WO2017221961A1 - 立毛調人工皮革及びその製造方法 - Google Patents

立毛調人工皮革及びその製造方法 Download PDF

Info

Publication number
WO2017221961A1
WO2017221961A1 PCT/JP2017/022802 JP2017022802W WO2017221961A1 WO 2017221961 A1 WO2017221961 A1 WO 2017221961A1 JP 2017022802 W JP2017022802 W JP 2017022802W WO 2017221961 A1 WO2017221961 A1 WO 2017221961A1
Authority
WO
WIPO (PCT)
Prior art keywords
napped
artificial leather
fiber
elastic body
raised
Prior art date
Application number
PCT/JP2017/022802
Other languages
English (en)
French (fr)
Inventor
目黒 将司
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2018524129A priority Critical patent/JP7008018B2/ja
Priority to US16/306,697 priority patent/US10689802B2/en
Priority to CN201780031500.3A priority patent/CN109154134B/zh
Priority to EP17815429.0A priority patent/EP3476998B1/en
Priority to KR1020187033725A priority patent/KR102332017B1/ko
Publication of WO2017221961A1 publication Critical patent/WO2017221961A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using flocked webs or pile fabrics upon which a resin is applied; Teasing, raising web before resin application
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0006Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0009Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using knitted fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/007Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/007Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
    • D06N3/0075Napping, teasing, raising or abrading of the resin coating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/007Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
    • D06N3/0077Embossing; Pressing of the surface; Tumbling and crumbling; Cracking; Cooling; Heating, e.g. mirror finish
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • D06N3/145Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes two or more layers of polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/18Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials
    • D06N3/183Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials the layers are one next to the other
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2213/00Others characteristics
    • D06N2213/03Fibrous web coated on one side with at least two layers of the same polymer type, e.g. two coatings of polyolefin

Definitions

  • the present invention relates to a napped artificial leather used as a surface material for clothing, shoes, furniture, car seats, miscellaneous goods, and the like. More particularly, the present invention relates to a napped artificial leather that can maintain an elegant appearance quality when the surface is rubbed.
  • napped-like artificial leather such as suede-like artificial leather and nubuck-like artificial leather
  • Napped-toned artificial leather has a raised surface formed by raising a surface of a fabric such as a non-woven fabric of ultrafine fibers impregnated with a polymer elastic body.
  • the napped surface is rubbed, and a non-uniform and rough appearance quality may occur due to a dry dry touch.
  • Patent Document 1 describes a fiber entangled body made of ultrafine fibers having a single fiber fineness of 0.01 dtex or more and 0.50 dtex or less as an artificial leather having a natural nubuck leather-like wet feel and an elegant and uniform color appearance.
  • An artificial leather comprising a polymer elastic body, wherein at least one surface has napped, and an arithmetic average height Pa value of a cross-sectional curve on the napped surface side having the napped is 26 ⁇ m or more and 100 ⁇ m or less,
  • the arithmetic average height Pa value of the cross-sectional curve on the surface side is 20% or more and 80% or less of the cross-sectional roughness Pa value on the napped surface side.
  • the presence frequency is 1.8 or more and 20 or less per 1.0 mm, and the woven or knitted fabric is laminated on the other surface side at a lamination depth of 10% or more and 50% or less. Artificial leather is disclosed.
  • the present invention has an object to provide a napped-toned artificial leather in which the napped surface of the napped-toned artificial leather is less likely to generate a non-uniform rough appearance quality by a dry touch such as a rough surface by rubbing the napped surface.
  • the raised surface of raised artificial leather has been rubbed, and a non-uniform rough appearance quality may occur due to the dry touch.
  • Such appearance quality tended to become more prominent as the strength per one ultrafine fiber increased.
  • the rough appearance quality is that when the strength per one ultrafine fiber becomes high, the ultrafine fiber is difficult to break in the napping treatment, and the nap fibers that form the napped surface become long, and the napped surface is rubbed. If the ultrafine fibers are relatively thick, the ultrafine fibers that have covered the base are laid down.
  • the base which is a rough portion with few napped fibers, is exposed in some places, so that a surface with an inhomogeneous fiber density is formed by dry touch.
  • the ultrafine fibers on the napped surface are fixed in a laid state, and even if they are rubbed in either the forward direction or the reverse direction, the ultrafine fibers are laid down more than a certain level.
  • the inventors have found that the occurrence of the phenomenon as described above can be remarkably suppressed by adjusting the surface state to be hardly raised to the height, and have come to the present invention.
  • one aspect of the present invention is a non-woven fabric, a woven fabric, and a knitted fabric having a raised surface including raised fibers of an average fineness of 0.01 to 0.5 dtex impregnated with the first polymer elastic body.
  • the napped surface has an arithmetic average height (Sa) of 30 ⁇ m or less in both the forward direction and the reverse direction, and 100 ⁇ m or more from the average height.
  • Nap-like artificial material having a peak apex density (Spd) of 30/432 mm 2 or less in both the forward and reverse directions and a difference (absolute value) of 20/432 mm 2 or less. It is leather.
  • the ultrafine fibers forming the naps on the raised surface are coated with the second polymer elastic body.
  • the ultrafine fibers or between the ultrafine fibers and the first polymer elastic body are the second high fiber. It is preferably fixed with a molecular elastic body.
  • the ultrafine fibers near the roots or the ultrafine fibers and the first polymer elastic body are fixed by the second polymer elastic body. In this case, in the forward direction and the reverse direction, the ultrafine fibers that move freely are shortened and are preferably fixed so that they are not easily raised from a laid state.
  • the yarn toughness which is an index indicating the tenacity and rigidity of the fibers per ultrafine fiber, is 8 to 40 cN ⁇ % on average.
  • the yarn does not become too hard and becomes a fiber that is easily moved by friction, and the surface fiber is laid down to an appropriate level and appearance quality is improved.
  • the ultra-fine fibers are preferably long fibers.
  • the ultrafine fibers are easily pulled out by friction, it is preferable from the viewpoint that the ultrafine fibers are easily fixed so that they are not easily raised from a laid state.
  • the apparent density of the napped-tone artificial leather is preferably 0.4 to 0.7 g / cm 3 .
  • the apparent density is in such a range, it is possible to obtain a napped-tone artificial leather that is excellent in balance between a solid feeling that does not buckle, which is also called buckling, and a soft texture. To preferred.
  • another aspect of the present invention is a method for manufacturing a napped artificial leather according to any one of the above.
  • a napped artificial leather such as non-woven fabrics, woven fabrics, and knitted fabrics, which have a surface to be napped, containing ultrafine fibers having an average fineness of 0.01 to 0.5 dtex impregnated with the first polymer elastic body.
  • a step of preparing an artificial leather base material including a fabric a step of raising the surface of the artificial leather base material to be raised to form a raised surface, and an extra fine fiber forming the raised surface on the raised surface.
  • the napped-tone artificial leather according to this embodiment will be described in detail along with an example of a manufacturing method thereof.
  • the fabric in addition to the nonwoven fabric of ultrafine fibers, a fabric of ultrafine fibers, a knitted fabric of ultrafine fibers, or a fiber structure formed by combining these, and the one impregnated with the first polymer elastic body therein. Can be mentioned.
  • a nonwoven fabric of ultrafine fibers impregnated with a first polymer elastic body is used as a fabric.
  • a fiber web of ultrafine fiber generating type fibers is produced.
  • a method for producing a fiber web for example, a method in which ultrafine fiber-generating fibers are melt-spun and collected as long fibers without intentionally cutting them, or after being cut into staples, a known tangle is used. The method of performing a combined process is mentioned.
  • the long fibers are sometimes referred to as filaments, and are continuous fibers that are not staples cut to a predetermined length.
  • the length of the long fiber is, for example, preferably 100 mm or more, and more preferably 200 mm or more from the viewpoint that the fiber density can be sufficiently increased.
  • the upper limit of the long fiber is not particularly limited, but may be a fiber length of several m, several hundreds m, several km or more continuously spun.
  • the ultrafine fiber generation type fiber is obtained from the point that it is difficult to pull out the ultrafine fiber by friction and the napped-toned artificial leather fixed so that the ultrafine fiber is not easily laid from being laid down is obtained. It is particularly preferred to produce a long fiber web (spunbond sheet).
  • a long fiber web spunbond sheet
  • the ultrafine fiber generating fiber is a fiber for forming ultrafine fibers by subjecting the spun fibers to chemical post treatment or physical post treatment.
  • the sea component polymer serving as the matrix in the sea component polymer serving as the matrix, the island component polymer that is a different type of domain from the sea component is dispersed, and the sea component is removed later.
  • Sea-island type composite fibers that form fiber bundle-shaped ultrafine fibers mainly composed of island component polymers, and a plurality of different resin components are alternately arranged on the outer periphery of the fibers to form petals and overlapping shapes.
  • a separation split type composite fiber that is divided by peeling off each resin component to form a bundle-like ultrafine fiber can be used.
  • sea-island type composite fiber fiber damage such as cracking, bending, and cutting is suppressed when performing an entanglement process such as a needle punch process described later.
  • an entanglement process such as a needle punch process described later.
  • Sea-island type composite fibers are multicomponent composite fibers composed of at least two types of polymers, and have a cross section in which island-component polymers are dispersed in a matrix composed of sea component polymers.
  • a long-fiber web of sea-island type composite fibers is formed by melt-spinning sea-island-type composite fibers and collecting them on a net without cutting them.
  • the island component polymer is not particularly limited as long as it is a polymer that can form ultrafine fibers.
  • PET polyethylene terephthalate
  • PTT polytrimethylene terephthalate
  • PBT polybutylene terephthalate
  • polyester resins such as polyester elastic bodies, or their modified products by isophthalic acid, etc .
  • polyester resins such as PET, PTT, PBT, and these modified polyesters are preferable because they are easily shrunk by heat treatment, and thus a napped artificial leather with a sense of solidness can be obtained.
  • polyamide-based resins such as polyamide 6 and polyamide 66 have hygroscopic and supple ultrafine fibers compared to polyester-based resins, so that napped artificial leather having a soft texture with a swollen feeling can be obtained. It is preferable from the point.
  • the island component polymer may further contain a colorant such as a pigment, an antioxidant, an ultraviolet absorber, a fluorescent agent, an antifungal agent, inorganic fine particles and the like as long as the effects of the present invention are not impaired.
  • sea component polymer a polymer having higher solubility in a solvent or decomposability with a decomposing agent than an island component polymer is selected.
  • a polymer having a low affinity with the island component polymer and having a melt viscosity and / or a surface tension smaller than the island component polymer under the spinning conditions is preferable from the viewpoint of excellent spinning stability of the sea-island composite fiber.
  • Specific examples of such sea component polymers include, for example, water-soluble polyvinyl alcohol resins (water-soluble PVA), polyethylene, polypropylene, polystyrene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, styrene.
  • water-soluble PVA is preferable from the viewpoint of low environmental load because it can be dissolved and removed with an aqueous solvent without using an organic solvent.
  • Sea-island type composite fibers can be produced by melt spinning in which a sea component polymer and an island component polymer are melt-extruded from a composite spinning die.
  • the base temperature of the composite spinning base is not particularly limited as long as it is higher than the melting point of each polymer constituting the sea-island type composite fiber, but is usually in the range of 180 to 350 ° C.
  • the sea-island type composite fiber is not particularly limited as long as an ultrafine fiber having an average fineness of 0.01 to 0.5 dtex can be formed, but it is preferably 0.5 to 10 dtex, more preferably 0.7 to 5 dtex.
  • the average area ratio of the sea component polymer to the island component polymer in the cross section of the sea-island composite fiber is preferably 5/95 to 70/30, more preferably 10/90 to 50/50.
  • the number of island component domains in the cross section of the sea-island composite fiber is not particularly limited, but is preferably about 5 to 1000, more preferably about 10 to 300, from the viewpoint of industrial productivity.
  • the melted sea-island type composite fiber discharged from the composite spinning nozzle is cooled by a cooling device, and further, it corresponds to a take-up speed of 1000 to 6000 m / min so as to achieve a desired fineness by a suction device such as an air jet nozzle. It is pulled down by the high-speed airflow at the speed of Then, the long fiber web is obtained by depositing the stretched long fibers on a collecting surface such as a movable net. In addition, as needed, in order to stabilize a form, you may make it press-bond partially by carrying out the hot press of the long fiber web further.
  • the basis weight of the long fiber web thus obtained is not particularly limited, but is preferably in the range of 10 to 1000 g / m 2 , for example.
  • an entangled web is manufactured by performing an entanglement process to the obtained long fiber web.
  • the entanglement treatment of the long fiber web for example, after laminating a plurality of layers in the thickness direction using a cross wrapper or the like, at least one barb is formed simultaneously or alternately from both sides.
  • An example of such a process is needle punching under conditions of penetration.
  • the number of punches per 1 cm 2 by the needle punch is preferably 2000 to 5000 punches / cm 2 , more preferably 2500 to 4500 punches / cm 2 .
  • the number of punches per 1 cm 2 is too small, the entangled state of the nonwoven fabric tends to be low, and the ultrafine fibers tend to come off easily due to friction on the raised surfaces.
  • there are too many punches per 1 cm ⁇ 2 > an ultrafine fiber will be cut
  • the long fiber web may be provided with an oil agent or an antistatic agent at any stage from the spinning process of the sea-island composite fiber to the entanglement process. Further, if necessary, the entangled state of the long fiber web may be made dense in advance by performing a shrinking treatment in which the long fiber web is immersed in warm water of about 70 to 150 ° C. Further, after the needle punch, the fiber density may be further refined by hot press treatment to give form stability.
  • the heat shrink treatment include, for example, a method in which the entangled web is brought into contact with water vapor, or water is applied to the entangled web, and then the water applied to the entangled web is heated by electromagnetic waves such as heated air and infrared rays. A method is mentioned.
  • hot press treatment Further, the fiber density may be increased.
  • the change in the basis weight of the entangled web in the shrinkage treatment step is 1.1 times (mass ratio) or more, further 1.3 times or more, 2 times or less, and 1 more than the basis weight before the shrinkage treatment. .6 times or less is preferable.
  • the basis weight of the entangled web thus obtained is preferably in the range of about 100 to 2000 g / m 2 .
  • a non-woven fabric of ultra-fine fibers that is an entangled body of fiber bundle-like ultra-fine fibers is obtained.
  • a method for removing the sea component polymer from the sea-island type composite fiber there is a conventionally known method for forming an ultrafine fiber such that the entangled web is treated with a solvent or a decomposing agent that can selectively remove only the sea component polymer. It can be used without particular limitation.
  • sea component polymer when water-soluble PVA is used as the sea component polymer, hot water is used as a solvent, and when an easily alkali-degradable modified polyester is used as the sea component polymer, a sodium hydroxide aqueous solution or the like is used. An alkaline decomposing agent is used.
  • water-soluble PVA When water-soluble PVA is used as the sea component polymer, it can be extracted and removed until the water-soluble PVA removal rate is about 95 to 100% by treatment in hot water at 80 to 100 ° C. for 100 to 600 seconds. preferable. In addition, water-soluble PVA can be efficiently extracted and removed by repeating the dip nip process.
  • the sea component polymer When water-soluble PVA is used, the sea component polymer can be selectively removed without using an organic solvent, which is preferable from the viewpoint that the environmental load is low and generation of VOC can be suppressed.
  • the average fineness of the ultrafine fibers is preferably 0.01 to 0.5 dtex, more preferably 0.05 to 0.4 dtex, and particularly preferably 0.1 to 0.35 dtex.
  • the average fineness of the ultrafine fibers exceeds 0.5 dtex, the stiffness of the ultrafine fibers becomes too high, and the ultrafine fibers on the napped surface are easily rubbed, which makes it difficult to obtain a surface state described later.
  • the average fineness of the ultrafine fibers is less than 0.01 dtex, the color developability and light resistance are lowered.
  • the average fineness is obtained by magnifying a cross section parallel to the thickness direction of the napped-tone artificial leather at a magnification of 3000 times with a scanning electron microscope (SEM), and forming fibers from 15 fiber diameters selected uniformly. It is obtained as an average value calculated using the density of the resin.
  • SEM scanning electron microscope
  • the basis weight of the nonwoven fabric of ultrafine fibers is preferably 140 to 3000 g / m 2 , more preferably 200 to 2000 g / m 2 .
  • the first polymer elastic body is impregnated into the internal voids of the nonwoven fabric of ultrafine fibers.
  • the first polymer elastic body include elastic bodies such as polyurethane, acrylic resin, acrylonitrile resin, olefin resin, and polyester resin. Of these, polyurethane is preferred.
  • the polyurethane is particularly preferably a polyurethane that is coagulated from a polyurethane emulsion or a polyurethane dispersion dispersed in an aqueous solvent. Further, when the emulsion has a heat-sensitive gelation property, the emulsion particles are thermally gelled without migration, so that the polymer elastic body can be uniformly applied to the nonwoven fabric.
  • a dry method for drying and solidifying, or a method for solidifying by a wet method or the like is preferable from the viewpoint that a void is formed between the surface and the surface of the ultrafine fiber, so that it does not become too hard.
  • a curing treatment in which heat treatment is performed after solidification and drying may be performed as necessary in order to promote crosslinking.
  • the impregnation method of the first polymer elastic body emulsion, dispersion liquid, solution, etc. a dip nip method in which the treatment of squeezing to a predetermined impregnation state with a press roll or the like is performed once or plural times, Examples thereof include a coating method, a knife coating method, a roll coating method, a comma coating method, and a spray coating method.
  • the first polymer elastic body is a colorant such as a dye or a pigment, a coagulation regulator, an antioxidant, an ultraviolet absorber, a fluorescent agent, an antifungal agent, and a penetrating agent as long as the effects of the present invention are not impaired.
  • the content ratio of the first polymer elastic body is 0.1 to 60% by mass, more preferably 0.5 to 50% by mass, and particularly 1 to 30% by mass with respect to the mass of the ultrafine fiber. It is preferable from the viewpoint that a napped-tone artificial leather excellent in balance of fullness and flexibility can be obtained.
  • the content ratio of the first polymer elastic body is too high, the napped artificial leather tends to be rubber-like and hardened.
  • the content rate of a 1st polymeric elastic body is too low, it will become easy to drag
  • a fiber substrate which is a non-woven fabric of ultrafine fibers impregnated with the first polymer elastic body is obtained.
  • the fiber base material obtained in this manner is preferably sliced into a plurality of pieces in a direction perpendicular to the thickness direction as necessary, or adjusted in thickness by grinding and then at least one side is preferably 120. It is preferable that the napping process is performed by buffing using sand paper or emery paper of about ⁇ 600, more preferably about 320 to 600. In this way, an artificial leather base material having a raised surface in which ultrafine fibers raised on one side or both sides are present is obtained.
  • a second polymer elastic body to the raised surface of the artificial leather base material in order to suppress the pull-out of the ultrafine fibers that have been subjected to the raising treatment or to make it difficult to be caused by friction.
  • a resin liquid containing the second polymer elastic body After applying a resin liquid containing the second polymer elastic body to the raised surface, it is solidified to adhere the second polymer elastic body to the ultrafine fiber.
  • the ultrafine fiber existing on the raised surface is constrained by the second polymer elastic body, and the ultrafine fiber is removed. And the fine fibers are not easily caused by friction.
  • adjusting the amount of application of the resin liquid containing the second polymer elastic body on the raised surface it is possible to obtain a semi-silver-like surface in which the raised surface and the silver surface layer are mixed.
  • the second polymer elastic body may be the same as the first polymer elastic body or may be of a different type, molecular weight or the like.
  • Specific examples of the second polymer elastic body include elastic bodies such as polyurethane, acrylic resin, acrylonitrile resin, olefin resin, and polyester resin. Among these, polyurethane is preferable because it is easily attached to ultrafine fibers.
  • the resin liquid a solution obtained by dissolving a resin in a solvent, an emulsion obtained by emulsifying and dispersing a resin, and a dispersion liquid obtained by dispersing a resin in an aqueous solvent are used.
  • a resin solution obtained by dissolving a resin in a solvent such as N, N-dimethylformamide (DMF) is preferable in that the ultrafine fibers are less likely to be caused by friction because they can particularly firmly fix the vicinity of the roots of the ultrafine fibers.
  • a solvent such as N, N-dimethylformamide (DMF)
  • Gravure coating method, bar coating method, knife coating method, roll coating method, comma coating method, spray coating method can be used to apply the resin solution containing the second polymer elastic body to the raised surface of the artificial leather base. Etc. Then, by applying a resin solution containing the second polymer elastic body to the ultrafine fibers of the raised surface of the artificial leather base material, and drying and solidifying as necessary, the ultrafine fibers subjected to the napped treatment on the raised surface are obtained. A second polymer elastic body is applied. In order to further improve the adhesion to the ultrafine fibers, it is more preferable to dissolve the solvent in the second polymer elastic body after drying, re-dissolve, and then dry.
  • the second polymer elastic body also has a colorant such as a dye or a pigment, a coagulation regulator, an antioxidant, an ultraviolet absorber, a fluorescent agent, an antifungal agent, a penetrating agent, a quenching agent, and the like within a range not impairing the effects of the present invention. Further contains foaming agent, lubricant, water repellent, oil repellent, thickener, extender, curing accelerator, foaming agent, water-soluble polymer compound such as polyvinyl alcohol and carboxymethylcellulose, inorganic fine particles, conductive agent, etc. Also good.
  • a colorant such as a dye or a pigment, a coagulation regulator, an antioxidant, an ultraviolet absorber, a fluorescent agent, an antifungal agent, a penetrating agent, a quenching agent, and the like within a range not impairing the effects of the present invention.
  • foaming agent lubricant, water repellent, oil repellent, thickener, extender, curing accelerator, foam
  • the content (solid content) of the second polymer elastic body is 1 to 10 g / m 2 , more preferably 2 to 8 g / m 2 with respect to the raised surface of the artificial leather base material. It is preferable because the length of the ultrafine fiber that can move freely can be shortened by firmly fixing the ultrafine fiber without making it too hard.
  • the artificial leather base is usually dyed.
  • An appropriate dye is appropriately selected depending on the type of ultrafine fiber.
  • the ultrafine fiber is formed from a polyester resin, it is preferable to dye with a disperse dye or a cationic dye.
  • disperse dyes include benzene azo dyes (monoazo, disazo, etc.), heterocyclic azo dyes (thiazole azo, benzothiazole azo, quinoline azo, pyridine azo, imidazole azo, thiophenazo, etc.), anthraquinone dyes, condensation And dyes such as quinophthalene, styryl, and coumarin.
  • dyes having the “Disperse” prefix are commercially available, for example, as dyes having the “Disperse” prefix. These may be used alone or in combination of two or more.
  • a high-pressure liquid dyeing method a jigger dyeing method, a thermosol continuous dyeing machine method, a sublimation printing method, or the like can be used without any particular limitation.
  • the artificial leather base material is further subjected to shrinkage processing and sag softening treatment to give flexibility to adjust the texture, reverse seal brushing treatment, antifouling treatment, hydrophilic treatment, lubricant treatment,
  • a finishing treatment such as a softener treatment, an antioxidant treatment, an ultraviolet absorber treatment, a fluorescent agent treatment, or a flame retardant treatment may be performed.
  • shrinking process there is a process in which an artificial leather substrate is brought into close contact with an elastic sheet, mechanically shrunk in a vertical direction, and heat-treated by heat treatment in the contracted state. This shrinking process will be described in more detail.
  • fiber orientation is achieved by mechanically shrinking the artificial leather base material in the vertical direction (the direction of the production line or the fiber orientation), heat-treating the fibers while shrinking, and heat setting.
  • the fibers are caused to form micro waviness. Since such swells are set in a state where the fibers are not stretched and contracted, elasticity is imparted in the vertical direction.
  • the shrinking processing for example, an artificial leather base material is brought into close contact with a surface of a thick elastic sheet (rubber sheet, felt, etc.) having a thickness of several centimeters or more and stretched in the vertical direction, and the surface of the elastic sheet is applied.
  • the artificial leather substrate is contracted in the vertical direction by elastically recovering from the stretched state to the state before stretching.
  • the artificial leather base material is strongly shrunk in the direction of travel (vertical direction). It is preferable that the artificial leather base material subjected to the shrinkage processing has a micro-bending structure (undulation structure) made of a bundle of ultrafine fibers and an arbitrary polymer elastic body.
  • the micro-bending structure is a wavy structure that occurs along the vertical direction as a result of the artificial leather base material shrinking in the vertical direction, and the artificial leather base material that has been subjected to shrinkage processing includes a fabric containing ultrafine fibers.
  • a structure is easily formed.
  • the waviness structure does not need to be continuous and may be discontinuous in the vertical direction.
  • the artificial leather base material subjected to the shrinkage processing is not stretchable of the fiber itself, but stretches in the vertical direction by such a change (elongation) of the buckling structure.
  • the napped surface has an arithmetic average height (Sa) of 30 ⁇ m or less in both the forward direction and the reverse direction in the surface roughness measurement according to ISO 25178, and the average
  • the peak vertex density (Spd) having a height of 100 ⁇ m or more from the height is 30/432 mm 2 or less in both the forward direction and the reverse direction, and the difference (absolute value) is 20/432 mm 2 or less. It has been adjusted to be.
  • ISO 25178 surface roughness measurement stipulates a method for three-dimensionally measuring the surface state with a contact or non-contact surface roughness / shape measuring machine.
  • the arithmetic average height (Sa) represents an average of absolute values of differences in height of each point with respect to the average surface.
  • the peak apex density (Spd) having a height of 100 ⁇ m or more from the average height represents the number of peak apexes having a height of 100 ⁇ m or more from the average height among the number of peak apexes per unit area.
  • the normal direction of the raised surface is the direction in which the raised hair is fallen and laid down when the raised surface is trimmed with a seal brush, and the opposite direction of the raised surface is when the hair is trimmed with a seal brush This is the direction in which napping occurs.
  • the arithmetic average height (Sa) of the napped surface of the napped-tone artificial leather is 30 ⁇ m or less in both the forward direction and the reverse direction, and is 100 ⁇ m or higher from the average height.
  • the peak vertex density (Spd) having a thickness is adjusted to be 30/432 mm 2 or less in both the forward and reverse directions, and the difference (absolute value) thereof is adjusted to 20/432 mm 2 or less. .
  • the ultrafine fibers are not raised to a certain height and a certain degree of lighting can be formed. Moreover, the occurrence of non-uniform rough appearance quality by dry touch due to friction of the raised surface is suppressed.
  • the arithmetic average height (Sa) of the raised surface of the raised leather artificial leather is 30 ⁇ m or less in both the forward direction and the reverse direction, preferably 28 ⁇ m or less, more preferably 26 ⁇ m or less, and most preferably 24 ⁇ m or less.
  • the arithmetic average height (Sa) exceeds 30 ⁇ m in either the forward direction or the reverse direction, the ultrafine fibers that move freely become too long due to friction of the raised surfaces, resulting in non-uniform and dry There is a tendency to have a rough appearance with a touch.
  • the difference in appearance in both directions becomes large and the uniformity is impaired.
  • the peak apex density (Spd) having a height of 100 ⁇ m or more from the average height of the napped surface of the napped-tone artificial leather is 30/432 mm 2 or less in both the forward direction and the reverse direction. Preferably, it is 20/432 mm 2 or less, more preferably 18/432 mm 2 or less.
  • the peak vertex density (Spd) exceeds 30/432 mm 2 in either the normal direction or the reverse direction the napped surface is rubbed, resulting in a rough appearance quality that is dry touch.
  • the difference in appearance in both directions becomes large and the uniformity is impaired.
  • the peak vertex density (Spd) is the number of peak peaks where the difference between the forward direction and the reverse direction is 20/432 mm 2 or less in absolute value, preferably 18/432 mm 2 or less, more preferably Is 16/432 mm 2 or less.
  • the greater the number of likely ultrafine fibers motion by the napped surface is friction when the difference of the forward first and reverse second direction summit point density (Spd) is more than 20/432 mm 2 in absolute value, as crackling Rough appearance quality.
  • the forward direction or the reverse direction exceeds 30/432 mm 2 , the difference in appearance between the two directions becomes large and the uniformity is impaired.
  • the surface state of the napped-tone artificial leather of the present embodiment as described above, it is preferable to adjust by the following treatment. For example, by changing the length of the ultrafine fiber to a moderately short length when raising the surface to be raised, the appearance change due to the ultrafine fibers moving in a random direction when the raised surface is rubbed is suppressed. Is done. Moreover, by adjusting the coating amount of the second polymer elastic body and fixing the ultrafine fibers, the ultrafine fibers that have escaped from the surface are gradually lengthened, and the hairs gather and become large. The formation of fiber clumps is suppressed.
  • the yarn toughness which is an index indicating the tenacity and rigidity of the fiber per ultrafine fiber, is 8 to 40 cN ⁇ %, more preferably 10 to 30 cN ⁇ %.
  • the yarn toughness is a tensile toughness per one ultrafine fiber that can be calculated as described later.
  • the yarn toughness is too high, ultrafine fibers tend to occur when the napped surface is rubbed, and there is a tendency to have a non-uniform rough appearance quality with a dry dry touch. On the other hand, when the yarn toughness is too low, the color developability and fastness when dyed tend to be lowered.
  • the apparent density of the napped-tone artificial leather is 0.4 to 0.7 g / cm 3 , and further 0.45 to 0.6 g / cm 3 is excellent in balance between a solid feeling that does not break and a soft texture. It is preferable from the standpoint that a raised nap-like artificial leather is obtained. If the apparent density of the napped-tone artificial leather is too low, it will be broken easily due to the lack of solidity, and the fine fibers will be dragged out by rubbing the napped surface, resulting in a non-homogeneous dry touch. It tends to be a rough appearance quality. On the other hand, when the apparent density of the napped-tone artificial leather is too high, the supple texture tends to decrease.
  • PVA polyvinyl alcohol
  • PET isophthalic acid unit content of 6 mol%
  • the molten fiber discharged from the nozzle holes is drawn by an air jet nozzle type suction device in which the pressure of the airflow is adjusted so that the spinning speed is 3700 m / min, and the sea island type having an average fineness of 4.8 dtex.
  • Composite long fibers were spun.
  • the spun sea-island composite long fibers were continuously deposited on the movable net while being sucked from the back of the net.
  • a long fiber web (spunbond sheet) having a basis weight of about 54 g / m 2 was obtained.
  • the obtained web entangled sheet was steam-treated at 110 ° C. and 23.5% RH, and the area was shrunk by 48%. Then, after drying in an oven at 90 to 110 ° C., it is further heat-pressed at 115 ° C. to be subjected to heat shrink treatment with a basis weight of 1382 g / m 2 , an apparent density of 0.682 g / cm 3 , and a thickness of 2.03 mm. A web entangled sheet was obtained.
  • an emulsion of polyurethane elastic body (solid content: 22.5% by mass) was impregnated with pick up 50% in the web-entangled sheet subjected to the heat shrinkage treatment.
  • the polyurethane elastic body is a polycarbonate non-yellowing polyurethane.
  • 4.9 parts by mass of a carbodiimide-based crosslinking agent and 6.4 parts by mass of ammonium sulfate are added to 100 parts by mass of the polyurethane elastic body, and the solid content of the polyurethane elastic body is 13% with respect to the mass of the ultrafine fibers. It was adjusted to become.
  • the polyurethane elastic body forms a crosslinked structure by heat treatment.
  • the heat entangled web entangled sheet impregnated with the emulsion was dried at 115 ° C. in a 25% RH atmosphere, and further dried at 150 ° C.
  • the web-entangled sheet filled with the polyurethane elastic body was immersed in hot water at 95 ° C. for 10 minutes while being subjected to nip treatment and high-pressure water flow treatment to dissolve and remove PVA, and further dried.
  • an entangled body of fiber bundles of polyurethane elastic bodies and long fibers of ultrafine fibers having a single fiber fineness of 0.30 dtex, a basis weight of 1097 g / m 2 , an apparent density of 0.572 g / cm 3 and a thickness of 1.92 mm.
  • a composite with a non-woven fabric was obtained.
  • a composite of a polyurethane elastic body and a nonwoven fabric which is an entangled body of fiber bundles of long fibers of ultrafine fibers was sliced into two pieces with an equal thickness. Then, by using # 120 paper for the back surface of the slice piece, # 240, # 320, and # 600 paper for the main surface, and grinding both surfaces under the conditions of a speed of 3 m / min and a rotation speed of 650 rpm, the basis weight is 391 g / m 2. An artificial leather base material having an apparent density of 0.536 g / cm 3 and a thickness of 0.73 mm was obtained.
  • a shrinkage processing treatment was performed. Specifically, a humidifying part, a shrinking part that shrinks a napped-tone artificial leather base material continuously sent from the humidifying part, and a heat setting part that heat sets the fabric shrink-processed by the shrinking part.
  • the fineness of the ultrafine fiber was 0.323 dtex, a suede-like napped artificial leather having a basis weight of 442 g / m 2 , an apparent density of 0.526 g / cm 3 , and a thickness of 0.84 mm was obtained.
  • the thread toughness which is the tensile toughness of one ultrafine fiber forming the nonwoven fabric contained in the napped-tone artificial leather, was 22.9 cN ⁇ %.
  • the yarn toughness was measured and calculated as follows.
  • the surface condition of the raised surface of the raised leather is ISO 25178 (surface roughness) using a “one-shot 3D measurement macroscope VR-3200” (manufactured by Keyence Corporation), which is a non-contact type surface roughness / shape measuring machine. Measurement). Specifically, the raised surface of the raised leather was trimmed with a seal brush in each of the forward direction and the reverse direction. Then, with a structured illumination light irradiated from a high-brightness LED over a range of 18 mm ⁇ 24 mm of the raised napped surface, a fringe projection image was photographed with a magnification of 12 ⁇ with a 4 million pixel monochrome C-MOS camera.
  • FIG. 3 shows a 3D image when the surface of the napped artificial leather obtained in Example 1 is measured as described above.
  • FIG. 3A shows the forward direction
  • FIG. 3B shows the reverse direction.
  • the post-friction quality of the napped surface was measured according to the following evaluation method.
  • the napped surface of the obtained napped-tone artificial leather was subjected to the inverse martindale measurement of martindale measurement (JIS L 1096). Specifically, the raised surface of the original fabric of the raised artificial leather set on the pedestal in an unloaded state was rubbed 50 times with the standard friction cloth SM25, and the appearance at that time was judged according to the following criteria.
  • A Even after rubbing in the forward direction and the reverse direction, the appearance was uniform and dense.
  • B When rubbing in the direction of the reverse eye, a rough unevenness and a rough appearance with a non-homogeneous appearance with a dry touch such that the ultrafine fiber becomes rough and the base can be seen clearly appeared.
  • FIG. 1 shows a photograph of the surface after evaluation of the post-friction quality of the napped surface of the napped artificial leather obtained in Example 1, and napping of the napped artificial leather obtained in Comparative Example 1 described later in FIG.
  • the photograph of the surface after evaluation of the quality after friction of a surface is shown.
  • Example 2 In Example 1, instead of forming an ultrafine fiber having a single fiber fineness design value of 0.30 dtex, a raised fiber artificial leather was similarly formed except that an ultrafine fiber having a single fiber fineness design value of 0.25 dtex was formed. Obtained and evaluated. The results are shown in Table 1.
  • Example 3 In Example 1, instead of forming ultrafine fibers having a single fiber fineness of 0.30 dtex, ultrafine fibers having a single fiber fineness of 0.20 dtex were formed, and the formation of the web entangled sheet was performed. instead of needle-punched a critical condition at 4189 punches / cm 2, it is in the same manner except that the needle-punched in 4277 punches / cm 2 to obtain a napped artificial leather and was evaluated. The results are shown in Table 1.
  • Example 4 In Example 1, instead of forming an ultrafine fiber having a single fiber fineness design value of 0.30 dtex, an ultrafine fiber having a single fiber fineness design value of 0.10 dtex was formed, and in forming a web entangled sheet Napped artificial leather was obtained and evaluated in the same manner except that the stack was needle punched at 3745 punch / cm 2 instead of needle punched at 4189 punch / cm 2 . The results are shown in Table 1.
  • Example 5 In Example 1, instead of forming an ultrafine fiber having a single fiber fineness design value of 0.30 dtex, an ultrafine fiber having a single fiber fineness design value of 0.08 dtex was formed, and in forming a web entangled sheet Napped artificial leather was obtained and evaluated in the same manner except that the stack was needle punched at 3745 punch / cm 2 instead of needle punched at 4189 punch / cm 2 . The results are shown in Table 1.
  • Example 6 napped artificial leather was obtained and evaluated in the same manner except that the polyurethane emulsion was applied instead of applying the polyurethane solution in the step of applying the second polymer elastic body. The results are shown in Table 1.
  • Example 1 napped-tone artificial leather was obtained and evaluated in the same manner except that the step of applying the second polymer elastic body was omitted. The results are shown in Table 1.
  • FIG. 4 shows a 3D image when the surface of the napped artificial leather obtained in Comparative Example 1 is measured as described above. 4A shows the forward direction, and FIG. 4B shows the reverse direction.
  • Example 2 In Example 1, the process of applying the second polymer elastic body was omitted, and the process of applying the flame retardant treatment and the shrinking treatment to the back surface of the napped artificial leather base material was omitted. Napped artificial leather was obtained and evaluated. The results are shown in Table 1.
  • Example 2 napped-toned artificial leather was obtained and evaluated in the same manner except that the step of applying the second polymer elastic body was omitted. The results are shown in Table 1.
  • Example 2 the step of applying the second polymer elastic body was omitted, and the same procedure was performed except that the step of performing the flame retardant treatment and the shrinkage processing treatment on the back surface of the napped artificial leather base material was omitted. Napped artificial leather was obtained and evaluated. The results are shown in Table 1.
  • the napped artificial leather obtained in the present invention is preferably used as a skin material for clothing, shoes, furniture, car seats, miscellaneous goods, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

第一の高分子弾性体が含浸付与された、平均繊度0.01~0.5dtexの極細繊維の立毛を含む立毛面を有する布帛を含み、立毛面は、ISO 25178に準じた面粗さ測定において、算術平均高さ(Sa)が、順目方向及び逆目方向の両方向において30μm以下であり、平均高さから100μm以上の高さを有する山頂点密度(Spd)が、順目方向及び逆目方向の両方向において30/432mm2以下であり、且つそれらの差(絶対値)が20/mm2以下である立毛調人工皮革である。

Description

立毛調人工皮革及びその製造方法
 本発明は、衣料,靴,家具,カーシート,雑貨製品等の表面素材として用いられる立毛調人工皮革に関する。詳しくは、表面が摩擦された場合に優美な外観品位を維持できる立毛調人工皮革に関する。
 従来、スエード調人工皮革やヌバック調人工皮革のような立毛調人工皮革が知られている。立毛調人工皮革は、高分子弾性体が含浸付与された極細繊維の不織布等の布帛の表面を、立毛化処理して形成された立毛面を有する。立毛調人工皮革においては、立毛面が摩擦されることによって、ガサガサしたようなドライタッチで不均質な粗い外観品位が生じることがあった。
 ヌバック調人工皮革の外観を向上させる技術としては次のものが知られている。下記特許文献1は、天然のヌバック皮革調のウェットな触感と優美で均一な色調の外観を有する人工皮革として、単繊維繊度が0.01dtex以上0.50dtex以下の極細繊維からなる繊維絡合体と高分子弾性体を含む人工皮革であって、少なくとも一方の面が立毛を有しており、この立毛を有する立毛面側の断面曲線の算術平均高さPa値が26μm以上100μm以下であり、他方の面側の断面曲線の算術平均高さPa値が、前記の立毛面側の断面粗さPa値の20%以上80%以下であり、前記立毛面側の断面曲線において、凸部の頂点の存在頻度が1.0mmあたり1.8個以上20個以下であり、前記の他方の面側に、織編物が積層深さ10%以上50%以下の位置で積層されていることを特徴とする人工皮革を開示する。
WO2015/151872号パンフレット
 本発明は、立毛調人工皮革において、立毛面が摩擦されることによって、ガサガサしたようなドライタッチで不均質な粗い外観品位が発生しにくい立毛調人工皮革を提供することを目的とする。
 上述のように、従来、立毛調人工皮革の立毛面が摩擦されることによって、ガサガサしたようなドライタッチで不均質な粗い外観品位が発生することがあった。このような外観品位は、極細繊維の1本あたりの強度が高くなればなるほど顕著になる傾向があった。本件発明者らは、このような現象を抑制すべく、その原因を検討し、次の知見を得た。粗い外観品位は、極細繊維の1本あたりの強度が高くなった場合に、立毛化処理において極細繊維が切れにくくなって立毛面に存在する立毛を形成する極細繊維が長くなり、立毛面を摩擦することによって、自由に動きやすい極細繊維が集毛して絡み合ったり、また、極細繊維が比較的太い場合には各極細繊維の剛性が高くなることにより下地を覆い隠していた極細繊維が伏せていた状態から起こされ過ぎることにより、極細繊維の立毛が少ない粗な部分である下地が所々で露出したりすることにより、ドライタッチで不均質な繊維密度の表面が形成される。そして、これらの知見に基づいて、立毛面の極細繊維を寝かせた状態で固定し、順目方向及び逆目方向の何れの方向に摩擦しても極細繊維が寝かされた状態から一定以上の高さまで起こされにくくなるような表面状態に調整することにより、上述したような現象の発生を顕著に抑制できることを見出し、本発明に想到するに至った。
 すなわち本発明の一局面は、第一の高分子弾性体を含浸付与された、平均繊度0.01~0.5dtexの極細繊維の立毛を含む立毛面を有する、不織布,織物,及び編み物のような布帛を含み、立毛面は、ISO 25178に準じた面粗さ測定において、算術平均高さ(Sa)が、順目方向及び逆目方向の両方向において30μm以下であり、平均高さから100μm以上の高さを有する山頂点密度(Spd)が、順目方向及び逆目方向の両方向において30/432mm2以下であり、且つそれらの差(絶対値)が20/432mm2以下である立毛調人工皮革である。極細繊維が立毛された立毛面において、このような表面状態を形成させることにより、摩擦により自由に動く極細繊維が、短く適度に寝た状態になる。それにより、立毛面が摩擦されても、ガサガサしたドライタッチで不均質な粗い外観品位が発生しにくい立毛調人工皮革が得られる。
 また、立毛面における立毛を形成する極細繊維は第二の高分子弾性体を被着されていること、詳しくは、極細繊維同士あるいは極細繊維と第一の高分子弾性体とが第二の高分子弾性体で固定されていることが好ましい。具体的には、例えば、その根元近傍の極細繊維同士あるいは極細繊維と第一の高分子弾性体とが第二の高分子弾性体で固定されていることが好ましい。この場合には、順目方向及び逆目方向において、自由に動く極細繊維が短毛化して、寝かされた状態から起こされにくくなるように固定される点から好ましい。
 また、立毛調人工皮革においては、極細繊維1本あたりの繊維の粘り強さや剛性の高さを示す指標となる、糸タフネスが平均8~40cN・%であることが好ましい。この場合には、糸が硬くなりすぎず摩擦により動きやすい繊維になり、表面の繊維が適度に寝かされて外観品位が向上する点から好ましい。
 また、立毛調人工皮革に含まれる布帛が第一の高分子弾性体を含浸付与された極細繊維の不織布である場合、極細繊維が長繊維であることが好ましい。この場合には、摩擦によって極細繊維が引きずり出されにくくなるために、極細繊維が寝かされた状態から起こされにくくなるように固定されやすい点から好ましい。
 また、立毛調人工皮革の見掛け密度は0.4~0.7g/cm3であることが好ましい。見掛け密度がこのような範囲である場合には、ボキ折れとも称される座屈するような低品位の折れ方をしない充実感と柔軟な風合いとのバランスに優れた立毛調人工皮革が得られる点から好ましい。
 また、本発明の他の一局面は、上記何れかに記載の立毛調人工皮革の製造方法である。具体的には、第一の高分子弾性体が含浸付与された、平均繊度0.01~0.5dtexの極細繊維を含む立毛化処理される面を有する、不織布,織物,及び編み物のような布帛を含む人工皮革基材を準備する工程と、人工皮革基材の立毛化処理される面を立毛化処理して立毛面を形成する工程と、立毛面における立毛を形成する極細繊維に第二の高分子弾性体を被着させる工程と、人工皮革基材を繊維の配向方向であるタテ方向に沿って収縮させた状態で熱セットする工程と、を備える立毛調人工皮革の製造方法である。
 本発明によれば、立毛面が摩擦されても、ガサガサしたドライタッチで不均質な粗い外観品位を発生させにくい立毛調人工皮革が得られる。
実施例1で得られた立毛調人工皮革の立毛面の摩擦後品位の評価後の表面の写真である。 比較例1で得られた立毛調人工皮革の立毛面の摩擦後品位の評価後の表面の写真である。 実施例1で得られた立毛調人工皮革の表面をマイクロスコープで観察した3D画像であり、(a)は順目方向、(b)は逆目方向である。 比較例1で得られた立毛調人工皮革の表面をマイクロスコープで観察した3D画像であり、(a)は順目方向、(b)は逆目方向である。
 本実施形態の立毛調人工皮革をその製造方法の一例に沿って詳しく説明する。
 本実施形態の立毛調人工皮革の製造においては、はじめに、第一の高分子弾性体が含浸付与された、平均繊度0.01~0.5dtexの極細繊維を含む立毛化処理される面を有する布帛を準備する。布帛としては、極細繊維の不織布の他、極細繊維の織物、極細繊維の編み物、または、これらを組み合わせてなる繊維構造体等とその内部に第一の高分子弾性体を含浸付与されたものが挙げられる。本実施形態においては、代表例として、第一の高分子弾性体を含浸付与された、極細繊維の不織布を布帛として用いる場合について説明する。
 極細繊維の不織布の製造においては、はじめに、極細繊維発生型繊維の繊維ウェブを製造する。繊維ウェブの製造方法としては、例えば、極細繊維発生型繊維を溶融紡糸し、これを意図的に切断することなく長繊維のまま捕集するような方法や、ステープルに切断した後、公知の絡合処理を施すような方法が挙げられる。なお、長繊維とは、フィラメントと称する場合もあり、所定の長さで切断処理されたステープルではない連続繊維である。長繊維の長さとしては、例えば、100mm以上、さらには、200mm以上であることが繊維密度を充分に高めることができる点から好ましい。長繊維の上限は、特に限定されないが、連続的に紡糸された数m、数百m、数kmあるいはそれ以上の繊維長であってもよい。これらの中では、摩擦によって極細繊維が引きずり出されにくくなって、極細繊維が寝かされた状態から起こされにくいように固定された立毛調人工皮革が得られる点から、極細繊維発生型繊維の長繊維ウェブ(スパンボンドシート)を製造することが特に好ましい。本実施形態においては、代表例として、極細繊維発生型繊維の長繊維ウェブを製造する場合について詳しく説明する。
 なお、極細繊維発生型繊維とは、紡糸後の繊維に化学的な後処理または物理的な後処理を施すことにより、極細繊維を形成するための繊維である。その具体例としては、例えば、繊維断面において、マトリクスとなる海成分のポリマー中に、海成分とは異なる種類のドメインとなる島成分のポリマーが分散されており、後に海成分を除去することにより、島成分のポリマーを主体とする繊維束状の極細繊維を形成する海島型複合繊維や、繊維外周に複数の異なる樹脂成分が交互に配置されて花弁形状や重畳形状を形成しており、物理的処理により各樹脂成分が剥離することにより分割されて束状の極細繊維を形成する剥離分割型複合繊維、等が挙げられる。海島型複合繊維によれば、後述するニードルパンチ処理等の絡合処理を行う際に、割れ、折れ、切断などの繊維損傷が抑制される。本実施形態では、代表例として海島型複合繊維を用いて長繊維の極細繊維(極細長繊維)を形成する場合について詳しく説明する。
 海島型複合繊維は少なくとも2種類のポリマーからなる多成分系複合繊維であり、海成分ポリマーからなるマトリクス中に島成分ポリマーが分散した断面を有する。海島型複合繊維の長繊維ウェブは、海島型複合繊維を溶融紡糸し、これを切断せずに長繊維のままネット上に捕集して形成される。
 島成分ポリマーは極細繊維を形成しうるポリマーであれば特に限定されない。具体的には、例えば、ポリエチレンテレフタレート(PET),ポリトリメチレンテレフタレート(PTT),ポリブチレンテレフタレート(PBT),ポリエステル弾性体等のポリエステル系樹脂またはそれらのイソフタル酸等による変性物;ポリアミド6,ポリアミド66,ポリアミド610,ポリアミド12,芳香族ポリアミド,半芳香族ポリアミド,ポリアミド弾性体等のポリアミド系樹脂またはそれらの変性物;ポリプロピレンなどのポリオレフィン系樹脂;ポリエステル系ポリウレタンなどのポリウレタン系樹脂等が挙げられる。これらの中では、PET,PTT,PBT,これらの変性ポリエステル等のポリエステル系樹脂が、熱処理により収縮しやすいために充実感のある立毛調人工皮革が得られる点から好ましい。また、ポリアミド6,ポリアミド66等のポリアミド系樹脂はポリエステル系樹脂に比べて吸湿性があってしなやかな極細繊維が得られるために、膨らみ感のある柔らかな風合いを有する立毛調人工皮革が得られる点から好ましい。また、島成分ポリマーは本発明の効果を損なわない範囲で、顔料などの着色剤、酸化防止剤、紫外線吸収剤、蛍光剤、防黴剤、無機微粒子等をさらに含有してもよい。
 海成分ポリマーとしては、島成分ポリマーよりも溶剤に対する溶解性または分解剤による分解性が高いポリマーが選ばれる。また、島成分ポリマーとの親和性が小さく、かつ、紡糸条件において溶融粘度及び/又は表面張力が島成分ポリマーよりも小さいポリマーが海島型複合繊維の紡糸安定性に優れている点から好ましい。このような海成分ポリマーの具体例としては、例えば、水溶性ポリビニルアルコール系樹脂(水溶性PVA),ポリエチレン,ポリプロピレン,ポリスチレン,エチレン-プロピレン系共重合体,エチレン-酢酸ビニル系共重合体,スチレン-エチレン系共重合体,スチレン-アクリル系共重合体などが挙げられる。これらの中では水溶性PVAが有機溶剤を用いることなく水系溶媒により溶解除去が可能であるために環境負荷が低い点から好ましい。
 海島型複合繊維は海成分ポリマーと島成分ポリマーとを複合紡糸用口金から溶融押出する溶融紡糸により製造することができる。複合紡糸用口金の口金温度は海島型複合繊維を構成するそれぞれのポリマーの融点よりも高い溶融紡糸可能な温度であれば特に限定されないが、通常、180~350℃の範囲が選ばれる。
 海島型複合繊維は平均繊度0.01~0.5dtexの極細繊維を形成できる限りとくに限定されないが、0.5~10dtex、さらには0.7~5dtexであることが好ましい。また、海島型複合繊維の断面における海成分ポリマーと島成分ポリマーとの平均面積比は5/95~70/30、さらには10/90~50/50であることが好ましい。また、海島型複合繊維の断面における島成分のドメインの数は特に限定されないが、工業的な生産性の観点からは5~1000個、さらには、10~300個程度であることが好ましい。
 複合紡糸用口金から吐出された溶融状態の海島型複合繊維は、冷却装置により冷却され、さらに、エアジェットノズルなどの吸引装置により目的の繊度となるように1000~6000m/分の引取速度に相当する速度の高速気流により牽引細化される。そして牽引細化された長繊維を移動式ネットなどの捕集面上に堆積させることにより長繊維ウェブが得られる。なお、必要に応じて、形態を安定化させるために長繊維ウェブをさらに熱プレスすることにより部分的に圧着させてもよい。このようにして得られる長繊維ウェブの目付はとくに限定されないが、例えば、10~1000g/m2の範囲であることが好ましい。
 そして、得られた長繊維ウェブに絡合処理を施すことにより絡合ウェブを製造する。
 長繊維ウェブの絡合処理の具体例としては、例えば、長繊維ウェブをクロスラッパー等を用いて厚さ方向に複数層重ね合わせた後、その両面から同時または交互に少なくとも1つ以上のバーブが貫通する条件でニードルパンチするような処理が挙げられる。ニードルパンチによる1cmあたりのパンチ数(パンチ/cm)としては、2000~5000パンチ/cm、さらには、2500~4500パンチ/cmであることが好ましい。1cmあたりのパンチ数が少なすぎる場合には不織布の絡合状態が低くなって極細繊維が立毛面における摩擦により素抜けしやすくなる傾向がある。また、1cmあたりのパンチ数が多すぎる場合には極細繊維が切断されて絡合性が低下する傾向がある。
 長繊維ウェブには海島型複合繊維の紡糸工程から絡合処理までのいずれかの段階において、油剤や帯電防止剤を付与してもよい。さらに、必要に応じて、長繊維ウェブを70~150℃程度の温水に浸漬する収縮処理を行うことにより、長繊維ウェブの絡合状態を予め緻密にしておいてもよい。また、ニードルパンチの後、熱プレス処理することによりさらに繊維密度を緻密にして形態安定性を付与してもよい。
 また、絡合ウェブを必要に応じて熱収縮させることにより繊維密度および絡合度合が高められる処理を施してもよい。熱収縮処理の具体例としては、例えば、絡合ウェブを水蒸気に接触させる方法や、絡合ウェブに水を付与した後、絡合ウェブに付与した水を加熱エアーや赤外線などの電磁波により加熱する方法が挙げられる。また、熱収縮処理により緻密化された絡合ウェブをさらに緻密化するとともに、絡合ウェブの形態を固定化したり、表面を平滑化したりすること等を目的として、必要に応じて、熱プレス処理を行うことによりさらに、繊維密度を高めてもよい。収縮処理工程における絡合ウェブの目付の変化としては、収縮処理前の目付に比べて、1.1倍(質量比)以上、さらには、1.3倍以上で、2倍以下、さらには1.6倍以下であることが好ましい。このようにして得られる絡合ウェブの目付としては100~2000g/m2程度の範囲であることが好ましい。
 そして、緻密化された絡合ウェブ中の海島型複合繊維から海成分ポリマーを除去することにより、繊維束状の極細長繊維の絡合体である極細長繊維の不織布が得られる。海島型複合繊維から海成分ポリマーを除去する方法としては、海成分ポリマーのみを選択的に除去しうる溶剤または分解剤で絡合ウェブを処理するような従来から知られた極細繊維の形成方法が特に限定なく用いられうる。具体的には、例えば、海成分ポリマーとして水溶性PVAを用いる場合には溶剤として熱水が用いられ、海成分ポリマーとして易アルカリ分解性の変性ポリエステルを用いる場合には、水酸化ナトリウム水溶液などのアルカリ性分解剤が用いられる。
 海成分ポリマーとして水溶性PVAを用いる場合、80~100℃の熱水中で100~600秒間処理することにより、水溶性PVAの除去率が95~100質量%程度になるまで抽出除去することが好ましい。なお、ディップニップ処理を繰り返すことにより、水溶性PVAを効率的に抽出除去できる。水溶性PVAを用いた場合には、有機溶剤を用いずに海成分ポリマーを選択的に除去することができるために、環境負荷が低く、また、VOCの発生を抑制できる点から好ましい。
 極細繊維の平均繊度は0.01~0.5dtex、さらには0.05~0.4dtex、とくには0.1~0.35dtexであることが好ましい。極細繊維の平均繊度が0.5dtexを超える場合には極細繊維の剛性が高くなりすぎて、立毛面の極細繊維が摩擦されることにより起こされやすくなり、後述する表面状態が得られにくくなる。また、極細繊維の平均繊度が0.01dtex未満の場合には、発色性や耐光性が低下する。なお、平均繊度は、立毛調人工皮革の厚さ方向に平行な断面を走査型電子顕微鏡(SEM)で3000倍で拡大撮影し、万遍なく選択された15本の繊維径から繊維を形成する樹脂の密度を用いて算出した平均値として求められる。
 極細繊維の不織布の目付は、140~3000g/m2、さらには200~2000g/m2であることが好ましい。
 本実施形態の立毛調人工皮革の製造においては、海島型複合繊維のような極細繊維発生型繊維を極細繊維化する前後において、得られる極細繊維の不織布に形態安定性や充実感を付与するために、極細繊維の不織布の内部空隙に第一の高分子弾性体を含浸付与する。
 第一の高分子弾性体の具体例としては、例えば、ポリウレタン、アクリル系樹脂、アクリロニトリル系樹脂、オレフィン系樹脂、ポリエステル系樹脂等の弾性体が挙げられる。
これらの中ではポリウレタンが好ましい。
 なお、ポリウレタンは、ポリウレタンエマルジョン、または、水系溶媒に分散されたポリウレタン分散液から凝固されるようなポリウレタンが特に好ましい。また、エマルジョンが感熱ゲル化性を有している場合には、エマルジョン粒子がマイグレーションすることなく感熱ゲル化するので、高分子弾性体を不織布に均一に付与することができる。
 不織布に第一の高分子弾性体を含浸付与する方法としては、極細繊維化する前の絡合ウェブに第一の高分子弾性体を含有するエマルジョン,分散液,または溶液を含浸させた後、乾燥凝固させる乾式法または湿式法等により凝固させる方法が極細繊維の表面との間に空隙が形成されることにより硬くなりすぎない点から好ましい。なお、凝固後に架橋構造を形成する高分子弾性体を用いた場合には、架橋を促進させるために、必要に応じて、凝固及び乾燥後に熱処理するキュア処理を行ってもよい。
 第一の高分子弾性体のエマルジョン、分散液、または溶液等の含浸方法としては、プレスロール等で所定の含浸状態になるように絞るという処理を1回又は複数回行うディップニップ法や、バーコーティング法、ナイフコーティング法、ロールコーティング法、コンマコーティング法、スプレーコーティング法等が挙げられる。
 なお、第一の高分子弾性体は、本発明の効果を損なわない範囲で、染料や顔料などの着色剤、凝固調節剤、酸化防止剤、紫外線吸収剤、蛍光剤、防黴剤、浸透剤、消泡剤、滑剤、撥水剤、撥油剤、増粘剤、増量剤、硬化促進剤、発泡剤、ポリビニルアルコールやカルボキシメチルセルロースなどの水溶性高分子化合物、無機微粒子、導電剤などをさらに含有してもよい。
 第一の高分子弾性体の含有割合としては、極細繊維の質量に対して、0.1~60質量%、さらには0.5~50質量%、とくには1~30質量%であることが、充実感としなやかさ等のバランスに優れる立毛調人工皮革が得られる点から好ましい。第一の高分子弾性体の含有割合が高すぎる場合には立毛調人工皮革がゴムライクになり硬くなる傾向がある。また、第一の高分子弾性体の含有割合が低すぎる場合には摩擦により立毛面から極細繊維が引きずり出されやすくなり、摩擦により極細繊維が起こされやすくなる傾向がある。
 このようにして第一の高分子弾性体を含浸付与された極細繊維の不織布である繊維基材が得られる。このようにして得られた繊維基材は、必要に応じて厚さ方向と垂直な方向に複数枚にスライスしたり、研削したりすることにより厚さ調節された後、少なくとも一面を好ましくは120~600番手、さらに好ましくは320~600番手程度のサンドペーパーやエメリーペーパーを用いてバフィング処理することにより立毛化処理が施されることが好ましい。このようにして、片面又は両面に立毛された極細繊維が存在する立毛面を有する人工皮革基材が得られる。
 人工皮革基材の立毛面には、立毛化処理された極細繊維の素抜けを抑制したり、摩擦により起こされにくくしたりするために第二の高分子弾性体を被着させることが好ましい。具体的には、立毛面に第二の高分子弾性体を含有する樹脂液を塗布した後、凝固させて極細繊維に第二の高分子弾性体を被着させる。このようにして立毛面に存在する極細繊維を第二の高分子弾性体で固定することにより、立毛面に存在する極細繊維が第二の高分子弾性体で拘束されて、極細繊維が素抜けしにくくなり、また、極細繊維が摩擦により起こされにくくなる。その結果、立毛面が摩擦されることによってガサガサしたような粗い外観品位の発生を抑制することができる。また、立毛面に第二の高分子弾性体を含有する樹脂液を塗布する量を調整することにより、立毛面と銀面層が混在した半銀調の表面にすることも可能である。
 第二の高分子弾性体は第一の高分子弾性体と同じものでも、種類や分子量等が異なるものであってもよい。第二の高分子弾性体の具体例としても、例えば、ポリウレタン、アクリル系樹脂、アクリロニトリル系樹脂、オレフィン系樹脂、ポリエステル系樹脂等の弾性体が挙げられる。これらの中では、極細繊維に被着されやすい点からポリウレタンが好ましい。また、樹脂液としては、樹脂を溶剤に溶解された溶液や、樹脂を乳化分散させたエマルジョンや、樹脂を水系溶媒に分散させた分散液が用いられるが、第二の高分子弾性体としては樹脂をN,N-ジメチルホルムアミド(DMF)等の溶剤に溶解させた樹脂液が極細繊維の根元近傍をとくにしっかりと固定できることにより、極細繊維が摩擦により起こされにくくなる点から好ましい。
 人工皮革基材の立毛面に第二の高分子弾性体を含有する樹脂液を塗布する方法としては、グラビアコーティング法、バーコーティング法、ナイフコーティング法、ロールコーティング法、コンマコーティング法、スプレーコーティング法等が挙げられる。そして、人工皮革基材の立毛面の極細繊維に第二の高分子弾性体を含有する樹脂液を塗布し、必要に応じて乾燥凝固させることにより、立毛面で立毛化処理された極細繊維に第二の高分子弾性体を被着させる。また、極細繊維に対する接着性をさらに高めるために、乾燥後の第二の高分子弾性体に溶剤を溶解して再溶解した後乾燥することがより好ましい。
 第二の高分子弾性体も、本発明の効果を損なわない範囲で、染料や顔料などの着色剤、凝固調節剤、酸化防止剤、紫外線吸収剤、蛍光剤、防黴剤、浸透剤、消泡剤、滑剤、撥水剤、撥油剤、増粘剤、増量剤、硬化促進剤、発泡剤、ポリビニルアルコールやカルボキシメチルセルロースなどの水溶性高分子化合物、無機微粒子、導電剤などをさらに含有してもよい。
 第二の高分子弾性体の含有割合(固形分)としては、人工皮革基材の立毛面に対して、1~10g/m2、さらには2~8g/m2であることが、立毛面を硬くしすぎずに極細繊維をしっかりと固定することにより、自由に動ける極細繊維の長さを短くできる点から好ましい。
 そして、人工皮革基材は通常染色される。染料は極細繊維の種類により適切なものが適宜選択される。例えば、極細繊維がポリエステル系樹脂から形成されている場合には分散染料やカチオン染料で染色することが好ましい。分散染料の具体例としては、例えば、ベンゼンアゾ系染料(モノアゾ、ジスアゾなど)、複素環アゾ系染料(チアゾールアゾ、ベンゾチアゾールアゾ、キノリンアゾ、ピリジンアゾ、イミダゾールアゾ、チオフェンアゾなど)、アントラキノン系染料、縮合系染料(キノフタリン、スチリル、クマリンなど)等が挙げられる。これらは、例えば、「Disperse」の接頭辞を有する染料として市販されている。これらは、単独で用いても2種以上を組み合わせて用いてもよい。また、染色方法としては、高圧液流染色法、ジッガー染色法、サーモゾル連続染色機法、昇華プリント方式等による染色方法が特に限定なく用いられる。
 また、人工皮革基材は、さらに風合いを調整するために柔軟性を付与する収縮加工処理や揉み柔軟化処理を施されたり、逆シールのブラッシング処理、防汚処理、親水化処理、滑剤処理、柔軟剤処理、酸化防止剤処理、紫外線吸収剤処理、蛍光剤処理、難燃処理等の仕上げ処理を施されたりしてもよい。
 例えば、収縮加工処理としては、人工皮革基材を弾性体シートに密着させてタテ方向に機械的に収縮させ、その収縮状態で熱処理してヒートセットするような処理が挙げられる。この収縮加工処理についてさらに詳しく説明する。
 収縮加工処理は、人工皮革基材をタテ方向(製造ラインの進行方向、または繊維の配向方向)に機械的に収縮させ、繊維を収縮させたまま熱処理してヒートセットすることにより、繊維の配向方向であるタテ方向に平行な断面において、繊維にミクロなうねりを形成させる。このようなうねりは繊維が伸びきっておらず、収縮している状態でセットされているために、タテ方向に伸縮性が付与される。収縮加工処理としては、例えば、人工皮革基材を、厚さが数cm以上の厚い弾性体シート(ゴムシート、フェルトなど)のタテ方向に伸長させた表面に密着させ、弾性体シートの表面を伸長状態から伸長前の状態に弾性回復させることにより、人工皮革基材をタテ方向に収縮させる方法が挙げられる。
 収縮加工処理においては人工皮革基材を進行方向(タテ方向)に強く収縮させる。収縮加工処理された人工皮革基材は、極細繊維の繊維束と任意の高分子弾性体からなるミクロな挫屈構造(うねり構造)を有していることが好ましい。ミクロな挫屈構造は人工皮革基材がタテ方向に収縮した結果、タテ方向に沿って生じるうねり構造であり、収縮加工処理された人工皮革基材は極細繊維を含む布帛を含むため、このうねり構造が形成され易い。うねり構造は連続している必要はなく、タテ方向に不連続であっても良い。収縮加工処理された人工皮革基材は、繊維自体の伸縮性ではなく、このような挫屈構造の変化(伸長)によりタテ方向に伸縮する。
 このようにして立毛面を有する染色された立毛調人工皮革が得られる。本実施形態の立毛調人工皮革は、立毛面が、ISO 25178に準じた面粗さ測定において、算術平均高さ(Sa)が、順目方向及び逆目方向の両方向において30μm以下であり、平均高さから100μm以上の高さを有する山頂点密度(Spd)が、順目方向及び逆目方向の両方向において30/432mm2以下であり、且つそれらの差(絶対値)が20/432mm2以下になるように調整されている。これらの表面状態は、後述するように製造時における上記各工程の各条件の組み合わせを調整することにより得ることができる。
 ここで、ISO 25178(面粗さ測定)は、接触式または非接触式の表面粗さ・形状測定機により表面状態を3次元的に測定する方法を規定している。算術平均高さ(Sa)は表面の平均面に対する各点の高さの差の絶対値の平均を表す。平均高さから100μm以上の高さを有する山頂点密度(Spd)とは、単位面積当たりの山頂点の数のうち平均高さから100μm以上の高さを有する山の頂点の数を表す。また、立毛面の順目方向とは、立毛面をシールブラシで整毛したときに立毛が倒れて寝かされた方向であり、立毛面の逆目方向とはシールブラシで整毛したときに立毛が起こされる方向である。
 本実施形態の立毛調人工皮革においては、立毛調人工皮革の立毛面の算術平均高さ(Sa)が、順目方向及び逆目方向の両方向において30μm以下で、平均高さから100μm以上の高さを有する山頂点密度(Spd)が順目方向及び逆目方向の両方向において30/432mm2以下であり、且つそれらの差(絶対値)が20/432mm2以下になるように調整されている。このように調整することにより、立毛面がどのような方向に摩擦されても極細繊維が一定の範囲以外に自由に動きにくくなる。その結果、立毛面が極細繊維が起こされやすくなる逆目方向に摩擦されても極細繊維が一定以上の高さに起こされすぎず、かつある程度のライティングを形成することができる。また、立毛面が摩擦されることによって、ドライタッチで不均質な粗い外観品位が発生することが抑制される。
 立毛調人工皮革の立毛面の算術平均高さ(Sa)は順目方向及び逆目方向の両方向において30μm以下であり、好ましくは28μm以下、さらに好ましくは26μm以下、最も好ましくは24μm以下である。算術平均高さ(Sa)が順目方向及び逆目方向の何れか一方においても30μmを超える場合には立毛面が摩擦されることによって自由に動く極細繊維が長くなりすぎて、不均質でドライタッチな粗い外観品位になる傾向がある。また、順目方向と逆目方向のどちらか一方のみが30μmを越える場合には、両方向の外観差が大きくなり、均一性が損なわれる。
 また、立毛調人工皮革の立毛面の平均高さから100μm以上の高さを有する山頂点密度(Spd)は、順目方向及び逆目方向の両方向において30/432mm2以下になる山頂点の数であり、好ましくは20/432mm2以下、さらに好ましくは18/432mm2以下である。山頂点密度(Spd)が順目方向及び逆目方向の何れか一方でも30/432mm2を超える場合には立毛面が摩擦されることによってドライタッチな粗い外観品位になる。また、順目方向と逆目方向のどちらか一方のみが30/432mm2を超える場合には、両方向の外観差が大きくなり、均一性が損なわれる。
 さらに、上記山頂点密度(Spd)は、順目方向及び逆目方向の差が絶対値で20/432mm2以下になる山頂点の数であり、好ましくは18/432mm2以下であり、さらに好ましくは16/432mm2以下である。山頂点密度(Spd)の順目方向及び逆目方向の差が絶対値で20/432mm2を超える場合には立毛面が摩擦されることによって動きやすい極細繊維の数が多くなり、ガサガサしたような粗い外観品位になる。また、順目方向と逆目方向のどちらか一方が30/432mm2を越えると、両方向の外観差が大きくなり、均一性が損なわれてくる。
 上述したような本実施形態の立毛調人工皮革の表面状態を得るためには、以下のような処理により調整することが好ましい。例えば、立毛化処理される面の立毛化処理を行う際に極細繊維を適度に短毛化することにより、立毛面が摩擦されたときに極細繊維がランダムな方向に動くことによる外観変化が抑制される。また、第2の高分子弾性体の塗布量を調整して極細繊維を固定することにより、表面から極細繊維が素抜けして飛び出した極細繊維が徐々に長くなり、それらが集毛して大きな繊維の塊を形成することが抑制される。また、収縮加工処理を施す場合には、熱を付与して立毛面の極細繊維を適度に寝た状態で熱セットすることにより、極細繊維が一定以上の高さに起こされにくくなり、立毛状態が一定程度固定されて拘束された状態を実現することができる。
 さらに、極細繊維1本あたりの繊維の粘り強さや剛性の高さを示す指標となる、糸タフネスが平均8~40cN・%、さらには10~30cN・%であることが好ましい。糸タフネスがこのような範囲である場合には、極細繊維が硬くなり過ぎないために寝かせた極細繊維が起きにくくなり、また、立毛化処理により適度に切れやすくなることにより極細繊維が短毛化しやすくなる傾向がある。糸タフネスは後述するように算出できる、極細繊維の1本あたりの引張タフネスである。糸タフネスが高すぎる場合には立毛面が摩擦されたときに極細繊維が起きやすくなり、ガサガサしたドライタッチで不均質な粗い外観品位になる傾向がある。一方、糸タフネスが低すぎる場合には染色した際の発色性や堅牢度が低下する傾向がある。
 立毛調人工皮革の見かけ密度は、0.4~0.7g/cm3、さらには0.45~0.6g/cm3であることがボキ折れしない充実感と柔軟な風合いとのバランスに優れた立毛調人工皮革が得られる点から好ましい。立毛調人工皮革の見かけ密度が低すぎる場合には、充実感が低いためにボキ折れしやすくなり、また、立毛面を摩擦することにより極細繊維が引きずり出されやすくなりガサガサしたドライタッチで不均質な粗い外観品位になりやすくなる傾向がある。一方、立毛調人工皮革の見かけ密度が高すぎる場合には、しなやかな風合いが低下する傾向がある。
 以下、本発明を実施例によりさらに具体的に説明する。なお、本発明の範囲は実施例により何ら限定されるものではない。
[実施例1]
 海成分の熱可塑性樹脂としてエチレン変性ポリビニルアルコール(PVA)、島成分の熱可塑性樹脂としてイソフタル酸変性した変性PET(イソフタル酸単位の含有割合6モル%)を、それぞれ個別に溶融させた。そして、海成分中に均一な断面積の島成分が12個分布した断面を形成しうるような、12個のノズル孔が並列状に配置された複合紡糸用口金に、それぞれの溶融樹脂を供給した。このとき、島成分が0.30dtexになるように設計した、海成分と島成分との質量比が海成分/島成分=25/75になるように吐出量を調整しながら供給した。そして、口金温度260℃に設定されたノズル孔より単孔吐出量1.5g/分で吐出させた。
 そして、ノズル孔から吐出された溶融繊維を紡糸速度が3700m/分となるように気流の圧力を調節したエアジェットノズル型の吸引装置で吸引することにより延伸し、平均繊度4.8dtexの海島型複合長繊維を紡糸した。紡糸された海島型複合長繊維は、可動型のネット上に、ネットの裏面から吸引しながら連続的に堆積された。このようにして、目付約54g/m2の長繊維ウェブ(スパンボンドシート)を得た。
 次に、クロスラッパー装置を用いて長繊維ウェブを12層重ねて総目付が648g/m2になる重ね合せウェブを作成し、更に、針折れ防止油剤をスプレーした。そして、重ね合せウェブをニードルパンチングすることにより三次元絡合処理した。具体的には、バーブ数1個でニードル番手42番のニードル針、及びバーブ数6個でニードル番手42番のニードル針を用いて積重体を4189パンチ/cmでニードルパンチ処理して絡合させることによりウェブ絡合シートを得た。得られたウェブ絡合シートの目付は795g/m2、層間剥離力は10.5kg/2.5cmであった。また、ニードルパンチ処理による面積収縮率は21.5%であった。
 得られたウェブ絡合シートを110℃、23.5%RHの条件でスチーム処理し、48%面積収縮させた。そして、90~110℃のオーブン中で乾燥させた後、さらに、115℃で熱プレスすることにより、目付1382g/m、見掛け密度0.682g/cm、厚み2.03mmの熱収縮処理されたウェブ絡合シートを得た。
 次に、熱収縮処理されたウェブ絡合シートに、ポリウレタン弾性体のエマルジョン(固形分22.5質量%)をpick up50%で含浸させた。なお、ポリウレタン弾性体は、ポリカーボネート系無黄変ポリウレタンである。エマルジョンには、ポリウレタン弾性体100質量部に対してカルボジイミド系架橋剤4.9質量部と硫酸アンモニウム6.4質量部が添加され、ポリウレタン弾性体の固形分が極細繊維の質量に対して13%となるよう調整されていた。ポリウレタン弾性体は熱処理することにより架橋構造を形成する。そして、エマルジョンが含浸された熱収縮処理されたウェブ絡合シートを115℃、25%RH雰囲気下で乾燥処理し、さらに、150℃で乾燥処理した。次に、ポリウレタン弾性体が充填されたウェブ絡合シートを、ニップ処理、及び高圧水流処理しながら95℃の熱水中に10分間浸漬することによりPVAを溶解除去し、さらに、乾燥した。このようにして、単繊維繊度0.30dtex、目付1097g/m、見掛け密度0.572g/cm、厚み1.92mmである、ポリウレタン弾性体と極細繊維の長繊維の繊維束の絡合体である不織布との複合体を得た。
 次に、ポリウレタン弾性体と極細繊維の長繊維の繊維束の絡合体である不織布との複合体を均等な厚さで2枚にスライスした。そして、スライス片の裏面を♯120ペーパーで、主面を♯240、♯320、♯600ペーパーを用い、速度3m/分、回転数650rpmの条件で両面を研削することにより、目付391g/m、見掛け密度0.536g/cm、厚み0.73mmである人工皮革基材を得た。
 そして、第二の高分子弾性体としてポリカーボネート系無黄変ポリウレタンをDMFに溶解させた固形分7質量%の溶液を主面に付与し乾燥させ、さらに、DMF/シクロヘキサノン=10/90の液を塗布し乾燥させることにより、立毛面で立毛化処理された極細繊維の根元近傍に第二の高分子弾性体を被着させた。なお、第二の高分子弾性体は2g/m2の割合で付与された。そして、分散染料を用いて120℃で高圧染色を行うことにより黒色の立毛調人工皮革基材を得た。
 次に、立毛調人工皮革基材の裏面に難燃処理を行った後、収縮加工処理を施した。具体的には、加湿部と加湿部から連続的に送られてくる立毛調人工皮革基材を収縮加工する収縮部と、この収縮部で収縮加工された布帛をヒートセットするヒートセット部とを備えた、収縮加工装置(小松原鉄工(株)製、サンフォライジング機)を用いて、収縮部の温度120℃、ヒートセット部のドラム温度120℃、搬送速度10m/分で処理することにより、極細繊維の繊度が0.323dtexであり、目付442g/m、見掛け密度0.526g/cm、厚み0.84mmのスエード調の立毛調人工皮革を得た。また、立毛調人工皮革に含まれる不織布を形成する極細繊維の1本あたりの引張タフネスである糸タフネスは、22.9cN・%であった。なお、糸タフネスは次のようにして測定及び算出された。
[糸タフネス測定]
 紡糸された複数本の海島型複合長繊維を、若干たるませた状態でポリエステルフィルムの表面にセロハンテープで貼り付けた。そして、95℃の熱水中に30分間以上浸漬させて海成分を抽出除去することにより極細長繊維を得た。次に、極細長繊維を固定したポリエステルフィルムをPot染色機で120℃×20分間染色処理し、染色糸を得た。そして、染色糸の中から海島型複合長繊維1本に相当する極細繊維束をまとめたままオートグラフで強伸度を測定し、極細繊維の繊維束の強伸度をオートグラフで測定した。そして、得られたSSカーブのピークトップから破断強力と破断伸度を読み取った。そして、染色後の糸タフネス(cN・%)=破断強力(cN)×破断伸度(%)/極細繊維の本数の式から糸タフネスを算出した。
 そして、得られた立毛調人工皮革について、立毛面の表面状態を以下の評価方法に従って測定した。
[立毛面の表面状態の測定]
 立毛調人工皮革の立毛面の表面状態は、非接触式の表面粗さ・形状測定機である「ワンショット3D測定マクロスコープ VR-3200」(株式会社キーエンス製)を用いてISO 25178(面粗さ測定)に準じて測定した。具体的には、立毛調人工皮革の立毛面を順目方向及び逆目方向の各方向にシールブラシで整毛した。そして、整毛された立毛面の18mm×24mmの範囲を高輝度LEDから照射された構造化照明光により、400万画素モノクロC-MOSカメラで12倍の倍率で歪みの生じた縞投影画像撮影を行い、各方向における算術平均高さ(Sa)、及び、平均高さから100μm以上の高さを有する山頂点密度(Spd)を求めた。なお、立毛が倒れる方向を順目方向、立毛が起き上がる方向を逆目方向とした。測定は3回行い、その平均値を各数値として採用した。図3に実施例1で得られた立毛調人工皮革の表面を上記のように測定したときの3D画像を示す。図3(a)は順目方向、図3(b)は逆目方向である。
 そして、得られた立毛調人工皮革について、立毛面の摩擦後品位を以下の評価方法に従って測定した。
[立毛面の摩擦後品位]
 得られた立毛調人工皮革の立毛面をマーチンデール測定(JIS L 1096)の逆マーチンデール測定を行った。具体的には、無荷重状態で台座にセットされた立毛調人工皮革の原反の立毛面を標準摩擦布SM25で50回摩擦し、そのときの外観を次の基準で判定した。
A:順目方向及び逆目方向に摩擦した後においても、均質で緻密な外観であった。
B:逆目方向に摩擦したときに、ボツボツとした凹凸感や、極細繊維が粗になって下地が見えるようなドライタッチで不均質な粗い外観が明らかに現れた。
 結果をまとめて表1に示す。また、図1に実施例1で得られた立毛調人工皮革の立毛面の摩擦後品位の評価後の表面の写真を、図2に後述する比較例1で得られた立毛調人工皮革の立毛面の摩擦後品位の評価後の表面の写真を示す。
Figure JPOXMLDOC01-appb-T000001
[実施例2]
 実施例1において、単繊維繊度の設計値が0.30dtexの極細繊維を形成した代わりに、単繊維繊度の設計値が0.25dtexの極細繊維を形成した以外は同様にして立毛調人工皮革を得、評価した。結果を表1に示す。
[実施例3]
 実施例1において、単繊維繊度の設計値が0.30dtexの極細繊維を形成した代わりに、設計値が単繊維繊度0.20dtexの極細繊維を形成し、また、ウェブ絡合シートの形成において積重体を4189パンチ/cmでニードルパンチ処理する代わりに、4277パンチ/cmでニードルパンチ処理した以外は同様にして立毛調人工皮革を得、評価した。結果を表1に示す。
[実施例4]
 実施例1において、単繊維繊度の設計値が0.30dtexの極細繊維を形成した代わりに、単繊維繊度の設計値が0.10dtexの極細繊維を形成し、また、ウェブ絡合シートの形成において積重体を4189パンチ/cmでニードルパンチ処理する代わりに、3745パンチ/cmでニードルパンチ処理した以外は同様にして立毛調人工皮革を得、評価した。結果を表1に示す。
[実施例5]
 実施例1において、単繊維繊度の設計値が0.30dtexの極細繊維を形成した代わりに、単繊維繊度の設計値が0.08dtexの極細繊維を形成し、また、ウェブ絡合シートの形成において積重体を4189パンチ/cmでニードルパンチ処理する代わりに、3745パンチ/cmでニードルパンチ処理した以外は同様にして立毛調人工皮革を得、評価した。結果を表1に示す。
[実施例6]
 実施例4において、第二の高分子弾性体を付与する工程においてポリウレタン溶液を塗布する代わりに、ポリウレタンエマルジョンを塗布した以外は同様にして立毛調人工皮革を得、評価した。結果を表1に示す。
[比較例1]
 実施例1において、第二の高分子弾性体を付与する工程を省略した以外は同様にして立毛調人工皮革を得、評価した。結果を表1に示す。また、図4に比較例1で得られた立毛調人工皮革の表面を上記のように測定したときの3D画像を示す。図4(a)は順目方向、図4(b)は逆目方向である。
[比較例2]
 実施例1において、第二の高分子弾性体を付与する工程を省略し、さらに、立毛調人工皮革基材の裏面への難燃処理と収縮加工処理を施す工程を省略した以外は同様にして立毛調人工皮革を得、評価した。結果を表1に示す。
[比較例3]
 実施例2において、第二の高分子弾性体を付与する工程を省略した以外は同様にして立毛調人工皮革を得、評価した。結果を表1に示す。
[比較例4]
 実施例2において、第二の高分子弾性体を付与する工程を省略し、さらに、立毛調人工皮革基材の裏面への難燃処理と収縮加工処理を施す工程を省略した以外は同様にして立毛調人工皮革を得、評価した。結果を表1に示す。
 表1を参照すれば、Saが、順目方向及び逆目方向の両方向において30μm以下であり、Spdが、順目方向及び逆目方向の両方向において30/mm2以下であり、且つそれらの差(絶対値)が20/mm2以下である実施例1~6の立毛調人工皮革は何れも順目方向及び逆目方向に摩擦した後においても、図1に示すように、均質で緻密な外観であった。なお、ポリウレタンエマルジョンを第二の高分子弾性体として塗布した実施例6の立毛調人工皮革は品位がやや低下した。一方、比較例1~4の立毛調人工皮革は第二の高分子弾性体は、何れも、図2に示すようなドライタッチで不均質な粗い外観品位であった。
 本発明で得られる立毛調人工皮革は、衣料、靴、家具、カーシート、雑貨製品等の表皮素材として好ましく用いられる。

Claims (8)

  1.  第一の高分子弾性体が含浸付与された、平均繊度0.01~0.5dtexの極細繊維の立毛を含む立毛面を有する布帛を含み、
     前記立毛面は、ISO 25178に準じた面粗さ測定において、
     算術平均高さ(Sa)が、順目方向及び逆目方向の両方向において30μm以下であり、
     平均高さから100μm以上の高さを有する山頂点密度(Spd)が、順目方向及び逆目方向の両方向において30/432mm2以下であり、且つそれらの差(絶対値)が20/432mm2以下であること、
     を特徴とする立毛調人工皮革。
  2.  前記布帛は、不織布,織物,及び編み物からなる群から選ばれる少なくとも1種を含む請求項1に記載の立毛調人工皮革。
  3.  前記立毛面における前記極細繊維は、第二の高分子弾性体を被着されている請求項1または2に記載の立毛調人工皮革。
  4.  前記立毛面における前記極細繊維は、少なくともその根元近傍に前記第二の高分子弾性体を被着されている請求項3に記載の立毛調人工皮革。
  5.  糸タフネスが平均8~40cN・%である請求項1~4の何れか1項に記載の立毛調人工皮革。
  6.  前記布帛は不織布を含み、前記極細繊維は長繊維である請求項1~5の何れか1項に記載の立毛調人工皮革。
  7.  見掛け密度が0.4~0.7g/cm3である請求項1~6の何れか1項に記載の立毛調人工皮革。
  8.  請求項1~7の何れか1項に記載の立毛調人工皮革の製造方法であって、
     第一の高分子弾性体が含浸付与された、平均繊度0.01~0.5dtexの極細繊維を含む立毛化処理される面を有する布帛を含む人工皮革基材を準備する工程と、
     前記人工皮革基材の前記立毛化処理される面を立毛化処理して立毛面を形成する工程と、
     前記立毛面における前記極細繊維に第二の高分子弾性体を被着させる工程と、
     前記人工皮革基材を繊維の配向方向であるタテ方向に沿って収縮させた状態で熱セットする工程と、
     を備えることを特徴とする立毛調人工皮革の製造方法。
PCT/JP2017/022802 2016-06-22 2017-06-21 立毛調人工皮革及びその製造方法 WO2017221961A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018524129A JP7008018B2 (ja) 2016-06-22 2017-06-21 立毛調人工皮革及びその製造方法
US16/306,697 US10689802B2 (en) 2016-06-22 2017-06-21 Napped artificial leather and production method thereof
CN201780031500.3A CN109154134B (zh) 2016-06-22 2017-06-21 立毛状人造革及其制造方法
EP17815429.0A EP3476998B1 (en) 2016-06-22 2017-06-21 Napped artificial leather and method for manufacturing same
KR1020187033725A KR102332017B1 (ko) 2016-06-22 2017-06-21 입모풍 인공 피혁 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016123411 2016-06-22
JP2016-123411 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017221961A1 true WO2017221961A1 (ja) 2017-12-28

Family

ID=60784305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022802 WO2017221961A1 (ja) 2016-06-22 2017-06-21 立毛調人工皮革及びその製造方法

Country Status (7)

Country Link
US (1) US10689802B2 (ja)
EP (1) EP3476998B1 (ja)
JP (1) JP7008018B2 (ja)
KR (1) KR102332017B1 (ja)
CN (1) CN109154134B (ja)
TW (1) TWI732890B (ja)
WO (1) WO2017221961A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116812A1 (ja) * 2017-12-13 2019-06-20 株式会社クラレ 印刷付起毛シート及び印刷用起毛シート
JP2020070518A (ja) * 2018-10-31 2020-05-07 株式会社クラレ 絡合不織布及び人工皮革
JP2020157456A (ja) * 2019-03-28 2020-10-01 富士紡ホールディングス株式会社 保持パッド

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094320A (ja) * 2001-09-25 2003-04-03 Toray Ind Inc 研磨布
KR20100103893A (ko) * 2009-03-16 2010-09-29 주식회사 코오롱 인공피혁 및 그 제조방법
JP2012184537A (ja) * 2011-02-18 2012-09-27 Toray Ind Inc 人工皮革とその製造方法
WO2015045367A1 (ja) * 2013-09-30 2015-04-02 株式会社クラレ 立毛調人工皮革及びその製造方法
WO2015151872A1 (ja) * 2014-03-31 2015-10-08 東レ株式会社 人工皮革とその製造方法
JP2017106127A (ja) * 2015-12-07 2017-06-15 株式会社クラレ 染色された立毛調人工皮革及びその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299471A (ja) * 1993-04-13 1994-10-25 Sumitomo Chem Co Ltd 繊維布帛の圧縮・収縮仕上方法
KR100475542B1 (ko) * 1997-12-30 2005-12-21 주식회사 효성 초극세사 부직포 인공피혁의 제조방법
JP4128312B2 (ja) * 1999-02-24 2008-07-30 株式会社クラレ 表面立毛を有する皮革様シート
TW476834B (en) * 1999-08-23 2002-02-21 Kuraray Co Oil tone artificial leather sheet
JP2003089984A (ja) * 2001-09-20 2003-03-28 Toray Ind Inc 伸縮性に優れた人工皮革およびその製造方法
DE60302938T2 (de) * 2002-06-12 2006-09-21 KURARAY CO., LTD, Kurashiki Flammfestes, lederartiges bahnenförmiges Substrat und Verfahren zu seiner Herstellung
US7951452B2 (en) * 2002-09-30 2011-05-31 Kuraray Co., Ltd. Suede artificial leather and production method thereof
JP4464119B2 (ja) * 2003-12-12 2010-05-19 株式会社クラレ 人工皮革用基材、これをベースとする各種人工皮革、および人工皮革用基材の製造方法
JP2008208510A (ja) 2007-01-29 2008-09-11 Toray Ind Inc 皮革様シート状物、その製造方法、並びに該皮革様シート状物を用いた内装材、衣料用資材および工業用資材および研磨布
KR101310119B1 (ko) * 2007-12-13 2013-10-14 현대자동차주식회사 인공피혁 및 그의 제조방법
JP5555468B2 (ja) 2009-09-30 2014-07-23 株式会社クラレ 耐ピリング性の良好な立毛調人工皮革
JP5746074B2 (ja) * 2012-02-29 2015-07-08 株式会社クラレ 伸縮性人工皮革の製造方法
US10465338B2 (en) * 2012-02-29 2019-11-05 Kuraray Co., Ltd. Elastic artificial leather and production method therefor
CN103015185B (zh) * 2012-11-29 2014-06-25 上海华峰超纤材料股份有限公司 耐磨超细纤维绒面革及其制备方法
JP2014163005A (ja) * 2013-02-22 2014-09-08 Kuraray Co Ltd 伸縮性人工皮革の製造方法
CN105178052A (zh) * 2015-08-07 2015-12-23 无锡双象超纤材料股份有限公司 超纤软皮沙发革的制备工艺
CN205134073U (zh) * 2015-09-21 2016-04-06 安徽安利材料科技股份有限公司 一种弹力绒面仿真皮效果聚氨酯合成革

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094320A (ja) * 2001-09-25 2003-04-03 Toray Ind Inc 研磨布
KR20100103893A (ko) * 2009-03-16 2010-09-29 주식회사 코오롱 인공피혁 및 그 제조방법
JP2012184537A (ja) * 2011-02-18 2012-09-27 Toray Ind Inc 人工皮革とその製造方法
WO2015045367A1 (ja) * 2013-09-30 2015-04-02 株式会社クラレ 立毛調人工皮革及びその製造方法
WO2015151872A1 (ja) * 2014-03-31 2015-10-08 東レ株式会社 人工皮革とその製造方法
JP2017106127A (ja) * 2015-12-07 2017-06-15 株式会社クラレ 染色された立毛調人工皮革及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476998A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116812A1 (ja) * 2017-12-13 2019-06-20 株式会社クラレ 印刷付起毛シート及び印刷用起毛シート
JPWO2019116812A1 (ja) * 2017-12-13 2020-12-03 株式会社クラレ 印刷付起毛シート及び印刷用起毛シート
JP2020070518A (ja) * 2018-10-31 2020-05-07 株式会社クラレ 絡合不織布及び人工皮革
JP7359536B2 (ja) 2018-10-31 2023-10-11 株式会社クラレ 絡合不織布及び人工皮革
JP2020157456A (ja) * 2019-03-28 2020-10-01 富士紡ホールディングス株式会社 保持パッド
JP7349251B2 (ja) 2019-03-28 2023-09-22 富士紡ホールディングス株式会社 保持パッド

Also Published As

Publication number Publication date
EP3476998A1 (en) 2019-05-01
JP7008018B2 (ja) 2022-01-25
KR20190020657A (ko) 2019-03-04
KR102332017B1 (ko) 2021-11-26
JPWO2017221961A1 (ja) 2019-04-18
EP3476998A4 (en) 2020-01-01
CN109154134A (zh) 2019-01-04
TW201802322A (zh) 2018-01-16
EP3476998B1 (en) 2021-09-08
US10689802B2 (en) 2020-06-23
CN109154134B (zh) 2021-04-13
US20190127908A1 (en) 2019-05-02
TWI732890B (zh) 2021-07-11

Similar Documents

Publication Publication Date Title
JP6449775B2 (ja) 立毛調人工皮革及びその製造方法
KR102444372B1 (ko) 기모 피혁풍 시트 및 그 제조 방법
JP6745078B2 (ja) 立毛調人工皮革
KR102637213B1 (ko) 카티온 염료로 염색된 입모풍 인공 피혁 및 그 제조 방법
JP7522175B2 (ja) 立毛調人工皮革
JP6429790B2 (ja) ヌバック調皮革様シート及びその製造方法
JP6752579B2 (ja) 人工皮革基材及びその製造方法、並びにオイル調,起毛調,または銀面調人工皮革
WO2017221961A1 (ja) 立毛調人工皮革及びその製造方法
US20220333299A1 (en) Napped artificial leather
JP7220202B2 (ja) 立毛人工皮革及びその製造方法
JP6623646B2 (ja) シート状物
JP7211956B2 (ja) 立毛人工皮革
JP7455072B2 (ja) 立毛調人工皮革
JP2003336177A5 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524129

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187033725

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017815429

Country of ref document: EP

Effective date: 20190122