JP5622914B2 - スパッタリングターゲットの製造方法、Ti−Al−N膜の製造方法、および電子部品の製造方法 - Google Patents

スパッタリングターゲットの製造方法、Ti−Al−N膜の製造方法、および電子部品の製造方法 Download PDF

Info

Publication number
JP5622914B2
JP5622914B2 JP2013219953A JP2013219953A JP5622914B2 JP 5622914 B2 JP5622914 B2 JP 5622914B2 JP 2013219953 A JP2013219953 A JP 2013219953A JP 2013219953 A JP2013219953 A JP 2013219953A JP 5622914 B2 JP5622914 B2 JP 5622914B2
Authority
JP
Japan
Prior art keywords
alloy
target
content
manufacturing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2013219953A
Other languages
English (en)
Other versions
JP2014074230A (ja
Inventor
渡邊 光一
光一 渡邊
渡辺 高志
高志 渡辺
石上 隆
隆 石上
鈴木幸伸
幸伸 鈴木
泰郎 高阪
泰郎 高阪
透 小松
透 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013219953A priority Critical patent/JP5622914B2/ja
Publication of JP2014074230A publication Critical patent/JP2014074230A/ja
Application granted granted Critical
Publication of JP5622914B2 publication Critical patent/JP5622914B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Powder Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Description

本発明は、半導体基板などに対する拡散防止層の形成に好適なスパッタリングターゲットの製造方法とTi−Al−N膜および電子部品の製造方法に関する。
最近、記憶媒体として強誘電体薄膜を用いた強誘電体メモリ(FeRAM)などの開発が盛んに行われており、DRAMの代替メモリとして期待されている。このようなFeRAMにおいては、ジルコン酸チタン酸鉛(PbZrO3とPbTiO3との固溶体(PZT))、チタン酸バリウム(BaTiO3(BTO))、チタン酸バリウム・ストロンチウム(BaaSr1-aTiO3(BSTO))などの強誘電体の薄膜が用いられている。
上述した酸化物系の誘電体薄膜を用いたFeRAMなどのメモリデバイスにおいては、従来から用いられてきたポリシリコン電極に代えて、Pt、Ir、Ruなどの貴金属電極やIrOx、PtOx、RuOxなどの酸化物電極が用いられるようになってきており、これらの電極で誘電体薄膜をサンドイッチした構造が採用されている。このようなデバイス構造において、酸化物系誘電体薄膜の形成には600℃以上の温度が要求されており、半導体プロセスの中でも特に高温のプロセスとなる。さらに、酸化物系の誘電体薄膜を形成することから、酸素雰囲気中で薄膜を形成することが多い。
酸化物系誘電体薄膜を用いたメモリデバイスを実用化するにあたっては、例えばスイッチ用トランジスタを形成した半導体基板と酸化物系誘電体薄膜を用いたメモリセル(薄膜キャパシタ)とを組合せる必要がある。具体的には、トランジスタが形成されたSi基板のWプラグ上に、貴金属電極や酸化物電極と酸化物系誘電体薄膜とを順に形成する。酸化物系誘電体薄膜は上述したように高温酸素雰囲気下などで形成されることから、誘電体薄膜や電極中の酸素がSi基板側に拡散しやすく、例えばWプラグの酸化などの問題を招いている。Wプラグの酸化は体積膨張を伴うため、界面での剥離などが生じてしまう。
このような問題に対しては、酸化物系誘電体薄膜を用いた薄膜キャパシタと半導体基板との間に、これらの構成元素(特に酸素)の相互拡散を防ぐ拡散防止層(バリア層)を形成することが有効である。半導体デバイスにおいては、一般にTiN膜やTaN膜が拡散防止層として用いられているが、これらは耐酸化性に劣ることから、酸化物系誘電体薄膜を有する半導体デバイスの拡散防止層としては、TiNとAlNとの固溶体であるTi1-xAlxN(Ti−Al−N)膜が使用されている。Ti−Al−N膜のAl組成に関しては、耐熱性を高める上で増加させる方向にシフトしており、例えばAlを25〜50原子%の範囲で含むような合金組成が適用されるようになってきている。
Ti−Al−N膜は熱的および化学的に安定であり、耐酸化性にも優れている。このような拡散防止層としてのTi−Al−N膜は、Ti−Al合金ターゲットを用いて、ArとN2の混合ガス雰囲気中で反応性スパッタすることにより形成されている。Ti−Al−N膜の形成に用いられるTi−Al合金ターゲットは、溶解法や焼結法を適用して作製することが一般的である。
上述したTi−Al合金ターゲットには、素子特性の劣化原因やダストの発生原因などとなる不純物量を低減することが求められることから、高純度材が得られやすい溶解法が主に用いられている。溶解法でTi−Al合金ターゲットを作製する場合には、まずTi材とAl材を真空アーク溶解や電子ビーム(EB)溶解などの真空溶解技術を適用して溶解し、所定の組成比を有するTi−Al母合金を作製する。
次に、Ti−Al母合金(インゴット)を1000℃以上に加熱して、鍛造や圧延などの熱間加工を施した後、再度1000℃以上の温度で熱処理する。ここで、ターゲットを構成するTi−Al合金の結晶粒径やそのばらつきはダスト発生や薄膜の膜厚均一性などに影響を及ぼすことから、熱間加工後にTi−Al合金の再結晶化のための熱処理が必要となる。このようにして作製したターゲット素材(Ti−Al合金素材)を所定のターゲット形状に機械加工した後、バッキングプレートと接合することにより、目的とするターゲットが得られる。
ところで、溶解法でTi−Al合金ターゲットを作製する場合には、熱間加工時に発生する合金材のクラック、特に材料外周部に発生するワレやカケが問題となっている。Ti単体やAl単体では、塑性加工を施してもワレやカケなどはほとんど発生しない。これは延性を妨害する物質が少ないためである。これに対して、Ti−Al合金ではTi3AlやAl3Tiなどの金属間化合物が形成され、これら金属間化合物は一般的に脆いという特性を有するため、熱間加工時にワレやカケなどが発生しやすいという問題が生じている。
このようなことから、できるだけTi−Al合金材を高温に加熱して、原子の移動性を高めた状態で塑性加工を施しているが、このような高温状態においてもクラックの発生を十分に抑制することができず、ターゲットの製造歩留りを低下させている。特に、Alを多量に含有するTi−Al合金(例えばAl含有量が25〜50原子%)では、金属間化合物が形成されやすいことから、熱間加工時のクラック発生が問題となっている。
一方、Ti−Al合金ターゲットを焼結法により作製する場合には、熱間加工などを施すことなく所定のターゲット形状が得られると共に、結晶粒径の微細化などを図ることができる。焼結法はサイズ依存性がなく、またターゲット組成の均一化などに対しても有効である。しかし、不純物の観点からは粉末作製時に不純物元素で汚染されやすく、また原料の比表面積が大きいために、特にガス成分を多量に吸着しやすいという問題がある。酸素や窒素などのガス成分はスパッタ時に異常放電の発生原因となり、これによりダスト量などが増大する。このようなことから、焼結ターゲットにおいては不純物量、特に酸素や窒素などのガス成分の含有量を低減することが求められている。
なお、特開2000−273623号公報には、Alを5〜65質量%の範囲で含有するTi−Al合金ターゲットが示されており、ここではNaやKなどのアルカリ金属の含有量やFe、Ni、Coなどの遷移金属の含有量、さらには酸素、炭素、水素、窒素などのガス成分の含有量を低減することが記載されている。しかし、上記公報は溶解法を適用したTi−Al合金ターゲットを前提としており、焼結法を適用したTi−Al合金ターゲットの高純度化については何等記載されていない。さらに、溶解法を適用したTi−Al合金ターゲットの熱間加工性の改善についても何等記載されていない。
さらに、従来のTi−Al合金ターゲットを用いた成膜工程に関しては、成膜時のプラズマ状態の不安定さが問題になっている。すなわち、従来のTi−Al合金ターゲットを用いて反応性スパッタを行った場合、長時間連続成膜するとプラズマが不安定な状態になり、結果的に放電が切れてしまうという問題が発生する。また、プラズマ状態が不安定になると異常放電の発生回数も増加する。これらは素子歩留りの低下原因となっている。このようなことから、Ti−Al合金ターゲットを用いたスパッタ工程においてはプラズマの安定化、さらには異常放電の減少などを図ることが強く求められている。
本発明はこのような課題に対処するためになされたもので、Ti−Al−N膜などを成膜する際に用いられるTi−Al合金ターゲットの製造方法において、不純物量の低減を図った上で、ターゲットの製造歩留りを高め、さらには膜品質の向上を図ることを可能にしたスパッタリングターゲットの製造方法を提供することを目的としている。より具体的には、高純度化が可能な溶解ターゲットの製造歩留りを高めることを可能にしたスパッタリングターゲットの製造方法を提供することを目的としている。
本発明のスパッタリングターゲットの製造方法は、純度が99.95%以上のTi材を真空雰囲気中にて3回以上繰り返し電子ビーム溶解する工程と、前記電子ビーム溶解したTi材と純度が99.99%以上のAl材とを、Alを5〜50原子%の範囲で含有するTi−Al合金となるように秤量する工程と、前記Ti材および前記Al材を溶解し、Alを5〜50原子%の範囲で含有するTi−Al合金インゴットを作製する工程と、前記Ti−Al合金インゴットを熱間加工する工程と、前記Ti−Al合金の熱間加工材を所望のターゲット形状に加工する工程とを具備し、Alを5〜50原子%の範囲で含有し、Zr含有量およびHf含有量がそれぞれ100ppb以下であり、かつターゲット全体としての前記Zr含有量およびHf含有量のばらつきがそれぞれ20%以下であるTi−Al合金ターゲットを製造することを特徴としている。
ZrおよびHfはTiと同じ4A族元素であり、Tiと親和性を有することから、Ti材中に不純物として存在しやすい元素である。このようなZrやHfがTi−Al合金材中に比較的高濃度に存在していると、熱間加工時にワレやカケなどが発生しやすくなる。これに対して、例えば熱間加工を施すTi−Al合金材中のZr含有量およびHf含有量、さらにはこれらの含有量のばらつきを低減することによって、熱間加工時のワレやカケなどの発生を抑制することが可能となる。従って、上述したZr含有量およびHf含有量を満足させたTi−Al合金ターゲットによれば、製造歩留りの向上を図ることが可能となる。
本発明のスパッタリングターゲットの製造方法によれば、例えばTi−Al−N膜などを成膜する際に用いられるTi−Al合金ターゲット中の不純物量の低減を図った上で、ターゲットの製造歩留りを高めると共に、膜品質の向上などを図ることが可能となる。
本発明のスパッタリングターゲットを用いて成膜したTi−Al−N膜を拡散防止層として有する電子部品(薄膜キャパシタ)の一構成例を示す要部断面図である。
以下、本発明を実施するための形態について説明する。本発明のスパッタリングターゲットは、Alを5〜50原子%の範囲で含有するTi−Al合金からなり、例えば耐酸化性に優れる拡散防止層(バリア層)として用いられるTi−Al−N(Ti1-xAlxN(0.05≦x≦0.5))膜の形成などに適用されるものである。
上述したTi−Al合金からなるスパッタリングターゲット(Ti−Al合金ターゲット)中のAl組成が5原子%未満であると、耐酸化性の向上効果を十分に得ることができない。例えば、Al組成が5原子%未満のTi−Al合金ターゲットを用いて形成したTi−Al−N膜は酸化が進行しやすく、その上に形成した膜、例えば薄膜キャパシタの下部電極との付着力が低下して剥がれなどが生じやすくなる。Al組成が増加するほど高温域での耐酸化性が向上するため、Al組成は25原子%以上であることが好ましい。
ただし、Al組成を高く設定しすぎると逆に耐酸化性が劣化し、酸素やその他の可動イオンなどが拡散防止層としてのTi−Al−N膜を容易に通り抜けてしまうようになるため、Ti−Al合金ターゲット中のAl組成は50原子%以下とする。また、Al組成が50原子%を超えると、Ti−Al−N膜の抵抗率なども増加して、素子特性の低下などを招くことになる。このような点からもAl組成は50原子%以下とする。
Ti−Al−N膜中のAlはそれ自体の耐酸化性を高めるだけでなく、酸素のトラップ材などとしても機能する。例えば、Ti−Al−N膜上にSrRuO3(SRO)などの導電性酸化物からなる電極膜を形成した場合、この導電性酸化物中の酸素が半導体基板などの成膜基板中に拡散することを抑制することが可能となる。Ti−Al合金ターゲット中のAl組成(Al含有量)は、拡散防止層の耐酸化性、耐熱性、バリア性などを高める上で、特に25〜50原子%の範囲とすることが好ましい。
本発明における第1のスパッタリングターゲットは、上述したようなAl組成を有するTi−Al合金ターゲットにおいて、酸素含有量を500ppm以下、窒素含有量を50ppm以下、炭素含有量を100ppm以下とすると共に、ターゲット全体としての酸素含有量、窒素含有量および炭素含有量のばらつきをそれぞれ20%以下としたものである。このような第1のTi−Al合金ターゲットは、Ti−Al合金の焼結材を具備する焼結ターゲットに対して特に効果を発揮するものである。
すなわち、焼結Ti−Al合金ターゲットは、溶解ターゲットのように熱間加工を施すことなく、所望サイズおよび所望形状のターゲットを容易に得ることができると共に、結晶粒径の微細化を図ることができる反面、従来のTi−Al合金粉末を用いた焼結ターゲットでは不純物量、特に酸素、窒素、炭素などのガス成分量を十分に低減することが難しいという欠点が存在していた。これに対して、後に詳述する本発明の製造方法を適用することによって、酸素、窒素および炭素の含有量を十分に低減したTi−Al合金ターゲット、特に焼結ターゲットを得ることが可能となる。
Ti−Al合金ターゲット中に不純物として存在する酸素、窒素および炭素は、いずれもスパッタ時に異常放電の発生原因となり、これによりダスト量などが増加する。このようなことから、第1のTi−Al合金ターゲットにおいては酸素含有量を500ppm以下、窒素含有量を50ppm以下、炭素含有量を100ppm以下としている。酸素、窒素および炭素の含有量が上記した範囲を超えると、ダストの発生量が大幅に増加する。
Ti−Al合金ターゲット中に存在する酸素は、当該ターゲットをスパッタすることで得られるTi−Al−N膜の酸化を促進し、その上に形成される例えば薄膜キャパシタの下部電極の付着力などを低下させる。また、Ti−Al−N膜自体の耐酸化特性の低下原因となる。このような点からも、Ti−Al合金ターゲットの酸素含有量は500ppm以下とする。ターゲットの酸素含有量は300ppm以下とすることがさらに好ましい。ただし、Ti−Al合金ターゲットから完全に酸素を除去してしまうと、得られるTi−Al−N膜の拡散防止性能が低下するおそれがあることから、微量の酸素を含んでいることが好ましい。具体的には、Ti−Al合金ターゲットの酸素含有量は10〜500ppmの範囲、さらには10〜300ppmの範囲とすることが好ましい。
また、Ti−Al合金ターゲット中に存在する窒素は、得られるTi−Al−N膜などの特性低下原因、特に比抵抗のばらつきの原因となる。このようなことからも、Ti−Al合金ターゲットの窒素含有量は50ppm以下とする。ターゲットの窒素含有量は30ppm以下とすることがさらに好ましい。同様に、Ti−Al合金ターゲット中に存在する炭素は、ターゲットの焼結性に悪影響を及ぼす原因となることから、ターゲットの炭素含有量は100ppm以下とする。炭素含有量は60ppm以下とすることがさらに好ましい。
Ti−Al合金ターゲット中の酸素、窒素および炭素の存在形態に関しては、ターゲット全体としての酸素含有量、窒素含有量および炭素含有量にばらつきが生じていると、得られる薄膜(Ti−Al−N膜など)の特性、例えば比抵抗の面内均一性が低下する。さらに、Ti−Al−N膜の拡散防止性能などにもばらつきが生じやすくなる。このため、ターゲット全体としての酸素含有量、窒素含有量および炭素含有量のばらつきはそれぞれ20%以下とする。これらガス成分の含有量のばらつきはそれぞれ10%以下とすることがさらに好ましい。
さらに、第1のTi−Al合金ターゲットは、Mg含有量が50ppm以下、Mn含有量が50ppm以下、およびSi含有量が100ppm以下で、かつターゲット全体としてのMg含有量、Mn含有量およびSi含有量のばらつきがそれぞれ20%以下であることが好ましい。Mg、MnおよびSiの各元素はTi−Al合金ターゲット中のガス成分、すなわち酸素、窒素および炭素を安定的に吸着して脱ガスを妨げるため、これら各元素の含有量はそれぞれ上記した範囲内とすることが好ましい。Mg、MnおよびSiの各元素のより好ましい含有量は、それぞれMgは30ppm以下、Mnは30ppm以下、Siは50ppm以下である。
また、ターゲット全体としてのMg、MnおよびSiの各含有量のばらつきが大きいと、脱ガスを妨げると共に、得られる薄膜の特性の均一性などが低下することから、各元素の含有量のターゲット全体としてのばらつきは20%以下とすることが好ましい。Mg含有量、Mn含有量およびSi含有量のばらつきはそれぞれ10%以下とすることがより好ましい。
ここで、Ti−Al合金ターゲットの酸素含有量、窒素含有量、炭素含有量、またMg含有量、Mn含有量、Si含有量、さらにこれら各元素の含有量のばらつきは、以下のようにして求めた値を指すものである。すなわち、例えばターゲットが円盤状の場合、ターゲットの中心部と、中心部を通り円周を均等に分割した4本の直線上の中心部から50%の距離の各位置(計8個所)、および中心部から90%の距離の各位置(計8個所)の合計17個所からそれぞれ試験片を採取し、これら17個の試験片の各元素の含有量をそれぞれ測定し、これらの測定値の平均値をTi−Al合金ターゲットの酸素含有量、窒素含有量、炭素含有量、さらにMg含有量、Mn含有量、Si含有量とする。
さらに、酸素、窒素および炭素の各含有量のばらつき、さらにMg、MnおよびSiの各含有量のばらつきは、各試験片の各元素の含有量(各測定値)の最大値と最小値から、{(最大値−最小値)/(最大値+最小値)}×100(%)に基づいて求めるものとする。なお、酸素および窒素の各含有量は不活性ガス−熱伝導度法により測定した値とし、炭素の含有量は高周波燃焼−赤外線吸収法により測定した値とする。また、Mg、MnおよびSiの各含有量はICP−発光分光分析法により測定した値とする。
上述した第1のTi−Al合金ターゲットにおいて、Ti−Al合金の平均結晶粒径は10mm以下、さらには5mm以下であることが好ましく、さらにターゲット全体としての平均結晶粒径のばらつきが20%以下であることが好ましい。このように、Ti−Al合金の結晶粒が比較的微細で、かつターゲット全体としての平均結晶粒径のばらつきが少ない場合に、スパッタ成膜時におけるダストの発生を抑制することができる。
Ti−Al合金の結晶粒が粗大化すると、面方位の違いによりエロージョンに差が生じるため、結晶粒が隣り合う粒界部に凹凸が生じ、凸部に集中してスパッタ粒子の再付着が起こる。このようにして堆積した付着物が剥離したり、また異常放電を引き起こすなどによって、突発的に多量のダストが発生してしまう。Ti−Al合金の平均結晶粒径が10mmを超えると、上記した凹凸の高低差が非常に大きくなり、多数のダストが発生しやすくなり、素子歩留りを低下させることになる。また、ターゲット全体としての結晶粒径にばらつきが生じている場合にも、同様に粒界部に凹凸が生じやすいことから、ダストの発生量が増加すると共に、得られる薄膜の膜厚の面内均一性などが低下する。
このようなことから、第1のTi−Al合金ターゲットにおいては、Ti−Al合金の平均結晶粒径を10mm以下とすることが好ましく、さらには突発的なダストの抑制に有効な5mm以下とすることが望ましい。また、ターゲット全体としての平均結晶粒径のばらつきについては、薄膜の膜厚などの面内均一性を高めることが可能であると共に、ダストの低減にも有効な20%以下とすることが好ましい。平均結晶粒径のばらつきは10%以下とすることがより好ましい。これらによって、Ti−Al−N膜などの製造歩留り、ひいてはそれを用いた素子歩留りを向上させることが可能となる。
なお、Ti−Al合金ターゲットの平均結晶粒径およびそのばらつきについては、後述する第2および第3のTi−Al合金ターゲットにおいても同様な値を満足させることが好ましい。
ここで、Ti−Al合金の平均結晶粒径は、以下のようにして求めた値を示すものとする。まず、不純物含有量の測定と同様に、ターゲットの17個所の位置からそれぞれ試験片を採取し、各試験片の表面をHF:HNO3:H2O=1:1:1のエッチング液でエッチングした後、光学顕微鏡で組織観察を行う。この光学顕微鏡写真上に既知の面積の円を描き、円内に完全に含まれる結晶粒の個数(個数A)と、円周により切断される結晶粒の個数(個数B)とを数える。測定倍率は円の中に完全に含まれる結晶粒の個数が30個以上となるように設定することが好ましい。円内の結晶粒の総数Nは、個数A+個数B/2とする。この円内の結晶粒の総数Nと円の面積Aから、A/Nにより結晶粒1個当りの平均面積を求め、この平均面積の直径を平均粒径とする。
このようにして各試験片(計17個)の平均粒径を求め、これらの値の平均値を本発明のスパッタリングターゲットの平均結晶粒径とする。さらに、平均結晶粒径のばらつきについては、上記した各試験片(計17個)の平均粒径の最大値と最小値から、{(最大値−最小値)/(最大値+最小値)}×100(%)に基づいて求めるものとする。
上述した第1のTi−Al合金ターゲットは、例えば以下に示す製造方法を適用することにより再現性よく得ることができる。まず、3N以上の高純度Ti材と4N以上の高純度Al材とを用意し、これらを所望の組成比となるように秤量した後、例えば1×10-2Pa以下の真空下で溶解し、所望組成のTi−Al母合金(Ti1-xAlx(x=0.05〜0.5))を作製する。Ti原料およびAl原料の溶解には、真空アーク溶解法、EB溶解法、コールドクルーシブ溶解法などを適用することが好ましく、これら真空溶解時の雰囲気を1×10-2Pa以下とすることによって、酸素、窒素、炭素などのガス成分量を十分に低減することができる。
次いで、上述したTi−Al母合金を回転電極法により粉体化する。言い換えると、回転電極法を適用して所望組成のTi−Al合金粉末を作製する。回転電極法によれば、真空溶解により得たガス成分量(酸素、窒素および炭素の各含有量)が少ないTi−Al母合金の特性を維持しつつ、所望粒径のTi−Al合金粉末を得ることができる。回転電極法によるTi−Al合金粉末の粒子径は500μm以下とすることが好ましい。Ti−Al合金粉末の粒子径が500μmを超えると、その後の焼結工程において十分に高密度化できないおそれがある。
次に、このようなTi−Al合金粉末をホットプレス、HIP、プラズマ放電焼結などを適用して焼結して、ターゲット素材としてのTi−Al合金の焼結体を作製する。Ti−Al合金粉末の焼結は、真空中にて1000〜1500℃の温度で3時間以上行うことが好ましい。焼結温度が1000℃未満であったり、また焼結時間が3時間未満であると、十分に高密度な焼結体を得ることができず、また焼結体中のガス成分量も増加するおそれがある。一方、焼結温度が1500℃を超えるとTi−Al合金の結晶が異常成長し、焼結体の平均結晶粒径が粗大化したり、また平均結晶粒径のばらつきも大きくなる。さらに、ガス成分やMg、Mn、Siなどの含有量のばらつきにも悪影響を及ぼす。
そして、上述したようなターゲット素材(Ti−Al合金の焼結材)を所望のターゲット形状に機械加工し、Al、Cu、もしくはこれらの合金などからなるバッキングプレートと接合することによって、目的とするスパッタリングターゲット(Ti−Al合金ターゲット)が得られる。すなわち、焼結体からなるターゲット素材を用いた上で、酸素、窒素および炭素の各ガス成分量を十分に低減すると共に、それらの含有量のばらつきを抑制したTi−Al合金ターゲットを再現性よく得ることが可能となる。
なお、ターゲットとバッキングプレートとの接合には拡散接合やろう付け接合などが採用される。ろう付け接合は、公知のIn系やSn系の接合材(ろう材)を用いて実施することが好ましい。また、Al系のバッキングプレートを用いる場合には、ろう付け温度は600℃以下とする。これはAlの融点が660℃であり、600℃を超えると塑性変形が生じやすくなるためである。また、別個のバッキングプレートを使用するのではなく、ターゲットの作製時にバッキングプレート形状を同時に形成した一体型のスパッタリングターゲットであってもよい。
本発明における第2のスパッタリングターゲットは、前述したAl組成を有するTi−Al合金ターゲットにおいて、Zr含有量およびHf含有量をそれぞれ100ppb以下としたものである。このような第2のTi−Al合金ターゲットにおいては、ターゲット全体としてのZr含有量およびHf含有量のばらつきをそれぞれ20%以下とすることが好ましい。第2のTi−Al合金ターゲットは、Ti−Al合金の溶解材を具備する溶解ターゲットに対して特に効果を発揮するものである。
すなわち、従来のTi−Al合金の溶解インゴットに熱間加工を施した際にワレやカケなどが発生した部分について、EPMAやSIMS、さらにGDMSなどの種々の手法を用いて正常部と比較したところ、ワレやカケなどが発生した部分は正常部と比較してZrおよびHfの含有量が大きく異なることを見出した。ZrおよびHfはTiと同じ4A族元素であり、Tiと親和性を有することから、Ti材中に不純物として存在しやすい。このようなZrやHfがTi−Al合金の溶解インゴット中に比較的高濃度に存在していると、これらが粒界部に集中して析出することから、熱間加工時にワレやカケなどが発生しやすくなる。
そこで、第2のTi−Al合金ターゲットにおいては、例えば熱間加工を施すTi−Al合金の溶解インゴット中のZr含有量およびHf含有量、ひいてはTi−Al合金ターゲット中のZr含有量およびHf含有量をそれぞれ100ppb以下としている。ZrおよびHfの含有量をそれぞれ100ppb以下としたTi−Al合金材を使用することによって、熱間加工時のワレやカケなどの発生を抑制することが可能となる。言い換えると、Ti−Al合金材中のZrやHfの含有量が100ppbを超えると、熱間加工時にワレやカケが多数発生し、Ti−Al合金ターゲットの製造歩留りが大幅に低下する。ZrおよびHfの含有量はそれぞれ50ppb以下とすることがさらに好ましい。
また、Ti−Al合金材中のZrおよびHfの含有量にばらつきが生じている場合にも、熱間加工時にワレやカケなどが発生しやすく、特にTi−Al合金材の外周部に局所的にワレが生じやすくなる。このような現象はターゲット全体としてのばらつきが20%を超えると顕著になるため、第2のTi−Al合金ターゲットではZrおよびHfの含有量のばらつきをそれぞれ20%以下とすることが好ましい。これらZrやHfの含有量のばらつきはそれぞれ10%以下とすることがより好ましい。なお、第2のTi−Al合金ターゲットにおいて、ZrやHfの含有量とそれらのばらつきは、第1のTi−Al合金ターゲットにおけるガス成分量とそのばらつきと同様にして求めるものとする。
さらに、第2のTi−Al合金ターゲットにおいても、ガス成分量(酸素、窒素、炭素)とそのばらつき、またTi−Al合金の平均結晶粒径とそのばらつきを、第1のTi−Al合金ターゲットと同様に制御することが好ましい。これらによって、ダストの発生を抑制することが可能となると共に、得られる薄膜の特性や膜厚の面内均一性などを高めることができる。
本発明における第3のスパッタリングターゲットは、前述したAl組成を有するTi−Al合金ターゲットにおいて、Cu含有量を10ppm以下およびAg含有量を1ppm以下としたものである。このような第3のTi−Al合金ターゲットにおいては、ターゲット全体としてのCu含有量およびAg含有量のばらつきをそれぞれ30%以下とすることが好ましい。第3のTi−Al合金ターゲットは、Ti−Al合金の溶解材および焼結材のいずれを具備するターゲットに対しても効果を発揮するものである。
すなわち、CuおよびAgは周期律表の中でも最も高いイオン化率を示す元素である。このような元素がTi−Al合金ターゲット中に比較的高濃度に存在していると、スパッタ成膜時にこれらの元素(CuおよびAg)自体がイオン化してターゲットに戻り、自己維持放電を引き起こすことになる。このような自己維持放電が起こると、長時間成膜時にプラズマが不安定な状態となったり、また異常放電を誘発してダストの発生量などを増加させる。
そこで、第3のTi−Al合金ターゲットにおいては、Cu含有量を10ppm以下およびAg含有量を1ppm以下としている。このようなTi−Al合金ターゲットを用いることによって、長時間連続成膜時のプラズマ状態を安定化させることができると共に、異常放電によるダストの発生などを抑制することが可能となる。言い換えると、Ti−Al合金ターゲット中のCu含有量が10ppmを超えると、連続放電に悪影響を及ぼし、異常放電が増加して突発ダストが多数発生する。Ag含有量が1ppmを超える場合も同様である。Ti−Al合金ターゲット中のCu含有量は5ppm以下とすることがさらに好ましく、またAg含有量は500ppb以下とすることがさらに好ましい。
また、Ti−Al合金ターゲット中のCuおよびAgの含有量にばらつきが生じている場合には、得られる薄膜の膜厚や比抵抗などの特性の均一性が損なわれるおそれが大きくなるため、第3のTi−Al合金ターゲットにおいてはCuおよびAgの含有量のばらつきをそれぞれ30%以下とすることが好ましい。これら元素の含有量のばらつきはそれぞれ15%以下とすることがより好ましい。なお、第3のTi−Al合金ターゲットにおいて、CuやAgの含有量とそれらのばらつきは、第1のTi−Al合金ターゲットにおけるガス成分量とそのばらつきと同様にして求めるものとする。
さらに、第3のTi−Al合金ターゲットにおいても、ガス成分量(酸素、窒素、炭素)とそのばらつき、またTi−Al合金の平均結晶粒径とそのばらつきを、第1のTi−Al合金ターゲットと同様に制御することが好ましい。これらによって、ダストの抑制効果や薄膜の特性の均一性などをより一層高めることが可能となる。加えて、第3のTi−Al合金ターゲットに溶解材を適用する場合には、ZrおよびHfの各含有量とそのばらつきを、第2のTi−Al合金ターゲットと同様に制御することが好ましい。これらによって、ターゲットの製造歩留りを高めることができる。
上述した第2および第3のTi−Al合金ターゲットは、例えば以下に示す製造方法を適用することにより再現性よく得ることができる。ここでは、溶解ターゲットについて主として説明する。
まず、4N以上の高純度Ti材(例えば針状Ti)を用意し、これを例えばEB溶解する。この際、EB溶解の真空チャンバ内を1×10-5Pa以下の真空雰囲気とすることが好ましく、さらにEB溶解は3回以上繰り返し行うことが好ましい。このような条件下でEB溶解を行うことで、Ti材中のZrやHf、またCuやAgの含有量を所定値以下とすることができる。特に、ZrやHfはTiからの分離が難しいことから、例えばEB溶解の繰り返し回数を5回以上とすることが好ましい。
一方、Al材についてはZrやHfの含有量のみを低減する場合には市販の4N以上のAl材をそのまま用いてもよいが、CuやAgの含有量を低減する場合には4N以上のAl材を例えばゾーンリファイニング法を用いて3回以上処理することが好ましい。このような処理を適用することにより、CuやAgの含有量を所定値以下とすることができる。
次いで、上述したような処理を施したTi材とAl材を所望の組成比となるように秤量した後、例えば真空アーク溶解法、EB溶解法、コールドクルーシブ溶解法などを適用して溶解し、所望組成のTi−Al母合金(Ti1-xAlx(x=0.05〜0.5))のインゴットを作製する。インゴットのサイズは直径100〜300mmの範囲とすることが好ましい。ここで、真空溶解に用いられるるつぼはCuが主流であるが、Cuるつぼを用いると溶解された鋳塊が凝固していく過程で、鋳塊の表面にCuるつぼからわずかにCuが拡散するおそれがある。このようなCuの拡散を防ぐためには、Auるつぼを使用することが好ましい。
なお、第3のTi−Al合金ターゲットに焼結ターゲットを適用する場合には、上述したようなTi−Al合金インゴットを回転電極法により粉末化し、このTi−Al合金粉末を前述したような方法で焼結することによって、焼結材からなる第3のTi−Al合金ターゲットを得ることができる。
次に、得られたTi−Al合金インゴットに対して、熱間鍛造や圧延などの塑性加工を施す。ZrやHfの含有量を低減したTi−Al合金インゴットを使用することによって、熱間加工時のワレやカケの発生を抑制することが可能となる。また、この際の加工率は50〜98%の範囲とすることが好ましい。さらに、ZrやHfの含有量、またCuやAgの含有量のばらつきを制御する上で、熱間加工時の熱処理温度と保持時間が重要となる。具体的には、熱処理温度は1100〜1500℃の範囲とすることが好ましく、またそのような温度での保持時間は3時間以上とすることが好ましい。
すなわち、熱間加工時の熱処理温度が1100℃未満であると、塑性加工の最中にワレやカケなどが生じやすくなってしまう。一方、熱処理温度が1500℃を超えると、Ti−Al合金の結晶粒径が粗大化してしまい、ターゲットに要求される特性として重要な平均結晶粒径を十分に制御することができなくなる。さらに、拡散係数が高いCuやAgが素材表面部に積極的に現れるようになるため、これらの含有量のばらつきが大きくなりやすくなる。
このようにして作製したターゲット素材としてのTi−Al合金材(溶解・加工材)に1000〜1500℃の温度で2時間以上の熱処理を施し、Ti−Al合金を再結晶化させる。再結晶化のための熱処理温度は、結晶粒の粗大化を抑制する上で1000〜1500℃の範囲とすることが好ましい。そして、熱処理後のTi−Al合金材を所望のターゲット形状に機械加工した後、Al、Cu、もしくはこれらの合金などからなるバッキングプレートと接合することによって、目的とするスパッタリングターゲット(Ti−Al合金ターゲット)が得られる。
すなわち、溶解・加工材からなるターゲット素材を用いた上で、熱間加工時のワレやカケなどの発生を抑制することができるため、Ti−Al合金ターゲットの製造歩留りを大幅に高めることが可能となる。さらには、CuやAgの含有量を十分に低減すると共に、それらの含有量のばらつきを抑制したTi−Al合金ターゲットを再現性よく得ることができる。バッキングプレートとの接合には、前述した方法が適用される。
なお、本発明のスパッタリングターゲット(Ti−Al合金ターゲット)中の上述した各元素以外の不純物元素については、一般的な高純度金属材のレベル程度であれは多少含んでいてもよい。Ti−Al合金ターゲットの純度は、[100−(Fe,Ni,Cr,Na,K,U,Thの合計含有量)]×100(%)で表される純度が99.9%以上であることが好ましい。
本発明のスパッタリングターゲット(Ti−Al合金ターゲット)は、例えばTi−Al−N膜(Ti1-xAlxN膜(0.05≦x≦0.5))の成膜に用いられるものである。このようなTi−Al−N膜は、本発明のTi−Al合金ターゲットを用いて、例えばArとN2の混合ガス中で反応性スパッタを行うことで得ることができる。得られるTi−Al−N膜は拡散防止層としての特性に優れると共に、ダストの混入数も大幅に低減されたものとなる。すなわち、本発明のTi−Al合金ターゲットを用いることによって、特性および品質に優れる拡散防止層(Ti−Al−N膜)を歩留りよく得ることができる。
上述したTi−Al−N膜は、酸素をはじめとする各種元素に対するバリア特性、特に高温下でのバリア特性に優れ、かつ抵抗率が200μΩ・cm以下というような低抵抗を有する。従って、このようなTi−Al−N膜を半導体基板と各種素子との間の拡散防止層として用いることによって、例えば高温アニール(例えば600℃以上)による酸素や他の元素の相互拡散を防ぐことができる。また、Ti−Al−N膜自体の酸化も防ぐことができるため、素子構成層との界面での付着力の低下を抑えることが可能となる。すなわち、素子構成層の剥がれなどを抑制することができる。
上述したTi−Al−N膜は、半導体基板に対する拡散防止層として好適である。具体的には、スイッチ用トランジスタを形成した半導体基板とペロブスカイト型酸化物からなる誘電体薄膜を用いた薄膜キャパシタ(メモリセル)とを組合せた、FeRAMやDRAMなどの半導体メモリに対して特に有効である。
図1は本発明のTi−Al合金ターゲットを用いて成膜したTi−Al−N膜を拡散防止層として具備する電子部品(FeRAMやDRAMなどの半導体メモリ)の一構成例を示す断面図である。同図において、1は図示を省略したスイッチ用トランジスタが形成された半導体基板(Si基板)であり、図示しないスイッチ用トランジスタに電気的に接続されたWプラグ2を有している。この半導体基板1上には拡散防止層として、上述した本発明のスパッタリングターゲットを用いて形成したTi−Al−N膜3が形成されており、さらにその上に薄膜キャパシタ4が形成されている。
薄膜キャパシタ4は、Ti−Al−N膜3上に順に形成された下部電極5、誘電体薄膜6および上部電極7を有している。下部電極5には、Pt、Au、Pd、Ir、Rh、Re、Ruなどの貴金属、およびそれらの合金(Pt−RhやPt−Ruなど)、あるいはSrRuO3、CaRuO3、BaRuO3およびこれらの固溶系(例えば(Ba,Sr)RuO3や(Sr,Ca)RuO3)などの導電性ペロブスカイト型酸化物が使用される。上部電極7の構成材料は特に限定されるものではないが、下部電極5と同様に貴金属(合金を含む)や導電性ペロブスカイト型酸化物などを使用することが好ましい。
誘電体薄膜6としては、ペロブスカイト型結晶構造を有する誘電性材料が好適である。このような誘電性材料としては、ABO3で表されるペロブスカイト型酸化物が挙げられる。特に、チタン酸バリウム(BaTiO3(BTO))や、このBTOのAサイト元素(Ba)の一部をSrやCaなどの元素で置換したり、またBサイト元素(Ti)の一部をZr、Hf、Snなどの元素で置換したペロブスカイト型酸化物(BSTOなど)が好ましく用いられる。
なお、誘電体薄膜6にはBTOやBSTO以外のペロブスカイト型酸化物、例えばSrTiO3、CaTiO3、BaSnO3、BaZrO3などの単純ぺロブスカイト型酸化物、Ba(Mg1/3Nb2/3)O3、Ba(Mg1/3Ta2/3)O3などの複合ぺロブスカイト型酸化物、およびこれらの固溶系などを適用することも可能である。ぺロブスカイト型酸化物の組成については、化学量論比からの多少のずれは許容されることは言うまでもない。
このような半導体メモリにおいては、バリア特性および耐酸化性に優れるTi−Al−N膜3からなる拡散防止層によって、半導体基板1上にその特性を低下させることなく薄膜キャパシタ4を良好に形成することができる。特に、薄膜キャパシタ4の下部電極5とTi−Al−N膜3との間の剥離、またTi−Al−N膜3とWプラグ2との間の剥離などを良好に抑制することができる。Ti−Al−N膜3の膜厚は、拡散防止効果が得られる範囲内で薄い方がよく、具体的には10〜50nmの範囲とすることが好ましい。
次に、本発明の具体的な実施例およびその評価結果について説明する。
実施例1
まず、4N5のTi材と4NのAl材を用意し、これらをTi−30原子%Al組成の配合となるように秤量した。次いで、これらを1×10-2Pa以下の真空中で真空アーク溶解法により溶解し、直径80mmのTi−Al合金インゴットを作製した。このTi−Al合金インゴットを直径70mm×長さ100mmの電極材に加工した後、この電極材を用いて回転電極法(回転数:8000rpm以上)によって、平均粒子径が300μmのTi−Al合金粉末を作製した。
次に、上記したTi−Al合金粉末を内径130mmのカーボンモールドに充填し、ホットプレス装置を用いて焼結した。ホットプレス焼結は、真空中にて1200℃×5時間、昇温速度10℃/min、圧力25MPaの条件下で実施した。このようにして得たTi−Al合金の焼結体を機械加工した後、Al製バッキングプレートとろう付け接合し、さらに機械加工を施すことによって、直径127mm×厚さ5mmのTi−Al合金ターゲットを得た。
このようにして得たTi−Al合金ターゲットの酸素、窒素、炭素の各含有量とそれらのばらつき、Mg、Mn、Siの各含有量とそれらのばらつきを測定した。測定方法は前述した通りである。測定装置は、酸素および窒素についてはLECO社製TC−436、炭素についてはLECO社製CS444、Mg、MnおよびSiについてはセイコー電子工業社製SPS−1200Aを用いた。さらに、Ti−Al合金ターゲットの平均結晶粒径とそのばらつきを測定、評価した。測定方法は前述した通りである。これらの結果を表1および表2に示す。そして、このTi−Al合金ターゲットを後述する特性評価に供した。
実施例2
まず、3N5のTi材と4NのAl材を用意し、これらをTi−45原子%Al組成の配合となるように秤量した。次いで、これらを1×10-2Pa以下の真空中でコールドクルーシブ法により溶解し、直径80mmのTi−Al合金インゴットを作製した。このTi−Al合金インゴットを直径70mm×長さ100mmの電極材に加工した後、この電極材を用いて回転電極法(回転数:10000rpm以上)によって、平均粒子径が150μmのTi−Al合金粉末を作製した。
次に、上記したTi−Al合金粉末を内径130mmのカーボンモールドに充填し、ホットプレス装置を用いて焼結した。ホットプレス焼結は、真空中にて1400℃×5時間、昇温速度10℃/min、圧力30MPaの条件下で実施した。このようにして得たTi−Al合金の焼結体を機械加工した後、Al製バッキングプレートとろう付け接合し、さらに機械加工を施すことによって、直径127mm×厚さ5mmのTi−Al合金ターゲットを得た。
このようにして得たTi−Al合金ターゲットの酸素、窒素、炭素の各含有量とそれらのばらつき、Mg、Mn、Siの各含有量とそれらのばらつきを測定した。測定方法は前述した通りである。さらに、Ti−Al合金ターゲットの平均結晶粒径とそのばらつきを測定、評価した。測定方法は前述した通りである。これらの結果を表1および表2に示す。そして、このTi−Al合金ターゲットを後述する特性評価に供した。
実施例3
まず、2N5のTi材と3NのAl材を用意し、これらをTi−35原子%Al組成の配合となるように秤量した。次いで、これらを1×10-2Pa以下の真空中で真空アーク溶解法により溶解し、直径80mmのTi−Al合金インゴットを作製した。このTi−Al合金インゴットを直径70mm×長さ100mmの電極材に加工した後、この電極材を用いて回転電極法(回転数:5000rpm以上)によって、平均粒径が450μmのTi−Al合金粉末を作製した。
次に、上記したTi−Al合金粉末を内径130mmのカーボンモールドに充填し、ホットプレス装置を用いて焼結した。ホットプレス焼結は、真空中にて1700℃×5時間、昇温速度10℃/min、圧力25MPaの条件下で実施した。このようにして得たTi−Al合金の焼結体を機械加工した後、Al製バッキングプレートとろう付け接合し、さらに機械加工を施すことによって、直径127mm×厚さ5mmのTi−Al合金ターゲットを得た。
このようにして得たTi−Al合金ターゲットの酸素、窒素、炭素の各含有量とそれらのばらつき、Mg、Mn、Siの各含有量とそれらのばらつきを測定した。測定方法は前述した通りである。さらに、Ti−Al合金ターゲットの平均結晶粒径とそのばらつきを測定、評価した。測定方法は前述した通りである。これらの結果を表1および表2に示す。そして、このTi−Al合金ターゲットを後述する特性評価に供した。
比較例1
まず、粉末冶金法によりTi−30原子%Al組成のTi−Al合金材を作製した。このTi−Al合金材を機械加工した後、Al製バッキングプレートとろう付け接合し、さらに機械加工を施すことによって、直径127mm×厚さ5mmのTi−Al合金ターゲットを得た。
このようにして得たTi−Al合金ターゲットの酸素、窒素、炭素の各含有量とそれらのばらつき、Mg、Mn、Siの各含有量とそれらのばらつきを測定した。測定方法は前述した通りである。さらに、Ti−Al合金ターゲットの平均結晶粒径とそのばらつきを測定、評価した。測定方法は前述した通りである。これらの結果を表1および表2に示す。そして、このTi−Al合金ターゲットを後述する特性評価に供した。
Figure 0005622914
Figure 0005622914
上述した実施例1〜3および比較例1による各Ti−Al合金ターゲットをそれぞれ用いて、4インチのSi基板上に反応性スパッタによりTi−Al−N膜を100nmの厚さで成膜した。スパッタガスにはAr10sccmとN220sccmの混合ガスを用い、またスパッタ条件は基板−ターゲット間距離:150mm、背圧:1×10-5Pa、DC出力:2kW、スパッタ時間:10minとした。このような条件下でスパッタ成膜した際のアーク発生回数、および得られた各Ti−Al−N膜の膜厚均一性とダスト数を測定、評価した。
アーク発生回数はマイクロアークカウンタを使用して測定した。ダスト数はダスト測定器WM3を用いて測定した。また、Ti−Al−N膜の膜厚均一性については、基板直径に対して端部から5mm間隔で膜厚を被覆段差計を用いて測定し、これらの値の最大値と最小値とから、[(最大膜厚−最小膜厚)/(最大膜厚+最小膜厚)×100(%)]の式に基づいて膜厚均一性を求めた。これらの結果を表3に示す。なお、各測定値は3枚のSi基板にスパッタ成膜した際の平均値である。
Figure 0005622914
表3から明らかなように、実施例1〜3によるTi−Al合金ターゲットは、いずれもアーク発生回数が少なく、またダストの発生数も比較例1に比べて大幅に低減されていることが分かる。また、実施例1〜3によるTi−Al合金ターゲットを用いて成膜したTi−Al−N膜は、いずれも膜厚の面内均一性に優れていることが分かる。
実施例4、比較例2
まず、Fe、Ni、Cr、CuおよびAgの各含有量を変化させた7種類のTi−Al合金インゴット(Ti−10原子%Al組成)を用意した。これらのTi−Al合金インゴットは、Ti材のEB溶解の回数やAl材のゾーンリファイニングの回数などを変化させることにより調整したものである。
次に、これらTi−Al合金インゴットに対して1100℃×3hrの熱処理を施した後、連続して熱間鍛造を行った。この後、再結晶化のために1100℃×2hrの条件で熱処理を施して、それぞれターゲット素材としてのTi−Al合金材を作製した。これら各ターゲット素材を機械加工した後、Al製バッキングプレートとろう付け接合し、さらに機械加工を施すことによって、直径300mm×厚さ5mmのTi−Al合金ターゲットをそれぞれ得た。
このようにして得た各Ti−Al合金ターゲットを用いて、実施例1と同一条件下でTi−Al−N膜をスパッタ成膜した。そして、このスパッタ成膜時におけるアーク発生回数と得られた各Ti−Al−N膜のダスト数を、実施例1と同様にして測定、評価した。これらの結果を表4に併せて示す。なお、各測定値は10枚のSi基板にスパッタ成膜した際の平均値である。
Figure 0005622914
表4から明らかなように、Cu含有量およびAg含有量が共に少ないTi−Al合金ターゲット(試料1〜5)は、いずれもアーク発生回数が少なく、またダストの発生数もCu含有量やAg含有量が多いTi−Al合金ターゲット(試料6〜7)に比べて大幅に低減されていることが分かる。
実施例5、比較例3
まず、CuおよびAgの含有量が異なる6種類のTi−Al合金インゴット(Ti−20原子%Al組成)を用意した。これらのTi−Al合金インゴットは、Ti材のEB溶解の回数やAl材のゾーンリファイニングの回数、さらにるつぼの材質などを変化させることにより調整したものである。また、必要に応じてCuやAgを添加して含有量やばらつきを調整した。
次に、これらTi−Al合金インゴットに対して1100℃×3hrの熱処理を施した後、連続して熱間鍛造を行った。この後、再結晶化のために1100℃×2hrの条件で熱処理を施して、それぞれターゲット素材としてのTi−Al合金材を作製した。これら各ターゲット素材を機械加工した後、Al製バッキングプレートとろう付け接合し、さらに機械加工を施すことによって、直径300mm×厚さ5mmのTi−Al合金ターゲットをそれぞれ得た。
このようにして得た各Ti−Al合金ターゲットのCu、Agの各含有量とそれらのばらつきを測定した。測定方法は前述した通りである。次に、各Ti−Al合金ターゲットを用いて、実施例1と同一条件下でTi−Al−N膜をスパッタ成膜した。そして、スパッタ成膜時におけるアーク発生回数と得られた各Ti−Al−N膜のダスト数および膜厚の面内均一性を、実施例1と同様にして測定、評価した。これらの測定、評価結果を表5に示す。なお、各評価結果は10枚のSi基板にスパッタ成膜した際の平均値である。
Figure 0005622914
表5から明らかなように、Cu含有量およびAg含有量が共に少ないと共に、それらのばらつきが小さいTi−Al合金ターゲットによれば、ダストの発生数を低減することが可能であると共に、膜厚の面内均一性に優れるTi−Al−N膜が再現性よく得られることが分かる。
実施例6、比較例4
まず、数種の純度が異なる針状Ti(3N材、3N5材、4N材)と4NのAl材を用意した。Ti材については、用意した針状TiのEB溶解の回数を変化させ、数種類のTi鋳塊を作製した。このようなTi材とAl材をTi−10原子%Al組成の配合となるように秤量した。次いで、これらを1×10-2Pa以下の真空中でコールドクルーシブ法により溶解し、Ti−Al合金インゴットを作製した。
次に、これらTi−Al合金インゴットに対して1100℃×3hrの熱処理を施した後、連続して熱間鍛造を行った。熱間鍛造後に、合金材のワレおよびカケの状態を目視で確認、評価した。ワレおよびカケの評価結果は、10〜30mmのワレやカケがあるものを×、1〜10mmのワレやカケがあるものを△、ワレやカケが1mm以下のものを○として表6に示した。さらに、熱間鍛造後のTi−Al合金素材の重量測定を行った。
外観を確認したTi−Al合金材に1100℃×2hrの条件で熱処理(再結晶化熱処理)を施した後、機械加工を行うことによって、直径300mm×厚さ10mmのTi−Al合金ターゲットをそれぞれ得た。このようにして得た各Ti−Al合金ターゲットの重量を測定した。そして、ターゲット重量とインゴット重量から、ターゲット歩留り(ターゲット重量/インゴット重量×100%)をそれぞれ求めた。これらの結果を表6に示す。
Figure 0005622914
表6から明らかなように、Zr含有量およびHf含有量を本発明の範囲内としたTi−Al合金ターゲットは、いずれも熱間加工時にワレやカケの発生が少なく、その結果としてターゲット歩留りが高いことが分かる。
1……半導体基板,2……Wプラグ,3……Ti−Al−N膜,4……薄膜キャパシタ,5……下部電極,6……誘電体薄膜,7……上部電極

Claims (7)

  1. 純度が99.95%以上のTi材を真空雰囲気中にて3回以上繰り返し電子ビーム溶解する工程と、
    前記電子ビーム溶解したTi材と純度が99.99%以上のAl材とを、Alを5〜50原子%の範囲で含有するTi−Al合金となるように秤量する工程と、
    前記Ti材および前記Al材を溶解し、Alを5〜50原子%の範囲で含有するTi−Al合金インゴットを作製する工程と、
    前記Ti−Al合金インゴットを熱間加工する工程と、
    前記Ti−Al合金の熱間加工材を所望のターゲット形状に加工する工程とを具備し、
    Alを5〜50原子%の範囲で含有し、Zr含有量およびHf含有量がそれぞれ100ppb以下であり、かつターゲット全体としての前記Zr含有量およびHf含有量のばらつきがそれぞれ20%以下であるTi−Al合金ターゲットを製造することを特徴とするスパッタリングターゲットの製造方法。
  2. 請求項1記載のスパッタリングターゲットの製造方法において、
    前記熱間加工工程は、前記Ti−Al合金インゴットを1100〜1500℃の温度で3時間以上熱処理した後に、連続して熱間鍛造または熱間圧延する工程を備えることを特徴とするスパッタリングターゲットの製造方法。
  3. 請求項1または請求項2記載のスパッタリングターゲットの製造方法において、
    さらに、前記Ti−Al合金の熱間加工材を1000〜1500℃の温度で2時間以上熱処理する工程を具備することを特徴とするスパッタリングターゲットの製造方法。
  4. 請求項1ないし請求項3のいずれか1項記載のスパッタリングターゲットの製造方法により製造された前記Ti−Al合金ターゲットを用いて、Ti−Al−N膜を成膜することを特徴とするTi−Al−N膜の製造方法。
  5. 請求項1ないし請求項3のいずれか1項記載のスパッタリングターゲットの製造方法により製造された前記Ti−Al合金ターゲットを用いて、Ti−Al−N膜を成膜する工程を具備することを特徴とする電子部品の製造方法。
  6. 請求項5記載の電子部品の製造方法において、
    前記Ti−Al−N膜は拡散防止層であることを特徴とする電子部品の製造方法。
  7. 請求項5または請求項6記載の電子部品の製造方法において、
    前記電子部品は半導体メモリであることを特徴とする電子部品の製造方法。
JP2013219953A 2013-10-23 2013-10-23 スパッタリングターゲットの製造方法、Ti−Al−N膜の製造方法、および電子部品の製造方法 Expired - Lifetime JP5622914B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013219953A JP5622914B2 (ja) 2013-10-23 2013-10-23 スパッタリングターゲットの製造方法、Ti−Al−N膜の製造方法、および電子部品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219953A JP5622914B2 (ja) 2013-10-23 2013-10-23 スパッタリングターゲットの製造方法、Ti−Al−N膜の製造方法、および電子部品の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011082885A Division JP5526072B2 (ja) 2011-04-04 2011-04-04 スパッタリングターゲットとそれを用いたTi−Al−N膜および電子部品の製造方法

Publications (2)

Publication Number Publication Date
JP2014074230A JP2014074230A (ja) 2014-04-24
JP5622914B2 true JP5622914B2 (ja) 2014-11-12

Family

ID=50748575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219953A Expired - Lifetime JP5622914B2 (ja) 2013-10-23 2013-10-23 スパッタリングターゲットの製造方法、Ti−Al−N膜の製造方法、および電子部品の製造方法

Country Status (1)

Country Link
JP (1) JP5622914B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110863119B (zh) * 2019-11-27 2021-04-09 湖南金天钛业科技有限公司 一种提高tc17钛合金铸锭质量的熔炼方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921799B2 (ja) * 1990-02-15 1999-07-19 株式会社 東芝 半導体素子形成用高純度スパッタターゲットの製造方法
JP2919309B2 (ja) * 1995-08-07 1999-07-12 株式会社住友シチックス尼崎 ターゲット用高純度チタン材、ターゲットおよびこれを用いて形成される薄膜
JP2000100755A (ja) * 1998-09-25 2000-04-07 Mitsubishi Materials Corp 半導体装置のバリア膜形成用Ti−Al合金スパッタリングターゲット
JP2000273623A (ja) * 1999-03-29 2000-10-03 Japan Energy Corp Ti−Al合金スパッタリングターゲット
JP4203180B2 (ja) * 1999-05-25 2008-12-24 株式会社神戸製鋼所 Ti−Al合金スパッタリングターゲット及びその製造方法
JP2000355760A (ja) * 1999-06-14 2000-12-26 Toshiba Corp スパッタターゲット、バリア膜および電子部品

Also Published As

Publication number Publication date
JP2014074230A (ja) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5487182B2 (ja) スパッタターゲット
TWI245806B (en) Thin film aluminum alloy and sputtering target to form the same
JP5329726B2 (ja) 高純度銅マンガン合金スパッタリングターゲット
WO1995016797A1 (en) Molybdenum-tungsten material for wiring, molybdenum-tungsten target for wiring, process for producing the same, and molybdenum-tungsten wiring thin film
JP2015061943A (ja) 高純度銅マンガン合金スパッタリングターゲット
CN101691657A (zh) Al-基合金溅射靶及其制造方法
JP2010502841A (ja) 非常に小さな結晶粒径と高エレクトロマイグレーション抵抗とを有する銅スパッタリングターゲットおよびそれを製造する方法
JP5442868B2 (ja) スパッタリングターゲット及び/又はコイル並びにこれらの製造方法
WO2009134771A1 (en) Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof
JP5638697B2 (ja) 高純度銅クロム合金スパッタリングターゲット
WO2019221257A1 (ja) 積層膜、及び、Ag合金スパッタリングターゲット
WO2000000661A1 (fr) Cible de vaporisation
KR102588050B1 (ko) 은 합금-기반 스퍼터링 표적
WO2014021173A1 (ja) Cu合金薄膜形成用スパッタリングターゲットおよびその製造方法
JP5526072B2 (ja) スパッタリングターゲットとそれを用いたTi−Al−N膜および電子部品の製造方法
JP5622914B2 (ja) スパッタリングターゲットの製造方法、Ti−Al−N膜の製造方法、および電子部品の製造方法
JP5389093B2 (ja) スパッタリングターゲットとそれを用いたTi−Al−N膜および電子部品の製造方法
JP5886473B2 (ja) Ti−Al合金スパッタリングターゲット
JP4820507B2 (ja) スパッタリングターゲットとその製造方法、およびそれを用いたTi−Al−N膜と電子部品の製造方法
JP4203180B2 (ja) Ti−Al合金スパッタリングターゲット及びその製造方法
JP2019131850A (ja) 積層膜、及び、Ag合金スパッタリングターゲット
JP4286367B2 (ja) スパッタリングターゲット、配線膜および電子部品
JP2005340418A (ja) ヒロック発生のない白金合金膜およびその白金合金膜を形成するためのスパッタリングターゲット

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R151 Written notification of patent or utility model registration

Ref document number: 5622914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

EXPY Cancellation because of completion of term