WO2017203912A1 - 脱酸素剤 - Google Patents

脱酸素剤 Download PDF

Info

Publication number
WO2017203912A1
WO2017203912A1 PCT/JP2017/016077 JP2017016077W WO2017203912A1 WO 2017203912 A1 WO2017203912 A1 WO 2017203912A1 JP 2017016077 W JP2017016077 W JP 2017016077W WO 2017203912 A1 WO2017203912 A1 WO 2017203912A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
cerium oxide
resin
deoxygenated
resin composition
Prior art date
Application number
PCT/JP2017/016077
Other languages
English (en)
French (fr)
Inventor
和也 木下
陽兵 丸山
健悟 田代
憲之 高橋
隆 障子口
泰規 田平
義仁 織田
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2018519150A priority Critical patent/JP6927964B2/ja
Publication of WO2017203912A1 publication Critical patent/WO2017203912A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23L3/3418Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
    • A23L3/3427Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O in which an absorbent is placed or used
    • A23L3/3436Oxygen absorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators

Definitions

  • the present invention relates to an oxygen scavenger.
  • Patent Document 1 As a conventional technique using cerium oxide having oxygen deficiency as an oxygen scavenger, for example, one described in Patent Document 1 is known.
  • This document describes a resin composition having oxygen absorbing ability, which contains cerium oxide having oxygen deficiency and a thermoplastic resin.
  • This resin composition has not only the ability to absorb oxygen, but also is not affected by the contents, has microwave suitability, and is suitable as a packaging material with little change in physical properties due to oxygen absorption. It is described in the literature.
  • cerium oxide having oxygen vacancies As another technique of using cerium oxide having oxygen vacancies as an oxygen scavenger, the present applicant has previously described the removal of cerium oxide having oxygen vacancies and a powder having a specific surface area of 0.6 m 2 / g or less.
  • An oxygen agent was proposed (see Patent Document 2).
  • the present applicant further includes a fluorite-type cerium oxide porous body represented by CeO x (x represents a positive number less than 2) and having reversible oxygen vacancies, and has a specific surface area of 0.1.
  • An oxygen scavenger with a median diameter of 6 to 1.8 m 2 / g and a pore median diameter of 1.6 to 5.3 ⁇ m was also proposed (see Patent Document 3).
  • an object of the present invention is to provide an oxygen scavenger that can eliminate the various disadvantages of the above-described prior art.
  • the present invention includes fluorite-type cerium oxide particles having a reversible oxygen deficiency represented by CeO x (x represents a positive number less than 2), and the surface of the particles is covered with an inorganic oxide. It provides a conventional oxygen scavenger.
  • FIG. 1 is a cross-sectional view showing the structure of a package containing the oxygen scavenger of the present invention.
  • FIG. 2 is a cross-sectional view in the thickness direction showing one embodiment of a deoxygenated film having a multilayer structure.
  • FIG. 3 is a cross-sectional view in the thickness direction showing another embodiment of the deoxidized film having a multilayer structure.
  • FIG. 4 is a diagram showing element mapping results of the inorganic oxide-coated cerium oxide obtained in Example 1.
  • FIG. 5 is a diagram showing element mapping results of the inorganic oxide-coated cerium oxide obtained in Example 5.
  • the oxygen scavenger of the present invention includes particles of cerium oxide having reversible oxygen vacancies represented by CeO x (x represents a positive number less than 2).
  • Cerium oxide having oxygen vacancies is a substance having oxygen absorption sites due to reversible oxygen vacancies generated by forced extraction of oxygen. It is generally known that there are two types of oxygen deficiency possessed by cerium oxide: reversible deficiency and irreversible deficiency.
  • the reversible deficiency is an oxygen deficiency possessed by the cerium oxide used in the present invention, and is generated when oxygen is forcibly extracted by treatment under strong reducing conditions.
  • a reversible defect is a defect in which oxygen can be taken into a deficient site.
  • cerium oxide having a reversible defect an unbalanced state of electric charge caused by oxygen deficiency is compensated by reducing a part of tetravalent cerium to trivalent.
  • Trivalent cerium is unstable and easily returns to tetravalent. Therefore, by incorporating oxygen into the deficient site, trivalent cerium returns to tetravalent, and the charge balance is always kept at zero.
  • an irreversible defect is formed by doping a metal inorganic oxide with an element having a valence lower than that of the metal.
  • An irreversible defect unlike a reversible defect, is not a defect caused by treatment under strong reducing conditions.
  • the irreversible defect can be obtained, for example, by mixing an oxide of an element having a valence lower than the valence of the metal with a metal inorganic oxide and firing in the atmosphere.
  • the metal inorganic oxide is cerium oxide
  • the valence of cerium in cerium oxide having irreversible defects is all tetravalent. Therefore, oxygen is not taken into the deficient site.
  • the cerium oxide contained in the oxygen scavenger of the present invention has an oxygen absorbing ability in the living environment atmosphere.
  • the living environment atmosphere refers to a general atmosphere when storing products such as foods, electronic parts, and pharmaceuticals.
  • the atmospheric pressure includes, for example, a reduced pressure state (vacuum packaging or the like) in a product packaging, and a pressurized state (pressurization / heat sterilization in retort processing, packaging shape maintenance use, or the like).
  • the temperature includes about ⁇ 50 ° C. (during frozen storage) to 130 ° C. (retort treatment of food). Therefore, high-temperature and / or high-pressure harsh atmosphere such as exhaust gas discharged from a power engine operating with fossil fuel is not included in this living environment atmosphere.
  • the cerium oxide contained in the oxygen scavenger of the present invention has an oxygen absorption site because oxygen is forcibly extracted from the crystal lattice by the reduction treatment of CeO 2 and becomes an oxygen deficient state (CeO 2-x ). . Since this cerium oxide has a fluorite-type crystal structure, it is structurally stable and can stably hold oxygen absorption sites due to oxygen vacancies. In addition, since the oxygen ion conductivity is high, oxygen can enter and exit the crystal, and the oxygen absorption ability is good.
  • the cerium oxide having oxygen vacancies is suitable by reducing CeO 2 in a strong reducing atmosphere having a high concentration of reducing gas such as hydrogen gas, acetylene gas or carbon monoxide gas and high-temperature heat treatment. Is obtained.
  • the concentration of the reducing gas is preferably not less than the lower limit of explosion to 100% by volume, more preferably not less than 20% by volume and not more than 100% by volume.
  • the treatment temperature is preferably 500 ° C. or higher, more preferably 700 ° C. or higher and 1200 ° C. or lower, more preferably 1000 ° C. or higher and 1050 ° C. or lower.
  • the strongly reducing atmosphere is generally atmospheric pressure, but pressure conditions may be used instead.
  • cerium oxide having oxygen deficiency can be obtained by reduction for about 5 minutes or more and about 1 hour or less.
  • cerium oxide having oxygen deficiency can be obtained by reduction for about 1 hour or more and about 3 hours or less.
  • the cerium oxide may be used in the form of a composite oxide by adding a specific element to the cerium oxide having oxygen vacancies and replacing it with a solid solution.
  • the specific additive element include one or more elements selected from the group consisting of magnesium, calcium, strontium, barium, lanthanum, niobium, praseodymium, and yttrium.
  • the use of one or more elements selected from the group consisting of yttrium, calcium and praseodymium is particularly preferable because the oxygen removal performance is further increased.
  • additive elements can be added to cerium oxide, for example, in the form of an oxide when the cerium oxide powder is produced, and can be dissolved in cerium oxide.
  • the total addition amount of the additive elements is preferably set to 1 mol% or more and 20 mol% or less with respect to the number of moles of cerium from the viewpoint of sufficiently exhibiting the addition effect.
  • the surface of the particles of cerium oxide having oxygen vacancies used in the present invention is covered with an inorganic oxide.
  • the inorganic oxide is located on the surface of the cerium oxide particles in a state of particles having a smaller particle diameter than the cerium oxide particles.
  • Inorganic oxide particles are cerium oxide particles by various forces such as chemical bonding force by sintering, intermolecular force (van der Waals force), mechanical engagement force (anchor effect), and adhesive force by binder. It can be fixed to the surface of.
  • the inorganic oxide particles preferably cover the surface of the cerium oxide particles in the form of a coating. This film is not a dense film that completely blocks the permeation of oxygen molecules but has oxygen permeability.
  • the inorganic oxide particles may cover the entire surface uniformly and continuously without exposing the surface of the cerium oxide particles.
  • the surface may be discontinuously coated so that a part of the surface of the cerium oxide particles is exposed.
  • the distribution state of the inorganic oxide particles on the surface of the cerium oxide particles can be measured, for example, by element mapping using EDX.
  • the generation of H 2 gas can be achieved when a composition containing oxygen-deficient cerium oxide and a resin is incorporated in layers like a printed wiring board or the like, or adhered to an electronic device without a gap like an electronic device sealing material. Also when it is made, it can cause peeling.
  • a metal oxide or a non-metal oxide can be used as the inorganic oxide.
  • the inorganic oxide may be an oxide of a single element, a composite oxide of two or more metals, a composite oxide of two or more non-metals, or one or more metals and one or more types of metal.
  • a complex oxide with a nonmetal may be used.
  • the inorganic oxide it is allowed to use a composite oxide generated by a reaction between cerium oxide itself to be coated and an element covering the cerium oxide.
  • This composite oxide is formed by reacting the coating with cerium oxide in the step of firing after the surface coating of cerium oxide with the coating and the step of reducing treatment.
  • a later-described inorganic oxide M y O z and cerium oxide is a composite oxide produced by the reaction, complex oxide of element M and of cerium oxide. Examples thereof include a complex oxide of Si (derived from SiO 2 ) and Ce and a complex oxide of Al (derived from Al 2 O 3 ) and Ce.
  • M y O z M represents an element that does not cause a valence change, and y and z represent a positive number
  • M represents an element that does not cause a valence change
  • y and z represent a positive number
  • the metal causing valence change is that it has not a little catalytic activity to generate a H 2 gas from the resin is based on the present inventor has knowledge.
  • metal oxides that cause valence changes tend to have oxygen vacancies, and the outermost surface of the oxide has dangling bonds (bonding bonds), so that it is locally metallized.
  • the present inventors have found that the C—H bond in the resin is easily dissociated due to the above. Therefore, dissociation of C—H bonds in the resin is effectively prevented by using an oxide of an element that does not cause a valence change as the inorganic oxide.
  • An element that does not cause a valence change is an element having a single oxidation number, and is preferably a metal or metalloid element.
  • Specific examples of such elements include Al, Si, Ba, Ca, Cd, Er, Ga, Gd, Hf, Ho, In, La, Lu, Mg, Rb, Sn, Sr, Y, Zn, and Zr. Is mentioned.
  • oxides of Al and Si it is preferable to use oxides of Al and Si.
  • SiO 2 or Al 2 O 3 it is preferable to use SiO 2 or Al 2 O 3 .
  • the above M y O z may be used in combination alone one or two or more.
  • at least one of said M y O z may be used in combination with at least one inorganic oxide other than it.
  • the inorganic oxide it is preferable to use at least one selected from a composite oxide of M y O z and the element M and cerium oxide, and in particular, a composite oxide of SiO 2 , Al 2 O 3 , Si and Ce. In addition, it is preferable to use at least one selected from a composite oxide of Al and Ce.
  • the inorganic oxide is added to 100 parts by mass of cerium oxide having oxygen deficiency.
  • the amount is preferably 3 to 50 parts by mass, more preferably 5 to 30 parts by mass, and even more preferably 7.5 to 15 parts by mass.
  • the particle diameter of the cerium oxide particles having oxygen deficiency coated with the inorganic oxide is not particularly limited, and those having various particle diameters can be used. It is. From the viewpoint of ease of film formation and high gas barrier properties, the average particle diameter D 50 is preferably 0.05 ⁇ m or more and 50 ⁇ m or less, more preferably 0.1 ⁇ m or more and 40 ⁇ m or less, and more preferably 0.5 ⁇ m. More preferably, it is 25 ⁇ m or less.
  • the cerium oxide particles before being coated with the inorganic oxide preferably have an average particle diameter D 50 of 0.05 ⁇ m or more and 50 ⁇ m or less, more preferably 0.1 ⁇ m or more and 40 ⁇ m or less. More preferably, it is 5 ⁇ m or more and 30 ⁇ m or less.
  • the particle diameter of the inorganic oxide particles is the assumption that less than the average particle diameter D 50 of the cerium oxide, from the efficiency of the coating, preferably at 2nm or more 10 ⁇ m or less is 2nm or more 5 ⁇ m or less Is more preferably 2 nm or more and 1 ⁇ m or less.
  • the average particle diameter D 50 of the particles by setting like this, it is possible to prevent the dissociation of the C-H bonds in the resin effectively, also to prevent withdrawal of oxygen atoms in the resin effectively be able to.
  • the above particle sizes are measured using a particle size distribution measuring apparatus using a laser diffraction / scattering method if the particle size is 0.1 ⁇ m or more, and the dynamic light scattering method (photon) if the particle size is less than 0.1 ⁇ m. It is measured using a particle size distribution measuring apparatus using a correlation method.
  • cerium oxide particles having oxygen vacancies coated with an inorganic oxide are preferably produced by the following method.
  • cerium oxide is produced by firing cerium-containing salts or hydrates thereof (hereinafter collectively referred to simply as “cerium-containing salts”).
  • This cerium oxide has a fluorite-type structure represented by CeO 2 , and contains cerium and oxygen in a substantially stoichiometric ratio. Therefore, this cerium oxide has no oxygen deficiency.
  • the term “substantially” is used to allow the presence of trace amounts of inevitable impurities.
  • the firing of the cerium-containing salt is preferably performed in the atmosphere. Firing is possible even in an oxidizing atmosphere without being in the air, but in consideration of production on an industrial scale, firing in the air is preferable.
  • the firing temperature is preferably in the range of 500 ° C. to 1400 ° C., more preferably 600 ° C. to 1300 ° C.
  • the firing time is preferably Is in the range of 1 hour to 20 hours, more preferably 1 hour to 5 hours.
  • the cerium-containing salt is not particularly limited as long as it produces cerium oxide by firing.
  • cerium carbonate hydrate hexahydrate, octahydrate, etc.
  • cerium nitrate ammonium cerium nitrate
  • cerium sulfate cerium sulfate
  • cerium hydroxide cerium oxalate
  • cerium acetylacetonate cerium trifluoromethanesulfonate, etc.
  • cerium carbonate and cerium hydroxide are preferably used.
  • Calcination of the cerium-containing salt can be performed, for example, while circulating air in a heating furnace in which the cerium-containing salt is allowed to stand.
  • firing can be performed using a rotary kiln furnace or the like while flowing air under a state where the cerium-containing salt is fluidized (rolled).
  • the cerium-containing salt to be fired is preferably adjusted in particle size using a pulverizer such as a ball mill as a pretreatment for firing.
  • the cerium oxide particles having no oxygen vacancies obtained as described above have a particle size D 50 (volume cumulative particle size at a cumulative volume of 50 vol% by laser diffraction scattering type particle size distribution measurement method) of 0.
  • the thickness is from 0.5 ⁇ m to 50 ⁇ m, preferably from 0.1 ⁇ m to 40 ⁇ m, and more preferably from 0.5 ⁇ m to 30 ⁇ m.
  • the inorganic oxide particles are adhered to the surface of the cerium oxide particles having no oxygen vacancies thus obtained.
  • a various method is employable.
  • spray drying treatment spray drying treatment
  • the inorganic oxide particles can be attached to the surface of the cerium oxide particles having no oxygen vacancies by simply drying the dispersion liquid and then drying it. In the composite particles thus obtained, the binding force between the cerium oxide particles and the inorganic oxide particles may not be sufficient.
  • the composite particles are preferably subjected to a firing step to sinter the cerium oxide particles and the inorganic oxide particles.
  • the firing is preferably performed in the air. Firing is possible even in an oxidizing atmosphere without being in the air, but in consideration of production on an industrial scale, firing in the air is preferable.
  • the firing temperature is preferably in the range of 200 ° C. to 1400 ° C., more preferably in the range of 500 ° C. to 1200 ° C.
  • the firing time is preferably in the range of 1 hour to 20 hours, more preferably in the range of 2 hours to 5 hours. Is adopted.
  • the cerium oxide particles having the inorganic oxide particles attached thereto are subjected to a reduction firing step.
  • a hydrogen-containing atmosphere having a hydrogen concentration of preferably at least the lower explosion limit, more preferably at least 20% by volume is used.
  • the hydrogen concentration may be 100% by volume.
  • the temperature is 700 ° C. or higher and 1100 ° C. or lower, more preferably 800 ° C. or higher and 1050 ° C. or lower, more preferably 800 ° C. or higher and 1000 ° C. or lower.
  • the time is preferably 1 minute or longer and 5 hours or shorter, more preferably 5 minutes. A range of 3 hours or less is employed.
  • the rate of temperature rise is preferably 0.5 ° C./min to 50 ° C./min, particularly 1 ° C./min to 30 ° C./min.
  • the reducing atmosphere is generally atmospheric pressure (atmospheric pressure), but instead of this, pressurizing conditions or depressurizing conditions may be used. By appropriately controlling this reduction condition, the value of x in CeO x can be controlled.
  • the reduction treatment of cerium oxide having no oxygen deficiency can be performed, for example, while circulating a reducing gas in a heating furnace in which the cerium oxide is placed.
  • the reduction can be performed using a rotary kiln furnace or the like while circulating the reducing gas in a state in which cerium oxide having no oxygen deficiency flows (rolls).
  • the flow rate is preferably 1 to 500 SCCM per gram of cerium oxide.
  • inorganic oxide-coated cerium oxide Particles of cerium oxide having oxygen vacancies (hereinafter, this cerium oxide is also referred to as “inorganic oxide-coated cerium oxide”), the surfaces of which are thus obtained, are covered with inorganic oxide particles.
  • the inorganic oxide-coated cerium oxide can be encapsulated in the package in the form of a powder or in the form of a compact such as a tablet or flake obtained by pressurizing the powder.
  • inorganic oxide-coated cerium oxide particles can be used in the form of a resin composition formed by mixing with various resins. Specifically, inorganic oxide-coated cerium oxide particles can be kneaded into a resin having oxygen permeability so as to obtain a deoxygenated resin composition.
  • the deoxygenated resin composition may be used as a deoxygenated package by enclosing it in the package having air permeability resistance.
  • the resin either a thermoplastic resin or a thermosetting resin may be used.
  • the air resistance is measured according to JIS P8117 and is the time required for 100 mL of air to finish permeating through an area of 0.000642 m 2 with a pressure difference of 1.23 kPa. Having air permeability resistance means that the time measured by the above method is 100,000 seconds or less.
  • the oxygen-absorbing package comprising the inorganic oxide-coated cerium oxide particles and the oxygen-absorbing package comprising the oxygen-absorbing resin composition may further include a desiccant or a deodorizing agent.
  • a desiccant or a deodorizing agent there is no restriction
  • Various shapes of packages such as materials can be used.
  • FIG. 1 shows a schematic sectional view of a packaging container 10 for PTP or blister pack as an example of a package.
  • the packaging container 10 for PTP or blister pack includes a film 11 for PTP or blister pack formed by laminating an oxygen absorption layer 12 and a gas barrier layer 13 and a base material 14 laminated on the oxygen absorption layer 12 side of this film.
  • the packaging container 10 is formed of PTP or blister pack film 11 and the base material 14 such as PTP molding so as to form a space for storing the content 15 defined by the oxygen absorbing layer 12 and the base material 14. It is manufactured by molding using a molding method.
  • As the content 15, inorganic oxide-coated cerium oxide or a resin composition containing the same is used.
  • the thickness of each layer is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • thermoplastic resin examples include linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), and high density polyethylene.
  • LLDPE linear low density polyethylene
  • LDPE low density polyethylene
  • MDPE medium density polyethylene
  • high density polyethylene Polyethylene resins such as (HDPE) and ethylene-vinyl acetate copolymer (EVA) can be used.
  • ordinary homopolymer polypropylene resins and copolymer polypropylene resins such as random copolymer polypropylene and block copolymer polypropylene can be used as the thermoplastic resin. From the viewpoint of ease of molding, it is advantageous to use polystyrene.
  • Thermoplastic resins can control the rate of deactivation of oxygen absorption capacity until the inorganic oxide-coated cerium oxide is packaged or incorporated into electronic devices by controlling its own oxygen permeability.
  • PC polycarbonate
  • EVOH ethylene-vinyl alcohol copolymer
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • polyacetic acid are resins having lower oxygen permeability than polyethylene and polypropylene.
  • Vinyl polyvinyl chloride (PVC), polyamides (nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, nylon 6T, nylon 6I, nylon 9T, nylon M5T, nylon 612, nylon MXD), poly Use of vinylidene chloride (PVDC), polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyacrylonitrile (PAN), polymethyl methacrylate resin (PMMA) to control the rate of deactivation of oxygen absorption capacity Possible it is.
  • PVDC vinylidene chloride
  • PVDF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • PMMA polymethyl methacrylate resin
  • thermoplastic resin when oxygen absorption is desired to be performed quickly, polydimethylsiloxane or polybutadiene which is a resin having high oxygen permeability can be used as the thermoplastic resin.
  • the thermoplastic resin used in the present invention is melt flow rate (MFR, JISK7210: 1999 compliant with Method A, at a measurement temperature of 190 ° C. and a load of 2.16 kg from the viewpoint of facilitating processing into a film or sheet. Measured) is preferably 10 g / 10 min or more and 50 g / 10 min or less. Moreover, when using for injection molding, the thermoplastic resin whose melt flow rate is 50.0 g / 10min or more is preferable. When used for extrusion molding, a thermoplastic resin having a melt flow rate of 10 g / 10 min or less is preferred.
  • thermosetting resin When a thermosetting resin is used as the resin contained in the deoxygenated resin composition, it is advantageous in that the deoxygenated resin composition can cope with a complicated shape and the sealing property is improved particularly when the deoxygenated resin composition is incorporated into an electronic device.
  • thermosetting resins include phenolic resin (PF), epoxy resin (EP), melamine resin (MF), urea resin (urea resin, UF), unsaturated polyester resin (UP), alkyd resin, polyurethane ( PUR) and thermosetting polyimide (PI).
  • PF phenolic resin
  • EP epoxy resin
  • MF melamine resin
  • urea resin urea resin, UF
  • unsaturated polyester resin UP
  • alkyd resin polyurethane
  • PUR polyurethane
  • thermosetting polyimide thermosetting polyimide
  • the deoxygenated resin composition is used in the form of strands or pellets obtained by finely cutting the strands, and is a raw material for various resin molded products.
  • the resin composition is used in the form of various resin moldings molded from the pellets, for example, in the form of a deoxygenation functional film having a deoxygenation layer, or in the form of a deoxygenation functional tray or cup.
  • the shape of pellets, strands, films, or cups for organic EL lighting, organic EL displays, dye-sensitized solar cells, organic thin film solar cells, and electrochromic elements that are vulnerable to oxygen An electronic device can be obtained by disposing a deoxygenated resin composition containing a thermoplastic resin in a sheet shape between layers.
  • a deoxygenated resin composition contains, for example, a thermosetting resin, it can be molded to have an arbitrary shape according to the usage scene.
  • the deoxygenated resin composition is an epoxy resin composition, it can be used in the form of a sealing material for electronic devices such as semiconductor elements.
  • the mixing ratio of the deoxidizer, that is, inorganic oxide-coated cerium oxide, and the thermoplastic resin or thermosetting resin can be selected from a wide range.
  • the compounding ratio of the inorganic oxide-coated cerium oxide and the thermoplastic resin or thermosetting resin is expressed by mass ratio from the viewpoint of maintaining the strength and moldability of the deoxygenated resin composition.
  • the former: the latter 10: It is preferably 90 to 80:20, more preferably 20:80 to 75:25, and still more preferably 30:70 to 75:25.
  • the oxygen-absorbing resin composition When the oxygen-absorbing resin composition is used in a state where the proportion of the inorganic oxide-coated cerium oxide is large, for example, 50% by mass or more and 90% by mass or less with respect to the whole, MFR suitable for film molding is used as the resin. It is advantageous to select what has.
  • the oxygen scavenger of the present invention can be used in the form of a oxygen scavenging film having a oxygen scavenging layer containing the oxygen scavenger.
  • This deoxygenated film can be obtained, for example, by molding the deoxygenated resin composition into a film.
  • the oxygen scavenger of the present invention has a multilayer structure in which a gas barrier layer having a gas barrier property is provided on one surface side of the oxygen scavenging layer, and an oxygen permeable layer having oxygen permeability is provided on the other surface side of the oxygen scavenging layer. It can also be used in the form of a deoxygenated film. In the present invention, even when the oxygen scavenger is used in the form of a film having such a multilayer structure, delamination due to generation of H 2 gas is effectively prevented.
  • an adhesive layer for adhering both layers may be provided between the gas barrier layer and the oxygen permeable layer as necessary.
  • a heat sealing adhesive layer may be provided on the outermost surface on the other surface side.
  • metal foil such as aluminum foil and copper foil
  • metal foil such as aluminum foil and copper foil
  • a gas barrier film such as ethylene-vinyl alcohol copolymer (EVOH) or polyimide can be used.
  • EVOH ethylene-vinyl alcohol copolymer
  • This gas barrier film may be coated with polysilazane or colloidal silica.
  • SiO 2 or ZrO 2 may be deposited on the gas barrier film.
  • polyolefin resin LDPE, LLDPE, PP, EVA, etc.
  • an ethylene-vinyl alcohol copolymer comprising an island-and-sea structure resin composition containing EVOH and maleic anhydride-modified polyolefin resin, and forming a sea structure that is relatively continuous.
  • a structure in which an island structure is formed can be used.
  • FIG. 2 shows another embodiment of a deoxygenated film having a multilayer structure.
  • the multilayered oxygen-absorbing film 20 has thermoplastic resin layers 22a and 22b arranged on each surface of an oxygen-absorbing layer 21 containing an oxygen-absorbing agent, and a gas barrier layer 23 and a substrate outside the one thermoplastic resin layer 22a.
  • the material film 24 has a structure laminated in this order.
  • FIG. 3 shows still another embodiment of a deoxygenated film having a multilayer structure.
  • the multilayered oxygen scavenging film 30 includes a oxygen scavenging layer 31 having a main oxygen scavenging layer 31a and a sub oxygen scavenging layer 31b that is disposed on each surface and assists the oxygen scavenging.
  • a gas barrier layer 32 for preventing water vapor from entering from the outside air is disposed as an outermost layer on the outer side of one sub-deoxygenation layer 31b.
  • the main oxygen scavenging layer 31a and / or the sub oxygen scavenging layer 31b can contain inorganic oxide-coated cerium oxide.
  • the film when a deoxygenated resin composition containing inorganic oxide-coated cerium oxide and a resin is used, for example, in the form of a film, the film is incorporated into an electronic device, for example, and used as an electronic device provided with the film. Can do.
  • this electronic device there is a case where a large amount of heat is generated by the operation, but according to the present invention, even in such a case, dissociation of the C—H bond in the resin is effectively prevented. .
  • oxygen scavengers other than inorganic oxide-coated cerium oxide, desiccants, and acetic acid absorbents can be used.
  • oxygen scavenger other than the inorganic oxide-coated cerium oxide include a mixture of gallic acid and a transition metal compound, and a mixture containing a carbonate-based alkali compound such as potassium carbonate, sodium carbonate, calcium carbonate in the mixture. It is done.
  • the desiccant examples include a deliquescent inorganic salt, a deliquescent organic compound, a superabsorbent resin, silica gel, and synthetic zeolite.
  • a deliquescent inorganic salt for example, magnesium oxide, and magnesium oxide selected from ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic monomer copolymer, and ethylene- ⁇ -olefin copolymer that are compatible with acetic acid And those dispersed in a binder.
  • the oxygen scavenger of the present invention can be used as a oxygen scavenging adhesive by mixing it with an adhesive composition, for example, in addition to the resin mixing. Furthermore, the oxygen scavenger of the present invention can be mixed with an ink composition and used as an oxygen scavenging ink.
  • the oxygen scavenger of the present invention can be mixed with various substances and used as various compositions. Whether or not the composition contains the inorganic oxide-coated cerium oxide constituting the oxygen scavenger of the present invention is determined by, for example, thermally decomposing the composition to remove organic components and elemental mapping of the residue by EDX. This can be determined by surface analysis using XPS. Alternatively, it can also be determined by structural analysis of the residue by XRD. In the case of a substance whose structure is changed by thermal decomposition, the inorganic oxide is a single element oxide by directly analyzing the structure by XRD measurement for the resin composition of the resin and the oxygen scavenger. It is possible to identify whether it is a composite oxide of two or more elements, or a composite oxide formed by a reaction between cerium oxide itself and an element covering it.
  • the oxygen scavenger of the present invention also has a function of removing bad odors in the atmosphere. That is, the oxygen scavenger of the present invention also has a function as a deodorizer.
  • the malodorous substances to be removed include a wide range, and examples include oxygen-containing compounds, nitrogen-containing compounds, sulfur-containing compounds, and hydrocarbons.
  • oxygen-containing compound examples include aldehydes such as acetaldehyde, propionaldehyde, n-butyraldehyde and i-butyraldehyde, alcohols such as i-butanol, esters such as ethyl acetate, and ketones such as methyl isobutyl ketone and diacetyl.
  • organic carboxylic acids such as propionic acid, n-butyric acid, n-valeric acid and i-valeric acid.
  • nitrogen-containing compound examples include amines such as ammonia and trimethylamine.
  • sulfur-containing compound examples include methyl mercaptan, hydrogen sulfide, methyl sulfide, and methyl disulfide.
  • hydrocarbon examples include aromatics such as toluene, styrene and xylene.
  • Example 1 (1) Synthesis of cerium oxide having no oxygen deficiency 100 g of cerium carbonate was allowed to stand in a heating furnace and heated and baked while circulating air. Heating was started from room temperature, heated at a rate of temperature increase of 10 ° C./min, and after reaching 500 ° C., this temperature was maintained for 20 hours. Then, it naturally left to cool. The air flow rate was 1000 SCCM. Thus, a porous body of cerium oxide having no oxygen deficiency was obtained. Measurement by XRD confirmed that this cerium oxide was represented by CeO 2 and had a fluorite-type crystal structure. This cerium oxide was pulverized by a ball mill. Particle size D 50 of the cerium oxide was 20 [mu] m.
  • the hot air was controlled at an inlet temperature of 170 ° C., and the air volume was set to about 0.75 m 3 / min.
  • the spraying method of the spray dryer employs a two-fluid nozzle system, and the dispersion is sent to the nozzle at a throughput of 10 mL / min as the first fluid, and compressed air is used as the second fluid at a pressure of 0.2 MPa. Sent to the nozzle.
  • the powder after spray drying was collected and baked at 1000 ° C. for 2 hours to obtain a cerium oxide powder treated with SiO 2 .
  • cerium oxide having oxygen deficiency The cerium oxide (50 g) obtained in the previous item (2) was left in a heating furnace, and reduced by heating while circulating 100% hydrogen gas. Heating was started from room temperature, heated at a rate of temperature increase of 10 ° C./min, and after reaching 1000 ° C., this temperature was maintained for 1 hour. Then, it naturally left to cool. The circulation amount of hydrogen gas was 1000 SCCM. In this way, cerium oxide having reversible oxygen deficiency was obtained. As a result of measurement by XRD, it was confirmed that this cerium oxide has a fluorite-type crystal structure. Particle size D 50 in the cerium oxide was 20 [mu] m.
  • this cerium oxide was represented by CeO 1.75 .
  • the result of element mapping of the obtained inorganic oxide-coated cerium oxide is shown in FIG.
  • the observation magnification of the figure is 6000 times.
  • “Grey” indicates the SEM image of the particle
  • “SiK” indicates the presence mapping result of the Si element
  • “CeL” indicates the presence mapping result of the Ce element.
  • the element mapping used was an FE-SEM “JSM-7001F” manufactured by JEOL Ltd. (JEOL) equipped with EDX “INCA PentaFETx3” as an EDX detector.
  • JEOL JEOL
  • EDX INCA PentaFETx3
  • a kneader system was used for production of the resin composition.
  • This kneader system is composed of two types of quantitative feeders (for cerium oxide and resin), kneader “Asahi Tekko Co., Ltd., single-screw kneading extruder (Miracle KCK model L)”, tank, winding in order from upstream to downstream.
  • a take-up machine, a cutter, and a collection container are arranged. All apparatuses have a structure capable of circulating and purging inert gas including nitrogen gas.
  • the kneading machine is composed of a feed part for feeding the input raw material into the kneading machine, a kneading part for applying shear stress to knead the raw material, a vent part for defoaming, a metering part for discharging with a screw, and a die part having a discharge port.
  • the operation described below was performed using the above system. That is, first, nitrogen gas was circulated through all apparatuses until the oxygen concentration reached 0%.
  • the inorganic oxide-coated cerium oxide obtained in the previous item (3) and low-density polyethylene (Excellen FX402, MFR 8.0 g / 10 min) manufactured by Sumitomo Chemical Co., Ltd. are filled into separate feeders, and the inorganic oxide-coated cerium oxide 60
  • the low-density polyethylene resin was quantitatively charged into the kneader so as to be 3.0 kg / h and 2.0 kg / h, respectively, at a ratio of 40 parts to the part.
  • the feed part of the kneading machine is heated to 50 ° C.
  • the kneading part is heated to 125 ° C.
  • the venting part is heated to 130 ° C.
  • the metering part is heated to 135 ° C.
  • the die part is heated to 140 ° C. did.
  • the hole diameter of the die part was 5 mm ⁇ .
  • the resin composition discharged from the die part was passed through a cooling water tank cooled to 10 ° C. by a chiller, and then passed through a winder and a cutter.
  • a master batch obtained by processing the resin composition into a cylindrical shape having a diameter of about 6 mm and a length of about 6 mm was obtained, and this was collected in a collection container. .
  • the mass of the package that does not contain inorganic oxide-coated cerium oxide or cerium oxide having reversible oxygen deficiency is also measured, The mass was reduced from the mass of the package containing the inorganic oxide-coated cerium oxide or the cerium oxide having reversible oxygen deficiency.
  • the amount of oxygen absorbed was calculated using the gas equation of state, where the increase in measured weight was the oxygen weight.
  • Examples 2 to 4 and Comparative Example 1 The amount of colloidal silica used in step (2) of Example 1 was changed so that the amount of SiO 2 with respect to 100 parts of cerium oxide was as shown in Table 1. Except this, it carried out similarly to Example 1, and obtained the masterbatch. The same measurement as in Example 1 was performed on the obtained master batch. The results are shown in Table 1.
  • Example 5 colloidal silica was attached to the surface of the cerium oxide particles by another method instead of the spray drying process employed in the step (2) of Example 1.
  • Colloidal silica sol “Snowtex” (model ST-O) manufactured by Nissan Chemical Industries, Ltd. is 7.5 parts in terms of SiO 2 with respect to 100 parts of the cerium oxide powder obtained in step (1) of Example 1.
  • the colloidal silica sol was diluted with pure water until the liquid absorption amount of the cerium oxide powder was reached.
  • the liquid absorption amount is an amount until the supernatant starts to appear after the colloidal silica sol pure water diluted solution is absorbed by the cerium oxide powder.
  • the colloidal silica sol diluted to the liquid absorption amount was poured into the cerium oxide powder transferred into the container while stirring with a drug vessel, and after that, the solid was obtained by drying with a box type dryer at 120 ° C. for 12 hours. .
  • This solid was pulverized with a “multi-mill (RD1-15 grinder type)” manufactured by Glow Engineering Co., Ltd.
  • the crushing conditions were a gap between grinders of 50 ⁇ m and a rotation speed of 1700 rpm.
  • a master batch was obtained in the same manner as in Example 1.
  • the same measurement as in Example 1 was performed on the obtained master batch.
  • the results are shown in Table 2. In Table 2, the measurement results of Example 1 and Comparative Example 1 are also shown for comparison.
  • FIG. Element mapping was performed in the same manner as in Example 1.
  • the observation magnification is 6000 times.
  • “Grey” indicates the SEM image of the particle
  • “SiK” indicates the presence mapping result of the Si element
  • “CeL” indicates the presence mapping result of the Ce element.
  • Example 6 In this example, instead of the colloidal silica used in Example 1, alumina having a nominal particle size of 7 to 15 nm was used as the inorganic oxide.
  • Colloidal alumina sol (model AS-200) manufactured by Nissan Chemical Industries, Ltd. was weighed to 7.5 parts in terms of Al 2 O 3 with respect to 100 parts of cerium oxide powder.
  • the colloidal alumina sol was diluted with pure water until the liquid absorption amount of the cerium oxide powder was reached.
  • the colloidal alumina sol diluted to the liquid absorption amount was poured into the cerium oxide powder transferred into the container while stirring with a drug vessel, and then dried with a box-type dryer at 120 ° C. for 12 hours to obtain a solid. .
  • This solid was pulverized with a “multi-mill (RD1-15 grinder type)” manufactured by Glow Engineering Co., Ltd.
  • the crushing conditions were a gap between grinders of 50 ⁇ m and a rotation speed of 1700 rpm. Thereafter, a master batch was obtained in the same manner as in Example 1. The same measurement as in Example 1 was performed on the obtained master batch. The results are shown in Table 3.
  • Example 7 In this example, instead of directly attaching alumina to the surface of the cerium oxide particles in Example 6, boehmite, which is a precursor of alumina, was attached and converted to alumina. Boehmite sol (model AS-520) manufactured by Nissan Chemical Industries, Ltd. was weighed to 7.5 parts in terms of Al 2 O 3 with respect to 100 parts of cerium oxide powder. Except this, it carried out similarly to Example 6, and obtained the masterbatch. The same measurement as in Example 1 was performed on the obtained master batch. The results are shown in Table 3.
  • Example 8 to 11 The amount of colloidal alumina used in Example 6 was changed, and the amount of Al 2 O 3 relative to 100 parts of cerium oxide was as shown in Table 4. Except this, it carried out similarly to Example 6, and obtained the masterbatch. The same measurement as in Example 1 was performed on the obtained master batch. The results are shown in Table 4. In Table 4, the measurement results of Example 6 and Comparative Example 1 are also shown for comparison.
  • Example 12 the particle size of the cerium oxide particles used in Example 5 was changed.
  • Example 12 the cerium oxide particles used in Example 5 were pulverized using a pin mill (Coloplex 160Z) manufactured by Hosokawa Micron Corporation through two passes at a rotation frequency of 30 Hz. Particle size D 50 after grinding were as shown in Table 5.
  • Example 13 the cerium oxide particles used in Example 5 were pulverized through one pass at a rotational frequency of 20 Hz using a pin mill (Coroplex 160Z) manufactured by Hosokawa Micron Corporation. Particle size D 50 after grinding were as shown in Table 5. Except this, it carried out similarly to Example 5, and obtained the masterbatch. The same measurement as in Example 1 was performed on the obtained master batch. The results are shown in Table 5. In Table 5, the measurement results of Example 5 and Comparative Example 1 are also shown for comparison.
  • Comparative Examples 2 and 3 In this comparative example, the particle size of the cerium oxide particles used in Example 1 is changed.
  • Comparative Example 2 the cerium oxide particles used in Comparative Example 1 were pulverized through two passes at a rotation frequency of 30 Hz using a pin mill (Coloplex 160Z) manufactured by Hosokawa Micron Corporation. Particle size D 50 after grinding were as shown in Table 5.
  • Comparative Example 3 the cerium oxide particles used in Comparative Example 1 were pulverized through one pass at a rotational frequency of 20 Hz using a pin mill (Coroplex 160Z) manufactured by Hosokawa Micron Corporation. Particle size D 50 after grinding were as shown in Table 5. Except this, it carried out similarly to the comparative example 1, and obtained the masterbatch. The same measurement as in Example 1 was performed on the obtained master batch. The results are shown in Table 5.
  • Example 14 and 15 the compounding ratio between the inorganic oxide-coated cerium oxide and the low-density polyethylene was changed in Example 5 to the values shown in Table 6. Except this, it carried out similarly to Example 5, and obtained the masterbatch. The same measurement as in Example 1 was performed on the obtained master batch. The results are shown in Table 6. In Table 6, the measurement results of Example 5 and Comparative Example 1 are also shown for comparison.
  • Examples 16 to 18 In this example, instead of the low density polyethylene which is the resin used in Example 5, the resin shown in Table 7 was used. Except this, it carried out similarly to Example 5, and obtained the masterbatch. The same measurement as in Example 1 was performed on the obtained master batch. The results are shown in Table 7. Table 7 also shows the measurement results of Example 5 and Comparative Example 1 for comparison.
  • This comparative example is an example in which the resins shown in Table 7 were used in place of the low density polyethylene which is the resin used in Comparative Example 1. Except this, it carried out similarly to the comparative example 1, and obtained the masterbatch. The same measurement as in Example 1 was performed on the obtained master batch. The results are shown in Table 7.
  • Examples 19 and 20 In this example, instead of the low density polyethylene which is the resin used in Example 5, the resins shown in Table 8 were used.
  • the resin shown in the table is an oxygen-containing resin that has not been used together with cerium oxide having oxygen deficiency. 50 parts each of this resin and cerium oxide (CeO 1.75 ) having oxygen deficiency obtained by coating 7.5% of SiO 2 obtained in Example 1 (3) under a nitrogen atmosphere in a glove box. The sample was weighed and manually kneaded on a hot plate (set temperature: 250 ° C.), and the presence of smoke and gas was visually observed. The results are shown in Table 8.
  • Example 21 In this example, an epoxy resin which is a thermosetting resin was used instead of the low density polyethylene used in Example 1.
  • the epoxy resin was cured using the components shown in Table 9.
  • the mixing of the inorganic oxide-coated cerium oxide and the epoxy resin was performed according to the following operation. Under a nitrogen atmosphere in the glove box, this epoxy resin and cerium oxide (CeO 1.75 ) having oxygen deficiency coated with 7.5% of SiO 2 obtained in (3) of Example 1 were each 50 quality. Were weighed, kneaded manually, and cured on a hot plate (set temperature 250 ° C.). The presence or absence of gas generation during the curing was visually observed. The results are shown in Table 9.
  • Comparative Example 11 This comparative example is an example using an epoxy resin which is a thermosetting resin instead of the low density polyethylene used in Comparative Example 1.
  • the epoxy resin was cured using the components shown in Table 9.
  • Inorganic oxide-coated cerium oxide and epoxy resin were mixed in the same manner as in Example 21. About the resin composition obtained in this way, the presence or absence of gas generation during mixing was visually observed. The results are shown in Table 9.
  • the resin compositions of the examples can cure the resin and suppress gas generation. I understand.
  • cerium oxide having oxygen deficiency decomposes the curing agent by extracting oxygen atoms from the hydroxyl group in the curing agent (phenol novolac resin). Gas evolution was observed.
  • an oxygen scavenger (resin composition) having improved chemical stability when used in combination with a resin is provided.

Abstract

脱酸素剤は、CeO(xは2未満の正数を表す。)で表される可逆的な酸素欠損を有する蛍石型の酸化セリウムの粒子を含み、該粒子の表面が無機酸化物で覆われている。無機酸化物がM(Mは価数変化を起こさない元素を表し、y及びzは正数を表す。)及び元素Mと酸化セリウムとの複合酸化物から選択される少なくとも一種からなることが好適である。無機酸化物がSiO、Al、SiとCeとの複合酸化物及びAlとCeとの複合酸化物から選択される少なくとも一種からなることも好適である。

Description

脱酸素剤
 本発明は脱酸素剤に関する。
 酸素欠損を有する酸化セリウムを脱酸素剤として用いる従来の技術としては、例えば特許文献1に記載のものが知られている。同文献には、酸素欠損を有する酸化セリウムと熱可塑性樹脂とを含む、酸素吸収能を有する樹脂組成物が記載されている。この樹脂組成物は、酸素吸収能力を有するだけでなく、内容物による影響を受けず、マイクロウェーブ適性を有し、酸素吸収による物性の変化が少ない包装体の材料として好適なものとなると、同文献には記載されている。
 酸素欠損を有する酸化セリウムを脱酸素剤として用いる他の技術として、本出願人は先に、酸素欠損を有する酸化セリウムからなるとともに、比表面積が0.6m2/g以下の粉体である脱酸素剤を提案した(特許文献2参照)。更に本出願人は、CeO(xは2未満の正数を表す。)で表され、かつ可逆的な酸素欠損を有する蛍石型の酸化セリウムの多孔質体を含み、比表面積が0.6~1.8m2/gで、かつ細孔のメジアン径が1.6~5.3μmである脱酸素剤も提案した(特許文献3参照)。
特開2005-105194号公報 特開2007-185653号公報 米国出願公開第2011/086757号公報
 しかし、この種の脱酸素剤においては、実用性の向上が要望されており、特許文献1ないし3に記載の酸素吸収能を有する樹脂組成物よりも更に性能が向上した脱酸素剤が望まれている。
 したがって本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る脱酸素剤を提供することにある。
 本発明は、CeO(xは2未満の正数を表す。)で表される可逆的な酸素欠損を有する蛍石型の酸化セリウムの粒子を含み、該粒子の表面が無機酸化物で覆われている脱酸素剤を提供するものである。
図1は、本発明の脱酸素剤を内包する包装体の構造を示す断面図である。 図2は、多層構造の脱酸素フィルムの一実施形態を示す厚み方向断面図である。 図3は、多層構造の脱酸素フィルムの別の実施形態を示す厚み方向断面図である。 図4は、実施例1で得られた無機酸化物被覆酸化セリウムの元素マッピング結果を示す図である。 図5は、実施例5で得られた無機酸化物被覆酸化セリウムの元素マッピング結果を示す図である。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明の脱酸素剤は、CeO(xは2未満の正数を表す。)で表される可逆的な酸素欠損を有する酸化セリウムの粒子を含む。酸素欠損を有する酸化セリウムは、酸素の強制的な引き抜きによって生じた可逆的な酸素欠損による酸素吸収サイトを有する物質である。一般に、酸化セリウムが有している酸素欠損には可逆的欠損と不可逆的欠損の2種類があることが知られている。可逆的欠損とは、本発明で用いられる酸化セリウムが有する酸素欠損のことであり、強力な還元条件下の処理によって酸素が強制的に引き抜かれることで生成するものである。可逆的欠損は、欠損したサイトに酸素が取り込まれることが可能な欠損である。可逆的欠損を有する酸化セリウムにおいては、酸素不足に起因する電荷のアンバランスな状態を、四価のセリウムの一部が三価に還元されることで補償している。三価のセリウムは不安定であり、四価に戻りやすいものである。したがって、欠損したサイトに酸素が取り込まれることで、三価となっているセリウムが四価に戻り、電荷のバランスが常にゼロに保たれる。一方、不可逆的欠損とは、金属無機酸化物に、該金属の価数よりも低価数の元素をドープすることで形成されるものである。不可逆的欠損は、可逆的欠損と異なり、強力な還元条件下の処理で発生した欠損ではない。不可逆的欠損は、例えば、金属無機酸化物に、該金属の価数よりも低価数の元素の酸化物を混合し、大気下で焼成することによって得られる。金属無機酸化物が、酸化セリウムである場合、不可逆的欠損を有する酸化セリウムにおけるセリウムの価数はすべて四価である。したがって、欠損したサイトに酸素が取り込まれることはない。例えば、CeOに20mol%のCaを固溶させた場合(Ce0.8Ca0.21.8)、陽イオンの平均価数は4×0.8+2×0.2=3.6なので、酸素の電荷をこの価数にバランスさせるための酸素原子の数は3.6÷2=1.8個となり、必要な酸素原子の数は2個よりも少なくなる。その分だけ酸素欠損が生じる。しかし、この酸素欠損は酸素の吸収が可能なものではない。このように不可逆的欠損は、酸素の強制的な引き抜きによって生じるものではなく、酸化セリウムにおける電荷補償によって生じるものである。
 本発明の脱酸素剤に含まれる酸化セリウムは、生活環境雰囲気中で酸素吸収能を有するものである。ここで、生活環境雰囲気とは例えば食品、電子部品、医薬品などの商品を保存する際の一般的な雰囲気を指す。気圧については、例えば商品包装における減圧状態(真空包装など)から、加圧状態(レトルト処理における加圧・加熱殺菌や包装体の形状維持用途など)を包含する。温度については、-50℃(冷凍保存時)から130℃(食品のレトルト処理)程度を包含する。したがって、例えば化石燃料で動作する動力用エンジンから排出される排気ガス等の高温及び/又は高圧の過酷な雰囲気は、この生活環境雰囲気には含まれない。
 本発明の脱酸素剤に含まれる酸化セリウムは、CeOの還元処理によって結晶格子中から酸素が強制的に引き抜かれて酸素欠損状態(CeO2-x)となり、酸素吸収サイトを有するものである。この酸化セリウムは蛍石型(Fluorite-Type)の結晶構造を有するものなので構造的に安定であり、酸素欠損による酸素吸収サイトを安定して保持できる。また、酸素イオン導電性が高いので、結晶の内部まで酸素が出入りすることができ、酸素吸収能力が良好である。
 前記の酸素欠損を有する酸化セリウムは、例えば水素ガス、アセチレンガス又は一酸化炭素ガス等の還元性ガスの濃度が高濃度で且つ高温熱処理である強還元雰囲気中でCeOを還元することで好適に得られる。還元性ガスの濃度は好ましくは爆発下限以上~100体積%、更に好ましくは20体積%以上100体積%以下である。処理温度は好ましくは500℃以上、更に好ましくは700℃以上1200℃以下、一層好ましくは1000℃以上1050℃以下である。強還元雰囲気は一般に常圧であるが、これに代えて加圧条件を用いてもよい。還元時間は、ロータリーキルンのように、ガスとの接触効率の良い還元方法であれば、約5分以上約1時間以下還元することで酸素欠損を有する酸化セリウムを得ることができる。一方、バッチ式のガス流通炉であれば、約1時間以上約3時間以下還元することで酸素欠損を有する酸化セリウムを得ることができる。
 本発明においては、前記の酸素欠損を有する酸化セリウムに、特定の元素を添加して置換固溶させて、該酸化セリウムを複合酸化物の状態で用いてもよい。これによって、酸素吸収量の大幅な増大を図ることができる。特定の添加元素としては、例えばマグネシウム、カルシウム、ストロンチウム、バリウム、ランタン、ニオブ、プラセオジム及びイットリウムからなる群より選択される一種又は二種以上の元素が挙げられる。これらの元素のうち、イットリウム、カルシウム及びプラセオジムからなる群より選択される一種又は二種以上の元素を用いると、特に酸素の除去性能が更に増大するので特に好ましい。これらの添加元素は、酸化セリウムの粉末を製造する際に、例えば酸化物の状態で酸化セリウムに添加して、酸化セリウム固溶させることができる。前記添加元素の総添加量は、セリウムのモル数に対して1mol%以上20mol%以下に設定とすることが、添加効果を十分に発現させる観点から好ましい。
 本発明で用いられる酸素欠損を有する酸化セリウムは、その粒子の表面が無機酸化物で覆われている。無機酸化物は、酸化セリウムの粒子よりも小粒径の粒子の状態で、酸化セリウムの粒子の表面に位置している。無機酸化物の粒子は、例えば焼結による化学結合力、分子間力(ファンデルワールス力)、機械的な係合力(アンカー効果)、バインダーによる接着力などの各種の力によって、酸化セリウムの粒子の表面に固着させることができる。無機酸化物の粒子は被膜の状態で酸化セリウムの粒子の表面を被覆していることが好ましい。この被膜は、酸素分子の透過を完全に遮断するほどの緻密な膜ではなく、酸素透過性を有しているものである。
 酸素分子の透過を完全に遮断しないことを条件として、無機酸化物の粒子は、酸化セリウムの粒子の表面が露出することなく、該表面の全域を満遍に連続して被覆していてもよく、あるいは酸化セリウムの粒子の表面の一部が露出するように、該表面を不連続に被覆していてもよい。酸化セリウムの粒子の表面における無機酸化物の粒子の分布状態は、例えばEDXを用いた元素マッピングによって測定することができる。
 酸素欠損を有する酸化セリウム及び樹脂を含む組成物の脱酸素作用について本発明者ら鋭意検討した結果、酸素欠損を有する酸化セリウムと樹脂とが接触した状態で熱が加わると、該酸化セリウムの触媒作用に起因して、樹脂中のC-H結合の解離が促進され、それによってHガスが発生することが判明した。Hガスの発生は、例えば、酸素欠損を有する酸化セリウム及び樹脂を含むフィルムと、他のフィルムとの積層体を考えた場合、フィルム間での剥離の原因となり得る。あるいは、Hガスの発生は、酸素欠損を有する酸化セリウム及び樹脂を含む組成物をプリント配線基板などのように層状に組み込んだ場合や電子デバイスの封止材のように隙間なく電子デバイスに接着させた場合にも、剥離の原因となり得る。
 また本発明者は、酸素欠損を有する酸化セリウムと樹脂とを含む組成物を溶融混練すると、そのときに加わる熱によって、樹脂中の酸素原子が該酸化セリウムによって引き抜かれて樹脂が分解し、それに起因する分解ガスや煙が発生する現象が起こることを知見した。したがって、酸素欠損を有する酸化セリウムを、酸素原子を分子中に含む樹脂と混練すること、及び樹脂組成物を形成することで不都合が生じることを本発明者は知見した。
 以上のとおり、酸素欠損を有する酸化セリウムと樹脂とを組み合わせて用いることには種々の不都合が生じるところ、本発明者は、上述のとおり、酸素欠損を有する酸化セリウムの粒子の表面を無機酸化物で覆うことで、それらの困難を克服できることを知見した。これによって、酸素欠損を有する酸化セリウムが樹脂と直接的に接触する機会が少なくなるので、樹脂中のC-H結合を解離させてHガスを発生させたり、樹脂中の酸素原子の引き抜き現象で分解ガスや煙を発生させたりすることを効果的に防ぐことができる。
 以上の効果を一層顕著なものとする観点から、無機酸化物としては、例えば金属酸化物や非金属酸化物を用いることができる。無機酸化物は、単独元素の酸化物でもよく、あるいは2種以上の金属の複合酸化物でもよく、2種以上の非金属の複合酸化物でもよく、あるいは1種以上の金属と1種以上の非金属との複合酸化物でもよい。
 また無機酸化物として、被覆対象である酸化セリウム自身と、これを被覆した元素とが反応することで生成した複合酸化物を使用することも許容される。この複合酸化物は、被覆物で酸化セリウムを表面被覆した後に焼成する工程や還元処理する工程において、該被覆物が酸化セリウムと反応して生成する。例えば後述する無機酸化物Mと酸化セリウムとが反応して生成した複合酸化物である、元素Mと酸化セリウムとの複合酸化物を使用することもできる。その例としては、Si(SiOに由来)とCeとの複合酸化物や、Al(Alに由来)とCeとの複合酸化物が挙げられる。これらの複合酸化物は一種を単独で、又は2種以上を組み合わせて用いることができる。
 特に、無機酸化物として、M(Mは価数変化を起こさない元素を表し、y及びzは正数を表す。)を用いることが好ましい。この理由は、価数変化を起こす金属は、樹脂からHガスを発生させる触媒能を少なからず有することを本発明者が知見したことに基づいている。詳細には、価数変化を起こす金属の酸化物は酸素欠損を有しやすく、また、酸化物最表面はダングリングボンド(Dangling Bond:未結合手)が存在しており、局所的にメタル化を起こしやすく、それらのことに起因して樹脂中のC-H結合が解離しやすいことを本発明者は知見した。そこで、無機酸化物として、価数変化を起こさない元素の酸化物を用いることで、樹脂中のC-H結合の解離を効果的に阻止している。
 価数変化を起こさない元素とは、単一の酸化数を有する元素のことであり、好ましくは金属又は半金属の元素である。そのような元素の具体例としては、Al、Si、Ba、Ca、Cd、Er、Ga、Gd、Hf、Ho、In、La、Lu、Mg、Rb、Sn、Sr、Y、Zn及びZrなどが挙げられる。これらのうち、安全性や経済性の観点から、Al及びSiの酸化物を用いることが好ましい。具体的には、SiO又はAlを用いることが好ましい。なお、前記のMは一種を単独で、又は2種以上を組み合わせて用いることができる。更に、少なくとも一種の前記のMと、それ以外の少なくとも一種の無機酸化物とを組み合わせて用いてもよい。
 とりわけ無機酸化物として、M及び元素Mと酸化セリウムとの複合酸化物から選択される少なくとも一種を用いることが好ましく、特にSiO、Al、SiとCeとの複合酸化物及びAlとCeとの複合酸化物から選択される少なくとも一種を用いることが好ましい。
 本発明の脱酸素剤においては、樹脂中のC-H結合が解離の防止の観点、及び樹脂中の酸素原子の引き抜き防止の観点から、酸素欠損を有する酸化セリウム100質量部に対する無機酸化物の量は、3質量部以上50質量部以下であることが好ましく、5質量部以上30質量部以下であることが更に好ましく、7.5質量部以上15質量部以下であることが一層好ましい。
 前記と同様の観点から、本発明の脱酸素剤においては、無機酸化物によって被覆されている酸素欠損を有する酸化セリウムの粒子の粒径は特に制限されず、種々の粒径のものを使用可能である。フィルム化のしやすさやガスバリア性の高さの観点から、その平均粒径D50が0.05μm以上50μm以下であることが好ましく、0.1μm以上40μm以下であることが更に好ましく、0.5μm以上25μm以下であることが一層好ましい。
 無機酸化物によって被覆される前の、酸化セリウムの粒子は、その平均粒径D50が0.05μm以上50μm以下であることが好ましく、0.1μm以上40μm以下であることが更に好ましく、0.5μm以上30μm以下であることが一層好ましい。また、無機酸化物の粒子の粒径は、酸化セリウムの平均粒径D50よりも小さいことを前提として、被覆の効率から、2nm以上10μm以下であることが好ましく、2nm以上5μm以下であることが更に好ましく、2nm以上1μm以下であることが一層好ましい。各粒子の平均粒径D50をこのように設定することで、樹脂中のC-H結合の解離を効果的に防止することができ、また樹脂中の酸素原子の引き抜きを効果的に防止することができる。
 以上の各粒径は、0.1μm以上の粒子であればレーザー回折/散乱法を用いた粒度分布測定装置を用いて測定され、0.1μm未満の粒子であれば動的光散乱法(光子相関法)を用いた粒度分布測定装置を用いて測定される。
 無機酸化物によって被覆されている酸素欠損を有する酸化セリウムの粒子は、好適には以下の方法で製造される。先ず、含セリウム塩又はその水和物(以下、これらを総称して単に「含セリウム塩」という。)を焼成することで酸化セリウムを製造する。この酸化セリウムはCeOで表される蛍石型の構造のものであり、セリウムと酸素とが実質的に化学量論比で含まれている。したがって、この酸化セリウムは酸素欠損を有していない。「実質的に」の語は、微量の不可避不純物の存在を許容する意味で用いられる。含セリウム塩の焼成は大気下において行われることが好ましい。酸化性雰囲気下であれば大気下でなくても焼成は可能であるが、工業的規模での製造を考慮すると、大気下での焼成が好ましい。
 目的とする、可逆的な酸素欠損を有する酸化セリウムを得るためには、焼成温度は好ましくは500℃以上1400℃以下、更に好ましくは600℃以上1300℃以下の範囲を採用し、焼成時間は好ましくは1時間以上20時間以下、更に好ましくは1時間以上5時間以下の範囲を採用する。焼成温度をこの範囲内に設定し、また焼成時間をこの範囲内に設定することで、焼成が十分に進み、含セリウム塩の酸化が首尾良く進行する。
 含セリウム塩としては、焼成により酸化セリウムを生ずるものであればその種類に特に制限はない。例えば炭酸セリウム水和物(六水和物、八水和物等)、硝酸セリウム、硝酸アンモニウムセリウム、硫酸セリウム、硫酸アンモニウムセリウム、水酸化セリウム、シュウ酸セリウム、セリウムアセチルアセトナート、トリフルオロメタンスルホン酸セリウムなどを用いることができる。これらのうち、炭酸セリウムや水酸化セリウム等を用いることが好ましい。
 含セリウム塩の焼成は、例えば含セリウム塩を静置した加熱炉内に空気を流通させながら行うことができる。あるいは、ロータリーキルン炉等を用い、含セリウム塩を流動(転動)させた状態下に空気を流通させながら焼成を行うことができる。いずれの場合においても、焼成の対象となる含セリウム塩は、焼成の前処理として、例えばボールミル等の粉砕装置を用いて粒径を調整しておくことが好ましい。
 上述のようにして得られた、酸素欠損を有しない酸化セリウムの粒子は、その粒径D50(レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径)が、0.05μm以上50μm以下であり、好ましくは0.1μm以上40μm以下であり、更に好ましくは0.5μm以上30μm以下である。
 このようにして得られた、酸素欠損を有しない酸化セリウムの粒子の表面に、無機酸化物の粒子を付着させる。付着方法に特に制限はなく、種々の方法を採用することができる。一例として、酸素欠損を有しない酸化セリウムの粒子と、無機酸化物の粒子と、媒体とを撹拌混合して分散液を調製し、この分散液について噴霧乾燥処理(スプレードライ処理)を施す方法を採用することができる。あるいは、この分散液を混合した後に単に乾燥させる方法でも、酸素欠損を有しない酸化セリウムの粒子の表面に、無機酸化物の粒子を付着させることができる。このようにして得られた複合粒子においては、酸化セリウムの粒子と無機酸化物の粒子との結合力が十分でない場合がある。そのような場合には、この複合粒子を焼成工程に付して、酸化セリウムの粒子と無機酸化物の粒子とを焼結させることが好ましい。焼成は、一般に大気下において行われることが好ましい。酸化性雰囲気下であれば大気下でなくても焼成は可能であるが、工業的規模での製造を考慮すると、大気下での焼成が好ましい。焼成温度は好ましくは200℃以上1400℃以下、更に好ましくは500℃以上1200℃以下の範囲を採用し、焼成時間は好ましくは1時間以上20時間以下、更に好ましくは2時間以上5時間以下の範囲を採用する。焼成温度をこの範囲内に設定し、また焼成時間をこの範囲内に設定することで、酸化セリウムの粒子と無機酸化物の粒子との焼結が十分に進み、両者の結合力が向上する。
 次いで、無機酸化物の粒子を付着した酸化セリウムの粒子を還元焼成工程に付す。還元雰囲気として、好ましくは水素濃度が爆発下限以上、更に好ましくは20体積%以上の含水素雰囲気が用いられる。もちろん水素濃度が100体積%でもよい。温度は700℃以上1100℃以下、更に好ましくは800℃以上1050℃以下、一層好ましくは800℃以上1000℃以下の範囲を採用し、時間は好ましくは1分間以上5時間以下、更に好ましくは5分間以上3時間以下の範囲を採用する。これらの条件を採用することで、酸素欠損を有さない酸化セリウムから酸素を引き抜き、可逆的な酸素欠損を有する蛍石型の酸化セリウムが得られる。酸化セリウム粒子の表面の全域を無機酸化物が満遍に連続して被覆している場合であっても、無機酸化物からなる被膜は酸素透過性を有しているため、この工程によって、酸素欠損を有し且つ酸素吸収能力をする蛍石型の酸化セリウムが得られる。昇温速度は0.5℃/分以上50℃/分以下、特に1℃/分以上30℃/分以下であることが好ましい。なお、還元雰囲気は一般に常圧(大気圧)であるが、これに代えて加圧条件又は減圧条件を用いてもよい。この還元条件を適切に制御することで、CeOにおけるxの値をコントロールすることができる。
 酸素欠損を有しない酸化セリウムの還元処理は、例えば該酸化セリウムを静置した加熱炉内に還元性ガスを流通させながら行うことができる。あるいは、ロータリーキルン炉等を用い、酸素欠損を有しない酸化セリウムを流動(転動)させた状態下に還元性ガスを流通させながら還元を行うことができる。いずれの場合においても、還元雰囲気として水素100%の雰囲気を用いる場合には、その流通量は、酸化セリウム1g当たり1~500SCCMとすることが好ましい。
 このようにして得られた、表面が無機酸化物の粒子で覆われている、酸素欠損を有する酸化セリウム(以下、この酸化セリウムのことを「無機酸化物被覆酸化セリウム」とも言う。)の粒子は、そのまま脱酸素剤として用いることができる。具体的には、透気抵抗度を有する包装体に無機酸化物被覆酸化セリウムの粒子を内包してなる脱酸素包装体として用いることができる。この場合、無機酸化物被覆酸化セリウムは、粉体の状態で、あるいは該粉体を加圧して得られた、タブレットやフレーク等の成形体の状態で、包装体内に内包させることができる。あるいは、本発明においては、無機酸化物被覆酸化セリウムの粒子を、各種の樹脂と混合してなる樹脂組成物の形態で用いることができる。具体的には、酸素易透過性を有する樹脂に無機酸化物被覆酸化セリウムの粒子を練り込んで脱酸素樹脂組成物となすこともできる。この脱酸素樹脂組成物を、透気抵抗度を有する前記の包装体に内包させて脱酸素包装体として用いてもよい。樹脂としては、熱可塑性樹脂及び熱硬化性樹脂のいずれを用いてもよい。透気抵抗度とは、JIS P8117に従い測定され、空気100mLが0.000642m2の面積を気圧差1.23kPaで透過し終えるまでの時間のことである。透気抵抗度を有するとは、前記方法により測定される時間が10万秒以下であることを言う。
 無機酸化物被覆酸化セリウムの粒子を内包してなる脱酸素包装体、及び脱酸素樹脂組成物を内包してなる脱酸素包装体には、更に、乾燥剤又は脱臭剤を更に内包させてもよい。包装体の形状に特に制限はなく、公知の形状を適宜選択して用いることができる。例えば四方シール袋、三方シール袋、二方シール袋、背貼り(合掌)袋、ガゼット袋、テトラパック状包装体、ピロー包装体、PTP包装体、ブリスター包装体、ボトル、カップ、蓋材、キャップ材などの様々形状の包装体を用いることができる。
 図1には、包装体の一例としてのPTP又はブリスターパック用包装容器10の概略断面図が示されている。PTP又はブリスターパック用包装容器10は、酸素吸収層12とガスバリア層13とを積層してなるPTP又はブリスターパック用フィルム11と、このフィルムの酸素吸収層12側に積層された基材14とを有する。包装容器10は、酸素吸収層12と基材14とで画成される内容物15を収納する空間を形成するように、PTP又はブリスターパック用フィルム11と基材14とを、PTP成形などの成形方法で成形して製造されている。そして内容物15として、無機酸化物被覆酸化セリウムや、それを含む樹脂組成物が用いられる。各層の厚みは、10μm以上50μm以下であることが好適である。
 前記の脱酸素樹脂組成物が熱可塑性樹脂を含む場合、該熱可塑性樹脂としては、例えば直鎖性低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、エチレン-酢酸ビニル共重合体(EVA)等のポリエチレン系樹脂を用いることができる。また、熱可塑性樹脂として通常のホモポリマーポリプロピレン樹脂、並びにランダムコポリマーポリプロピレン及びブロックコポリマーポリプロプレンなどの共重合ポリプロピレン樹脂を用いることもできる。成形加工の容易さの点からはポリスチレンを用いることが有利である。
 熱可塑性樹脂は、それ自身の酸素透過性をコントロールすることで、無機酸化物被覆酸化セリウムを包装したり電子デバイスへ組み込んだりするまでの酸素吸収能力の失活速度を制御することが可能である。具体的には、ポリエチレンやポリプロピレンよりも酸素透過性の低い樹脂である、ポリカーボネート(PC)、エチレン-ビニルアルコール共重合体(EVOH)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリ酢酸ビニル(PVAc)、ポリ塩化ビニル(PVC)、ポリアミド類(ナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン610、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5T、ナイロン612、ナイロンMXD)、ポリ塩化ビニリデン(PVDC)、ポリフッ化ビニリデン(PVDF)、ポリビニルアルコール(PVA)、ポリアクリロニトリル(PAN)、ポリメタクリル酸メチル樹脂(PMMA)を用いることで、酸素吸収能力の失活速度の制御が可能である。
 一方、酸素吸収を迅速に行いたい場合には、熱可塑性樹脂として、酸素透過性の高い樹脂であるポリジメチルシロキサンやポリブタジエンを用いることができる。
 本発明において用いられる熱可塑性樹脂は、フィルムやシートに加工しやすいようにする観点からに、メルトフローレート(MFR、JISK7210:1999のA法準拠、測定温度190℃にて荷重2.16kgにて測定したもの。)が10g/10min以上50g/10min以下であることが好ましい。また、射出成形のために用いる場合には、メルトフローレートが50.0g/10min以上である熱可塑性樹脂が好ましい。押出成形のために用いる場合には、メルトフローレートが10g/10min以下である熱可塑性樹脂が好ましい。
 脱酸素樹脂組成物に含まれる樹脂として熱硬化性樹脂を用いると、該脱酸素樹脂組成物を特に電子デバイスへ組み込む場合に、複雑な形状に対応でき、シール性も高くなる点から有利である。そのような熱硬化性樹脂としては、フェノール樹脂(PF)、エポキシ樹脂(EP)、メラミン樹脂(MF)、尿素樹脂(ユリア樹脂、UF)、不飽和ポリエステル樹脂(UP)、アルキド樹脂、ポリウレタン(PUR)、熱硬化性ポリイミド(PI)などが挙げられる。熱硬化性樹脂は、それを硬化させるために、一般に水酸基等の含酸素官能基を有する化合物が用いられることが多いので、これまでの酸化セリウム系脱酸素剤を用いることはできなかったが、本発明の脱酸素剤であれば酸素原子の引き抜きが効果的に防止されるので、熱硬化性樹脂との併用に何らの弊害もない。
 前記の脱酸素樹脂組成物は、例えば熱可塑性樹脂を含む場合には、ストランド又はそれを細かく切断したペレットの形態で用いられ、各種の樹脂成形体の原料となる。また該樹脂組成物は、該ペレットから成形された各種の樹脂成形体の形態、例えば脱酸素層を有する脱酸素機能フィルムの形態や脱酸素機能トレー又はカップの形態で用いられる。具体的には、酸素に対して脆弱な部材である有機EL照明、有機ELディスプレイ、色素増感太陽電池、有機薄膜太陽電池及びエレクトロクロミック素子に対して、ペレット、ストランド、フィルム、又はカップの形状を有し、且つ熱可塑性樹脂を含む脱酸素樹脂組成物をシート状にしたものを層間に配置して、電子デバイスを得ることができる。一方、前記の脱酸素樹脂組成物が、例えば熱硬化性樹脂を含む場合には、使用場面に応じた任意の形状を有するように成形することができる。例えば前記の脱酸素樹脂組成物が、エポキシ樹脂組成物である場合には、半導体素子等の電子デバイスの封止材の形態で用いることができる。
 前記の脱酸素樹脂組成物においては、脱酸素剤、すなわち無機酸化物被覆酸化セリウムと、熱可塑性樹脂又は熱硬化性樹脂との配合比は広い範囲から選択することができる。例えば、無機酸化物被覆酸化セリウムと、熱可塑性樹脂又は熱硬化性樹脂との配合比は、脱酸素樹脂組成物の強度及び成形性を保つ観点から、質量比で表して前者:後者=10:90~80:20であることが好ましく、20:80~75:25であることが更に好ましく、30:70~75:25であることが一層好ましい。無機酸化物被覆酸化セリウムの占める割合が多い状態、例えば全体に対して50質量%以上90質量%以下の状態で脱酸素樹脂組成物を用いる場合には、樹脂として、フィルム成形に適したMFRを有するものを選択することが有利である。
 本発明の脱酸素剤は、該脱酸素剤を含有する脱酸素層を有する脱酸素フィルムの形態で用いることができる。この脱酸素フィルムは、例えば前記の脱酸素樹脂組成物をフィルム状に成形することで得ることができる。更に本発明の脱酸素剤は、この脱酸素層の一面側に、ガスバリア性を有するガスバリア層を設け、脱酸素層の他面側に、酸素透過性を有する酸素透過層を設けて、多層構造の脱酸素フィルムの形態で用いることもできる。本発明では、脱酸素剤をこのような多層構造のフィルムの形態で用いた場合であっても、Hガスの発生に起因する層間剥離が効果的に防止される。
 前記の多層構造の脱酸素フィルムにおいては、必要に応じガスバリア層と酸素透過層との間に、両層を接着するための接着層を設けてもよい。これに加えて、又はこれに代えて、前記他面側の最表面に、熱シール用の接着層を設けてもよい。
 前記のガスバリア層としては、例えばアルミニウム箔や銅箔などの金属箔を用いることができる。あるいは、エチレン-ビニルアルコール共重合体(EVOH)やポリイミドなどのガスバリアフィルムを用いることができる。このガスバリアフィルムは、ポリシラザンやコロイダルシリカなどによってコーティングされていてもよい。あるいはこのガスバリアフィルムには、SiOやZrOが蒸着されていてもよい。
 前記の熱シール用の接着層としては、例えばポリオレフィン樹脂(LDPE、LLDPE、PP、EVAなど)を用いることができる。あるいは、EVOHと無水マレイン酸変性ポリオレフィン樹脂とを含む海島構造(island-and-sea structure)の樹脂組成物からなり、比較的連続的に見られる海構造を形成するエチレン-ビニルアルコール共重合体中で島構造を形成したものを用いることができる。
 図2には、多層構造の脱酸素フィルムの別の実施形態が示されている。多層構造の脱酸素フィルム20は、脱酸素剤を含有する脱酸素層21の各面に、熱可塑性樹脂層22a,22bが配置され、一方の熱可塑性樹脂層22aの外側にガスバリア層23及び基材フィルム24がこの順で積層された構造を有している。ガスバリア層23及び/又は基材フィルム24を積層することにより、酸素などのガスの侵入を一層確実に遮断できることに加え、多層構造の脱酸素フィルム20の強度を高めることができる。
 図3には、多層構造の脱酸素フィルムの更に別の実施形態が示されている。多層構造の脱酸素フィルム30は、主脱酸素層31aと、その各面に配置され、且つ脱酸素を補助的に行う副脱酸素層31bとを有する脱酸素層31を備えている。一方の副脱酸素層31bの外側には、最外層として外気から水蒸気の浸入を防ぐガスバリア層32が配置されている。主脱酸素層31a及び/又は副脱酸素層31bには、無機酸化物被覆酸化セリウムを配合することができる。
 本発明においては、無機酸化物被覆酸化セリウム及び樹脂を含む脱酸素樹脂組成物を例えばフィルムの形態で用いる場合には、該フィルムを例えば電子デバイスに組み込み、該フィルムを備えた電子デバイスとして用いることができる。この電子デバイスにおいては、その動作によって多量の発熱が生じる場合があるが、本発明によれば、そのような場合であっても、樹脂中のC-H結合の解離が効果的に防止される。
 無機酸化物被覆酸化セリウム及び樹脂を含む樹脂組成物には、該樹脂組成物の各種の特性を高めることを目的として、種々の添加剤を配合することができる。例えば、無機酸化物被覆酸化セリウム以外の脱酸素剤、乾燥剤、及び酢酸吸収剤などを用いることができる。無機酸化物被覆酸化セリウム以外の脱酸素剤としては、例えば没食子酸及び遷移金属化合物の混合物や、該混合物に、炭酸カリウム、炭酸ナトリウム、炭酸カルシウム等の炭酸系アルカリ化合物を含有させたものが挙げられる。乾燥剤としては、例えば潮解性無機塩、潮解性有機化合物、高吸水性樹脂、シリカゲル、合成ゼオライトなどが挙げられる。酢酸吸収剤としては、例えば酸化マグネシウム、並びに酸化マグネシウムを酢酸と親和性のあるエチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル系モノマー共重合体及びエチレン-α-オレフィン共重合体から選択されるバインダーに分散させたものが挙げられる。
 本発明の脱酸素剤は、樹脂と混合して用いる以外に、例えば接着組成物と混合し、脱酸素接着剤として用いることもできる。更に、本発明の脱酸素剤をインク組成物と混合し、脱酸素インクとして用いることもできる。
 以上のとおり、本発明の脱酸素剤は、様々な物質と混合して各種の組成物として用いることができる。この組成物中に本発明の脱酸素剤を構成する無機酸化物被覆酸化セリウムが含まれているか否かは、例えば該組成物を加熱分解して有機成分を除去し、残渣をEDXによる元素マッピングやXPSを用いた表面分析をすることで判断することができる。あるいは、残渣をXRDによる構造解析することでも判断することができる。なお、加熱分解によって構造が変わる物質の場合には、樹脂と脱酸素剤の樹脂組成物を対象とするXRD測定で直接に構造解析することで、無機酸化物が、単独元素の酸化物であるか、2種以上の元素の複合酸化物であるか、酸化セリウム自身と、これを被覆した元素とが反応することで生成した複合酸化物であるかを同定することができる。
 本発明の脱酸素剤は、雰囲気中の酸素を除去する機能を有することに加えて、雰囲気中の悪臭を除去する機能も有する。つまり本発明の脱酸素剤は、脱臭剤としての機能も有する。除去の対象となる悪臭物質は広範囲にわたり、例えば酸素含有化合物、窒素含有化合物、硫黄含有化合物、及び炭化水素などが挙げられる。
 酸素含有化合物としては、例えばアセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド及びi-ブチルアルデヒド等のアルデヒド類、i-ブタノール等のアルコール類、酢酸エチル等のエステル類、メチルイソブチルケトン及びジアセチル等のケトン類、プロピオン酸、n-酪酸、n-吉草酸及びi-吉草酸等の有機カルボン酸類などが挙げられる。
 窒素含有化合物としては、例えばアンモニア及びトリメチルアミンなどのアミン類が挙げられる。
 硫黄含有化合物としては、例えばメチルメルカプタン、硫化水素、硫化メチル及び二硫化メチルなどが挙げられる。
 炭化水素としては、例えばトルエン、スチレン及びキシレンなどの芳香族類が挙げられる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
  〔実施例1〕
(1)酸素欠損を有しない酸化セリウムの合成
 炭酸セリウム100gを加熱炉内に静置し、空気を流通させながら加熱して焼成を行った。加熱は、室温から開始し、10℃/分の昇温速度で加熱を行い、500℃に到達したのち、この温度を20時間保持した。その後、自然放冷した。空気の流通量は1000SCCMとした。このようにして酸素欠損を有しない酸化セリウムの多孔質体を得た。XRDによる測定で、この酸化セリウムはCeO2で表され、蛍石型の結晶構造であることが確認された。この酸化セリウムをボールミルで粉砕処理した。この酸化セリウムの粒径D50は20μmであった。
(2)無機酸化物の付着
 無機酸化物として公称粒径10~15nmのコロイダルシリカを用いた。酸化セリウム粉末100部に対して、日産化学工業株式会社製コロイダルシリカゾル「スノーテックス」型式ST-O)をSiO換算で7.5部となるよう計量し、また、酸化セリウム粉末とスノーテックス中のSiO成分の合計、即ち、固形分の質量が、混合溶液100部に対して40部となるよう、純水を調整し、酸化セリウム粉末、スノーテックス、純水を混合した後、1時間以上撹拌した。この分散液の固形分が沈殿を起こさないように撹拌させながら、ヤマト科学株式会社製スプレードライヤー(型式GB210)にて噴霧乾燥処理を実施した。この際、熱風の制御は入口温度170℃に制御し、風量は0.75m/min程度とした。スプレードライヤーの噴霧方法は2流体ノズル方式を採用し、1つ目の流体として、分散液を10mL/minの処理量でノズルに送り、2つ目の流体として圧縮空気を0.2MPaの圧力でノズルへ送った。噴霧乾燥後の粉末を回収し、1000℃で2時間焼成を施して、SiO表面処理した酸化セリウム粉末を得た。
(3)酸素欠損を有する酸化セリウムの合成
 前項(2)で得られた酸化セリウム(50g)を加熱炉内に静置し、100%の水素ガスを流通させながら加熱して還元を行った。加熱は、室温から開始し、10℃/分の昇温速度で加熱を行い、1000℃に到達したのち、この温度を1時間保持した。その後、自然放冷した。水素ガスの流通量は1000SCCMとした。このようにして、可逆的な酸素欠損を有する酸化セリウムを得た。XRDによる測定の結果、この酸化セリウムは蛍石型の結晶構造であることが確認された。この酸化セリウムにおける粒径D50は20μmであった。元素分析の結果、この酸化セリウムはCeO1.75で表されるものであった。得られた無機酸化物被覆酸化セリウムの元素マッピングの結果を図4に示す。同図の観察倍率は6000倍であり、同図中「Grey」は粒子のSEM像を示し、「SiK」はSi元素の存在マッピング結果を示し、「CeL」はCe元素の存在マッピング結果を示す。元素マッピングは、日本電子株式会社(JEOL)製FE-SEM「JSM-7001F」に、EDX検出器としてオックスフォード・インストゥルメンツ株式会社EDX「INCA PentaFETx3」が搭載されているものを使用した。同図に示す結果から明らかなとおり、SiOは酸化セリウムの粒子の表面を巨視的に見れば満遍なく被覆していることが判る。
(4)樹脂組成物の製造
 樹脂組成物の製造には、混練機システムを用いた。この混練機システムは、上流から下流に向かって順に、定量フィーダー2種(酸化セリウム用及び樹脂用)、混練機「浅田鉄工株式会社製一軸混練押出機(ミラクルKCK型式L)」、槽、巻取機、カッター、回収容器が配置されているものである。すべての装置は、窒素ガスをはじめとする不活性ガスを流通・パージ可能な構造となっている。
 混練機は、投入原料を混練機内へ送り込むフィード部、せん断応力を掛け原料を練る混練部、脱泡を行うベント部、スクリューで吐出させるメータリング部、吐出口を持つダイス部から構成される。
 以上のシステムを用い、以下に説明する操作を行った。
 すなわち、先ずすべての装置へ酸素濃度が0%となるまで窒素ガスを流通させた。前項(3)で得られた無機酸化物被覆酸化セリウムと住友化学株式会社製低密度ポリエチレン(エクセレンFX402、MFR8.0g/10min)とをそれぞれ別のフィーダーへ充填し、無機酸化物被覆酸化セリウム60部に対し、低密度ポリエチレン樹脂が40部の比率にてそれぞれ3.0kg/h、2.0kg/hとなるように混練機へ定量的に投入した。次に、混練機のフィード部を50℃、混練部を125℃、ベント部を130℃、メータリング部を135℃、ダイス部を140℃に加熱し、主軸の回転数を50rpmに設定し混練した。ダイス部の穴径は5mmφを使用した。ダイス部から吐出する樹脂組成物をチラーによって10℃に冷却された冷却水槽内を通過させ、その後、巻取機及びカッターへと通した。巻取機の巻取速度及びカッターの刃の回転数を調節し、樹脂組成物を直径約6mm、長さ約6mmの円柱状に加工してなるマスターバッチを得、これを回収容器に回収した。
(5)評価
 得られたマスターバッチについて水素ガスの発生量及び酸素吸収量を測定した。結果を以下の表1に示す。測定は以下の方法で行った。
  〔水素ガスの発生量〕
 不活性ガス雰囲気としたグローブボックス内で、アズワン株式会社製「テドラーバッグ」のサンプリングコックを取付けたA4サイズのアルミニウムラミネートバッグへ、50gのマスターバッチを投入し、開口部を熱シーラーで密封した。次いでサンプリングコックを介して、1000mLの窒素ガスをバッグ内に封入した。バッグをグローブボックスから取り出し、エスペック社製高温恒湿槽「SH-222」内で静置し、85℃で24時間保管した。この後、バッグ内へ1000mLの乾燥空気を追加し、すぐさま、光明理化学工業株式会社製北川式水素検知管「137U」を用いて水素ガスの濃度を計測した。参考のため一部の試験では、96時間経過後に再度水素ガスの濃度を計測した。なお、乾燥空気を追加した理由は、前記検知管がH+O→HOの反応で呈色させる原理のためである。
 〔酸素吸収量〕
 不活性ガス雰囲気としたグローブボックス内で、無機酸化物被覆酸化セリウム又は可逆的な酸素欠損を有する酸化セリウム2gを分取し、透気抵抗度10万秒である包装体へ内包した。これとは別に、無機酸化物被覆酸化セリウム又は可逆的な酸素欠損を有する酸化セリウムを内包しない同一材質・同一サイズで同一の透気抵抗度を有する包装体を用意した。無機酸化物被覆酸化セリウム又は可逆的な酸素欠損を有する酸化セリウムを内包した包装体を大気(25℃、1気圧)に曝露させ、24時間後に精密電子天秤(小数点以下4桁以上)にて質量を測定した。なお、包装体自身に吸着される水分に起因する質量増加を補正するため、無機酸化物被覆酸化セリウム又は可逆的な酸素欠損を有する酸化セリウムを内包していない包装体の質量も同時に測定し、その質量を、無機酸化物被覆酸化セリウム又は可逆的な酸素欠損を有する酸化セリウムを内包した包装体の質量から減じた。酸素の吸収量は、測定重量の増加を酸素重量として、気体の状態方程式を用いて算出した。
  〔実施例2ないし4及び比較例1〕
 実施例1の工程(2)におけるコロイダルシリカの使用量を変更して、酸化セリウム100部に対するSiOの量を表1に示すとおりとした。これ以外は実施例1と同様にして、マスターバッチを得た。得られたマスターバッチについて実施例1と同様の測定を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなとおり、各実施例のマスターバッチは、比較例のマスターバッチに比べて、水素ガスの発生が抑制されていることが判る。各実施例及び比較例1に用いた酸化セリウムは、いずれも酸素を吸収することが判る。
  〔実施例5〕
 本実施例は、実施例1の工程(2)において採用した噴霧乾燥処理に代えて、別の方法で酸化セリウムの粒子の表面にコロイダルシリカを付着させた例である。詳細には、以下のとおりである。
 実施例1の工程(1)で得られた酸化セリウム粉末100部に対して、日産化学工業株式会社製コロイダルシリカゾル「スノーテックス」(型式ST-O)をSiO換算で7.5部となるよう計量した。次に、酸化セリウム粉末の吸液量となるまでコロイダルシリカゾルを純水で希釈した。吸液量とは、コロイダルシリカゾルの純水希釈液を酸化セリウム粉末に吸水させていき、上澄みが出始めるまでの量である。
 容器内へ移した酸化セリウム粉末へ吸液量まで希釈されたコロイダルシリカゾルを薬匙で撹拌しながら投入していき、投入後、120℃のボックス型乾燥機で12時間乾燥させて固体を得た。この固体を、グローエンジニアリング株式会社製「マルチミル(RD1-15 グラインダータイプ)」で解砕した。解砕条件は、グラインダー間ギャップ50μm、回転数1700rpmとした。
 その後は実施例1と同様にして、マスターバッチを得た。得られたマスターバッチについて実施例1と同様の測定を行った。その結果を表2に示す。表2には、比較のため、実施例1及び比較例1の測定結果も併せて記載されている。
 また、得られた無機酸化物被覆酸化セリウムの元素マッピングの結果を図5に示す。元素マッピングは実施例1と同様に行った。観察倍率は6000倍であり、図中「Grey」は粒子のSEM像を示し、「SiK」はSi元素の存在マッピング結果を示し、「CeL」はCe元素の存在マッピング結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から明らかなとおり、コロイダルシリカの付着方法は、水素ガスの発生の抑制に影響を及ぼさないことが判る。すなわち、どのような方法でコロイダルシリカを付着させても、水素ガスの発生の抑制効果が発現することが判る。
 また、図5に示す結果から明らかなとおり、SiOは酸化セリウムの粒子の表面を巨視的に見れば満遍なく被覆していることが判る。
  〔実施例6〕
 本実施例は、実施例1で用いたコロイダルシリカに代えて、無機酸化物として公称粒径7~15nmのアルミナを用いた例である。
 酸化セリウム粉末100部に対して、日産化学工業株式会社製コロイダルアルミナゾル(型式AS-200)をAl換算で7.5部となるよう計量した。次に、酸化セリウム粉末の吸液量となるまでコロイダルアルミナゾルを純水で希釈した。
 容器内へ移した酸化セリウム粉末へ吸液量まで希釈されたコロイダルアルミナゾルを薬匙で撹拌しながら投入していき、投入後、120℃のボックス型乾燥機で12時間乾燥させて固体を得た。この固体を、グローエンジニアリング株式会社製「マルチミル(RD1-15 グラインダータイプ)」で解砕した。解砕条件は、グラインダー間ギャップ50μm、回転数1700rpmとした。
 その後は実施例1と同様にして、マスターバッチを得た。得られたマスターバッチについて実施例1と同様の測定を行った。その結果を表3に示す。
  〔実施例7〕
 本実施例は、実施例6において、酸化セリウムの粒子の表面にアルミナを直接付着させたことに代えて、アルミナの前駆体であるベーマイトを付着させ、それをアルミナに変換した例である。
 酸化セリウム粉末100部に対して、日産化学工業株式会社製ベーマイトゾル(型式AS-520)をAl換算で7.5部となるよう計量した。これ以外は実施例6と同様にして、マスターバッチを得た。得られたマスターバッチについて実施例1と同様の測定を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から明らかなとおり、無機酸化物としてアルミナを用いた場合にも、水素ガスの発生の抑制効果が発現することが判る。
  〔実施例8ないし11〕
 実施例6におけるコロイダルアルミナの使用量を変更して、酸化セリウム100部に対するAlの量を表4に示すとおりとした。これ以外は実施例6と同様にして、マスターバッチを得た。得られたマスターバッチについて実施例1と同様の測定を行った。その結果を表4に示す。表4には、比較のため、実施例6及び比較例1の測定結果も併せて記載されている。
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から明らかなとおり、各実施例のマスターバッチは、比較例のマスターバッチに比べて、水素ガスの発生が抑制されていることが判る。
  〔実施例12及び13〕
 本実施例は、実施例5において用いた酸化セリウムの粒子の粒径を変更したものである。
 実施例12においては、実施例5において用いた酸化セリウムの粒子を、ホソカワミクロン株式会社製ピンミル(コロプレックス160Z)を用い、回転周波数30Hzで2パス通して粉砕した。粉砕後の粒径D50は表5に示すとおりとした。
 実施例13においては、実施例5において用いた酸化セリウムの粒子を、ホソカワミクロン株式会社製ピンミル(コロプレックス160Z)を用い、回転周波数20Hzで1パス通して粉砕した。粉砕後の粒径D50は表5に示すとおりとした。
 これ以外は実施例5と同様にして、マスターバッチを得た。得られたマスターバッチについて実施例1と同様の測定を行った。その結果を表5に示す。表5には、比較のため、実施例5及び比較例1の測定結果も併せて記載されている。
  〔比較例2及び3〕
 本比較例は、実施例1において用いた酸化セリウムの粒子の粒径を変更したものである。
 比較例2においては、比較例1において用いた酸化セリウムの粒子を、ホソカワミクロン株式会社製ピンミル(コロプレックス160Z)を用い、回転周波数30Hzで2パス通して粉砕した。粉砕後の粒径D50は表5に示すとおりとした。
 比較例3においては、比較例1において用いた酸化セリウムの粒子を、ホソカワミクロン株式会社製ピンミル(コロプレックス160Z)を用い、回転周波数20Hzで1パス通して粉砕した。粉砕後の粒径D50は表5に示すとおりとした。
 これ以外は比較例1と同様にして、マスターバッチを得た。得られたマスターバッチについて実施例1と同様の測定を行った。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果から明らかなとおり、酸化セリウムの粒子の粒径を変えた場合であっても、各実施例のマスターバッチは、比較例のマスターバッチに比べて、水素ガスの発生が抑制されていることが判る。
  〔実施例14及び15〕
 本実施例は、実施例5において、無機酸化物被覆酸化セリウムと低密度ポリエチレンとの配合比を変更して、表6に示す値としたものである。これ以外は実施例5と同様にして、マスターバッチを得た。得られたマスターバッチについて実施例1と同様の測定を行った。その結果を表6に示す。表6には、比較のため、実施例5及び比較例1の測定結果も併せて記載されている。
  〔比較例4及び5〕
 本比較例は、比較例1において、無機酸化物被覆酸化セリウムと低密度ポリエチレンとの配合比を変更して、表6に示す値としたものである。これ以外は比較例1と同様にして、マスターバッチを得た。得られたマスターバッチについて実施例1と同様の測定を行った。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示す結果から明らかなとおり、無機酸化物被覆酸化セリウムと低密度ポリエチレンとの配合比を広い範囲で変えた場合であっても、各実施例のマスターバッチは、比較例のマスターバッチに比べて、水素ガスの発生が抑制されていることが判る。
  〔実施例16ないし18〕
 本実施例は、実施例5において用いた樹脂である低密度ポリエチレンに代えて、表7に示す樹脂を用いた例である。これ以外は実施例5と同様にして、マスターバッチを得た。得られたマスターバッチについて実施例1と同様の測定を行った。その結果を表7に示す。表7には、比較のため、実施例5及び比較例1の測定結果も併せて記載されている。
  〔比較例6ないし8〕
 本比較例は、比較例1において用いた樹脂である低密度ポリエチレンに代えて、表7に示す樹脂を用いた例である。これ以外は比較例1と同様にして、マスターバッチを得た。得られたマスターバッチについて実施例1と同様の測定を行った。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示す結果から明らかなとおり、樹脂の種類を種々変えた場合であっても、各実施例のマスターバッチは、比較例のマスターバッチに比べて、水素ガスの発生が抑制されていることが判る。
  〔実施例19及び20〕
 本実施例は、実施例5において用いた樹脂である低密度ポリエチレンに代えて、表8に示す樹脂を用いた例である。同表に示す樹脂は、酸素欠損を有する酸化セリウムと併用することがこれまでできなかった樹脂である含酸素樹脂である。グローブボックス内の窒素雰囲気下において、この樹脂と実施例1の(3)で得られた、SiOを7.5%被覆した酸素欠損を有する酸化セリウム(CeO1.75)とをそれぞれ50部で計量し、ホットプレート(設定温度250℃)上で手作業にて混練し、煙発生の有無及びガス発生の有無を目視で観察した。その結果を表8に示す。なお、酸素欠損を有する酸化セリウムと樹脂との混練に際して、本試験では、安全上の観点から、実施例1(4)のように混練押出機を用いずに、グローブボックス内の窒素雰囲気下にて小スケールで混練し、目視で優劣を確認する方法を採用した。
  〔比較例9及び10〕
 本比較例は、実施例19及び20において用いたSiO表面被覆酸化セリウムに代えて、何の表面被覆も施していない酸素欠損を有する酸化セリウム(CeO1.75)を用いた例である。得られた混練物について実施例19及び20と同様の観察を行った。その結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示す結果から明らかなとおり、樹脂として含酸素樹脂を用いた場合であっても、各実施例のマスターバッチは、煙発生及びガス発生が抑制されていることが判る。これとは対照的に、各比較例のマスターバッチでは、酸素欠損を有する酸化セリウムが、含酸素樹脂中から酸素原子を引き抜くことで該樹脂が分解し、それに起因して煙発生及びガス発生が観察された。
  〔実施例21〕
 本実施例は、実施例1において用いた低密度ポリエチレンに代えて、熱硬化性樹脂であるエポキシ樹脂を用いた例である。エポキシ樹脂は、表9に示す成分を用いて硬化させた。無機酸化物被覆酸化セリウムとエポキシ樹脂との混合は以下の操作に従い行った。グローブボックス内の窒素雰囲気下において、このエポキシ樹脂と実施例1の(3)で得られたSiOを7.5%被覆した酸素欠損を有する酸化セリウム(CeO1.75)とをそれぞれ50質で計量し、手作業にて混練し、ホットプレート(設定温度250℃)上で硬化を試みた。この硬化中におけるガス発生の有無を目視で観察した。その結果を表9に示す。
  〔比較例11〕
 本比較例は、比較例1において用いた低密度ポリエチレンに代えて、熱硬化性樹脂であるエポキシ樹脂を用いた例である。エポキシ樹脂は、表9に示す成分を用いて硬化させた。無機酸化物被覆酸化セリウムとエポキシ樹脂との混合は実施例21と同様に行った。このようにして得られた樹脂組成物について、混合中におけるガス発生の有無を目視で観察した。その結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9に示す結果から明らかなとおり、樹脂として熱硬化性樹脂を用いた場合であっても、実施例の樹脂組成物は、樹脂の硬化が可能であり、ガス発生が抑制されていることが判る。これとは対照的に、比較例の樹脂組成物では、酸素欠損を有する酸化セリウムが、硬化剤(フェノールノボラック樹脂)中の水酸基から酸素原子を引き抜くことで該硬化剤が分解し、それに起因してガス発生が観察された。
 本発明によれば、樹脂と混合して用いた場合に、化学的安定性が向上した脱酸素剤(樹脂組成物)が提供される。

Claims (17)

  1.  CeO(xは2未満の正数を表す。)で表される可逆的な酸素欠損を有する蛍石型の酸化セリウムの粒子を含み、該粒子の表面が無機酸化物で覆われている脱酸素剤。
  2.  前記無機酸化物が、M(Mは価数変化を起こさない元素を表し、y及びzは正数を表す。)及び元素Mと酸化セリウムとの複合酸化物から選択される少なくとも一種である請求項1に記載の脱酸素剤。
  3.  前記無機酸化物がSiO、Al、SiとCeとの複合酸化物及びAlとCeとの複合酸化物から選択される少なくとも一種である請求項1又は2に記載の脱酸素剤。
  4.  前記酸化セリウム100質量部に対して、前記無機酸化物を3質量部以上50質量部以下含む請求項1ないし3のいずれか一項に記載の脱酸素剤。
  5.  請求項1ないし4のいずれか一項に記載の脱酸素剤と、熱可塑性樹脂又は熱硬化性樹脂とを含む脱酸素樹脂組成物。
  6.  前記脱酸素剤と、前記熱可塑性樹脂又は前記熱硬化性樹脂との配合比が質量比で表して前者:後者=10:90~80:20である請求項5に記載の脱酸素樹脂組成物。
  7.  前記脱酸素樹脂組成物が前記熱可塑性樹脂を含み、
     ペレット、ストランド、フィルム、又はカップの形状を有する請求項5又は6に記載の脱酸素樹脂組成物。
  8.  前記脱酸素樹脂組成物が前記熱硬化性樹脂を含み、
     使用場面に応じた任意の形状を有する請求項5又は6に記載の脱酸素樹脂組成物。
  9.  請求項1ないし4のいずれか一項に記載の脱酸素剤、又は請求項5ないし8のいずれか一項に記載の脱酸素樹脂組成物が、透気抵抗度を有する包装体に内包されてなる脱酸素包装体。
  10.  前記包装体が、乾燥剤又は脱臭剤を更に内包している請求項9に記載の脱酸素包装体。
  11.  請求項1ないし4のいずれか一項に記載の脱酸素剤を含有する脱酸素層を有する脱酸素フィルム。
  12.  前記脱酸素層と、その一面側に設けられたガスバリア層と、その他面側に設けられた酸素透過層と、各層の間に設けられた接着層と、前記他面側の最表面に設けられた熱シール用の接着層とを有する請求項11に記載の脱酸素フィルム。
  13.  請求項5ないし8のいずれか一項に記載の脱酸素樹脂組成物からなるフィルムを備えた電子デバイス。
  14.  請求項5ないし8のいずれか一項に記載の脱酸素樹脂組成物を有する電子デバイス。
  15.  前記脱酸素樹脂組成物がフィルムの形態であるか、又は封止材の形態である請求項14に記載の電子デバイス。
  16.  請求項1ないし4のいずれか一項に記載の脱酸素剤と接着組成物とを含む脱酸素接着剤。
  17.  請求項1ないし4のいずれか一項に記載の脱酸素剤とインク組成物とを含む脱酸素インク。
PCT/JP2017/016077 2016-05-25 2017-04-21 脱酸素剤 WO2017203912A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018519150A JP6927964B2 (ja) 2016-05-25 2017-04-21 脱酸素剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016104717 2016-05-25
JP2016-104717 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017203912A1 true WO2017203912A1 (ja) 2017-11-30

Family

ID=60411316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016077 WO2017203912A1 (ja) 2016-05-25 2017-04-21 脱酸素剤

Country Status (3)

Country Link
JP (1) JP6927964B2 (ja)
TW (1) TW201802029A (ja)
WO (1) WO2017203912A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3546043A1 (en) 2018-03-28 2019-10-02 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method and apparatus for deoxygenation of liquids
CN113860415A (zh) * 2021-09-24 2021-12-31 中广核陆丰核电有限公司 核电厂应急给水箱除氧方法、给水系统及催化除氧装置
WO2022091792A1 (ja) * 2020-10-26 2022-05-05 三井金属鉱業株式会社 成形体、該成形体を含んでなる吸着材及び該吸着材を用いた陰イオン除去方法
JP7358737B2 (ja) 2019-01-21 2023-10-11 凸版印刷株式会社 蓋材および包装体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388309A (zh) * 2021-05-24 2021-09-14 青岛川青院新材料科技有限公司 一种具有吸氧功能的用于金属包装的涂料

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140555A (ja) * 1991-11-15 1993-06-08 Mitsubishi Gas Chem Co Inc 酸素捕捉性組成物
JPH08198339A (ja) * 1995-01-26 1996-08-06 Mitsubishi Gas Chem Co Inc ラベル型脱酸素剤
JP2000005596A (ja) * 1998-06-24 2000-01-11 Mitsubishi Gas Chem Co Inc 脱酸素剤
JP2000085851A (ja) * 1998-09-04 2000-03-28 Ajinomoto Co Inc 脱酸素樹脂組成物、脱酸素包装材料及びこれらを用いる脱酸素容器の乾燥保存方法
JP2003252374A (ja) * 2001-12-25 2003-09-10 Nittetsu Fine Prod:Kk 酸素検知機能つき脱酸素剤包装体
JP2004337840A (ja) * 2003-03-17 2004-12-02 Umicore Ag & Co Kg 酸素吸蔵材料、該酸素吸蔵材料の製造法及び内燃機関の排ガス浄化用触媒
JP2006334467A (ja) * 2005-05-31 2006-12-14 Idemitsu Unitech Co Ltd 酸素吸収性チタン化合物及び還元剤又は脱酸素剤
JP2007284632A (ja) * 2006-04-20 2007-11-01 Toyo Seikan Kaisha Ltd 樹脂配合用酸素吸収剤及びその製造方法
WO2010004963A1 (ja) * 2008-07-11 2010-01-14 三井金属鉱業株式会社 脱酸素剤

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140555A (ja) * 1991-11-15 1993-06-08 Mitsubishi Gas Chem Co Inc 酸素捕捉性組成物
JPH08198339A (ja) * 1995-01-26 1996-08-06 Mitsubishi Gas Chem Co Inc ラベル型脱酸素剤
JP2000005596A (ja) * 1998-06-24 2000-01-11 Mitsubishi Gas Chem Co Inc 脱酸素剤
JP2000085851A (ja) * 1998-09-04 2000-03-28 Ajinomoto Co Inc 脱酸素樹脂組成物、脱酸素包装材料及びこれらを用いる脱酸素容器の乾燥保存方法
JP2003252374A (ja) * 2001-12-25 2003-09-10 Nittetsu Fine Prod:Kk 酸素検知機能つき脱酸素剤包装体
JP2004337840A (ja) * 2003-03-17 2004-12-02 Umicore Ag & Co Kg 酸素吸蔵材料、該酸素吸蔵材料の製造法及び内燃機関の排ガス浄化用触媒
JP2006334467A (ja) * 2005-05-31 2006-12-14 Idemitsu Unitech Co Ltd 酸素吸収性チタン化合物及び還元剤又は脱酸素剤
JP2007284632A (ja) * 2006-04-20 2007-11-01 Toyo Seikan Kaisha Ltd 樹脂配合用酸素吸収剤及びその製造方法
WO2010004963A1 (ja) * 2008-07-11 2010-01-14 三井金属鉱業株式会社 脱酸素剤

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3546043A1 (en) 2018-03-28 2019-10-02 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method and apparatus for deoxygenation of liquids
WO2019190320A1 (en) 2018-03-28 2019-10-03 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and apparatus for deoxygenation of liquids
JP7358737B2 (ja) 2019-01-21 2023-10-11 凸版印刷株式会社 蓋材および包装体
WO2022091792A1 (ja) * 2020-10-26 2022-05-05 三井金属鉱業株式会社 成形体、該成形体を含んでなる吸着材及び該吸着材を用いた陰イオン除去方法
CN113860415A (zh) * 2021-09-24 2021-12-31 中广核陆丰核电有限公司 核电厂应急给水箱除氧方法、给水系统及催化除氧装置
CN113860415B (zh) * 2021-09-24 2023-07-25 中广核陆丰核电有限公司 核电厂应急给水箱除氧方法、给水系统及催化除氧装置

Also Published As

Publication number Publication date
JPWO2017203912A1 (ja) 2019-03-22
TW201802029A (zh) 2018-01-16
JP6927964B2 (ja) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2017203912A1 (ja) 脱酸素剤
US5274024A (en) Oxygen-absorbing resin composition containing water-absorbing polymer, olefin resin and oxygen scavenger
TWI429482B (zh) Dehumidifying deoxidizer
CN103354795B (zh) 组件及其制备法、生成氢气的方法及保护干燥物质的方法
US20090126573A1 (en) Deoxidizer and process of producing deoxidizer
WO2007123272A1 (ja) 樹脂配合用酸素吸収剤及びその製造方法
WO2017169036A1 (ja) 酸素吸収剤組成物、酸素吸収性多層体、酸素吸収性包装容器、及び物品の保存方法
WO2006095641A1 (ja) 酸素吸収剤
JP5464436B2 (ja) 酸素吸収剤及び酸素吸収性樹脂組成物ならびに酸素吸収性フィルム
JP2005104064A (ja) 酸素吸収性積層体、これを用いた包装体およびこれを用いた内容物の充填方法
JP4210310B2 (ja) 除湿・脱酸素方法
CN101330971A (zh) 脱氧剂以及脱氧剂的制造方法
TW201731580A (zh) 氧吸收材料及包裝材料
JPWO2008099935A1 (ja) 脱酸素剤及び脱酸素剤の製造方法
JP4339395B2 (ja) 脱酸素剤
WO2008008715A1 (en) Oxygen scavenger compositions
JP4185955B2 (ja) 脱酸素剤及び脱酸素剤の製造方法
JP2008173636A (ja) 脱酸素剤及び脱酸素剤の製造方法
JPS6132348B2 (ja)
JP2008308624A (ja) 酸素吸収性インキ組成物及び積層体並びに酸素吸収性インキ組成物の製造方法
JP2002126508A (ja) 樹脂配合用酸素吸収材、酸素吸収性樹脂組成物、および酸素吸収性包装材
JP6576787B2 (ja) 脱酸素剤及びその製造方法
JP3788057B2 (ja) 脱酸素樹脂組成物、脱酸素包装材料及びこれらを用いる脱酸素容器の乾燥保存方法
JP7383897B2 (ja) 炭酸ガス調整積層体と包装体
JP2020530866A (ja) 酸素修復作用を有する溶融物が取り込まれた添加剤を包装用プラスチック中に形成する方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802510

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802510

Country of ref document: EP

Kind code of ref document: A1