WO2017204223A1 - 蒸着用メタルマスク、蒸着用メタルマスクの製造方法、および、蒸着用メタルマスク形成基材 - Google Patents

蒸着用メタルマスク、蒸着用メタルマスクの製造方法、および、蒸着用メタルマスク形成基材 Download PDF

Info

Publication number
WO2017204223A1
WO2017204223A1 PCT/JP2017/019237 JP2017019237W WO2017204223A1 WO 2017204223 A1 WO2017204223 A1 WO 2017204223A1 JP 2017019237 W JP2017019237 W JP 2017019237W WO 2017204223 A1 WO2017204223 A1 WO 2017204223A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist pattern
vapor deposition
mask
metal mask
electrodeposit
Prior art date
Application number
PCT/JP2017/019237
Other languages
English (en)
French (fr)
Inventor
裕一郎 阿部
出町 泰之
憲太 武田
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN201780002966.0A priority Critical patent/CN107923031B/zh
Priority to JP2017553441A priority patent/JP6264523B1/ja
Priority to KR1020187006031A priority patent/KR101884160B1/ko
Publication of WO2017204223A1 publication Critical patent/WO2017204223A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to a metal mask for vapor deposition, a method for producing a metal mask for vapor deposition, and a metal mask forming substrate for vapor deposition.
  • the metal mask for vapor deposition used in the vapor deposition method includes a mask hole as a passage through which sublimated particles pass.
  • the mask hole includes a small opening facing the deposition target and a large opening facing the deposition source.
  • a method for forming the mask hole for example, any one of a laser irradiation method, a wet etching method, and an electroforming method is used (see, for example, Patent Documents 1 to 3).
  • Laser irradiation method irradiates the surface of a metal plate, which is a base material of the metal mask, with laser light, and continues to melt a part of the metal plate by heat applied by the laser light, thereby forming a mask hole in the metal plate. At this time, in order to improve the accuracy of the shape of the mask hole, pulse light having a low intensity is used. As a result, in realistic manufacturing, the laser irradiation method cannot obtain productivity.
  • a resist pattern is formed on the surface of a metal plate that is a base material of a metal mask, and a mask hole is formed by etching the metal plate using the resist pattern.
  • the direction in which etching proceeds is not only in the direction perpendicular to the metal plate, but in almost all directions from the opening of the resist mask toward the metal plate. For this reason, it is difficult to reduce the ratio of the size of the large opening to the size of the small opening, and the wet etching method cannot cope with the high density of the mask holes in practical manufacturing.
  • a resist pattern is formed on the surface of the metal plate functioning as an electrode, and the electrodeposit deposited on the surface of the metal plate is separated from the metal plate, thereby having a shape that follows the shape of the resist pattern.
  • Mask holes are formed in the electrodeposit. Since the time required for forming the resist pattern is short and the time required for depositing the electrodeposit is also short, the electroforming method can achieve high productivity in realistic manufacturing. Moreover, since the shape of the mask hole follows the shape of the resist pattern, the electroforming method is expected as a technique that can impart a new shape to the inner peripheral surface of the hole.
  • the present invention provides a metal mask for vapor deposition, a method for producing a metal mask for vapor deposition, and a metal mask forming base material for vapor deposition that can increase the density of mask holes while suppressing an increase in the frequency of maintenance. Objective.
  • the metal mask for vapor deposition for solving the above-mentioned problems is a surface having a large opening facing a vapor deposition source in a vapor deposition apparatus, a back surface opposite to the front surface and having a small opening, and the large mask.
  • a frustum-shaped hole that communicates with the opening and the small opening is a mask hole, and is connected to the front surface and the back surface and has an inner peripheral surface that divides the mask hole into a metal mask for vapor deposition.
  • a casting metal mask for vapor deposition, wherein a straight line connecting an edge of the large opening and an edge of the small opening is a virtual straight line in a cross section orthogonal to the surface and passing through the large opening and the small opening.
  • An inclination angle ⁇ formed between the imaginary straight line and the back surface is not less than 50 ° and not more than 85 °, a distance between the front surface and the back surface is a thickness H of a metal mask for vapor deposition, and the back surface It is parallel and the distance from the back surface is (2/3) ⁇
  • the virtual plane is a reference plane, and in the reference plane, the distance between the hole inner peripheral surface and the virtual straight line is the depression amount A, and 0 ⁇ [(3 ⁇ tan ⁇ ) ⁇ A] / H ⁇ 0 .3 is satisfied.
  • H / (3 ⁇ tan ⁇ ) is a virtual depression amount DA
  • the above [(3 ⁇ tan ⁇ ) ⁇ A] / H indicates a ratio of the depression amount A to the virtual depression amount DA.
  • the virtual dimple amount DA is the distance between the position where the large opening is projected along the thickness direction of the vapor deposition metal mask on the reference plane whose distance from the back surface is (2/3) ⁇ H and the virtual straight line. is there.
  • the inclination angle ⁇ is 50 ° or more and 85 ° or less, and a large inclination angle ⁇ that cannot be obtained by isotropic processing, such as isotropic etching, can be obtained. Therefore, it is possible to increase the density of the mask holes as compared with the conventional configuration obtained by isotropic processing.
  • the ratio of the hollow amount A to the virtual hollow amount DA is larger than 0 and 0.3 or less. Therefore, even if particles adhere to the inner peripheral surface of the hole as compared with the configuration in which the ratio of the hollow amount A to the virtual hollow amount DA is 0, the residue in the space having the size corresponding to the hollow amount A Can be deposited.
  • the above-mentioned residue is likely to be deposited closer to the large opening, but the residue located near the large opening is less likely to cause a clear defect in the vapor deposition pattern.
  • the residue is less likely to be deposited closer to the small opening, but the residue located near the small opening tends to cause a clear defect in the vapor deposition pattern due to the shadow effect generated by the residue.
  • the above-described depression amount A is determined on the reference surface whose distance from the back surface is (2/3) ⁇ H among the inner circumferential surface of the inverted frustum surface.
  • the amount A of the dent is determined with respect to the above-described residue that tends to accumulate and that a clear defect tends to occur in the vapor deposition pattern. Therefore, with the above-described configuration, it is possible to accurately store the inevitable residue that tends to cause a clear defect with respect to the vapor deposition pattern and is easy to deposit while suppressing the influence on the vapor deposition, As a result, the frequency of maintenance for the metal mask for vapor deposition can be suppressed from increasing.
  • the metal mask for vapor deposition may be perpendicular to the surface, and the inner peripheral surface of the hole may have an arc shape in a cross section passing through the large opening and the small opening. According to this configuration, since the inner peripheral surface of the hole is a continuous surface, the mask can be easily manufactured by electroforming.
  • the constituent material of the metal mask for vapor deposition contains an alloy of iron and nickel as a main component, and the content of nickel in the alloy is 30% by mass or more and 45% by mass or less. Good.
  • the main component is an alloy of iron and nickel, which has a low coefficient of thermal expansion among metal materials, so structural changes due to heat received during vapor deposition can be suppressed in the vapor deposition metal mask. It also becomes.
  • the thickness H may be not less than 1 ⁇ m and not more than 40 ⁇ m. According to this configuration, since the thickness H of the metal mask for vapor deposition is 10 ⁇ m or more and 40 ⁇ m or less, it is possible to reduce the difference between the size of the large opening and the size of the small opening. It is also possible to make the effect of enabling density more remarkable.
  • a method for manufacturing a metal mask for vapor deposition for solving the above-described problem is that an inverted frustum-shaped protrusion having a top surface on an electrode surface is a resist pattern, and the resist pattern is formed on the electrode surface; A deposit is deposited from the electrode surface, and a surface of the electrodeposit that follows the outer peripheral surface of the resist pattern is an inner peripheral surface of a mask hole, and the electrode hole is filled with the resist pattern.
  • the electrodeposit Forming a deposit, separating the electrodeposit from the electrode surface, and forming a metal mask for vapor deposition as the electrodeposit separated from the electrode surface, and forming the resist pattern, the electrode
  • the surface that is parallel to the surface and the distance from the electrode surface is the thickness T of the electrodeposit is a temporary surface, and is parallel to the electrode surface and the distance from the electrode surface
  • the surface which is (2/3) ⁇ T is a reference surface, and a portion located on the temporary surface in the outer peripheral surface of the resist pattern is a large peripheral edge, and the surface in the outer peripheral surface of the resist pattern
  • a portion corresponding to the top surface is a small peripheral edge, and a straight line connecting the large peripheral edge and the small peripheral edge is a virtual straight line in a cross section orthogonal to the temporary surface and passing through the large peripheral edge and the small peripheral edge.
  • An inclination angle ⁇ r formed between the virtual line and the electrode surface is 95 ° or more and 130 ° or less, and a distance between the outer peripheral surface and the virtual line on the reference surface is an overhang amount W;
  • the resist pattern is formed so as to satisfy ⁇ [(3 ⁇ tan (180 ° ⁇ r)) ⁇ W] /T ⁇ 0.3.
  • a method of manufacturing a metal mask for vapor deposition for solving the above-described problem is that a frustum-shaped protrusion having a bottom surface on an electrode surface is a resist pattern, the resist pattern is formed on the electrode surface, and an electrodeposit is formed. While depositing from the electrode surface, the surface following the outer peripheral surface of the resist pattern in the electrodeposit is the inner peripheral surface of the mask hole, and the electrodeposit is in a state where the mask hole is filled with the resist pattern.
  • Forming an electrodeposit on the electrode surface and forming an evaporation metal mask as the electrodeposit away from the electrode surface, and forming the resist pattern includes: The surface that is parallel and the distance T to the electrode surface is the thickness T of the electrodeposit is the temporary back surface, and is parallel to the electrode surface and the distance to the electrode surface is The surface that is 1/3) ⁇ T is a reference surface, and a portion located on the temporary back surface in the outer peripheral surface of the resist pattern is a large peripheral edge, and the bottom surface in the outer peripheral surface of the resist pattern.
  • the portion corresponding to is a small rim, in a cross section orthogonal to the temporary back surface and passing through the large rim and the small rim, a straight line connecting the large rim and the small rim is a virtual straight line, An inclination angle ⁇ r formed between the virtual line and the electrode surface is 50 ° or more and 85 ° or less, and a distance between the outer peripheral surface and the virtual line on the reference surface is an overhang amount W, and 0 ⁇ [ The resist pattern is formed so as to satisfy (3 ⁇ tan ⁇ r) ⁇ W] /T ⁇ 0.3.
  • the inclination angle ⁇ formed with the back surface is 50 ° or more and 85 ° or less, and 0 ⁇ [(3 ⁇ tan ⁇ ) ⁇ A] /H ⁇ 0.3 is satisfied.
  • Mask holes can be formed. Therefore, it is possible to manufacture a metal mask for vapor deposition that can increase the density of mask holes while suppressing an increase in the frequency of maintenance.
  • a metal mask forming substrate for vapor deposition for solving the above-mentioned problem is an electrode surface for electroforming for depositing a metal mask for vapor deposition as an electrodeposit, and an inverted frustum shape having a top surface on the electrode surface.
  • the protrusion is a resist pattern
  • the surface of the electrodeposit that follows the outer peripheral surface of the resist pattern is the inner peripheral surface of the mask hole, and the electrodeposit is formed with the mask hole being filled with the resist pattern.
  • the resist pattern is parallel to the electrode surface, and the surface whose distance from the electrode surface is the thickness T of the electrodeposit is a temporary surface, and the electrode A surface parallel to the surface and having a distance of (2/3) ⁇ T from the electrode surface is a reference surface, and a portion located on the temporary surface in the outer peripheral surface of the resist pattern is a large peripheral edge.
  • a portion corresponding to the top surface is a small peripheral edge, and in a cross section orthogonal to the temporary surface and passing through the large peripheral edge and the small peripheral edge, the large peripheral edge and the A straight line connecting the small peripheral edges is a virtual straight line, and an inclination angle ⁇ r formed between the virtual straight line and the electrode surface is 95 ° or more and 130 ° or less, and the reference surface has the outer peripheral surface and the virtual straight line
  • the distance is the overhang amount W and satisfies 0 ⁇ [(3 ⁇ tan (180 ° ⁇ r)) ⁇ W] /T ⁇ 0.3.
  • a metal mask forming substrate for vapor deposition for solving the above-described problems is provided with an electrode surface for electroforming for depositing a metal mask for vapor deposition as an electrodeposit, and a frustum-shaped protrusion having a bottom surface on the electrode surface.
  • an electrode surface for electroforming for depositing a metal mask for vapor deposition as an electrodeposit
  • a frustum-shaped protrusion having a bottom surface on the electrode surface In order to form the electrodeposit in a state where the surface following the outer peripheral surface of the resist pattern in the electrodeposit is a hole inner peripheral surface of the mask hole and the mask hole is filled with the resist pattern.
  • the resist pattern is parallel to the electrode surface, and the surface having the distance T from the electrode surface is the thickness T of the electrodeposit is a temporary back surface, and the electrode surface A plane that is parallel and has a distance of (1/3) ⁇ T from the electrode surface is a reference plane, and a portion of the outer peripheral surface of the resist pattern that is positioned on the temporary back surface is a small peripheral edge.
  • the portion corresponding to the bottom surface in the outer peripheral surface of the resist pattern is a large periphery, a straight line connecting the large periphery and the small periphery in a cross section orthogonal to the temporary back surface and passing through the resist pattern.
  • an inclination angle ⁇ r formed by the imaginary straight line and the electrode surface is 50 ° or more and 85 ° or less, and a distance between the outer peripheral surface and the imaginary straight line on the reference surface is an overhang amount W. And 0 ⁇ [(3 ⁇ tan ⁇ r) ⁇ W] /T ⁇ 0.3 is satisfied.
  • the inclination angle ⁇ formed with the back surface is 50 ° or more and 85 ° or less, and 0 ⁇ [(3 It is possible to form a mask hole satisfying xtan ⁇ ) ⁇ A] /H ⁇ 0.3. Therefore, it is possible to manufacture a metal mask for vapor deposition that can increase the density of mask holes while suppressing an increase in the frequency of maintenance.
  • the top view which shows the planar structure in one Embodiment of the metal mask for vapor deposition.
  • Sectional drawing which shows the cross-section in one Embodiment of the metal mask for vapor deposition.
  • Sectional drawing which shows the cross-section in one Embodiment of the metal mask formation base material for vapor deposition.
  • Sectional drawing which shows the cross-section in other embodiment of the metal mask formation base material for vapor deposition.
  • (A) to (e) is a process flow diagram showing a process flow in an embodiment of a method for producing a metal mask for vapor deposition.
  • a metal mask for vapor deposition a method for manufacturing a metal mask for vapor deposition, and a metal mask forming substrate for vapor deposition will be described.
  • the structure of the metal mask for vapor deposition is demonstrated with reference to FIG. 1 and FIG.
  • the configuration of the metal mask forming base material for vapor deposition will be described.
  • the manufacturing method of the metal mask for vapor deposition is demonstrated.
  • the mask device 10 includes a main frame 20 and three metal masks 30 for vapor deposition.
  • the main frame 20 has a frame plate shape that supports the three metal masks 30 for vapor deposition, and is attached to a vapor deposition apparatus for performing vapor deposition.
  • the main frame 20 has a main frame hole 20 ⁇ / b> H that penetrates the main frame 20 in substantially the entire region facing each deposition metal mask 30.
  • the vapor deposition metal mask 30 includes a subframe 31 and an electroformed mask member 32.
  • the sub frame 31 has a frame plate shape that supports the plurality of mask members 32 and is attached to the main frame 20.
  • the sub-frame 31 has a sub-frame hole 30 ⁇ / b> H that penetrates the sub-frame 31 in almost the entire region facing each mask member 32.
  • Each mask member 32 is fixed around the sub-frame hole 30H by welding or adhesion. An example of a cross-sectional structure of the mask member 32 will be described with reference to FIG.
  • the mask member 32 is composed of a grid-like metal sheet 321 whose main component is an alloy of iron and nickel.
  • the material constituting the metal sheet 321 is, for example, an iron-nickel alloy containing nickel of 30% by mass or more and 45% by mass or less, in particular, an alloy of 36% by mass nickel and 64% by mass iron. It is preferable that When the material constituting the mask member 32 is Invar, the thermal expansion coefficient of the metal sheet 321 is, for example, about 1.2 ⁇ 10 ⁇ 6 / ° C. If the metal sheet 321 having such a thermal expansion coefficient matches the degree of thermal expansion in the mask member 32 and the degree of thermal expansion in the glass substrate, it is preferable to use a glass substrate as an example of an evaporation target. It is.
  • the mask member 32 includes a front surface 32F that is a surface facing a vapor deposition source in the vapor deposition apparatus, and a back surface 32B that is a surface opposite to the front surface 32F.
  • the mask member 32 has a plurality of mask holes 321H that penetrate the metal sheet 321.
  • the front surface 32F includes a large opening 322F of the mask hole 321H
  • the back surface 32B includes a small opening 322B of the mask hole 321H.
  • the mask hole 321H has a frustum shape.
  • the bottom of the mask hole 321H is a large opening 322F
  • the top of the mask hole 321H is a small opening 322B.
  • the mask hole 321H is partitioned in the mask member 32 by the hole inner peripheral surface 321S.
  • the hole inner circumferential surface 321S draws an arc shape that gently curves from the surface 32F toward the back surface 32B in a cross section that is orthogonal to the surface 32F and passes through the hole inner circumferential surface 321S.
  • the size of the large opening 322F is larger than the small opening 322B in a plan view facing the surface 32F.
  • the large opening 322F functions as an entrance of a passage through which vapor deposition particles sublimated from the vapor deposition source pass. The vapor deposition particles sublimated from the vapor deposition source travel from the large opening 322F toward the small opening 322B.
  • the distance between the front surface 32F and the back surface 32B is a thickness H which is the thickness of the metal sheet 321.
  • the thickness H of the metal sheet 321 is 1 ⁇ m or more and 100 ⁇ m or less, and preferably 2 ⁇ m or more and 40 ⁇ m or less. If the thickness H of the metal sheet 321 is 40 ⁇ m or less, the depth of the mask hole 321H formed in the metal sheet 321 can be 40 ⁇ m or less. In the case of the metal sheet 321 having a thickness H of 40 ⁇ m or less, the mask member 32 reduces an unnecessary shadow area when the vapor deposition target is viewed from the vapor deposition particles flying toward the surface 32F of the mask member 32. It becomes possible. That is, the shadow effect can be suppressed.
  • a straight line connecting the edge of the large opening 322F and the edge of the small opening 322B is an imaginary straight line Li.
  • an angle formed by the virtual straight line Li and the back surface 32B is an inclination angle ⁇ .
  • the edge of the large opening 322F and the edge of the small opening 322B are rectangular, the above-described cross section also passes through the center of the large opening 322F and the center of the small opening 322B.
  • a virtual plane along the back surface 32B that is, a virtual plane parallel to the back surface 32B is a virtual surface.
  • the virtual surface whose distance from the back surface 32B is (2/3) ⁇ H is the reference surface Pi.
  • the distance between the hole inner peripheral surface 321S and the virtual straight line Li in the reference plane Pi is the depression amount A.
  • Each mask hole 321H satisfies the following [Condition 1] and [Condition 2]. [Condition 1] 50 ° ⁇ tilt angle ⁇ ⁇ 85 °
  • the inclination angle ⁇ at the mask hole 321H satisfying [Condition 1] is 50 ° or more and 85 ° or less, and a large inclination angle that cannot be obtained by isotropic processing such as isotropic etching on the metal sheet 321.
  • the mask hole 321H has ⁇ . Therefore, the mask member 32 can have a higher density of the mask holes 321H than the conventional configuration obtained by isotropic processing.
  • the inclination angle ⁇ is smaller than the range of [Condition 1].
  • the position and size of the small opening 322B are determined in advance depending on the position and size that the vapor deposition particles should reach.
  • the ratio of the recess amount A to the virtual recess amount DA is greater than 0 and 0.3 or less. Therefore, compared with the configuration in which the ratio of the dent amount A to the virtual dent amount DA is 0, that is, compared to the mask hole 321H having the imaginary straight line Li as the hole inner peripheral surface 321S, the vapor deposition particles on the hole inner peripheral surface 321S. Even if it adheres, it is possible to store a residue, which is a deposit of vapor deposition particles, in a space having a size corresponding to the depression amount A.
  • a residue closer to the large opening 322F than the small opening 322B is a large opening side residue
  • a residue closer to the small opening 322B than the large opening 322F is a small opening side residue. Then, the growth of the large opening side residue is easier to proceed than the growth of the small opening side residue.
  • the distance between the large opening side residue and the evaporation target is larger than the distance between the small opening side residue and the evaporation target. Therefore, the large opening side residue is less likely to cause defects in the vapor deposition pattern formed on the vapor deposition target than the small opening side residue.
  • the large opening side residue grows faster than the small opening side residue, but is less likely to cause defects in the vapor deposition pattern than the small opening side residue. While the small opening side residue grows slower than the large opening side residue, defects are more likely to occur in the vapor deposition pattern than the large opening side residue.
  • the above-described depression amount A is determined on the reference plane Pi whose distance from the back surface 32B is (2/3) ⁇ H. That is, in the thickness direction in the mask hole 321H, the reference plane Pi is located at a portion where the above-described residue is likely to accumulate. Further, in the thickness direction of the mask hole 321H, the reference plane Pi is located at a site where a clear defect is likely to occur in the vapor deposition pattern due to the residue accumulated on the inner peripheral surface 321S. And the said hollow amount A is defined in such a reference plane Pi.
  • a mask hole that does not have the dent amount A is likely to cause a clear defect with respect to the vapor deposition pattern, and a residue that tends to be deposited is set to a dent amount A that satisfies [Condition 1] and [Condition 2].
  • the mask hole 321H is provided, it can be accurately stored as a residue that suppresses the influence on vapor deposition. As a result, it is possible to suppress an increase in the frequency of maintenance for solving the problem of vapor deposition due to residue, that is, the maintenance on the metal mask for vapor deposition.
  • the distance between the imaginary straight line Li and the hole inner peripheral surface 321S in the direction along the back surface 32B has a maximum value on the back surface 32B side with respect to the reference surface Pi.
  • the shape of the hole inner peripheral surface 321S is such that the virtual plane Li and the hole can be formed while maintaining high density as the above [Condition 1] and [Condition 2] are satisfied on the reference surface Pi. It is easier to store the small opening side residue in the region where the distance from the inner peripheral surface 321S is maximum. As a result, the frequency of maintenance can be more reliably suppressed.
  • FIG. 3 shows an example of the metal mask formation base material for vapor deposition used for the method of manufacturing a metal mask for vapor deposition.
  • FIG. 4 the other example of the metal mask formation base material for vapor deposition used for the method of manufacturing the metal mask for vapor deposition is demonstrated.
  • the example shown in FIG. 4 differs from the example shown in FIG. 3 in the shape of the resist pattern.
  • FIG. 3 shows an example having a resist pattern having a smaller shape, that is, a reverse taper shape, in a portion closer to the electrode surface in a cross section parallel to the electrode surface.
  • FIG. 3 shows an example having a resist pattern having a smaller shape, that is, a reverse taper shape, in a portion closer to the electrode surface in a cross section parallel to the electrode surface.
  • FIG. 4 shows an example in which a resist pattern having a shape in which the area in a cross section parallel to the electrode surface is closer to the electrode surface is larger, that is, a forward tapered shape.
  • a resist pattern having a shape in which the area in a cross section parallel to the electrode surface is closer to the electrode surface is larger that is, a forward tapered shape.
  • the metal mask forming substrate 50 for vapor deposition includes an electrode member 51 and a resist pattern 52.
  • the electrode member 51 functions as a cathode in electrolysis for forming the metal sheet 321.
  • the electrode member 51 may be, for example, a stainless steel member such as SUS304, or may be a member in which an electrode material is laminated on a glass substrate or a resin sheet.
  • the electrode member 51 includes an electrode surface 51S that is a smooth surface as a surface on which the metal sheet 321 is formed.
  • the resist pattern 52 is a pattern scattered in an island shape on the electrode surface 51S.
  • the resist pattern 52 is an inverted frustum-shaped protrusion.
  • the resist pattern 52 includes a top surface 52B located on the electrode surface 51S and a bottom surface 52F that is a surface opposite to the top surface 52B.
  • the resist pattern 52 functions as a mask in electrolysis for forming the metal sheet 321.
  • the resist pattern 52 includes a resist outer peripheral surface 52S that is an outer peripheral surface.
  • the resist pattern 52 deposits an electrodeposit having a surface following the resist outer peripheral surface 52S on the electrode surface 51S in the electrolysis for forming the metal sheet 321.
  • a virtual surface along the electrode surface 51S that is, a surface whose distance from the electrode surface 51S is the resist thickness T in the plane parallel to the electrode surface 51S is the temporary surface Pf. It is.
  • a surface having a distance of (2/3) ⁇ T from the electrode surface 51S is the reference surface Pi.
  • the portion located on the temporary surface Pf in the resist outer peripheral surface 52S is the large peripheral edge 521F.
  • the peripheral edge of the top surface 52B in the resist outer peripheral surface 52S is a small peripheral edge 521B.
  • a straight line connecting the large peripheral edge 521F and the small peripheral edge 521B is a virtual straight line Li in a cross section orthogonal to the temporary surface Pf.
  • the angle formed by the electrode surface 51S and the virtual straight line Li is a resist inclination angle ⁇ r.
  • the above-described cross section passes through the center of the large periphery 521F and the center of the small periphery 521B.
  • the large peripheral edge 521F and the small peripheral edge 521B are rectangular, the above-described cross section also passes through the center of the large peripheral edge 521F and the center of the small peripheral edge 521B.
  • the distance between the resist outer peripheral surface 52S and the virtual straight line Li on the reference surface Pi is the overhang amount W.
  • Each resist pattern 52 satisfies the following [Condition 3] and [Condition 4]. [Condition 3] 95 ° ⁇ tilt angle ⁇ r ⁇ 130 ° [Condition 4] 0 ⁇ [(3 ⁇ tan (180 ° ⁇ r)) ⁇ W] /H ⁇ 0.3
  • the resist pattern 52 satisfying the above [Condition 3] and [Condition 4] makes it possible to form a hole inner peripheral surface 321S having a small opening 322B having a shape following the shape of the small peripheral edge 521B.
  • the resist pattern 52 is composed of a negative resist that can be patterned by photocrosslinking.
  • This negative resist is a material that cures faster on the front surface (bottom surface 52F in FIG. 3) than on the back surface (top surface 52B in FIG. 3), and has less light reaching the electrode surface 51S. Is preferred.
  • a negative resist for example, a negative resist in which a pigment having a light absorption rate higher than that of the resist is added to the resist can be used.
  • the resist pattern 52 may be made of a positive resist that exhibits alkali solubility when irradiated with light. When this positive resist is adopted, exposure by photomask interference is performed from an oblique direction with respect to the surface of the positive resist, and an overhang is formed after development of the positive resist.
  • the metal mask forming substrate 50 for vapor deposition in another example also includes an electrode member 51 and a resist pattern 62.
  • the resist pattern 62 is a pattern scattered in an island shape on the electrode surface 51S.
  • the resist pattern 52 is a frustum-shaped protrusion.
  • the resist pattern 52 includes a bottom surface 62B located on the electrode surface 51S and a top surface 62F that is a surface opposite to the bottom surface 62B.
  • the resist pattern 62 also functions as a mask in the electrolysis that forms the metal sheet 321.
  • the resist pattern 62 includes a resist outer peripheral surface 62S that is an outer peripheral surface.
  • the resist pattern 52 deposits an electrodeposit having a surface following the resist outer peripheral surface 62S on the electrode surface 51S in the electrolysis for forming the metal sheet 321.
  • a virtual surface along the electrode surface 51S that is, a surface whose distance from the electrode surface 51S is the resist thickness T in the plane parallel to the electrode surface 51S is the temporary back surface Pb. It is.
  • the surface whose distance from the electrode surface 51S is (1/3) ⁇ T is the reference surface Pi.
  • the portion located on the temporary back surface Pb in the resist outer peripheral surface 62S is the small peripheral edge 621B.
  • the peripheral edge of the bottom surface 62B in the resist outer peripheral surface 62S is a large peripheral edge 621F.
  • a straight line connecting the large peripheral edge 621F and the small peripheral edge 621B in the cross section orthogonal to the temporary back surface Pb is a virtual straight line Li.
  • the angle formed by the electrode surface 51S and the virtual straight line Li is the resist inclination angle ⁇ r.
  • the above-described cross section passes through the center of the large periphery 621F and the center of the small periphery 621B. Further, when the large peripheral edge 621F and the small peripheral edge 621B are rectangular, the above-described cross section also passes through the center of the large peripheral edge 621F and the center of the small peripheral edge 621B. Further, the distance between the resist outer peripheral surface 62S and the virtual straight line Li on the reference surface Pi is the overhang amount W.
  • Each resist pattern 62 satisfies the following [Condition 5] and [Condition 6]. [Condition 5] 50 ° ⁇ tilt angle ⁇ r ⁇ 85 ° [Condition 6] 0 ⁇ [(3 ⁇ tan ⁇ r) ⁇ W] /H ⁇ 0.3
  • the resist pattern 62 satisfying the above [Condition 5] and [Condition 6] makes it possible to form a hole inner peripheral surface 321S having a small opening 322B having a shape following the shape of the small peripheral edge 621B.
  • a resist layer 52T for forming a resist pattern 52 is laminated on the electrode surface 51S of the electrode member 51.
  • the resist layer 52T is exposed and developed, and resist patterns 52 and 62 are formed.
  • the resist material and the exposure conditions are selected so as to satisfy the above [Condition 3] and [Condition 4], thereby forming the resist pattern 52 having the inverted frustum shape described in FIG. Is done.
  • the resist material and the exposure conditions are selected so as to satisfy the above [Condition 5] and [Condition 6], whereby FIG.
  • the resist pattern 62 having the frustum shape described in 1 is formed.
  • the metal mask forming member for vapor deposition is immersed in an electrolytic bath, and electrolysis is performed to form an electrodeposit on the electrode surface 51S.
  • the electrolytic bath used for electrolysis includes, for example, an iron ion supply agent, a nickel ion supply agent, and a pH buffering agent.
  • the electrolytic bath used for electrolysis may contain a stress relaxation agent, Fe 3+ ion mask agent, complexing agent such as malic acid or citric acid, etc., and is a weakly acidic solution adjusted to a pH suitable for electrolysis. is there.
  • the iron ion supply agent include ferrous sulfate heptahydrate, ferrous chloride, and iron sulfamate.
  • the nickel ion supply agent is, for example, nickel sulfate (II), nickel chloride (II), nickel sulfamate, or nickel bromide.
  • the pH buffer are boric acid and malonic acid. Malonic acid also functions as an Fe 3+ ion masking agent.
  • the stress relaxation agent is, for example, saccharin sodium.
  • the electrolytic bath used for the electrolysis is, for example, an aqueous solution containing the above-described additives, and is adjusted so that the pH becomes, for example, 2 or more and 3 or less by a pH adjuster such as 5% sulfuric acid or nickel carbonate. .
  • the electrolysis conditions used for electrolysis are conditions in which the nickel composition ratio in the metal sheet 321 is adjusted by the temperature of the electrolysis bath, the current density, and the electrolysis time.
  • the anode in the electrolysis conditions using the above-described electrolytic bath is, for example, pure iron and nickel.
  • the temperature of the electrolytic bath is, for example, 40 ° C. or more and 60 ° C. or less.
  • the current density is, for example, 1 A / dm 2 or more and 4 A / dm 2 or less.
  • an electrodeposit having a surface following the resist outer peripheral surfaces 52S and 62S of the resist patterns 52 and 62 can be deposited from the electrode surface 51S. That is, it is possible to form the mask member 32 having the mask hole 321H that satisfies the above-described conditions [Condition 1] and [Condition 2] on the electrode surface 51S.
  • the metal sheet 321 is formed from a base material for rolling, in order to remove oxygen mixed in the material for forming the base material for rolling, for example, granular aluminum, magnesium, etc.
  • the deoxidizer is mixed with the material for forming the base material.
  • aluminum and magnesium are contained in the base material as metal oxides such as aluminum oxide and magnesium oxide. Most of these metal oxides are removed from the base material before the base material is rolled, while a portion of the metal oxide remains in the base material to be rolled.
  • the metal oxide can be prevented from being mixed with the metal sheet 321.
  • the resist patterns 52 and 62 are removed from the electrode surface 51S.
  • a lift-off method is used to remove the resist pattern 52
  • chemical dissolution is used to remove the resist pattern 62, for example.
  • the resist patterns 52T are soluble in the developing solution by exposing the resist layer 52T before thermosetting.
  • the resist patterns 52 and 62 are negative resists, for example, the resist patterns 52 and 62 can be swollen with an N-methylpyrrolidinone-based solution and peeled off from the electrode surface 51S.
  • the mask member 32 is manufactured by separating the metal sheet 321 from the electrode surface 51S.
  • the mask member 32 separated from the electrode surface 51S may be annealed thereafter.
  • the surface 32F in the some mask member 32 is fixed to the sub-frame 31, and the metal mask for vapor deposition mentioned above is manufactured.
  • Example 1 [Preparation of resist layer composition] 70 parts by weight of pentaerythritol triacrylate, 123 parts by weight of cardo resin (V259ME: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), and 14 parts by weight of a photopolymerization initiator (IRGACURE907: manufactured by BASF Japan) (IRGACURE is a registered trademark)
  • the resist layer composition was prepared by diluting with cyclohexanone so that the solid content of the resist layer composition was 50% by weight.
  • a negative resist layer composition was applied to the electrode surface 51S of the electrode member 51 so that the film thickness after drying was 30 ⁇ m. Thereafter, the resist layer composition is dried on a hot plate at 90 ° C. for 3 minutes, and a high-pressure mercury lamp (light intensity: illuminance of 365 nm emission line is 40 mW / cm 2 ) is used, and the exposure amount is 200 mJ / cm 2 through a photomask. Irradiated. Next, a resist pattern was obtained by performing development for 60 seconds by spin development using an alkali developer (CD126: manufactured by ADEKA). The dimension of the resist pattern was 60 ⁇ m ⁇ 60 ⁇ m in plan view.
  • the width of the top surface 52B was 22.2 ⁇ m
  • the width of the bottom surface 52F was 62.2 ⁇ m
  • the electrodeposit having a thickness of 30 ⁇ m was deposited on the electrode surface 51S.
  • the resist pattern was removed using an N-methylpyrrolidinone-based stripping solution.
  • the mask member 32 was obtained by separating the electrodeposit from the electrode surface 51S. As a result of observing the cross-sectional shape of the mask member 32, the inclination angle ⁇ was 55 °, and [(3 ⁇ tan ⁇ ) ⁇ A] / H was 0.26.
  • Example 2 The development time in Example 1 was changed to 45 seconds, and the rest was the same as in Example 1 to obtain a mask member of Example 2.
  • the width of the top surface 52B was 35.9 ⁇ m
  • the width of the bottom surface 52F was 62.7 ⁇ m
  • the resist pattern was an inverted frustum shape.
  • the inclination angle ⁇ was 73.6 °
  • [(3 ⁇ tan ⁇ ) ⁇ A] / H was 0.16.
  • Example 3 The mask amount of Example 3 was obtained in the same manner as in Example 1 except that the exposure amount in Example 1 was changed to 150 mJ / cm 2 and the development time was changed to 45 seconds.
  • the width of the top surface 52B was 20.5 ⁇ m
  • the width of the bottom surface 52F was 61.8 ⁇ m
  • the resist pattern was an inverted frustum shape. It was.
  • the inclination angle ⁇ was 67.9 °
  • [(3 ⁇ tan ⁇ ) ⁇ A] / H was 0.29.
  • Example 4 The mask amount of Example 2 was obtained in the same manner as in Example 1 except that the exposure amount in Example 1 was changed to 100 mJ / cm 2 and the development time was changed to 30 seconds.
  • the width of the top surface was 54.2 ⁇ m
  • the width of the bottom surface was 62.5 ⁇ m
  • the inclination angle ⁇ was 82.4 °
  • [(3 ⁇ tan ⁇ ) ⁇ A] / H was 0.08.
  • Example 1 The exposure amount in Example 1 was changed to 150 mJ / cm 2 , the development time was changed to 30 seconds, and the others were the same as in Example 1 to obtain a mask member of Reference Example.
  • the width of the top surface 52B and the width of the bottom surface 52F were both 62.9 ⁇ m, and it was confirmed that the resist pattern was a substantially rectangular parallelepiped shape.
  • the inclination angle ⁇ was 90.0 °.
  • Example 2 The development time in Example 1 was changed to 30 seconds, and the rest was the same as in Example 1 to obtain a mask member of Reference Example 2.
  • the width of the top surface 52B was 60.4 ⁇ m
  • the width of the bottom surface 52F was 63.6 ⁇ m
  • the resist pattern was an inverted frustum shape. It was.
  • the inclination angle ⁇ was 89.6 °
  • [(3 ⁇ tan ⁇ ) ⁇ A] / H was 0.00.
  • Reference Example 3 A mask member of Reference Example 3 was obtained in the same manner as in Example 1 except that the exposure amount in Example 1 was changed to 150 mJ / cm 2 .
  • the width of the top surface 52B was 17.8 ⁇ m
  • the width of the bottom surface 52F was 59.8 ⁇ m
  • the resist pattern was an inverted frustum shape. It was.
  • the inclination angle ⁇ was 46.3 °
  • [(3 ⁇ tan ⁇ ) ⁇ A] / H was 0.32.
  • Reference Example 4 A mask member of Reference Example 4 was obtained in the same manner as in Example 1 except that the exposure amount in Example 1 was changed to 100 mJ / cm 2 .
  • the width of the top surface 52B was 12.7 ⁇ m
  • the width of the bottom surface 52F was 58.4 ⁇ m
  • the resist pattern was an inverted frustum shape. It was.
  • the inclination angle ⁇ was 36.7 °
  • [(3 ⁇ tan ⁇ ) ⁇ A] / H was 0.38.
  • Reference Example 5 A mask member of Reference Example 5 was obtained in the same manner as in Example 1 except that the exposure amount in Example 1 was changed to 100 mJ / cm 2 and the development time was changed to 45 seconds. As a result of observing the cross-sectional shape of the resist pattern with a scanning electron microscope, it was confirmed that the width of the top surface 52B was 18.4 ⁇ m, the width of the bottom surface 52F was 60.3 ⁇ m, and the resist pattern had an inverted frustum shape. It was. As a result of observing the cross-sectional shape of the mask member 32, the inclination angle ⁇ was 53.8 ° and [(3 ⁇ tan ⁇ ) ⁇ A] / H was 0.35.
  • Example 1 Manufacture of metal masks for evaporation
  • the exposure amount in Example 1 was changed to 150 mJ / cm 2 , the development time was changed to 30 seconds, and the resist layer composition of Reference Example 6 was used. 6 mask members were obtained.
  • the width of the top surface 52B and the width of the bottom surface 52F were both 65 ⁇ m, and it was confirmed that the resist pattern was a substantially rectangular parallelepiped shape.
  • the inclination angle ⁇ was 90.0 °.
  • the residue grown on the hole inner peripheral surface 321S is likely to cover the small opening 322B as viewed from the large opening 322F and to cause chipping in the vapor deposition pattern as the inclination angle ⁇ is closer to 90.0 °.
  • the level of [(3 ⁇ tan ⁇ ) ⁇ A] / H exceeding 0.3 has an inclination angle ⁇ of 90.0 ° despite the inclination angle ⁇ being less than 90.0 °.
  • a cleaning frequency equivalent to that of Reference Examples 1 and 6 or a cleaning frequency higher than that of Reference Examples 1 and 6 is shown. This is because the deposition rate of residues that cause chipping in the vapor deposition pattern increases as the tilt angle ⁇ decreases, and it is difficult to improve the cleaning frequency simply by setting the range of the tilt angle ⁇ . It is also an indication.
  • each of the above-described conditions is derived for the first time from the viewpoint that the amount of deposition of the residue covering the small opening 322B as viewed from the large opening 322F and the deposition speed differ between the large opening side residue and the small opening side residue.
  • Each condition described above is based on each example described above and each reference example. In the thickness direction of the mask hole 321H, if there is no dent amount A, the residue tends to accumulate and the vapor deposition pattern On the other hand, it is obtained by determining the reference plane Pi within a range satisfying that a clear defect is likely to occur, and determining the depression amount A on the reference plane Pi.
  • the tilt angle ⁇ is not less than 50 ° and not more than 85 °, a large tilt angle that cannot be obtained by isotropic processing, such as isotropic etching in which processing proceeds in almost all directions from the opening of the resist mask. ⁇ is obtained. Therefore, it is possible to increase the density of the mask holes 321H as compared with the conventional configuration obtained by isotropic processing.
  • the hole inner circumferential surface 321S may be a surface having a step in a direction parallel to the surface 32F, for example.
  • the thickness H of the metal mask for vapor deposition is 10 ⁇ m or more and 40 ⁇ m or less, the difference between the size of the large opening 322F and the size of the small opening 322B can be reduced. The effect of enabling high density can be made more remarkable.
  • the electroforming is used in the method for manufacturing the metal mask for vapor deposition, the structure satisfying the above-described conditions (1) and (2), which cannot be obtained by the laser irradiation method or the wet etching method, is used. It can also be formed in the hole 321H.
  • inclination angle
  • ⁇ r resist inclination angle
  • A depression amount
  • DA virtual depression amount
  • H mask thickness
  • Li virtual straight line
  • Pi reference plane
  • T resist thickness
  • W overhang amount
  • resist pattern 52F, 62B ... bottom surface , 52B, 62F ... top surface, 2S, 62S ... resist outer peripheral surface, 521F, 621F ... larger periphery, 521B, 621B ... smaller periphery, Pf ... temporary surface, Pb ... temporary back surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

電鋳製の蒸着用メタルマスクであって、大開口322Fを底部とした錐台状を有するマスク孔321Hを区画する孔内周面321Sとを備える。表面と直交する断面において大開口322Fと小開口322Bとを結ぶ仮想直線Liと、裏面とのなす傾斜角度θが50°以上85°以下であり、表面と裏面との距離が厚さHであり、裏面と平行であるとともに裏面との距離が(2/3)×Hである基準面Piにおいて孔内周面321Sと仮想直線との距離が窪み量Aであり、0<[(3×tanθ)×A]/H≦0.3を満たす。

Description

蒸着用メタルマスク、蒸着用メタルマスクの製造方法、および、蒸着用メタルマスク形成基材
 本発明は、蒸着用メタルマスク、蒸着用メタルマスクの製造方法、および、蒸着用メタルマスク形成基材に関する。
 蒸着法に用いられる蒸着用メタルマスクは、昇華された粒子が通る通路としてマスク孔を備える。マスク孔は、蒸着対象と対向する小開口と、蒸着源と対向する大開口とを備える。マスク孔の形成方法は、例えば、レーザー照射法、ウェットエッチング法、および、電鋳法のいずれかを用いる(例えば、特許文献1~3を参照)。
 レーザー照射法は、メタルマスクの基材である金属板の表面にレーザー光を照射し、レーザー光の加える熱によって金属板の一部を溶かし続け、それによって、金属板にマスク孔を形成する。この際、マスク孔の形状の精度を高めるため、強度が低いパルス光などが用いられる。結果として、現実的な製造において、レーザー照射法は、生産性を得られない。
 ウェットエッチング法は、メタルマスクの基材である金属板の表面にレジストパターンを形成し、レジストパターンを用いた金属板のエッチングによってマスク孔を形成する。この際、エッチングの進行する方向は、金属板に垂直な方向だけではなく、レジストマスクの開口から金属板に向けたほぼ全方向である。そのため、小開口の大きさに対する大開口の大きさの比を小さくすることが困難であり、現実的な製造において、ウェットエッチング法は、マスク孔の高密度化に対応できない。
特開2014‐148744号公報 特開2016‐011434号公報 特開平10‐129140号公報
 一方、電鋳法は、電極として機能する金属板の表面にレジストパターンを形成し、金属板の表面に堆積した電着物を金属板から離し、それによって、レジストパターンの形状に追従した形状を有するマスク孔を電着物に形成する。レジストパターンの形成に要する時間は短く、また、電着物の堆積に要する時間も短いため、現実的な製造において、電鋳法は高い生産性を得られる。また、マスク孔の形状がレジストパターンの形状に追従するため、電鋳法は、新たな形状を孔内周面に付与できる技術として期待される。
 近年、マスク孔の高密度化は進む一途であり、マスク孔を区画する孔内周面の微細化が強く望まれている。他方、蒸着用メタルマスクを用いて蒸着が行われるときには、昇華された粒子がマスク孔の孔内周面に付着する。孔内周面に付着した粒子は、マスク孔を通過する粒子の妨げとなり、孔内周面の微細化が進むほど、この妨げが顕著となる。そこで、上述した蒸着用メタルマスクでは、孔内周面の高密度化を可能としつつも、粒子の堆積物を除去するためのメンテナンスの頻度を抑えることが強く求められる。
 本発明は、メンテナンスの頻度が高まることを抑えつつマスク孔の高密度化を可能とする蒸着用メタルマスク、蒸着用メタルマスクの製造方法、および、蒸着用メタルマスク形成基材を提供することを目的とする。
 上記課題を解決するための蒸着用メタルマスクは、蒸着装置において蒸着源と対向する大開口を有した表面と、前記表面とは反対側の面であって小開口を有した裏面と、前記大開口と前記小開口とに通じる錘台状の孔がマスク孔であり、前記表面と前記裏面とに接続されて前記マスク孔を蒸着用メタルマスクに区画する孔内周面と、を備えた電鋳製の蒸着用メタルマスクであって、前記表面と直交し、かつ、前記大開口と前記小開口とを通る断面において、前記大開口の縁と前記小開口の縁とを結ぶ直線が仮想直線であり、前記仮想直線と、前記裏面との形成する傾斜角度θが50°以上85°以下であり、前記表面と前記裏面との距離が蒸着用メタルマスクの厚さHであり、前記裏面と平行であるとともに前記裏面との距離が(2/3)×Hである前記仮想面が基準面であり、前記基準面において、前記孔内周面と前記仮想直線との距離が窪み量Aであり、0<[(3×tanθ)×A]/H≦0.3を満たす。
 ここで、H/(3×tanθ)を仮想窪み量DAとすると、上記[(3×tanθ)×A]/Hは、仮想窪み量DAに対する窪み量Aの比率を示す。仮想窪み量DAとは、裏面との距離が(2/3)×Hである基準面において、蒸着用メタルマスクの厚み方向に沿って大開口を投影した位置と、上記仮想直線との距離である。
 上記構成によれば、傾斜角度θが50°以上85°以下であり、等方的なエッチングのように、等方的な加工では得られない大きな傾斜角度θが得られる。そのため、等方的な加工によって得られる従来の構成と比べて、マスク孔の高密度化が可能となる。
 他方、仮想窪み量DAに対する窪み量Aの比率が、0よりも大きく、かつ、0.3以下である。そのため、仮想窪み量DAに対する窪み量Aの比率が、0である構成と比べて、孔内周面に粒子が付着するとしても、窪み量Aに相当する大きさを有した空間で、その残渣を堆積させることが可能となる。
 この際、上述した残渣とは、大開口に近い部位ほど堆積されやすいが、大開口の近くに位置する残渣とは、蒸着パターンに対して明確な欠損を生じさせにくい。これに対して、小開口に近い部位ほど残渣は堆積されにくいが、小開口の近くに位置する残渣とは、それが生じさせるシャドウ効果によって、蒸着パターンに対して明確な欠損を生じさせやすい。この点、上記構成であれば、逆錐台面状を有する孔内周面のなかで、裏面との距離が(2/3)×Hである基準面において、上述した窪み量Aが定められる。すなわち、上述した残渣がたまりやすいこと、および、蒸着パターンに対して明確な欠損を生じやすいこと、これらの双方を満たす範囲に対して、上記窪み量Aが定められる。それゆえに、上述した構成であれば、蒸着パターンに対して明確な欠陥を生じさせやすく、かつ、堆積しやすい不可避な残渣を、蒸着に与える影響を抑えつつ的確に貯めることが可能であって、結果として、蒸着用メタルマスクに対するメンテナンスの頻度が高まることも抑えられる。
 上記蒸着用メタルマスクは、前記表面と直交し、かつ、前記大開口と前記小開口とを通る断面において前記孔内周面は弧状を有してもよい。この構成によれば、孔内周面が連続面であるため、電鋳法によるマスクの製造が容易ともなる。
 上記蒸着用メタルマスクにおいて、前記蒸着用メタルマスクの構成材料は、鉄とニッケルとの合金を主成分として含み、前記合金におけるニッケルの含有量は、30質量%以上45質量%以下であってもよい。この構成によれば、金属材料のなかで熱膨張係数が小さい、鉄とニッケルとの合金を主成分とするため、蒸着時に受ける熱による構造的な変化を、蒸着用メタルマスクにおいて抑えることが可能ともなる。
 上記蒸着用メタルマスクにおいて、前記厚さHは1μm以上40μm以下であってもよい。この構成によれば、蒸着用メタルマスクの有する厚さHが10μm以上40μm以下であるため、大開口の大きさと小開口の大きさとの差を小さくすることが可能であって、マスク孔の高密度化を可能とする効果を、より顕著なものとすることが可能ともなる。
 上記課題を解決するための蒸着用メタルマスクの製造方法は、電極面に頂面を有した逆錐台状の突起がレジストパターンであり、前記電極面に前記レジストパターンを形成することと、電着物を前記電極面から堆積させると共に、前記電着物において前記レジストパターンの外周面に追従する面がマスク孔の孔内周面であり、前記マスク孔が前記レジストパターンで埋められた状態で前記電着物を形成することと、前記電極面から前記電着物を離し、前記電極面から離れた前記電着物として蒸着用メタルマスクを形成することとを含み、前記レジストパターンを形成することでは、前記電極面と平行であるとともに前記電極面との距離が前記電着物の厚さTである面が、仮表面であり、前記電極面と平行であるとともに前記電極面との距離が(2/3)×Tである面が、基準面であり、前記レジストパターンの外周面のなかで前記仮表面に位置する部分が、大周縁であり、前記レジストパターンの外周面のなかで前記頂面に相当する部分が、小周縁であり、前記仮表面と直交し、かつ、前記大周縁と前記小周縁とを通る断面において、前記大周縁と前記小周縁とを結ぶ直線が仮想直線であり、前記仮想直線と、前記電極面とのなす傾斜角度θrが、95°以上130°以下であり、前記基準面において前記外周面と前記仮想直線との距離が、張り出し量Wであり、0<[(3×tan(180°-θr))×W]/T≦0.3を満たすように、前記レジストパターンを形成する。
 上記課題を解決するための蒸着用メタルマスクの製造方法は、電極面に底面を有した錐台状の突起がレジストパターンであり、前記電極面に前記レジストパターンを形成することと、電着物を前記電極面から堆積させると共に、前記電着物において前記レジストパターンの外周面に追従する面がマスク孔の孔内周面であり、前記マスク孔が前記レジストパターンで埋められた状態で前記電着物を形成することと、前記電極面から前記電着物を離し、前記電極面から離れた前記電着物として蒸着用メタルマスクを形成することとを含み、前記レジストパターンを形成することでは、前記電極面と平行であるとともに前記電極面との距離が前記電着物の厚さTである面が、仮裏面であり、前記電極面と平行であるとともに前記電極面との距離が(1/3)×Tである面が、基準面であり、前記レジストパターンの外周面のなかで前記仮裏面に位置する部分が、大周縁であり、前記レジストパターンの外周面のなかで前記底面に相当する部分が、小周縁であり、前記仮裏面と直交し、かつ、前記大周縁と前記小周縁とを通る断面において、前記大周縁と前記小周縁とを結ぶ直線が仮想直線であり、前記仮想直線と、前記電極面とのなす傾斜角度θrが、50°以上85°以下であり、前記基準面において前記外周面と前記仮想直線との距離が、張り出し量Wであり、0<[(3×tanθr)×W]/T≦0.3を満たすように、前記レジストパターンを形成する。
 上記各方法によれば、上述したように、裏面とのなす傾斜角度θが50°以上85°以下であり、かつ、0<[(3×tanθ)×A]/H≦0.3を満たすマスク孔を形成することができる。そのため、メンテナンスの頻度が高まることを抑えつつマスク孔の高密度化を可能とする蒸着用メタルマスクを製造することができる。
 上記課題を解決するための蒸着用メタルマスク形成基材は、蒸着用メタルマスクを電着物として堆積させるための電鋳用の電極面と、前記電極面に頂面を有した逆錐台状の突起がレジストパターンであり、前記電着物において前記レジストパターンの外周面に追従する面がマスク孔の孔内周面であり、前記マスク孔が前記レジストパターンで埋められた状態で前記電着物を形成するための前記レジストパターンと、を備え、前記レジストパターンは、前記電極面と平行であるとともに前記電極面との距離が前記電着物の厚さTである面が、仮表面であり、前記電極面と平行であるとともに前記電極面との距離が(2/3)×Tである面が、基準面であり、前記レジストパターンの外周面のなかで前記仮表面に位置する部分が、大周縁であり、前記レジストパターンの外周面のなかで前記頂面に相当する部分が、小周縁であり、前記仮表面と直交し、かつ、前記大周縁と前記小周縁とを通る断面において、前記大周縁と前記小周縁とを結ぶ直線が仮想直線であり、前記仮想直線と、前記電極面とのなす傾斜角度θrが、95°以上130°以下であり、前記基準面において前記外周面と前記仮想直線との距離が、張り出し量Wであり、0<[(3×tan(180°-θr))×W]/T≦0.3を満たす。
 上記課題を解決するための蒸着用メタルマスク形成基材は、蒸着用メタルマスクを電着物として堆積させるための電鋳用の電極面と、前記電極面に底面を有した錐台状の突起がレジストパターンであり、前記電着物において前記レジストパターンの外周面に追従する面がマスク孔の孔内周面であり、前記マスク孔が前記レジストパターンで埋められた状態で前記電着物を形成するための前記レジストパターンと、を備え、前記レジストパターンは、前記電極面と平行であるとともに前記電極面との距離が前記電着物の厚さTである面が、仮裏面であり、前記電極面と平行であるとともに前記電極面との距離が(1/3)×Tである面が、基準面であり、前記レジストパターンの外周面のなかで前記仮裏面に位置する部分が、小周縁であり、前記レジストパターンの外周面のなかで前記底面に相当する部分が、大周縁であり、前記仮裏面と直交し、かつ、前記レジストパターンを通る断面において、前記大周縁と前記小周縁とを結ぶ直線が仮想直線であり、前記仮想直線と、前記電極面とのなす傾斜角度θrが、50°以上85°以下であり、前記基準面において前記外周面と前記仮想直線との距離が、張り出し量Wであり、0<[(3×tanθr)×W]/T≦0.3を満たす。
 上記各蒸着用メタルマスク形成基材を用いた電鋳法による製造によれば、上述したように、裏面とのなす傾斜角度θが50°以上85°以下であり、かつ、0<[(3×tanθ)×A]/H≦0.3を満たすマスク孔を形成することができる。そのため、メンテナンスの頻度が高まることを抑えつつマスク孔の高密度化を可能とする蒸着用メタルマスクを製造することができる。
蒸着用メタルマスクの一実施の形態における平面構造を示す平面図。 蒸着用メタルマスクの一実施の形態における断面構造を示す断面図。 蒸着用メタルマスク形成基材の一実施の形態における断面構造を示す断面図。 蒸着用メタルマスク形成基材の他の実施の形態における断面構造を示す断面図。 (a)から(e)は、蒸着用メタルマスクの製造方法の一実施の形態における工程の流れを示す工程フロー図。
 以下、蒸着用メタルマスク、蒸着用メタルマスクの製造方法、および、蒸着用メタルマスク形成基材の一実施の形態を説明する。まず、図1および図2を参照して、蒸着用メタルマスクの構成を説明する。次いで、図3および図4を参照して、蒸着用メタルマスク形成基材の構成を説明する。最後に、図5を参照して、蒸着用メタルマスクの製造方法を説明する。
 [蒸着用メタルマスク]
 図1が示すように、マスク装置10は、メインフレーム20と、3つの蒸着用メタルマスク30とを備える。メインフレーム20は、3つの蒸着用メタルマスク30を支持する枠板状を有し、蒸着を行うための蒸着装置に取り付けられる。メインフレーム20は、各蒸着用メタルマスク30と対向する領域のほぼ全体に、メインフレーム20を貫通するメインフレーム孔20Hを有する。
 蒸着用メタルマスク30は、サブフレーム31と、電鋳製のマスク部材32とを備える。サブフレーム31は、複数のマスク部材32を支持する枠板状を有し、メインフレーム20に取り付けられる。サブフレーム31は、各マスク部材32と対向する領域のほぼ全体に、サブフレーム31を貫通するサブフレーム孔30Hを有する。各マスク部材32は、サブフレーム孔30Hの周囲に、溶着や接着によって固定される。マスク部材32が有する断面構造の一例を、図2を参照して説明する。
 図2が示すように、マスク部材32は、鉄とニッケルの合金を主成分とする格子状の金属シート321から構成される。金属シート321を構成する材料は、例えば、30質量%以上45質量%以下のニッケルを含む鉄ニッケル合金、なかでも、36質量%ニッケルと64質量%鉄との合金を主成分とする、すなわちインバーであることが好ましい。マスク部材32を構成する材料がインバーである場合、金属シート321の熱膨張係数は、例えば1.2×10-6/℃程度である。このような熱膨張係数を有する金属シート321であれば、マスク部材32における熱膨張の度合いと、ガラス基板における熱膨張の度合いとが整合するため、蒸着対象の一例としてガラス基板を用いることが好適である。
 マスク部材32は、蒸着装置において蒸着源と対向する面となる表面32Fと、表面32Fとは反対側の面である裏面32Bとを備える。マスク部材32は、金属シート321を貫通する複数のマスク孔321Hを有する。表面32Fは、マスク孔321Hの大開口322Fを含み、裏面32Bは、マスク孔321Hの小開口322Bを含む。マスク孔321Hは、錐台状を有する。マスク孔321Hの底部は、大開口322Fであり、マスク孔321Hの頂部は、小開口322Bである。マスク孔321Hは、マスク部材32において孔内周面321Sに区画されている。孔内周面321Sは、表面32Fと直交し、かつ、孔内周面321Sを通る断面において、表面32Fから裏面32Bに向けて緩やかに曲がる弧状を描く。大開口322Fの大きさは、表面32Fと対向する平面視において、小開口322Bよりも大きい。大開口322Fは、蒸着源から昇華した蒸着粒子が通る通路の入口として機能する。蒸着源から昇華した蒸着粒子は、大開口322Fから小開口322Bに向けて進む。
 表面32Fと裏面32Bとの距離は、金属シート321の厚さである厚さHである。金属シート321が有する厚さHは、1μm以上100μm以下であり、好ましくは、2μm以上40μm以下である。金属シート321が有する厚さHが40μm以下であれば、金属シート321に形成されるマスク孔321Hの深さを40μm以下とすることが可能である。40μm以下の厚さHを有する金属シート321であれば、マスク部材32の表面32Fに向けて飛行する蒸着粒子から蒸着対象を見たときに、マスク部材32によって不要な陰となる領域を少なくすることが可能となる。すなわち、シャドウ効果を抑えることが可能となる。
 表面32Fと直交し、かつ、大開口322Fと小開口322Bとを通る断面において、大開口322Fの縁と小開口322Bの縁とを結ぶ直線が、仮想直線Liである。また、表面32Fと直交し、かつ、大開口322Fと小開口322Bとを通る断面において、この仮想直線Liと裏面32Bとのなす角度が、傾斜角度θである。なお、大開口322Fの縁と、小開口322Bの縁とが円である場合、上述した断面は、大開口322Fの中心、および、小開口322Bの中心を通る。また、大開口322Fの縁と、小開口322Bの縁とが矩形である場合、上述した断面は、ここでも、大開口322Fの中心、および、小開口322Bの中心を通る。
 また、裏面32Bに沿う仮想的、すなわち、裏面32Bと平行な仮想的な平面が、仮想面である。また、複数の仮想面のなかで裏面32Bとの距離が(2/3)×Hである仮想面が、基準面Piである。また、基準面Piにおいて孔内周面321Sと仮想直線Liとの距離が、窪み量Aである。そして、各マスク孔321Hは、下記[条件1]および[条件2]を満たす。
 [条件1]50°≦傾斜角度θ≦85°
 [条件2]0<[(3×tanθ)×A]/H≦0.3
 [条件1]を満たすマスク孔321Hでの傾斜角度θは、50°以上85°以下であり、金属シート321に対する等方的なエッチングのように、等方的な加工では得られない大きな傾斜角度θをマスク孔321Hが有する。そのため、等方的な加工によって得られる従来の構成と比べて、マスク孔321Hの高密度化をマスク部材32において実現できる。
 なお、等方的な加工によって得られるマスク孔321Hでは、[条件1]の範囲よりも傾斜角度θが小さくなってしまう。小開口322Bの位置や大きさは、蒸着粒子の到達するべき位置や大きさによって予め定められる。結果として、傾斜角度θが小さいほど、大開口322Fの大きさは大きくなってしまい、互いに隣り合う大開口322Fの間の距離が狭くなってしまう。さらには、互いに隣り合う大開口322Fの一部が互いに結合してしまい、マスク部材32の機械的な強度も得られがたくなる。この点、上記[条件1]を満たすマスク孔321Hであれば、機械的な強度が過剰に低下することを抑えつつ、高密度化を実現することが可能ともなる。
 [条件2]を満たすマスク孔321Hであれば、仮想窪み量DAに対する窪み量Aの比率が、0よりも大きく、かつ、0.3以下である。そのため、仮想窪み量DAに対する窪み量Aの比率が、0である構成と比べて、すなわち、仮想直線Liを孔内周面321Sとするマスク孔321Hと比べて、孔内周面321Sに蒸着粒子が付着するとしても、窪み量Aに相当する大きさを有した空間で、蒸着粒子の堆積物である残渣を貯めることが可能となる。
 この際、小開口322Bよりも大開口322Fに近い残渣は、大開口側残渣であり、大開口322Fよりも小開口322Bに近い残渣は、小開口側残渣である。そして、大開口側残渣の成長は、小開口側残渣の成長よりも進みやすい。一方で、大開口側残渣と蒸着対象との距離は、小開口側残渣と蒸着対象との距離よりも大きい。それゆえに、大開口側残渣は、蒸着対象に形成される蒸着パターンに小開口側残渣よりも欠損を生じさせにくい。すなわち、大開口側残渣は、小開口側残渣よりも成長が早い一方で、小開口側残渣よりも蒸着パターンに欠損を生じさせにくい。小開口側残渣は、大開口側残渣よりも成長が遅い一方で、大開口側残渣よりも蒸着パターンに欠損を生じさせやすい。
 この点、[条件2]を満たすマスク孔321Hであれば、裏面32Bとの距離が(2/3)×Hである基準面Piにおいて、上述した窪み量Aが定められる。すなわち、マスク孔321Hにおける厚さ方向において、基準面Piは、上述した残渣がたまりやすい部位に位置する。また、マスク孔321Hにおける厚さ方向において、基準面Piは、孔内周面321Sに蓄積した残渣で蒸着パターンに明確な欠損を生じやすい部位に位置する。そして、上記窪み量Aは、こうした基準面Piにおいて定められる。それゆえに、窪み量Aを有しないマスク孔において蒸着パターンに対して明確な欠陥を生じさせやすく、かつ、堆積しやすいような残渣を、[条件1]および[条件2]を満たす窪み量Aを有したマスク孔321Hであれば、蒸着に与える影響を抑えた残渣として的確に貯めることが可能である。結果として、残渣による蒸着の不具合を解消するためのメンテナンス、すなわち、蒸着用メタルマスクに対するメンテナンスの頻度が高まることも抑えられる。
 なお、裏面32Bに沿う方向での仮想直線Liと孔内周面321Sとの距離は、基準面Piよりも裏面32B側で最大値を有する。こうした孔内周面321Sの形状は、基準面Piで上記[条件1]および[条件2]が満たされることに伴い、高密度化が可能であることを維持しつつも、仮想直線Liと孔内周面321Sとの距離が最大となる領域で小開口側残渣をさらに貯めやすい。結果として、メンテナンスの頻度が高まることが、より確実に抑えられる。
 [蒸着用メタルマスク形成基材]
 次に、図3を参照して、蒸着用メタルマスクを製造する方法に用いる蒸着用メタルマスク形成基材の一例を説明する。また、図4を参照して、蒸着用メタルマスクを製造する方法に用いる蒸着用メタルマスク形成基材の他の例を説明する。なお、図4が示す例は、図3が示す例とはレジストパターンの形状が異なる。詳しくは、図3は、電極面と平行な断面での面積が電極面に近い部位ほど小さい形状、すなわち、逆テーパー形状を有するレジストパターンを有する例を示す。図4は、電極面と平行な断面での面積が電極面に近い部位ほど大きい形状、すなわち、順テーパー形状を有するレジストパターンを有した例を示す。そして、図4を参照した説明では、図3に示す例との差異を主に説明し、重複する説明は割愛する。
 図3が示すように、蒸着用メタルマスク形成基材50は、電極部材51とレジストパターン52とを備える。電極部材51は、金属シート321を形成するための電解において陰極として機能する。電極部材51は、例えばSUS304などのステンレス部材であってもよいし、ガラス基板や樹脂シート上に電極材料が積層された部材であってもよい。電極部材51は、金属シート321を形成するための面として、平滑面である電極面51Sを備える。
 レジストパターン52は、電極面51Sにおいて島状に点在するパターンである。レジストパターン52は、逆錐台状の突起である。レジストパターン52は、電極面51Sに位置する頂面52Bと、頂面52Bとは反対側の面である底面52Fとを備える。レジストパターン52は、金属シート321を形成する電解においてマスクとして機能する。また、レジストパターン52は、外周面であるレジスト外周面52Sを備える。レジストパターン52は、金属シート321を形成する電解において、レジスト外周面52Sに追従した面を備える電着物を、電極面51Sに堆積させる。
 蒸着用メタルマスク形成基材50では、電極面51Sに沿う仮想面、すなわち、電極面51Sと平行な平面のなかで、電極面51Sとの距離がレジスト厚さTである面が、仮表面Pfである。また、電極面51Sに沿う仮想面のなかで電極面51Sとの距離が(2/3)×Tである面が、基準面Piである。
 一方、レジストパターン52では、レジスト外周面52Sのなかで仮表面Pfに位置する部分が、大周縁521Fである。また、レジスト外周面52Sのなかで頂面52Bの周縁が、小周縁521Bである。また、レジストパターン52では、仮表面Pfと直交する断面において、大周縁521Fと小周縁521Bとを結ぶ直線が、仮想直線Liである。また、仮表面Pfと直交する断面において、電極面51Sと仮想直線Liとのなす角度が、レジスト傾斜角度θrである。なお、大周縁521Fと小周縁521Bとが円である場合、上述した断面は、大周縁521Fの中心と小周縁521Bの中心とを通る。また、大周縁521Fと小周縁521Bとが矩形である場合、上述した断面は、ここでも、大周縁521Fの中心と小周縁521Bの中心とを通る。
 また、基準面Piにおいてレジスト外周面52Sと仮想直線Liとの距離が、張り出し量Wである。そして、各レジストパターン52は、下記[条件3]および[条件4]を満たす。
 [条件3]95°≦傾斜角度θr≦130°
 [条件4]0<[(3×tan(180°-θr))×W]/H≦0.3
 上記[条件3]および[条件4]を満たすレジストパターン52は、小周縁521Bの形状に追従した形状を有する小開口322Bを備える孔内周面321Sを形成可能とする。また、大周縁521Fの形状に追従した形状を有する大開口322Fを備える孔内周面321Sを形成可能とする。また、レジスト外周面52Sの形状に追従した孔内周面321Sを形成可能とする。すなわち、上記[条件3]および[条件4]を満たすレジストパターン52は、上記[条件1]および[条件2]を満たすマスク孔321Hを形成可能とする。
 レジストパターン52は、光架橋によってパターン形成が可能となるネガ型レジストから構成される。このネガ型レジストは、表面(図3では底面52F)での硬化が裏面(図3では頂面52B)での硬化よりも早く、電極面51Sの近傍ほど光の到達量が少ない材料であることが好ましい。こうしたネガ型レジストには、例えば、光の吸収率がレジストよりも高い顔料をレジストのなかに添加されたネガ型レジストを用いることができる。レジストパターン52は、光を照射することによってアルカリ可溶性を発現するポジ型レジストから構成されてもよい。このポジ型レジストが採用される場合には、ポジ型レジストの表面に対する斜め方向から、フォトマスクの干渉による露光が行われ、ポジ型レジストの現像後にオーバーハングが形成される。
 図4が示すように、他の例における蒸着用メタルマスク形成基材50もまた、電極部材51とレジストパターン62とを備える。レジストパターン62は、電極面51Sにおいて島状に点在するパターンである。レジストパターン52は、錐台状の突起である。レジストパターン52は、電極面51Sに位置する底面62Bと、底面62Bとは反対側の面である頂面62Fとを備える。レジストパターン62もまた、金属シート321を形成する電解において、マスクとして機能する。また、レジストパターン62は、外周面であるレジスト外周面62Sを備える。レジストパターン52は、金属シート321を形成する電解において、レジスト外周面62Sに追従した面を備える電着物を、電極面51Sに堆積させる。
 蒸着用メタルマスク形成基材50では、電極面51Sに沿う仮想面、すなわち、電極面51Sと平行な平面のなかで、電極面51Sとの距離がレジスト厚さTである面が、仮裏面Pbである。また、電極面51Sに沿う仮想面のなかで電極面51Sとの距離が(1/3)×Tである面が、基準面Piである。
 一方、レジストパターン62では、レジスト外周面62Sのなかで仮裏面Pbに位置する部分が、小周縁621Bである。また、レジスト外周面62Sのなかで底面62Bの周縁が、大周縁621Fである。また、レジストパターン62では、仮裏面Pbと直交する断面において、大周縁621Fと小周縁621Bとを結ぶ直線が、仮想直線Liである。また、仮裏面Pbと直交する断面において、電極面51Sと仮想直線Liとのなす角度が、レジスト傾斜角度θrである。
 なお、大周縁621Fと小周縁621Bとが円である場合、上述した断面は、大周縁621Fの中心と小周縁621Bの中心とを通る。また、大周縁621Fと小周縁621Bとが矩形である場合、上述した断面は、ここでも、大周縁621Fの中心と小周縁621Bの中心とを通る。
 また、基準面Piにおいてレジスト外周面62Sと仮想直線Liとの距離が、張り出し量Wである。そして、各レジストパターン62は、下記[条件5]および[条件6]を満たす。
 [条件5]50°≦傾斜角度θr≦85°
 [条件6]0<[(3×tanθr)×W]/H≦0.3
 上記[条件5]および[条件6]を満たすレジストパターン62は、小周縁621Bの形状に追従した形状を有する小開口322Bを備える孔内周面321Sを形成可能とする。また、大周縁621Fの形状に追従した形状を有する大開口322Fを備える孔内周面321Sを形成可能とする。また、レジスト外周面62Sの形状に追従した孔内周面321Sを形成可能とする。すなわち、上記[条件5]および[条件6]を満たすレジストパターン62は、上記[条件1]および[条件2]を満たすマスク孔321Hを形成可能とする。
 [蒸着用メタルマスクの製造方法]
 次に、図5を参照して、蒸着用メタルマスクの製造方法を説明する。なお、図3において説明された蒸着用メタルマスク形成部材を用いる製造方法と、図4において説明された蒸着用メタルマスク形成部材を用いる製造方法とは、マスク部材32の表裏が反転することが相互に異なる。そのため、相互に共通する点を割愛すると共に、マスク部材32の表裏の反転に伴う差異を詳細に説明し、以下では、図3において説明された蒸着用メタルマスク形成部材を用いる製造方法を主に説明する。
 図5(a)が示すように、蒸着用メタルマスクの製造方法では、電極部材51の電極面51Sに、レジストパターン52を形成するためのレジスト層52Tが積層される。次いで、図5(b)が示すように、レジスト層52Tに対する露光および現像が行われて、レジストパターン52,62が形成される。この際、例えば、上記[条件3]および[条件4]を満たすように、レジスト材料と露光条件とが選択され、それによって、図3において説明された逆錐台状を有するレジストパターン52が形成される。なお、図4において説明された蒸着用メタルマスク形成部材を用いる製造方法では、上記[条件5]および[条件6]を満たすように、レジスト材料と露光条件とが選択され、それによって、図4において説明された錐台状を有するレジストパターン62が形成される。
 次に、図5(c)が示すように、蒸着用メタルマスク形成部材が電解浴に浸漬され、電極面51Sに電着物を形成するための電解が行われる。電解に用いられる電解浴は、例えば、鉄イオン供給剤、ニッケルイオン供給剤、および、pH緩衝剤を含む。また、電解に用いられる電解浴は、応力緩和剤、Fe3+イオンマスク剤、リンゴ酸やクエン酸などの錯化剤などを含んでもよく、電解に適したpHに調整された弱酸性の溶液である。鉄イオン供給剤は、例えば、硫酸第一鉄・7水和物、塩化第一鉄、スルファミン酸鉄などである。ニッケルイオン供給剤は、例えば、硫酸ニッケル(II)、塩化ニッケル(II)、スルファミン酸ニッケル、臭化ニッケルである。pH緩衝剤は、例えば、ホウ酸、マロン酸である。マロン酸は、Fe3+イオンマスク剤としても機能する。応力緩和剤は、例えばサッカリンナトリウムである。電解に用いられる電解浴は、例えば、上述した添加剤を含む水溶液であり、5%硫酸、あるいは、炭酸ニッケルなどのpH調整剤によって、例えば、pHが2以上3以下となるように調整される。
 電解に用いられる電解条件は、金属シート321におけるニッケルの組成比などが、電解浴の温度、電流密度、および、電解時間によって調整された条件である。上述した電解浴を用いた電解条件における陽極は、例えば、純鉄とニッケルである。電解浴の温度は、例えば、40℃以上60℃以下である。電流密度は、例えば、1A/dm以上4A/dm以下である。
 上述した電解が行われることによって、レジストパターン52,62のレジスト外周面52S,62Sに追従する面を有した電着物を電極面51Sから堆積させることが可能となる。すなわち、電極面51Sのうえに、上述した条件[条件1]および[条件2]を満たすマスク孔321Hを有したマスク部材32を形成することが可能となる。
 なお、例えば、圧延用の母材から金属シート321が形成されるとき、通常、圧延用の母材を形成するための材料中に混入した酸素を除くために、例えば、粒状のアルミニウムやマグネシウムなどの脱酸剤が、母材を形成するための材料に混ぜられる。結果として、アルミニウムやマグネシウムは、酸化アルミニウムや酸化マグネシウムなどの金属酸化物として母材に含まれる。こうした金属酸化物の大部分は、母材が圧延される前に、母材から取り除かれる一方で、金属酸化物の一部分は、圧延の対象となる母材に残る。この点、電解を用いる製造方法によれば、上記金属酸化物が金属シート321に混ざることが抑えられる。
 次に、図5(d)が示すように、電極面51Sからレジストパターン52,62が除去される。レジストパターン52の除去には、例えばリフトオフ法が用いられ、レジストパターン62の除去には、例えば化学的な溶解が用いられる。なお、レジストパターン52,62がポジ型レジストである場合、レジスト層52Tを熱硬化前に露光することによって、レジストパターン52,62の現像液に対する可溶性は得られる。また、レジストパターン52,62がネガ型レジストである場合、例えばN-メチルピロリジノン系の溶液によってレジストパターン52,62を膨潤させて電極面51Sから剥離させることも可能である。
 次に、図5(e)が示すように、電極面51Sから金属シート321が離されることによって、マスク部材32が製造される。なお、電極面51Sから離されたマスク部材32は、その後にアニール処理が施されてもよい。そして、複数のマスク部材32における表面32Fがサブフレーム31に固定されることによって、上述した蒸着用メタルマスクが製造される。
 次に、蒸着用メタルマスク、蒸着用メタルマスクの製造方法、および、蒸着用メタルマスク形成基材の実施例、および、参考例について表1を参照して以下に説明する。
 [実施例1]
 [レジスト層組成物の作製]
 70重量部のペンタエリスリトールトリアクリレート、123重量部のカルド樹脂(V259ME:新日鉄住金化学社製)、および、14重量部の光重合開始剤(IRGACURE907:BASF Japan社製)(IRGACUREは登録商標)を、レジスト層組成物の固形分が50重量%になるように、シクロヘキサノンで希釈し、レジスト層組成物を調製した。
 [蒸着用メタルマスクの製造]
 電極部材51の電極面51Sに、乾燥後の膜厚が30μmになるよう、ネガ型のレジスト層組成物を塗布した。その後、レジスト層組成物をホットプレートで90℃/3分間乾燥し、高圧水銀灯(光の強度:365nm輝線の照度が40mW/cm)を用い、フォトマスクを介して露光量200mJ/cmを照射した。次いで、アルカリ現像液(CD126:ADEKA社製)を用い、スピン現像で60秒間現像を行うことによって、レジストパターンを得た。レジストパターンの寸法は、平面視において60μm×60μmであった。また、レジストパターンの断面形状を走査電子顕微鏡で観察した結果、頂面52Bの幅が22.2μmであり、底面52Fの幅が62.2μmであり、逆錐台状であることが確認された。
 次いで、電極部材51を電極とする電解を行い、電極面51Sに30μmの厚さを有する電着物を堆積させた。なお、電着物の膜厚が10μm以下である水準では、電着物にピンホールが多く認められた。次いで、レジストパターンをN-メチルピロリジノン系の剥離液を用いて除去した。そして、電極面51Sから電着物を離すことによってマスク部材32を得た。マスク部材32の断面形状を観察した結果、傾斜角度θは55°であり、[(3×tanθ)×A]/Hは0.26であった。
 [実施例2]
 実施例1における現像時間を45秒に変更し、それ以外を実施例1と同じくして、実施例2のマスク部材を得た。レジストパターンの断面形状を走査電子顕微鏡で観察した結果、頂面52B幅が35.9μmであり、底面52Fの幅が62.7μmであり、レジストパターンが逆錐台状であることが確認された。また、マスク部材32の断面形状を観察した結果、傾斜角度θは73.6°であり、[(3×tanθ)×A]/Hは0.16であった。
 [実施例3]
 実施例1における露光量を150mJ/cmに変更し、また、現像時間を45秒に変更し、それ以外を実施例1と同じくして、実施例3のマスク部材を得た。レジストパターンの断面形状を走査電子顕微鏡で観察した結果、頂面52Bの幅が20.5μmであり、底面52Fの幅が61.8μmであり、レジストパターンが逆錐台状であることが確認された。また、マスク部材32の断面形状を観察した結果、傾斜角度θは67.9°であり、[(3×tanθ)×A]/Hは0.29であった。
 [実施例4]
 実施例1における露光量を100mJ/cmに変更し、また、現像時間を30秒に変更し、それ以外を実施例1と同じくして、実施例2のマスク部材を得た。レジストパターンの断面形状を走査電子顕微鏡で観察した結果、頂面の幅が54.2μmであり、底面の幅が62.5μmであり、逆錐台状であることが確認された。また、マスク部材32の断面形状を観察した結果、傾斜角度θは82.4°であり、[(3×tanθ)×A]/Hは0.08であった。
 [参考例1]
 実施例1における露光量を150mJ/cmに変更し、また、現像時間を30秒に変更し、それ以外を実施例1と同じくして、参考例のマスク部材を得た。レジストパターンの断面形状を走査電子顕微鏡で観察した結果、頂面52Bの幅と底面52Fの幅とは共に62.9μmであり、ほぼ直方体形状であることが確認された。また、マスク部材32の断面形状を観察した結果、傾斜角度θは90.0°であった。
 [参考例2]
 実施例1における現像時間を30秒に変更し、それ以外を実施例1と同じくして、参考例2のマスク部材を得た。レジストパターンの断面形状を走査電子顕微鏡で観察した結果、頂面52Bの幅が60.4μmであり、底面52Fの幅が63.6μmであり、レジストパターンが逆錐台状であることが確認された。また、マスク部材32の断面形状を観察した結果、傾斜角度θは89.6°であり、[(3×tanθ)×A]/Hは0.00であった。
 [参考例3]
 実施例1における露光量を150mJ/cmに変更し、それ以外を実施例1と同じくして、参考例3のマスク部材を得た。レジストパターンの断面形状を走査電子顕微鏡で観察した結果、頂面52Bの幅が17.8μmであり、底面52Fの幅が59.8μmであり、レジストパターンが逆錐台状であることが確認された。また、マスク部材32の断面形状を観察した結果、傾斜角度θは46.3°であり、[(3×tanθ)×A]/Hは0.32であった。
 [参考例4]
 実施例1における露光量を100mJ/cmに変更し、それ以外を実施例1と同じくして、参考例4のマスク部材を得た。レジストパターンの断面形状を走査電子顕微鏡で観察した結果、頂面52Bの幅が12.7μmであり、底面52Fの幅が58.4μmであり、レジストパターンが逆錘台状であることが確認された。また、マスク部材32の断面形状を観察した結果、傾斜角度θは36.7°であり、[(3×tanθ)×A]/Hは0.38であった。
 [参考例5]
 実施例1における露光量を100mJ/cmに変更し、また、現像時間を45秒に変更し、それ以外を実施例1と同じくして、参考例5のマスク部材を得た。レジストパターンの断面形状を走査電子顕微鏡で観察した結果、頂面52Bの幅が18.4μmであり、底面52Fの幅が60.3μmであり、レジストパターンが逆錘台状であることが確認された。また、マスク部材32の断面形状を観察した結果、傾斜角度θは53.8°であり、[(3×tanθ)×A]/Hは0.35であった。
 [参考例6]
 [レジスト層組成物の作製]
 70重量部のペンタエリスリトールトリアクリレート、350重量部のアクリル樹脂(TLZ3000:大阪有機化学工業社製)、および、14重量部の光重合開始剤(IRGACURE369/IRGACURE901=9/1:BASF Japan社製)を、レジスト層組成物中の固形分が50重量%になるように、シクロヘキサノンで希釈し、参考例6のレジスト層組成物を調製した。
 [蒸着用メタルマスクの製造]
 実施例1における露光量を150mJ/cmに変更し、また、現像時間を30秒に変更し、参考例6のレジスト層組成物を用い、これら以外を実施例1と同じくして、参考例6のマスク部材を得た。レジストパターンの断面形状を走査電子顕微鏡で観察した結果、頂面52Bの幅、および、底面52F幅が共に65μmであり、ほぼ直方体形状であることが確認された。また、マスク部材32の断面形状を観察した結果、傾斜角度θは90.0°であった。
 [蒸着用メタルマスクの洗浄頻度評価]
 各実施例、および、各参考例の蒸着用メタルマスクを用い、有機EL材料の蒸着を実施し、各々で得られる蒸着パターンを観察し、蒸着パターンに欠けが発生した時点で蒸着用メタルマスクの洗浄を行うという処理を繰り返した。この際、蒸着用メタルマスクの洗浄が行われる頻度は、実施例1~4において、傾斜角度θが90.0°である参考例1,6よりも十分に低い値が得られた。他方、参考例2~5においては、参考例1,6よりも高い値が認められた。
 結果として、[(3×tanθ)×A]/Hの値が0.3以下、すなわち、仮想窪み量DAに対する窪み量Aの比率が0.3以下であれば、傾斜角度θが90.0°である構造よりも、洗浄頻度を抑えられることが認められた。
 特に、孔内周面321Sに成長した残渣は、傾斜角度θが90.0°に近いほど、大開口322Fから見て小開口322Bを覆いやすく、蒸着パターンに欠けを生じさせやすい。一方、[(3×tanθ)×A]/Hの値が0.3を超える水準は、傾斜角度θが90.0°未満であるにもかかわらず、傾斜角度θが90.0°である参考例1,6と同等の洗浄頻度、もしくは、参考例1,6よりも高い洗浄頻度を示す。これは、蒸着パターンに欠けを生じさせる残渣の堆積する速度が、傾斜角度θの低下によって増すためであり、単に傾斜角度θの範囲の設定のみでは、洗浄頻度の向上が得られがたいことを示すものでもある。
 すなわち、上述した各条件は、大開口322Fから見て小開口322Bを覆う残渣の堆積量、および、堆積する速度が、大開口側残渣と小開口側残渣とで異なる、という観点からはじめて導き出されるものである。そして、上述した各条件は、上述した各実施例、および、各参考例に基づき、マスク孔321Hの厚さ方向なかで、窪み量Aがなければ、残渣がたまりやすいこと、および、蒸着パターンに対して明確な欠損を生じやすいことを満たす範囲に、基準面Piを定め、その基準面Piでの窪み量Aを定めることによって得られるものである。
Figure JPOXMLDOC01-appb-T000001
 以上、上記実施形態によれば、以下の効果が得られる。
 (1)傾斜角度θが50°以上85°以下であるため、レジストマスクの開口からほぼ全方向に加工が進む等方的なエッチングのように、等方的な加工では得られない大きな傾斜角度θが得られる。そのため、等方的な加工によって得られる従来の構成と比べて、マスク孔321Hの高密度化が可能となる。
 (2)仮想窪み量DAに対する窪み量Aの比率が0よりも大きく、かつ、0.3以下であるため、窪み量Aに相当する大きさを有した空間で、蒸着粒子の残渣を堆積させることが可能となる。
 (3)孔内周面321Sを通る断面において、孔内周面321Sが表面32Fから裏面32Bに向けて緩やかに曲がる弧状を描く連続面である場合には、レジストパターン52,62から堆積物を離すことが容易であり、電鋳法によるマスクの製造に適している。なお、上記[条件1]および[条件2]を満たす構造であれば、孔内周面321Sは、例えば、表面32Fと平行な方向に段差を有した面であってもよい。
 (4)蒸着用メタルマスクの有する厚さHが10μm以上40μm以下である場合には、大開口322Fの大きさと小開口322Bの大きさとの差を小さくすることが可能であって、マスク孔の高密度化を可能とする効果を、より顕著なものとすることが可能ともなる。
 (5)蒸着用メタルマスクを製造する方法に電鋳が用いられるため、レーザー照射法やウェットエッチング法では得られない、上記(1)(2)のような上記各条件を満たす構造を、マスク孔321Hに形成することが可能ともなる。
 θ…傾斜角度、θr…レジスト傾斜角度、A…窪み量、DA…仮想窪み量、H…マスク厚さ、Li…仮想直線、Pi…基準面、T…レジスト厚さ、W…張り出し量、10…マスク装置、20…メインフレーム、20H…メインフレーム孔、30…蒸着用メタルマスク、30H…サブフレーム孔、31…サブフレーム、32…マスク部材、32F…表面、32B…裏面、321H…マスク孔、321S…孔内周面、322F…大開口、322B…小開口、50…蒸着用メタルマスク形成基材、51…電極部材、51S…電極面、52,62…レジストパターン、52F,62B…底面、52B,62F…頂面、2S,62S…レジスト外周面、521F,621F…大周縁、521B,621B…小周縁、Pf…仮表面、Pb…仮裏面。

Claims (8)

  1.  蒸着装置が備える蒸着源と対向する大開口を有した表面と、
     前記表面とは反対側の面であって小開口を有した裏面と、
     前記大開口と前記小開口とに通じる錘台状の孔がマスク孔であり、前記表面と前記裏面とに接続されて前記マスク孔を蒸着用メタルマスクに区画する孔内周面と、
     を備えた電鋳製の蒸着用メタルマスクであって、
     前記表面と直交し、かつ、前記大開口と前記小開口とを通る断面において、前記大開口の縁と前記小開口の縁とを結ぶ直線が仮想直線であり、前記仮想直線と、前記裏面との形成する傾斜角度θが50°以上85°以下であり、
     前記表面と前記裏面との距離が蒸着用メタルマスクの厚さHであり、
     前記裏面と平行であるとともに前記裏面との距離が(2/3)×Hである仮想面が基準面であり、
     前記基準面において、前記孔内周面と前記仮想直線との距離が窪み量Aであり、
     0<[(3×tanθ)×A]/H≦0.3を満たす
     蒸着用メタルマスク。
  2.  前記表面と直交し、かつ、前記大開口と前記小開口とを通る断面において前記孔内周面は弧状を有する
     請求項1に記載の蒸着用メタルマスク。
  3.  前記蒸着用メタルマスクの構成材料は、鉄とニッケルとの合金を主成分として含み、
     前記合金におけるニッケルの含有量は、30質量%以上45質量%以下である
     請求項1または2に記載の蒸着用メタルマスク。
  4.  前記厚さHは、1μm以上40μm以下である
     請求項1から3のいずれか一項に記載の蒸着用メタルマスク。
  5.  電極面に頂面を有した逆錐台状の突起がレジストパターンであり、前記電極面に前記レジストパターンを形成することと、
     電着物を前記電極面から堆積させると共に、前記電着物において前記レジストパターンの外周面に追従する面がマスク孔の孔内周面であり、前記マスク孔が前記レジストパターンで埋められた状態で前記電着物を形成することと、
     前記電極面から前記電着物を離し、前記電極面から離れた前記電着物として蒸着用メタルマスクを形成することとを含み、
     前記レジストパターンを形成することでは、
     前記電極面と平行であるとともに前記電極面との距離が前記電着物の厚さTである面が、仮表面であり、
     前記電極面と平行であるとともに前記電極面との距離が(2/3)×Tである面が、基準面であり、
     前記レジストパターンの外周面のなかで前記仮表面に位置する部分が、大周縁であり、
     前記レジストパターンの外周面のなかで前記頂面に相当する部分が、小周縁であり、
     前記仮表面と直交し、かつ、前記大周縁と前記小周縁とを通る断面において、前記大周縁と前記小周縁とを結ぶ直線が仮想直線であり、前記仮想直線と、前記電極面とのなす傾斜角度θrが、95°以上130°以下であり、
     前記基準面において前記外周面と前記仮想直線との距離が、張り出し量Wであり、
     0<[(3×tan(180°-θr))×W]/T≦0.3を満たすように、前記レジストパターンを形成する
     蒸着用メタルマスクの製造方法。
  6.  電極面に底面を有した錐台状の突起がレジストパターンであり、前記電極面に前記レジストパターンを形成することと、
     電着物を前記電極面から堆積させると共に、前記電着物において前記レジストパターンの外周面に追従する面がマスク孔の孔内周面であり、前記マスク孔が前記レジストパターンで埋められた状態で前記電着物を形成することと、
     前記電極面から前記電着物を離し、前記電極面から離れた前記電着物として蒸着用メタルマスクを形成することとを含み、
     前記レジストパターンを形成することでは、
     前記電極面と平行であるとともに前記電極面との距離が前記電着物の厚さTである面が、仮裏面であり、
     前記電極面と平行であるとともに前記電極面との距離が(1/3)×Tである面が、基準面であり、
     前記レジストパターンの外周面のなかで前記仮裏面に位置する部分が、大周縁であり、
     前記レジストパターンの外周面のなかで前記底面に相当する部分が、小周縁であり、
     前記仮裏面と直交し、かつ、前記大周縁と前記小周縁とを通る断面において、前記大周縁と前記小周縁とを結ぶ直線が仮想直線であり、前記仮想直線と、前記電極面とのなす傾斜角度θrが、50°以上85°以下であり、
     前記基準面において前記外周面と前記仮想直線との距離が、張り出し量Wであり、
     0<[(3×tanθr)×W]/T≦0.3を満たすように、前記レジストパターンを形成する
     蒸着用メタルマスクの製造方法。
  7.  蒸着用メタルマスクを電着物として堆積させるための電鋳用の電極面と、
     前記電極面に頂面を有した逆錐台状の突起がレジストパターンであり、前記電着物において前記レジストパターンの外周面に追従する面がマスク孔の孔内周面であり、前記マスク孔が前記レジストパターンで埋められた状態で前記電着物を形成するための前記レジストパターンと、
     を備え、
     前記レジストパターンは、
     前記電極面と平行であるとともに前記電極面との距離が前記電着物の厚さTである面が、仮表面であり、
     前記電極面と平行であるとともに前記電極面との距離が(2/3)×Tである面が、基準面であり、
     前記レジストパターンの外周面のなかで前記仮表面に位置する部分が、大周縁であり、
     前記レジストパターンの外周面のなかで前記頂面に相当する部分が、小周縁であり、
     前記仮表面と直交し、かつ、前記大周縁と前記小周縁とを通る断面において、前記大周縁と前記小周縁とを結ぶ直線が仮想直線であり、前記仮想直線と、前記電極面とのなす傾斜角度θrが、95°以上130°以下であり、
     前記基準面において前記外周面と前記仮想直線との距離が、張り出し量Wであり、
     0<[(3×tan(180°-θr))×W]/T≦0.3を満たす
     蒸着用メタルマスク形成基材。
  8.  蒸着用メタルマスクを電着物として堆積させるための電鋳用の電極面と、
     前記電極面に底面を有した錐台状の突起がレジストパターンであり、前記電着物において前記レジストパターンの外周面に追従する面がマスク孔の孔内周面であり、前記マスク孔が前記レジストパターンで埋められた状態で前記電着物を形成するための前記レジストパターンと、
     を備え、
     前記レジストパターンは、
     前記電極面と平行であるとともに前記電極面との距離が前記電着物の厚さTである面が、仮裏面であり、
     前記電極面と平行であるとともに前記電極面との距離が(1/3)×Tである面が、基準面であり、
     前記レジストパターンの外周面のなかで前記仮裏面に位置する部分が、小周縁であり、
     前記レジストパターンの外周面のなかで前記底面に相当する部分が、大周縁であり、
     前記仮裏面と直交し、かつ、前記レジストパターンを通る断面において、前記大周縁と前記小周縁とを結ぶ直線が仮想直線であり、前記仮想直線と、前記電極面とのなす傾斜角度θrが、50°以上85°以下であり、
     前記基準面において前記外周面と前記仮想直線との距離が、張り出し量Wであり、
     0<[(3×tanθr)×W]/T≦0.3を満たす
     蒸着用メタルマスク形成基材。
PCT/JP2017/019237 2016-05-23 2017-05-23 蒸着用メタルマスク、蒸着用メタルマスクの製造方法、および、蒸着用メタルマスク形成基材 WO2017204223A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780002966.0A CN107923031B (zh) 2016-05-23 2017-05-23 蒸镀用金属掩模、蒸镀用金属掩模的制造方法及蒸镀用金属掩模形成基材
JP2017553441A JP6264523B1 (ja) 2016-05-23 2017-05-23 蒸着用メタルマスク、蒸着用メタルマスクの製造方法、および、蒸着用メタルマスク形成基材
KR1020187006031A KR101884160B1 (ko) 2016-05-23 2017-05-23 증착용 메탈 마스크, 증착용 메탈 마스크의 제조 방법, 및 증착용 메탈 마스크 형성 기재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016102843 2016-05-23
JP2016-102843 2016-05-23

Publications (1)

Publication Number Publication Date
WO2017204223A1 true WO2017204223A1 (ja) 2017-11-30

Family

ID=60411382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019237 WO2017204223A1 (ja) 2016-05-23 2017-05-23 蒸着用メタルマスク、蒸着用メタルマスクの製造方法、および、蒸着用メタルマスク形成基材

Country Status (4)

Country Link
JP (1) JP6264523B1 (ja)
KR (1) KR101884160B1 (ja)
CN (1) CN107923031B (ja)
WO (1) WO2017204223A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157262A (ja) * 2018-03-13 2019-09-19 アドバンテック グローバル リミテッドAdvantech Global Ltd 金属シャドーマスク及びその製造方法
KR20190108029A (ko) * 2018-03-13 2019-09-23 어드밴텍 글로벌, 리미티드 철-니켈 합금 섀도우 마스크 및 그 제조 방법
TWI687760B (zh) * 2019-04-16 2020-03-11 家登精密工業股份有限公司 具有擾流結構的光罩盒
JP2021172879A (ja) * 2020-04-30 2021-11-01 富士フイルム株式会社 金属パターンの形成方法、及び、蒸着用メタルマスクの製造方法
CN114127629A (zh) * 2019-07-19 2022-03-01 凸版印刷株式会社 遮光板、照相机单元以及电子仪器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597920B1 (ja) * 2018-04-11 2019-10-30 凸版印刷株式会社 蒸着マスク用基材、蒸着マスク用基材の製造方法、蒸着マスクの製造方法、および、表示装置の製造方法
CN108919569B (zh) * 2018-07-26 2022-08-05 京东方科技集团股份有限公司 一种掩膜版、显示基板及其制作方法和显示装置
KR20200046484A (ko) 2018-10-24 2020-05-07 해성디에스 주식회사 증착용 금속 마스크의 제조 방법
US20220190069A1 (en) * 2019-03-27 2022-06-16 Sharp Kabushiki Kaisha Display device and deposition mask
CN114096694A (zh) * 2019-10-04 2022-02-25 凸版印刷株式会社 蒸镀掩模、蒸镀掩模的制造方法及显示装置的制造方法
WO2022092847A1 (ko) * 2020-10-30 2022-05-05 에이피에스홀딩스 주식회사 증착 마스크
JP7438920B2 (ja) 2020-11-27 2024-02-27 三協立山株式会社 簡易構造物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152396A (ja) * 2004-11-30 2006-06-15 Sony Corp メタルマスク、電鋳用マスク原版及びマスター原版の製造方法
JP2015036436A (ja) * 2013-08-13 2015-02-23 大日本印刷株式会社 蒸着マスクの製造方法および蒸着マスク
CN104593722A (zh) * 2014-12-23 2015-05-06 深圳市华星光电技术有限公司 掩膜板的制作方法
JP2015518524A (ja) * 2012-05-08 2015-07-02 昆山允升吉光電科技有限公司 高精度メタルマスクの混合作製工程
JP2015129334A (ja) * 2014-01-08 2015-07-16 大日本印刷株式会社 積層マスクの製造方法、積層マスクおよび保護フィルム付き積層マスク
JP2015143375A (ja) * 2014-01-31 2015-08-06 ソニー株式会社 メタルマスクおよびその製造方法、ならびに表示装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10129140A (ja) 1996-10-29 1998-05-19 Atene Kk メタルマスク
JP5459632B1 (ja) 2013-01-08 2014-04-02 大日本印刷株式会社 蒸着マスクの製造方法および蒸着マスク
JP6344090B2 (ja) 2014-06-27 2018-06-20 凸版印刷株式会社 メタルマスクの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152396A (ja) * 2004-11-30 2006-06-15 Sony Corp メタルマスク、電鋳用マスク原版及びマスター原版の製造方法
JP2015518524A (ja) * 2012-05-08 2015-07-02 昆山允升吉光電科技有限公司 高精度メタルマスクの混合作製工程
JP2015036436A (ja) * 2013-08-13 2015-02-23 大日本印刷株式会社 蒸着マスクの製造方法および蒸着マスク
JP2015129334A (ja) * 2014-01-08 2015-07-16 大日本印刷株式会社 積層マスクの製造方法、積層マスクおよび保護フィルム付き積層マスク
JP2015143375A (ja) * 2014-01-31 2015-08-06 ソニー株式会社 メタルマスクおよびその製造方法、ならびに表示装置の製造方法
CN104593722A (zh) * 2014-12-23 2015-05-06 深圳市华星光电技术有限公司 掩膜板的制作方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157262A (ja) * 2018-03-13 2019-09-19 アドバンテック グローバル リミテッドAdvantech Global Ltd 金属シャドーマスク及びその製造方法
KR20190108028A (ko) * 2018-03-13 2019-09-23 어드밴텍 글로벌, 리미티드 금속 섀도우 마스크 및 그 제조 방법
KR20190108029A (ko) * 2018-03-13 2019-09-23 어드밴텍 글로벌, 리미티드 철-니켈 합금 섀도우 마스크 및 그 제조 방법
KR102071144B1 (ko) * 2018-03-13 2020-01-29 어드밴텍 글로벌, 리미티드 철-니켈 합금 섀도우 마스크 및 그 제조 방법
KR102127568B1 (ko) * 2018-03-13 2020-06-29 어드밴텍 글로벌, 리미티드 금속 섀도우 마스크 및 그 제조 방법
TWI687760B (zh) * 2019-04-16 2020-03-11 家登精密工業股份有限公司 具有擾流結構的光罩盒
CN114127629A (zh) * 2019-07-19 2022-03-01 凸版印刷株式会社 遮光板、照相机单元以及电子仪器
CN114127629B (zh) * 2019-07-19 2024-01-05 凸版印刷株式会社 遮光板、照相机单元以及电子仪器
JP2021172879A (ja) * 2020-04-30 2021-11-01 富士フイルム株式会社 金属パターンの形成方法、及び、蒸着用メタルマスクの製造方法

Also Published As

Publication number Publication date
CN107923031A (zh) 2018-04-17
JPWO2017204223A1 (ja) 2018-06-07
JP6264523B1 (ja) 2018-01-24
KR20180027624A (ko) 2018-03-14
CN107923031B (zh) 2019-04-02
KR101884160B1 (ko) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6264523B1 (ja) 蒸着用メタルマスク、蒸着用メタルマスクの製造方法、および、蒸着用メタルマスク形成基材
KR101854584B1 (ko) 증착용 메탈 마스크 기재, 증착용 메탈 마스크, 증착용 메탈 마스크 기재의 제조 방법, 및, 증착용 메탈 마스크의 제조 방법
JP6120039B1 (ja) メタルマスク用基材の製造方法、および、蒸着用メタルマスクの製造方法
TWI757562B (zh) 用以製造蒸鍍罩之金屬板及金屬板之製造方法及蒸鍍罩、以及蒸鍍罩之製造方法及具備蒸鍍罩之蒸鍍罩裝置
WO2019074104A1 (ja) 蒸着マスク、蒸着マスクの製造方法、および、表示装置の製造方法
JP7151856B2 (ja) ガラス物品
WO2015100880A1 (zh) 掩膜板及其制作方法
JP2019056182A (ja) 蒸着マスクの製造方法および蒸着マスク
JPS60159094A (ja) アルミニウム又はアルミニウム合金を電気化学的に粗面化する方法
TWI842874B (zh) 玻璃板的製造方法、玻璃板以及玻璃板集合體
JP2648976B2 (ja) 感光性平版印刷版
KR102403548B1 (ko) 펠리클용 지지 프레임 및 펠리클, 그리고 그 제조 방법
JP6879109B2 (ja) 蒸着マスク用基材、蒸着マスク用基材の製造方法、蒸着マスクの製造方法、および、表示装置の製造方法
KR20130060999A (ko) 패턴 형성 방법
JP7013320B2 (ja) 蒸着マスク及び蒸着方法
US20200274068A1 (en) Vapor deposition mask base material, method for manufacturing vapor deposition mask base material, method for manufacturing vapor deposition mask, and method for manufacturing display device
JP2017036471A (ja) 蒸着マスク製造方法
DE2846256A1 (de) Verfahren zur entwicklung positiv wirkender lichtempfindlicher planographischer druckplatten
JP7327693B2 (ja) 蒸着マスク基材、蒸着マスク基材の検査方法、蒸着マスクの製造方法、および、表示装置の製造方法
JPWO2020054131A1 (ja) 位相シフトマスクブランクス、位相シフトマスク、露光方法、デバイスの製造方法、位相シフトマスクブランクスの製造方法、及び、位相シフトマスクの製造方法
JP2000340110A (ja) シャドウマスク用ハードマスク及びその製造方法
JP2020193364A (ja) 金属フィルタ及び金属フィルタの製造方法
JPS62296423A (ja) パタ−ン形成方法
JP2001192884A (ja) アパチャーグリルの製造方法およびアパチャーグリル中間体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017553441

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006031

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802809

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802809

Country of ref document: EP

Kind code of ref document: A1