4(図1参照)の使用状況によって電極303,304が消耗していくことから、溶接条件が変化していく。さらに、図1に示す溶接機4が、様々な機器で構成されているため、溶接条件の変化の要因が多数存在する。そこで、本実施形態では、溶接条件を溶接毎に把握し、管理することで品質の安定、向上につなげることが目的である。
(高速カメラ202及び分光カメラ204)
 図9は、高速カメラ202及び分光カメラ204の設置の様子を示す図である。
 図9において、被溶接部材301,302、電極303,304、電流源311、スイッチ312、電流計203及び電圧計207は図7と同様であるので、ここでの説明を省略する。
 高速カメラ202は、溶接機4(図1参照)に設置されている。この高速カメラ202は、被溶接部材301,302の監視(溶接部321(図8参照)の監視)と、溶接の発光状態をモニタリングするものである。
 また、図9に示すように、分光カメラ204も溶接機4(図1参照)に設置されている。この分光カメラ204は、溶接部321(図8参照)で発光する光のスペクトル解析を行うためのものである。
 なお、図9では、高速カメラ202及び分光カメラ204が、各一台ずつ設置されているが、被溶接部材301,302を挟んで反対側に、もう一台ずつの高速カメラ202及び分光カメラ204が設置され、溶接部321の全周を撮影できるようにしてもよい。
 また、分光カメラ204は、溶接部321で発光している光の成分が入力されればよい。従って、被溶接部材301,302の周方向に、図示しない鏡を設置し、この鏡で集光された光を撮影するようにしてもよい。これにより、1台の分光カメラ204で、溶接部321の全周を撮影することが可能である。高速カメラ202も同様に、被溶接部材301,302の周方向に、図示しない鏡を設置することで、1台の高速カメラ202で、溶接部321の全周を撮影することが可能である。
(高速カメラ画像分析)
 図10~図13は、溶接実施時に高速カメラ202で取得される映像の例を示す図である。
 図10は、溶接ワーク341を撮影した画像を示す図である。ここで、溶接ワーク341とは、図6における重ね合わせられた被溶接部材301,302に電極303,304がセットされたものである。高速カメラ202を使用すると、輝度が下がり画像が暗転するが、電流が通電したときには、図11に示すように、溶接部321(図8参照)で金属溶解に伴う発光を観察することができる(図11の白い部分)。
 このとき、溶接部321において、電流が均一に印加されていれば、発光分布も均一となるが、溶接部321に異物が存在する場合や、接触性が悪い場合、電流が均一に流れない。
 図12及び図13は、溶接部321(図8参照)において均一に電流が流れていないと考えられる場合の画像の例である。
 図12に示す画像では、ドットの部分と、白い部分が発光している箇所が存在している。そして、白い部分は、その他の発光部分(ドット部分)より発光輝度が高いことを示している。すなわち、白い部分は、その他の発光部分(ドット部分)より温度が高い。これは、被溶接部材301,302(図5参照)において、接触面が均一になっておらず、電流が偏っているために生じる。このような溶接が行われると、溶接の品質が低下する。
 また、図13に示す画像において、白い扇状の部分は火花が出ていることを示している。また、白い部分は、その他の発光部分(ドット部分)より発光輝度が高い(温度が高い)ことを示している。
 すなわち、図13に示す画像では火花が撮影されている。これは、被溶接部材301,302(図5参照)の接触面に異物が混入し、電流が印加された際に急激な電圧上昇で火花が飛んでいると考えられる。このよう場合、本来溶接面で消費されるべき熱エネルギが、火花によって奪われてしまうため、溶接の品質が低下すると考えられる。
 図12に示す輝度のムラや、図13に示すような火花は、溶接部321(図8参照)における温度の違いを示している。前記したように、図12や、図13において白く示している部分は、その他のドットで示している部分よりも温度が高い。すなわち、高速カメラ202は、溶接部321における局所的な温度を測定している。
 このように、高速カメラ202による画像によって、溶接部321に異物が存在しているか否かや、均一に溶接されているか否かを判定することができる。
(分光カメラ画像分析)
 図14~図16は、分光カメラ204で取得される分光データ(周波数分布)及び一次元スペクトルデータ(周波数分布)の例を示す図である。
 分光カメラ204は、分光機能を搭載したストリークカメラ、同じく分光機能を搭載した高速カメラ、ハイパースペクトラムカメラ等を利用することができる。
 図14は、分光カメラ204として、分光機能を搭載したストリークカメラによる分光データの説明図である。ストリークカメラは、分光器等の分光機能を介して各波長成分に分解した光を一定時間の間収録する装置である。
 図14(a)と図14(b)は、ストリークカメラによる分光データの例として、レーザ光を受光した時の結果を示している。
 図14(a)は、ストリークカメラの分光データB240を示しており、横軸が波長(nm)、縦軸が時間(μs)を示している。図14(a)において、黒は低い値(ゼロ)を示し、白は高い値を示している。また、図14(a)において、ドットは黒の部分と、白の部分との中間値を示しており、ドットの間隔が狭いほど低い値を示している。
 レーザ光は、ほぼ単一波長であることが知られている。図14(a)から、このレーザ光の波長がλ1(nm)であるとしたとき、図14(a)の波長λ1で最も高い値(白色)が全時間において存在している。
 また、図14(b)は、図14(a)に示す分光データB240のうち、ある時刻t1におけるデータのみを取り出した一次元スペクトラムデータB244を示している。
 すなわち、図14(b)は、図14(a)での時間t1における波長特性の分布を示しており、横軸が波長、縦軸が信号強度を示している。ここでは、信号は波長λ1(nm)でピーク値E1をとっている。
 このように、分光カメラ204によれば、測定している光のスペクトル特性の情報を得ることができる。
(正常時)
 図15は、正常な溶接過程について、分光カメラ204として、ストリークカメラを用いて取得した信号画像の例を示す図である。
 図15(a)は、ストリークカメラから取得した分光データB246であり、横軸が波長(nm)、縦軸が時間(μs)を示している。図14と同様、黒は低い値(ゼロ)で、白は、高い値を示しており、ドットは中間値を示している。この中間値はドットの間隔が狭ければ狭いほど、低い値を示している。
 図15(b)は、分光データB246のうち、ある時刻t2におけるデータを抽出した一次元スペクトラムデータB248である。
 図11で説明したように、正常な溶接では、溶接部231(図8参照)が均一に発光する傾向がある。図15(a)から、時間t2の周辺で発光している様子がわかる。図15(b)は、時間t2における複数の発光波長が示されている。図15(a)に示す分光データB246や、図15(b)における一次元スペクトラムデータB248のパターンを、正常溶接における発光特性パターンとすることができる。
(異常時)
 図16は、溶接部321(図8参照)において均一に電流が流れていないケースとして、発光輝度の分布にばらつく火花が散る溶接過程(図13参照)について、分光カメラ204としてのストリークカメラで信号取得した一例である。
 図16(a)は、ストリークカメラで取得された分光データB251を示し、縦軸が時間(μs)、横軸が波長(nm)、を示している。図14(a)、図15(a)と同様、黒は低い値(ゼロ)で、白は、高い値を示しており、ドットは中間値を示している。ドットの間隔が狭いほど、値が低いことを示している。
 図16(b)は、図16(a)における分光データB251のうち、ある時刻t3におけるデータのみを抽出した一次元スペクトラムデータB253を示している。
 図13で示したような、火花が散る溶接過程については、図15に示す正常な溶接過程と比較して、図16(a)及び図16(b)に示すように、長い時間、かつ、広い波長において、全体的に高い信号強度が観測される。火花が発生してから消えるまでの時間は、様々であり、溶接部321の発光時間より短いものから長いものまである。このうち、溶接部321の発光時間より長い火花が、図16(b)における信号強度の底上げをしている。また、さまざまな温度をとる火花に対して、発光波長もさまざまな成分を含むため、広い波長での応答が観測できる。
 さらに、異物が原因で火花が発生する場合、異物の種類によって発光する特性が変わる。例えば、金属異物の炎色反応による特性の変化である。具体的な例として、ナトリウムは、589nm付近(黄色)の波長で識別できることが知られている。これを利用することで、異物の特定を行うことができる。この場合、異物の特定は、信号強度のピークが炎色反応による波長であるか否かで行われる。図16(b)における信号強度のピークにおける波長λ2が589nmであった場合、ナトリウムに由来する異物が混入していることが推測される。
 このように、分光カメラ204による分光データによって、発光部の温度や、異物が混入しているか否か、さらには異物の種類等がわかる。また、分光カメラ204による分光データによって、温度情報も得ることができる。
(電流・電圧情報分析)
 図17は、溶接時に通電される電圧波形B270と、電流波形B271との一例を示す図である。
 すなわち、図17に示す波形は、電流計203と、電圧計207(図7参照)で計測される電流及び電圧の時間変化を示したものである。図17において、横軸は時間(s)を示し、縦軸は電流値及び電圧値を示す。
 図17に示すように、被溶接部材301,302(図5参照)に対し、急激に電流を印加することで、被溶接部材301,302にジュール熱を発生させる。このジュール熱により、被溶接部材301,302の溶接部321(図8参照)が溶解する。そして、電流が遮断、もしくは、減少することにより、ジュール熱が小さくなる(冷える)。これにより、溶解された部位が冷却され、固化することで溶接が完了する。ちなみに、図17に示す波形は、溶接機4としてコンデンサ型抵抗溶接機を用いたときにおける電圧波形B270及び電流波形B271の一例を示している。コンデンサ型抵抗溶接機は、図示しないコンデンサに充電した電気エネルギを電流源311(図7参照)とするものである。
 スイッチ312(図7参照)がONになると、電圧波形B270(破線)に示すように、急激に電圧が立ち上がる。そして、これに伴い、電流波形B271(実線)に示すように電流も急激に立ち上がる。これにより、予め設定された電流源311、すなわちコンデンサ型抵抗溶接機であればコンデンサにおける充電電圧に応じた電流が被溶接部材301,302に通電され、溶接が行われる。通電は、本例のように、電流の通電を1回実行する、すなわち電流ピークを1回とする方法と、電流の通電を2回以上の複数回実行する、すなわち、電流ピークを複数とする方法とがある。これらは通電条件の違いだけであり、本実施形態の技術を制約する事項ではない。
 次に、図18及び図19を参照して、正常な溶接と、火花が散る溶接との場合における電流計203及び電圧計207の出力波形を説明する。
 図18は、正常な溶接の場合における電流計203及び電圧計207(図7参照)の出力波形を示す図である。
 図18(a)では、電流の印加から減衰までの電圧波形B270(破線)と電流波形B271(実線)を示している。また、図18(b)は、図18(a)におけるピーク値付近の領域B272を拡大した図である。
 図19は、溶接の過程で火花が散る場合における電流計203及び電圧計207(図7参照)の出力波形を示す図である。図19(a)は、電圧波形B270a(破線)と電流波形B271a(実線)を示している。図19(b)は、図19(a)におけるピーク値付近の領域B275を拡大した図である。
 溶接の過程で火花が散る場合、図19(b)に示すように、火花が発生するタイミングに応じて電圧波形B270a、電流波形B271aに高周波成分が重畳する。図18(b)に示すように、溶接が正常であれば、このような高周波成分は重畳しない。
 このように電流計203及び電圧計207を用いた溶接時の電圧波形B270a、電流波形B271aの時間的変動を得ることにより、溶接条件を詳細に把握することができる。また、電流値、電圧値の振幅を観測することで、あらかじめ設定された溶接条件との差異を把握できることはいうまでもなく、可能である。つまり、電流計203、電圧計207から取得される電圧波形B270a、電流波形B271aと、予め取得されている正常時の電流波形、電圧波形とを比較して、溶接異常を判定することが可能である。
 電流計203及び電圧計207による図17~図19に示す分析は一般的に行われているものである。
 しかしながら、溶接部321(図8参照)における発光や発熱の分布の情報を電流計203や、電圧計207で取得することは困難である。なぜならば、電流計203や、電圧計207では、被溶接部材301,302全体の現象を総合した情報であるためである。
 溶接部321の不均一性による電流の偏り等を観測するためには、電流計203及び電圧計207による測定は不適である。
 そこで、本実施形態では溶接部321における電流分布の局所的な情報を取得するため、前記した高速カメラ202や、分光カメラ204によるデータだけでなく、溶接部321周辺の磁場を計測する磁場計測装置205を導入する。
 なお、本実施形態では、電流計203及び電圧計207による図17~図19に示す分析を、全体的な評価のために行っている。
(磁場計測装置解析)
 図20~図28を用いて、磁場計測装置205について説明する。
 図20(a)は、本実施形態に係る磁気センサC101の設置例を示す図であり、図20(b)は、磁気センサC101の出力波形を示す図である。
 また、図21は、磁気センサC101の配置の詳細を示す図である。図21(a)は、磁気センサC101の配置を示す斜視配置図であり、図21(b)は、図21(a)のA-A断面図であり、図21(c)は、図21(b)のB-B方向からみた図である。
 まず、図20(a)及び図21を参照して、磁場計測装置205における磁気センサC101の配置について説明する。
 なお、図20(a)において、被溶接部材301,302、電極303,304、溶接部321、電流源311、スイッチ312、電流計203及び電圧計207は図7と同様であるので、ここでの説明を省略する。
 図20(a)、図21(a)及び図21(c)に示すように、磁気センサC101は溶接部321の周囲に配置されている。なお、高速カメラ202及び分光カメラ204の撮像の邪魔にならないよう、磁気センサC101は、溶接部321から上下にずらした状態で設置するとよい。磁気センサC101は、溶接部321から上下にずらされても溶接部321における局所的な磁場を計測することは可能である。
 なお、磁気センサC101は、コイル、ホールセンサ、磁気抵抗素子、光磁気センサ等を利用することができる。
 なお、図21(c)における磁気センサC101a~C101cについては後記する。
 図20(b)は、電流計203、電圧計207、磁気センサC101の出力波形の例を示すものである。
 図20(b)において、横軸は時間(s)を示し、紙面左側の縦軸は電流値、電圧値を示し、紙面右側の縦軸は磁束密度(G)を示している。
 そして、符号B270は電圧計207によって測定される電圧波形を示し、符号B271は、電流計203によって測定される電流波形を示している。また、符号B281は、磁気センサC101がホールセンサ、磁気抵抗素子、光磁気センサである場合に、磁気センサC101から取得されるコイル出力波形(磁束密度波形)である。さらに、符号B280は、磁気センサC101がコイルセンサである場合の磁場波形(磁束密度波形)である。
 コイル出力波形B280は、磁場波形B281に対して時間微分した波形を測定する(ファラデーの電磁誘導の法則)。これに対し、コイルセンサ以外の磁気センサC101(例えば、ホールセンサ、磁気抵抗素子、光磁気センサ)は、磁場強度(磁束密度)そのものを測定する。つまり、磁気センサC101として、コイルセンサを用いると、その出力波形はコイル出力波形B280となり、磁気センサC101としてコイルセンサ以外の磁気センサを用いると、その出力波形は磁場波形B281となる。
 例えば、磁気センサC101がコイルセンサしか備えていなくても、得られたコイル出力波形を時間積分することで磁場波形B281を取得できる。逆に、磁気センサC101として、ホールセンサ、磁気抵抗素子、光磁気センサ等しか備えていなくても、得られた磁場波形B281を時間微分することで、コイル出力波形B280を取得することができる。
 図22は、磁気センサC101の出力と、電流経路C111の関係を説明する図である。
 磁気センサC101による電流計測は、電流が生成する磁場を計測するものである。電流が存在する場所では、右ねじの法則に従い、電流経路C111と直交する方向に磁場C112が生成される。この磁場C112に対して磁気センサC101を設置し、間接的に電流を計測する。
 図23は、溶接時に溶接ワーク341周辺に生成される磁場を模式的に示した図である。図23(a)は溶接機ワーク全体に流れる電流と、磁場を説明する図であり、図23(b)は、局所的な電流の方向と、磁場の方向を示す図である。
 図23において、被溶接部材301,302、電極303,304、溶接部321、電流源311、スイッチ312、電流計203及び電圧計207は図7と同様であるので、ここでの説明を省略する。
 図23(a)に示すように、溶接ワーク341に流れる電流C121は、主に電極303,304間を流れるため、磁場C122は、溶接ワーク341周辺に生成される。しかしながら、溶接部321における局所的な電流に着目すると、溶接部321において、電流が均一に流れていない場合、すなわち、局所的に電流量や電流の経路が変わったりしている場合、溶接部321近辺の磁場の大きさや方向も変動する。本実施形態では、図20に示すように、溶接部321の周囲に磁気センサC101を配置することで、溶接部321における局所的な電流変化を計測するものである。
 図23(b)は、溶接部321における局所的な電流の方向を実線の矢印C131、磁場の方向を破線の矢印C132で表現し、これらの大きさ(電流量、磁場強度)を矢印の太さで示した図である。図23(b)に示すように、電流量に増減に従って、磁場強度も増減し、さらに、局所的に電流の方向が変われば、磁場の方向も変わっている。このような現象は、電流計203のように被溶接部材301,302全体に流れる電流では観測することが困難である。本実施形態では、溶接部321の周囲に磁気センサC101を複数配置し、図23(b)に示すような局所的な電流を評価しようとするものである。
 図24~図28は、図20(a)及び図21に示す磁場計測装置205を用いた電流の評価例を示す図である。
 ここで、図24~図28のいずれの図でも横軸は時間(s)を示している。
 図24は、正常時、すなわち溶接部321(図8参照)において電流が均一に流れている場合の磁場波形である。
 図24の最上段には、電流計203、電圧計207の波形(電圧波形B270(破線)、電流波形B271(実線)が示されている。そして、図24の下3段には、3つの磁気センサC101で測定された磁場波形B282a~B282cが示されている。ここで、磁場波形B282a~B282cは、図21(c)における磁気センサC101a~C101cから取得されるものに相当する。
 また、電圧波形B270、電流波形B271の形状は、磁場波形B282a~B282cを総和したものとなっている。
 ここで磁気センサC101はコイルを用いているが、磁場波形B282a~B282cは、コイルからの出力波形を積分したものを用いている。
 図24に示すように、溶接が正常な場合、磁場波形B282a~B282cのピーク時刻や、ピーク値B1が揃っている。
 また、破線B2は、溶接が正常な場合における各波形の立ち上がり時刻を示している。つまり、破線B2は、電流源311(図9参照)から電流が流され始めた時刻を示している。また、破線B3は溶接が正常な場合における各波形のピーク時刻を示している。
 以降の図25~図27において、ピーク値B1は、図24と共通の値を示している。さらに、以降の図25~図28において、立ち上がり時刻B2、ピーク時刻B3は、図24と共通の値を示している。
 図25、図26は、溶接部321において、電流が均一に流れていない場合における磁場波形B283a~B283c,B284a~B284cである。
 図25の最上段には、電流計203、電圧計207の波形(電圧波形B270(破線)、電流波形B271(実線))が示されている。そして、図25の下3段には、3つの磁気センサC101で測定された磁場波形B283a~B283cが示されている。ここで、磁場波形B283a~B283cは、図21における磁気センサC101a~C101cから取得されるものに相当する。
 また、電圧波形B270、電流波形B271の形状は、磁場波形B283a~B283cを総和したものとなっている。
 ここで磁気センサC101はコイルを用いているが、磁場波形B283a~B283cは、コイル出力波形を積分したものを用いている。
 図25に示す例では、図24に示す電流が均一のピーク値B1と比較して、磁場波形B283a~B283cの振幅(磁束密度のピーク値)が異なっている。前記したように、磁場波形B283a~B283cの振幅は、電流の量に比例するため、図25に示すように、磁場波形B283a~B283cの振幅の変化により、磁気センサC101近傍における電流の増減を評価することができる。すなわち、図25のような磁場波形B283a~B283cは、溶接部231に流れる局所的な電流にムラがあることがわかる。電流量が少ない場合(磁場波形の振幅が小さい場合)は、溶接に必要な熱エネルギが不足し、溶接不良になる可能性がある。
 図26の最上段には、電流計203、電圧計207の波形(電圧波形B270(破線)、電流波形B271(実線))が示されている。そして、図26の下3段には、3つの磁気センサC101で測定された磁場波形B284a~B284cが示されている。ここで、磁場波形B284a~B284cは、図21(c)における磁気センサC101a~C101cから取得されるものに相当する。
 また、電圧波形B270、電流波形B271の形状は、磁場波形B284a~B284cを総和したものとなっている。
 ここで磁気センサC101はコイルを用いているが、磁場波形B284a~B284cは、コイルの出力波形を積分したものを用いている。
 図26に示す例では、図24に示す電流が均一の場合におけるピーク時刻B3及びピーク値B1と比較して、磁場波形B284a~B284cそれぞれのピーク時刻及びピーク値が異なっている。
 特にピーク時刻に着目すると、磁場波形B284aではピーク時刻B11がピーク時刻B3より遅い時刻となっている。また、磁場波形B284bではピーク時刻がピーク時刻B3と同じ時刻となっている。そして、磁場波形B284cではピーク時刻B12がピーク時刻B3より早い時刻となっている。
 このことから、ピークを迎える時刻は、磁場波形B284c→磁場波形B284b→磁場波形B284aの順となっていることわかる。
 これにより、溶接の電流が部材の局所的な場所から流れ始め、それが、溶接部321の全体に広がっていく様子を捉えることができる。
 つまり、図26において、磁場波形B284cが、最初にピークに到達しており、この磁場波形B284cを取得している磁気センサC101の近傍より溶接が開始されていると考えられる。同様に磁場波形のピークは、磁場波形B284c→磁場波形B284b→磁場波形B284aと溶接が推移していることがわかる。このように、磁場波形B284a~B284cのピークは、電流が溶接部に到達する時間であるため、溶接部321がどのような時間過程で溶解していったか評価することができる。
 すなわち、図26に示す例から、溶接量のムラ等により溶接部321のそれぞれの箇所に溶接開始時間に差が生じてしまっていることが分かる。
 図27は、火花が発生している場合における磁場波形B285a~B285cを示したものである。
 図27の最上段には、電流計203、電圧計207の波形(電圧波形B270a(破線)、電流波形B271a(実線))が示されている。そして、図27の下3段には、3つの磁気センサC101で測定された磁場波形B285a~B285cが示されている。ここで、磁場波形B285a~B285cは、図21における磁気センサC101a~C101cから取得されるものに相当する。
 また、電圧波形B270a、電流波形B271aの形状は、磁場波形B285a~B285cを総和したものとなっている。
 ここで磁気センサC101はコイルを用いているが、磁場波形B285a~B285cは、コイルの出力波形を積分したものを用いている。
 図19で説明したように、火花が生じると電圧波形B270a及び電流波形B271aに高周波成分が重畳する(図27の符号D101参照)。磁場も電流に比例するため、磁場波形B285a~B285cにも高周波成分が重畳している(符号D102~D104参照)。ちなみに、図27における磁場波形B285a~B285cそれぞれのピーク値は、図24における磁場波形B282a~B282cと同じB1である。
 図27の例では、磁場波形285bで高周波成分の振幅が大きくなっており、この波形を取得している磁気センサC101の近傍で火花が発生したと評価できる。
 また、図28に示すコイル出力波形B286a~B286cは、火花が発生した場合のコイル出力波形B286a~B286c、すなわち、磁場波形の時間微分値を示す。
 図28の最上段には、電流計203、電圧計207の波形(電圧波形B270a(破線)、電流波形B271a(実線))が示されている。そして、図28の下3段には、3つの磁気センサC101で測定されたコイル出力波形B286a~B286cが示されている。ここで、コイル出力波形B286a~B286cは、図21(c)における磁気センサC101a~C101cから取得されるものに相当する。
 符号D111に示すように、電圧波形B270及び電流波形B271に火花に由来する高周波成分が重畳している。
 図28のコイル出力波形B286a~B286cは、図27の磁場波形B285a~B285cを時間微分したものに相当し、図27の磁場波形B285a~B285cにおける高周波成分を強調したものとなっている(符号D112~D114参照)。ちなみに、コイル出力波形B286a~B286cのピーク値は、すべてV1となっている。
 そのため、コイル出力波形B286a~B286cは、火花が発生した時刻において、電圧波形B270aや、電流波形B271aや、図27に示すコイル出力波形B286a~B286cと比較して、大きい振幅の高周波成分が得られる。このようにして火花の発生と、磁気センサC101間の振幅の大きさの比較による火花発生位置の評価が可能である。
 なお、図26~図28における電圧波形B270,B270a、電流波形B271,B271aのそれぞれは、実際には微小な違いが生じているが、人間の目で認識できるレベルではないため、図面では同じ波形としている。言い換えれば、磁場計測装置205による局所的な磁場波形B283a~B283c,B284a~B284cによれば、電流計203や、電圧計207ではとらえられない異常を検知することができる。
(変位計分析)
 図29を参照して、変位計206を用いた分析について説明する。なお、図29において、被溶接部材301,302、電極303,304、溶接部321、電流源311、スイッチ312、電流計203及び電圧計207は図7と同様であるので、ここでの説明を省略する。
 図29は、変位計206の設置例と、出力結果を説明した図である。ここで、図29(a)は、変位計206の設置例を示し、図29(b)は変位計206による測定結果を示す図である。
 変位計206として、レーザ変位計、ひずみゲージを用いることができる。他にも、ひずみ量から変位に換算する方法等を用いることができる。本実施形態では、変位計206としてレーザ変位計が用いられる場合について説明する。
 図29(a)に示すように変位計206は、電極303,304にレーザ発信装置E101、レーザ受信装置E102がそれぞれ備えられている。
 すなわち、レーザ発信装置E101、レーザ受信装置E102によって、電極303及び電極304間の距離、すなわち被溶接部材301,302(被溶接部品5(図1参照))の長さが測定されている。
 溶接による被溶接部材301,302の溶け込みにより電極303,304間の距離が縮まると、その縮まり具合が、変位計206であるレーザ発信装置E101、レーザ受信装置E102によって測定される。
 このようにすることで、溶接を実行するときの被溶接部材301,302の変位量をモニタすることができる。
 図29(b)は、変位量の波形を示す図である。
 図29(b)において、横軸は時間(s)を示し、紙面左側に示されている縦軸は電流値及び電圧値を示し、紙面右側に示されている縦軸は変位計206による変位量を示している。
 また、符号B270(破線)は電圧波形を示し、符号B271(実線)は電流波形を示している。そして、符号E111(一点鎖線)は変位量の時間変化(変位波形)を示している。
 タイミング的には、電圧波形B270及び電流波形B271がピーク値となるころ、変位波形E111が生じている。
 ちなみに、変位量について正(+)の方向は、部材が縮む方向である。
 前記したように、抵抗溶接は、被溶接部材301,302に対する通電によるジュール熱で被溶接部材301,302を溶解し、電極303,304で押し付けることで接合する。したがって、電流が通電され、溶接部321の溶解が始まるにともなって、変位量の変化が起こる。このとき、変位量が少ないと溶解した金属が融合せず溶接不良となる可能性がある。また、変位量が過多の場合は、溶解した金属が、押し付け力によって押し出されてしまい、溶接不良となる可能性がある。従って、図29(b)に示すように、予め設定されている閾値M1を設定し、変位量が閾値M1以上であれば十分に溶解していると判定し、変位量が閾値M1未満であれば、溶解が不十分であり、溶接不良の可能性があると判定できる。そして、このような場合、図3の実行(ステップS4)で、検査員は溶接機4による電圧を増加するよう加工パラメータを設定する。
 ここでは、変位量の下限値としての閾値M1を設定して溶解不足を検知するようにしているが、変位量の上限値としての閾値を設定して、溶解過多を検知するようにしてもよい。そして、このような場合、図3の実行(ステップS4)で、検査員は溶接機4による電圧を低下するよう加工パラメータを設定する。
 このように、変位計206の設置により、溶接毎に変位の値の管理ができ、溶接不良の有無を判定することができる。
(処理手順)
 図30は、本実施形態に係るサーバ1における処理手順を示すフローチャートである。適宜、図1を参照する。
 まず、データ取得処理部101が情報取得装置2の各装置や、個体識別装置3から溶接データを取得する(S101)。また、データ取得処理部101は、溶接データとともに個体識別装置3から個体識別情報も取得する。
 溶接データは、電流計203から取得された電流値データ、高速カメラ202及び分光カメラ204から得られる画像データ、分光データ、磁場計測装置205から取得される磁場データ、変位計206から得られる変位データ、電圧計207から取得された電圧値データ等である。
 次に、データ取得処理部101は、取得した溶接データを、個体識別装置3から取得した個体識別情報と対応させ、時系列で溶接データ記憶部102に格納する(S102)。ステップS102において、溶接データを構成する各データ間の関係を評価するため、データ取得処理部101は、時間軸を共通として、波形の変化点のタイミングを波形微分で抽出し、変化点が抽出された時刻をイベント時刻として記憶するとよい。イベント時刻は、トリガ取得装置201によって取得されたトリガでもよい。このとき、温度・湿度計208からの情報も溶接データ記憶部102に格納されてもよい。
 次に、解析部103が、取得した各溶接データの解析を必要に応じて行う(S103)。
 解析部103で行われる解析とは、例えば、以下のようなものである。
・変位計206で計測された被溶接部品5の変位の時間推移、もしくは変位スピード(長さの変化)。
・電流計203、電圧計207、磁場計測装置205から取得される各出力波形のスペクトル解析。
 なお、ステップS103の解析処理は、必要に応じて省略可能である。
 各溶接データのうち、信号は、フーリエ変換によって信号波形の周波数成分が算出されたり(スペクトル解析)、基準となる正常波形との差分が算出されたりすることで解析が行われる。高速カメラ202からの画像データは、被溶接部品の位置を形状認識し、画像距離計測等で評価した上で解析される。
 そして、データ分類部104が、各溶接データの解析結果と、データ分類記憶部105に格納されている結果(すなわち、過去のデータ)とを用いて、機械学習処理(パターン認識処理)を行う(S104)。
 機械学習は、例えば、以下の(1)~(5)のようなものが考えられる。
(1)データ分類部104が、高速カメラ204において、最も高い輝度が存在する時刻における輝度分布をパターン認識する。例えば、図11に示す輝度分布パターン、図12に示す輝度分布パターン、図13に示す輝度分布パターンでグループを作成しておく。データ分類部104は、取得された画像がどのグループに属するかを判定する。なお、グループは、前記した例に限らない。これにより、図11~図13で説明したように、溶接が均一に行われているか、異物の混入等がないかがわかる。
(2)データ分類部104が、分光カメラ204から取得される分光データ、又は、特定時刻の一次元スペクトルデータをパターン認識する。例えば、図14に示す分光データパターン、図15に示す分光データパターン、図16に示す分光データパターンでグループを作成しておき、データ分類部104は、取得された分光データがどのグループに属するかを判定する。データ分類部104は、一次元スペクトルデータについても同様にする。なお、グループは、前記した例に限らない。
(3)データ分類部104が、磁場計測装置205で計測された磁場信号をパターン認識する。例えば、各磁気センサC101から取得される磁場波形について、データ分類部104は、図24に示すパターン、図25に示すパターン、図26に示すパターン、図27に示すパターン、図28に示すパターンでグループを作成しておく。そして、データ分類部104は、取得された磁場信号(磁場波形、コイル出力波形)がどのグループに属するかを判定する。なお、磁場波形、コイル出力波形のパターンとは、各磁気センサC101から取得される磁場波形の組み合わせである。
 例えば、磁気センサC101が3つ備えられている場合は、図24~図28それぞれにおける3つの磁場波形の組み合わせがパターンとなる。グループ分けは、図24~図28に示すような時間変化波形と、ステップS103の解析処理で行われたスペクトル解析の結果との両方に対して行われるとよい。スペクトル解析の結果を用いると、図27や、図28に示すような高周波成分を含む磁場信号(磁場波形、コイル出力波形)のパターン化が容易になるためである。
 なお、グループは、前記した例に限らない。
(4)データ分類部104が、電流計203及び電圧計207で計測された電流信号及び/又は電圧信号をパターン認識する。例えば、電流計203から取得される電流波形及び電圧計207から取得される電圧波形について、データ分類部104は、図18に示すパターン、図19に示すパターンでグループを作成しておく。そして、データ分類部104は、取得された電流信号(電流波形)、電圧信号(電圧波形)がどのグループに属するかを判定する。グループ分けは、図18、図19に示すような時間変化波形と、ステップS103の解析処理で行われたスペクトル解析の結果との両方に対して行われるとよい。スペクトル解析の結果を用いると、図19に示すような高周波成分を含む電流信号(電流波形)及び電圧信号(電圧波形)のパターン化が容易になるためである。なお、グループは、前記した例に限らない。
 これにより、電流源311(図9参照)から供給される電流及び電圧に異常がないか否かがわかる。
(5)データ分類部104が、変位スピードに対し機械学習を行う。これにより、被溶接部材の溶け込み量の正常・異常がわかるので、正常に溶接が行われているか否かがわかる。
 データ分類部104は、機械学習の結果をデータ分類記憶部105に格納する(S105)。
 そして、比較判定部106が、機械学習処理(パターン認識処理)の結果に基づいて、検査対象となっている溶接データが異常であるか否かを判定する(S106)。溶接条件が異常であるか否かは、溶接データを構成するデータのうち、少なくとも1つが異常であるか否かが判定される。つまり、比較判定部106は、ステップS104における機械学習処理の結果、取得した溶接データを構成するデータのそれぞれについて、「溶接が正常」なグループとは別のグループに属しているか否かを判定する。「溶接が正常」なグループとは別のグループに属している場合、比較判定部106は「異常」と判定する。
 例えば、前記(1)のケースの場合、取得した画像が、図11のパターンのグループ(正常グループ)に分類されれば、比較判定部106は「正常」と判定する。取得した画像が、図11のパターンのグループ以外のグループ(異常グループ)に分類された場合、比較判定部106は「異常」と判定する。
 また、前記(2)のケースの場合、取得した分光データが図14のパターンのグループ(正常グループ)に分類されれば、比較判定部106は「正常」と判定する。取得した分光データが、図14のパターンのグループ以外のグループ(異常グループ)に分類された場合、比較判定部106は「異常」と判定する。
 さらに、前記(3)のケースの場合、取得した磁気信号が図24のパターンのグループ(正常グループ)に分類されれば、比較判定部106は「正常」と判定する。取得した磁気信号が、図24のパターンのグループ以外のグループ(異常グループ)に分類された場合、比較判定部106は「異常」と判定する。
 そして、前記(4)のケースの場合、取得した電流信号及び/又は電圧信号が、図18に示すパターンのグループ(正常グループ)に分類されれば、比較判定部106は「正常」と判定する。取得した電流信号及び/又は電圧信号が、図18に示すパターンのグループ以外のグループ(異常グループ)に分類された場合、比較判定部106は「異常」とする。
 また、前記(5)のケースの場合、変位スピードが正常な溶接のグループに分類されれば、比較判定部106は「正常」と判定する。それ以外の場合、比較判定部106は「異常」と判定する。
 また、それと同時に、図29(b)に示すように、変位波形(所定の時刻における変位量)E111が閾値未満であるか(あるいは以上であるか否か)を判定する。変位波形E111が閾値未満(あるいは以上)である場合、比較判定部106は「異常」と判定する。
 なお、少なくとも1つが異常であるか否かではなく、所定数の条件が異常である場合、ステップS106で異常と判定されてもよい。
 このとき、機械学習に用いられるグループに異常の種類に関する情報がひもづけられている場合、比較判定部106は、取得したデータがどのグループに属しているかで、異常の種類について判定する。磁場波形を例とすると、図24のグループは正常、図25のグループは電流量にムラがある(溶接にムラがある)、図26のグループは電流が流れる時間にムラがある(溶接にムラがある)、図27のグループは火花が発生している(溶接部321に異物が存在している)等である。電流計203から取得される電流波形、電圧計207から取得される電圧波形、高速カメラ202の画像、分光カメラ204の分光データ、変位計29における異常の種類は、それぞれの図面で説明した通りである。
 グループと、異常の種類に関する情報とのひもづけは、手入力によって予め行われている。
 機械学習に用いられるグループに異常の種類に関する情報がひも付けられていない場合や、取得したデータで作成された新たなグループが作成される場合、比較判定部106は異常である旨の出力のみを行う。
 ステップS106の結果、正常である場合(S106→No)、処理部111(図4参照)はステップS101へ処理を戻し、次の検査対象について処理を行う。
 ステップS106の結果、異常である場合(S106→Yes)、比較判定部106は溶接機4において異常の可能性(溶接機異常)があるか否かを判定する(S107)。溶接機4において異常の可能性があるか否かの判定は、同じ条件(解析結果)が、所定回数連続して異常と判定されたか否かによってなされる。例えば、高速カメラ202から得られた画像における輝度分布が、連続して異常を示している等である。
 ステップS107の結果、溶接機4において異常の可能性がある場合(S107→Yes)、PLC7が、溶接機4の調査(溶接機調査)を指示する(S108)。溶接機4の調査が指示されると、溶接機4が停止された後、溶接機4の調査が行われる。なお、ステップS108における指示には、異常の種類に関する情報が含まれていることが望ましい。このようにすることで、異常の原因の特定が容易となる。
 ステップS107の結果、溶接機4において異常の可能性がない場合(S107→No)、PLC7が、検査装置6に対して該当する被溶接部品5の詳細調査(被溶接部品詳細調査)を指示する(S109)。ステップS106の判定処理で、異常の種類が分かっている場合、ステップS109における指示に異常の種類に関する情報が含まれる。ステップS106の判定処理で、異常の種類が分かっていない場合、ステップS109における指示に推測される異常の種類が不明である旨の情報が含まれてもよい。
 ステップS109における指示には、異常を示した条件に関する情報が含まれていることが望ましい。このようにすることで、異常の原因の特定が容易となる。
 調査を指示された検査装置6は、該当する被溶接部品5の詳細検査を実施する。詳細検査の結果は、検査情報入力装置8を介してデータ分類部104へフィードバックされる。すなわち、データ分類記憶部105におけるグループに、異常の種類(可能であれば原因)に関する情報が手入力によってひもづけられる。このようにすることで、機械学習の精度を向上させることができるため、ステップS106における異常判定の精度を向上させることができる。
 ステップS109の後、処理部111(図4参照)はステップS101へ処理を戻し、次の検査対象について処理を行う。
 このようすることで、本実施形態に係る製造システムZは、被溶接部品5の溶接部321における局所的情報を溶接毎に取得しながら、取得した情報と、過去の情報(データ分類記憶部105のデータ)とを比較する。さらに、製造システムZは、異常値を指標(グループ)として正常であるか否かを判定しながら製造する製造システムZを提供することで、溶接工程を有する工場ラインの生産性向上を保ちつつ、溶接の品質を向上させることができる。
 また、本実施形態によれば、高速カメラ202における輝度分布から溶接部321(図8参照)の局所的な温度情報を得ることができる。また、磁場計測装置205で計測された磁場信号から溶接部321における局所的な電流情報を得ることができる。そして、本実施形態では、これらの局所的な温度情報、電流情報を用いて、局所的な溶接条件が異常であるか否かを判定する。これにより、本実施形態では、被溶接部材301,302や、被溶接部材301,302に流れる電流等といった全体的な溶接条件が、みかけ上、適切であっても、溶接部321の接触性が悪かったり、溶接部321に異物が混入したりすることによる溶接の異常を検知することができる。
 また、本実施形態では、撮影された画像における発光パターン、磁場計測装置205によって計測された磁場信号に基づく局所的な電流の時間推移又は局所的な電流の周波数等が評価される。これにより、局所的な溶接条件が算出される。そして、算出された局所的な溶接条件が溶接個体毎に記録して管理され、検査工程や溶接条件にフィードバックされる。これにより、品質管理を向上させることができる。つまり、適切な溶接が行われていないものを詳細な検査にまわし、その検査結果を製造システムZや、溶接監視システムZ1に反映することで、品質管理を向上させることができる。
 また、本実施形態によれば、被溶接部品5の製造過程で検査を行うことができる。すなわち、被溶接部品5の製造と、検査を並列で行うことができる。一般的に、製造時間に比較して検査時間の方が非常に長くなることが多いが、本実施形態によれば、被溶接部品5の製造と、検査を並列で行うことができることにより、全体的な製造時間を短縮することができる。
 さらに、本実施形態によれば、検査時間を大きく延ばすことなく全数検査を行うことが可能となる。
 また、検査対象となっている溶接条件が異常であるか否かを判定に機械学習の結果を用いることにより、精度の高い判定を自律的に行うことができる。
 本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。
 また、本実施形態では、抵抗溶接に関する検査を前提としているが、電流が流れ、その電流による熱で溶接されるものであれば、その他の溶接に適用されてもよい。
 また、高速カメラ202で得られた画像の時系列スペクトル解析が可能であれば、分光カメラ204が備えられていなくてもよい。
 また、比較判定部106は、溶接の異常を判定した際、異常と判定された溶接個体と同じグループの溶接個体に関する情報を、例えば、リストとして被溶接部品詳細調査指示に含めてもよい。ここで、グループとは、前記した機械学習によって分けられたグループである。また、溶接個体に関する情報は、溶接個体を識別する情報等である。溶接個体に関する情報として溶接個体の写真、溶接個体の溶接時における溶接条件、詳細調査の結果等が含まれてもよい。
 また、高速カメラ202の画像分析において、本実施形態では最も輝度が高くなる時刻での分析を想定しているが、これに限らない。溶接部321が冷却する時、溶接が不良となっている箇所や、異物が存在している箇所は冷却速度が遅くなる。そこで、データ分類部104は、通電から所定時間後の輝度分布でグループ分けを行ってもよい。あるいは、比較判定部106が、通電から所定時間後に輝度が所定値以上の箇所があるか否かで、異常の有無を判定してもよい。このようにすることにより、溶接判定の精度を向上させることができる。
 また、比較判定部106は、高速カメラ202の画像分析から、輝度の平均値等が所定値以下であるか、以上であるか等を基に、通電電流の過不足を判定してもよい。また、比較判定部106は、電流波形や、電圧波形のピーク値から、通電される電流値、電圧値の過不足を判定してもよい。このような場合、通電される電流値、電圧値の過不足に関する情報は、MES11に送られる。そして、MES11は、送られた電流値、電圧値の過不足に関する情報により、溶接機4が通電する電流値、電圧値を制御する。このようにすることにより、歩留まりの向上や、被溶接部品5に通電する電流値、電圧値の調整時間を短縮することができる。
 また、前記した各構成、機能、各部101,103,104,106、溶接データ記憶部102、データ分類記憶部105等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図4に示すように、前記した各構成、機能等は、CPU120等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、HD(Hard Disk)に格納すること以外に、メモリ110や、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
 また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
 1   サーバ
 2,31,32 情報取得装置
 3   個体識別装置
 4   溶接機
 5   被溶接部品
 6   検査装置
 7,21,22 PLC
 8   検査情報入力装置
 11  MES
 12  トレンドサーバ
 13  加工機
 101 データ取得処理部
 102 溶接データ記憶部
 103 解析部
 104 データ分類部
 105 データ分類記憶部
 106 比較判定部(判定部)
 111 処理部
 201 トリガ取得装置
 202 高速カメラ(温度計測部)
 203 電流計
 204 分光カメラ
 205 磁場計測装置(電流計測部、磁場計測部)
 206 変位計(変位計測部)
 207 電圧計
 208 温度・湿度計
 301,302,331 被溶接部材
 303,304 電極
 311 電流源
 312 スイッチ
 321 溶接部
 Z   製造システム
 Z1  溶接監視システム
 Z2  溶接システム

Claims (7)

  1.  抵抗溶接において、溶接部における局所的な電流を計測する電流計測部と、
     前記溶接部における局所的な温度を計測する温度計測部と、
     前記電流計測部から取得する電流情報と、過去の電流情報とを比較するとともに、前記温度計測部から取得する温度情報と、過去の温度情報とを比較することで、前記電流計測部から取得される電流情報及び前記温度計測部から取得される温度情報の少なくとも一方が異常であるか否かを判定する判定部と、
     を有することを特徴とする溶接監視システム。
  2.  前記電流計測部は、前記溶接部の近傍に設けられている磁場計測部であり、
     前記磁場計測部で計測された磁場の強度を基に、前記局所的な電流が計測される
     ことを特徴とする請求項1に記載の溶接監視システム。
  3.  前記温度計測部は、カメラであり、
     前記カメラから取得した前記溶接部の画像における輝度分布によって、前記局所的な温度が計測される
     ことを特徴とする請求項1に記載の溶接監視システム。
  4.  分光カメラを有し、
     前記判定部は、前記分光カメラから取得した前記溶接部の周波数分布と、過去の周波数分布とを比較し、
     前記電流計測部から取得する電流情報、前記温度計測部から取得する温度情報及び前記分光カメラから取得した溶接部の周波数分布の少なくとも一つが異常であるか否かを判定する
     ことを特徴とする請求項1に記載の溶接監視システム。
  5.  前記抵抗溶接の対象となる被溶接部品の長さの変化を計測する変位計測部を有し、
     前記判定部は、前記長さの変化を基に、前記長さの変化が異常であるか否かを判定し、
     前記電流計測部から取得する電流情報、前記温度計測部から取得する温度情報及び前記変位計測部から取得した前記被溶接部品の長さの変化の少なくとも一つが異常であるか否かを判定する
     ことを特徴とする請求項1に記載の溶接監視システム。
  6.  前記判定部は、
     機械学習の結果である正常グループと、異常グループとを前記過去の電流情報及び前記過去の温度情報として、前記電流計測部から取得する電流情報と、前記過去の電流情報とを比較するとともに、前記温度計測部から取得する温度情報と、前記過去の温度情報とを比較することで、前記電流計測部から取得する電流情報及び前記温度計測部から取得する温度情報の少なくとも一方が異常であるか否かを判定する
     ことを特徴とする請求項1に記載の溶接監視システム。
  7.  前記判定部は、MES(Manufacturing Execution System)に接続されている
     ことを特徴とする請求項1に記載の溶接監視システム。
PCT/JP2017/010495 2016-06-28 2017-03-15 溶接監視システム WO2018003202A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/311,710 US11325209B2 (en) 2016-06-28 2017-03-15 Welding monitoring system
CN201780039982.7A CN109414779B (zh) 2016-06-28 2017-03-15 焊接监视系统
PL17819571.5T PL3459672T3 (pl) 2016-06-28 2017-03-15 Układ monitorowania zgrzewania
EP17819571.5A EP3459672B1 (en) 2016-06-28 2017-03-15 Welding monitoring system
KR1020187036344A KR102133763B1 (ko) 2016-06-28 2017-03-15 용접 감시 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-127887 2016-06-28
JP2016127887A JP6815764B2 (ja) 2016-06-28 2016-06-28 溶接監視システム

Publications (1)

Publication Number Publication Date
WO2018003202A1 true WO2018003202A1 (ja) 2018-01-04

Family

ID=60787116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010495 WO2018003202A1 (ja) 2016-06-28 2017-03-15 溶接監視システム

Country Status (7)

Country Link
US (1) US11325209B2 (ja)
EP (1) EP3459672B1 (ja)
JP (1) JP6815764B2 (ja)
KR (1) KR102133763B1 (ja)
CN (1) CN109414779B (ja)
PL (1) PL3459672T3 (ja)
WO (1) WO2018003202A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659279B (zh) * 2018-02-02 2019-05-11 國立清華大學 基於擴充實境的加工規劃設備
RU2721478C1 (ru) * 2019-03-05 2020-05-19 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Автоматизированный контроль температур при сварке
JP2020156253A (ja) * 2019-03-22 2020-09-24 日立オートモティブシステムズ株式会社 接合部の検査方法及び接合部の検査装置
JP7403907B2 (ja) 2022-02-25 2023-12-25 ゼネラル・エレクトリック・カンパニイ 溶接品質を分析するためのシステムおよび方法
CN117548928A (zh) * 2024-01-12 2024-02-13 杭州峰景科技有限公司 一种焊机物联设备的芯片调度方法及装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102242248B1 (ko) * 2017-05-02 2021-04-20 주식회사 엘지화학 이차전지의 용접 검사장치 및 검사방법
JP6298562B1 (ja) * 2017-05-31 2018-03-20 伸和コントロールズ株式会社 状態監視装置、状態監視方法及びプログラム
JP6873019B2 (ja) * 2017-09-27 2021-05-19 株式会社日立製作所 溶接管理システム
CN108941873B (zh) * 2018-05-21 2024-04-19 上海圣缑电磁设备有限公司 电阻焊接电路及其动态测量与控制方法
JP7122925B2 (ja) * 2018-10-09 2022-08-22 株式会社日立製作所 接合過程監視システム
JP7191475B2 (ja) 2019-03-14 2022-12-19 株式会社Subaru 抵抗溶接制御システム
JP7221777B2 (ja) * 2019-04-25 2023-02-14 芝浦機械株式会社 積層造形監視システム
US11776072B2 (en) 2019-04-25 2023-10-03 Shibaura Machine Co., Ltd. Machine learning method, information processing device, computer program product, and additive manufacturing monitoring system
JP7267841B2 (ja) * 2019-05-30 2023-05-02 キヤノン株式会社 システムの制御方法、及びシステム
KR102213712B1 (ko) * 2019-11-19 2021-02-08 주식회사 비앤케이매크로 스마트공장 적용을 위한 실시간 용접 모니터링 시스템
KR102230886B1 (ko) * 2020-03-19 2021-03-22 동의대학교 산학협력단 이미지인식 기반의 프로젝션용접 결함 검출시스템
KR102330429B1 (ko) * 2020-03-19 2021-11-23 동의대학교 산학협력단 딥러닝 기반의 프로젝션용접 결함 검출방법
JP7310704B2 (ja) * 2020-05-18 2023-07-19 東芝三菱電機産業システム株式会社 溶接品質判定支援システム
KR102140966B1 (ko) * 2020-05-26 2020-08-05 (주)이너아이 용접부 비파괴 검사방법
CN111940900B (zh) * 2020-07-31 2022-06-03 深圳市润安科技发展有限公司 一种基于光器件焊接腕带内抗拉折部件的方法和系统
KR102376216B1 (ko) * 2020-08-06 2022-03-22 울산대학교 산학협력단 머신러닝을 이용한 자율공정 기반의 용접 모니터링 시스템 및 그 방법
WO2022040819A2 (en) * 2021-09-03 2022-03-03 Autometrics Manufacturing Technologies Inc. Computer-implemented monitoring of a welding operation
WO2023067975A1 (ja) * 2021-10-21 2023-04-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 異常検知装置、異常検知方法、及び、プログラム
KR102650245B1 (ko) * 2021-12-17 2024-03-27 주식회사 호원 레이저 용접 장치 및 그 제어 방법
WO2023063919A2 (en) * 2023-01-20 2023-04-20 Albaksan Diş Ticaret Ve Pazarlama A.Ş. Resistance welding machines data monitoring and reporting system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386382A (ja) * 1989-08-29 1991-04-11 Fuji Koon Seisakusho:Kk 抵抗溶接における溶接検査装置
JPH05337663A (ja) * 1991-10-22 1993-12-21 Mitsubishi Heavy Ind Ltd 溶接状況監視装置
FR2696369A1 (fr) * 1992-10-05 1994-04-08 Lorraine Laminage Procédé de contrôle de la qualité de la soudure par résistance de deux tôles et dispositif de soudage par résistance.
JPH0910970A (ja) * 1994-07-29 1997-01-14 Nagasaki Pref Gov レーザ溶接の溶接状態検出方法と装置
JPH10235490A (ja) * 1996-12-24 1998-09-08 Kawasaki Steel Corp 電気溶接機の溶接状態の評価方法および装置
JPH1190644A (ja) * 1997-09-19 1999-04-06 Seiwa Seisakusho:Kk 抵抗溶接方法およびその装置
JP2003080394A (ja) * 2001-09-10 2003-03-18 Toyota Motor Corp 溶接の品質評価装置および品質評価方法
JP2005342788A (ja) * 2004-05-06 2005-12-15 Nippon Steel Corp 鋼板のフラッシュバット溶接部の診断方法及び診断装置
JP2008216064A (ja) * 2007-03-05 2008-09-18 Jfe Steel Kk 溶接合否判定装置及び溶接合否判定方法
JP2012020336A (ja) * 2010-07-15 2012-02-02 Noogata Seiki Kk スポット溶接における一元制御・検知システム
JP2012236215A (ja) * 2011-05-12 2012-12-06 Daido Steel Co Ltd 溶削済み鋼材の表面検査方法および表面検査装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714816A (en) * 1987-06-15 1987-12-22 Cefin S.P.A. Monitoring facility for electric welding equipment, in particular as used for metal box manufacture
JPH049283A (ja) * 1990-04-25 1992-01-14 Mitsubishi Electric Corp 溶接部の品質モニタ方法
JP4428772B2 (ja) * 1999-09-28 2010-03-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP2001353579A (ja) * 2000-06-12 2001-12-25 Fujitsu Ten Ltd 溶接品質良否判定装置
FR2821682B1 (fr) * 2001-03-01 2003-05-30 Usinor Procede de controle et de commande d'un processus technique
US8445809B2 (en) * 2005-08-05 2013-05-21 Chrysler Group Llc Method and apparatus for resistance spot welding
CN101201339B (zh) * 2006-12-13 2012-05-30 天津科技大学 电阻点焊质量监测方法
DE102007031982A1 (de) * 2007-07-10 2009-01-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung und Regelung eines Schweißvorgangs
JP5152081B2 (ja) * 2009-04-09 2013-02-27 株式会社デンソー 外観検査装置
JP4756224B1 (ja) * 2011-01-11 2011-08-24 国立大学法人 岡山大学 スポット溶接の検査装置
CN103149513B (zh) * 2013-02-26 2015-06-24 中国科学院电工研究所 一种变压器局部放电超声源重建的定位方法及装置
JP6192321B2 (ja) 2013-03-19 2017-09-06 日立造船株式会社 溶接モニタリングシステム
KR101439758B1 (ko) * 2013-03-26 2014-09-16 주식회사 포스코 레이저 용접 결함 진단 장치 및 방법
CN105115626B (zh) * 2015-09-17 2018-02-23 李成 单芯高压电缆接头智能监测系统及智能监测方法
JP6279062B1 (ja) * 2016-12-20 2018-02-14 日新製鋼株式会社 溶接鋼管の突合わせ部の形状検出方法及びそれを用いた溶接鋼管の品質管理方法並びにその装置
JP6954792B2 (ja) * 2017-09-21 2021-10-27 株式会社日立製作所 接合工程ライン監視システム
DE102018127678A1 (de) * 2017-11-07 2019-05-09 Sigma Labs, Inc. Verfahren und Systeme zum Qualitätsrückschluss und zur Qualitätskontrolle bei additiven Herstellungsverfahren

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386382A (ja) * 1989-08-29 1991-04-11 Fuji Koon Seisakusho:Kk 抵抗溶接における溶接検査装置
JPH05337663A (ja) * 1991-10-22 1993-12-21 Mitsubishi Heavy Ind Ltd 溶接状況監視装置
FR2696369A1 (fr) * 1992-10-05 1994-04-08 Lorraine Laminage Procédé de contrôle de la qualité de la soudure par résistance de deux tôles et dispositif de soudage par résistance.
JPH0910970A (ja) * 1994-07-29 1997-01-14 Nagasaki Pref Gov レーザ溶接の溶接状態検出方法と装置
JPH10235490A (ja) * 1996-12-24 1998-09-08 Kawasaki Steel Corp 電気溶接機の溶接状態の評価方法および装置
JPH1190644A (ja) * 1997-09-19 1999-04-06 Seiwa Seisakusho:Kk 抵抗溶接方法およびその装置
JP2003080394A (ja) * 2001-09-10 2003-03-18 Toyota Motor Corp 溶接の品質評価装置および品質評価方法
JP2005342788A (ja) * 2004-05-06 2005-12-15 Nippon Steel Corp 鋼板のフラッシュバット溶接部の診断方法及び診断装置
JP2008216064A (ja) * 2007-03-05 2008-09-18 Jfe Steel Kk 溶接合否判定装置及び溶接合否判定方法
JP2012020336A (ja) * 2010-07-15 2012-02-02 Noogata Seiki Kk スポット溶接における一元制御・検知システム
JP2012236215A (ja) * 2011-05-12 2012-12-06 Daido Steel Co Ltd 溶削済み鋼材の表面検査方法および表面検査装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659279B (zh) * 2018-02-02 2019-05-11 國立清華大學 基於擴充實境的加工規劃設備
US10606241B2 (en) 2018-02-02 2020-03-31 National Tsing Hua University Process planning apparatus based on augmented reality
RU2721478C1 (ru) * 2019-03-05 2020-05-19 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Автоматизированный контроль температур при сварке
JP2020156253A (ja) * 2019-03-22 2020-09-24 日立オートモティブシステムズ株式会社 接合部の検査方法及び接合部の検査装置
JP7194055B2 (ja) 2019-03-22 2022-12-21 日立Astemo株式会社 接合部の検査方法及び接合部の検査装置
JP7403907B2 (ja) 2022-02-25 2023-12-25 ゼネラル・エレクトリック・カンパニイ 溶接品質を分析するためのシステムおよび方法
CN117548928A (zh) * 2024-01-12 2024-02-13 杭州峰景科技有限公司 一种焊机物联设备的芯片调度方法及装置
CN117548928B (zh) * 2024-01-12 2024-04-12 杭州峰景科技有限公司 一种焊机物联设备的芯片调度方法及装置

Also Published As

Publication number Publication date
EP3459672A4 (en) 2020-01-29
EP3459672B1 (en) 2023-11-08
KR102133763B1 (ko) 2020-07-15
JP2018001184A (ja) 2018-01-11
KR20190006551A (ko) 2019-01-18
CN109414779B (zh) 2024-02-06
CN109414779A (zh) 2019-03-01
US11325209B2 (en) 2022-05-10
EP3459672A1 (en) 2019-03-27
PL3459672T3 (pl) 2024-03-11
JP6815764B2 (ja) 2021-01-20
US20190210159A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2018003202A1 (ja) 溶接監視システム
US6937329B2 (en) Method for detecting and identifying defects in a laser beam weld seam
US8757469B2 (en) Binary classification of items of interest in a repeatable process
CN103071909A (zh) 在振动焊接过程中实时地检测和预测焊接质量
EP2624091B1 (en) A method for monitoring the quality of industrial processes and system therefrom
Sumesh et al. Establishing correlation between current and voltage signatures of the arc and weld defects in GMAW process
US20230201956A1 (en) Method for analyzing a laser machining process, system for analyzing a laser machining process, and laser machining system comprising such a system
Bračun et al. Stereo vision based measuring system for online welding path inspection
CN109664009A (zh) 一种前馈式电阻焊质量监控系统及方法
CN111862019B (zh) 一种热电光软多维信息融合电路智能检测与故障诊断方法
CN113302017A (zh) 用于检测弧焊中的焊接缺陷的方法和弧焊系统
CN106843129A (zh) 汽车焊接生产线点焊数据管理应用方法
US20220023978A1 (en) Method for monitoring the quality of ultrasonic welding
CN109239577A (zh) 一种机载电路板故障快速诊断方法
EP1269167B1 (en) Monitoring of resistance welding
CN110702686B (zh) 基于相干成像的定向能量沉积过程无损检测设备及方法
KR20150144138A (ko) 링 프로젝션 용접의 용접품질 평가방법
EP3315238B1 (en) Welding process control system for real-time tracking of the position of the welding torch by the use of fiber bragg grating based optical sensors ; use of such system
CN112975075B (zh) 用于监控焊接过程的系统
Brydak et al. Measuring methods of welding process parameters
JP2018176184A (ja) 接合監視システムおよび接合装置
EP2255917A1 (en) Device for detecting the thickness of the material to be welded with a welder and related welder fitted with the device
CN113714635A (zh) 激光加工装置
WO2024095756A1 (ja) 溶接状態の判定方法及び判定システム
CN117665546B (zh) 一种pcba板的自动化测试方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036344

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017819571

Country of ref document: EP

Effective date: 20181221