WO2017216905A1 - 測長制御装置、製造システム、測長制御方法および測長制御プログラム - Google Patents

測長制御装置、製造システム、測長制御方法および測長制御プログラム Download PDF

Info

Publication number
WO2017216905A1
WO2017216905A1 PCT/JP2016/067797 JP2016067797W WO2017216905A1 WO 2017216905 A1 WO2017216905 A1 WO 2017216905A1 JP 2016067797 W JP2016067797 W JP 2016067797W WO 2017216905 A1 WO2017216905 A1 WO 2017216905A1
Authority
WO
WIPO (PCT)
Prior art keywords
length measurement
fitting
product
tool
measurement control
Prior art date
Application number
PCT/JP2016/067797
Other languages
English (en)
French (fr)
Inventor
圭祐 枡田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018523105A priority Critical patent/JP6400254B2/ja
Priority to US16/089,277 priority patent/US20200230713A1/en
Priority to KR1020187035711A priority patent/KR101984457B1/ko
Priority to CN201680086415.2A priority patent/CN109311135B/zh
Priority to PCT/JP2016/067797 priority patent/WO2017216905A1/ja
Priority to DE112016006839.5T priority patent/DE112016006839B4/de
Priority to TW105126049A priority patent/TW201800177A/zh
Publication of WO2017216905A1 publication Critical patent/WO2017216905A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/16Compensation for wear of the tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B49/00Measuring or gauging equipment on boring machines for positioning or guiding the drill; Devices for indicating failure of drills during boring; Centering devices for holes to be bored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • B23Q15/04Control or regulation of feed movement according to the final size of the previously-machined workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements

Definitions

  • the present invention relates to a length measurement control device, a manufacturing system, a length measurement control method, and a length measurement control program.
  • the processing accuracy is maintained by measuring the dimensions of the processed workpiece and the cutting edge position of the cutting tool with a length measuring device such as a microscope or a probe, and correcting the processing position according to the length measurement result.
  • the temperature of the servo motor in the machining apparatus is measured in real time during workpiece machining, and the temperature information and the temperature threshold information held in the system are compared, so that the workpiece and the cutting tool are normally used.
  • the timing at which the load is applied is detected, and the length is measured at this timing.
  • the worker can specify the length measurement timing that can minimize the decrease in workpiece processing efficiency. Experience is required.
  • the deterioration of the processing accuracy due to heat can be suppressed. Although it may be, the fall of processing accuracy by wear of a cutting tool cannot be controlled.
  • the object of the present invention is to determine a length measurement timing capable of suppressing a decrease in processing accuracy and processing efficiency regardless of whether there is experience of a worker or whether production is variable-variable production.
  • a length measurement control device is provided.
  • a receiving unit that receives fitting information indicating a fitting degree between parts in a product assembled from a part group including a member processed using a tool; Depending on whether or not the fitting condition indicated by the fitting information received by the receiving unit is out of the threshold range, the length dimension of the tool is adjusted to correct the machining position according to the change in the length dimension of the tool.
  • a determination unit for determining whether to measure.
  • the length dimension of the tool is measured for correcting the machining position according to the change in the length dimension of the tool depending on whether or not the fitting degree between the parts in the assembled product is out of the threshold range. Whether or not to measure the length is determined. For this reason, it is possible to determine the length measurement timing capable of suppressing the reduction in processing accuracy and processing efficiency regardless of the presence or absence of the worker's experience and whether the production is variant-variable production.
  • FIG. 1 is a block diagram showing a configuration of a manufacturing system according to Embodiment 1.
  • FIG. 2 is a block diagram showing a configuration of a processing apparatus according to the first embodiment.
  • FIG. 3 is a block diagram illustrating a configuration of the assembly device according to the first embodiment.
  • 1 is a block diagram illustrating a configuration of an inspection apparatus according to Embodiment 1.
  • FIG. 2 is a block diagram illustrating a configuration of a length measurement control device according to the first embodiment.
  • 3 is a flowchart showing the operation of the machining apparatus according to Embodiment 1.
  • 5 is a flowchart showing the operation of the assembling apparatus according to the first embodiment. 5 is a flowchart showing the operation of the length measurement control device according to the first embodiment.
  • 5 is a flowchart showing the operation of the processing apparatus according to the first embodiment.
  • 5 is a flowchart showing the operation of the length measurement control device according to the first embodiment.
  • 5 is a flowchart showing the operation of the inspection apparatus according to the first embodiment.
  • 5 is a flowchart showing the operation of the length measurement control device according to the first embodiment.
  • 5 is a flowchart showing the operation of the length measurement control device according to the first embodiment.
  • Embodiment 1 FIG. This embodiment will be described with reference to FIGS.
  • the manufacturing system 500 includes a processing device 100, an assembly device 200, an inspection device 300, and a length measurement control device 400.
  • the processing apparatus 100 is an apparatus used in a processing process.
  • the processing apparatus 100 includes a controller 110, a product ID reading device 130, a tool 140, and a length measuring device 150.
  • ID is an abbreviation for Identifier.
  • the assembly apparatus 200 is an apparatus used in the assembly process after the machining process.
  • the assembling apparatus 200 includes a controller 210, a product ID reading device 230, a fitting condition detecting device 240, and an assembling mechanism 250.
  • the inspection apparatus 300 is an apparatus used in the inspection process after the assembly process.
  • the inspection device 300 includes a controller 310, a product ID reading device 330, and an inspection mechanism 340.
  • the length measurement control device 400 is a device that determines the timing for measuring the length of the tool 140 used in the machining process.
  • the length measurement control device 400 includes a reception unit 411 and a determination unit 412.
  • the length measurement control device 400 is connected to the processing device 100, the assembly device 200, and the inspection device 300 via a network 510.
  • the network 510 is specifically a LAN.
  • LAN is an abbreviation for Local Area Network.
  • the fitting information 241 is transmitted / received via the network 510 between the fitting condition detection device 240 of the assembling device 200 and the receiving unit 411 of the length measurement control device 400.
  • the processing apparatus 100 includes the controller 110, the product ID reading device 130, the tool 140, and the length measuring device 150.
  • the controller 110 is a microcomputer or other computer.
  • the controller 110 includes a processor 111 and other hardware such as a communication interface 112 and a memory 120.
  • the processor 111 is connected to other hardware via a signal line, and controls these other hardware.
  • the processor 111 is an IC that performs processing.
  • IC is an abbreviation for Integrated Circuit.
  • the processor 111 is a CPU.
  • CPU is an abbreviation for Central Processing Unit.
  • the communication interface 112 is an interface connected to the length measurement control device 400 via the network 510.
  • the communication interface 112 includes a receiver that receives data and a transmitter that transmits data.
  • the communication interface 112 is a communication chip or a NIC.
  • NIC is an abbreviation for Network Interface Card.
  • the memory 120 stores a machining program 121, a length measurement program 122, and length measurement information 123.
  • the machining program 121 and the length measurement program 122 are read into the processor 111 and executed by the processor 111.
  • the length measurement information 123 is information related to a dimensional error of the tool 140.
  • the memory 120 is a flash memory or a RAM. “RAM” is an abbreviation for Random Access Memory.
  • the product ID reading device 130 is a device for uniquely identifying a product.
  • the product ID reader 130 is specifically a barcode reader or an RFID reader.
  • RFID is an abbreviation for Radio Frequency Identification.
  • the tool 140 is a tool for processing a member.
  • the tool 140 is specifically a cutting tool.
  • the length measuring device 150 is a device for measuring the length of the tool 140 and detecting a dimensional error of the tool 140.
  • the assembling apparatus 200 includes the controller 210, the product ID reading device 230, the fitting condition detecting device 240, and the assembling mechanism 250.
  • the controller 210 is a microcomputer or other computer.
  • the controller 210 includes a processor 211 and other hardware such as a communication interface 212 and a memory 220.
  • the processor 211 is connected to other hardware via a signal line, and controls these other hardware.
  • the processor 211 is an IC that performs processing. Specifically, the processor 211 is a CPU.
  • the communication interface 212 is an interface connected to the length measurement control device 400 via the network 510.
  • the communication interface 212 includes a receiver that receives data and a transmitter that transmits data.
  • the communication interface 212 is a communication chip or a NIC.
  • the memory 220 stores an assembly program 221.
  • the assembly program 221 is read into the processor 211 and executed by the processor 211.
  • the memory 220 is a flash memory or a RAM.
  • the product ID reader 230 is a device for uniquely identifying a product.
  • the product ID reader 230 is specifically a barcode reader or an RFID reader.
  • the fitting condition detection device 240 is a device for detecting the fitting condition at the time of product assembly using the temperature and the current value.
  • the assembly mechanism 250 is equipment for assembling products.
  • the inspection device 300 includes the controller 310, the product ID reading device 330, and the inspection mechanism 340.
  • the controller 310 is a microcomputer or other computer.
  • the controller 310 includes a processor 311 and other hardware such as a communication interface 312 and a memory 320.
  • the processor 311 is connected to other hardware via a signal line, and controls these other hardware.
  • the processor 311 is an IC that performs processing. Specifically, the processor 311 is a CPU.
  • the communication interface 312 is an interface connected to the length measurement control device 400 via the network 510.
  • the communication interface 312 includes a receiver that receives data and a transmitter that transmits data.
  • the communication interface 312 is a communication chip or a NIC.
  • the memory 320 stores an inspection program 321.
  • the inspection program 321 is read by the processor 311 and executed by the processor 311.
  • the memory 320 is a flash memory or a RAM.
  • the product ID reading device 330 is a device for uniquely identifying a product.
  • the product ID reader 330 is specifically a barcode reader or an RFID reader.
  • the inspection mechanism 340 is a facility for inspecting the product.
  • the length measurement control device 400 is a server computer or other computer.
  • the length measurement control device 400 includes a processor 401 and other hardware such as a memory 402, a first communication interface 403, a second communication interface 404, a third communication interface 405, and an auxiliary storage device 420.
  • the processor 401 is connected to other hardware via a signal line, and controls these other hardware.
  • the length measurement control device 400 includes a reception unit 411 and a determination unit 412 as functional elements. Functions of “units” such as the reception unit 411 and the determination unit 412 are realized by software.
  • the processor 401 is an IC that performs processing. Specifically, the processor 401 is a CPU.
  • the memory 402 is specifically a flash memory or a RAM.
  • the first communication interface 403 is an interface for controlling the machining apparatus 100 via the network 510.
  • the second communication interface 404 is an interface for collecting information from the assembly apparatus 200 via the network 510.
  • the third communication interface 405 is an interface for collecting information from the inspection apparatus 300 via the network 510.
  • the first communication interface 403, the second communication interface 404, and the third communication interface 405 each include a receiver that receives data and a transmitter that transmits data.
  • the first communication interface 403, the second communication interface 404, and the third communication interface 405 are communication chips or NICs.
  • One communication chip or NIC may also serve as the first communication interface 403, the second communication interface 404, and the third communication interface 405.
  • the auxiliary storage device 420 stores programs that realize the function of “unit” such as a fitting condition determination program 421, a threshold update program 422, and a threshold review program 423.
  • the auxiliary storage device 420 further stores threshold information 424, processing / assembly cooperation information 425, and log information 426.
  • the threshold information 424, the processing / assembly cooperation information 425, and the log information 426 are stored as a file or a database table.
  • the auxiliary storage device 420 also stores an OS.
  • “OS” is an abbreviation for Operating System.
  • the program and OS stored in the auxiliary storage device 420 are loaded into the memory 402 and executed by the processor 401. A part or all of the program for realizing the function of “unit” may be incorporated in the OS.
  • the auxiliary storage device 420 is a flash memory or an HDD. “HDD” is an abbreviation for Hard Disk Drive.
  • the length measurement control device 400 may include an input device and a display as hardware.
  • the input device is specifically a mouse, a keyboard, or a touch panel.
  • the display is an LCD.
  • LCD is an abbreviation for Liquid Crystal Display.
  • the length measurement control device 400 may include a plurality of processors that replace the processor 401.
  • the plurality of processors share the execution of a program that realizes the function of “unit”.
  • Each processor is an IC that performs processing in the same manner as the processor 401.
  • Information, data, signal values, and variable values indicating the results of the processing of “unit” are stored in the memory 402, the auxiliary storage device 420, or a register or cache memory in the processor 401.
  • the program for realizing the function of “unit” may be stored in a portable recording medium such as a magnetic disk or an optical disk.
  • the operation of the manufacturing system 500 corresponds to the manufacturing method according to the present embodiment.
  • the operation of the length measurement control device 400 corresponds to the length measurement control method according to the present embodiment.
  • the operation of the length measurement control device 400 corresponds to the processing procedure of the length measurement control program according to the present embodiment.
  • a member is processed into a part by the processing apparatus 100, and then a part is combined by the assembly apparatus 200 to be a product. The case where is shipped will be described.
  • FIG. 6 shows a flow in which a machining program 121 is executed by the machining apparatus 100 and members are machined using the tool 140 to become parts.
  • step S11 the controller 110 uses the product ID reader 130 to read the unique product ID associated with the member.
  • step S12 the controller 110 identifies the product type based on the product ID.
  • the product type is a type determined by classifying products according to the processed shape of the product.
  • step S ⁇ b> 13 the controller 110 reads processing information corresponding to the product type from the memory 120.
  • the information on the processing includes information on the processing position, the processing method, and the tool 140 used at the time of processing.
  • step S14 the controller 110 corrects the machining position based on the length measurement information 123 of the tool 140 stored in the memory 120 in order to maintain the machining accuracy.
  • step S ⁇ b> 15 the controller 110 processes the member using the tool 140 by executing one machining process.
  • step S16 if all the machining processes have been executed, the controller 110 ends the process. If not, the controller 110 performs the process of step S14 again.
  • the machining apparatus 100 acquires the length measurement information 123 indicating the length measurement result, which is the result of measuring the length dimension of the tool 140, from the memory 120.
  • the processing apparatus 100 corrects the processing position according to the length measurement result indicated by the acquired length measurement information 123.
  • the processing apparatus 100 processes the member using the tool 140 by applying the corrected processing position.
  • FIG. 7 shows a flow in which an assembly program 221 is executed by the assembly apparatus 200 and parts are combined using the assembly mechanism 250 to become a product.
  • step S21 the controller 210 uses the product ID reading device 230 to read the unique product ID associated with the part.
  • step S22 the controller 210 identifies the product type based on the product ID.
  • step S ⁇ b> 23 the controller 210 reads assembly processing information corresponding to the product type from the memory 220.
  • the information on the assembly process includes information on the assembly position and the assembly method.
  • step S ⁇ b> 24 the controller 210 combines parts by using the assembly mechanism 250 by executing one assembly process. At the same time, the controller 210 uses the fitting condition detection device 240 to detect the fitting condition.
  • step S ⁇ b> 25 the controller 210 transmits fitting information 241 indicating the product ID, the assembly position, and the fitting condition to the length measurement control device 400 via the communication interface 212. Thereby, the fitting condition determination request is transmitted. If all the assembly processes have been executed in step S26, the controller 210 ends the process. If not, the controller 210 performs the process of step S24 again.
  • the assembling apparatus 200 assembles a product from a group of parts. Thereafter, the assembling apparatus 200 detects the degree of fitting between components in the product. Then, the assembling apparatus 200 transmits fitting information 241 indicating the detected fitting condition to the length measurement control apparatus 400.
  • FIG. 8 shows a flow in which the fitting condition determination program 421 is executed by the length measurement control device 400 that has received the fitting condition determination request via the second communication interface 404, and a decrease in machining accuracy is detected during assembly. Yes.
  • step S31 the determination unit 412 stores the product ID, assembly position, and fitting condition information included in the fitting information 241 received by the receiving unit 411 in the auxiliary storage device 420 as log information 426.
  • step S32 the determination unit 412 identifies the product type based on the product ID.
  • step S ⁇ b> 33 the determination unit 412 acquires threshold information 424 corresponding to the product type and assembly position from the auxiliary storage device 420.
  • step S ⁇ b> 34 the determination unit 412 determines whether the fitting degree is outside the threshold range of the threshold information 424. If the fitting condition is out of the threshold range, the determination unit 412 determines that the processing accuracy has decreased, and performs the process of step S35.
  • step S ⁇ b> 35 the determination unit 412 identifies the processing position corresponding to the product type and the assembly position based on the processing / assembly cooperation information 425.
  • step S ⁇ b> 36 the determination unit 412 notifies the processing apparatus 100 of the product type, the processing position, and the fitting degree via the first communication interface 403. Thereby, a length measurement request is transmitted.
  • step S34 when the fitting degree is within the threshold range, the determination unit 412 determines that the processing accuracy has not deteriorated, and ends the process.
  • the receiving unit 411 of the length measurement control device 400 indicates the degree of fitting between parts in a product assembled from a part group including members processed using the tool 140.
  • the fitting information 241 is received.
  • the determination unit 412 of the length measurement control device 400 determines the machining position according to the change in the length dimension of the tool 140 depending on whether the fitting condition indicated by the fitting information 241 received by the receiving unit 411 is out of the threshold range. It is determined whether or not the length dimension of the tool 140 is measured for the correction.
  • FIG. 9 shows a flow in which the length measurement program 122 is executed by the processing apparatus 100 that has received the length measurement request via the communication interface 112 and it is determined whether or not the threshold information 424 needs to be updated.
  • step S41 the controller 110 identifies the product type based on the product ID notified from the length measurement control device 400.
  • the controller 110 specifies all the processing processes corresponding to the product type.
  • step S43 the controller 110 identifies all the tools 140 used for machining at the machining position notified from the length measurement control device 400 in the identified machining process.
  • step S44 the controller 110 selects one identified tool 140.
  • step S ⁇ b> 45 the controller 110 acquires the length measurement information 123 of the selected tool 140 from the memory 120.
  • step S46 the controller 110 measures the length of the selected tool 140 using the length measuring device 150, and detects a dimensional error.
  • step S ⁇ b> 47 the controller 110 determines whether there is a change in dimensional error based on the length measurement information 123. If there is a change in the dimensional error, the controller 110 performs the process of step S48. In step S48, the controller 110 updates the length measurement information 123. If there is no change in the dimensional error in step S47, or after the process of step S48, the controller 110 performs the process of step S49. If all the specified tools 140 have been measured in step S49, the controller 110 performs the process of step S50, and if not, the controller 110 performs the process of step S44 again.
  • step S50 if even one of the specified tools 140 has a change in dimensional error, the controller 110 determines that a decrease in machining accuracy has been correctly detected, and ends the process. On the other hand, if there is no change in the dimension error in all of the specified tools 140, the controller 110 determines that the reduction in machining accuracy has not been correctly detected, that is, the threshold information 424 needs to be updated, The process of step S51 is performed. In step S51, the controller 110 notifies the length measurement control device 400 of the product ID and the processing position via the communication interface 112. Thereby, a threshold value update request is transmitted.
  • the threshold value update program 422 is executed by the length measurement control device 400 that has received the threshold value update request via the first communication interface 403, and the threshold value information 424 for detecting a decrease in machining accuracy is updated. It shows the flow where the range expands.
  • step S61 the determination unit 412 identifies the product type based on the product ID notified from the processing apparatus 100.
  • the determination unit 412 specifies an assembly position corresponding to the product type and the processing position notified from the processing apparatus 100 based on the processing / assembly cooperation information 425.
  • step S ⁇ b> 63 the determination unit 412 acquires the fitting state corresponding to the product ID and the assembly position from the log information 426.
  • step S64 the determination unit 412 acquires threshold information 424 corresponding to the product type and assembly position.
  • step S ⁇ b> 65 the determination unit 412 determines whether the fitting degree is larger than the upper limit value of the threshold value range of the threshold information 424.
  • step S66 the determination unit 412 changes the upper limit value of the threshold value range of the threshold value information 424 to the degree of fitting.
  • step S67 the determination unit 412 determines whether or not the fitting degree is smaller than the lower limit value of the threshold range of the threshold information 424.
  • step S68 the determination unit 412 performs the process of step S68.
  • step S ⁇ b> 68 the determination unit 412 changes the lower limit value of the threshold range of the threshold information 424 to the degree of fitting. On the other hand, when the fitting degree is equal to or greater than the lower limit value of the threshold range, the determination unit 412 ends the process.
  • the length dimension of the tool 140 is measured according to the determination result in the determination unit 412 of the length measurement control device 400, and the length measurement indicated by the length measurement information 123 stored in the memory 120.
  • the processing apparatus 100 updates the length measurement result indicated by the length measurement information 123 stored in the memory 120 to the different length measurement result.
  • the processing device 100 causes the length measurement control device 400 to expand the threshold range.
  • the two or more tools 140 are set according to the determination result in the determination unit 412 of the length measurement control apparatus 400.
  • the machining apparatus 100 updates the length measurement result of the at least one tool 140 indicated by the length measurement information 123 stored in the memory 120 to the different length measurement result.
  • the machining apparatus 100 performs the length measurement control. Allow the device 400 to expand the threshold range.
  • the length measurement control device 400 When the length measurement range is expanded, when the fitting condition indicated by the fitting information 241 received by the receiving unit 411 is larger than the upper limit value of the threshold range, the length measurement control device 400 receives the upper limit value of the threshold range. 411 is updated to the same value as the fitting condition indicated by the fitting information 241 received.
  • the length measurement control device 400 When the length measurement range is expanded, when the fitting condition indicated by the fitting information 241 received by the receiving unit 411 is smaller than the lower limit value of the threshold range, the length measurement control device 400 receives the lower limit value of the threshold range. 411 is updated to the same value as the fitting condition indicated by the fitting information 241 received.
  • FIG. 11 shows a flow in which the inspection program 321 is executed by the inspection apparatus 300, the product is inspected using the inspection mechanism 340, and only good products are shipped. In this flow, it is determined whether or not the threshold information 424 needs to be reviewed.
  • step S71 the controller 310 uses the product ID reading device 330 to read the unique product ID associated with the product.
  • step S ⁇ b> 72 the controller 310 inspects the product using the inspection mechanism 340.
  • step S73 if the product passes the inspection, the controller 310 determines that the product is a non-defective product and ends the process. On the other hand, if the result is unsuccessful, the controller 310 determines that the reduction in machining accuracy has not been correctly detected, that is, it is necessary to review the threshold information 424, and performs the process of step S74.
  • step S ⁇ b> 74 the controller 310 notifies the length measurement control device 400 of the product ID via the communication interface 312. Thereby, a threshold value review request is transmitted.
  • the threshold value review program 423 is executed by the length measurement control device 400 that has received the threshold value review request via the third communication interface 405, and the threshold value information 424 for detecting a decrease in machining accuracy is reviewed. This shows a flow in which the threshold range is reduced.
  • step S81 the determination unit 412 identifies the product type based on the product ID notified from the inspection apparatus 300.
  • the determination unit 412 identifies all assembly positions corresponding to the product ID based on the log information 426.
  • step S83 the determination unit 412 selects one identified assembly position.
  • step S ⁇ b> 84 the determination unit 412 acquires the fitting degree Fd corresponding to the product ID and the assembly position from the log information 426.
  • step S85 the determination unit 412 acquires the maximum fitting degree X1 corresponding to the product type and the assembly position from the log information 426.
  • step S86 the determination unit 412 determines whether or not the fitting condition Fd and the maximum fitting condition X1 match.
  • step S ⁇ b> 87 the determination unit 412 acquires the second largest fitting condition X ⁇ b> 2 corresponding to the product ID and the assembly position from the log information 426.
  • step S88 the determination unit 412 changes the upper limit value of the threshold range of the threshold information 424 to the second largest fitting condition X2.
  • the determination unit 412 performs the process of step S89.
  • step S89 the determination unit 412 acquires the minimum fitting condition N1 corresponding to the product type and the assembly position from the log information 426.
  • step S90 the determination unit 412 determines whether or not the fitting condition Fd and the minimum fitting condition N1 match. When the fitting condition Fd and the minimum fitting condition N1 match, the determination unit 412 determines that the fitting condition Fd is an outlier and the threshold value information 424 needs to be reviewed, and performs the process of step S91. .
  • step S91 the determination unit 412 acquires the second smallest fitting condition N2 corresponding to the product ID and the assembly position from the log information 426.
  • step S92 the determination unit 412 changes the lower limit value of the threshold range of the threshold information 424 to the second smallest fitting condition N2.
  • the determination unit 412 determines that it is not necessary to review the threshold information 424. If it is verified in step S93 whether it is necessary to review the threshold information 424 for all assembly positions, the determination unit 412 ends the process. If not, the determination unit 412 returns to step S83 again. Process.
  • the inspection apparatus 300 inspects whether or not the product satisfies the standard. When the product does not satisfy the standard, the inspection apparatus 300 causes the length measurement control apparatus 400 to reduce the threshold range.
  • the inspection apparatus 300 inspects whether two or more products satisfy the standard.
  • the inspection apparatus 300 notifies the length measurement control apparatus 400 of products that do not satisfy the standard among two or more products.
  • the receiving unit 411 When the length measurement control device 400 reduces the threshold range, the receiving unit 411 indicates that the fitting state between components in the product notified from the inspection device 300 indicated by the fitting information 241 received by the receiving unit 411 is received by the receiving unit 411.
  • the upper limit value of the threshold range is the next largest fitting indicated by the fitting information 241 received by the receiving unit 411. Update to the same value as the condition.
  • the receiving unit 411 When the length measurement control device 400 reduces the threshold range, the receiving unit 411 indicates that the fitting state between components in the product notified from the inspection device 300 indicated by the fitting information 241 received by the receiving unit 411 is received by the receiving unit 411.
  • the received fitting information 241 indicates that the fitting condition between parts in any other product is smaller than the fitting condition between the components
  • the lower limit value of the threshold range is indicated by the fitting information 241 received by the receiving unit 411. Update to the same value as the condition.
  • the product ID is uniquely identified by reading the product ID, and the threshold information 424 for determining the accuracy of the tool 140 can be automatically updated. Regardless of whether there is experience or whether the production is variant-variable production, it is possible to determine the length measurement timing that can minimize the decrease in work machining efficiency.
  • the length of the tool 140 is used to correct the machining position according to the change in the length dimension of the tool 140 depending on whether or not the degree of fitting between the parts in the assembled product is out of the threshold range. It is determined whether to measure the dimensions, i.e. whether to measure the dimensions. For this reason, it is possible to determine the length measurement timing capable of suppressing the reduction in processing accuracy and processing efficiency regardless of the presence or absence of the worker's experience and whether the production is variant-variable production.
  • a decrease in accuracy of the tool 140 of the processing apparatus 100 is determined at the time of assembly. That is, in this embodiment, since the length is measured when a problem occurs in the assembly process, it is possible to suppress a decrease in processing efficiency.
  • the threshold value is automatically updated based on the length measurement result and the inspection result. That is, in the present embodiment, when it is determined that correction is not necessary during length measurement, the defect determination criteria are relaxed, so that the processing efficiency can be increased while maintaining the processing accuracy. On the other hand, if the inspection is rejected, the defect determination criteria are tightened, so that the processing accuracy can be improved.
  • the optimum length measurement timing of the tool 140 of the machining apparatus 100 can be determined using the automatically updated threshold value.
  • the optimum length measurement timing is a length measurement timing that can maintain the machining accuracy while minimizing the decrease in productivity.
  • the optimum length measurement timing of the tool 140 of the processing apparatus 100 can be determined even in variant-variable production by reading the product ID and setting a threshold according to the product type.
  • the length measuring device 150 is external to the processing device 100. May be present.
  • the machining apparatus 100 that has received the length measurement instruction displays an alert on a display connected to the machining apparatus 100, and an operator who has seen this alert measures the tool 140 to obtain the length measurement information 123. input.
  • the threshold information 424 when the threshold information 424 is reviewed, it is determined whether or not the fitting condition is an outlier by checking whether the fitting condition is maximum or minimum. You may judge by the general method using.
  • the inspection apparatus 300 automatically determines whether the product is good or bad, but this determination may be performed by an operator. In that case, a worker reads the product ID with a product ID reader 130 such as a barcode reader and inspects the product visually or using an apparatus. Then, the worker inputs the inspection result to a terminal such as a personal computer, and notifies the length measurement control device 400 of the product ID and the inspection result.
  • a product ID reader 130 such as a barcode reader
  • the function of “unit” is realized by software.
  • the function of “unit” may be realized by a combination of software and hardware. That is, a part of the function of “unit” may be realized by a dedicated electronic circuit, and the rest may be realized by software.
  • the dedicated electronic circuit is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an FPGA, or an ASIC.
  • GA is an abbreviation for Gate Array.
  • FPGA is an abbreviation for Field-Programmable Gate Array.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • the processor 401, the memory 402, and the dedicated electronic circuit are collectively referred to as a “processing circuit”. That is, regardless of whether the function of “part” is realized by software or a combination of software and hardware, the function of “part” is realized by a processing circuit.
  • Part may be read as “Process”, “Procedure”, or “Process”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • General Factory Administration (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Numerical Control (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

測長制御装置(400)の受信部(411)は、工具(140)を使用して加工された部材を含む部品群から組み立てられた製品における部品間の嵌合具合を示す嵌合情報(241)を受信する。測長制御装置(400)の判定部(412)は、受信部(411)により受信された嵌合情報(241)が示す嵌合具合が閾値範囲から外れているかどうかによって、工具(140)の長さ寸法の変化に応じた加工位置の補正のために工具(140)の長さ寸法を測定するかどうかを判定する。

Description

測長制御装置、製造システム、測長制御方法および測長制御プログラム
 本発明は、測長制御装置、製造システム、測長制御方法および測長制御プログラムに関するものである。
 旋盤等の加工装置では、何度も加工を繰り返すと切削工具が少しずつ摩耗し、加工精度が低下する。このため、加工したワークの寸法や切削工具の刃先位置を顕微鏡やプローブ等の測長機器で測長し、測長結果に応じて加工位置を補正することで、加工精度を維持している。
 特許文献1に記載の技術では、ワークを加工する度に毎回測長するのではなく、加工装置の起動時に測長したり、周期的に測長したりする等、決まったタイミングで測長している。
 特許文献2に記載の技術では、ワーク加工時に加工装置内のサーボモータの温度をリアルタイムに計測し、温度情報とシステム内部に保持した温度閾値情報を比較することで、ワークや切削工具に平常時よりも負荷のかかるタイミングを検出し、このタイミングで測長している。
特開平10-296591号公報 特開2004-34187号公報
 加工装置の起動時に測長したり、周期的に測長したりする等、決まったタイミングで測長する方法では、ワーク加工効率の低下を最小化できる測長タイミングを特定するには、作業員の経験が必要である。
 ワーク加工時に加工装置内のサーボモータの温度をリアルタイムに計測し、温度情報とシステム内部に保持した温度閾値情報を比較して測長タイミングを決定する方法では、熱による加工精度の低下は抑えられるかもしれないが、切削工具の摩耗による加工精度の低下は抑えられない。
 変種変量生産においては、ワークの加工方法や数量が変化するのに伴って切削工具の摩耗速度も変動するため、上記のいずれの方法で測長タイミングを決定したとしても、加工精度を維持できなかったり、ワーク加工効率が低下したりするという課題がある。
 本発明は、作業員の経験の有無や、生産が変種変量生産か否かに関わらず、加工精度および加工効率の低下を抑えることが可能な測長タイミングを決定することを目的とする。
 本発明の一態様に係る測長制御装置は、
 工具を使用して加工された部材を含む部品群から組み立てられた製品における部品間の嵌合具合を示す嵌合情報を受信する受信部と、
 前記受信部により受信された嵌合情報が示す嵌合具合が閾値範囲から外れているかどうかによって、前記工具の長さ寸法の変化に応じた加工位置の補正のために前記工具の長さ寸法を測定するかどうかを判定する判定部とを備える。
 本発明では、組み立てられた製品における部品間の嵌合具合が閾値範囲から外れているかどうかによって、工具の長さ寸法の変化に応じた加工位置の補正のために工具の長さ寸法を測定するかどうか、すなわち、測長するかどうかが判定される。このため、作業員の経験の有無や、生産が変種変量生産か否かに関わらず、加工精度および加工効率の低下を抑えることが可能な測長タイミングを決定できる。
実施の形態1に係る製造システムの構成を示すブロック図。 実施の形態1に係る加工装置の構成を示すブロック図。 実施の形態1に係る組立装置の構成を示すブロック図。 実施の形態1に係る検査装置の構成を示すブロック図。 実施の形態1に係る測長制御装置の構成を示すブロック図。 実施の形態1に係る加工装置の動作を示すフローチャート。 実施の形態1に係る組立装置の動作を示すフローチャート。 実施の形態1に係る測長制御装置の動作を示すフローチャート。 実施の形態1に係る加工装置の動作を示すフローチャート。 実施の形態1に係る測長制御装置の動作を示すフローチャート。 実施の形態1に係る検査装置の動作を示すフローチャート。 実施の形態1に係る測長制御装置の動作を示すフローチャート。 実施の形態1に係る測長制御装置の動作を示すフローチャート。
 以下、本発明の実施の形態について、図を用いて説明する。なお、各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。
 実施の形態1.
 本実施の形態について、図1から図13を用いて説明する。
 ***構成の説明***
 図1を参照して、本実施の形態に係る製造システム500の構成を説明する。
 製造システム500は、加工装置100と、組立装置200と、検査装置300と、測長制御装置400とを備える。
 加工装置100は、加工工程で使用される装置である。加工装置100は、コントローラ110と、製品ID読取装置130と、工具140と、測長装置150とを備える。「ID」は、Identifierの略語である。
 組立装置200は、加工工程の後の組立工程で使用される装置である。組立装置200は、コントローラ210と、製品ID読取装置230と、嵌合具合検出装置240と、組立機構250とを備える。
 検査装置300は、組立工程の後の検査工程で使用される装置である。検査装置300は、コントローラ310と、製品ID読取装置330と、検査機構340とを備える。
 測長制御装置400は、加工工程で使用される工具140を測長するタイミングを決定する装置である。測長制御装置400は、受信部411と、判定部412とを備える。
 測長制御装置400は、加工装置100、組立装置200、および、検査装置300とネットワーク510を介して接続されている。ネットワーク510は、具体的には、LANである。「LAN」は、Local Area Networkの略語である。
 組立装置200の嵌合具合検出装置240と、測長制御装置400の受信部411との間では、ネットワーク510を介して嵌合情報241が送受信される。
 図2を参照して、本実施の形態に係る加工装置100の構成を説明する。
 前述したように、加工装置100は、コントローラ110と、製品ID読取装置130と、工具140と、測長装置150とを備える。
 コントローラ110は、マイクロコンピュータまたはその他のコンピュータである。コントローラ110は、プロセッサ111を備えるとともに、通信インタフェース112、メモリ120といった他のハードウェアを備える。プロセッサ111は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 プロセッサ111は、プロセッシングを行うICである。「IC」は、Integrated Circuitの略語である。プロセッサ111は、具体的には、CPUである。「CPU」は、Central Processing Unitの略語である。
 通信インタフェース112は、ネットワーク510を介して測長制御装置400と接続されるインタフェースである。通信インタフェース112は、データを受信するレシーバおよびデータを送信するトランスミッタを含む。通信インタフェース112は、具体的には、通信チップまたはNICである。「NIC」は、Network Interface Cardの略語である。
 メモリ120には、加工プログラム121と、測長プログラム122と、測長情報123とが記憶されている。加工プログラム121および測長プログラム122は、プロセッサ111に読み込まれ、プロセッサ111によって実行される。測長情報123は、工具140の寸法誤差に関する情報である。メモリ120は、具体的には、フラッシュメモリまたはRAMである。「RAM」は、Random Access Memoryの略語である。
 製品ID読取装置130は、製品を一意に識別するための装置である。製品ID読取装置130は、具体的には、バーコードリーダまたはRFIDリーダである。「RFID」は、Radio Frequency Identificationの略語である。
 工具140は、部材を加工するための道具である。工具140は、具体的には、切削工具である。
 測長装置150は、工具140を測長して工具140の寸法誤差を検出するための装置である。
 図3を参照して、本実施の形態に係る組立装置200の構成を説明する。
 前述したように、組立装置200は、コントローラ210と、製品ID読取装置230と、嵌合具合検出装置240と、組立機構250とを備える。
 コントローラ210は、マイクロコンピュータまたはその他のコンピュータである。コントローラ210は、プロセッサ211を備えるとともに、通信インタフェース212、メモリ220といった他のハードウェアを備える。プロセッサ211は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 プロセッサ211は、プロセッシングを行うICである。プロセッサ211は、具体的には、CPUである。
 通信インタフェース212は、ネットワーク510を介して測長制御装置400と接続されるインタフェースである。通信インタフェース212は、データを受信するレシーバおよびデータを送信するトランスミッタを含む。通信インタフェース212は、具体的には、通信チップまたはNICである。
 メモリ220には、組立プログラム221が記憶されている。組立プログラム221は、プロセッサ211に読み込まれ、プロセッサ211によって実行される。メモリ220は、具体的には、フラッシュメモリまたはRAMである。
 製品ID読取装置230は、製品を一意に識別するための装置である。製品ID読取装置230は、具体的には、バーコードリーダまたはRFIDリーダである。
 嵌合具合検出装置240は、温度や電流値を用いて製品組立時の嵌合具合を検出するための装置である。
 組立機構250は、製品を組み立てるための設備である。
 図4を参照して、本実施の形態に係る検査装置300の構成を説明する。
 前述したように、検査装置300は、コントローラ310と、製品ID読取装置330と、検査機構340とを備える。
 コントローラ310は、マイクロコンピュータまたはその他のコンピュータである。コントローラ310は、プロセッサ311を備えるとともに、通信インタフェース312、メモリ320といった他のハードウェアを備える。プロセッサ311は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 プロセッサ311は、プロセッシングを行うICである。プロセッサ311は、具体的には、CPUである。
 通信インタフェース312は、ネットワーク510を介して測長制御装置400と接続されるインタフェースである。通信インタフェース312は、データを受信するレシーバおよびデータを送信するトランスミッタを含む。通信インタフェース312は、具体的には、通信チップまたはNICである。
 メモリ320には、検査プログラム321が記憶されている。検査プログラム321は、プロセッサ311に読み込まれ、プロセッサ311によって実行される。メモリ320は、具体的には、フラッシュメモリまたはRAMである。
 製品ID読取装置330は、製品を一意に識別するための装置である。製品ID読取装置330は、具体的には、バーコードリーダまたはRFIDリーダである。
 検査機構340は、製品を検査するための設備である。
 図5を参照して、本実施の形態に係る測長制御装置400の構成を説明する。
 測長制御装置400は、サーバコンピュータまたはその他のコンピュータである。測長制御装置400は、プロセッサ401を備えるとともに、メモリ402、第1通信インタフェース403、第2通信インタフェース404、第3通信インタフェース405、補助記憶装置420といった他のハードウェアを備える。プロセッサ401は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 測長制御装置400は、機能要素として、受信部411と、判定部412とを備える。受信部411、判定部412といった「部」の機能は、ソフトウェアにより実現される。
 プロセッサ401は、プロセッシングを行うICである。プロセッサ401は、具体的には、CPUである。
 メモリ402は、具体的には、フラッシュメモリまたはRAMである。
 第1通信インタフェース403は、ネットワーク510を介して加工装置100を制御するためのインタフェースである。第2通信インタフェース404は、ネットワーク510を介して組立装置200から情報を収集するためのインタフェースである。第3通信インタフェース405は、ネットワーク510を介して検査装置300から情報を収集するためのインタフェースである。第1通信インタフェース403、第2通信インタフェース404、および、第3通信インタフェース405は、データを受信するレシーバおよびデータを送信するトランスミッタをそれぞれ含む。第1通信インタフェース403、第2通信インタフェース404、および、第3通信インタフェース405は、具体的には、通信チップまたはNICである。1つの通信チップまたはNICが、第1通信インタフェース403、第2通信インタフェース404、および、第3通信インタフェース405を兼ねていてもよい。
 補助記憶装置420には、嵌合具合判定プログラム421、閾値更新プログラム422、閾値見直しプログラム423といった、「部」の機能を実現するプログラムが記憶されている。補助記憶装置420には、さらに、閾値情報424と、加工組立連携情報425と、ログ情報426とが記憶されている。閾値情報424、加工組立連携情報425、および、ログ情報426は、ファイルまたはデータベースのテーブルとして記憶されている。図示していないが、補助記憶装置420には、OSも記憶されている。「OS」は、Operating Systemの略語である。補助記憶装置420に記憶されているプログラムおよびOSは、メモリ402にロードされ、プロセッサ401によって実行される。なお、「部」の機能を実現するプログラムの一部または全部がOSに組み込まれていてもよい。補助記憶装置420は、具体的には、フラッシュメモリまたはHDDである。「HDD」は、Hard Disk Driveの略語である。
 測長制御装置400は、ハードウェアとして、入力装置およびディスプレイを備えていてもよい。
 入力装置は、具体的には、マウス、キーボード、または、タッチパネルである。ディスプレイは、具体的には、LCDである。「LCD」は、Liquid Crystal Displayの略語である。
 測長制御装置400は、プロセッサ401を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、「部」の機能を実現するプログラムの実行を分担する。それぞれのプロセッサは、プロセッサ401と同じように、プロセッシングを行うICである。
 「部」の処理の結果を示す情報、データ、信号値、および、変数値は、メモリ402、補助記憶装置420、または、プロセッサ401内のレジスタまたはキャッシュメモリに記憶される。
 「部」の機能を実現するプログラムは、磁気ディスク、光ディスクといった可搬記録媒体に記憶されてもよい。
 ***動作の説明***
 図6から図13を参照して、本実施の形態に係る製造システム500の動作を説明する。製造システム500の動作は、本実施の形態に係る製造方法に相当する。測長制御装置400の動作は、本実施の形態に係る測長制御方法に相当する。測長制御装置400の動作は、本実施の形態に係る測長制御プログラムの処理手順に相当する。
 製品の製造方法の一例として、まず加工装置100によって部材が加工されて部品になり、次に組立装置200によって部品が組み合わされて製品になり、最後に検査装置300によって製品が検査され、良品のみが出荷される場合について述べる。
 図6は、加工装置100で加工プログラム121が実行され、工具140を用いて部材が加工されて部品になるフローを示している。
 ステップS11において、コントローラ110は、製品ID読取装置130を用いて、部材に紐づけられた一意の製品IDを読み取る。ステップS12において、コントローラ110は、製品IDをもとに製品種別を特定する。製品種別は、製品の加工形状に応じて製品を分類することで決められた種別である。ステップS13において、コントローラ110は、製品種別に対応する加工処理の情報をメモリ120から読み出す。加工処理の情報には、加工位置、加工方法、および、加工時に使用する工具140の情報が含まれている。ステップS14において、コントローラ110は、加工精度を維持するために、メモリ120に記憶されている工具140の測長情報123をもとに加工位置を補正する。ステップS15において、コントローラ110は、加工処理を1つ実行することで、工具140を用いて部材を加工する。ステップS16において、加工処理がすべて実行されていれば、コントローラ110は、処理を終了し、そうでなければ、コントローラ110は、再びステップS14の処理を行う。
 上記のように、本実施の形態において、加工装置100は、工具140の長さ寸法を測定した結果である測長結果を示す測長情報123をメモリ120から取得する。加工装置100は、取得した測長情報123が示す測長結果に応じて加工位置を補正する。加工装置100は、補正後の加工位置を適用して工具140を使用して部材を加工する。
 図7は、組立装置200で組立プログラム221が実行され、組立機構250を用いて部品が組み合わされて製品になるフローを示している。
 ステップS21において、コントローラ210は、製品ID読取装置230を用いて、部品に紐づけられた一意の製品IDを読み取る。ステップS22において、コントローラ210は、製品IDをもとに製品種別を特定する。ステップS23において、コントローラ210は、製品種別に対応する組立処理の情報をメモリ220から読み出す。組立処理の情報には、組立位置および組立方法の情報が含まれている。ステップS24において、コントローラ210は、組立処理を1つ実行することで、組立機構250を用いて部品を組み合わせる。同時に、コントローラ210は、嵌合具合検出装置240を用いて、嵌合具合を検出する。ステップS25において、コントローラ210は、通信インタフェース212を介して、製品IDと組立位置と嵌合具合とを示す嵌合情報241を測長制御装置400に送信する。これにより、嵌合具合判定依頼が送信される。ステップS26において、組立処理がすべて実行されていれば、コントローラ210は、処理を終了し、そうでなければ、コントローラ210は、再びステップS24の処理を行う。
 上記のように、本実施の形態において、組立装置200は、部品群から製品を組み立てる。その後、組立装置200は、製品における部品間の嵌合具合を検出する。そして、組立装置200は、検出した嵌合具合を示す嵌合情報241を測長制御装置400に送信する。
 図8は、第2通信インタフェース404を介して嵌合具合判定依頼を受信した測長制御装置400で嵌合具合判定プログラム421が実行され、組立時に加工精度の低下が検出されるフローを示している。
 ステップS31において、判定部412は、受信部411で受信された嵌合情報241に含まれる製品ID、組立位置、および、嵌合具合の情報をログ情報426として補助記憶装置420に保存する。ステップS32において、判定部412は、製品IDをもとに製品種別を特定する。ステップS33において、判定部412は、製品種別と組立位置に対応する閾値情報424を補助記憶装置420から取得する。ステップS34において、判定部412は、嵌合具合が閾値情報424の閾値範囲外か否かを判定する。嵌合具合が閾値範囲外だった場合には、判定部412は、加工精度が低下したと判断し、ステップS35の処理を行う。ステップS35において、判定部412は、加工組立連携情報425をもとに製品種別と組立位置に対応する加工位置を特定する。ステップS36において、判定部412は、第1通信インタフェース403を介して、製品種別と加工位置と嵌合具合とを加工装置100に通知する。これにより、測長依頼が送信される。一方、ステップS34において、嵌合具合が閾値範囲内だった場合には、判定部412は、加工精度が低下していないと判断し、処理を終了する。
 上記のように、本実施の形態において、測長制御装置400の受信部411は、工具140を使用して加工された部材を含む部品群から組み立てられた製品における部品間の嵌合具合を示す嵌合情報241を受信する。測長制御装置400の判定部412は、受信部411により受信された嵌合情報241が示す嵌合具合が閾値範囲から外れているかどうかによって、工具140の長さ寸法の変化に応じた加工位置の補正のために工具140の長さ寸法を測定するかどうかを判定する。
 図9は、通信インタフェース112を介して測長依頼を受信した加工装置100で測長プログラム122が実行され、閾値情報424を更新する必要があるかどうかが判断されるフローを示している。
 ステップS41において、コントローラ110は、測長制御装置400から通知された製品IDをもとに製品種別を特定する。ステップS42において、コントローラ110は、製品種別に対応する加工処理をすべて特定する。ステップS43において、コントローラ110は、特定した加工処理で、測長制御装置400から通知された加工位置の加工に用いた工具140をすべて特定する。ステップS44において、コントローラ110は、特定した工具140を1つ選択する。ステップS45において、コントローラ110は、選択した工具140の測長情報123をメモリ120から取得する。ステップS46において、コントローラ110は、測長装置150を用いて、選択した工具140を測長し、寸法誤差を検出する。ステップS47において、コントローラ110は、測長情報123をもとに、寸法誤差に変化があったか否かを判定する。寸法誤差に変化があった場合、コントローラ110は、ステップS48の処理を行う。ステップS48において、コントローラ110は、測長情報123を更新する。ステップS47において、寸法誤差に変化がなかった場合、または、ステップS48の処理の後、コントローラ110は、ステップS49の処理を行う。ステップS49において、特定した工具140がすべて測長されていれば、コントローラ110は、ステップS50の処理を行い、そうでなければ、コントローラ110は、再びステップS44の処理を行う。ステップS50において、特定した工具140の1つでも寸法誤差に変化があった場合には、コントローラ110は、加工精度の低下を正しく検出できたと判断し、処理を終了する。一方、特定した工具140のすべてで寸法誤差に変化がなかった場合には、コントローラ110は、加工精度の低下を正しく検出できなかった、すなわち、閾値情報424の更新が必要であると判断し、ステップS51の処理を行う。ステップS51において、コントローラ110は、通信インタフェース112を介して、製品IDと加工位置とを測長制御装置400に通知する。これにより、閾値更新依頼が送信される。
 図10は、第1通信インタフェース403を介して閾値更新依頼を受信した測長制御装置400で閾値更新プログラム422が実行され、加工精度の低下を検出するための閾値情報424が更新されて、閾値範囲が拡大するフローを示している。
 ステップS61において、判定部412は、加工装置100から通知された製品IDをもとに製品種別を特定する。ステップS62において、判定部412は、加工組立連携情報425をもとに製品種別と加工装置100から通知された加工位置に対応する組立位置を特定する。ステップS63において、判定部412は、製品IDと組立位置に対応する嵌合具合をログ情報426から取得する。ステップS64において、判定部412は、製品種別と組立位置に対応する閾値情報424を取得する。ステップS65において、判定部412は、嵌合具合が閾値情報424の閾値範囲の上限値よりも大きいか否かを判定する。嵌合具合が閾値範囲の上限値よりも大きい場合には、判定部412は、ステップS66の処理を行う。ステップS66において、判定部412は、閾値情報424の閾値範囲の上限値を嵌合具合に変更する。一方、嵌合具合が閾値範囲の上限値以下である場合には、判定部412は、ステップS67の処理を行う。ステップS67において、判定部412は、嵌合具合が閾値情報424の閾値範囲の下限値よりも小さいか否かを判定する。嵌合具合が閾値範囲の下限値よりも小さい場合には、判定部412は、ステップS68の処理を行う。ステップS68において、判定部412は、閾値情報424の閾値範囲の下限値を嵌合具合に変更する。一方、嵌合具合が閾値範囲の下限値以上である場合には、判定部412は、処理を終了する。
 上記のように、本実施の形態において、測長制御装置400の判定部412における判定結果に応じて工具140の長さ寸法が測定され、メモリ120に記憶された測長情報123が示す測長結果と異なる測長結果が得られた場合、加工装置100は、メモリ120に記憶された測長情報123が示す測長結果を当該異なる測長結果に更新する。一方、メモリ120に記憶された測長情報123が示す測長結果と同じ測長結果が得られた場合、加工装置100は、測長制御装置400に閾値範囲を拡大させる。
 加工装置100が2つ以上の工具140を使用して部品群に含まれる部材を加工していたときに、測長制御装置400の判定部412における判定結果に応じて2つ以上の工具140の長さ寸法が測定され、2つ以上の工具140のうち少なくとも1つの工具140について、メモリ120に記憶された測長情報123が示す測長結果と異なる測長結果が得られた場合、加工装置100は、メモリ120に記憶された測長情報123が示す当該少なくとも1つの工具140の測長結果を当該異なる測長結果に更新する。一方、2つ以上の工具140のうちすべての工具140について、メモリ120に記憶された測長情報123が示す測長結果と同じ測長結果が得られた場合、加工装置100は、測長制御装置400に閾値範囲を拡大させる。
 測長制御装置400は、閾値範囲を拡大する際に、受信部411により受信された嵌合情報241が示す嵌合具合が閾値範囲の上限値よりも大きい場合、閾値範囲の上限値を受信部411により受信された嵌合情報241が示す嵌合具合と同じ値に更新する。
 測長制御装置400は、閾値範囲を拡大する際に、受信部411により受信された嵌合情報241が示す嵌合具合が閾値範囲の下限値よりも小さい場合、閾値範囲の下限値を受信部411により受信された嵌合情報241が示す嵌合具合と同じ値に更新する。
 図11は、検査装置300で検査プログラム321が実行され、検査機構340を用いて製品が検査されて良品のみが出荷されるフローを示している。このフローでは、閾値情報424を見直す必要があるかどうかが判断される。
 ステップS71において、コントローラ310は、製品ID読取装置330を用いて、製品に紐づけられた一意の製品IDを読み取る。ステップS72において、コントローラ310は、検査機構340を用いて製品を検査する。ステップS73において、製品が検査に合格した場合には、コントローラ310は、製品が良品であると判断し、処理を終了する。一方、不合格だった場合には、コントローラ310は、加工精度の低下を正しく検出できなかった、すなわち、閾値情報424を見直す必要があると判断し、ステップS74の処理を行う。ステップS74において、コントローラ310は、通信インタフェース312を介して、製品IDを測長制御装置400に通知する。これにより、閾値見直し依頼が送信される。
 図12および図13は、第3通信インタフェース405を介して閾値見直し依頼を受信した測長制御装置400で閾値見直しプログラム423が実行され、加工精度の低下を検出するための閾値情報424が見直されて、閾値範囲が縮小するフローを示している。
 ステップS81において、判定部412は、検査装置300から通知された製品IDをもとに製品種別を特定する。ステップS82において、判定部412は、ログ情報426をもとに製品IDに対応する組立位置をすべて特定する。ステップS83において、判定部412は、特定した組立位置を1つ選択する。ステップS84において、判定部412は、製品IDと組立位置に対応する嵌合具合Fdをログ情報426から取得する。ステップS85において、判定部412は、製品種別と組立位置に対応する最大の嵌合具合X1をログ情報426から取得する。ステップS86において、判定部412は、嵌合具合Fdと最大の嵌合具合X1が一致するか否かを判定する。嵌合具合Fdと最大の嵌合具合X1が一致した場合には、判定部412は、嵌合具合Fdが外れ値であり閾値情報424を見直す必要があると判断し、ステップS87の処理を行う。ステップS87において、判定部412は、製品IDと組立位置に対応する2番目に大きい嵌合具合X2をログ情報426から取得する。ステップS88において、判定部412は、閾値情報424の閾値範囲の上限値を2番目に大きい嵌合具合X2に変更する。一方、嵌合具合Fdと最大の嵌合具合X1が一致しない、すなわち、嵌合具合Fdが最大でない場合には、判定部412は、ステップS89の処理を行う。ステップS89において、判定部412は、製品種別と組立位置に対応する最小の嵌合具合N1をログ情報426から取得する。ステップS90において、判定部412は、嵌合具合Fdと最小の嵌合具合N1が一致するか否かを判定する。嵌合具合Fdと最小の嵌合具合N1が一致した場合には、判定部412は、嵌合具合Fdが外れ値であり閾値情報424を見直す必要があると判断し、ステップS91の処理を行う。ステップS91において、判定部412は、製品IDと組立位置に対応する2番目に小さい嵌合具合N2をログ情報426から取得する。ステップS92において、判定部412は、閾値情報424の閾値範囲の下限値を2番目に小さい嵌合具合N2に変更する。一方、嵌合具合Fdと最小の嵌合具合N1が一致しない、すなわち、嵌合具合Fdが最小でない場合には、判定部412は、閾値情報424を見直す必要はないと判断する。ステップS93において、すべての組立位置について閾値情報424を見直す必要があるかどうかが検証されていれば、判定部412は、処理を終了し、そうでなければ、判定部412は、再びステップS83の処理を行う。
 上記のように、本実施の形態において、検査装置300は、製品が基準を満たしているかどうかを検査する。検査装置300は、製品が基準を満たしていない場合、測長制御装置400に閾値範囲を縮小させる。
 検査装置300は、本実施の形態では、2つ以上の製品が基準を満たしているかどうかを検査する。検査装置300は、2つ以上の製品のうち基準を満たしていない製品を測長制御装置400に通知する。
 測長制御装置400は、閾値範囲を縮小する際に、受信部411により受信された嵌合情報241が示す、検査装置300から通知された製品における部品間の嵌合具合が、受信部411により受信された嵌合情報241が示す、他のいずれの製品における部品間の嵌合具合よりも大きい場合、閾値範囲の上限値を受信部411により受信された嵌合情報241が示す次に大きい嵌合具合と同じ値に更新する。
 測長制御装置400は、閾値範囲を縮小する際に、受信部411により受信された嵌合情報241が示す、検査装置300から通知された製品における部品間の嵌合具合が、受信部411により受信された嵌合情報241が示す、他のいずれの製品における部品間の嵌合具合よりも小さい場合、閾値範囲の下限値を受信部411により受信された嵌合情報241が示す次に小さい嵌合具合と同じ値に更新する。
 ***実施の形態の効果の説明***
 以上のように、本実施の形態では、製品IDを読み取ることで製品を一意に識別し、かつ、工具140の精度を判断する閾値情報424を自動で更新できるようにしているので、作業員の経験の有無や、生産が変種変量生産か否かに関わらず、ワーク加工効率の低下を最小化できる測長タイミングを決定することができる。
 本実施の形態では、組み立てられた製品における部品間の嵌合具合が閾値範囲から外れているかどうかによって、工具140の長さ寸法の変化に応じた加工位置の補正のために工具140の長さ寸法を測定するかどうか、すなわち、測長するかどうかが判定される。このため、作業員の経験の有無や、生産が変種変量生産か否かに関わらず、加工精度および加工効率の低下を抑えることが可能な測長タイミングを決定できる。
 本実施の形態では、加工装置100の工具140の精度低下が組立時に判断される。すなわち、本実施の形態では、組立工程で不具合が発生したときに測長するので、加工効率の低下を抑えることができる。
 本実施の形態では、測長結果や検査結果をもとに閾値が自動更新される。すなわち、本実施の形態では、測長時に補正不要と判定した場合は不具合の判定基準を緩くするので、加工精度を維持しながら、加工効率を高めることができる。一方、検査が不合格となった場合は不具合の判定基準を厳しくするので、加工精度を向上させることができる。
 本実施の形態によれば、加工装置100の工具140の最適な測長タイミングを自動更新される閾値を用いて判断することができる。最適な測長タイミングとは、生産性の低下を最小化しつつ、加工精度を維持できる測長タイミングのことである。
 本実施の形態によれば、製品IDを読み取り、製品種別に応じた閾値を設定することで、変種変量生産においても、加工装置100の工具140の最適な測長タイミングを判断することができる。
 ***他の構成***
 本実施の形態では、加工装置100に測長装置150を内蔵することで、寸法誤差の検出から修正までをすべて自動で実施可能にしているが、測長装置150は、加工装置100の外部に存在してもよい。その場合、測長指示を受けた加工装置100が、加工装置100に接続された表示器にアラートを表示し、このアラートを見た作業員が、工具140を測長して測長情報123を入力する。
 本実施の形態では、閾値情報424を見直す際に、嵌合具合が最大または最小かを確認することで、嵌合具合が外れ値か否かを判断しているが、標準偏差や正規分布等を用いた一般的な手法で判断してもよい。
 本実施の形態では、検査装置300が製品の良/不良を自動で判断しているが、この判断は作業員が実施してもよい。その場合、作業員がバーコードリーダ等の製品ID読取装置130で製品IDを読み取り、目視あるいは機器を用いて製品を検査する。そして、作業員は、検査結果をパーソナルコンピュータ等の端末に入力し、測長制御装置400に製品IDと検査結果を通知する。
 本実施の形態では、「部」の機能がソフトウェアにより実現されるが、変形例として、「部」の機能がソフトウェアとハードウェアとの組み合わせにより実現されてもよい。すなわち、「部」の機能の一部が専用の電子回路により実現され、残りがソフトウェアにより実現されてもよい。
 専用の電子回路は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、FPGA、または、ASICである。「GA」は、Gate Arrayの略語である。「FPGA」は、Field-Programmable Gate Arrayの略語である。「ASIC」は、Application Specific Integrated Circuitの略語である。
 プロセッサ401、メモリ402、および、専用の電子回路を、総称して「プロセッシングサーキットリ」という。つまり、「部」の機能がソフトウェアにより実現されるか、ソフトウェアとハードウェアとの組み合わせにより実現されるかに関わらず、「部」の機能は、プロセッシングサーキットリにより実現される。
 「部」を「工程」、「手順」、または、「処理」に読み替えてもよい。
 以上、本発明の実施の形態について説明したが、この実施の形態を部分的に実施しても構わない。なお、本発明は、この実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。
 100 加工装置、110 コントローラ、111 プロセッサ、112 通信インタフェース、120 メモリ、121 加工プログラム、122 測長プログラム、123 測長情報、130 製品ID読取装置、140 工具、150 測長装置、200 組立装置、210 コントローラ、211 プロセッサ、212 通信インタフェース、220 メモリ、221 組立プログラム、230 製品ID読取装置、240 嵌合具合検出装置、241 嵌合情報、250 組立機構、300 検査装置、310 コントローラ、311 プロセッサ、312 通信インタフェース、320 メモリ、321 検査プログラム、330 製品ID読取装置、340 検査機構、400 測長制御装置、401 プロセッサ、402 メモリ、403 第1通信インタフェース、404 第2通信インタフェース、405 第3通信インタフェース、411 受信部、412 判定部、420 補助記憶装置、421 嵌合具合判定プログラム、422 閾値更新プログラム、423 閾値見直しプログラム、424 閾値情報、425 加工組立連携情報、426 ログ情報、500 製造システム、510 ネットワーク。

Claims (12)

  1.  工具を使用して加工された部材を含む部品群から組み立てられた製品における部品間の嵌合具合を示す嵌合情報を受信する受信部と、
     前記受信部により受信された嵌合情報が示す嵌合具合が閾値範囲から外れているかどうかによって、前記工具の長さ寸法の変化に応じた加工位置の補正のために前記工具の長さ寸法を測定するかどうかを判定する判定部と
    を備える測長制御装置。
  2.  請求項1に記載の測長制御装置と、
     前記工具の長さ寸法を測定した結果である測長結果を示す測長情報をメモリから取得し、取得した測長情報が示す測長結果に応じて加工位置を補正し、補正後の加工位置を適用して前記工具を使用して部材を加工する加工装置であって、前記判定部における判定結果に応じて前記工具の長さ寸法が測定され、前記メモリに記憶された測長情報が示す測長結果と異なる測長結果が得られた場合、前記メモリに記憶された測長情報が示す測長結果を当該異なる測長結果に更新し、前記メモリに記憶された測長情報が示す測長結果と同じ測長結果が得られた場合、前記測長制御装置に前記閾値範囲を拡大させる加工装置と
    を備える製造システム。
  3.  前記加工装置は、前記工具として、2つ以上の工具を使用して前記部品群に含まれる部材を加工していたときに、前記判定部における判定結果に応じて前記2つ以上の工具の長さ寸法が測定され、前記2つ以上の工具のうち少なくとも1つの工具について、前記メモリに記憶された測長情報が示す測長結果と異なる測長結果が得られた場合、前記メモリに記憶された測長情報が示す当該少なくとも1つの工具の測長結果を当該異なる測長結果に更新し、前記2つ以上の工具のうちすべての工具について、前記メモリに記憶された測長情報が示す測長結果と同じ測長結果が得られた場合、前記測長制御装置に前記閾値範囲を拡大させる請求項2に記載の製造システム。
  4.  前記測長制御装置は、前記閾値範囲を拡大する際に、前記受信部により受信された嵌合情報が示す嵌合具合が前記閾値範囲の上限値よりも大きい場合、前記閾値範囲の上限値を前記受信部により受信された嵌合情報が示す嵌合具合と同じ値に更新する請求項2または3に記載の製造システム。
  5.  前記測長制御装置は、前記閾値範囲を拡大する際に、前記受信部により受信された嵌合情報が示す嵌合具合が前記閾値範囲の下限値よりも小さい場合、前記閾値範囲の下限値を前記受信部により受信された嵌合情報が示す嵌合具合と同じ値に更新する請求項2から4のいずれか1項に記載の製造システム。
  6.  請求項1に記載の測長制御装置と、
     前記製品が基準を満たしているかどうかを検査し、前記製品が前記基準を満たしていない場合、前記測長制御装置に前記閾値範囲を縮小させる検査装置と
    を備える製造システム。
  7.  前記検査装置は、前記製品として、2つ以上の製品が前記基準を満たしているかどうかを検査し、前記2つ以上の製品のうち前記基準を満たしていない製品を前記測長制御装置に通知する請求項6に記載の製造システム。
  8.  前記測長制御装置は、前記閾値範囲を縮小する際に、前記受信部により受信された嵌合情報が示す、前記検査装置から通知された製品における部品間の嵌合具合が、前記受信部により受信された嵌合情報が示す、他のいずれの製品における部品間の嵌合具合よりも大きい場合、前記閾値範囲の上限値を前記受信部により受信された嵌合情報が示す次に大きい嵌合具合と同じ値に更新する請求項7に記載の製造システム。
  9.  前記測長制御装置は、前記閾値範囲を縮小する際に、前記受信部により受信された嵌合情報が示す、前記検査装置から通知された製品における部品間の嵌合具合が、前記受信部により受信された嵌合情報が示す、他のいずれの製品における部品間の嵌合具合よりも小さい場合、前記閾値範囲の下限値を前記受信部により受信された嵌合情報が示す次に小さい嵌合具合と同じ値に更新する請求項7または8に記載の製造システム。
  10.  請求項1に記載の測長制御装置と、
     前記部品群から前記製品を組み立て、前記製品における部品間の嵌合具合を検出し、検出した嵌合具合を示す嵌合情報を前記測長制御装置に送信する組立装置と
    を備える製造システム。
  11.  受信部が、工具を使用して加工された部材を含む部品群から組み立てられた製品における部品間の嵌合具合を示す嵌合情報を受信し、
     判定部が、前記受信部により受信された嵌合情報が示す嵌合具合が閾値範囲から外れているかどうかによって、前記工具の長さ寸法の変化に応じた加工位置の補正のために前記工具の長さ寸法を測定するかどうかを判定する測長制御方法。
  12.  コンピュータに、
     工具を使用して加工された部材を含む部品群から組み立てられた製品における部品間の嵌合具合を示す嵌合情報を受信する処理と、
     受信された嵌合情報が示す嵌合具合が閾値範囲から外れているかどうかによって、前記工具の長さ寸法の変化に応じた加工位置の補正のために前記工具の長さ寸法を測定するかどうかを判定する処理と
    を実行させる測長制御プログラム。
PCT/JP2016/067797 2016-06-15 2016-06-15 測長制御装置、製造システム、測長制御方法および測長制御プログラム WO2017216905A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018523105A JP6400254B2 (ja) 2016-06-15 2016-06-15 測長制御装置、製造システム、測長制御方法および測長制御プログラム
US16/089,277 US20200230713A1 (en) 2016-06-15 2016-06-15 Length measurement control apparatus, manufacturing system, length measurement control method, and non-transitory computer readable medium storing length measurement control program
KR1020187035711A KR101984457B1 (ko) 2016-06-15 2016-06-15 측장 제어 장치, 제조 시스템, 측장 제어 방법 및 기록 매체에 저장된 측장 제어 프로그램
CN201680086415.2A CN109311135B (zh) 2016-06-15 2016-06-15 测长控制装置、制造系统、测长控制方法和记录有测长控制程序的计算机能读取的记录介质
PCT/JP2016/067797 WO2017216905A1 (ja) 2016-06-15 2016-06-15 測長制御装置、製造システム、測長制御方法および測長制御プログラム
DE112016006839.5T DE112016006839B4 (de) 2016-06-15 2016-06-15 Längenmessungskontrollvorrichtung, Fertigungssystem, Längenmessungskontrollverfahren und Längenmessungskontrollprogramm
TW105126049A TW201800177A (zh) 2016-06-15 2016-08-16 測長控制裝置、製造系統、測長控制方法以及測長控制程式產品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067797 WO2017216905A1 (ja) 2016-06-15 2016-06-15 測長制御装置、製造システム、測長制御方法および測長制御プログラム

Publications (1)

Publication Number Publication Date
WO2017216905A1 true WO2017216905A1 (ja) 2017-12-21

Family

ID=60663079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067797 WO2017216905A1 (ja) 2016-06-15 2016-06-15 測長制御装置、製造システム、測長制御方法および測長制御プログラム

Country Status (7)

Country Link
US (1) US20200230713A1 (ja)
JP (1) JP6400254B2 (ja)
KR (1) KR101984457B1 (ja)
CN (1) CN109311135B (ja)
DE (1) DE112016006839B4 (ja)
TW (1) TW201800177A (ja)
WO (1) WO2017216905A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11590621B2 (en) * 2019-02-28 2023-02-28 Fanuc Corporation Machine tool and machining process change method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102301661B1 (ko) * 2019-11-11 2021-09-13 주식회사 미라콤아이앤씨 협업 검사로봇의 제어 방법 및 이를 이용한 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04189450A (ja) * 1990-11-22 1992-07-07 Nissan Motor Co Ltd 工具の寿命管理装置
JPH06272670A (ja) * 1993-03-18 1994-09-27 Hitachi Ltd 回転式圧縮装置の製造方法及びその製造援助装置
JPH0740195A (ja) * 1993-07-30 1995-02-10 Toshiba Corp Nc装置
JPH10296591A (ja) * 1997-04-28 1998-11-10 Murata Mach Ltd 旋盤の加工ワーク計測制御装置
JP2002307263A (ja) * 2001-04-10 2002-10-23 Takizawa Tekkosho:Kk Nc工作機械における加工済みワークの測定結果の利用方法
JP2004034187A (ja) * 2002-07-01 2004-02-05 Murata Mach Ltd 工作機械
US20060060038A1 (en) * 2003-02-28 2006-03-23 Roberto Sammartin Method for processing products having low tolerances by removing shavings
JP2012079106A (ja) * 2010-10-01 2012-04-19 Omron Corp センサ装置、センサ管理システム、センサ装置の制御方法、プログラム及びコンピュータ読み取り可能な記録媒体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118139A (en) * 1963-01-11 1978-10-03 Lemelson Jerome H Machine tool and method
JP3311896B2 (ja) * 1995-04-26 2002-08-05 トヨタ自動車株式会社 フィードバック式加工条件補正装置
JP2000317775A (ja) * 1999-04-28 2000-11-21 Mitsutoyo Corp 加工システム
US6915172B2 (en) * 2001-11-21 2005-07-05 General Electric Method, system and storage medium for enhancing process control
DE10241742B4 (de) * 2002-09-10 2008-06-26 Alstom Technology Ltd. Fertigungsanlage zum Herstellen von Produkten
DE10337489B4 (de) * 2003-08-14 2007-04-19 P & L Gmbh & Co. Kg Verfahren zur automatischen Werkzeugverschleißkorrektur
US7260442B2 (en) * 2004-03-03 2007-08-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for mask fabrication process control
KR100564026B1 (ko) * 2004-08-13 2006-03-24 두산메카텍 주식회사 공구 자동 보정 계측 시스템 및 방법
CN101767292B (zh) * 2008-12-27 2013-12-11 鸿富锦精密工业(深圳)有限公司 数控机床刀具补偿系统及方法
US8468231B1 (en) * 2010-04-16 2013-06-18 The Boeing Company Architecture for network-enabled tools
CN103076764A (zh) * 2013-01-16 2013-05-01 同济大学 基于rfid技术的西门子840d数控系统动态刀具管理方法
JP2016093872A (ja) * 2014-11-14 2016-05-26 中村留精密工業株式会社 工作機械の工具補正値の自動設定装置及び自動設定方法
JP2018051725A (ja) * 2016-09-30 2018-04-05 三菱重工工作機械株式会社 工具の刃先位置計測方法及び工作機械
KR101950032B1 (ko) * 2016-10-05 2019-02-19 (주) 알파테코 툴의 길이 변화에 따른 스핀들의 위치 보정이 가능한 수평형 탭 가공장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04189450A (ja) * 1990-11-22 1992-07-07 Nissan Motor Co Ltd 工具の寿命管理装置
JPH06272670A (ja) * 1993-03-18 1994-09-27 Hitachi Ltd 回転式圧縮装置の製造方法及びその製造援助装置
JPH0740195A (ja) * 1993-07-30 1995-02-10 Toshiba Corp Nc装置
JPH10296591A (ja) * 1997-04-28 1998-11-10 Murata Mach Ltd 旋盤の加工ワーク計測制御装置
JP2002307263A (ja) * 2001-04-10 2002-10-23 Takizawa Tekkosho:Kk Nc工作機械における加工済みワークの測定結果の利用方法
JP2004034187A (ja) * 2002-07-01 2004-02-05 Murata Mach Ltd 工作機械
US20060060038A1 (en) * 2003-02-28 2006-03-23 Roberto Sammartin Method for processing products having low tolerances by removing shavings
JP2012079106A (ja) * 2010-10-01 2012-04-19 Omron Corp センサ装置、センサ管理システム、センサ装置の制御方法、プログラム及びコンピュータ読み取り可能な記録媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11590621B2 (en) * 2019-02-28 2023-02-28 Fanuc Corporation Machine tool and machining process change method

Also Published As

Publication number Publication date
JPWO2017216905A1 (ja) 2018-11-22
US20200230713A1 (en) 2020-07-23
DE112016006839B4 (de) 2021-01-07
CN109311135A (zh) 2019-02-05
DE112016006839T5 (de) 2019-02-14
CN109311135B (zh) 2020-10-30
JP6400254B2 (ja) 2018-10-03
KR20180135980A (ko) 2018-12-21
TW201800177A (zh) 2018-01-01
KR101984457B1 (ko) 2019-05-30

Similar Documents

Publication Publication Date Title
US20180150066A1 (en) Scheduling system and method
US10776706B2 (en) Cost-driven system and method for predictive equipment failure detection
JP5116307B2 (ja) 集積回路装置異常検出装置、方法およびプログラム
JP6400254B2 (ja) 測長制御装置、製造システム、測長制御方法および測長制御プログラム
WO2017022234A1 (ja) 製造プロセス分析装置、製造プロセス分析方法、及び、製造プロセス分析プログラムが格納された記録媒体
JP2018120347A (ja) データ分析装置およびデータ分析方法
KR101780627B1 (ko) 작업조건 변경 관리와 연동되어 설비 제어가 가능한 공정관리 시스템 및 방법
WO2019240019A1 (ja) 異常解析装置、製造システム、異常解析方法及びプログラム
JP2007240376A (ja) 半導体集積回路の静止電源電流検査方法および装置
CN112272968B (zh) 检查方法、检查系统及记录介质
US9684034B2 (en) Efficient method of retesting integrated circuits
Shagluf et al. Derivation of a cost model to aid management of CNC machine tool accuracy maintenance
CN104183511A (zh) 一种确定晶圆测试数据规范的界限的方法及晶粒标记方法
US11768862B2 (en) Estimation device, display control device, estimation system, and estimation method
JP6457474B2 (ja) 検査情報とトレース情報とを使用した製造管理装置及び製造システム
US9323244B2 (en) Semiconductor fabrication component retuning
US20230196043A1 (en) Tool part, system, method and computer program product for determining a tool wear
CN109491845B (zh) 一种存储产品控制器的测试方法及系统
KR20070048379A (ko) 웨이퍼의 결함 분석시스템
US11281183B2 (en) Unified control system and method for machining of parts
TW201516600A (zh) 產品加工路線補償方法及系統
CN114609970A (zh) 数控机床轴线运动的位置监控方法、监控装置及存储介质
CN104699019A (zh) 机台恢复检验系统以及机台恢复检验方法
CN117610998A (zh) 一种物料缺陷检测方法、装置、设备及存储介质
CN116775387A (zh) 芯片测试方法和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018523105

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035711

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16905460

Country of ref document: EP

Kind code of ref document: A1