WO2017199873A1 - 金属蒸発材料 - Google Patents

金属蒸発材料 Download PDF

Info

Publication number
WO2017199873A1
WO2017199873A1 PCT/JP2017/018022 JP2017018022W WO2017199873A1 WO 2017199873 A1 WO2017199873 A1 WO 2017199873A1 JP 2017018022 W JP2017018022 W JP 2017018022W WO 2017199873 A1 WO2017199873 A1 WO 2017199873A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
vapor pressure
evaporation material
additive
vapor
Prior art date
Application number
PCT/JP2017/018022
Other languages
English (en)
French (fr)
Inventor
倉内 利春
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201780027018.2A priority Critical patent/CN109072413B/zh
Priority to KR1020187031428A priority patent/KR102174869B1/ko
Priority to JP2018518267A priority patent/JP6697073B2/ja
Publication of WO2017199873A1 publication Critical patent/WO2017199873A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold

Definitions

  • the present invention relates to an evaporation material used for vacuum deposition of Au.
  • an Au vapor deposition film is produced by an EB vapor deposition method using an electron beam evaporation source or a resistance heating vapor deposition method using a W boat.
  • EB deposition includes a method in which Au evaporation material is directly put into water-cooled copper hearth and evaporated by heating, and a method in which W or Mo hearth liner is used and Au evaporation material is put in hearth liner and heated to evaporate.
  • the power consumption for evaporating Au can be greatly reduced, and since Au does not adhere to the water-cooled copper hearth, maintenance of the evaporation source can be facilitated.
  • the hearth liner In order to form the hearth liner from a refractory metal such as W or Mo, a powder of the refractory metal is used as a raw material and is molded into a container by sintering. Therefore, the hearth liner is mixed with oxides derived from W powder and Mo powder as impurities. These oxides (impurities) contained on the surface or inside of the hearth liner of the sintered body of W or Mo are heated to a high temperature during Au vapor deposition, which causes oxide evaporation and separation. It becomes a source of gas. In particular, impurities contained in the hearth liner cannot be exhausted in a short time even if the hearth liner is heated to degas.
  • Au evaporation material contains dissolved gas taken in when dissolved in the atmosphere and lubricant and organic components caught in the material during wire drawing, and these impurities are generated during Au deposition. Become a source. However, since they can be depleted in a short time by degassing, in the actual deposition process, the gas released from the hearth liner during Au deposition is mixed into the Au melt, causing bumping of those gases. Then, Au droplets (splash) are emitted to the surroundings.
  • the present invention has been created to solve the above-mentioned disadvantages of the prior art, and an object of the present invention is to provide a metal evaporation material in which splash does not occur during vapor deposition.
  • the present invention is a metal evaporation material having a metal material having a predetermined one or more kinds of metals as a base material and an additive metal added to the metal material, At a temperature of 700 ° C. or higher, the metal reacts with the low vapor pressure of the metal, which is a vapor pressure less than 1/10000 of the vapor pressure of the base material at the same temperature, and the gas generated in the metal evaporation material.
  • the reaction product has a product low vapor pressure property that is a vapor pressure less than 1/10000 of the vapor pressure of the base material at the same temperature at a temperature of 700 ° C. or higher. It is a metal evaporation material characterized by this.
  • this invention is a metal evaporation material, Comprising:
  • the said metal evaporation material is a metal evaporation material arrange
  • the present invention is a metal evaporation material, wherein the gas released from the refractory metal contains oxygen gas, and the reaction product is a metal evaporation material that is an oxide of the added metal.
  • the present invention is a metal evaporation material, wherein the refractory metal is either W or Mo, and the metal of the base material of the metal material contains impurities in a range of less than 0.01 wt%. It is a metal evaporation material that is Au.
  • this invention is a metal evaporation material, Comprising:
  • the said addition metal is a metal evaporation material which consists of at least any 1 type or more of the said metal element among the metal elements of Ta, Zr, Hf, or Nb.
  • Splash is caused by bumping phenomenon, and bumping is caused by the gas released from the hearth liner being dissolved in the molten Au in contact with the hearth liner, and the dissolved gas is collected and released to the outside of the melt. It is believed that there is.
  • the added metal that reacts with the gas released from the hearth liner and generates a reaction product having a vapor pressure lower than that of the base material can be contained in the metal material containing the base material as a main component, the metal evaporation material Since the contained gas can be reduced, the occurrence of bumping can be prevented.
  • the added metal has a vapor pressure of less than 1/10000 at the same temperature as that of the base material, and the reaction product with the gas released from the hearth liner is also compared with the base material. If the vapor pressure is less than 1/10000 of the vapor pressure of the base material at the same temperature as the base material, the purity of the thin film formed by evaporation of the metal evaporation material is not lowered, and bumping does not occur. be able to.
  • Bumping can be prevented without degrading the purity of the base material thin film formed by vapor deposition.
  • Vapor pressure curve showing the relationship between the temperature and vapor pressure of Au, W, WO 2 and WO 3
  • Vapor pressure curve showing the relationship between the temperature of Au, Ti, Hf, Zr, and Ta and the vapor pressure Au, TiO, TiO 2, ZrO 2, HfO 2, Ta 2 vapor pressure curve showing the relationship between the temperature and vapor pressure of O 5
  • the vapor deposition apparatus 11 of FIG. 1 has a vacuum chamber 12, and a vapor deposition source 20 is disposed inside the vacuum chamber 12.
  • a substrate holder 13 is disposed above the vapor deposition source 20, and one or more substrates 14 are disposed on the portion of the substrate holder 13 that faces the vapor deposition source 20.
  • the substrate holder 13 is a curved disk, the concave portion thereof faces the vapor deposition source 20, and a plurality of substrates 14 are arranged.
  • the vapor deposition source 20 includes a copper container body (copper hearth) 21 having a recess and a refractory metal container (hearth liner) 22 made of a refractory metal disposed in the recess of the container body 21. Yes.
  • a metal evaporation material 23 is disposed inside the refractory metal container 22.
  • a vacuum exhaust device 15 and a heating power source 17 are disposed outside the vacuum chamber 12, and an electron beam irradiation device 16 is disposed inside the vacuum chamber 12.
  • the vacuum evacuation device 15 When vapor deposition is performed, the vacuum evacuation device 15 is operated to evacuate the inside of the vacuum chamber 12, and after a vacuum atmosphere is formed inside the vacuum chamber 12, the heating power source 17 is activated to activate the electron beam irradiation device 16. Is supplied with electric power, and an electron beam is emitted from the electron beam irradiation device 16. The emitted electron beam is irradiated onto the metal evaporation material 23, the metal evaporation material 23 is heated and melted, and evaporation of the metal evaporation material 23 is started.
  • the shutter 26 is opened, the vapor is allowed to reach the surface of the substrate 14 disposed on the substrate holder 13, and a thin film is grown on the surface of the substrate 14.
  • the substrate holder 13 is rotated by the motor 25 to grow the thin film uniformly on the surface of each substrate 14.
  • the metal evaporation material 23 is disposed inside the refractory metal container 22 whose surface is exposed, and the melt of the metal evaporation material 23 comes into contact with the exposed surface of the refractory metal container 22.
  • the metal evaporating material 23 includes a predetermined one kind of metal or a base material whose main component is a predetermined plurality of kinds of metals, and a metal material containing a small amount of impurities in the base material, and is added to the metal material.
  • the metal material has an impurity content of less than 0.01 wt%, and the metal material contains 99.99 wt% or more of the base material.
  • the additive metal has a metal low vapor pressure property that is a vapor pressure less than 1/10000 of the vapor pressure of the base material at the same temperature at a temperature of 700 ° C. or higher. Therefore, the metal evaporation material 23 is heated and melted. Then, in the vapor released from the melt of the metal evaporating material 23, the vapor of the added metal has a content of less than 1/10000 of the vapor of the base material, and a thin film made of a high-purity base material is formed. It can be formed on the surface of the substrate 14.
  • the base material of the metal evaporating material 23 is a metal that does not melt W or Mo constituting the refractory metal container 22, and therefore, the melt of the metal evaporating material 23 contains a high melting point constituting the refractory metal container 22. Although the metal is not dissolved, when the gas is released from the refractory metal container 22 heated to a high temperature, the gas is mixed in the melt of the metal evaporation material 23.
  • the added metal contained in the metal evaporating material 23 has a property (reactivity) that reacts with the gas released from the metal evaporating material 23 to generate a reaction product, and is therefore released from the refractory metal container 22. Then, the gas mixed in the melt of the metal evaporating material 23 reacts with the added metal in the melt of the metal evaporating material 23 to generate a reaction product in the melt of the metal evaporating material 23. .
  • the reaction product has a product low vapor pressure property that is a vapor pressure less than 1/10000 of the vapor pressure of the matrix at the same temperature as the reaction product temperature. ing.
  • the content of the reaction product vapor in the vapor generated from the melt of the metal evaporation material 23 is less than 1/10000 of the vapor of the base material, so that a small amount of reaction product reaches the surface of the substrate 14.
  • a high-purity base material thin film can be obtained.
  • FIG. 2 is a graph showing the relationship between temperature and vapor pressure of Au as a base material, refractory metal W, and oxides WO 2 and WO 3 of refractory metal W. From this graph, it can be seen that the vapor pressure of WO 3 is larger than the vapor pressure of Au, and the vapor pressure of WO 2 is close to the vapor pressure of Au. Therefore, WO 2 and WO 3 are contained in the melt of the Au base material. If it is done, it is clear that bumping easily occurs.
  • “1.E + n” representing n as a numerical value represents 1.0 ⁇ 10 n
  • “1.E ⁇ n” means 1.0 ⁇ 10 ⁇ n .
  • FIG. 3 is a graph showing the relationship between temperature and vapor pressure between Au as a base material and Ti, Hf, Zr, and Ta as highly reactive metals.
  • Each metal Ti, Hf, Zr, and Ta has high reactivity to oxygen gas and organic gas, but among these metals, the vapor pressure of the base material Au is higher than that of Hf, Zr, and Ta where the metal Ti is an additive metal. Therefore, when vapor is generated by melting the metal evaporation material 23 containing Ti, the vapor contains Ti vapor at a high concentration. Therefore, it is not appropriate to use Ti as the additive metal.
  • FIG. 4 is a graph showing the relationship between temperature and vapor pressure of Au as a base material and oxides TiO, TiO 2 , ZrO 2 , HfO 2 , and Ta 2 O 5 .
  • the content of Ti oxide (TiO, TiO 2 ) in Au vapor is large, but it is clear that the content of ZrO 2 , HfO 2 , and Ta 2 O 5 , which are oxides of added metals, is small. It can be seen that Hf and Ta are suitable as additive metals.
  • An Au ingot with a purity of 99.999% (5N) was melted in a vacuum atmosphere and degassed to obtain a 5N Au metal material.
  • the metal evaporation material was obtained by changing the content and adding the additive metal to the metal material. Moreover, the metal evaporation material which consists of the metal material was obtained, without adding an addition metal.
  • metal evaporating materials are placed in the vapor deposition apparatus 11 of FIG. 1, heated and evaporated, and the film thickness is changed to 250 nm on the surface of the substrate 14 made of a Si wafer of ⁇ 4 inches (diameter 4 inches).
  • An Au thin film was formed.
  • the film formation rate was measured by the film thickness monitor 31 and the control device 32, and the output of the electron beam irradiation device 16 was automatically controlled so that the film formation rate was constant.
  • Table 1 below shows vapor deposition conditions when a metal evaporating material to which no added metal is added is deposited in a refractory metal container (hearth liner) 22 made of W for vapor deposition.
  • Table 2 below shows the deposition conditions when the metal evaporation material 23 produced by adding 2.5 wt% of Ta as an additive metal to the metal material is deposited in the refractory metal container 22 made of W.
  • Table 3 below shows the vapor deposition conditions when vapor deposition was carried out by directly putting it in the copper container body 21.
  • Ta In addition to Ta, Zr, Hf, and Nb, as well as Ta, have a very low vapor pressure compared to Au, and are active against various released gases. Since the product has low vapor pressure, Zr, Hf, and Nb can achieve the same splash reduction effect as Ta.
  • the number of adhered particles having a particle size of 0.2 ⁇ m to 1.5 ⁇ m was measured as the number of splash adhered particles (the number of adhered foreign particles).
  • the number of splash deposits can be significantly reduced by adding 0.1 wt% or more of the added metal.
  • the splash foreign matter
  • the number of deposits has been reduced to about 1/13.
  • the metal evaporation material 23 Since the gas is released from the refractory metal container 22, when the metal evaporation material 23 is deposited on the refractory metal container 22 and deposited, the metal evaporation material 23 is deposited directly on the container body 21 and deposited. Rather than the number of splash deposits. However, in comparison with a metal evaporation material composed of an Au base material that has been melted in a vacuum but not added metal, in Table 6, splash adhesion is achieved by adding 0.1 wt% or more of Ta to the Au base material. The number can be reduced to about 1/3.
  • the metal evaporation material is made of an Au base material that is vacuum-dissolved but has no added metal added. Compared to, it can be reduced to 1/25.
  • Table 8 shows the number of splashes when a metal evaporation material using Ti as an additive metal is placed in a refractory metal container 22 made of W and melted.
  • Ti has a smaller number of splashes than Ta and Zr, but as shown in Table 9, the resistivity of the Au thin film obtained from the metal evaporation material containing Ti as an additive metal is that of the additive-free Au base material. Since the resistivity of the Au thin film obtained from the metal evaporation material is higher than that of Ti, the Au thin film is considered to contain Ti at a high concentration.
  • the resistivity is about the same as the resistivity of an Au thin film obtained from a metal evaporation material made of an additive-free Au base material. It can be seen that the additive metal is not contained.
  • the base material is not limited to a single metal and may be an alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

薄膜の純度を低下させずにスプラッシュ発生を防止できる金属蒸発材料を提供する。金属を母材とした金属材料と添加金属とを有する金属蒸発材料であって、添加金属は、700℃以上の温度では、同一温度の母材の蒸気圧の1/10000未満の蒸気圧である金属低蒸気圧性と、高融点金属容器から放出されるガスと反応して反応生成物を生成する反応性とを有し、その反応生成物は、700℃以上の温度では、同一温度の母材の蒸気圧の1/10000未満の蒸気圧である生成物低蒸気圧性を有している。金属蒸発材料に含有されるガスは添加金属と反応して除去されるので突沸が防止され、金属蒸発材料蒸気中の添加金属の蒸気と反応生成物の蒸気の含有量は1/10000未満なので、蒸着で形成される薄膜の純度は低下しない。

Description

金属蒸発材料
 本発明はAuの真空蒸着に用いられる蒸発材料に関する。
 一般的にAu蒸着膜は、電子ビーム蒸発源を用いたEB蒸着法やWボートを用いた抵抗加熱蒸着法によって作製される。
 EB蒸着法では、水冷銅ハース内にAu蒸発材料を直接入れて加熱蒸発させる方法とW製やMo製のハースライナーを用い、ハースライナー内にAu蒸発材料を入れて加熱蒸発させる方法がある。
 ハースライナーを用いることにより、Auを蒸発させるための消費電力が大幅に低減でき、水冷銅ハース内にAuが付着しないため、蒸発源のメンテナンスを容易にすることができる。
特開2010-210681号公報
 ハースライナーをWやMo等の高融点金属から形成するためには、高融点金属の粉末を原材料に用い、焼結によって容器状に成型する。そのため、ハースライナーにはW粉末やMo粉末に由来した酸化物が不純物として混入している。そしてこれらのWやMoの焼結体のハースライナーの表面や内部に含まれる酸化物(不純物)は、Au蒸着時に高温に加熱されるため、酸化物の蒸発や乖離が発生し、Au蒸着時のガスの発生源になる。特にハースライナーの内部に含まれる不純物はハースライナーを加熱して脱ガスさせようとしても、短時間で枯渇させることができない。
 Au蒸発材料中には大気中での溶解時に取り込まれた溶存ガスや伸線加工時に材料内に巻き込まれた潤滑剤や有機成分が含まれており、これらの不純物は、Au蒸着時にガスの発生源になる。しかし、それらは脱ガスによって短時間で枯渇させることができるため、実際の蒸着工程ではAu蒸着中にハースライナーから放出されたガスがAuの熔融物中に混入され、それらのガスの突沸が発生してAuの液滴(スプラッシュ)が周囲に放出される。
 これらのスプラッシュが、基板に形成された電気回路の配線間を跨いで付着すると配線間が短絡してしまうため、配線回路の形成工程において大きな問題となる。
 本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、蒸着中にスプラッシュが発生しない金属蒸発材料を提供することにある。
 上記課題を解決するために、本発明は、所定の一又は複数種類の金属を母材とした金属材料と、前記金属材料に添加された添加金属とを有する金属蒸発材料であって、前記添加金属は、700℃以上の温度では、同一温度の前記母材の蒸気圧の1/10000未満の蒸気圧である金属低蒸気圧性と、前記金属蒸発材料に含有されるガスと反応して反応生成物を生成する反応性とを有し、前記反応生成物は、700℃以上の温度では、同一温度の前記母材の蒸気圧の1/10000未満の蒸気圧である生成物低蒸気圧性を有することを特徴とする金属蒸発材料である。
 また、本発明は金属蒸発材料であって、前記金属蒸発材料は、高融点金属から成る高融点金属容器と接触して配置されて熔融される金属蒸発材料である。
 本発明は金属蒸発材料であって、前記高融点金属から放出されるガスには酸素ガスが含有され、前記反応生成物は、前記添加金属の酸化物である金属蒸発材料である。
 また、本発明は金属蒸発材料であって、前記高融点金属はWとMoのいずれか一方であり、前記金属材料の前記母材の金属は、不純物を0.01wt%未満の範囲で含有するAuである金属蒸発材料である。
 また、本発明は金属蒸発材料であって、前記添加金属は、Ta,Zr,Hf,又はNbの金属元素のうち、少なくともいずれか一種類以上の前記金属元素から成る金属蒸発材料である。
 スプラッシュは突沸現象によって発生し、突沸はハースライナーから放出されたガスが、ハースライナーと接触する熔融Auの中に溶解され、溶解されたガスが集合して熔融物の外部に放出されることであると考えられる。
 ハースライナーから放出されるガスと反応して、母材よりも蒸気圧が低い反応生成物を発生させる添加金属を主成分として母材を含有する金属材料に含有させることができれば、金属蒸発材料に含有されるガスを減少させることができるので、突沸の発生を防止することができる。
 そして、その添加金属が、母材と比較して、母材と同一温度で1/10000未満の蒸気圧であり、また、ハースライナーから放出されるガスとの反応生成物も母材と比較して、母材と同一温度で母材の蒸気圧の1/10000未満の蒸気圧であれば、金属蒸発材料の蒸発によって形成される薄膜の純度を低下させずに、突沸が発生しないようにすることができる。
 蒸着によって形成される母材の薄膜の純度を低下させずに、突沸を防止することができる。
本発明の金属蒸発材料が用いられる蒸着装置の一例 Au,W,WO2,WO3の温度と蒸気圧との関係を示す蒸気圧曲線 Au,Ti,Hf,Zr,Taの温度と蒸気圧との関係を示す蒸気圧曲線 Au,TiO,TiO2,ZrO2,HfO2,Ta2O5の温度と蒸気圧との関係を示す蒸気圧曲線
 図1の蒸着装置11は真空槽12を有しており、真空槽12の内部には、蒸着源20が配置されている。
 蒸着源20の上方には基板ホルダ13が配置されており、基板ホルダ13の蒸着源20と対面する部分には、一乃至複数の基板14が配置されている。ここでは、基板ホルダ13は、湾曲した円盤であり、その凹面部分が蒸着源20と対面され、複数の基板14が配置されている。
 蒸着源20は、凹部が形成された銅製の容器本体(銅ハース)21と、容器本体21の凹部内に配置された高融点金属から成る高融点金属容器(ハースライナー)22とを有している。
 高融点金属容器22の内部には、金属蒸発材料23が配置されている。
 真空槽12の外部には真空排気装置15と加熱電源17とが配置されており、真空槽12の内部には電子線照射装置16が配置されている。
 蒸着を行う際には真空排気装置15を動作させ、真空槽12の内部を真空排気し、真空槽12の内部に真空雰囲気が形成された後、加熱電源17を起動して電子線照射装置16に電力を供給し、電子線照射装置16から電子線を放出させる。放出された電子線は金属蒸発材料23に照射され、金属蒸発材料23が昇温して熔融し、金属蒸発材料23の蒸発が開始される。
 蒸発が安定したところでシャッター26を開け、蒸気を基板ホルダ13に配置された基板14の表面に到達させ、基板14の表面に薄膜を成長させる。薄膜を成長させる際には、モータ25によって基板ホルダ13を回転させて各基板14の表面に均一に薄膜を成長させる。
 ここで、金属蒸発材料23は表面が露出する高融点金属容器22の内部に配置されており、金属蒸発材料23の熔融物は高融点金属容器22の露出した表面と接触する。
 金属蒸発材料23は、所定の一種類の金属、又は、所定の複数種類の金属を主成分である母材とし、母材に微量の不純物が含有された金属材料と、この金属材料に添加される添加金属とを有しており、金属材料の不純物は、0.01wt%未満の含有率であり、金属材料には、母材は、99.99wt%以上含有されている。
 添加金属は、700℃以上の温度では、同一温度の母材の蒸気圧の1/10000未満の蒸気圧である金属低蒸気圧性を有しており、従って、金属蒸発材料23が加熱されて熔融したときに、金属蒸発材料23の熔融物から放出される蒸気の中には、添加金属の蒸気は母材の蒸気の1/10000未満の含有率になり、高純度の母材から成る薄膜を基板14の表面に形成することができる。
 金属蒸発材料23の母材は、高融点金属容器22を構成するW又はMoを熔解させない金属であり、従って、金属蒸発材料23の熔融物の中には高融点金属容器22を構成する高融点金属は溶解されないが、高温に昇温した高融点金属容器22からガスが放出されると、そのガスは金属蒸発材料23の熔融物中に混入する。
 金属蒸発材料23に含有される添加金属は、金属蒸発材料23が放出するガスと反応して反応生成物を生成する性質(反応性)を有しており、従って、高融点金属容器22から放出され、金属蒸発材料23の熔融物中に混入されたガスと、金属蒸発材料23の熔融物中の添加金属とは反応して、金属蒸発材料23の熔融物中に反応生成物が生成される。
 700℃以上の温度に於いて、その反応生成物は、反応生成物の温度と同一温度の母材の蒸気圧の1/10000未満の大きさの蒸気圧である生成物低蒸気圧性を有している。
 従って、金属蒸発材料23の熔融物から発生した蒸気中の反応生成物の蒸気の含有率は、母材の蒸気の1/10000未満であるから、基板14の表面に到達する反応生成物は少量であり、高純度の母材の薄膜が得られる。
 図2は、母材であるAuと、高融点金属Wと、高融点金属Wの酸化物WO2、WO3との、温度と蒸気圧との関係を示すグラフである。このグラフから、WO3の蒸気圧はAuの蒸気圧よりも大きく、WO2の蒸気圧はAuの蒸気圧に近いことが分かるから、Au母材の熔融物中にWO2やWO3が含有された場合には、容易に突沸が発生することが明らかである。なお、この図及び後述する図中、nを数値として表した「1.E+n」は、1.0×10nを表し、「1.E-n」は、1.0×10-nを意味する。
 図3は、母材であるAuと、反応性が高い金属であるTi,Hf,Zr,Taとの、温度と蒸気圧の関係を示すグラフである。各金属Ti,Hf,Zr,Taは酸素ガスや有機ガスに対する反応性は高いが、それら金属の中では、金属Tiが、添加金属となるHf,Zr,Taよりも、母材Auの蒸気圧に近い大きさの蒸気圧を有しており、従って、Tiを含有する金属蒸発材料23を熔融させて蒸気を発生させたときに、その蒸気の中にはTi蒸気が高濃度で含有されることになるので、Tiを添加金属に採用することは適当ではない。
 図4は、母材であるAuと、酸化物TiO,TiO2,ZrO2,HfO2,Ta2O5との、温度と蒸気圧との関係を示すグラフである。Au蒸気中のTiの酸化物(TiO,TiO2)の含有率は大きいが、添加金属の酸化物であるZrO2,HfO2,Ta2O5の含有率は小さいことは明らかなので、ZrとHfとTaは添加金属として適当であることが分かる。
 純度99.999%(5N)のAuインゴットを真空雰囲気中で熔融させ、脱ガスを行って5NのAuの金属材料を得た。含有率を変えて金属材料に添加金属を添加させて金属蒸発材料を得た。また、添加金属を添加せず、その金属材料から成る金属蒸発材料を得た。
 それら金属蒸発材料を、図1の蒸着装置11に配置し、加熱して蒸発させ、φ4インチ(直径4インチ)のSiウエハから成る基板14の表面に、成膜レートを変えて、膜厚250nmのAu薄膜を形成した。金属蒸発材料の蒸着中には、成膜レートを膜厚モニター31と制御装置32によって測定し、成膜レートが一定になるように電子線照射装置16の出力を自動的にコントロールした。
 下記表1に、添加金属を添加しない金属蒸発材料を、W製の高融点金属容器(ハースライナー)22の中に入れて蒸着した時の蒸着条件を示す。
 また、金属材料に、Taを添加金属として2.5wt%添加して作製した金属蒸発材料23を、W製の高融点金属容器22の中に入れて蒸着した時の蒸着条件を下記表2に示し、銅製の容器本体21に直接入れて蒸着したときの蒸着条件を下記表3に示す。
 なお、添加金属については、Ta以外に、ZrとHfとNbもTaと同様にAuと比較して蒸気圧が極めて低く、また、様々な放出ガスに対して活性であり、金属低蒸気圧性と生成物低蒸気圧性とを有しているため、ZrとHfとNbもTaと同様なスプラッシュの低減効果が得られる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 Au薄膜を形成した後、粒径が0.2μmから1.5μmの粒子の付着数をスプラッシュ付着数(異物付着数)として測定した。
 容器本体21に高融点金属容器22を配置せず、金属蒸発材料23を容器本体21の表面に露出する銅と接触して配置した場合であって、Taから成る添加金属を用いたときの測定結果を下記表4に示し、Zrから成る添加金属を用いたときの測定結果を表5に示す。
 容器本体21にW製の高融点金属容器22を配置し、金属蒸発材料23を、高融点金属容器22中に、高融点金属容器22の表面と接触して配置し、熔融させた場合であって、Taから成る添加金属を用いたときの測定結果を下記表6に示し、Zrから成る添加金属を用いたときの測定結果を表7に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4、表5に記載された測定結果から、添加金属が0.1wt%以上添加されることによってスプラッシュの付着数を大幅に低減させられることが分かる。
 特に、真空溶解は行われているが添加金属が添加されていないAu母材から成る金属蒸発材料に比較して、添加金属が2.5wt%添加された金属蒸発材料23では、スプラッシュ(異物)の付着数が約1/13まで低減されている。
 添加金属の含有率が2.5wt%~10wt%の範囲内では大きな変化は見られず、いずれの場合でも良好な結果が得られている。
 高融点金属容器22からガスが放出されるため、高融点金属容器22に金属蒸発材料23を配置して蒸着した場合の方が、容器本体21に金属蒸発材料23を直接配置して蒸着した場合よりもスプラッシュ付着数は増加する。
 しかし、真空溶解は行われているが添加金属が添加されていないAu母材から成る金属蒸発材料と比較して、表6では、Au母材にTaを0.1wt%以上添加することによってスプラッシュ付着数を約1/3まで低減することができている。
 さらに、Au中のTa添加量を2.5wt%まで増加させることによって、スプラッシュ付着数が大幅に減少し、真空溶解は行われているが添加金属が添加されていないAu母材から成る金属蒸発材料と比較すると1/25まで低減することができている。
 Taの含有率が2.5wt%~10wt%の範囲内では大きな変化は見られず、いずれの含有率でも良好な結果が得られている。
 また、表7から、Au母材中にZrを添加金属として含有させた場合も、Taを添加金属として含有させた場合と同程度のスプラッシュ付着数の減少効果が見られている。
 下記表8は、添加金属にTiを用いた金属蒸発材料を、W製の高融点金属容器22に配置して熔融させた場合のスプラッシュ数である。Tiの方が、TaやZrよりもスプラッシュ数が少なくなるが、表9に示すように、Tiを添加金属とした金属蒸発材料から得られるAu薄膜の抵抗率は、無添加のAu母材から成る金属蒸発材料から得られるAu薄膜の抵抗率よりも高いことから、そのAu薄膜にはTiが高濃度に含有されていると考えられる。TaやZrを添加金属とした金属蒸発材料23では、抵抗率は、無添加のAu母材から成る金属蒸発材料から得られるAu薄膜の抵抗率と同程度の値であり、Au薄膜中には添加金属は含有されていないことが分かる。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 以上は母材にAuを用いたが、母材は他の金属であっても、WやMoが溶解せず、また、金属低蒸気圧性と生成物低蒸気圧性とを有する添加金属を、金属蒸発材料に添加すれば、本発明はAu以外の金属の金属蒸発材料についても適用することができる。
 また、母材は単一の金属に限定されず、合金であってもよい。
 23……金属蒸発材料
 22……高融点金属容器 

Claims (5)

  1.  所定の一又は複数種類の金属を母材とした金属材料と、
     前記金属材料に添加された添加金属とを有する金属蒸発材料であって、
     前記添加金属は、
      700℃以上の温度では、同一温度の前記母材の蒸気圧の1/10000未満の蒸気圧である金属低蒸気圧性と、
     前記金属蒸発材料に含有されるガスと反応して反応生成物を生成する反応性とを有し、
     前記反応生成物は、700℃以上の温度では、同一温度の前記母材の蒸気圧の1/10000未満の蒸気圧である生成物低蒸気圧性を有することを特徴とする金属蒸発材料。
  2.  前記金属蒸発材料は、高融点金属から成る高融点金属容器と接触して配置されて熔融される請求項1記載の金属蒸発材料。
  3.  前記高融点金属から放出されるガスには酸素ガスが含有され、前記反応生成物は、前記添加金属の酸化物である請求項2記載の金属蒸発材料。
  4.  前記高融点金属はWとMoのいずれか一方であり、
     前記金属材料の前記母材の金属は、不純物を0.01wt%未満の範囲で含有するAuである請求項2又は請求項3のいずれか1項記載の金属蒸発材料。
  5.  前記添加金属は、Ta,Zr,Hf,又はNbの金属元素のうち、少なくともいずれか一種類以上の前記金属元素から成る請求項4記載の金属蒸発材料。 
PCT/JP2017/018022 2016-05-18 2017-05-12 金属蒸発材料 WO2017199873A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780027018.2A CN109072413B (zh) 2016-05-18 2017-05-12 金属蒸发材料
KR1020187031428A KR102174869B1 (ko) 2016-05-18 2017-05-12 금속 증발 재료
JP2018518267A JP6697073B2 (ja) 2016-05-18 2017-05-12 金属蒸発材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-099815 2016-05-18
JP2016099815 2016-05-18

Publications (1)

Publication Number Publication Date
WO2017199873A1 true WO2017199873A1 (ja) 2017-11-23

Family

ID=60325041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018022 WO2017199873A1 (ja) 2016-05-18 2017-05-12 金属蒸発材料

Country Status (5)

Country Link
JP (1) JP6697073B2 (ja)
KR (1) KR102174869B1 (ja)
CN (1) CN109072413B (ja)
TW (1) TWI673373B (ja)
WO (1) WO2017199873A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6829340B1 (ja) * 2020-10-01 2021-02-10 松田産業株式会社 金の蒸着材料
JP7021448B1 (ja) 2020-10-01 2022-02-17 松田産業株式会社 金の蒸着材料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284076B (zh) * 2021-12-31 2023-12-01 合肥工业大学 一种基于焦耳热高温快速制备高活性碳纤维超级电容器电极的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235556A (ja) * 1985-04-09 1986-10-20 Mitsubishi Heavy Ind Ltd 蒸発方法
JPS6250460A (ja) * 1985-08-30 1987-03-05 Mitsubishi Heavy Ind Ltd 蒸発方法
JP2010210681A (ja) * 2009-03-06 2010-09-24 Mitsubishi Electric Corp ミラーおよびその製造方法
JP2011074442A (ja) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp 真空蒸着装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235556A (ja) * 1985-04-09 1986-10-20 Mitsubishi Heavy Ind Ltd 蒸発方法
JPS6250460A (ja) * 1985-08-30 1987-03-05 Mitsubishi Heavy Ind Ltd 蒸発方法
JP2010210681A (ja) * 2009-03-06 2010-09-24 Mitsubishi Electric Corp ミラーおよびその製造方法
JP2011074442A (ja) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp 真空蒸着装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6829340B1 (ja) * 2020-10-01 2021-02-10 松田産業株式会社 金の蒸着材料
JP7021448B1 (ja) 2020-10-01 2022-02-17 松田産業株式会社 金の蒸着材料
WO2022070433A1 (ja) * 2020-10-01 2022-04-07 松田産業株式会社 金の蒸着材料
JP2022059549A (ja) * 2020-10-01 2022-04-13 松田産業株式会社 金の蒸着材料

Also Published As

Publication number Publication date
CN109072413B (zh) 2020-07-14
CN109072413A (zh) 2018-12-21
TW201812031A (zh) 2018-04-01
JP6697073B2 (ja) 2020-05-20
JPWO2017199873A1 (ja) 2018-11-22
KR102174869B1 (ko) 2020-11-05
TWI673373B (zh) 2019-10-01
KR20180130546A (ko) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2017199873A1 (ja) 金属蒸発材料
JP2006225687A (ja) Al−Ni−希土類元素合金スパッタリングターゲット
JP2020073734A (ja) スパッタリングターゲットの製造方法、スパッタリングターゲット、および部品の製造方法
WO2006134743A1 (ja) ルテニウム合金スパッタリングターゲット
EP2277191A1 (en) Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof
KR101469873B1 (ko) 초고순도, 초미세 루테늄 합금 분말 제조방법
TWI714491B (zh) 蒸鍍材料
TW202122610A (zh) 蒸鍍材料及其製造方法
TW201610193A (zh) Cu-Ga合金濺鍍靶及其製造方法
JP6829340B1 (ja) 金の蒸着材料
KR20120103908A (ko) 산화물 분산강화형 백금 재료 제조용 백금 분말 제조 방법
JP2020076118A (ja) W−Tiスパッタリングターゲット
JP2015074788A (ja) Inスパッタリングターゲット及びIn膜
JP7021448B1 (ja) 金の蒸着材料
JP2017190508A (ja) スパッタリングターゲット及びその製造方法
JP5622914B2 (ja) スパッタリングターゲットの製造方法、Ti−Al−N膜の製造方法、および電子部品の製造方法
JP2011179123A (ja) スパッタリングターゲットとそれを用いたTi−Al−N膜および電子部品の製造方法
WO2021020223A1 (ja) 蒸着材料及びその製造方法
TW202214885A (zh) 金之蒸鍍材料
JP2005105311A (ja) 被処理物の表面処理方法、表面処理された希土類系永久磁石およびAl被膜の硬度を高める方法
JP5426136B2 (ja) 酸化タンタル蒸着材、その製造方法、および酸化タンタル蒸着膜の製造方法
JP5426137B2 (ja) 酸化タンタル蒸着材、その製造方法、および酸化タンタル蒸着膜の製造方法
JP2000064033A (ja) スパッタリングターゲット
JP2019056161A (ja) In合金スパッタリングターゲット及びIn合金スパッタリングターゲットの製造方法
JPH06145961A (ja) 部材熱処理用容器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018518267

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187031428

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799297

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799297

Country of ref document: EP

Kind code of ref document: A1