WO2017219797A1 - 电镀铜镀液及其电镀铜工艺 - Google Patents

电镀铜镀液及其电镀铜工艺 Download PDF

Info

Publication number
WO2017219797A1
WO2017219797A1 PCT/CN2017/084621 CN2017084621W WO2017219797A1 WO 2017219797 A1 WO2017219797 A1 WO 2017219797A1 CN 2017084621 W CN2017084621 W CN 2017084621W WO 2017219797 A1 WO2017219797 A1 WO 2017219797A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper plating
sodium
plating solution
polyethylene glycol
plating
Prior art date
Application number
PCT/CN2017/084621
Other languages
English (en)
French (fr)
Inventor
王翀
彭佳
程骄
肖定军
何为
Original Assignee
广东光华科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东光华科技股份有限公司 filed Critical 广东光华科技股份有限公司
Priority to US15/744,863 priority Critical patent/US20190100848A1/en
Publication of WO2017219797A1 publication Critical patent/WO2017219797A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • the invention relates to the technical field of printed circuit board manufacturing, in particular to an electroplating copper plating solution and a copper plating process thereof.
  • Flexible Printed Circuit Board also known as "FPC flexible board” is a printed circuit board made of flexible insulating substrate.
  • the flexible board has the characteristics of small product volume and light weight, which can greatly reduce the volume of the device and meet the needs of the development of electronic products to high density, miniaturization, light weight, thinness and high reliability.
  • it is highly flexible, free to bend, wind, twist, fold, arbitrarily change shape according to space layout requirements, or move and expand in any space in three dimensions to achieve component assembly and wire Integration of connections.
  • FPC flexible boards also have good heat dissipation, solderability and easy assembly.
  • Flexible circuit boards are widely used in aerospace, military, mobile communications, laptop computers, computer peripherals, PDAs, digital cameras, etc. due to their unique characteristics.
  • the manufacturing process and the process equipment of the flexible circuit board are basically the same as those of the rigid board.
  • the flexible board manufacturing process is more complicated and more difficult.
  • the electrical interconnection of PCB boards realized by these three methods is mainly realized by electroplating copper technology.
  • the most used copper plating solution is a sulphate type plating solution, because the plated plating layer is uniform, fine and soft, and the plating liquid composition is simple, the dispersing ability, the deep plating ability is good, the current efficiency is high, the deposition rate is fast, and the sewage treatment simple.
  • organic additives need to be added to the copper sulfate plating solution to adjust the current distribution during the plating process and improve the plating efficiency of the plating solution.
  • organic additives are brighteners, inhibitors and levelers.
  • the brightener is usually a small molecule of sulfur-containing organic matter, which facilitates the formation of crystal nuclei during the electroplating process, and makes the distribution of crystal nuclei dense, which promotes the smoothing of the copper plating layer and reflection.
  • Typical functionalized functional groups are disulfide bonds (-SS-), sulfonic acid groups (-SO 3 - ), and mercapto groups (-SH).
  • the leveling agent is usually a nitrogen-containing organic substance with a strong positive charge. It is easily adsorbed in a high current density zone (raised area or corner) and competes with copper ions, so that the plating speed is slower but not The plating that affects the low current density region (recessed area) makes the originally undulating surface flatter.
  • TP value There are two main indicators for measuring the through-hole plating performance of flexible boards: TP value and thermal stress test, of which TP is the main measure.
  • TP is the deep plating ability, which represents the ability of the plating solution to deposit metal plating in the deep recess of the part.
  • the value is the percentage of the thickness of the copper layer in the hole and the thickness of the copper layer on the surface. The higher the TP value, the deeper the plating solution in the part. The stronger the ability to deposit metal, the higher the reliability of the electrical interconnection and the further processing of the flexible board.
  • the thermal stress test is to test the combination of the new copper plating layer and the board surface at high temperature to ensure the reliability in the high temperature welding process.
  • the flexplate is clearly distinguishable from the rigid panel: the flexplate is thinner.
  • the thickness of the through hole of the entire flexible plate is equivalent to the thickness of the two face ports of the rigid plate through hole, that is, the hole of the thin flexible plate is equivalent to the hole of the rigid plate, and the main action site of the leveling agent is the hole. .
  • the easier the solution exchange it means that the distribution of organic additives inside and outside the pores will also change, and the original leveling agent will be more easily distributed into the pores, inhibiting Copper deposits in the pores, and the accelerator originally adsorbed in the pores is more adsorbed on the plate surface due to the adsorption site being occupied by the leveling agent.
  • the copper deposits which in turn cause a drop in the TP value. Therefore, the three-component formulation commonly used for rigid printed boards is not suitable for through-hole copper plating of flexible boards. It is urgent to develop electroplated copper formulations for flexible boards.
  • An electroplated copper plating solution comprising the following components:
  • the brightener is selected from two of the group consisting of alkylsulfonic acid thiols or derivatives thereof; the inhibitor is selected from one or more of the nonionic surfactants.
  • the brightener is sodium polydithiodipropane sulfonate and sodium N,N-dimethyldithiocarboxamide propane sulfonate.
  • the sodium polydithiodipropane sulfonate is added in an amount of 0.1 mg/L to 10 mg/L; and the sodium N,N-dimethyldithiocarboxamide propane sulfonate is added in an amount of 0.1 mg. /L-10mg/L.
  • the sum of the amount of sodium polydithiodipropane sulfonate added and the amount of sodium N,N-dimethyldithioformamide propane sulfonate added is greater than 0.5 mg/L, and polydisulfide
  • the absolute value of the difference between the amount of sodium dipropane sulfonate added and the amount of sodium N,N-dimethyldithioformamide propane sulfonate added is more than 0.5 mg/L.
  • the sum of the amount of sodium polydithiodipropane sulfonate added and the amount of sodium N,N-dimethyldithioformamide propane sulfonate added is preferably in the range of more than 1 mg/L and less than 6 mg/L.
  • the inhibitor is selected from the group consisting of polyalkylene glycol compounds, polyvinyl alcohol, carboxymethyl cellulose, polyethylene glycol, polyethylene glycol stearate, alkoxy naphthol Oleic acid polyethylene glycol Ester, poly(ethylene glycol-propylene glycol) random copolymer, poly(polyethylene glycol-polypropylene glycol-polyethylene glycol) block copolymer, poly(polypropylene glycol-polyethylene glycol-polypropylene glycol) block One or more of the copolymers are added in an amount of from 1 mg/L to 2000 mg/L, preferably from 500 mg/L to 1000 mg/L.
  • Another object of the present invention is to provide a copper plating process for a flexible printed wiring board.
  • An electroplating copper process for a flexible printed circuit board comprising a pre-treatment process, a first electroplating copper process, a cleaning process, a second electroplating copper process, and a post-treatment process;
  • the electroplating copper plating solution according to any one of claims 1 to 5 is used in the first electroplating copper process
  • the second electroplated copper plating solution used in the second electroplating copper process comprises the following components:
  • the second brightener is selected from the group consisting of sodium polydithiodipropane sulfonate, sodium mercaptopropane sulfonate, 2-mercaptobenzimidazole, and ethylenethiourea;
  • the second inhibitor is selected from the group consisting of polyalkylene Base diol compound, polyvinyl alcohol, carboxymethyl cellulose, polyethylene glycol, polyethylene glycol stearate, alkoxy naphthol, polyethylene glycol oleate, poly(ethylene glycol-propylene glycol a random copolymer, a poly(polyethylene glycol-polypropylene glycol-polyethylene glycol) block copolymer, one or more of a poly(polypropylene glycol-polyethylene glycol-polypropylene glycol) block copolymer;
  • the leveling agent is selected from the group consisting of polyethyleneimine or a derivative thereof, caprolactam or a derivative thereof, polyvinylpyr
  • the process parameters of the first copper plating process are: current density 1-5 A/dm 2 , plating temperature 15-32 ° C, plating time 20-120 min; process of the second copper plating process The parameters are: current density 1-5A/dm 2 , electroplating temperature is 15-32 ° C, plating time is 1-20 min.
  • Another object of the present invention is to provide a flexible printed wiring board.
  • the flexible printed wiring board prepared by the above electroplating copper process.
  • the microvias in the flexible printed wiring board have a size of 20 ⁇ m to 300 ⁇ m in diameter and a thickness of 40 ⁇ m to 300 ⁇ m.
  • the additive in the electroplated copper plating bath of the present invention contains three components, of which two components act to accelerate and the other component exerts an inhibitory effect.
  • two components of acceleration sodium polydithiodipropane sulfonate SPS and sodium N,N-dimethyldithiocarboxamide propane sulfonate DPS
  • SPS acts as the main brightener and improves
  • the rate of copper deposition in the holes increases the plating plate TP of the flexplate.
  • DPS acts as an auxiliary brightener and is used to improve the quality of the coating while accelerating the copper deposition.
  • the nitrogen-containing structure in its structure will act as an inhibitor to a certain extent, that is, as a leveling agent.
  • the copper plating deposited by DPS has little difference in impurity level and crystallinity compared with the copper plating deposited by SPS, but the copper grains deposited by DPS are more refined and the deposited layer is tighter. The roughness of the copper layer is reduced, which in turn reduces the resistivity of the copper layer.
  • the plating solution without the leveling agent will greatly improve the plating TP of the flexible board, because the plating solution without the leveling agent will eliminate the hole in the hole caused by the leveling agent. The inhibitory effect of copper deposition.
  • the plating solution without the leveling agent will improve the quality of the coating to some extent. Studies have shown that during the electroplating process, the leveling agent will continue to be consumed, and the impurities will enter the copper plating layer to increase the stress (ie, brittleness) of the coating.
  • the plating solution of the present invention will solve the plating quality problem caused by the incorporation of the leveling agent to some extent.
  • the electroplated copper plating solution of the invention can make the TP value reach 200% or more, and the electroplated copper layer in the hole is relatively flat, and the quality of the copper plating layer meets the requirements of the flexible board.
  • Another object of the present invention is to provide a method of using the plating solution, that is, a copper plating process using a printed circuit board of the plating solution. A brighter and smoother coating can be obtained using this method.
  • Step 1 If necessary, fix the flexible plate of a specific specification on the frame for fixing the flexible plate, and ensure good electrical conductivity between the flexible plate and the conductive frame;
  • Step 2 If necessary, de-oiling and cleaning the plate material subjected to the through-hole conductive treatment, so as to prevent the oil-removing agent from remaining on the surface of the board and carrying the subsequent steps;
  • Step 3 if necessary, pre-impregnating the processed plate in the second step;
  • Step 4 performing the electroplating (first electroplating copper process) on the plated copper plating solution provided in the third step and cleaning the plate to prevent the plating solution from remaining on the surface of the plate and carrying the subsequent steps;
  • Step 5 performing electroplating on the plate after electroplating in step 5 by placing a plating solution (second electroplating copper plating solution) containing a three-component organic additive (ie, containing a leveling agent, a brightener, an inhibitor) (second plating) Copper process);
  • a plating solution second electroplating copper plating solution
  • a three-component organic additive ie, containing a leveling agent, a brightener, an inhibitor
  • Step 6 Clean and dry the plate after plating, and you can enter the next process.
  • the degreasing liquid used in the electroplating copper process of the above printed circuit board is a commercially available product; the prepreg involved is a sulfuric acid having a concentration of 10 g/L to 100 g/L.
  • the electroplating copper in step 4 has a current density of 1 A/dm 2 to 5 A/dm 2 , a plating temperature of 15 ° C to 32 ° C, and a plating time of 20 minutes to 120 minutes. ;
  • the plating solution containing the three-component organic additive in the step 5 may be commercially available or may be added on the basis of the plating solution of the present invention.
  • the leveling agent is added in an amount of 5 mg/L to 40 mg/L, and the leveling agent involved may be any one or more of commercially available ones.
  • the current density is from 1 A/dm 2 to 5 A/dm 2
  • the plating temperature is from 15 ° C to 32 ° C
  • the plating time is from 1 minute to 20 minutes.
  • the purpose of the first electroplating copper process is to improve the electroplating TP of the flexible board by using the plating solution of the present invention to ensure the reliability of the electrical interconnection.
  • the purpose of the second electroplating copper process is to improve the problem of poor board surface which may remain in the first electroplating copper process. Ensure that the board surface is bright and flat after the entire plating process.
  • FIG. 1 is a flow chart of a copper plating process using the plating solution provided by the present invention according to the present invention
  • FIG. 2 is a cross-sectional view of an enlarged 500-fold metallographic microscope after electroplating a two-layer flexible plate using a commercially available flexible plate electroplating syrup; wherein (a) is a Rohm and Haas ST920 electroplating syrup electroplating double in Example 1.
  • Figure (b) is a magnified 500-fold metallographic microscope horizontally after electroplating a double-layer flexible plate using Meademei VP100 flexible plate electroplating solution in Example 2.
  • Figure (c) is a cross-sectional view of a magnified 500-fold metallographic microscope after plating a multilayer flexible plate using Meademei VP100 flexible plate electroplating solution in Example 3;
  • FIG. 3 is a cross-sectional view of an enlarged 500-fold metallographic microscope after electroplating a flexible plate using the plating solution plating solution of the present invention: wherein (a) is the plating of a double-layer flexible plate in the fourth embodiment using the plating solution plating solution of the present invention. A magnified 500-fold metallographic microscope cross-sectional view; (b) is a cross-sectional view of an enlarged 500-fold metallographic microscope after plating a multilayer flexible plate using the plating solution plating solution of the present invention in Example 8;
  • Example 4 is a cross-sectional view showing a magnified 500-fold metallographic microscope after electroplating a two-layer flexible plate using the electroplating copper process of the present invention in Example 9.
  • the present embodiment uses a Rohm and Haas yield COPPER GLEAM TM ST-920 plating bath additive (typically three components of the formulation), formulated in the plating solution in accordance with instructions for use according to the following recipe.
  • a Rohm and Haas yield COPPER GLEAM TM ST-920 plating bath additive typically three components of the formulation, formulated in the plating solution in accordance with instructions for use according to the following recipe.
  • a flexible plate to be plated after blackening is used as a negative electrode, and a soluble phosphorus-containing copper is used as an anode.
  • the through hole of the flexible plate to be plated has a specification of a diameter of 150 ⁇ m and a plate thickness of 75 ⁇ m.
  • the plating had a current density of 2 A/dm 3 , a plating temperature of 25 ° C, a plating time of 20 minutes, and an air agitation gas flow rate of 1 L/min.
  • the test results obtained in this example are shown in Table 1 and Figure 2(a).
  • the MACUSPEC VP100 electroplating bath additive produced by Meidemei Co., Ltd. (the formulation does not contain a leveling agent, but the brightener used is different from the present invention).
  • the plating solution was prepared according to the following formula according to the instruction manual.
  • the components of the VP100 plating solution additive are added according to the specifications:
  • a flexible plate to be plated after black hole formation is used as a negative electrode, and a soluble phosphorus-containing copper is used as an anode.
  • the through hole of the flexible plate to be plated has a specification of a diameter of 200 ⁇ m and a plate member thickness of 56 ⁇ m.
  • the plating had a current density of 2 A/dm 3 , a plating temperature of 25 ° C, a plating time of 25 minutes, and an air agitation gas flow rate of 1 L/min.
  • the test results obtained in this example are shown in Table 1 and Figure 2(b).
  • the MACUSPEC VP100 electroplating bath additive produced by Meidemei Company is used.
  • the plating solution was prepared according to the following formula according to the instruction manual.
  • the components of the VP100 plating solution additive are added according to the specifications:
  • a flexible plate to be plated after black hole formation is used as a negative electrode, and a soluble phosphorus-containing copper is used as an anode.
  • the through hole of the flexible plate to be plated has a specification of a diameter of 200 ⁇ m and a plate thickness of 185 ⁇ m.
  • the plating had a current density of 2 A/dm 3 , a plating temperature of 25 ° C, a plating time of 30 minutes, and an air agitation gas flow rate of 1 L/min.
  • the test results obtained in this example are shown in Table 1 and Figure 2(c).
  • the following compounds were added to deionized water to prepare a plating solution.
  • a flexible plate to be plated after black hole formation is used as a negative electrode, and a soluble phosphorus-containing copper is used as an anode.
  • the through hole of the flexible plate to be plated has a specification of a diameter of 200 ⁇ m and a plate member thickness of 56 ⁇ m.
  • the plating had a current density of 2 A/dm 3 , a plating temperature of 25 ° C, a plating time of 25 minutes, and an air agitation gas flow rate of 1 L/min.
  • the test results obtained in this example are shown in Table 1 and Figure 3(a).
  • the following compounds were added to deionized water to prepare a plating solution.
  • a flexible plate to be plated after black hole formation is used as a negative electrode, and a soluble phosphorus-containing copper is used as an anode.
  • the through hole of the flexible plate to be plated has a specification of a diameter of 200 ⁇ m and a plate member thickness of 56 ⁇ m.
  • the plating had a current density of 2 A/dm 3 , a plating temperature of 25 ° C, a plating time of 25 minutes, and an air agitation gas flow rate of 1 L/min.
  • the test results obtained in this example are shown in Table 1.
  • the following compounds were added to deionized water to prepare a plating solution.
  • electroplating is performed in the copper plating solution described above.
  • a flexible plate to be plated after black hole formation is used as a negative electrode, and a soluble phosphorus-containing copper is used as an anode.
  • the through hole of the flexible plate to be plated has a specification of a diameter of 200 ⁇ m and a plate member thickness of 56 ⁇ m.
  • the electroplating current density was 2 A/dm 3
  • the electroplating temperature was 25 ° C
  • the electroplating time was 25 minutes
  • the air agitation gas flow rate was 1 L/min.
  • the following compounds were added to deionized water to prepare a plating solution.
  • electroplating is performed in the copper plating solution described above.
  • a flexible plate to be plated after black hole formation is used as a negative electrode, and a soluble phosphorus-containing copper is used as an anode.
  • the through hole of the flexible plate to be plated has a specification of a diameter of 200 ⁇ m and a plate member thickness of 56 ⁇ m.
  • the electroplating current density was 2 A/dm 3
  • the electroplating temperature was 25 ° C
  • the electroplating time was 25 minutes
  • the air agitation gas flow rate was 1 L/min.
  • the following compounds were added to deionized water to prepare a plating solution.
  • electroplating is performed in the copper plating solution described above.
  • a flexible plate to be plated after black hole formation is used as a negative electrode, and a soluble phosphorus-containing copper is used as an anode.
  • the through hole of the flexible plate to be plated has a specification of a diameter of 200 ⁇ m and a plate thickness of 185 ⁇ m.
  • the electroplating current density was 2 A/dm 3
  • the electroplating temperature was 25 ° C
  • the electroplating time was 25 minutes
  • the air agitation gas flow rate was 1.3 L/min.
  • This embodiment will be described as an embodiment of the electroplating copper process (the process flow shown in FIG. 1) using the plating solution of the present invention.
  • plating was performed in the copper plating solution I described above for 25 minutes, and plating was performed in the copper plating solution II for 5 minutes.
  • a flexible plate to be plated after black hole formation is used as a negative electrode, and a soluble phosphorus-containing copper is used as an anode.
  • the through hole of the flexible plate to be plated has a specification of a diameter of 200 ⁇ m and a plate member thickness of 56 ⁇ m.
  • the plating had a current density of 2 A/dm 3 , a plating temperature of 25 ° C, and an air agitation gas flow rate of 1 L/min.
  • Table 1 and Figure 4 The test results obtained in this example are shown in Table 1 and Figure 4.
  • Table 1 shows the results of the through-hole plating performance test of the flexible sheets obtained in Examples 1 to 9.
  • the copper plating bath of the present invention can greatly improve the deep plating capability (TP) of the through-hole plating of the flexible board.
  • TP deep plating capability
  • Example 6 shows that when the amount of SPS is equal to DPS, the plated TP value will be only about 150%. Therefore, the SPS and DPS in the plating solution according to the present invention need to satisfy the following relationship:
  • Example 4 Comparing Example 4 with Example 9, by performing according to Example 4, it is possible to obtain a plated through hole having a high TP and acceptable copper quality, but the appearance is not good enough, and in Example 9, a common three-component electroplated copper plating containing a leveling agent is used.
  • the plating of the liquid for at least 1 min can significantly improve the appearance and obtain a bright coated surface.

Abstract

本发明涉及一种电镀铜镀液及其电镀铜工艺,该电镀铜镀液包括如下组份:五水硫酸铜20g/L-240g/L、硫酸20g/L-300g/L、氯离子25g/L-120mg/L、光亮剂0.1mg/L-20mg/L、抑制剂1mg/L-2000mg/L、去离子水为余量;所述光亮剂选自烷基磺酸硫醇或其衍生物中的两种;所述抑制剂选自非离子表面活性剂中的一种或几种。本发明的电镀铜镀液能大大提高施镀电流以及挠性板通孔电镀的均镀能力(TP),TP能达到200%以上,且孔内电镀铜层平整,质量符合挠性板的各项要求。

Description

电镀铜镀液及其电镀铜工艺 技术领域
本发明涉及印制线路板制造技术领域,特别是涉及一种电镀铜镀液及其电镀铜工艺。
背景技术
挠性电路板(Flexible Printed Circuit Board)又称“FPC挠性板”,是用挠性的绝缘基材制成的印制电路板。挠性板具有产品体积小,重量轻的特征,能大大缩小装置的体积,满足电子产品向高密度、小型化、轻量化、薄型化、高可靠方向发展的需要。除此之外,它还具有高度挠曲性,可自由弯曲、卷绕、扭转、折迭,依照空间布局要求任意改变形状,也可在三维空间内任意移动和伸缩,以实现组件装配和导线连接的一体化。同时,FPC挠性板还具有良好的散热性、可焊性以及易于装连等优点。挠性电路板因其独有的特性,在航天、军事、移动通讯、手提电脑、计算机外设、PDA、数字相机等领域得到广泛的应用。与刚性线路板相比,挠性线路板的制造工序与工艺装备与刚性板的基本相同。但由于其可挠的特性使得挠性板制作工艺更复杂、更困难。
目前实现板面间的电气互连连通方式主要有三种:盲孔、通孔和埋孔,这三种方式所实现的PCB板电气互连主要是通过电镀铜技术得以实现。目前使用最多的铜电镀液为硫酸盐型电镀液,因其电镀出的镀层均匀、细致、柔软,且镀液成分简单,分散能力、深镀能力好,电流效率高,沉积速率快,污水治理简单。除含有硫酸铜、硫酸、氯离子等无机成分外,硫酸铜电镀液中还需加入一些不同类型的有机添加剂,以调整电镀过程中电流的分布,改善镀液的均镀能力。目前常用的有机添加剂有光亮剂、抑制剂和整平剂。光亮剂通常是小分子含硫有机物,在电镀过程中有利于晶核的形成,使晶核分布致 密,促使镀铜层变得平滑并得以反光。其典型功能化官能团有二硫键(-S-S-)、磺酸基团(-SO3 -)以及巯基(-SH)。目前常用的光亮剂有聚二硫二丙烷磺酸钠(SPS)、3-巯基丙烷磺酸钠(MPS)。抑制剂多为高分子含氧类化合物,在氯离子协同作用下,吸附在阴极表面上,以抑制板面金属铜的沉积。同时,抑制剂可充当润湿剂,降低界面的表面张力(降低接触角),让镀液更容易进入孔内增加传质效果。整平剂通常是含氮有机物,带有很强的正电性,很容易吸附在高电流密度区(凸起区或拐角处),与铜离子竞争,使该处的电镀速度趋缓但不影响低电流密度区(凹陷区)的电镀,使原本起伏不平的表面变得更为平坦。
业界衡量挠性板通孔电镀性能指标主要有两个:TP值和热应力测试,其中TP值为主要衡量指标。TP即为深镀能力,代表电镀溶液于零件深凹处沉积金属镀层的能力,其值为孔内铜层厚度与板面铜层厚度的百分比,TP值越高,代表镀液于零件深凹处沉积金属的能力越强,电气互连的可靠性越高,保障挠性板的进一步加工。TP值太低,零件深凹处将可能沉积不上金属从而导致开路现象的产生,或在后续的PCB板加工过程中孔内铜层会越来越薄,最后导致开路现象。而热应力测试则是测试高温下新镀铜层与板面的结合情况,以保证其在高温焊接过程中的可靠性。
提高挠性板通孔电镀的TP值,是目前挠性板电镀领域的首要目标。研究工作表明镀液中的整平剂会极大降低挠性板通孔电镀效果,挠性板通孔电镀不能添加整平剂。本发明认为其原因在于挠性板明显区别于刚性板的:挠性板更薄。整个挠性板通孔厚度就相当于刚性板通孔两面孔口的厚度,即薄的挠性板的孔内即相当于刚性板的孔口,而整平剂主要作用位点就是孔口处。从另一方面来讲,板越薄,厚径比越小,孔内外的溶液交换更容易,这对厚的刚性板通孔电镀铜来说是有益的。但是对于厚度非常小的挠性板,溶液交换越容易,也意味着有机添加剂在孔内外的分布也会随着发生变化,原本主要作用于板面整平剂将更容易分布到孔内,抑制孔内的铜沉积,而原本吸附在孔内的加速剂由于吸附位点被整平剂占据而更多的吸附在板面上加速板面 的铜沉积,进而导致TP值的下降。因此,通常运用于刚性印制板的三组分配方并不适用于挠性板的通孔电镀铜生产,开发挠性板专用的电镀铜配方是很急迫很必要的。
发明内容
基于此,本发明的目的是提供一种适用于挠性板的电镀铜镀液。
具体的技术方案如下:
一种电镀铜镀液,包括如下组份:
Figure PCTCN2017084621-appb-000001
所述光亮剂选自烷基磺酸硫醇或其衍生物中的两种;所述抑制剂选自非离子表面活性剂中的一种或几种。
在其中一些实施例中,所述光亮剂为聚二硫二丙烷磺酸钠和N,N-二甲基二硫代甲酰胺丙烷磺酸钠。
在其中一些实施例中,聚二硫二丙烷磺酸钠的添加量为0.1mg/L-10mg/L;N,N-二甲基二硫代甲酰胺丙烷磺酸钠的添加量为0.1mg/L-10mg/L。
在其中一些实施例中,聚二硫二丙烷磺酸钠的添加量与N,N-二甲基二硫代甲酰胺丙烷磺酸钠的添加量之和大于0.5mg/L,且聚二硫二丙烷磺酸钠的添加量与N,N-二甲基二硫代甲酰胺丙烷磺酸钠的添加量之差的绝对值大于0.5mg/L。聚二硫二丙烷磺酸钠的添加量与N,N-二甲基二硫代甲酰胺丙烷磺酸钠的添加量之和优选范围大于1mg/L,且小于6mg/L。
在其中一些实施例中,所述抑制剂选自聚亚烷基二醇化合物、聚乙烯醇、羧甲基纤维素、聚乙二醇,硬脂酸聚乙二醇酯,烷氧基萘酚,油酸聚乙二醇 酯,聚(乙二醇-丙二醇)无规共聚物,聚(聚乙二醇-聚丙二醇-聚乙二醇)嵌段共聚物,聚(聚丙二醇-聚乙二醇-聚丙二醇)嵌段共聚物中一种或几种,所述抑制剂的添加量为1mg/L-2000mg/L,优选500mg/L-1000mg/L。
本发明的另一目的是提供一种挠性印制线路板的电镀铜工艺。
具体的技术方案如下:
一种挠性印制线路板的电镀铜工艺,包括前处理工序、第一次电镀铜工序、清洗工序、第二次电镀铜工序、后处理工序;
所述第一次电镀铜工序中使用权利要求1-5任一项所述的电镀铜镀液;
所述第二次电镀铜工序中使用的第二电镀铜镀液,包括如下组份:
Figure PCTCN2017084621-appb-000002
所述第二光亮剂选自聚二硫二丙烷磺酸钠、巯基丙烷磺酸钠、2-巯基苯并咪唑、乙撑硫脲中的一种;所述第二抑制剂选自聚亚烷基二醇化合物、聚乙烯醇、羧甲基纤维素、聚乙二醇,硬脂酸聚乙二醇酯,烷氧基萘酚,油酸聚乙二醇酯,聚(乙二醇-丙二醇)无规共聚物,聚(聚乙二醇-聚丙二醇-聚乙二醇)嵌段共聚物,聚(聚丙二醇-聚乙二醇-聚丙二醇)嵌段共聚物中一种或几种;所述整平剂选自聚乙烯亚胺或其衍生物、己内酰胺或其衍生物,聚乙烯基吡咯或其衍生物、二亚乙基三胺或其衍生物,六亚甲基四胺或其衍生物,二甲基苯基吡唑酮鎓盐或其衍生物,蔷薇苯胺或其衍生物,含硫氨基酸或其衍生物,吩嗪鎓盐或其衍生物中一种或几种。
在其中一些实施例中,所述第一电镀铜工序的工艺参数为:电流密度1-5A/dm2,电镀温度为15-32℃,电镀时间为20-120min;第二电镀铜工序的 工艺参数为:电流密度1-5A/dm2,电镀温度为15-32℃,电镀时间为1-20min。
本发明的另一目的是提供一种挠性印制线路板。
上述电镀铜工艺制备得到的挠性印制线路板。
在其中一些实施例中,所述挠性印制线路板中微通孔的尺寸为:直径20μm-300μm,板件厚度40μm-300μm。
本发明的原理及优点如下:
本发明的电镀铜镀液中的添加剂含有三个组分,其中有两个组分发挥加速作用,另一个组分发挥抑制作用。在起加速作用的两个组分(聚二硫二丙烷磺酸钠SPS和N,N-二甲基二硫代甲酰胺丙烷磺酸钠DPS)中,SPS起到主光亮剂的作用,提高孔内的铜沉积速率,提高挠性板电镀TP。而DPS则起到辅助光亮剂的作用,在用于加速铜沉积效果的同时,也用于改善镀层质量。具有含氮、含硫结构的DPS,在酸性电镀条件下,其结构中的含氮结构会在一定程度上起到抑制剂的作用,亦即为整平剂的作用。此外,DPS沉积出来的铜镀层同SPS沉积出来的铜镀层相比,镀层中的杂质能级与结晶度没什么太大差别,但是DPS电镀出来的铜晶粒更加细化,沉积层更紧密,使得铜层粗糙度降低,进而减小铜层电阻率。
此外,本发明的电镀铜镀液中没有整平剂的加入。同有整平剂的镀液相比,无整平剂的镀液将会大大提高挠性板的电镀TP,因为无整平剂的镀液将会消除整平剂所带来的对孔内铜沉积的抑制效果。同时,无整平剂的镀液一定程度上会提高镀层质量。研究表明在电镀过程中,整平剂会持续消耗,产生的杂质会进入铜镀层而增加镀层的应力(即脆性),同时,并入到沉积铜里面的整平剂所造成的铜层污染将引起互连电阻的增加。因此,本发明所述镀液将会在一定程度上解决因整平剂并入所带来的镀层质量问题。
采用本发明的电镀铜镀液能使TP值达到200%以上,且孔内电镀沉积铜层较平整,铜镀层质量符合挠性板的各项要求。
本发明的另一目的是提供一种使用该镀液的方法,即使用该镀液的印制电路板电镀铜工艺。使用该方法能够得到更光亮平整的镀层。
本发明的目的通过以下技术方案实现:
步骤一、如有必要,将特定规格的挠性板固定在用于固定挠性板的框架上,确保挠性板与导电框架之间导电性良好;
步骤二、如有必要,对进行过通孔导电处理的板件进行除油和清洗,以免除油剂残留在板面并带入后续步骤;
步骤三、如有必要,对步骤二中处理后的板件进行预浸;
步骤四、对步骤三处理后的板件于本发明提供的电镀铜镀液中实施电镀(第一电镀铜工序)并清洗,以免电镀液残留在板面并带入后续步骤;
步骤五、对步骤五电镀后的板件置于含有三组分有机添加剂(即含有整平剂、光亮剂、抑制剂)的电镀液(第二电镀铜镀液)中实施电镀(第二电镀铜工序);
步骤六、对施镀后的板件清洗、烘干,可以进入下一个工序。
上述印制电路板的电镀铜工艺中使用的除油液均为市售产品;涉及的预浸液为浓度10g/L至100g/L的硫酸。
上述的一种使用本发明电镀液镀液的方法,步骤四中电镀铜的电流密度为1A/dm2至5A/dm2,电镀温度为15℃至32℃,电镀时间为20分钟至120分钟;
上述的一种使用本发明电镀液的方法,步骤五中的所述含有三组分有机添加剂的电镀液镀液可以是市售的,也可以是在本发明所述镀液的基础上添加整平剂,添加量为5mg/L至40mg/L,所涉及的整平剂可以是市售的任一种或几种。电流密度为1A/dm2至5A/dm2,电镀温度为15℃至32℃,电镀时间为1分钟至20分钟。
第一电镀铜工序的目的在于用本发明所述的镀液提高挠性板电镀TP,保证电气互连的可靠性。
第二电镀铜工序的目的在于改善第一电镀铜工序中可能遗留的板面不良问题。确保整个电镀流程后板面光亮平整。
附图说明
图1为本发明所述使用本发明所提供镀液的电镀铜工艺流程图;
图2为使用市售的挠性板电镀药水电镀双层挠性板后的放大500倍金相显微镜横截面图:其中图(a)为实施例1中使用罗门哈斯ST920电镀药水电镀双层挠性板后的放大500倍金相显微镜横截面图;图(b)为实施例2中使用麦德美VP100挠性板电镀药水电镀双层挠性板后的放大500倍金相显微镜横截面图;图(c)为实施例3中使用麦德美VP100挠性板电镀药水电镀多层挠性板后的放大500倍金相显微镜横截面图;
图3为使用本发明电镀液镀液电镀挠性板后的放大500倍金相显微镜横截面图:其中图(a)为实施例4中使用本发明电镀液镀液电镀双层挠性板后的放大500倍金相显微镜横截面图;图(b)为实施例8中使用本发明电镀液镀液电镀多层挠性板后的放大500倍金相显微镜横截面图;
图4为实施例9中使用本发明所述电镀铜工艺电镀双层挠性板后的放大500倍金相显微镜横截面图。
具体实施方式
本发明将通过以下的实施例加以说明。但实施例仅是对本发明所作的进一步详细阐述,并不能限制本发明的使用范围。
为了测试本发明的优势,我们采用市售的两种通孔电镀药水,按照其操作说明书要求的最佳条件进行挠性板通孔电镀。实施例1~实施例3为使用市售电镀药水所做实施例,实施例4~实施例9为使用本发明电镀液所做的实施例。
实施例1
本实施例采用的是罗门哈斯公司产COPPER GLEAMTM ST-920电镀液添加剂(典型的三组分配方),依照使用说明书按以下配方配制电镀溶液。
五水合硫酸铜: 70g/L
硫酸:         220g/L
氯离子:       60mg/L
ST920电镀液添加剂各组分按照说明书浓度添加:
ST920光亮剂:2.75mL/L
ST920抑制剂:17.5mL/L
ST920整平剂:3.25mL/L
ST920稳定剂:5mL/L
去离子水:余量。
将特定规格的挠性板进行一系列前处理后,即除油、水洗、预浸后,在上述的铜镀液中实施电镀。本实施例将黑孔化后待镀的挠性板用作负极,可溶性含磷铜用作阳极,所述待电镀挠性板上的通孔规格为:直径150μm,板件厚度75μm。所述电镀的电流密度为2A/dm3,电镀温度为25℃,电镀时间为20分钟,空气搅拌气流量为1L/min。本实施例所得到的测试结果如表1、图2(a)所示。
实施例2
本实施例采用的是麦德美公司产MACUSPEC VP100电镀镀液添加剂(该配方不含整平剂,但其所使用的光亮剂与本发明不同)。依照使用说明书按以下配方配制电镀溶液。
五水合硫酸铜: 120g/L
硫酸:         200g/L
氯离子:       70mg/L
VP100电镀液添加剂各组分按照说明书浓度添加:
VP100光亮剂:       1mL/L
VP100抑制剂:       10mL/L
去离子水:余量。
将特定规格的挠性板进行一系列前处理后,即除油、水洗、预浸后,在上述的铜镀液中实施电镀。本实施例将黑孔化后待镀的挠性板用作负极,可溶性含磷铜用作阳极,所述待电镀挠性板上的通孔规格为:直径200μm,板件厚度56μm。所述电镀的电流密度为2A/dm3,电镀温度为25℃,电镀时间为 25分钟,空气搅拌气流量为1L/min。本实施例所得到的测试结果如表1、图2(b)所示。
实施例3
本实施例采用的是麦德美公司产MACUSPEC VP100电镀镀液添加剂。依照使用说明书按以下配方配制电镀溶液。
五水合硫酸铜: 120g/L
硫酸:         200g/L
氯离子:       70mg/L
VP100电镀液添加剂各组分按照说明书浓度添加:
VP100光亮剂:       1mL/L
VP100抑制剂:       10mL/L
去离子水:余量。
将特定规格的挠性板进行一系列前处理后,即除油、水洗、预浸后,在上述的铜镀液中实施电镀。本实施例将黑孔化后待镀的挠性板用作负极,可溶性含磷铜用作阳极,所述待电镀挠性板上的通孔规格为:直径200μm,板件厚度185μm。所述电镀的电流密度为2A/dm3,电镀温度为25℃,电镀时间为30分钟,空气搅拌气流量为1L/min。本实施例所得到的测试结果如表1、图2(c)所示。
实施例4
将以下化合物加入到去离子水中以制备电镀溶液。
Figure PCTCN2017084621-appb-000003
将特定规格的挠性板进行一系列前处理后,即除油、水洗、预浸后,在上述的铜镀液中实施电镀。本实施例将黑孔化后待镀的挠性板用作负极,可溶性含磷铜用作阳极,所述待电镀挠性板上的通孔规格为:直径200μm,板件厚度56μm。所述电镀的电流密度为2A/dm3,电镀温度为25℃,电镀时间为25分钟,空气搅拌气流量为1L/min。本实施例所得到的测试结果如表1、图3(a)所示。
实施例5
将以下化合物加入到去离子水中以制备电镀溶液。
Figure PCTCN2017084621-appb-000004
将特定规格的挠性板进行一系列前处理后,即除油、水洗、预浸后,在上述的铜镀液中实施电镀。本实施例将黑孔化后待镀的挠性板用作负极,可溶性含磷铜用作阳极,所述待电镀挠性板上的通孔规格为:直径200μm,板件厚度56μm。所述电镀的电流密度为2A/dm3,电镀温度为25℃,电镀时间为25分钟,空气搅拌气流量为1L/min。本实施例所得到的测试结果如表1所示。
实施例6
将以下化合物加入到去离子水中以制备电镀溶液。
Figure PCTCN2017084621-appb-000005
Figure PCTCN2017084621-appb-000006
将特定规格的挠性板进行一系列前处理后,即除油、水洗、预浸后,在上述的铜镀液中实施电镀。本实施例将黑孔化后待镀的挠性板用作负极,可溶性含磷铜用作阳极,所述待电镀挠性板上的通孔规格为:直径200μm,板件厚度56μm。所属电镀的电流密度为2A/dm3,电镀温度为25℃,电镀时间为25分钟,空气搅拌气流量为1L/min。本实施例所得到的测试结果如表1所示。
实施例7
将以下化合物加入到去离子水中以制备电镀溶液。
Figure PCTCN2017084621-appb-000007
将特定规格的挠性板进行一系列前处理后,即除油、水洗、预浸后,在上述的铜镀液中实施电镀。本实施例将黑孔化后待镀的挠性板用作负极,可溶性含磷铜用作阳极,所述待电镀挠性板上的通孔规格为:直径200μm,板件厚度56μm。所属电镀的电流密度为2A/dm3,电镀温度为25℃,电镀时间为25分钟,空气搅拌气流量为1L/min。本实施例所得到的测试结果如表1所示。
实施例8
将以下化合物加入到去离子水中以制备电镀溶液。
Figure PCTCN2017084621-appb-000008
Figure PCTCN2017084621-appb-000009
将特定规格的挠性板进行一系列前处理后,即除油、水洗、预浸后,在上述的铜镀液中实施电镀。本实施例将黑孔化后待镀的挠性板用作负极,可溶性含磷铜用作阳极,所述待电镀挠性板上的通孔规格为:直径200μm,板件厚度185μm。所属电镀的电流密度为2A/dm3,电镀温度为25℃,电镀时间为25分钟,空气搅拌气流量为1.3L/min。本实施例所得到的测试结果如表1、图3(b)所示。
实施例9
本实施例将对本发明所涉及的使用本发明镀液的电镀铜工艺(工艺流程如图1所示)作一个实施例阐述。
将以下化合物加入到去离子水中以制备第一电镀铜工序的电镀铜镀液:
Figure PCTCN2017084621-appb-000010
将以下化合物加入到去离子水中以制备第二电镀铜工序的第二电镀铜镀液:
Figure PCTCN2017084621-appb-000011
Figure PCTCN2017084621-appb-000012
将特定规格的挠性板进行一系列前处理后,即除油、水洗、预浸后,在上述的铜镀液I中实施电镀25分钟,在上述铜镀液II中实施电镀5分钟。本实施例将黑孔化后待镀的挠性板用作负极,可溶性含磷铜用作阳极,所述待电镀挠性板上的通孔规格为:直径200μm,板件厚度56μm。所述电镀的电流密度为2A/dm3,电镀温度为25℃,空气搅拌气流量为1L/min。本实施例所得到的测试结果如表1、图4所示。
表1实施例1~实施例9得到的挠性板通孔电镀性能测试结果。
Figure PCTCN2017084621-appb-000013
比较实施例1、2、3与实施例4、5、7、8、9可以看出,选用本发明的镀铜镀液,能大大提高挠性板通孔电镀深镀能力(TP)。用其电镀薄的双层挠性板,能使TP达到240%以上;用其电镀压合后的多层挠性板,能使TP值达到200%以上,且孔内电镀沉积铜层较平整,铜镀层质量符合挠性板的各项要求。
实例6可以看出当SPS量等于DPS时,其电镀TP值将只有150%左右。因此本发明所涉及的电镀液中SPS与DPS需满足以下关系式:|SPS-DPS|>0.5mg/L。
实例4和实例9对比,通过依照实例4进行,能够得到高TP并且铜质量合格的电镀通孔,但是外观不够好看,通过实例9中,再采用包含整平剂的普通三组分电镀铜镀液施镀至少1min,可以明显改善外观,得到光亮的镀层表面。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种电镀铜镀液,其特征在于,包括如下组份:
    Figure PCTCN2017084621-appb-100001
    所述光亮剂选自烷基磺酸硫醇或其衍生物中的两种;所述抑制剂选自非离子表面活性剂中的一种或几种。
  2. 根据权利要求1所述的电镀铜镀液,其特征在于,所述光亮剂为聚二硫二丙烷磺酸钠和N,N-二甲基二硫代甲酰胺丙烷磺酸钠。
  3. 根据权利要求2所述的电镀铜镀液,其特征在于,聚二硫二丙烷磺酸钠的添加量为0.1mg/L-10mg/L;N,N-二甲基二硫代甲酰胺丙烷磺酸钠的添加量为0.1mg/L-10mg/L。
  4. 根据权利要求3所述的电镀铜镀液,其特征在于,聚二硫二丙烷磺酸钠的添加量与N,N-二甲基二硫代甲酰胺丙烷磺酸钠的添加量之和大于0.5mg/L,且聚二硫二丙烷磺酸钠的添加量与N,N-二甲基二硫代甲酰胺丙烷磺酸钠的添加量之差的绝对值大于0.5mg/L。
  5. 根据权利要求4所述的电镀铜镀液,其特征在于,聚二硫二丙烷磺酸钠的添加量与N,N-二甲基二硫代甲酰胺丙烷磺酸钠的添加量之和大于1mg/L,且小于6mg/L。
  6. 根据权利要求1-5任一项所述的电镀铜镀液,其特征在于,所述抑制剂选自聚亚烷基二醇化合物、聚乙烯醇、羧甲基纤维素、聚乙二醇,硬脂酸聚乙二醇酯,烷氧基萘酚,油酸聚乙二醇酯,聚(乙二醇-丙二醇)无规共聚 物,聚(聚乙二醇-聚丙二醇-聚乙二醇)嵌段共聚物,聚(聚丙二醇-聚乙二醇-聚丙二醇)嵌段共聚物中一种或几种,所述抑制剂的添加量为1mg/L-2000mg/L。
  7. 一种挠性印制线路板的电镀铜工艺,其特征在于,包括前处理工序、第一次电镀铜工序、清洗工序、第二次电镀铜工序、后处理工序;
    所述第一次电镀铜工序中使用权利要求1-6任一项所述的电镀铜镀液;
    所述第二次电镀铜工序中使用的第二电镀铜镀液,包括如下组份:
    Figure PCTCN2017084621-appb-100002
    所述第二光亮剂选自聚二硫二丙烷磺酸钠、巯基丙烷磺酸钠、2-巯基苯并咪唑、乙撑硫脲中的一种;所述第二抑制剂选自聚亚烷基二醇化合物、聚乙烯醇、羧甲基纤维素、聚乙二醇,硬脂酸聚乙二醇酯,烷氧基萘酚,油酸聚乙二醇酯,聚(乙二醇-丙二醇)无规共聚物,聚(聚乙二醇-聚丙二醇-聚乙二醇)嵌段共聚物,聚(聚丙二醇-聚乙二醇-聚丙二醇)嵌段共聚物中一种或几种;所述整平剂选自聚乙烯亚胺或其衍生物、己内酰胺或其衍生物,聚乙烯基吡咯或其衍生物、二亚乙基三胺或其衍生物,六亚甲基四胺或其衍生物,二甲基苯基吡唑酮鎓盐或其衍生物,蔷薇苯胺或其衍生物,含硫氨基酸或其衍生物,吩嗪鎓盐或其衍生物中一种或几种。
  8. 根据权利要求7所述的挠性印制线路板的电镀铜工艺,其特征在于,所述第一电镀铜工序的工艺参数为:电流密度1A/dm2-5A/dm2,电镀温度为15℃-32℃,电镀时间为20min-120min;第二电镀铜工序的工艺参数为:电流密度1A/dm2-5A/dm2,电镀温度为15℃-32℃,电镀时间为1min-20min。
  9. 权利要求7-8任一项所述的电镀铜工艺制备得到的挠性印制线路板。
  10. 根据权利要求9所述的挠性印制线路板,其特征在于,所述挠性印制线路板中微通孔的尺寸为:直径20μm-300μm,板件厚度40μm-300μm。
PCT/CN2017/084621 2016-06-21 2017-05-17 电镀铜镀液及其电镀铜工艺 WO2017219797A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/744,863 US20190100848A1 (en) 2016-06-21 2017-05-17 Copper Electroplating Solution and Copper Electroplating Process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610466285.7 2016-06-21
CN201610466285.7A CN105887144B (zh) 2016-06-21 2016-06-21 电镀铜镀液及其电镀铜工艺

Publications (1)

Publication Number Publication Date
WO2017219797A1 true WO2017219797A1 (zh) 2017-12-28

Family

ID=56718192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084621 WO2017219797A1 (zh) 2016-06-21 2017-05-17 电镀铜镀液及其电镀铜工艺

Country Status (3)

Country Link
US (1) US20190100848A1 (zh)
CN (1) CN105887144B (zh)
WO (1) WO2017219797A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114351194A (zh) * 2022-01-27 2022-04-15 电子科技大学 一种印制电路通孔电镀铜的镀液及工艺

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106480479B (zh) * 2016-10-12 2019-02-15 东莞华威铜箔科技有限公司 挠性电解铜箔用添加剂的制备方法、制品及其应用
CN106987874B (zh) * 2017-05-19 2019-07-02 广东光华科技股份有限公司 电镀铜镀液
CN107313081A (zh) * 2017-07-24 2017-11-03 苏州天承化工有限公司 一种通盲孔共镀电镀液及电镀方法
CN107217282B (zh) * 2017-07-24 2020-10-16 苏州天承化工有限公司 一种高tp值软板电镀液及电镀方法
CN107557826A (zh) * 2017-09-30 2018-01-09 广东骏亚电子科技股份有限公司 一种酸性电化镀铜溶液
CN109706488A (zh) * 2017-10-26 2019-05-03 丹阳市金长汽车部件有限公司 一种镀铜光亮电镀液
CN109817515A (zh) * 2017-11-22 2019-05-28 中芯国际集成电路制造(上海)有限公司 半导体器件的制造方法
CN108130565A (zh) * 2018-02-01 2018-06-08 广东埃德伟控汽车部件有限公司 一种稳定性电镀液
CN110318079A (zh) * 2018-03-28 2019-10-11 东莞市斯坦得电子材料有限公司 一种用于柔性印制线路板的vcp镀铜工艺
WO2020006761A1 (zh) * 2018-07-06 2020-01-09 力汉科技有限公司 电解液、使用该电解液以电沉积制备单晶铜的方法以及电沉积设备
CN109219272A (zh) * 2018-10-22 2019-01-15 台山市精诚达电路有限公司 一种挠性电路板的导通方法
CN109722689B (zh) * 2019-01-17 2020-09-18 首都航天机械有限公司 一种铝合金法兰盘窄深槽镀铜层均匀性控制方法
CN110195220B (zh) * 2019-07-11 2021-07-02 佛山市南海柯瑞新材料有限公司 纽扣电池的化学浸锡液、及制备方法和纽扣电池壳体的制作方法
CN111074307A (zh) * 2020-01-04 2020-04-28 安徽工业大学 一种隔膜电解法镀铜镀液稳定工艺
CN111155153B (zh) * 2020-02-19 2021-06-08 广州三孚新材料科技股份有限公司 一种电镀铜镀液及电镀铜方法
CN111364067A (zh) * 2020-04-11 2020-07-03 傅嘉英 一种制备纳米金属的电解池
CN111793810A (zh) * 2020-07-22 2020-10-20 六安市金安区宝德龙科技创新有限公司 一种微酸性镀液光亮镀铜用光亮剂及其制备方法
CN112030199B (zh) * 2020-08-27 2021-11-12 江苏艾森半导体材料股份有限公司 一种用于先进封装的高速电镀铜添加剂及电镀液
CN112458503B (zh) * 2020-11-19 2022-03-01 瑞声科技(南京)有限公司 均温板上盖板的制备方法以及均温板
CN112877739B (zh) * 2021-01-13 2022-08-23 上海天承化学有限公司 一种电镀液及其电镀方法和应用
CN113445086A (zh) * 2021-04-17 2021-09-28 珠海松柏科技有限公司 适用于印制线路板的镀铜添加剂及电镀铜镀液
CN113956479B (zh) * 2021-11-26 2022-12-02 电子科技大学 电镀铜加速剂及合成方法和应用
CN114214678B (zh) * 2022-02-23 2022-05-10 深圳市板明科技股份有限公司 一种线路板通孔电镀铜溶液及其应用
WO2023179704A1 (en) * 2022-03-25 2023-09-28 Jiangyin Nanopore Innovative Materials Technology Ltd Copper plating additive compositions, copper plating solutions, and uses thereof
CN114540889B (zh) * 2022-03-25 2023-03-24 江阴纳力新材料科技有限公司 镀铜添加剂、镀铜液及其应用
CN115233263B (zh) * 2022-06-29 2024-04-05 南通赛可特电子有限公司 一种整平剂、制备方法及应用
CN115216816A (zh) * 2022-08-16 2022-10-21 哈尔滨工业大学 一种适用于印制电路板盲孔填铜的电镀铜镀液
CN115536561A (zh) * 2022-10-11 2022-12-30 广东利尔化学有限公司 一种适用于酸性电镀铜液的光亮剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091024A1 (en) * 1998-04-30 2001-04-11 Ebara Corporation Method and device for plating substrate
WO2002055568A2 (de) * 2001-01-11 2002-07-18 Raschig Gmbh Verwendung von polyolefinen mit basischen, aromatischen substituenten als hilfsmittel zur elektrolytischen abscheidung von metallischen schichten
CN1918327A (zh) * 2003-12-22 2007-02-21 恩索恩公司 微电子中的铜电镀
CN101004402A (zh) * 2006-01-18 2007-07-25 伊希特化股份有限公司 监控铜电镀液填孔能力的方法
CN102071443A (zh) * 2009-10-15 2011-05-25 上村工业株式会社 铜电解镀覆浴和电解镀覆铜的方法
CN104499021A (zh) * 2014-12-29 2015-04-08 广东光华科技股份有限公司 印制线路板及其电镀铜工艺
CN105441993A (zh) * 2015-12-22 2016-03-30 苏州禾川化学技术服务有限公司 一种电镀线路板通孔盲孔的电镀液及电镀方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137195A (ja) * 1986-11-28 1988-06-09 Matsushita Refrig Co 凹凸めつき処理方法
US5174886A (en) * 1991-02-22 1992-12-29 Mcgean-Rohco, Inc. High-throw acid copper plating using inert electrolyte
JP4354139B2 (ja) * 2001-11-02 2009-10-28 凸版印刷株式会社 配線基板の製造方法
KR100389061B1 (ko) * 2002-11-14 2003-06-25 일진소재산업주식회사 전해 동박 제조용 전해액 및 이를 이용한 전해 동박 제조방법
EP1717351A1 (de) * 2005-04-27 2006-11-02 Enthone Inc. Galvanikbad
US20070012576A1 (en) * 2005-07-13 2007-01-18 Rohm And Haas Electronic Materials Llc Plating method
CN104213170A (zh) * 2014-09-16 2014-12-17 四川海英电子科技有限公司 高阶高密度电路板镀铜方法
CN105002527B (zh) * 2015-07-31 2017-06-16 广东光华科技股份有限公司 整平剂溶液及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091024A1 (en) * 1998-04-30 2001-04-11 Ebara Corporation Method and device for plating substrate
WO2002055568A2 (de) * 2001-01-11 2002-07-18 Raschig Gmbh Verwendung von polyolefinen mit basischen, aromatischen substituenten als hilfsmittel zur elektrolytischen abscheidung von metallischen schichten
CN1918327A (zh) * 2003-12-22 2007-02-21 恩索恩公司 微电子中的铜电镀
CN101004402A (zh) * 2006-01-18 2007-07-25 伊希特化股份有限公司 监控铜电镀液填孔能力的方法
CN102071443A (zh) * 2009-10-15 2011-05-25 上村工业株式会社 铜电解镀覆浴和电解镀覆铜的方法
CN104499021A (zh) * 2014-12-29 2015-04-08 广东光华科技股份有限公司 印制线路板及其电镀铜工艺
CN105441993A (zh) * 2015-12-22 2016-03-30 苏州禾川化学技术服务有限公司 一种电镀线路板通孔盲孔的电镀液及电镀方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114351194A (zh) * 2022-01-27 2022-04-15 电子科技大学 一种印制电路通孔电镀铜的镀液及工艺
CN114351194B (zh) * 2022-01-27 2023-06-20 电子科技大学 一种印制电路通孔电镀铜的镀液及工艺

Also Published As

Publication number Publication date
CN105887144B (zh) 2018-09-21
US20190100848A1 (en) 2019-04-04
CN105887144A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2017219797A1 (zh) 电镀铜镀液及其电镀铜工艺
Dow et al. Through-hole filling by copper electroplating
Dow et al. Microvia filling by copper electroplating using diazine black as a leveler
JP6496755B2 (ja) 低内部応力銅電気めっき方法
US20070007144A1 (en) Tin electrodeposits having properties or characteristics that minimize tin whisker growth
TW200407465A (en) Electrolyte solution for manufacturing electrolytic copper foil and electrolytic copper foil manufacturing method using the same
JP2004339558A (ja) 低粗面電解銅箔及びその製造方法
CN113737232B (zh) 一种线路板通孔电镀铜整平剂及其应用、制备方法
JP2003328179A (ja) 酸性銅めっき浴用添加剤及び該添加剤を含有する酸性銅めっき浴並びに該めっき浴を用いるめっき方法
CN113445086A (zh) 适用于印制线路板的镀铜添加剂及电镀铜镀液
CN110117801B (zh) 一种印制电路板盲孔填铜用镀铜添加剂及其制备方法
CN115142100A (zh) 一种用于pcb通孔金属致密填充的酸性硫酸盐电子电镀铜组合添加剂
KR20130077240A (ko) 고연신 동박 제조용 전해도금액 첨가제 및 이를 포함하는 동박 제조용 전해도금액
CN116180173A (zh) 一种具有高分散能力的pcb通孔镀铜用电镀铜添加剂及其应用
CN114214678B (zh) 一种线路板通孔电镀铜溶液及其应用
CN111041531A (zh) 电容器镍电镀液及电镀方法和应用
JPH04318997A (ja) 印刷回路用銅箔及びその製造方法
JP4872257B2 (ja) 2層めっき基板およびその製造方法
JP2011091114A (ja) 配線回路基板およびその製法
TWI414643B (zh) 銅電鍍液組成物
JP2021042455A (ja) 金属めっき皮膜の形成方法
CN116180170A (zh) 一种挠性印制线路板通孔电镀铜液
Nikolova et al. Innovatve acid copper process for simultaneously filling vias and plating through holes
TWI647342B (zh) Copper-silver two-component metal plating liquid for semiconductor wires and plating method
CN115305534A (zh) 一种用于先进封装的高速电镀铜添加剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17814535

Country of ref document: EP

Kind code of ref document: A1