WO2017197548A1 - 甲醇或二甲醚转化制芳烃催化剂及其原位合成方法与应用 - Google Patents

甲醇或二甲醚转化制芳烃催化剂及其原位合成方法与应用 Download PDF

Info

Publication number
WO2017197548A1
WO2017197548A1 PCT/CN2016/082165 CN2016082165W WO2017197548A1 WO 2017197548 A1 WO2017197548 A1 WO 2017197548A1 CN 2016082165 W CN2016082165 W CN 2016082165W WO 2017197548 A1 WO2017197548 A1 WO 2017197548A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methanol
dimethyl ether
microsphere
water
Prior art date
Application number
PCT/CN2016/082165
Other languages
English (en)
French (fr)
Inventor
黄晓凡
崔宇
汤效平
王彤
骞伟中
魏飞
高长平
管春峰
丁焕德
Original Assignee
华电煤业集团有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华电煤业集团有限公司, 清华大学 filed Critical 华电煤业集团有限公司
Priority to PCT/CN2016/082165 priority Critical patent/WO2017197548A1/zh
Publication of WO2017197548A1 publication Critical patent/WO2017197548A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons

Definitions

  • the invention relates to an aromatic hydrocarbon catalyst for conversion of methanol or dimethyl ether and an in-situ synthesis method and application thereof, and belongs to the technical field of preparation of aromatic hydrocarbons.
  • Aromatic hydrocarbons mainly include benzene, toluene and xylene (abbreviated as BTx), which are important basic chemical raw materials, and their output and scale are second only to ethylene and propylene.
  • Aromatic hydrocarbons are the key raw materials for the production of chemical fiber, engineering plastics and high-performance plastics.
  • the traditional aromatics production route is mainly based on catalytic reforming and pyrolysis gasoline. The disadvantage is that it relies heavily on petroleum. China's oil resources are facing an increasingly serious shortage, which has seriously threatened China's energy security. Compared with petroleum resources, China's coal resources are relatively abundant. Converting coal into methanol or dimethyl ether to produce aromatics products is of great significance to alleviating China's oil crisis and implementing energy substitution strategies.
  • the metal-modified ZSM-5 molecular sieve is used for the aromatization reaction of methanol, the carbon deposition of the catalyst is fast, so the fluidized bed process is adopted, and timely regeneration is the preferred process.
  • the Fluidized Bed Methanol Aromatics Technology jointly developed by Huadian Coal Industry Group Co., Ltd. and Tsinghua University completed the first 10,000-ton industrial test in the world.
  • the methanol-to-aromatic process using a fluidized bed mode of operation requires the catalyst to be a microsphere having a suitable particle size distribution and high wear strength.
  • the microsphere catalyst is prepared by spray granulation in the industry.
  • the preparation method comprises first mixing the modified ZSM-5 molecular sieve with a binder (kaolin, aluminum sol, etc.) to form a uniform slurry, and then Prepared by spray drying.
  • an object of the present invention is to provide an in-situ synthesis method for converting a methanol or dimethyl ether to an aromatic hydrocarbon catalyst.
  • a further object of the present invention is to provide the use of the methanol or dimethyl ether to convert aromatics catalyst for the conversion of methanol or dimethyl ether to aromatic hydrocarbons.
  • the present invention provides a method for in situ synthesis of a catalyst for converting methanol or dimethyl ether to an aromatic hydrocarbon, comprising the steps of:
  • Step l mixing a silicon source, an aluminum source and water to prepare a mixed slurry, and then spray drying the mixed slurry to obtain microsphere particles containing silicon aluminum oxide;
  • Step 2 calcining the silicon-aluminum oxide-containing microsphere particles to obtain a microsphere catalyst carrier
  • Step 3 mixing the microsphere catalyst carrier, the templating agent, the first metal component precursor, the phosphorus modifier and the water obtained in the step 2 to prepare a mixed solution, and then performing constant temperature crystallization on the mixed solution; After completion, the solid product is separated; the solid product is washed with deionized water to neutrality, and then dried and calcined to obtain a microsphere catalyst containing ZSM-5 molecular sieve;
  • Step 4 The microsphere catalyst obtained in the step 3 is immersed in the second metal component precursor solution, and then dried and calcined to obtain a catalyst for converting the methanol or dimethyl ether into an aromatic hydrocarbon.
  • the silicon source described in step 1 comprises one or any of kaolin, silica sol, sodium silicate, water glass, active silica and tetraethyl orthosilicate. mixture.
  • the aluminum source according to step 1 comprises one or a mixture of any one of kaolin, aluminum sol, activated alumina, pseudoboehmite, aluminum nitrate and aluminum sulfate.
  • the content of silicon is SiO 2
  • the content of aluminum is measured by Al 2 O 3
  • the calcination described in step 2 is calcined at 800-1300 ° C for 1-10 h.
  • the templating agent described in step 3 comprises ethylenediamine, n-butylamine, ammonia One or a mixture of any of water, hexamethylene diamine and tetrapropylammonium hydroxide.
  • the first metal component precursor of step 3 comprises one of zinc, silver, gallium, antimony, cerium nitrate, phosphate, acetate and carbonate. kind or a mixture of any of several.
  • the phosphorus modifier according to step 3 comprises phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate and phosphorus oxides (both phosphorus trioxide and phosphorus pentoxide). One or any mixture of several.
  • the mass of the first metal component precursor is based on the corresponding first metal oxide, and the mass of phosphorus is in terms of P 2 O 5 , the mass ratio of the microsphere catalyst carrier, the template, the first metal oxide, P 2 O 5 and water in the mixed solution is 1: (0.1-0.5): (0-0.1): (0.001-0.1): ( 20-100).
  • the crystallization temperature in the step 3 is 160 to 240 ° C, and the crystallization time is 1 to 100 hours.
  • the drying described in step 3 is dried at 110-140 ° C for 3-24 h.
  • the calcination described in step 3 is calcined at 350-750 ° C for 1-10 h.
  • the second metal component precursor of step 4 comprises one of zinc, silver, gallium, antimony, cerium nitrate, phosphate, acetate and carbonate. kind or a mixture of any of several.
  • the mass of the second metal component precursor is based on the corresponding second metal oxide, and the mass ratio of the microsphere catalyst to the second metal oxide is l: (0-0.1).
  • the immersion time described in step 4 is from 1 to 24 h.
  • the drying described in step 4 is dried at 110-140 ° C for 3-24 h.
  • the calcination described in step 4 is calcined at 450-650 ° C for 1-10 h.
  • the first metal component and the second metal component are both active metal components of the catalyst, both of which are active metal components of the catalysts described herein, which are of equal importance, the first metal component, the second metal group
  • the lower limit value of the mass ratio range of the other corresponding components may be 0 because both the first metal component and the second metal component may be added in step 3 or step 4, respectively, or may be separately in batches. Step 3 and step 4 are added.
  • the first metal component and the second metal component may be added one kind or plural kinds when added.
  • the mass ratio of the microsphere catalyst carrier, the template, the first metal oxide, the P 2 O 5 and the water in the mixed solution described in the step 3 is 1: (0.1-0.5): (0 -0.1): (0.001-0.1): (20-100), in step 4, the mass ratio of the microsphere catalyst to the second metal oxide is l: (0-0.1);
  • the in-situ synthesis method of the catalyst for converting aromatic or hydrocarbons of methanol or dimethyl ether can be carried out according to the following steps:
  • Step l mixing a silicon source, an aluminum source and water to prepare a mixed slurry, and then spray drying the mixed slurry to obtain microsphere particles containing silicon aluminum oxide;
  • Step 2 calcining the silicon-aluminum oxide-containing microsphere particles to obtain a microsphere catalyst carrier
  • Step 3 mixing the microsphere catalyst carrier, the templating agent, the first metal component precursor, the phosphorus modifier and the water obtained in the step 2 to prepare a mixed solution, and then performing constant temperature crystallization on the mixed solution; After completion, the solid product is separated; the solid product is washed with deionized water to neutrality, and then dried and calcined to obtain a microsphere catalyst containing ZSM-5 molecular sieve;
  • Step 4 The microsphere catalyst obtained in the step 3 is immersed in the second metal component precursor solution, and then dried and calcined to obtain a catalyst for converting the methanol or dimethyl ether into an aromatic hydrocarbon.
  • This case is the case where the first metal component and the second metal component are added in batches in steps 3 and 4, respectively.
  • the in-situ synthesis method of the catalyst for converting aromatic or hydrocarbons of methanol or dimethyl ether can be carried out according to the following steps:
  • Step l mixing a silicon source, an aluminum source and water to prepare a mixed slurry, and then spray drying the mixed slurry to obtain microsphere particles containing silicon aluminum oxide;
  • Step 2 calcining the silicon-aluminum oxide-containing microsphere particles to obtain a microsphere catalyst carrier
  • Step 3 mixing the microsphere catalyst carrier, the templating agent, the phosphorus modifier and the water obtained in the step 2 to prepare a mixed solution, and then performing constant temperature crystallization on the mixed solution; after the crystallization is completed, separating the solid product; The solid product is washed with deionized water to neutrality, and then dried and calcined to obtain a microsphere catalyst containing ZSM-5 molecular sieve;
  • Step 4 The microsphere catalyst obtained in the step 3 is immersed in the second metal component precursor solution, and then After drying and calcination, a catalyst for converting the methanol or dimethyl ether to an aromatic hydrocarbon is obtained.
  • the in-situ synthesis method of the catalyst for converting aromatic or hydrocarbons of methanol or dimethyl ether can be carried out according to the following steps:
  • Step l mixing a silicon source, an aluminum source and water to prepare a mixed slurry, and then spray drying the mixed slurry to obtain microsphere particles containing silicon aluminum oxide;
  • Step 2 calcining the silicon-aluminum oxide-containing microsphere particles to obtain a microsphere catalyst carrier
  • Step 3 mixing the microsphere catalyst carrier, the templating agent, the first metal component precursor, the phosphorus modifier and the water obtained in the step 2 to prepare a mixed solution, and then performing constant temperature crystallization on the mixed solution; After completion, the solid product is separated; the solid product is washed with deionized water to neutrality, and then dried and calcined to obtain a microsphere catalyst containing ZSM-5 molecular sieve, thereby obtaining the conversion of the methanol or dimethyl ether to aromatic hydrocarbons. catalyst.
  • This case is the case where only the first metal component is added as the active metal component of the catalyst in step 3.
  • the present invention also provides a catalyst for converting methanol or dimethyl ether to aromatic hydrocarbons prepared by the in-situ synthesis method of the above-mentioned catalyst for converting aromatic hydrocarbons into methanol or dimethyl ether, which is a microsphere catalyst and has an average particle size.
  • the diameter is 10-300 ⁇ m and the specific surface area is 100-800 m 2 /g.
  • the invention also provides the use of a catalyst for the conversion of methanol or dimethyl ether to aromatics described above for the conversion of methanol or dimethyl ether to aromatic hydrocarbons.
  • the invention provides a method for in situ synthesis of a catalyst for converting methanol or dimethyl ether to aromatic hydrocarbons, comprising the following steps:
  • Step 1 mixing a silicon source, an aluminum source and water to prepare a mixed slurry, and preparing microsphere particles containing silicon aluminum oxide by spray drying;
  • Step 2 calcining the silicon-containing aluminum oxide microsphere particles to obtain a microsphere catalyst carrier
  • Step 3 preparing the microsphere catalyst carrier, the templating agent, the first metal component precursor, the phosphorus modifier and the water obtained in the step 2 into a mixed solution, and charging into a stainless steel synthetic kettle lined with polytetrafluoroethylene, heating At a crystallization temperature, an crystallization is performed at a constant temperature; after the crystallization is completed, the solid product is separated by suction filtration or centrifugation; The material is washed with deionized water to neutrality, dried at 110-140 ° C for 3-24 hours, and calcined at 350-750 ° C for 1-10 hours to obtain a microsphere catalyst containing ZSM-5 molecular sieve;
  • Step 4 The microsphere catalyst obtained in the step 3 is immersed in the second metal component precursor solution for 1-24 hours, dried at 110-140 ° C for 3-24 hours, and then calcined at 450-650 ° C for 1-10 h.
  • a microsphere catalyst obtained by converting methanol or dimethyl ether having an average particle diameter of 10 to 300 ⁇ m into an aromatic hydrocarbon is obtained.
  • the silicon source in the step 1 is kaolin, silica sol, sodium silicate, water glass, active silica or positive a mixture of one or any of several kinds of ethyl silicate;
  • the aluminum source is one or a mixture of any one of kaolin, aluminum sol, activated alumina, pseudoboehmite, aluminum nitrate or aluminum sulfate;
  • the content of silicon is SiO 2
  • the content of aluminum is Al 2 O 3
  • a method for in-situ synthesis of a catalyst for converting aromatic or hydrocarbons of methanol or dimethyl ether wherein the calcination temperature in the step 2 is 800-1300 ° C, and the calcination time is 1-10 hours.
  • the in-situ synthesis method of a catalyst for converting aromatic or hydrocarbon into methanol by using methanol or dimethyl ether wherein the template in the step 3 is ethylenediamine, n-butylamine, ammonia, hexamethylenediamine or tetrapropyl One or any mixture of ammonium hydroxide; the first metal component precursor is one of zinc, silver, gallium, antimony, bismuth nitrate, phosphate, acetate or carbonate or a mixture of any of several; the phosphorus modifier is one or a mixture of any one of phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate or phosphorus oxide; the mass of the first metal component precursor is metal The mass of the phosphorus is measured by P 2 O 5 , and the mass ratio of the microsphere catalyst carrier, the template, the first metal oxide, the P 2 O 5 and the water in the mixed solution is a catalyst carrier: a template agent: the first metal
  • the in-situ synthesis method of a catalyst for converting aromatic or hydrocarbons by conversion of methanol or dimethyl ether according to the present invention wherein the crystallization temperature in the step 3 is 160-240 ° C; and the crystallization time is 1-100 hours.
  • the present invention has the following advantages:
  • the in-situ synthesis method of the methanol or dimethyl ether converted aromatic hydrocarbon catalyst provided by the invention comprises the prior granulation and high temperature calcination to form a more stable structure of the aluminum-containing binder component in the carrier, and then pass through the in situ crystal
  • the ZSM-5 molecular sieve is synthesized and loaded or impregnated with a metal component in situ.
  • the synthetic method can effectively prevent the metal component from binding to the binder in a high temperature hydrothermal environment, thereby effectively alleviating the loss of the catalyst. Live, improve the stability of the catalyst.
  • the conversion of methanol or dimethyl ether to aromatic hydrocarbon catalyst prepared by the in-situ synthesis method of the invention has better activity and stability, and the catalyst is applied to the reaction of converting methanol or dimethyl ether into aromatic hydrocarbon, and the yield of aromatic hydrocarbon is obviously superior.
  • the aromatics selectivity can be up to 55.2%.
  • This embodiment provides an in-situ synthesis method for converting a methanol or dimethyl ether to an aromatic hydrocarbon catalyst, which comprises the following steps:
  • Step 2 calcining the silicon-aluminum oxide-containing microsphere particles at 800 ° C for 10 h to obtain a microsphere catalyst carrier;
  • Step 3 preparing a mixed solution of the microsphere catalyst carrier, ethylenediamine, zinc nitrate, diammonium hydrogen phosphate and water according to a mass ratio of 1:0.1:0.05:0.03:20, and charging the lining of polytetrafluoroethylene
  • a stainless steel synthesis kettle after heating to 160 ° C, crystallization for 48 hours, the solid product was separated by suction filtration; the solid product was washed with deionized water to neutrality, dried at 120 ° C for 12 hours, and then calcined at 600 ° C. 3 hours, a microsphere catalyst containing ZSM-5 molecular sieve was obtained;
  • Step 4 The obtained microsphere catalyst containing ZSM-5 molecular sieve was immersed in a silver nitrate solution for 10 hours, wherein the mass ratio of the microsphere catalyst to the silver oxide in the solution was 1:0.02, and dried at 120 ° C for 10 hours at 500 ° C. After calcination for 6 h, a microsphere catalyst having an average particle diameter of 120 ⁇ m and a specific surface area of 350 m 2 /g of methanol or dimethyl ether converted to an aromatic hydrocarbon was obtained, which was designated as SC-1.
  • This embodiment provides an in-situ synthesis method for converting a methanol or dimethyl ether to an aromatic hydrocarbon catalyst, which comprises the following steps:
  • Step 2 calcining the silicon-containing aluminum oxide microsphere particles at 1000 ° C for 3 h to obtain a microsphere catalyst carrier;
  • Step 3 preparing a mixed solution of the microsphere catalyst carrier, ammonia water, zinc acetate, phosphoric acid and water according to a mass ratio of 1:0.3:0.02:0.05:50, and charging into a stainless steel synthetic kettle lined with polytetrafluoroethylene. After heating to 180 ° C, and crystallization for 60 hours, the solid product was separated by suction filtration; the solid product was washed with deionized water to neutrality, dried at 110 ° C for 8 hours, and then calcined at 550 ° C for 7 hours to obtain a microsphere catalyst of ZSM-5 molecular sieve;
  • Step 4 The obtained microsphere catalyst containing ZSM-5 molecular sieve is immersed in a gallium nitrate solution for 12 hours, wherein the mass ratio of the microsphere catalyst to the gallium oxide in the solution is 1:0.04, and after drying at 120 ° C for 20 hours, at 450 After calcination at ° C for 10 h, a microsphere catalyst having an average particle diameter of 240 ⁇ m and a specific surface area of 540 m 2 /g of methanol or dimethyl ether converted to an aromatic hydrocarbon was obtained, which was designated as SC-2.
  • This embodiment provides an in-situ synthesis method for converting a methanol or dimethyl ether to an aromatic hydrocarbon catalyst, which comprises the following steps:
  • Step 2 The silicon-aluminum oxide-containing microsphere particles are calcined at 1100 ° C for 8 h to obtain a microsphere catalyst carrier;
  • Step 3 preparing a mixed solution of the microsphere catalyst carrier, n-butylamine, silver nitrate, ammonium dihydrogen phosphate and water in a mass ratio of 1:0.4:0.05:0.04:75, and charging the stainless steel lined with polytetrafluoroethylene
  • the solid product was separated by suction filtration; the solid product was washed with deionized water to neutrality, dried at 120 ° C for 20 hours, and then calcined at 450 ° C for 10 hours.
  • a microsphere catalyst containing ZSM-5 molecular sieve is obtained;
  • Step 4 The microsphere catalyst containing ZSM-5 molecular sieve is immersed in a solution of cerium nitrate and cerium nitrate for 24 hours, wherein the mass ratio of the microsphere catalyst in the solution to cerium oxide and cerium oxide is 1:0.03:0.02, and dried at 130 ° C. After 15 hours, calcination at 530 ° C for 6 h gave a microsphere catalyst of methanol or dimethyl ether converted to an aromatic hydrocarbon having an average particle diameter of 80 ⁇ m and a specific surface area of 220 m 2 /g, which was designated as SC-3.
  • This embodiment provides an in-situ synthesis method for converting a methanol or dimethyl ether to an aromatic hydrocarbon catalyst, which comprises the following steps:
  • Step 2 The silicon-aluminum oxide-containing microsphere particles are calcined at 1300 ° C for 1 h to obtain a microsphere catalyst carrier;
  • Step 3 preparing a mixed solution of the microsphere catalyst carrier, n-hexane diamine, cerium nitrate, phosphoric acid, diammonium hydrogen phosphate and water according to a mass ratio of 1:0.1:0.1:0.01:0.05:100, and charging into the inner liner.
  • a stainless steel synthesis kettle of tetrafluoroethylene heated to 220 ° C, and crystallization for 100 hours, the solid product is separated by suction filtration; the solid product is washed with deionized water to neutrality, dried at 130 ° C for 10 hours, at 480 Calcined at ° C for 8 hours to obtain a microsphere catalyst containing ZSM-5 molecular sieve;
  • Step 4 The microsphere catalyst containing ZSM-5 molecular sieve is immersed in a zinc nitrate solution for 1 hour, wherein the mass ratio of the microsphere catalyst to the zinc oxide in the solution is 1:0.1, dried at 120 ° C for 24 hours, and calcined at 580 ° C. 6h, a microsphere catalyst having an average particle diameter of 190 ⁇ m and a specific surface area of 650 m 2 /g of methanol or dimethyl ether converted to an aromatic hydrocarbon was obtained, which was designated as SC-4.
  • This embodiment provides an in-situ synthesis method for converting a methanol or dimethyl ether to an aromatic hydrocarbon catalyst, which comprises the following steps:
  • Step 2 The silicon-aluminum oxide-containing microsphere particles are calcined at 1200 ° C for 4 h to obtain a microsphere catalyst carrier;
  • Step 3 preparing a mixed solution of the microsphere catalyst carrier, tetrapropylammonium hydroxide, zinc carbonate, ammonium dihydrogen phosphate and water according to a mass ratio of 1:0.4:0.05:0.03:80, and charging the inner PTFE
  • a stainless steel stainless steel synthesis kettle after heating to 200 ° C, and crystallization for 80 hours, the solid product is separated by centrifugation; the solid product is used.
  • the ionized water was washed to neutrality, dried at 120 ° C for 3 hours, and then calcined at 500 ° C for 8 hours to obtain a microsphere catalyst containing ZSM-5 molecular sieve;
  • Step 4 The microsphere catalyst containing ZSM-5 molecular sieve was immersed in a zinc nitrate solution for 3 hours, wherein the mass ratio of the microsphere catalyst to the ZnO in the solution was 1:0.08, dried at 120 ° C for 20 hours, and calcined at 560 ° C. 8h, a microsphere catalyst obtained by converting methanol or dimethyl ether to an aromatic hydrocarbon having an average particle diameter of 150 ⁇ m and a specific surface area of 130 m 2 /g, which is referred to as SC-5, was obtained.
  • This embodiment provides an in-situ synthesis method for converting a methanol or dimethyl ether to an aromatic hydrocarbon catalyst, which comprises the following steps:
  • Step 2 The silicon-aluminum oxide-containing microsphere particles are calcined at 1000 ° C for 6 h to obtain a microsphere catalyst carrier;
  • Step 3 preparing a mixed solution of the microsphere catalyst carrier, n-butylamine, ammonia water, gallium nitrate, cerium nitrate, phosphoric acid and water in a mass ratio of 1:0.1:0.3:0.02:0.04:0.07:180, and charging therein.
  • a stainless steel synthetic kettle lined with polytetrafluoroethylene heated to 175 ° C, crystallization for 60 h, the solid product was separated by suction filtration; the solid product was washed with deionized water to neutrality, and dried at 130 ° C for 10 hours. Calcined at 650 ° C for 2 hours to obtain a microsphere catalyst containing ZSM-5 molecular sieve;
  • Step 4 The obtained microsphere catalyst containing ZSM-5 molecular sieve was immersed in a cerium nitrate solution for 4 hours, wherein the mass ratio of the microsphere catalyst to cerium oxide in the solution was 1:0.03, and dried at 140 ° C for 10 hours at 600 ° C. After calcination for 7 h, a microsphere catalyst obtained by converting methanol or dimethyl ether to an aromatic hydrocarbon having an average particle diameter of 110 ⁇ m and a specific surface area of 750 m 2 /g was obtained as SC-6.
  • This embodiment provides an in-situ synthesis method for converting a methanol or dimethyl ether to an aromatic hydrocarbon catalyst, which comprises the following steps:
  • Step 2 The silicon-aluminum oxide-containing microsphere particles are calcined at 930 ° C for 7.5 h to obtain a microsphere catalyst carrier;
  • Step 3 preparing a mixed solution of the microsphere catalyst carrier, hexamethylenediamine, silver nitrate, zinc carbonate, cerium nitrate, ammonium dihydrogen phosphate and water according to a mass ratio of 1:0.2:0.01:0.01:0.02:0.06:180.
  • the mixture was placed in a stainless steel synthetic kettle lined with polytetrafluoroethylene, heated to 210 ° C, and incubated at a constant temperature for 5 hours.
  • the solid product was separated by suction filtration; the solid product was washed with deionized water to neutrality and dried at 120 ° C. After 10 hours, calcination at 580 ° C for 6 hours to obtain a microsphere catalyst containing ZSM-5 molecular sieve;
  • Step 4 The obtained microsphere catalyst containing ZSM-5 molecular sieve is immersed in a solution of silver nitrate and gallium nitrate for 24 hours, wherein the mass ratio of the microspheres in the solution, the ratio of silver oxide to gallium oxide is 1:0.02:0.02, at 110 ° C
  • the mixture was dried for 18 hours and calcined at 700 ° C for 2 hours to obtain a microsphere catalyst of methanol or dimethyl ether converted to an aromatic hydrocarbon having an average particle diameter of 125 ⁇ m and a specific surface area of 400 m 2 /g, which was designated as SC-7.
  • the following catalyst was prepared as a comparative example of the catalyst of the present invention according to a conventional catalyst preparation method:
  • the commercial sieve ZSM-5 molecular sieve was used to immerse the molecular sieve in a zinc nitrate solution for 12 hours, wherein the mass ratio of the molecular sieve to the ZnO in the solution was 1:0.1, and a modified molecular sieve was obtained.
  • the kaolin, the aluminum sol and the molecular sieve are mixed according to the dry basis mass of 30:30:40, stirred by deionized water for 30 min, then ground by a colloid mill, and then subjected to conventional spray drying granulation to obtain microsphere particles, which will be micro
  • the pellets were calcined at 600 ° C for 4 h to obtain a microsphere catalyst having an average particle diameter of 150 ⁇ m and a specific surface area of 380 m 2 /g, which was designated as CC-1.
  • the silica sol, aluminum sol and molecular sieve were mixed according to the dry basis mass of 20:50:30, stirred by deionized water for 30 min, then ground by a colloid mill, and then subjected to conventional spray drying granulation. Microsphere particles were prepared, and the microsphere particles were calcined at 600 ° C for 4 h, and the microsphere catalyst carrier.
  • the molecular sieve was immersed in a zinc nitrate solution for 5 hours, wherein the mass ratio of the molecular sieve to the zinc oxide in the solution was 1:0.05, and the obtained catalyst was dried at 120 ° C for 12 hours and calcined at 520 ° C for 10 hours to obtain an average particle diameter of 180 ⁇ m.
  • Example 1 The catalyst prepared in Example 1 - Example 7, Comparative Example 1 - Comparative Example 2 was subjected to accelerated aging under a harsh hydrothermal environment, and the methanol aromatization property was evaluated to evaluate the catalyst. Stability in a hydrothermal environment. That is, the obtained catalyst was treated at 700 ° C under a 100% partial pressure of water vapor for 4 hours to obtain a catalyst after accelerated aging. At 450 °C, 0.5Mpa and a space velocity of methanol aromatization reaction for 0.5h -l under the conditions, the reaction results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种甲醇或二甲醚转化制芳烃催化剂及其原位合成方法与应用。催化剂的制备方法包括以下步骤:将硅源、铝源和水混合后配制成混合浆料,再对该混合浆料进行喷雾干燥,制得含硅铝氧化物的微球颗粒;将该微球颗粒进行焙烧,得到微球催化剂载体;将该载体、模板剂、第一金属组分前驱体、磷改性剂和水混合后制成混合溶液,再对该混合溶液进行恒温晶化;待晶化完全后,分离固体产物;将固体产物用去离子水洗涤至中性,再经干燥、焙烧后,得到含ZSM-5分子筛的微球催化剂;将该催化剂浸渍于第二金属组分前驱体溶液中,然后经干燥、焙烧,得到甲醇或二甲醚转化制芳烃的催化剂。以及将该制备方法得到的催化剂用于甲醇或二甲醚转化制芳烃中。该催化剂的制备方法能够有效阻止催化剂上金属组分与粘结剂结合而导致的催化剂失活。

Description

甲醇或二甲醚转化制芳烃催化剂及其原位合成方法与应用 技术领域
本发明涉及一种甲醇或二甲醚转化制芳烃催化剂及其原位合成方法与应用,属于芳烃的制备技术领域。
背景技术
芳烃主要包括苯、甲苯、二甲苯(简称BTx),是重要的基础化工原料,其产量和规模仅次于乙烯和丙烯。芳烃是生产化纤、工程塑料及高性能塑料等的关键原料,传统芳烃生产路线主要是以催化重整和裂解汽油为主的石油化工,其缺点是严重依赖石油。而我国的石油资源面临着越来越严重的短缺局面,这己经严重威胁到我国的能源安全。相对于石油资源,我国的煤炭资源较为丰富,将煤经甲醇或二甲醚转化制取芳烃产品,这对缓解我国石油危机,实施能源替代战略具有重要意义。
20世纪70年代,美国Mobil公司开发了ZSM-5分子筛,并将其用于甲醇转化制汽油的过程,所得汽油组分中约有30%为芳烃,这是甲醇或二甲醚制芳烃的来源。20世纪80年代以来,研究者们开始将这种具有特殊孔道结构的分子筛进行Ga、Cu、Zn、Mo、Ag等金属改性,以将金属改性后的分子筛用于甲醇芳构化反应。
由于金属改性的ZSM-5分子筛用于甲醇芳构化反应时,催化剂积碳失活快,因此采用流化床工艺,适时再生成为首选工艺。2013年1月,由华电煤业集团有限公司与清华大学共同开发的流化床甲醇制芳烃技术(FMTA)在世界上首次完成了万吨级工业试验。采用流化床操作模式的甲醇制芳烃过程要求催化剂为具有适宜粒度分布和较高磨损强度的微球。目前,工业上采用喷雾造粒的方法制备该微球催化剂,这种制备方法是先将改性ZSM-5分子筛与粘结剂(高岭土、铝溶胶等)等混合制成均匀浆料,然后再经喷雾干燥制得。
然而,文献报道了金属在高温水热氛围中,易与粘结剂组分结合,使得活性金属组分流失而导致催化剂失活。林洁等(林洁,尹双凤,于中伟;Al2O3对Zn/HZSM-5芳构化催化剂的影响[J];石油学报(石油加工);2000年05期)对用于轻烃芳构化的Zn/ZSM-5催化剂研究发现,加入Al2O3的Zn改性HZSM-5催化剂在经过高温焙烧或水热处理后,其芳构化活性和选择性降低。
因此,开发出一种高效的甲醇或二甲醚转化制芳烃催化剂及其制备方法已成为本领域亟需解决的技术问题。
发明内容
为解决上述技术问题,本发明的目的在于提供一种甲醇或二甲醚转化制芳烃催化剂的原位合成方法。
本发明的目的还在于提供由上述甲醇或二甲醚转化制芳烃催化剂的原位合成方法得到的甲醇或二甲醚转化制芳烃催化剂。
本发明的目的又在于提供所述甲醇或二甲醚转化制芳烃催化剂在甲醇或二甲醚转化制芳烃中的应用。
为实现上述目的,一方面,本发明提供了一种甲醇或二甲醚转化制芳烃的催化剂的原位合成方法,其包括以下步骤:
步骤l:将硅源、铝源和水混合后配制成混合浆料,再对该混合浆料进行喷雾干燥,制得含硅铝氧化物的微球颗粒;
步骤2:将所述含硅铝氧化物的微球颗粒进行焙烧,得到微球催化剂载体;
步骤3:将步骤2得到的微球催化剂载体、模板剂、第一金属组分前驱体、磷改性剂和水混合后制成混合溶液,再对该混合溶液进行恒温晶化;待晶化完全后,分离固体产物;将固体产物用去离子水洗涤至中性,再经干燥、焙烧后,得到含ZSM-5分子筛的微球催化剂;
步骤4:将步骤3得到的微球催化剂浸渍于第二金属组分前驱体溶液中,然后经干燥、焙烧后,得到所述甲醇或二甲醚转化制芳烃的催化剂。
根据本发明所述的方法,优选地,步骤1所述的硅源包括高岭土、硅溶胶、硅酸钠、水玻璃、活性二氧化硅及正硅酸乙酯中的一种或任意几种的混合物。
根据本发明所述的方法,优选地,步骤1所述的铝源包括高岭土、铝溶胶、活性氧化铝、拟薄水铝石、硝酸铝及硫酸铝中的一种或任意几种的混合物。
根据本发明所述的方法,优选地,步骤1所述的混合浆料中,硅的含量以SiO2计,铝的含量以Al2O3计,则SiO2、Al2O3与水的摩尔比为Al2O3:SiO2:H2O=l:(1-100):(10-500)。
根据本发明所述的方法,优选地,步骤2所述的焙烧为800-1300℃下焙烧1-10h。
根据本发明所述的方法,优选地,步骤3所述的模板剂包括乙二胺、正丁胺、氨 水、己二胺及四丙基氢氧化铵中的一种或任意几种的混合物。
根据本发明所述的方法,优选地,步骤3所述的第一金属组分前驱体包括锌、银、镓、镧、铈的硝酸盐、磷酸盐、醋酸盐及碳酸盐中的一种或任意几种的混合物。
根据本发明所述的方法,优选地,步骤3所述的磷改性剂包括磷酸、磷酸氢二铵、磷酸二氢铵及磷氧化物(三氧化二磷及五氧化二磷均可)中的一种或任意几种的混合物。
根据本发明所述的方法,优选地,步骤3所述的混合溶液中,所述第一金属组分前驱体的质量以相应的第一金属氧化物计,磷的质量以P2O5计,则混合溶液中微球催化剂载体、模板剂、第一金属氧化物、P2O5和水的质量比为l:(0.1-0.5):(0-0.1):(0.001-0.1):(20-100)。
根据本发明所述的方法,优选地,步骤3所述的晶化温度为160-240℃,晶化时间为1-100小时。
根据本发明所述的方法,优选地,步骤3所述的干燥为110-140℃下干燥3-24h。
根据本发明所述的方法,优选地,步骤3所述的焙烧为350-750℃下焙烧1-10h。
根据本发明所述的方法,优选地,步骤4所述的第二金属组分前驱体包括锌、银、镓、镧、铈的硝酸盐、磷酸盐、醋酸盐及碳酸盐中的一种或任意几种的混合物。
根据本发明所述的方法,优选地,步骤4中,第二金属组分前驱体的质量以相应的第二金属氧化物计,则微球催化剂与第二金属氧化物的质量比为l:(0-0.1)。
根据本发明所述的方法,优选地,步骤4所述的浸渍时间为1-24h。
根据本发明所述的方法,优选地,步骤4所述的干燥为110-140℃下干燥3-24h。
根据本发明所述的方法,优选地,步骤4所述的焙烧为450-650℃下焙烧1-10h。
根据本发明所述甲醇或二甲醚转化制芳烃的催化剂的原位合成方法,其在原位合成阶段加入磷改性剂是为了提高该催化剂的水热稳定性。
第一金属组分和第二金属组分均为催化剂的活性金属组分,均是本申请所述催化剂的活性金属组分,其重要性相当,之所以第一金属组分、第二金属组分与其他相应成分的质量比范围的下限数值可以为0,是因为第一金属组分和第二金属组分均可以分别在步骤3或步骤4中一次加入,也可以分批次分别在步骤3和步骤4中逐步加入。第一金属组分和第二金属组分,加入时可以是一种,也可以是多种。
根据本发明所述的方法,步骤3所述的混合溶液中微球催化剂载体、模板剂、第一金属氧化物、P2O5和水的质量比为l:(0.1-0.5):(0-0.1):(0.001-0.1):(20-100),步骤4中,微球催化剂与第二金属氧化物的质量比为l:(0-0.1);
当步骤3中的第一金属氧化物与其他相应成分的质量比范围(即0-0.1)的下限数值不为0,且步骤4中的微球催化剂与第二金属氧化物的质量比范围(即0-0.1)的下限数值也不为0时,本发明所提供的甲醇或二甲醚转化制芳烃的催化剂的原位合成方法可以按照以下步骤进行:
步骤l:将硅源、铝源和水混合后配制成混合浆料,再对该混合浆料进行喷雾干燥,制得含硅铝氧化物的微球颗粒;
步骤2:将所述含硅铝氧化物的微球颗粒进行焙烧,得到微球催化剂载体;
步骤3:将步骤2得到的微球催化剂载体、模板剂、第一金属组分前驱体、磷改性剂和水混合后制成混合溶液,再对该混合溶液进行恒温晶化;待晶化完全后,分离固体产物;将固体产物用去离子水洗涤至中性,再经干燥、焙烧后,得到含ZSM-5分子筛的微球催化剂;
步骤4:将步骤3得到的微球催化剂浸渍于第二金属组分前驱体溶液中,然后经干燥、焙烧后,得到所述甲醇或二甲醚转化制芳烃的催化剂。
此种情况即属于第一金属组分和第二金属组分分批次分别在步骤3和步骤4中逐步加入的情况。
当步骤3中的第一金属氧化物与其他相应成分的质量比范围(即0-0.1)的下限数值为0,但步骤4中的微球催化剂与第二金属氧化物的质量比范围(即0-0.1)的下限数值不为0时,本发明所提供的甲醇或二甲醚转化制芳烃的催化剂的原位合成方法可以按照以下步骤进行:
步骤l:将硅源、铝源和水混合后配制成混合浆料,再对该混合浆料进行喷雾干燥,制得含硅铝氧化物的微球颗粒;
步骤2:将所述含硅铝氧化物的微球颗粒进行焙烧,得到微球催化剂载体;
步骤3:将步骤2得到的微球催化剂载体、模板剂、磷改性剂和水混合后制成混合溶液,再对该混合溶液进行恒温晶化;待晶化完全后,分离固体产物;将固体产物用去离子水洗涤至中性,再经干燥、焙烧后,得到含ZSM-5分子筛的微球催化剂;
步骤4:将步骤3得到的微球催化剂浸渍于第二金属组分前驱体溶液中,然后经 干燥、焙烧后,得到所述甲醇或二甲醚转化制芳烃的催化剂。
此种情况即属于只在步骤4中添加第二金属组分作为该催化剂活性金属组分的情况。
当步骤3中的第一金属氧化物与其他相应成分的质量比范围(即0-0.1)的下限数值不为0,但步骤4中的微球催化剂与第二金属氧化物的质量比范围(即0-0.1)的下限数值为0时,本发明所提供的甲醇或二甲醚转化制芳烃的催化剂的原位合成方法可以按照以下步骤进行:
步骤l:将硅源、铝源和水混合后配制成混合浆料,再对该混合浆料进行喷雾干燥,制得含硅铝氧化物的微球颗粒;
步骤2:将所述含硅铝氧化物的微球颗粒进行焙烧,得到微球催化剂载体;
步骤3:将步骤2得到的微球催化剂载体、模板剂、第一金属组分前驱体、磷改性剂和水混合后制成混合溶液,再对该混合溶液进行恒温晶化;待晶化完全后,分离固体产物;将固体产物用去离子水洗涤至中性,再经干燥、焙烧后,得到含ZSM-5分子筛的微球催化剂,即得到所述甲醇或二甲醚转化制芳烃的催化剂。
此种情况即属于只在步骤3中添加第一金属组分作为该催化剂活性金属组分的情况。
另一方面,本发明还提供了由上述甲醇或二甲醚转化制芳烃的催化剂的原位合成方法制备得到的甲醇或二甲醚转化制芳烃的催化剂,该催化剂为微球催化剂,其平均粒径为10-300μm,比表面积为100-800m2/g。
再一方面,本发明还提供了上述甲醇或二甲醚转化制芳烃的催化剂在甲醇或二甲醚转化制芳烃中的应用。
本发明提供了一种甲醇或二甲醚转化制芳烃的催化剂的原位合成方法,包括如下步骤:
步骤l:将硅源、铝源和水混合,配制成混合浆料,通过喷雾干燥法制得含硅铝氧化物的微球颗粒;
步骤2:将含硅铝氧化物微球颗粒进行焙烧,得到微球催化剂载体;
步骤3:将步骤2得到的微球催化剂载体、模板剂、第一金属组分前驱体、磷改性剂和水制成混合溶液,装入内衬聚四氟乙烯的不锈钢合成釜中,加热到晶化温度,进行恒温晶化;待晶化完全后,通过抽滤或离心分离的方法分离固体产物;将固体产 物用去离子水洗涤至中性,在110-140℃下干燥3-24小时后,在350-750℃下,焙烧1-10小时,得到含ZSM-5分子筛的微球催化剂;
步骤4:将步骤3得到的微球催化剂浸渍于第二金属组分前驱体溶液1-24小时,在110-140℃下干燥3-24小时后,在450-650℃下焙烧1-10h,得到平均粒径为10-300μm的甲醇或二甲醚转化制芳烃的微球催化剂。
根据本发明所述的一种甲醇或二甲醚转化制芳烃的催化剂的原位合成方法,所述步骤l中硅源为高岭土、硅溶胶、硅酸钠、水玻璃、活性二氧化硅或正硅酸乙酯中的一种或任意几种的混合物;铝源为高岭土、铝溶胶、活性氧化铝、拟薄水铝石、硝酸铝或硫酸铝中的一种或任意几种的混合物;所述混合浆料中,硅的含量以SiO2计,铝的含量以Al2O3计,SiO2、Al2O3与水的摩尔比为Al2O3:SiO2:H2O=l:(1-100):(10-500)。
根据本发明所述的一种甲醇或二甲醚转化制芳烃的催化剂的原位合成方法,所述步骤2中焙烧温度为800-1300℃,焙烧时间为1-10小时。
根据本发明所述的一种甲醇或二甲醚转化制芳烃的催化剂的原位合成方法,所述步骤3中的模板剂为乙二胺、正丁胺、氨水、己二胺或四丙基氢氧化铵中的一种或任意几种的混合物;第一金属组分前驱体为锌、银、镓、镧、铈的硝酸盐、磷酸盐、醋酸盐或碳酸盐中的一种或任意几种的混合物;磷改性剂为磷酸、磷酸氢二铵、磷酸二氢铵或磷氧化物中的一种或任意几种的混合物;所述第一金属组分前驱体的质量以金属氧化物计,磷的质量以P2O5计,混合溶液中微球催化剂载体、模板剂、第一金属氧化物、P2O5和水的质量比为催化剂载体:模板剂:第一金属氧化物:P2O5:水=l:(0.1-0.5):(0-0.1):(0.001-0.1):(20-100)。
根据本发明所述的一种甲醇或二甲醚转化制芳烃的催化剂的原位合成方法,所述步骤3中所述的晶化温度为160-240℃;晶化时间为1-100小时。
根据本发明所述的一种甲醇或二甲醚转化制芳烃的催化剂的原位合成方法,所述步骤4中第二金属组分前驱体为锌、银、镓、镧、铈的硝酸盐、磷酸盐、醋酸盐或碳酸盐中的一种或任意几种的混合物;第二金属组分前驱体的质量以第二金属氧化物计,微球催化剂与第二金属氧化物的质量比为微球催化剂:金属氧化物=l:(0-0.1)。
根据本发明所述的一种甲醇或二甲醚转化制芳烃的催化剂的原位合成方法,所述的方法合成的微球催化剂用于甲醇或二甲醚转化制取芳烃。
与现有技术相比,本发明具有如下优点:
本发明所提供的甲醇或二甲醚转化制芳烃催化剂的原位合成方法通过先造粒,并高温焙烧使载体中的含铝粘结剂组分形成更为稳定的结构,再通过原位晶化的方法合成ZSM-5分子筛,并原位负载或浸渍负载金属组分,该合成方法能够有效地阻止金属组分在高温水热环境下与粘结剂的结合,进而有效缓解了催化剂的失活,提高了催化剂的稳定性。
由本发明的原位合成方法制备得到的甲醇或二甲醚转化制芳烃催化剂具有更好的活性及稳定性,将该催化剂应用于甲醇或二甲醚转化制芳烃的反应,芳烃收率明显优于传统方法所制的催化剂,在本发明优选的实施方式中,芳烃选择性可以达到55.2%。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,以下将通过具体的实施例详细地说明本发明的实施过程和产生的有益效果,旨在帮助阅读者更好地理解本发明的实质和特点,但是不作为对本案可实施范围的限定。
实施例l
本实施例提供了一种甲醇或二甲醚转化制芳烃催化剂的原位合成方法,其包括如下步骤:
步骤l:将硅溶胶(30wt%)、高岭土(摩尔比Al2O3:SiO2=l:2)和水按照摩尔比Al2O3:SiO2:H2O=l:50:200进行混合后,配制成混合浆料,搅拌30min后通过胶体磨进行胶磨,再进行常规的喷雾干燥造粒,制得含硅铝氧化物的微球颗粒;
步骤2:将含硅铝氧化物的微球颗粒在800℃下焙烧10h,得到微球催化剂载体;
步骤3:将微球催化剂载体、乙二胺、硝酸锌、磷酸氢二铵和水按照质量比为l:0.1:0.05:0.03:20制成混合溶液,并装入内衬聚四氟乙烯的不锈钢合成釜中,加热到160℃,恒温晶化48h后,进行抽滤分离固体产物;将固体产物用去离子水洗涤至中性,在120℃下干燥12小时后,在600℃下,焙烧3小时,得到含ZSM-5分子筛的微球催化剂;
步骤4:将得到的含ZSM-5分子筛的微球催化剂浸渍于硝酸银溶液10h,其中溶液中的微球催化剂与氧化银质量比为l:0.02,在120℃下干燥10小时,在500℃下焙烧6h,得到平均粒径为120μm,比表面积为350m2/g的甲醇或二甲醚转化制芳烃的微球催化剂,记为SC-l。
实施例2
本实施例提供了一种甲醇或二甲醚转化制芳烃催化剂的原位合成方法,其包括如下步骤:
步骤l:将水玻璃(模数为3.25wt%)、铝溶胶(30wt%)和水按照摩尔比Al2O3:SiO2:H2O=l:1:50进行混合后,配制成混合浆料,搅拌30min后通过胶体磨进行胶磨,通过喷雾干燥法制得含硅铝氧化物的微球颗粒;
步骤2:将含硅铝氧化物微球颗粒在1000℃下焙烧3h,得到微球催化剂载体;
步骤3:将微球催化剂载体、氨水、醋酸锌、磷酸和水按照质量比为l:0.3:0.02:0.05:50制成混合溶液,并装入内衬聚四氟乙烯的不锈钢合成釜中,加热到180℃,恒温晶化60h后,进行抽滤分离固体产物;将固体产物用去离子水洗涤至中性,在110℃下干燥8小时后,在550℃下,焙烧7小时,得到含ZSM-5分子筛的微球催化剂;
步骤4:将得到的含ZSM-5分子筛的微球催化剂浸渍于硝酸镓溶液12h,其中溶液中的微球催化剂与氧化镓质量比为l:0.04,在120℃下干燥20小时后,在450℃下焙烧10h,得到平均粒径为240μm,比表面积为540m2/g的甲醇或二甲醚转化制芳烃的微球催化剂,记为SC-2。
实施例3
本实施例提供了一种甲醇或二甲醚转化制芳烃催化剂的原位合成方法,其包括如下步骤:
步骤l:将高岭土(摩尔比Al2O3:SiO2=l:2)、活性二氧化硅、拟薄水铝石和水按照摩尔比Al2O3:SiO2:H2O=l:100:500进行混合后,搅配制成混合浆料,拌30min后通过胶体磨进行胶磨,通过喷雾干燥法制得含硅铝氧化物的微球颗粒;
步骤2:将含硅铝氧化物的微球颗粒在1100℃下焙烧8h,得到微球催化剂载体;
步骤3:将微球催化剂载体、正丁胺、硝酸银、磷酸二氢铵和水按照质量比为l:0.4:0.05:0.04:75制成混合溶液,装入内衬聚四氟乙烯的不锈钢合成釜中,加热到240℃,恒温晶化35h后,进行抽滤分离固体产物;将固体产物用去离子水洗涤至中性,在120℃下干燥20小时后,在450℃下,焙烧10小时,得到含ZSM-5分子筛的微球催化剂;
步骤4:将含ZSM-5分子筛的微球催化剂浸渍于硝酸镧、硝酸铈溶液24h,其中 溶液中的微球催化剂与氧化镧、氧化铈质量比为l:0.03:0.02,在130℃下干燥15小时,在530℃下焙烧6h,得到平均粒径为80μm,比表面积为220m2/g的甲醇或二甲醚转化制芳烃的微球催化剂,记为SC-3。
实施例4
本实施例提供了一种甲醇或二甲醚转化制芳烃催化剂的原位合成方法,其包括如下步骤:
步骤l:将正硅酸乙酯、活性氧化铝、硝酸铝和水按照摩尔比Al2O3:SiO2:H2O=l:70:350进行混合后,配制成混合浆料,搅拌30min后,通过胶体磨进行胶磨,通过喷雾干燥法制得含硅铝氧化物的微球颗粒;
步骤2:将含硅铝氧化物的微球颗粒在1300℃下焙烧lh,得到微球催化剂载体;
步骤3:将微球催化剂载体、正己二胺、硝酸镧、磷酸、磷酸氢二铵和水按照质量比为l:0.1:0.1:0.01:0.05:l00制成混合溶液,并装入内衬聚四氟乙烯的不锈钢合成釜中,加热到220℃,恒温晶化100h后,进行抽滤分离固体产物;将固体产物用去离子水洗涤至中性,在130℃下干燥10小时后,在480℃下,焙烧8小时,得到含ZSM-5分子筛的微球催化剂;
步骤4:将含ZSM-5分子筛的微球催化剂浸渍于硝酸锌溶液lh,其中溶液中的微球催化剂与氧化锌质量比为l:0.1,在120℃下干燥24小时,在580℃下焙烧6h,得到平均粒径为190μm,比表面积为650m2/g的甲醇或二甲醚转化制芳烃的微球催化剂,记为SC-4。
实施例5
本实施例提供了一种甲醇或二甲醚转化制芳烃催化剂的原位合成方法,其包括如下步骤:
步骤l:将硅溶胶(20wt%)、硅酸钠、铝溶胶(20wt%)、硫酸铝和水按照摩尔比Al2O3:SiO2:H2O=l:20:250进行混合后配制成混合浆料,搅拌30min后通过胶体磨进行胶磨,通过喷雾干燥法制得含硅铝氧化物的微球颗粒;
步骤2:将含硅铝氧化物的微球颗粒在1200℃下焙烧4h,得到微球催化剂载体;
步骤3:将微球催化剂载体、四丙基氢氧化铵、碳酸锌、磷酸二氢铵和水按照质量比为l:0.4:0.05:0.03:80制成混合溶液,装入内衬聚四氟乙烯的不锈钢合成釜中,加热到200℃,恒温晶化80h后,通过离心分离的方法分离固体产物;将固体产物用去 离子水洗涤至中性,在120℃下干燥3小时后,在500℃下,焙烧8小时,得到含ZSM-5分子筛的微球催化剂;
步骤4:将含ZSM-5分子筛的微球催化剂浸渍于硝酸锌溶液3h,其中溶液中的微球催化剂与ZnO的质量比为l:0.08,在120℃下干燥20小时,在560℃下焙烧8h,得到平均粒径为150μm,比表面积为130m2/g的甲醇或二甲醚转化制芳烃的微球催化剂,记为SC-5。
实施例6
本实施例提供了一种甲醇或二甲醚转化制芳烃催化剂的原位合成方法,其包括如下步骤:
步骤l:将正硅酸乙酯、拟薄水铝石、硝酸铝和水按照摩尔比Al2O3:SiO2:H2O=l:20:350进行混合后,配制成混合浆料,搅拌30min后通过胶体磨进行胶磨,再进行常规的喷雾干燥造粒,制得含硅铝氧化物的微球颗粒;
步骤2:将含硅铝氧化物的微球颗粒在1000℃下焙烧6h,得到微球催化剂载体;
步骤3:将微球催化剂载体、正丁胺、氨水、硝酸镓、硝酸铈、磷酸和水按照质量比为l:0.1:0.3:0.02:0.04:0.07:180制成混合溶液,并装入内衬聚四氟乙烯的不锈钢合成釜中,加热到175℃,恒温晶化60h后,进行抽滤分离固体产物;将固体产物用去离子水洗涤至中性,在130℃下干燥10小时后,在650℃下,焙烧2小时,得到含ZSM-5分子筛的微球催化剂;
步骤4:将得到的含ZSM-5分子筛的微球催化剂浸渍于硝酸镧溶液4h,其中溶液中的微球催化剂与氧化镧质量比为l:0.03,在140℃下干燥10小时,在600℃下焙烧7h,得到平均粒径为110μm,比表面积为750m2/g的甲醇或二甲醚转化制芳烃的微球催化剂,记为SC-6。
实施例7
本实施例提供了一种甲醇或二甲醚转化制芳烃催化剂的原位合成方法,其包括如下步骤:
步骤l:高岭土、铝溶胶和水按照摩尔比Al2O3:SiO2:H2O=l:45:220进行混合后,配制成混合浆料,搅拌30min后通过胶体磨进行胶磨,再进行常规的喷雾干燥造粒,制得含硅铝氧化物的微球颗粒;
步骤2:将含硅铝氧化物的微球颗粒在930℃下焙烧7.5h,得到微球催化剂载体;
步骤3:将微球催化剂载体、己二胺、硝酸银、碳酸锌、硝酸铈、磷酸二氢铵和水按照质量比为l:0.2:0.01:0.01:0.02:0.06:180制成混合溶液,并装入内衬聚四氟乙烯的不锈钢合成釜中,加热到210℃,恒温晶化5h后,进行抽滤分离固体产物;将固体产物用去离子水洗涤至中性,在120℃下干燥10小时后,在580℃下,焙烧6小时,得到含ZSM-5分子筛的微球催化剂;
步骤4:将得到的含ZSM-5分子筛的微球催化剂浸渍于硝酸银和硝酸镓溶液24h,其中溶液中的微球催化、氧化银与氧化镓质量比为l:0.02:0.02,在110℃下干燥18小时,在700℃下焙烧2h,得到平均粒径为125μm,比表面积为400m2/g的甲醇或二甲醚转化制芳烃的微球催化剂,记为SC-7。
按常规的催化剂制备方法制备了如下催化剂作为本发明催化剂的对比例:
对比例l
采用商用ZSM-5分子筛,将分子筛浸渍于硝酸锌溶液12h,其中溶液中的分子筛与ZnO的质量比为l:0.1,得到改性分子筛。将高岭土、铝溶胶和分子筛按照干基质量30:30:40进行混合,加入去离子水搅拌30min后通过胶体磨进行胶磨,再进行常规的喷雾干燥造粒,制得微球颗粒,将微球颗粒在600℃下焙烧4h,得到平均粒径为150μm,比表面积为380m2/g微球催化剂,记为CC-l。
对比例2
采用商用ZSM-5分子筛,将硅溶胶、铝溶胶和分子筛按照干基质量20:50:30进行混合,加入去离子水搅拌30min后通过胶体磨进行胶磨,再进行常规的喷雾干燥造粒,制得微球颗粒,将微球颗粒在600℃下焙烧4h,微球催化剂载体。将分子筛浸渍于硝酸锌溶液5h,其中溶液中的分子筛与氧化锌质量比为l:0.05,将所得催化剂在120℃下干燥12小时,在520℃下焙烧10h,得到平均粒径为180μm,比表面积为460m2/g的微球催化剂,记为CC-2。
将实施例1-实施例7,对比例1-对比例2所制得的催化剂,在苛刻的水热环境下,将催化剂进行加速老化,再评价其甲醇芳构化性能,以此来评价催化剂在水热环境下的稳定性。即在700℃、100%水蒸气分压条件下,将所得催化剂处理4h,得到加速老化后的催化剂。在450℃、0.5Mpa和空速为0.5h-l的条件下进行甲醇芳构化反应,反应结果如表1所示。
表1
Figure PCTCN2016082165-appb-000001
从表1中可以看出,将实施例1-实施例7,对比例1-对比例2所制得的催化剂,经过加速的老化后,再分别应用甲醇芳构化反应中,本发明所制催化剂的芳烃收率明显优于传统方法所制催化剂(对比例1-对比例2)的芳烃收率,说明即使经过苛刻的水热处理,本发明所制得的催化剂仍然保留了较高的活性,即本发明方法能够有效地阻止金属组分在高温水热环境下与粘结剂的结合,进而有效缓解了催化剂的失活,提高了催化剂的水热稳定性。

Claims (19)

  1. 一种甲醇或二甲醚转化制芳烃的催化剂的原位合成方法,其特征在于,该方法包括以下步骤:
    步骤l:将硅源、铝源和水混合后配制成混合浆料,再对该混合浆料进行喷雾干燥,制得含硅铝氧化物的微球颗粒;
    步骤2:将所述含硅铝氧化物的微球颗粒进行焙烧,得到微球催化剂载体;
    步骤3:将步骤2得到的微球催化剂载体、模板剂、第一金属组分前驱体、磷改性剂和水混合后制成混合溶液,再对该混合溶液进行恒温晶化;待晶化完全后,分离固体产物;将固体产物用去离子水洗涤至中性,再经干燥、焙烧后,得到含ZSM-5分子筛的微球催化剂;
    步骤4:将步骤3得到的微球催化剂浸渍于第二金属组分前驱体溶液中,然后经干燥、焙烧后,得到所述甲醇或二甲醚转化制芳烃的催化剂。
  2. 根据权利要求1所述的方法,其特征在于,步骤1所述的硅源包括高岭土、硅溶胶、硅酸钠、水玻璃、活性二氧化硅及正硅酸乙酯中的一种或任意几种的混合物。
  3. 根据权利要求1所述的方法,其特征在于,步骤1所述的铝源包括高岭土、铝溶胶、活性氧化铝、拟薄水铝石、硝酸铝及硫酸铝中的一种或任意几种的混合物。
  4. 根据权利要求1所述的方法,其特征在于,步骤1所述的混合浆料中,硅的含量以SiO2计,铝的含量以Al2O3计,则SiO2、Al2O3与水的摩尔比为Al2O3:SiO2:H2O=l:(1-100):(10-500)。
  5. 根据权利要求1所述的方法,其特征在于,步骤2所述的焙烧为800-1300℃下焙烧1-10h。
  6. 根据权利要求1所述的方法,其特征在于,步骤3所述的模板剂包括乙二胺、正丁胺、氨水、己二胺及四丙基氢氧化铵中的一种或任意几种的混合物。
  7. 根据权利要求1所述的方法,其特征在于,步骤3所述的第一金属组分前驱体包括锌、银、镓、镧、铈的硝酸盐、磷酸盐、醋酸盐及碳酸盐中的一种或任意几种的混合物。
  8. 根据权利要求1所述的方法,其特征在于,步骤3所述的磷改性剂包括磷酸、磷酸氢二铵、磷酸二氢铵及磷氧化物中的一种或任意几种的混合物。
  9. 根据权利要求1所述的方法,其特征在于,步骤3所述的混合溶液中,所述 第一金属组分前驱体的质量以相应的第一金属氧化物计,磷的质量以P2O5计,则混合溶液中微球催化剂载体、模板剂、第一金属氧化物、P2O5和水的质量比为l:(0.1-0.5):(0-0.1):(0.001-0.1):(20-100)。
  10. 根据权利要求1所述的方法,其特征在于,步骤3所述的晶化温度为160-240℃,晶化时间为1-100小时。
  11. 根据权利要求1所述的方法,其特征在于,步骤3所述的干燥为110-140℃下干燥3-24h。
  12. 根据权利要求1所述的方法,其特征在于,步骤3所述的焙烧为350-750℃下焙烧1-10h。
  13. 根据权利要求1所述的方法,其特征在于,步骤4所述的第二金属组分前驱体包括锌、银、镓、镧、铈的硝酸盐、磷酸盐、醋酸盐及碳酸盐中的一种或任意几种的混合物。
  14. 根据权利要求1所述的方法,其特征在于,步骤4中,第二金属组分前驱体的质量以相应的第二金属氧化物计,则微球催化剂与第二金属氧化物的质量比为l:(0-0.1)。
  15. 根据权利要求1所述的方法,其特征在于,步骤4所述的浸渍时间为1-24h。
  16. 根据权利要求1所述的方法,其特征在于,步骤4所述的干燥为110-140℃下干燥3-24h。
  17. 根据权利要求1所述的方法,其特征在于,步骤4所述的焙烧为450-650℃下焙烧1-10h。
  18. 权利要求1-17任一项所述的甲醇或二甲醚转化制芳烃的催化剂的原位合成方法制备得到的甲醇或二甲醚转化制芳烃的催化剂,其特征在于,该催化剂为微球催化剂,其平均粒径为10-300μm,比表面积为100-800m2/g。
  19. 权利要求18所述的甲醇或二甲醚转化制芳烃的催化剂在甲醇或二甲醚转化制芳烃中的应用。
PCT/CN2016/082165 2016-05-16 2016-05-16 甲醇或二甲醚转化制芳烃催化剂及其原位合成方法与应用 WO2017197548A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082165 WO2017197548A1 (zh) 2016-05-16 2016-05-16 甲醇或二甲醚转化制芳烃催化剂及其原位合成方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082165 WO2017197548A1 (zh) 2016-05-16 2016-05-16 甲醇或二甲醚转化制芳烃催化剂及其原位合成方法与应用

Publications (1)

Publication Number Publication Date
WO2017197548A1 true WO2017197548A1 (zh) 2017-11-23

Family

ID=60324719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082165 WO2017197548A1 (zh) 2016-05-16 2016-05-16 甲醇或二甲醚转化制芳烃催化剂及其原位合成方法与应用

Country Status (1)

Country Link
WO (1) WO2017197548A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854946A (zh) * 2018-06-07 2018-11-23 太原理工大学 一种多级孔结构沸石吸附/催化剂及其构建方法
CN112044466A (zh) * 2020-07-29 2020-12-08 华东理工大学 一种mtp副产品芳构化制取高值芳烃的方法
CN112337481A (zh) * 2020-09-14 2021-02-09 昆明理工大学 一种能够同时脱除氰化氢和氨气的催化剂及其制备方法和应用
CN112387267A (zh) * 2019-08-13 2021-02-23 中国石油天然气股份有限公司 以镁铝尖晶石为载体的甲醇转化催化剂的制备方法和应用
CN112844453A (zh) * 2019-11-12 2021-05-28 惠生工程(中国)有限公司 一种zsm-5催化剂及其制备方法和用途
CN113070093A (zh) * 2021-03-31 2021-07-06 陕西科技大学 一种GaN负载Ga改性-Silicalite-1-1催化剂及其应用
CN113441170A (zh) * 2021-08-03 2021-09-28 中国海洋石油集团有限公司 一种Ga-ZSM-5催化剂及其制备方法和用途
CN113751058A (zh) * 2021-09-28 2021-12-07 无锡威孚环保催化剂有限公司 一种Pd/ZSM-5催化剂的制备方法
CN114453013A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 一种加氢脱芳烃催化剂的制法及加氢脱芳烃催化剂和应用
CN115025809A (zh) * 2022-07-14 2022-09-09 扬州晨化新材料股份有限公司 一种用于聚氨酯用叔胺类催化剂连续合成的改性hzsm-5分子筛组合物及其制备方法
CN115041221A (zh) * 2022-06-30 2022-09-13 扬州晨化新材料股份有限公司 一种用于连续合成聚氨酯用叔胺类催化剂的含NaY分子筛组合物及其制备方法
CN115501878A (zh) * 2022-09-29 2022-12-23 中国科学院青岛生物能源与过程研究所 一种原位离心合成铌钴催化剂的方法及应用
CN115703068A (zh) * 2021-08-10 2023-02-17 中国石油化工股份有限公司 球形异丁烷脱氢催化剂及其制备方法和应用
CN116351459A (zh) * 2023-06-02 2023-06-30 潍坊正轩稀土催化材料有限公司 一种甲醇芳构化催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798922A1 (fr) * 1999-09-29 2001-03-30 Inst Francais Du Petrole Procede de preparation d'une zeolithe de type structural mtt utilisant des germes de materiaux zeolithiques
CN104549408A (zh) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 Mcm-22/zsm-5原位共生甲醇芳构化催化剂及其制备方法
CN105195213A (zh) * 2015-10-12 2015-12-30 华电煤业集团有限公司 一种甲醇/二甲醚转化制芳烃的催化剂的原位合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798922A1 (fr) * 1999-09-29 2001-03-30 Inst Francais Du Petrole Procede de preparation d'une zeolithe de type structural mtt utilisant des germes de materiaux zeolithiques
CN104549408A (zh) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 Mcm-22/zsm-5原位共生甲醇芳构化催化剂及其制备方法
CN105195213A (zh) * 2015-10-12 2015-12-30 华电煤业集团有限公司 一种甲醇/二甲醚转化制芳烃的催化剂的原位合成方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854946A (zh) * 2018-06-07 2018-11-23 太原理工大学 一种多级孔结构沸石吸附/催化剂及其构建方法
CN112387267A (zh) * 2019-08-13 2021-02-23 中国石油天然气股份有限公司 以镁铝尖晶石为载体的甲醇转化催化剂的制备方法和应用
CN112387267B (zh) * 2019-08-13 2023-06-30 中国石油天然气股份有限公司 以镁铝尖晶石为载体的甲醇转化催化剂的制备方法和应用
CN112844453B (zh) * 2019-11-12 2023-07-28 惠生工程(中国)有限公司 一种zsm-5催化剂及其制备方法和用途
CN112844453A (zh) * 2019-11-12 2021-05-28 惠生工程(中国)有限公司 一种zsm-5催化剂及其制备方法和用途
CN112044466A (zh) * 2020-07-29 2020-12-08 华东理工大学 一种mtp副产品芳构化制取高值芳烃的方法
CN112337481B (zh) * 2020-09-14 2021-08-24 昆明理工大学 一种能够同时脱除氰化氢和氨气的催化剂在处理含氰化氢和氨气的尾气中的应用
CN112337481A (zh) * 2020-09-14 2021-02-09 昆明理工大学 一种能够同时脱除氰化氢和氨气的催化剂及其制备方法和应用
CN114453013A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 一种加氢脱芳烃催化剂的制法及加氢脱芳烃催化剂和应用
CN114453013B (zh) * 2020-10-21 2023-09-01 中国石油化工股份有限公司 一种加氢脱芳烃催化剂的制法及加氢脱芳烃催化剂和应用
CN113070093B (zh) * 2021-03-31 2023-08-04 陕西科技大学 一种GaN负载Ga改性-Silicalite-1催化剂及其应用
CN113070093A (zh) * 2021-03-31 2021-07-06 陕西科技大学 一种GaN负载Ga改性-Silicalite-1-1催化剂及其应用
CN113441170A (zh) * 2021-08-03 2021-09-28 中国海洋石油集团有限公司 一种Ga-ZSM-5催化剂及其制备方法和用途
CN115703068B (zh) * 2021-08-10 2024-02-20 中国石油化工股份有限公司 球形异丁烷脱氢催化剂及其制备方法和应用
CN115703068A (zh) * 2021-08-10 2023-02-17 中国石油化工股份有限公司 球形异丁烷脱氢催化剂及其制备方法和应用
CN113751058A (zh) * 2021-09-28 2021-12-07 无锡威孚环保催化剂有限公司 一种Pd/ZSM-5催化剂的制备方法
CN113751058B (zh) * 2021-09-28 2023-12-01 无锡威孚环保催化剂有限公司 一种Pd/ZSM-5催化剂的制备方法
CN115041221A (zh) * 2022-06-30 2022-09-13 扬州晨化新材料股份有限公司 一种用于连续合成聚氨酯用叔胺类催化剂的含NaY分子筛组合物及其制备方法
CN115041221B (zh) * 2022-06-30 2023-03-24 扬州晨化新材料股份有限公司 一种用于连续合成聚氨酯用叔胺类催化剂的含NaY分子筛组合物及其制备方法
CN115025809A (zh) * 2022-07-14 2022-09-09 扬州晨化新材料股份有限公司 一种用于聚氨酯用叔胺类催化剂连续合成的改性hzsm-5分子筛组合物及其制备方法
CN115501878B (zh) * 2022-09-29 2023-07-25 中国科学院青岛生物能源与过程研究所 一种原位离心合成铌钴催化剂的方法及应用
CN115501878A (zh) * 2022-09-29 2022-12-23 中国科学院青岛生物能源与过程研究所 一种原位离心合成铌钴催化剂的方法及应用
CN116351459A (zh) * 2023-06-02 2023-06-30 潍坊正轩稀土催化材料有限公司 一种甲醇芳构化催化剂及其制备方法
CN116351459B (zh) * 2023-06-02 2023-09-15 潍坊正轩稀土催化材料有限公司 一种甲醇芳构化催化剂及其制备方法

Similar Documents

Publication Publication Date Title
WO2017197548A1 (zh) 甲醇或二甲醚转化制芳烃催化剂及其原位合成方法与应用
JP5756867B2 (ja) 変性zsm−5分子篩触媒によるメタノールカップリングのナフサ接触分解反応の触媒法
CN101481122B (zh) 一种原位合成复合型硅磷铝分子筛的方法
CN108187728B (zh) 一种成型zsm-5分子筛催化剂的制备方法及其应用
CN102372555B (zh) 石脑油流化催化裂解制轻烯烃的方法
CN110227468B (zh) 镍钙基复合催化剂制备及在生物质催化热解过程中的应用
CN105502433B (zh) 一种甲醇制汽油催化剂纳米Zn‑ZSM‑5的制备方法
CN105195213B (zh) 一种甲醇/二甲醚转化制芳烃的催化剂的原位合成方法
CN101823728A (zh) 一种小晶粒sapo-34分子筛的制备方法
JP2014024007A (ja) ゼオライト触媒、ゼオライト触媒の製造方法および低級オレフィンの製造方法
CN102371172B (zh) 催化裂解制烯烃的流化床催化剂
CN110605140B (zh) 一种用于苯与甲醇烷基化的纳米zsm-5催化剂及其制备方法
CN102530989A (zh) 制备大晶粒sapo-34分子筛的方法、通过其获得的产物及其应用
CN109179450B (zh) 一种棉线为模板合成小粒径多级结构sapo-34的制备方法
CN109569703B (zh) 由石脑油和甲醇生产汽油组分的催化剂及制备方法与应用
CN108097283B (zh) 一种失活催化剂的再利用方法和复合催化剂
CN114100675B (zh) 含硼分子筛的制备方法及在丁烯双键异构反应中的应用
CN115121282A (zh) 一种催化乙醇和苯制备乙苯的催化剂及其应用
CN114588934A (zh) 一种硅改性铟基氧化物-分子筛复合材料及其制备方法和应用
CN108435245B (zh) 小晶粒等级孔sapo-34@高岭土微球催化剂及其制备和应用
CN104043475B (zh) 一种移动床zsm-5催化剂小球的制备方法
CN109675617B (zh) 一种甲醇芳构化催化剂及其制备与应用
CN112357932A (zh) 一种固相法制备zsm-5分子筛的方法
JP4541688B2 (ja) イソパラフィン−オレフィンアルキル化法
CN112625726B (zh) 合成气制低碳烯烃的方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901934

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901934

Country of ref document: EP

Kind code of ref document: A1